WO2006103872A1 - Carbon nano tube field effect transistor - Google Patents

Carbon nano tube field effect transistor Download PDF

Info

Publication number
WO2006103872A1
WO2006103872A1 PCT/JP2006/304167 JP2006304167W WO2006103872A1 WO 2006103872 A1 WO2006103872 A1 WO 2006103872A1 JP 2006304167 W JP2006304167 W JP 2006304167W WO 2006103872 A1 WO2006103872 A1 WO 2006103872A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
carbon nanotube
electrode
source
substance
Prior art date
Application number
PCT/JP2006/304167
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Takeda
Satoshi Hattori
Atsushi Ishii
Koichi Mukasa
Makoto Sawamura
Hirotaka Hosoi
Yoshiki Yamada
Hiroichi Ozaki
Kazuhisa Sueoka
Original Assignee
National University Corporation Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University filed Critical National University Corporation Hokkaido University
Priority to JP2007510347A priority Critical patent/JPWO2006103872A1/en
Publication of WO2006103872A1 publication Critical patent/WO2006103872A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene

Definitions

  • the present invention relates to a field effect transistor and a manufacturing method thereof. More specifically, the present invention relates to a method for manufacturing a field effect transistor having a channel having a carbon nanotube force.
  • a field effect transistor is usually a three-electrode transistor having a source electrode and a drain electrode, a channel connecting both electrodes, and a gate electrode. A voltage is applied to the gate electrode, It is a transistor that controls the current between the source and drain electrodes. If the channel is a carbon nanotube, it is called a carbon nanotube FET.
  • the method of manufacturing a carbon nanotube FET can be broadly divided into two depending on how the channel is manufactured.
  • One is a method of forming a channel that bridges the source electrode and the drain electrode on the substrate by vapor growth of carbon nanotubes in the presence of hydrocarbon gas (see Patent Document 1).
  • One is a method in which separately produced carbon nanotubes are provided on a source electrode and a drain electrode on a substrate to form a channel (see Patent Document 2).
  • vapor phase epitaxy is often used.
  • Biosensors using carbon nanotube FETs have been developed.
  • a recognition molecule is bound to the carbon nanotube FET used in the biosensor, and a change in current between the source electrode and the drain electrode is caused by the reaction between the recognition molecule and the substance to be detected.
  • the biosensor detects a substance to be detected based on this change (see Patent Document 3).
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-347532
  • Patent Document 2 US Patent Application Publication No. 2004Z0200734
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-79342
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-34970
  • the method for producing the carbon nanotube FET can be roughly divided into two methods.
  • an object of the present invention is to provide a technique for improving the production yield of a channel composed of carbon nanotubes, and to provide a method for efficiently producing the carbon nanotube FET without lowering the performance of the carbon nanotube FET. It is.
  • the present inventor has found that the production yield of carbon nanotube FETs can be improved by producing a channel composed of carbon nanotubes using a substance having an affinity for carbon nanotubes.
  • the first of the present invention relates to the following carbon nanotube field effect transistor.
  • a field effect transistor having a source electrode and a drain electrode formed on a substrate, and a channel having a carbon nanotube force connecting the source electrode and the drain electrode, and fixing the carbon nanotube to the substrate
  • a field effect transistor comprising a carbon nanotube compatible material.
  • the present invention provides a method for producing a carbon nanotube field effect transistor described below.
  • Preparation site force of the source electrode and drain electrode A step of preparing a substrate modified with a carbon nanotube compatible substance; a step of providing a carbon nanotube to provide a carbon nanotube at an electrode formation scheduled site of the substrate; And an electrode forming step of forming a source electrode and a drain electrode, respectively, in the electrode formation planned portion of the substrate,
  • the carbon nanotube providing step at least a part of the carbon nanotube is fixed to the substrate by the interaction with the carbon nanotube affinity substance.
  • the method for producing a transistor according to [1] [3] preparing a substrate on which the source electrode and the drain electrode are formed; an electrode modifying step of modifying the source electrode and the drain electrode of the substrate with a carbon nanotube affinity substance; and a carbon nanotube on the electrode A step of providing a carbon nanotube, wherein at least a part of the carbon nanotube is fixed to a substrate by interaction with the carbon nanotube affinity substance, The method for producing a transistor according to [1].
  • a step of preparing a carbon nanotube modified with a carbon nanotube affinity substance; a step of providing a carbon nanotube that provides the modified carbon nanotube at a portion of the substrate where the electrode is to be formed; and a portion of the substrate where the electrode is to be formed Each including an electrode forming step of forming a source electrode and a drain electrode,
  • a carbon nanotube FET can be produced simply and efficiently.
  • the carbon nanotube FET can be used as an element, and for example, it can be easily applied to a biosensor.
  • FIG. 1 is a schematic view of a carbon nanotube field effect transistor. 1 for substrate, 3 and
  • 4 is a source electrode and drain electrode, 7 is a channel, 8 is a gate electrode, and G is a gap.
  • FIG. 2 is a diagram showing an example of a substrate of a carbon nanotube field effect transistor.
  • 400 is a support substrate made of a semiconductor
  • 402 and 404 are insulating films
  • 410 is a substrate made of an insulator
  • 420 is a support substrate also having a metal force
  • 422 and 424 are insulating films.
  • FIG. 3 Shows a source / drain electrode entirely covered with a coating.
  • 1 is a substrate
  • 3 and 4 are source and drain electrodes
  • 28 is a coating.
  • FIG. 4 Shows source and drain electrodes. 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel, and G is a gap.
  • FIG. 5 is a diagram showing an outline of a source / drain electrode whose part is covered with a film.
  • 1 is a substrate
  • 3 and 4 are a source electrode and a drain electrode
  • 7 is a channel
  • 28 is a film
  • 29 is a film and 29 is covered with a film.
  • FIG. 6 Carbon nanotube field effect transistor with source and drain electrodes protected by an insulating film.
  • 1 is a substrate
  • 3 and 4 are source and drain electrodes
  • 7 is a channel
  • 8 is a gate electrode
  • 13 is a substance to be detected
  • 15 is a sample solution
  • 30 is an insulating protective film.
  • FIG. 7 A carbon nanotube field-effect transistor in which the source and drain electrodes are protected by an insulating film.
  • 7609 is a substrate (7608 is a supporting substrate, 7607 is an insulating film), 7610 and 7611 are source and drain electrodes, 7612 is a channel, 7613 is a molecule to be detected, 7803b is a gate electrode, and 8501 is an insulating protective film .
  • FIG. 8 is a diagram showing how molecules having two or more polycyclic aromatic functional groups selectively fix carbon nanotubes. 45a and 45b indicate carbon nanotubes with different diameters.
  • FIG. 9 is a diagram for explaining a method for vapor phase growth of carbon nanotubes on a substrate.
  • 1 Is a substrate, 3 and 4 are a source electrode and a drain electrode, 7 is a carbon nanotube fixed to the substrate by a dispersion fixing method, 10 is a reaction vessel, and 11 is a hydrocarbon gas that is a raw material of the carbon nanotube.
  • FIG. 10 shows a carbon nanotube field effect transistor whose 1-Vg characteristic was measured.
  • Reference numeral 102 denotes a support substrate having a silicon force
  • 104 and 106 are insulating films which also have a silicon oxide force
  • 108 and 110 are source and drain electrodes
  • 112 is a channel made of carbon nanotubes
  • 512 is a gate electrode.
  • FIG. 11 is a graph showing the I-Vg characteristics of the field effect transistor shown in FIG.
  • the vertical axis is the source-drain current, and the horizontal axis is the gate voltage.
  • FIG. 12 shows an example of a back gate type carbon nanotube field effect transistor.
  • 1 is a substrate
  • 3 and 4 are source and drain electrodes
  • 7 is a channel
  • 8 is a gate electrode
  • 13 is a molecule to be detected
  • 15 is a sample solution.
  • FIG. 13 is an example of a back gate type carbon nanotube field effect transistor.
  • 1 is a substrate
  • 3 and 4 are source and drain electrodes
  • 7 is a channel
  • 8 is a gate electrode
  • 13 is a molecule to be detected
  • 15 is a sample solution.
  • FIG. 14 is an example of a back gate type carbon nanotube field effect transistor.
  • 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel, 8 is a gate electrode, 13 is a substance to be detected, 15 is a sample solution, and 30 is an insulating protective film.
  • FIG. 15 shows an example of a back gate type carbon nanotube field effect transistor.
  • 1 is a substrate
  • 3 and 4 are source and drain electrodes
  • 7 is a channel made of carbon nanotubes
  • 16 is a recess formed in the substrate (the back gate electrode is not shown).
  • FIG. 16 shows an example of a back gate type carbon nanotube field effect transistor.
  • 3 and 4 are source and drain electrodes, 7 is a channel, 16 is a recess formed in the substrate, 13 is a substance to be detected, 15 is a sample solution (the back gate electrode is not shown).
  • FIG. 17 shows an example of a back gate type carbon nanotube field effect transistor.
  • 3 and 4 are source and drain electrodes, 7 is a channel, 8 is a gate electrode, and 15 is a sample solution.
  • FIG. 18 shows an example of a back gate type carbon nanotube field effect transistor.
  • 3 And 4 are source and drain electrodes, 7 is a channel, 15 is a sample solution, 16 is a recess formed in the substrate, and 41 is a gate electrode.
  • FIG. 19 shows an example of a back gate type carbon nanotube field effect transistor.
  • 1 is a substrate
  • 3 and 4 are source and drain electrodes
  • 7 is a channel made of carbon nanotubes
  • 13 is a substance-recognizing molecule
  • 15 is a sample
  • 17 is a short needle (probe etc.)
  • 41 is a gate electrode.
  • FIG. 20 shows an example of a back gate type carbon nanotube field effect transistor.
  • 102 is a support substrate
  • 104 and 106 are insulating films
  • 108 and 110 are source and drain electrodes
  • 112 is a channel
  • 472 is a substance to be detected substance recognition
  • 490 is a sample solution
  • 512 is a gate electrode.
  • FIG. 21 shows an example of a back gate type carbon nanotube field effect transistor.
  • 102 is a support substrate
  • 104 and 106 are insulating films
  • 108 and 110 are source and drain electrodes
  • 112 is a channel
  • 472 is a substance to be detected substance recognition
  • 490 is a sample solution
  • 522 and 532 are gate electrodes.
  • FIG. 22 shows an example of a back gate type carbon nanotube field effect transistor.
  • 102 is a support substrate
  • 104 and 106 are insulating films
  • 108 and 110 are source and drain electrodes
  • 112 is a channel
  • 472a-b are target substance recognition molecules
  • 490a-b are sample solutions
  • 522a-b and 532a- b represents a gate electrode.
  • FIG. 23 shows an example of a back gate type carbon nanotube field effect transistor.
  • 102 is a supporting substrate
  • 104 and 106 are insulating films
  • 108 and 110 are source and drain electrodes
  • 112 is a channel
  • 114 is a gate electrode
  • 472 is a molecule to be detected
  • 482 is a sample solution
  • 640 is an insulating protection The membrane is shown.
  • FIG. 24 is an example of a side-gated carbon nanotube field effect transistor.
  • 1 is the substrate, 3 and 4 are the source and drain electrodes, 7 is the channel, and 8 is the gate electrode.
  • FIG. 25 shows an example of a side-gated carbon nanotube field effect transistor.
  • Reference numeral 102 denotes a supporting substrate
  • 104 denotes an insulating film
  • 108 and 110 denote source and drain electrodes
  • 472 denotes a substance to be detected
  • 640 denotes an insulating protective film
  • 702 denotes a gate electrode.
  • FIG.26 This is an example of a carbon nanotube field effect transistor of side gate (top gate) type. 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel, 8 is a gate electrode, 13 is a molecule to be detected, 15 is a sample solution, and 40 is an insulating protective film.
  • FIG.27 An example of a side gate (top gate) type carbon nanotube field effect transistor.
  • Reference numeral 102 denotes a support substrate
  • 104 and 106 denote insulating films
  • 108 and 110 denote source and drain electrodes
  • 472 denotes a substance to be detected
  • 482 denotes a sample solution
  • 640 denotes an insulating protective film
  • 702 denotes a gate electrode.
  • FIG. 28 shows an example of a separation gate type carbon nanotube field effect transistor.
  • 102 is a supporting substrate
  • 104 and 106 are insulating films
  • 108 and 110 are source and drain electrodes
  • 112 is a channel
  • 210 is a conductive substrate
  • 202 is a supporting substrate
  • 204 and 206 are insulating films
  • 472 is a substance to be detected
  • 490 is a sample solution
  • 602 is a gate electrode.
  • the element part including the support substrate 102, the insulating films 104 and 106, the source and drain electrodes 108 and 110, and the channel 112 is the carbon nanotube element part 212; the support substrate 202, the insulating films 204 and 206, and the target substance recognition molecule 472
  • the element part including the sample solution 490 and the gate electrode 602 is referred to as a gate element part 214.
  • FIG. 29 shows an example of the gate element portion 214 of FIG.
  • Reference numeral 202 denotes a supporting substrate
  • 204 and 206 denote insulating films
  • 472 denotes a substance-recognizing molecule
  • 490 denotes a sample solution
  • 612 and 622 denote gate electrodes.
  • FIG. 30 shows an example of the gate element portion 214 of FIG. 202 is a supporting substrate, 204 and 206 are insulating films, 472a-b are target substance recognition molecules, 490a-b are sample solutions, 612 & -1) and 622a-b are gate electrodes.
  • FIG. 31 shows an example of a separation gate type carbon nanotube field effect transistor.
  • 102 is a supporting substrate
  • 104 and 106 are insulating films
  • 108 and 110 are source and drain electrodes
  • 112 is a channel
  • 210 is a conductive substrate
  • 202 is a supporting substrate
  • 204 and 206 are insulating films
  • 472a-b are covered
  • Detecting substance recognition molecules 490a-b are sample solutions
  • 622 is a gate electrode.
  • FIG. 32 shows an example of a separation gate type carbon nanotube field effect transistor.
  • 102 Is a support substrate, 104 and 106 are insulating films, 108 and 110 are source and drain electrodes, 112 is a channel, 210 is a conductive substrate, 202 is a support substrate, 204 and 206 are insulating films, and 472a-b are to be detected
  • Substance recognition molecules 490a-b are sample solutions, and 612a-b are gate electrodes.
  • FIG. 33 shows an example of a separation gate type carbon nanotube field effect transistor.
  • 102 is a supporting substrate
  • 104 and 106 are insulating films
  • 108 and 110 are source and drain electrodes
  • 112 is a channel
  • 302 is a conductive substrate
  • 306 is a conductive wire
  • 202 is a supporting substrate
  • 204 and 206 are insulating films
  • Reference numerals 472a to 472 denote target substance recognition molecules
  • 490a to b denote sample solutions
  • 612a to b denote gate electrodes
  • 304 denotes a conductive substrate.
  • FIG. 34 is a view showing a binding mode of an IgG antibody which is a detection substance recognition molecule.
  • 50 is an antibody
  • 51 is a histag
  • 52 is NTA (bitrimethyl triacetate)
  • 53 is an IgG binding protein
  • 54 is a bivalent cross-linking reagent (55 and 56 are functional groups).
  • FIG. 35 shows a biosensor obtained by binding an HA antigen as a substance to be detected to a carbon nanotube field effect transistor.
  • 102 is a support substrate that also has silicon force
  • 104 and 106 are insulating films made of silicon oxide
  • 108 and 110 are source and drain electrodes
  • 112 is a channel made of carbon nanotubes
  • 472 is a substance-recognizing molecule made of HA antigen
  • 490 indicates a sample solution
  • 512 indicates a gate electrode.
  • FIG. 36 is a graph showing the IV characteristics of the biosensor shown in FIG.
  • the vertical axis is the source / drain current, and the horizontal axis is the source / drain voltage (gate voltage: -20V).
  • ni is the IV characteristic curve when the NTA-Ni complex is formed;
  • HA is the IV characteristic curve when the HA antigen is immobilized;
  • Serum is the IV characteristic curve when blocked with human serum albumin ; anti HA-10 ⁇ antiHA-6, respectively, is the I-V characteristic curve when reacted diluted solution diluted with High Priestess dormer supernatant of anti-HA antibody to 5 X 10 _1 ⁇ 5 X 10_ 6 .
  • Carbon nanotube FET of the present invention is Carbon nanotube FET of the present invention
  • the carbon nanotube FET of the present invention has a substrate, a source electrode and a drain electrode on the substrate, a channel made of carbon nanotubes connecting both electrodes, and a gate electrode. Further, the carbon nanochannel for fixing the carbon nanochannel to the substrate. It is preferable to contain a substance having affinity for eu.
  • FIG. 1 is a substrate
  • 3 and 4 are source and drain electrodes
  • 7 is a channel made of carbon nanotubes
  • 8 is a gate electrode.
  • the carbon nanotube affinity material force for fixing the channel 7 is coupled to the source / drain electrode or the substrate.
  • the voltage applied to the gate electrode 8 controls the current between the source electrode and the drain electrode.
  • the substrate included in the carbon nanotube FET of the present invention is preferably an insulating substrate.
  • insulating substrates include 1) a substrate in which one or both sides of a semiconductor or metal support substrate is covered with an insulating film, or 2) a substrate made of an insulator.
  • FIG. 2 shows an example of the substrate.
  • FIG. 2 (C) shows a substrate made of an insulator 410.
  • 2B includes a support substrate 400 made of a semiconductor and a first insulating film 402, and
  • FIG. 2A further includes a second insulating film 404.
  • FIG. 2D includes a support substrate 420 having a metal force and a first insulating film 422, and
  • FIG. 2E further includes a second insulating film 424.
  • the substrate included in the carbon nanotube FET of the present invention is preferably the substrate shown in FIG. 2 (A) or (B), or FIG. 2 (D) or (E), more preferably FIG. 2 (A). Or a substrate shown in (B), more preferably a substrate shown in FIG.
  • the support substrate is made of a semiconductor or a metal over the substrate in which a film such as an insulator is formed on the support substrate.
  • semiconductors include Group 14 elements such as silicon and germanium, III-V compounds such as GaAs and InP, II-VI compounds such as ZnTe, and the like, preferably silicon.
  • the metal include metals that easily form oxides, such as aluminum and magnesium.
  • the thickness of the support substrate is not particularly limited, but is usually about ⁇ , about 0.1 to 1. Omm, preferably about ⁇ to about 0.3 to 0.5 mm.
  • Examples of the material of the insulating film covering the supporting substrate include inorganic compounds such as silicon oxide, silicon nitride, silicon oxide, titanium oxide, and organic materials such as acrylic resin and polyimide. Compounds are included.
  • On at least one side of the support substrate preferably source'drain An insulating film is formed on the surface on which the electrode is disposed. The thickness of the insulating film where the source and drain electrodes are arranged is ⁇ ! About 500 nm, preferably about 20 to 300 nm. This is to prevent leakage current from flowing.
  • Examples of the substrate having the insulating force include a glass substrate in addition to the above-described substrate having the insulating force.
  • Examples of glass materials include quartz, sapphire, and glass containing elements other than sodium.
  • Conventional carbon nanotube transistors are fabricated by vapor deposition, which requires a high temperature (eg about 800 ° C) condition! As a result, glass had a low melting point and glass could not be used as a substrate.
  • the channel that is the carbon nanotube force is not necessarily produced by the vapor phase growth method (that is, the channel composed of the carbon nanotube is dispersed and fixed). It is not necessary to heat the substrate to a high temperature because it can be manufactured by a dredge method.
  • the substrate may be a glass substrate (containing sodium) having a melting point of about 400 ° C.
  • the electrodes can be bridged and connected with carbon nanotubes by a dispersion fixing method described later.
  • a glass substrate As the substrate. 1) When a transparent glass substrate is used, it is possible to use an optical microscope, a fluorescence microscope, a laser microscope, etc. (However, when a total reflection type fluorescence microscope is used, it is more than a quartz substrate due to the refractive index. Ordinary glass substrates are preferably used). In other words, the element can be driven while checking the state of the sample or the substrate with these microscopes. For example, it is possible to detect and detect changes in transistor electrical characteristics (for example, changes in source and drain currents) while observing detection objects such as viruses and antigens labeled with fluorescent molecules with a fluorescence microscope. it can.
  • a transparent glass substrate is used, it is possible to deposit metal on the substrate based on the marker attached on the substrate, so that it is possible to place electrodes etc. in an accurate position.
  • a glass substrate is preferable as a substrate for the FET of the present invention because it is cheaper and easier to process than a silicon substrate and has high insulation.
  • electrodes are formed on a silicon substrate covered with an insulating film, but a no-current is generated (a defect occurs in the insulating film covering the silicon substrate, Current leaked into the silicon substrate). By using a glass substrate Such a phenomenon is suppressed.
  • Glass is difficult to absorb heat, making it easier to cool the device.
  • the substrate may be a plastic substrate that is cheaper than glass and easy to process. Of course, in the case of a plastic substrate, it is necessary to appropriately adjust conditions for depositing metal to form electrodes.
  • a source electrode and a drain electrode are disposed on the substrate of the carbon nanotube FET of the present invention.
  • the material of the source electrode and the drain electrode include metals such as gold, platinum, and titanium.
  • the substrate is a glass substrate, it is preferably a metal such as gold or chromium.
  • the source electrode and the drain electrode are formed by depositing these metals.
  • Each of the source electrode and the drain electrode may have a multilayer structure of two or more kinds of metals. For example, a gold layer may be superimposed on a titanium layer.
  • the film thickness of the source / drain electrode is not particularly limited, but is, for example, several tens of nm.
  • the distance between the source electrode and the drain electrode is not particularly limited, but is usually about 2 to 10 ⁇ m. The distance can be further reduced, which facilitates the connection with the carbon nanotubes by the dispersion-fixed method.
  • the field effect transistor of the present invention can be applied to a biosensor.
  • a substance to be detected may be bound to a carbon nanotube (channel) that connects a source electrode and a drain electrode.
  • a sample solution containing a substance to be detected can be added onto the source electrode and the drain electrode.
  • the added sample solution covers the entire source electrode and drain electrode, a film is formed between the probe and the electrode of the current measuring device (prober etc.) (see Fig. 3), In some cases, the current flowing between the source electrode and the drain electrode (source / drain current) cannot be measured accurately.
  • the source electrode and the drain electrode in the field effect transistor of the present invention are not entirely covered by the added sample solution.
  • the source electrode and drain electrode channels made of carbon nanotubes You can increase the length of the force. That is, as shown in FIG. 4 and FIG. 5, it is preferable to set the length L3 of the source / drain electrode to 500 m or more, for example, 1 mm or more. Good.
  • W2 is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less. Yes (up to a few micro).
  • the connecting portion of the electrode with the channel may have a protruding structure, and in this case, W1 may be about 10 / zm, for example.
  • the probe of the measuring device may be applied to the electrode in the part not covered with the film.
  • the channel connecting the source electrode and the drain electrode of the carbon nanotube FET of the present invention is composed of carbon nanotubes.
  • the carbon nanotubes constituting the channel may be either single-walled or multi-walled carbon nanotubes, but are preferably single-walled carbon nanotubes.
  • a defect may be introduced into the carbon nanotube constituting the channel.
  • “Defect” means a state in which the carbon five-membered ring or six-membered ring constituting the carbon nanotube is opened.
  • the carbon nanotubes with defects introduced may have a structure that is barely connected in a state of being cut off. The actual structure is not clear.
  • a method for introducing a defect into the carbon nanotube will be described later.
  • the defect can be obtained by annealing the carbon nanotube.
  • SET single-electron transistor
  • the performance as a SET will be described later.
  • the channel may be connected by a single carbon nanotube or a plurality of carbon nanotubes.
  • the source and drain electrodes may be connected by a bundle of carbon nanotubes, or a plurality of carbon nanotubes may be folded and connected between the source and drain electrodes! / ⁇ .
  • the state of the carbon nanotubes connecting the source and drain electrodes is AFM (atomic It can be confirmed by an atomic force microscope.
  • the channel of the carbon nanotube FET of the present invention can be produced by a dispersion-immobilization method, the channel is not necessarily constituted by one carbon nanotube.
  • the channel of the carbon nanotube FET of the present invention may be in contact with the substrate! /, And V may be formed, and a gap may be formed between the substrate and the substrate (FIG. 1). (See Gap G).
  • the channel included in the carbon nanotube FET of the present invention may be protected by an insulating protective film.
  • the carbon nanotubes that make up the channel easily interact with various molecules and change their electronic state. This change in the electronic state appears as a change in the source / drain current, and may be a noise source depending on the sensor mode. Therefore, the whole or part of the carbon nanotubes and, if necessary, the whole or part of the source / drain electrode may be covered with an insulating protective film. As a result, the carbon nanotubes are prevented from interacting with solution vapor and the like, and noise can be reduced.
  • the entire transistor can be cleaned ultrasonically or using a strong acid or a strong base. Further, since the damage is prevented by providing the protective film, the service life of the transistor can be significantly extended. Since the characteristics of carbon nanotube transistors can vary from individual transistor to transistor, it is very important to extend their service life.
  • the insulating protective film that protects the channel also having the carbon nanotube force may be formed using a nosedation film that may be formed of an insulating adhesive. Furthermore, if the insulating protective film is an oxide silicon film, a substance-recognizing molecule such as an antibody can be easily bound to the insulating protective film.
  • FIG. 6 and FIG. 7 show examples of field effect transistors (back gate type) in which a channel having carbon nanotube force is protected by an insulating protective film.
  • the entire carbon nanotube 7 and a part of the source / drain electrode are protected by the insulating protective film 30.
  • the entire carbon nanotube 7612 and the entire source / drain electrodes 7610 and 7611 are protected by an insulating protective film 8501.
  • the connection site between the carbon nanotube 7612 and the source electrode 7610, and the car is protected by an insulating protective film 8501.
  • the substance-recognized molecule 7613 (described later) can be directly bonded to the carbon nanotube, so the sensitivity when used as a sensor is improved, and single molecule detection becomes possible. sell. On the other hand, since the contact part that is easily damaged is protected, the service life can be extended and noise can be prevented.
  • the channel of the carbon nanotube FET of the present invention can be formed by any method, it is preferably formed by connecting the source and the drain with a carbon nanotube by a dispersion fixing method.
  • the dispersion fixed key method will be described in detail later.
  • the carbon nanotube FET of the present invention preferably contains a carbon nanotube affinity substance that fixes the carbon nanotubes constituting the channel to the substrate.
  • the carbon nanotube affinity substance is preferably bonded (preferably covalently bonded) to the substrate and the source / drain electrodes on the substrate, and the carbon nanotube is fixed to the substrate by affinity with the carbon nanotube. To do. That is, the channel made of carbon nanotubes is fixed to the substrate via the carbon nanotube affinity substance.
  • Examples of the substance having affinity for carbon nanotubes include aromatic polycyclic molecules exhibiting ⁇ - ⁇ interaction with carbon nanotubes.
  • Examples of the aromatic polycyclic molecule include aromatic hydrocarbons such as pyrene, naphthalene, acetracene and phenanthrene, and aromatic heterocycles.
  • the aromatic polycyclic molecule is preferably pyrene.
  • the carbon nanotube affinity substance may be a molecule having two or more aromatic functional groups. If there are two or more aromatic functional groups, the van der Noles force with the carbon nanotubes will increase, and the carbon nanotubes can be fixed stably, and carbon nanotubes with the desired diameter will be selected according to the angle of these two functional groups Can be fixed.
  • FIG. 8 shows that a molecule having two aromatic functional groups (the bonding angle ⁇ of the two functional groups) does not fix the carbon nanotube 45b having a diameter larger than the force for fixing the carbon nanotube 45a. Examples of molecules having two or more aromatic functional groups include those obtained by crosslinking two molecules of pyrene via lysine or the like.
  • the carbon nanotube-affinity substance is preferably covalently bonded to the substrate or the electrode.
  • the carbon nanotube affinity substance may be bonded to the hydroxyl group, amino group, or carboxy group introduced into the substrate by an ester bond or an amide bond.
  • the channel of the carbon nanotube FET of the present invention is preferably formed using a carbon nanotube affinity substance. This forming method will be described later in detail.
  • the field effect transistor of the present invention includes a gate electrode.
  • An example of the material of the gate electrode is a force including gold, platinum, titanium, brass, aluminum, or the like, preferably gold, like the source / drain electrodes. This is because gold has high conductivity and small error due to current leakage. It can be formed by depositing these metals.
  • the gate electrode may be disposed on an aluminum substrate, for example.
  • the arrangement of the gate electrode is not particularly limited as long as the gate electrode is arranged so that the current (source-drain current) flowing between the source and drain electrodes arranged on the substrate can be controlled by the voltage. In view of conditions or viewpoints such as transistor use and manufacturing advantages, the transistors may be arranged as appropriate.
  • the gate electrode include (A) a back gate electrode; (B) a side gate electrode; (C) a separation gate electrode.
  • a back gate electrode is formed by forming a source / drain electrode of a substrate on which a source electrode and a drain electrode connected by carbon nanotubes are arranged! Wow! /, Means the gate electrode placed on the surface (back surface).
  • the term “arranged on the surface” means that the substrate may be disposed in contact with the substrate surface or may be disposed apart from the substrate surface.
  • the back gate electrode arranged apart from the substrate surface is sometimes referred to as a sandwich type back gate electrode.
  • an insulating film be formed on the substrate surface on which the knock gate electrode is disposed (the back surface of the source / drain electrode).
  • the side gate electrode is the same surface as the surface on which the source and drain electrodes are formed on the substrate on which the source electrode and the drain electrode connected by carbon nanotubes are arranged. It means the gate electrode arranged on the top.
  • the term “arranged on the surface” means that the substrate may be disposed in contact with the substrate surface or may be disposed apart from the substrate surface.
  • the side gate electrode disposed away from the substrate surface is sometimes referred to as a top gate electrode.
  • the separation gate electrode is an insulating substrate that is separate from the substrate on which the source / drain electrodes are disposed, and is disposed on the electrically connected insulating substrate.
  • the term “insulating substrate” as used herein is the same as the substrate on which the source / drain electrodes are disposed, and is a substrate made of an insulator; or a support substrate made of semiconductor or metal; and at least one of the support substrates
  • the substrate may include an insulating film formed on the substrate. Examples of the “conductive substrate” include a glass or brass substrate on which a gold thin film is deposited.
  • the isolation gate electrode is disposed on the insulating substrate, may be disposed in contact with the substrate surface, or may be disposed away from the substrate surface.
  • the source / drain current is controlled by the voltage applied to the gate electrode.
  • the gate voltage is The source / drain current is in the 10 _9 to 10 _5 A level in the range of 20 V to +20 V, and the source and drain current changes according to the change in the gate voltage.
  • the carbon nanotube FET of the present invention can be produced by any method.
  • a separately manufactured carbon nanotube may be manufactured in the same manner as a normal method, including a force including a step of forming a channel by fixing the carbon nanotube to a substrate with a substance having an affinity for the carbon nanotube.
  • the carbon nanotube FET manufacturing method of the present invention is a method for forming a channel. Therefore, it can be classified into the following modes.
  • Sites where source and drain electrodes are to be formed Force Prepare a substrate modified with a carbon nanotube-affinity substance; provide carbon nanotubes on the substrate where electrodes are to be formed; and form source and drain electrodes .
  • a substrate on which a source electrode and a drain electrode are formed is prepared; the electrode on the substrate is modified with a carbon nanotube-affinity substance; and a carbon nanotube is provided on the electrode.
  • a carbon nanotube modified with a carbon nanotube affinity substance is prepared; a substrate on which a source electrode and a drain electrode are formed is prepared; and the modified carbon nanotube is provided to an electrode of the substrate.
  • the substrate used in the production method of the present invention is the same as the above-described substrate.
  • the carbon nanotubes provided in the production method of the present invention are preferably single-walled single-bonn nanotubes.
  • the average length of the provided carbon nanotubes is usually 0. or more, more preferably 1. O / zm or more.
  • the upper limit of the average length is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less. In any case, the length of the carbon nanotubes is preferably longer than the distance between the source and drain electrodes.
  • the average length of the carbon nanotubes provided can be measured by AFM.
  • the carbon nanotubes measured by AFM are preferably washed with an acid.
  • Examples of the provided carbon nanotubes include single-walled carbon nanotubes manufactured by Carbon Nanotechnologies Inc. (CN I., US).
  • the carbon nanotubes provided in the production method of the present invention may be subjected to an acid treatment.
  • the acid treatment of the carbon nanotube is performed, for example, by washing the carbon nanotube with sulfuric acid, nitric acid or a mixture thereof, and further ultrasonicating.
  • a carboxyl group can be introduced on the surface of the carbon nanotube.
  • Acid-treated carbon nanotubes have improved hydrophilicity, and therefore dispersibility in water is improved. Therefore, it is possible to provide carbon nanotubes dispersed in water. It becomes easy.
  • the substance having affinity for carbon nanotubes used in the production method of the present invention is as described above, and means an aromatic polycyclic molecule exhibiting ⁇ - ⁇ interaction with carbon nanotubes, and two or more. It may be a molecule having an aromatic functional group.
  • the functional group for bonding to the carbon nanotube-affinity substance is bonded to the substrate surface (preferably, the electrode formation planned portion of the substrate) or the surface of the source / drain electrode formed on the substrate. It is preferable.
  • a carboxyl group or an ester group is introduced into the carbon nanotube affinity substance; a carboxyl group is present on the substrate surface or the electrode surface. If there is, it is preferable that an amino group is introduced into the carbon nanotube affinity substance!
  • Examples of carbon nanotube-affinity substances into which carboxyl groups have been introduced include 1-pyren ebutyric add, etc., and carbon nanotube-affinity substances into which ester groups have been introduced. -Hyroxysuccinimide ester power included.
  • Examples of the carbon nanotube affinity substance into which 7-amino group is introduced include 1-pyrenemethylamine.
  • the substrate surface may be treated with a silane coupling agent containing a functional group that can be converted into a carboxyl group, and the functional group is converted into a carboxyl group.
  • a silane coupling agent containing a functional group that can be converted into a carboxyl group
  • the functional group is converted into a carboxyl group.
  • amino groups on the surface of the substrate for example, the surface of the substrate is treated with aminosilane. Examples of aminosilane include 3-aminopropyltriethoxysilane (APS).
  • the surface of the electrode may be treated with thiocarboxylic acid.
  • thiocarboxylic acid include 11-mercapto undecanoic acid.
  • the gold electrode may be treated with aminothiol. Examples of aminothiols include 11-
  • the resist film may be made of PMMA or the like, and the film thickness may be about 1 ⁇ m to 3 ⁇ m.
  • an aminosilane solution such as APS may be dropped onto the electrode formation planned site and dried to form a film.
  • the film is a condensation polymer such as APS. It should be about ⁇ 1 ⁇ m.
  • the carbon nanotube affinity substance may be provided by being dissolved in an organic solvent such as DMF.
  • an organic solvent such as DMF.
  • a solution of a carbon nanotube affinity substance dissolved in an organic solvent is added little by little to a solvent (for example, an aqueous solution) in which the substrate is immersed. It is preferable to remove the solvent remaining on the substrate by drying with an inert gas during the cleaning after the reaction (the same applies hereinafter).
  • the provision of the carbon nanotubes is preferably performed by providing a dispersion of separately prepared carbon nanotubes. What is necessary is just to immerse the board
  • dispersion solvents include organic solvents such as DMF and water.
  • the carbon nanotubes subjected to acid treatment are improved in water dispersibility by introducing carboxylic acid. Therefore, the provision of the acid-treated carbon nanotube is preferably carried out by dispersing it in an aqueous solvent.
  • the pH of the aqueous dispersion is at least pKa (about 4) of the carboxylic acid, preferably 7-8.
  • the concentration of carbon nanotubes in the carbon nanotube dispersion is preferably from 0.001 mgZml to 0.1 mgZml. If the concentration is as high as 0.1 mgZmU, the strong bon nanotubes tend to aggregate and it may be difficult to prepare a dispersion.
  • the carbon nanotube at the modification site By providing the carbon nanotube at the modification site, at least a part of the carbon nanotube is fixed to the substrate to connect the source and drain electrodes.
  • the carbon provided Not all of the nanotubes are fixed to the electrode formation scheduled portion of the substrate. Therefore, after providing the carbon nanotubes, it is preferable to clean the substrate and remove the unfixed carbon nanotubes before forming the electrodes.
  • the substrate is cleaned by, for example, washing the substrate with a solvent (for example, DMF) or sonicating the substrate in the solvent.
  • a solvent for example, DMF
  • the formation of the source electrode and the drain electrode may be performed by depositing metal using lithography.
  • the portion where the source or drain electrode and the channel overlap can be welded by a high electric field electron beam or a locally applied electric field using STMZAFM, so that the electrode and the channel can be integrated (the same applies hereinafter).
  • the carbon nanotubes on the substrate may be vapor-phase grown after providing the carbon nanotubes (more preferably after washing).
  • the vapor growth of carbon nanotubes is performed by using a substrate 1 on which carbon nanotubes 7 are fixed and a reaction vessel to which hydrocarbon gas (methane gas, etc.) 11 that is a raw material for carbon nanotubes is supplied. Put in 10 and heat to about 700-900 ° C. Thereby, the carbon nanotubes 7 grow as shown by the dotted line. Apply voltage between source and drain electrodes (3 and 4)! You may do it.
  • a metal is deposited by lithography.
  • a self-assembled film is formed on the electrode surface using a metal-thiol bond, and Introducing a functional group (for example, a carboxyl group or amino group) on the electrode surface; providing a force-bonn nanotube affinity substance having a functional group (for example, an amino group or ester group) that reacts with the functional group introduced on the electrode surface Is done.
  • a functional group for example, a carboxyl group or amino group
  • the electrode surface is treated with a compound having a functional group (for example, thiol group) that specifically reacts with the electrode material (for example, thiolated carboxylic acid or aminothiol). Good.
  • the carbon nanotube affinity material is provided by being dissolved in an organic solvent such as DMF.
  • a reagent for example, calpositimide
  • a functional group for example, carboxyl group
  • the functional group for example, amino group
  • a dispersion liquid in which the carbon nanotube is dispersed in an organic solvent such as DMF or water may be provided to the modification site.
  • the acid-treated carbon nanotubes are preferably provided dispersed in water.
  • the dispersion liquid may be added to the substrate, or the substrate may be immersed in the dispersion liquid.
  • the carbon nanotubes that are not fixed by washing the substrate after providing the carbon nanotubes are not fixed. Is preferably removed.
  • the substrate is washed, for example, by rinsing the substrate with a solvent or sonicating the substrate in the solvent.
  • an electrode is formed by further depositing a metal on the electrode already provided on the substrate. Is preferred.
  • an appropriate source / drain current for example, about 0.1 to 1.0 A
  • an element through which a current of about 0.1 to 1.0 A flows is not easily damaged even by washing several times with water or the like.
  • the carbon nanotubes on the substrate may be vapor-phase grown (FIG. 9). reference).
  • the carbon nanotube affinity substance for modifying the carbon nanotubes preferably has a functional group for binding to the electrode surface.
  • the carbon nanotube may be modified with a carbon nanotube affinity substance into which an amino group is introduced.
  • the carbon nanotube for modifying the carbon nanotube It is preferable that the affinity substance has a functional group that binds to the substrate surface (preferably, the electrode formation planned site).
  • the carbon nanotubes may be treated with a carbon nanotube-affinity substance into which amino groups have been introduced.
  • the carbon nanotubes may be modified by adding the carbon nanotubes to a solution containing a carbon nanotube compatible substance (the solvent is ethanol or the like).
  • a carbon nanotube compatible substance the solvent is ethanol or the like.
  • carbon nanotubes are treated with pyrene derivatives, which are examples of carbon nanotube affinity substances, and hydrophilicity is added, the dispersibility of carbon nanotubes in aqueous solution improves, so carbon nanotubes are more uniformly used as a substrate. Can be dispersed on top.
  • the carbon nanotube dispersion liquid is dropped on the substrate, or the substrate is immersed in the carbon nanotube dispersion liquid. do it.
  • the carbon nanotube dispersion liquid is dropped on the substrate, or the substrate is immersed in the carbon nanotube dispersion liquid. do it.
  • Nanotubes may be vapor grown (see Figure 9).
  • a metal is further provided on the electrode already provided on the substrate. It is preferable to form an electrode by vapor deposition.
  • the silicon oxide film on the surface of the silicon substrate (the film thickness of the silicon oxide film should be about 300 nm) is washed with 50% sulfuric acid for 30 minutes at room temperature and then with water.
  • a photoresist film (OEPR-800) is spin-coated by spin coating on the cleaned silicon oxide film. Site where source and drain electrodes are to be formed using photolithography The pair of regions of the photoresist film is removed.
  • the obtained substrate is immersed in a mixed solution of ethanol and water (volume ratio 1: 4, 50 ml) and heated to 65 ° C. 1.
  • 101 of the obtained solution is dropped into the mixed solution in which the substrate is immersed, and reacted at 65 ° C for 1 hour. (This causes pyrene to bind to the substrate surface.)
  • the obtained substrate is heated at 115 ° C. for 5 minutes and then immersed in DMF to remove the photoresist film.
  • CM Co., US 0.5 mg of single-walled carbon nanotubes (CM Co., US) is washed with a mixed solution of sulfuric acid and nitric acid, and then dispersed in 1 ml of a buffer solution.
  • the obtained solution is centrifuged, and the resulting residue is suspended in a mixed solvent of sulfuric acid and hydrogen peroxide solution and sonicated for 1 hour.
  • the resulting black solution is diluted with water and dialyzed against distilled water to neutralize the solution.
  • One-bonn nanotube solution (which is sonicated before use) is dropped on the above-mentioned substrate and left for 1 hour to fix the carbon nanotubes to the pyrene-modified region.
  • the obtained substrate is washed with DMF and ethanol.
  • the state of the area where the carbon nanotubes are fixed can be observed with an AC-mode AFM, and it can be confirmed whether the areas where the electrodes are to be formed are connected with carbon nanotubes.
  • a pattern for forming source / drain electrodes is formed on the obtained substrate.
  • a method similar to the method for patterning pyrene described above may be used.
  • the source and drain electrodes are formed by evaporating 30nm thick Pt film and lOOnm thick Au film using EB vapor deposition. The distance between both electrodes shall be about 3 m.
  • a gold electrode is formed by vapor deposition on the silicon oxide film of the silicon substrate (the film thickness of silicon oxide may be about 300 nm).
  • 11-mercaptoundecano substrate with gold electrode Immerse in ic acid solution (0.5 mM) and let stand at room temperature for 10 hours. After washing with ethanol, blow dry with nitrogen gas. (This introduces carboxyl groups on the gold electrode surface.)
  • a dimethylformamide solution of carbon nanotubes (0.5 mg / 5 ml) is dropped on the substrate and left for 10 hours. Then, after ultrasonic cleaning in DMF and ethanol, nitrogen gas is blown over the entire substrate and dried.
  • the gold electrode formed on the substrate in this method is preferably sufficiently deposited so that a current of about 0.1 to 1.0 / z A flows. This is to obtain an element that operates stably.
  • the source / drain current is excessively low, and the device may change its conductivity during use, and may lose its conductivity. Stable conductivity even when washed.
  • the obtained solution is added to a solution in which 0.6 mg of 11-amino-1-undecanethio 1 is dissolved in 100 / zL of DMF and allowed to react at room temperature for 1 hour.
  • the obtained reaction solution is added to 0.05 mg ZmL of an aqueous solution (500 L) of acid-treated carbon nanotubes and stirred at room temperature for 12 hours.
  • a substrate on which a gold electrode is formed is put into the obtained solution and reacted at room temperature for 12 hours to fix the carbon nanotubes to the substrate.
  • a DMF solution of 1-pyrenebutyric acid (5 mg / ml, 50 ⁇ 1) was added to a DMF dispersion of carbon nanotubes (0. Olmg / ml, 500 / zl) and sonicated for 2 hours at room temperature. Tetraethylenediamine 50 ⁇ 1, ethanol 50 ⁇ 1, and water 25 1 are added to the resulting solution (100 ⁇ 1) to obtain a dispersion. The resulting dispersion is filtered through a filter to remove a large excess of 1-pyrenebutyric acid. Add water-ethanol (1: 1) mixed solution to the filtrate to make lml. Thus, a carbon nanotube dispersion solution is obtained. Fix the dispersion solution of carbon nanotubes modified with 1-pyrenebutyric acid to the planned electrode treated with aminosilane using a condensation reagent such as carbodimit.
  • a condensation reagent such as carbodimit.
  • the provided carbon nanotubes are arranged along the steps of atoms on the crystal surface of the substrate; or arranged in a certain direction by electrophoresis.
  • the source and drain electrodes can be connected with the carbon nanotubes more efficiently and reproducibly.
  • the characteristics of the formed channel can be confirmed by a four-probe method.
  • Electrodes A, B, C, D Four acicular electrodes (electrodes A, B, C, D) are installed in a straight line in the channel, a constant current is passed between the two outer electrodes (electrodes A, D), and the two inner electrodes ( The resistance value is obtained by measuring the potential difference generated between the electrodes B and C), and the volume resistance value of the channel can be calculated by multiplying the obtained resistance value by the channel thickness and the correction coefficient RCF.
  • channel transport characteristics may be evaluated. Specifically, it is possible to evaluate the characteristics of noistic electrical conduction, the possibility of spin injection, and the possibility of spin transport.
  • the source and drain electrodes can be connected with carbon nanotubes (channels can be formed) with a high probability (almost 100%). Therefore, the yield of transistor manufacturing can be improved. Further, since it is necessary to vapor-phase carbon nanotubes, it is possible to employ a heat-resistant low-temperature substrate material (for example, glass).
  • Defects may be introduced into the carbon nanotubes forming the formed channel! Force Introduction of defects into a single-bonn nanotube can be done, for example, by chemically modifying; passing an excess current (several mA); irradiating with an ion or electron beam; Done.
  • the state of defects can be observed by scanning probe methods (Kelvin probe method, Maxwell probe method, etc.). And the density, distribution, and size (such as size and energy barrier) of defects can be evaluated.
  • a transistor having desired properties can be manufactured. Examples of desired properties include the property as SET (single electron transistor). Since the SET channel has a quantum dot structure, electrons stay in the dot area and the amount of current becomes very small, so that a slight change in charge on the channel can be detected sensitively.
  • a carbon nanotube FET (shown in Fig. 10) including a knock gate electrode was produced.
  • the channel was formed in accordance with the above-described specific example A of the dispersion fixing method.
  • the silicon thickness of the support substrate is 500 m
  • the thickness of the silicon oxide film on the source / drain electrode side is 3 OOnm
  • the thickness of the silicon oxide film on the gate electrode side is 300 nm
  • the thickness of the APS film is 5 to 10 nm.
  • the area of the source and drain electrodes was 0.20 to 0.25 mm 2
  • the area of the substrate was lcm 2 (lcm X lcm).
  • AFM confirmed that the source and drain electrodes were connected by several carbon nanotubes.
  • the carbon nanotube FET of the present invention can be applied to any application, it is preferably used for a biosensor.
  • a carbon nanotube FET including various types of gate electrodes and an embodiment in which the carbon nanotube FET is used as a biosensor will be described.
  • the aspect of the carbon nanotube FET and the aspect of the biosensor are not limited to these.
  • FIG. 12 shows an example of a carbon nanotube FET including a back gate electrode.
  • reference numeral 1 denotes an insulating substrate.
  • a source electrode 3, a drain electrode 4, and a channel 7 made of carbon nanotubes are provided on one surface of the insulating substrate 1, and on the other surface of the insulating substrate 1.
  • the gate electrode 8 is provided (with the surface force separated) (sandwich type gate electrode). If the substance-recognized molecule 13 is bonded to the surface of the insulating substrate 1 on the gate electrode side, the other surface of the insulating substrate 1 (the surface to which the substance-recognized molecule 13 is bonded) and the gate electrode 8 are placed. By interposing a sample solution, it can be used as a sensor for detecting a substance to be detected.
  • the substance-recognized molecules 13 are arranged on the back surface of the substrate surface on which the carbon nanotubes are arranged. Can be cleaned and reused.
  • the carbon nanotube FET shown in FIG. 12 can bind the target substance recognition molecule to the entire surface of the insulating substrate (surface without the channel), a relatively large number of recognition molecules are bound. be able to.
  • a substance-to-be-detected molecule is bound to a carbon nanotube that is a channel, it can be easily used for detection repeatedly by washing.
  • Washing can be performed, for example, with a solution having a pH equal to or lower than the dissociation constant (when NTA-Ni complex is used to bind the substance to be detected, the solution is reduced to pKa (about 6) or less of the imidazole ring). This can be done using imidazole, which facilitates liberation of Ni from NTA). Further, if a mirror-surface silicon oxide film is formed by polishing the substrate surface, recognition molecules (eg, antibodies) can be easily bound using a histag or the like.
  • recognition molecules eg, antibodies
  • FIG. 13 and FIG. 14 show examples of carbon nanotubes FET including a back gate electrode, respectively.
  • reference numeral 1 denotes an insulating substrate.
  • a source electrode 3, a drain electrode 4, and a channel 7 made of carbon nanotubes are provided on one surface of the insulating substrate 1, and the other surface of the insulating substrate 1 is provided.
  • a gate electrode 8 is provided on the top.
  • an insulating thin film 30 covering the channel 7 is provided.
  • the sample solution 15 can be used as a sensor for detecting the detection substance by allowing the sample solution 15 to cover the channel 7. . Further, if the substance to be detected recognition molecule 13 is bound to the insulating thin film 30 in FIG. 14, the sample solution can be used as a sensor for detecting the substance to be detected by allowing the sample solution to cover the channel. At this time, it is preferable that the entire force of the source electrode 3 or the drain electrode 4 is not covered with the sample solution. Therefore, as described above, it is preferable that the length of the source electrode 3 or the drain electrode 4 from the channel is long. Also melt It is preferable that the electrode part covered with the liquid is small.
  • the substance-recognizing molecule 13 is directly bonded to the channel 7, and therefore this carbon nanotube FET can provide a highly sensitive sensor.
  • the channel 7 is protected by the insulating thin film 30, the stability is high, and the substance to be detected substance recognition molecule 13 is bonded to the insulating thin film 30 covering the channel. Since the sample solution does not come into direct contact with the electrode, a highly sensitive sensor can be provided.
  • FIGS. 15 to 18 show examples of carbon nanotube FETs including a back gate electrode.
  • reference numeral 1 denotes an oxide silicon film and an insulating substrate which also has a silicon force, and source / drain electrodes 3 and 4 and a channel 7 made of carbon nanotubes are arranged on the silicon oxide film of the insulating substrate 1. . Further, a part of the silicon portion of the insulating substrate 1 is removed to provide a recess 16. The recess 16 can be easily formed by physically or chemically etching the silicon portion. Etch the silicon part until the oxide silicon film is exposed as shown in Figure 15.
  • the silicon oxide film is preferably thin in order to improve the sensitivity to the voltage of the gate electrode (not shown). In order to reduce the film thickness, the silicon oxide film is preferably formed by oxidizing silicon.
  • the volume of the recess 16 By adjusting the volume of the recess 16, an appropriate fixed amount of sample solution can be provided. Further, the added sample solution can be stably held at the sample detection site where it is difficult to escape. Further, the sample solution held in the recess 16 can be transported to another detection device. For example, the sample solution may be continuously flowed into the recess 16 using micro-TAS.
  • a substance-to-be-detected molecule 13 can be bound inside the recess 16 and the sample solution can be held there.
  • the recess 16 may be arranged downward as shown in FIG. 15 or may be arranged upward as shown in FIG. Even if the recess 16 faces downward, a small amount of liquid can be held in the recess 16 by surface tension.
  • the detection target substance recognition molecule 13 is bound to the recess 16 and the sample solution After the measurement, the gate electrode is further arranged, and the change in the IV characteristic or the I Vg characteristic is observed, so that the substance to be detected contained in the sample solution can be detected.
  • the gate electrode of the carbon nanotube FET provided with the recess 16 may be disposed so as to close the recess 16 (see FIG. 17), or may be placed on the silicon portion or the silicon oxide film. They can be placed in contact (see Figure 18).
  • FIG. 17A shows a gate electrode arranged so as to close the recess 16 and not to contact the sample solution.
  • FIG. 17B shows the gate electrode arranged so as to close the recess 16 and to be in contact with the sample solution. If the gate electrode is arranged so as to close the recess 16, evaporation of the sample solution 15 can be suppressed, and the mechanical strength of the FET can be improved.
  • FIGS. 18A and 18D are in contact with the silicon portion. Shown are the gate electrodes arranged in such a way.
  • FIGS. 18B and 18C show the gate electrodes of the silicon oxide film on which the source and drain electrodes are formed, arranged in contact with the same surface and the back surface of the source and drain electrodes, respectively.
  • a short needle 17 to which a substance to be detected recognition molecule 13 is bonded is arranged on the back surface of the substrate 1 on which the source and drain electrodes are formed, and the short needle 17 force knock gate electrode 41 is connected. It is inserted into the sample 15 in contact. If the detection substance recognition molecule 13 is bound only to the tip of the short needle 17, the detection position in the sample 15 can be limited. Examples of sample 15 include the brain or body surface of an animal, and it is considered possible to measure the potential.
  • FIGS. 20 to 23 also show examples in which a substance to be detected is bound to a carbon nanotube FET including a back gate.
  • the carbon nanotube FET substrate shown in these figures is composed of a support substrate 102 that also has metal or semiconductor power, and insulating films 104 and 106.
  • a substance-recognizing molecule 472 is bonded to the insulating film 106 and sandwiched between the gate electrode 512 and the substrate (sandwich gate electrode).
  • Sample solution 490, gate electrode 5 The substance to be detected is detected by being present between 12 and the substrate.
  • the target substance recognition molecule 472 is bonded to the insulating film 106.
  • the force gate electrode 522 is bonded to the substrate.
  • the detection substance can be detected.
  • the sample solution 490 may or may not be in contact with the gate electrode 522 (FIG. 21 (A)) or in contact with /! (FIG. 21 (B)).
  • the substance to be detected recognition molecule 472 is bonded to the gate electrode 532. By contacting the sample solution 490 with the substance-recognizing molecule 472, the substance to be detected can be detected.
  • Fig. 22 (A) when a plurality of gate electrodes are provided, carbon nanotube FETs (Fig. 22 (A)) in which the target substance recognition molecules 472a and 472b are bonded to the insulating film 106 and the gate electrodes 532a and 532b are combined.
  • the carbon nanotube FET (Fig. 22 (B)) is shown.
  • the detected substance can be detected by bringing the detected substance recognition molecules 472a to 472b into contact with the sample solutions 490a to 490b, respectively.
  • FIG. 23 shows a carbon nanotube FET in which a substance-recognizing molecule 472 is bound to an insulating protective film 640 that protects the carbon nanotube 112.
  • the gate electrode is 114.
  • FIG. 24 shows an example of a carbon nanotube FET including a side gate electrode.
  • a gate electrode 8 is provided in contact with the same surface as the substrate surface on which the source / drain electrodes 3 and 4 are formed.
  • Channel 7 is made into an island structure by introducing a force defect that can also be a carbon nanotube force.
  • the gate electrode 8 is usually disposed at a distance of less than lOOnm.
  • Molecules to be detected Can be used as a sensor by binding a recognition molecule to, for example, a force for binding to a gate electrode or a channel or an insulating film covering the channel.
  • FIG. 25 also shows an example of a carbon nanotube FET including a side gate electrode.
  • the carbon nanotube FET substrate shown in FIG. 25 includes a support substrate 102 and an insulating film 104. On the insulating film 104, source / drain electrodes 108 and 110, a channel 112 made of carbon nanotubes, and a gate electrode 702 are arranged. The source / drain electrode and the gate electrode are covered with the insulating film 640, and the substance to be detected is covered with the insulating film 640.
  • the recognition molecule 472 binds and strikes. The target substance recognition molecule 472 binds to any position of the insulating film 640 as long as it is bound to the source / drain electrode part, gate electrode part, channel part, or other part.
  • FIG. 26 shows an example in which a substance to be detected is bound to a carbon nanotube FET including a side gate electrode (top gate electrode).
  • the source electrode 3 and the drain electrode 4 disposed on the surface of the insulating substrate 1 and the channel 7 made of carbon nanotubes are covered with an insulating film 40 (for example, a glass insulating film) (FIG. 26A). Further, the gate electrode 8 is disposed on the insulating film 40! (FIG. 26B).
  • the sample solution 15 is interposed between the insulating film 40 and the gate electrode 8 to be used as a sensor for detecting the substance to be detected. Can do.
  • the gate electrode is connected between the source electrode or the gate electrode and the drain electrode. It is possible to suppress the leakage of current between.
  • a glass insulating film may be provided on the gate electrode 8 shown in FIG. In this case, however, the distance between the channel and the gate electrode increases, which may weaken the properties of the FET. Furthermore, in the carbon nanotube FET in FIG. 26, if the insulating substrate 1 is a glass substrate, the state of the sample is observed from the back side (surface on which no electrode is disposed) of the substrate 1 using an optical microscope, a fluorescence microscope, or a laser microscope. The transistor can be driven while checking the above.
  • FIG. 27 also shows an example in which a substance to be detected is bound to a carbon nanotube FET including a side gate electrode (top gate electrode).
  • a substance to be detected recognition molecule 472 is bonded to an insulating protective film 640 that protects a channel made up of carbon nanotubes.
  • the gate electrode 702 is disposed without being in contact with the substrate (consisting of the support substrate 102, the insulating film 104, and the insulating film 106).
  • FIGS. 28 to 33 show examples in which the substance-recognizing molecule to be detected is bound to the carbon nanotube FET including the separation gate electrode.
  • the carbon nanotube FET shown in Fig. 28 is a device part including source and drain electrodes. 212, an element portion 214 including a gate electrode, and a conductive substrate 210 on which the element portion 212 and the element portion 214 are mounted.
  • the element portion 212 and the element portion 214 are electrically connected.
  • the element section 212 includes a substrate (support substrate 102, insulating films 104 and 106), source / drain electrodes 108 and 110 disposed on the substrate, and a channel 112 made of carbon nanotubes.
  • the element unit 214 includes a substrate (support substrate 202, insulating films 204 and 206) and a gate electrode 602 disposed on the substrate.
  • the gate electrode 602 is disposed without contacting the substrate (sandwich gate electrode).
  • the substance-recognizing molecule 472 is bonded to the insulating film 204 of the substrate on which the gate electrode 602 is disposed. By allowing the sample solution 490 to exist between the gate electrode 602 and the insulating film 204, the substance to be detected can be detected.
  • FIG. 29 shows a modified example of the element portion 214 including the gate electrode in FIG.
  • the gate electrode 612 or 622 in FIG. 29 is placed in contact with the substrate (non-Sanch-type gate electrode).
  • the detection substance recognition molecule 472 is bonded to the insulating film 204 of the substrate, and in FIG. 29C, the detection substance recognition molecule 472 is bonded to the gate electrode 622.
  • the substance to be detected can be detected.
  • the sample solution 490 may or may not be in contact with the gate electrode 612 (FIG. 29 (A)) (FIG. 29 (B)).
  • FIG. 30 shows a further modification of the element portion 214 including the gate electrode in FIG.
  • Two or more gate electrodes 612a and 612b (622a and 622b) and two or more kinds of detected substance recognition molecules 472a and 472b are arranged.
  • the carbon nanotube FET shown in FIG. 31 is a force including two or more element parts 212 including source and drain electrodes and two or more element parts (214a and 214b) including gate electrodes.
  • the carbon nanotube FET shown in FIG. Similarly to the above, all the element portions are mounted on one conductive substrate 210.
  • FIG. 32 and FIG. 33 show another example of the carbon nanotube FET including the separation gate.
  • the carbon nanotube FET in FIG. 32 is sandwiched between the element part 212 including the source and drain electrodes, the element part 214 including the gate electrode, and the substrate of the element part 212 and the substrate of the element part 214.
  • a conductive substrate 210 is included.
  • the carbon nanotube FET of FIG. 33 includes an element part 212 including a source / drain electrode, an element part 214 including a gate electrode, a conductive substrate 302 on which the element part 212 is placed, and a conductive material on which the element part 214 is placed.
  • Conductive substrate 304, and conductive wires 306 that electrically connect conductive substrates 302 and 304.
  • the substance-detecting molecule 472 can be coupled to the gate electrode 612 (force) coupled to the insulating film 204 of the element unit 214 (shown). (Detected substance recognition molecules bound to the electrode 612 are not shown).
  • the carbon nanotube FET of the present invention can be used as a biosensor.
  • the target substance recognition molecule is bound to the carbon nanotube FET.
  • substances to be detected include microorganisms such as viruses and bacteria, chemical substances such as residual agricultural chemicals, carbohydrates, nucleic acids, amino acids, and lipids.
  • the substance to be detected include an antibody, an antigen, an enzyme, a receptor, a nucleic acid, an abutama cell, a microorganism, and the like.
  • the substance to be detected is an antigen, it is an antibody or an Abutama, and when the substance to be detected is an antibody, it is an antigen.
  • microorganisms such as pathogenic viruses and bacteria of infectious diseases can be detected with high sensitivity and in a short time. Therefore, it can be effectively used for early treatment by early detection of infectious diseases and for research on microorganisms. In addition, since the size of the sensor can be reduced, it can be used to detect infectious disease viruses in the field.
  • the biosensor of the present invention is operated with an alternating current using a resonance circuit, and detects the substance to be detected from a change in the source-drain current or voltage caused by binding of the substance to be detected to the substance to be detected. Can be detected.
  • the change in the source / drain current or voltage is confirmed by, for example, an I-V characteristic curve or an I-Vg characteristic curve.
  • the I—V characteristic curve is the curve showing the relationship between the source-drain current and the source-drain voltage when the gate voltage is constant; the I—Vg characteristic curve is the constant source 'drain voltage.
  • FIG. 5 is a curve showing the relationship between the gate voltage and the source / drain current.
  • the target substance recognition molecule in the biosensor of the present invention may be bound so as to react with the target substance and change the source drain current.
  • the gate electrode it is only necessary to be bonded to a channel made of carbon nanotubes, a gate electrode or a substrate, or an insulating film for protecting them! / ⁇
  • the means for binding the force detection substance recognition molecule including the carbon nanotube FET to which the detection substance recognition molecule is bound to the carbon nanotube FET there is no particular limitation on the means for binding the force detection substance recognition molecule including the carbon nanotube FET to which the detection substance recognition molecule is bound to the carbon nanotube FET.
  • the first method uses a histag fusion recognition molecule as a substance to be detected.
  • a histag fusion recognition molecule as a substance to be detected.
  • a method of binding a histag fusion antibody to a channel that also has a carbon nanotube force will be described with reference to FIG.
  • the insulating substrate and the gate electrode can be bonded in the same way.
  • an antibody 50 to which a histag 51 is added is prepared by genetic manipulation.
  • the carbon nanotubes of the field effect transistor are directly modified with a pyrene derivative.
  • NTA52 is bound to carbon nanotubes modified directly with pyrene derivatives.
  • a solution containing transition metal ions (nickel ions, cobalt ions, etc.) is dropped onto the carbon nanotubes to form a complex with NTA52 fixed to the carbon nanotubes.
  • the antibody 50 is immobilized on the carbon nanotubes as shown in FIG. 34 (A) by dropping a solution containing the antibody 50 attached with the histag 51.
  • the antibody 50 thus immobilized has a certain orientation with respect to the binding surface.
  • the insulating film is preferably treated with a silane coupling agent.
  • NTA52 is bonded to the gate electrode (metal, for example, gold), it is effective to use NTA with a thiol group (N-maleimide group attached with a thiol group! /, NTA, etc.) It is. NTA into which a thiol group is introduced is commercially available (for example, Dojindo).
  • the second method is a method using protein A, protein G, protein L, or their IgG binding domain as an IgG-type antibody as a substance to be detected.
  • the antibody described here includes a single chain antibody having a specific binding ability to an antigen, Fab, and F (ab ′) 2.
  • Protein AZG a fusion protein that combines protein A, protein G, or its IgG binding properties, has the ability to bind to the Fc region of IgG-type immunoglobulins.
  • Protein L has the ability to bind to the kappa chain of the light chain of IgG type immunoglobulin. In addition, as with other proteins, all have the property of being easily attached to the gold surface.
  • ⁇ IgG binding protein '' a recombinant protein 53 having a protein A, protein G, protein AZG, protein L, or their IgG binding domain on a gate electrode made of gold.
  • the antibody 50 can be oriented to some extent by binding the IgG-type antibody 50 used as the substance to be detected to the target IgG-binding protein 53.
  • IgG-binding protein 53 is randomly bound to the electrode (see FIG. 34 (B)), so that sufficient orientation may not be obtained.
  • an IgG-binding protein with a histag is prepared, and the IgG-binding protein is bound to a gate electrode or the like via NTA-Ni and a histag, and the same method as in the first method.
  • This is a method of orienting a substance-recognizing molecule (antibody).
  • the target substance recognition molecule antibody
  • the target substance recognition molecule can be oriented to the insulating film or the carbon nanotube.
  • IgG binding protein 53 to which a histag 51 is added is prepared by genetic manipulation.
  • the orientation of the antibody can be improved by setting the position of the his-tagged caro in consideration of the position of the antibody binding site.
  • the insulating film is treated with a silanizing coupling agent to bind NTA52 to the modified substrate; a solution containing transition metal ions (such as nickel ions and cobalt ions) is dropped onto the substrate and fixed on the substrate.
  • transition metal ions such as nickel ions and cobalt ions
  • a substance-recognizing molecule (an antibody, an enzyme, etc.) is divided into two functional groups 55, 56 (which may be the same or different).
  • This is a method of bonding to an insulating film, a gate electrode, or a carbon nanotube through a divalent crosslinking reagent 54 having the following.
  • the bivalent crosslinking reagent 54 includes two functional groups 55 and 56 and a hydrophilic polymer chain such as polyethylene glycol or a hydrophobic chain such as an alkyl chain that connects the two functional groups 55 and 56.
  • Examples of the combination of the functional groups 55 and 56 include a combination of a functional group in which one side forms a covalent bond with an amino group and the other side forms a covalent bond with a thiol group.
  • a functional group in which one side forms a covalent bond with an amino group and the other side forms a covalent bond with a thiol group For example, when binding to an insulating film, 1) react the target substance recognition molecule (antibody 50) with the bivalent crosslinking reagent 54, and then remove the unreacted bivalent crosslinking reagent by dialysis or the like.
  • the substrate insulating film treated with the silane coupling agent and the target substance-recognizing molecule-bivalent cross-linking reagent complex are reacted and fixed, or 2) the substrate treated with the silanization coupling agent It can be immobilized by reacting the insulating film surface with the divalent crosslinking reagent 54; and further reacting with a molecular recognition substance (antibody 50).
  • the method using the bivalent cross-linking reagent 54 requires a genetic modification operation to add a histag to the antibody or protein. It can be prepared quickly.
  • antibodies are detected When used as a sensing molecule, polyclonal antibodies are difficult to use with NTA methods, but polyclonal antibodies can be used with the immobilization method using a bivalent cross-linking reagent, improving sensitivity and accuracy as a biosensor. Can be expected.
  • the bivalent cross-linking reagent has a hydrophilic polymer chain or a hydrophobic chain between the two functional groups 55 and 56, the knock ground during detection can be reduced.
  • a substance to be detected can be detected by using the biosensor of the present invention.
  • the substance to be detected may be detected from the change in the source / drain current or voltage generated by binding to the substance to be detected substance recognition.
  • a solution is used as a sample.
  • a sample solution may be added to a substrate to which a substance to be detected recognition molecule is bound.
  • the sample solution contains a substance to be detected, a reaction (for example, an antigen-antibody reaction) between the substance to be detected and the substance to be detected is recognized.
  • a reaction for example, an antigen-antibody reaction
  • the solvent for example, water
  • the solvent contained in the added sample solution affects the source / drain current, it may generate noise in detection. Examples of means for reducing the noise include the following means.
  • the solvent of the added sample solution is removed by evaporation.
  • the removal by transpiration may be performed using, for example, nitrogen gas or the like, or using a heater, a thermoelectric conversion element (Peltier element), or the like.
  • the transpiration by the blower it is preferable that the sample is made into a uniform thin film by slowly evaporating while slightly applying the blower.
  • Cooling can be performed with a thermoelectric conversion element (Peltier element) or liquid nitrogen.
  • the transistor is driven by applying the gate electrode to the portion where the sample solution is added (preferably after the sample solution is evaporated or cooled). Measure I—V characteristics or I—Vg characteristics. I—V characteristics can be measured in a short time (for example, within a few seconds) by a parameter analyzer.
  • the gate electrode may be applied to a portion where the sample solution is added with a glass thin film interposed therebetween.
  • the insulation between the gate electrode and the source / drain electrodes can be improved, and the leakage current can be reduced.
  • the biosensor of the present invention can also detect two or more types of detected substances just by detecting one type of detected substance. Two or more kinds of detected substances contained in one sample can be detected, and two or more kinds of samples can be detected in parallel.
  • the nanosensor of the present invention may be disposable after one detection when the substance to be detected is a dangerous virus. It can also be used repeatedly for multiple detections.
  • a carbon nanotube FET (Fig. 10) containing a channel prepared according to the specific example A of the above-described dispersion fixing method was prepared.
  • the surface of the silicon oxide film (lc m 2 ) on the back surface of the prepared carbon nanotube FET substrate was washed with a piranno-sodium solution and ethanol and dried.
  • (S810) mercaptopropyltrimethoxysilane of 31 was dropped onto the surface of the silicon oxide film and heated to 180 ° C. for 2 hours. After cooling to 30 ° C, it was treated with 50 mM dithiothreol (DTT) at the same temperature for 1 hour or more, and then washed with water.
  • DTT dithiothreol
  • a maleimide-NTA solution (lm gZml) prepared using a 10 mM phosphate buffer (pH 6.5) was layered on the surface of the above-described acid-silicon film and allowed to stand at room temperature for 1 hour. After standing, it was washed with water and dried with nitrogen gas (dried until no water droplets disappeared).
  • a 50 1 NiC12 solution (50 mM) was dropped onto the surface of the silicon oxide film. 1 After standing for 5 minutes, it was washed with water and dried with nitrogen gas (dried until no water droplets were observed).
  • the probe connected to the semiconductor parameter analyzer was connected to the source drain electrode, and the IV characteristics were measured.
  • the I–V characteristic curve (showing the relationship between the source / drain current and the source / drain electrode) was obtained with a gate voltage of 20V.
  • HA antigen Recombinant hemadalchun (HA) protein an antibody recognition molecule used as a target substance recognition molecule, was prepared. Specifically, it is a recombinant HA protein with a histidine tag added to the C-terminus, with various levels (1-220, 1-250, 1-290, 1-320; the numbers are amino acids on the primary sequence An attempt was made to express a protein that was truncated at the residue number.
  • Recombinant HA protein expression plasmids corresponding to each were introduced into 293T cells. Using monoclonal antibody E2Z3 and polyclonal antibody, it was confirmed that recombinant HA protein was expressed in cells. Furthermore, it was confirmed that the recombinant HA protein was secreted into the supernatant by Western plotting.
  • HA1-290 and HA1-220 were expressed in large quantities. In each case, the supernatant secretion was purified on an NTA-Ni 2+ column. The fraction containing the target recombinant HA protein was confirmed by ELISA and Western blot, and fractionated. The aliquot was dialyzed against PBS to obtain recombinant HA protein. Of HA1-290 and HA1-220, HA1-220 no longer reacts with the monoclonal antibody, so HA1-290 was used as the analyte recognition molecule.
  • the recombinant hemadunchun (HA) protein HA1-290 obtained as described above (1.9 / ⁇ 8 ⁇ 1; 50 / ⁇ 1) was added. And fixed.
  • the IV characteristic curve was obtained in the same manner as described above.
  • FIG. 35 A schematic diagram of the fabricated sensor is shown in FIG. In FIG. 35, ⁇ antigen 472 is immobilized on the silicon oxide film 106 on the substrate on the back gate electrode 512 side of the carbon nanotube FET shown in FIG. 10, and the sample is placed between the knock gate electrode 512 and the silicon oxide film 106. The sensor with solution 490 added is shown. [0113] Reaction with anti-HA antibody
  • Fig. 36 shows the obtained IV characteristic curve.
  • the source and drain currents differ significantly depending on the concentration of the anti-HA antibody. That is, according to the dilution rate of the antibody stock solution is 5 X 10 _9, 5 X 10_ 8, 5 X 10 _7, the absolute value of the source 'drain current is increased. Therefore, anti-HA antibody can be detected based on the change in the source / drain current. On the other hand, the dilution ratio in the case of 5 X 10_ 6, the absolute value of the current compared with the case of 5 X 10_ 7 is reduced.
  • the channel of the carbon nanotube FET of the present invention can be formed by the dispersion-fixing method, it can be easily manufactured and the manufacturing cost is remarkable as compared with the conventional carbon nanotube FET. Can be reduced.
  • the carbon nanotube FET of the present invention has a performance equal to or higher than that of the conventional carbon nanotube FET.
  • the carbon nanotube FET of the present invention has a performance equal to or higher than that of the conventional carbon nanotube FET.
  • highly sensitive detection is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

There is provided a carbon nano tube field effect transistor, i.e., a field effect transistor in which a channel formed by a carbon nano tube is fixed to a substrate by carbon nano tube affinity material. The field effect transistor is made by a method including: a step for preparing a substrate on which the location where a source electrode and a drain electrode are to be formed is modified by the carbon nano tube affinity material; a carbon nano tube providing step for providing a carbon nano tube at the electrode formation location on the substrate; and an electrode formation step for forming a source electrode and a drain electrode at the electrode formation location on the substrate.

Description

明 細 書  Specification
力一ボンナノチューブ電界効果トランジスタ 技術分野  Ryuichi Bonn Nanotube Field Effect Transistor Technical Field
[0001] 本発明は、電界効果トランジスタおよびその製造方法に関する。より具体的には、 カーボンナノチューブ力 なるチャネルを有する電界効果トランジスタの製造方法に 関する。  The present invention relates to a field effect transistor and a manufacturing method thereof. More specifically, the present invention relates to a method for manufacturing a field effect transistor having a channel having a carbon nanotube force.
背景技術  Background art
[0002] 電界効果トランジスタ(FET)は、通常は、ソース電極とドレイン電極、および両電極 間を接続するチャネル、ならびにゲート電極を有する 3電極型のトランジスタであり、 ゲート電極に電圧をかけて、ソース電極とドレイン電極間の電流を制御するトランジス タである。前記チャネルがカーボンナノチューブであるものは、カーボンナノチューブ FETと称される。  [0002] A field effect transistor (FET) is usually a three-electrode transistor having a source electrode and a drain electrode, a channel connecting both electrodes, and a gate electrode. A voltage is applied to the gate electrode, It is a transistor that controls the current between the source and drain electrodes. If the channel is a carbon nanotube, it is called a carbon nanotube FET.
[0003] カーボンナノチューブ FETの製造方法は、そのチャネルの作製の仕方によって二 つに大別されうる。一つは、炭化水素ガスの存在下において、カーボンナノチューブ を気相成長させることによって、基板上のソース電極とドレイン電極を架橋するチヤネ ルを形成させる方法であり(特許文献 1参照)、もう一つは、基板上のソース電極とドレ イン電極上に、別個に製造したカーボンナノチューブを提供してチャネルを形成させ る方法である(特許文献 2参照)。近年においては、気相成長法が多く用いられてい る。  [0003] The method of manufacturing a carbon nanotube FET can be broadly divided into two depending on how the channel is manufactured. One is a method of forming a channel that bridges the source electrode and the drain electrode on the substrate by vapor growth of carbon nanotubes in the presence of hydrocarbon gas (see Patent Document 1). One is a method in which separately produced carbon nanotubes are provided on a source electrode and a drain electrode on a substrate to form a channel (see Patent Document 2). In recent years, vapor phase epitaxy is often used.
[0004] カーボンナノチューブ FETを用いたバイオセンサが開発されている。つまり、当該 バイオセンサに用いられるカーボンナノチューブ FETには認識分子が結合されてお り、その認識分子と被検出物質の反応によって、ソース電極とドレイン電極間の電流 の変化が引き起こされる。当該バイオセンサは、この変化に基づいて被検出物質を 検出する (特許文献 3参照)。  [0004] Biosensors using carbon nanotube FETs have been developed. In other words, a recognition molecule is bound to the carbon nanotube FET used in the biosensor, and a change in current between the source electrode and the drain electrode is caused by the reaction between the recognition molecule and the substance to be detected. The biosensor detects a substance to be detected based on this change (see Patent Document 3).
[0005] 一方、カーボンナノ物質を基板上にパターユングする技術として、芳香族多環分子 を固定された基板に、カーボンナノ物質を固定する技術が知られている(特許文献 4 参照)。 特許文献 1:特開 2004— 347532号公報 On the other hand, as a technique for patterning a carbon nanomaterial on a substrate, a technique for immobilizing a carbon nanomaterial on a substrate on which an aromatic polycyclic molecule is immobilized is known (see Patent Document 4). Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-347532
特許文献 2:米国特許出願公開第 2004Z0200734号明細書  Patent Document 2: US Patent Application Publication No. 2004Z0200734
特許文献 3:特開 2005 - 79342号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-79342
特許文献 4:特開 2005 - 34970号公報  Patent Document 4: Japanese Patent Laid-Open No. 2005-34970
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 前述の通り、カーボンナノチューブ FETの製法は二通りの方法に大別されうる。し 力しながら、カーボンナノチューブを気相成長させてチャネルを作製するには、その 成長を制御して、的確にソース電極とドレイン電極間にチャネルを形成させる必要が あるが、当該制御は一般的に困難である。  [0006] As described above, the method for producing the carbon nanotube FET can be roughly divided into two methods. However, in order to produce a channel by vapor-phase growth of carbon nanotubes, it is necessary to control the growth and form a channel between the source electrode and the drain electrode. It is difficult to.
一方、基板上に別個に製造したカーボンナノチューブを提供してチャネルを作製 するには、電極間を架橋するようにカーボンナノチューブを提供する必要があるが、 再現性よくチャネルを形成させるのは一般的に困難であり、歩留まりが低いという問 題があった。また、一本のカーボンナノチューブでチャネルを構成させることが必要 であると考えられていた力 それを後者の方法で実現することはさらに困難である。  On the other hand, in order to produce a channel by providing separately produced carbon nanotubes on a substrate, it is necessary to provide carbon nanotubes so as to bridge the electrodes, but it is common to form channels with good reproducibility. However, there was a problem that the yield was low. In addition, the force that was thought to be necessary to form a channel with a single carbon nanotube is more difficult to achieve with the latter method.
[0007] したがって本発明の課題は、カーボンナノチューブからなるチャネルの作製の歩留 まりを向上させる技術を提供し、カーボンナノチューブ FETの性能を低下させること なぐそれを効率よく製造する方法を提供することである。  [0007] Therefore, an object of the present invention is to provide a technique for improving the production yield of a channel composed of carbon nanotubes, and to provide a method for efficiently producing the carbon nanotube FET without lowering the performance of the carbon nanotube FET. It is.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者は、カーボンナノチューブからなるチャネルを、カーボンナノチューブとの 親和性を有する物質を用いて作製することにより、カーボンナノチューブ FETの製造 の歩留まりを向上させることができることを見出し、本発明を完成させた。すなわち本 発明の第一は、以下に示すカーボンナノチューブ電界効果トランジスタに関する。 [1 ] 基板上に形成されたソース電極およびドレイン電極、ならびに前記ソース電極とド レイン電極とを接続するカーボンナノチューブ力 なるチャネルを有する電界効果トラ ンジスタであって、前記カーボンナノチューブを基板に固定するカーボンナノチュー ブ親和性物質を含むことを特徴とする電界効果トランジスタ。  [0008] The present inventor has found that the production yield of carbon nanotube FETs can be improved by producing a channel composed of carbon nanotubes using a substance having an affinity for carbon nanotubes. Was completed. That is, the first of the present invention relates to the following carbon nanotube field effect transistor. [1] A field effect transistor having a source electrode and a drain electrode formed on a substrate, and a channel having a carbon nanotube force connecting the source electrode and the drain electrode, and fixing the carbon nanotube to the substrate A field effect transistor comprising a carbon nanotube compatible material.
[0009] さらに本発明は、以下に示すカーボンナノチューブ電界効果トランジスタの製造方 法に関する。 [2] 前記ソース電極とドレイン電極の形成予定部位力 カーボンナノ チューブ親和性物質で修飾された基板を用意するステップ;前記基板の電極形成予 定部位に、カーボンナノチューブを提供するカーボンナノチューブ提供ステップ;お よび前記基板の電極形成予定部位に、それぞれソース電極およびドレイン電極を形 成する電極形成ステップを含み、 [0009] Further, the present invention provides a method for producing a carbon nanotube field effect transistor described below. Regarding the law. [2] Preparation site force of the source electrode and drain electrode A step of preparing a substrate modified with a carbon nanotube compatible substance; a step of providing a carbon nanotube to provide a carbon nanotube at an electrode formation scheduled site of the substrate; And an electrode forming step of forming a source electrode and a drain electrode, respectively, in the electrode formation planned portion of the substrate,
前記カーボンナノチューブ提供ステップにお!、て、前記カーボンナノチューブの少 なくとも一部は、前記カーボンナノチューブ親和性物質との相互作用により基板に固 定される、 [1]に記載のトランジスタの製造方法。 [3] 前記ソース電極とドレイン電極 が形成された基板を用意するステップ;前記基板のソース電極とドレイン電極を、カー ボンナノチューブ親和性物質で修飾する電極修飾ステップ;および前記電極上に、 カーボンナノチューブを提供するカーボンナノチューブ提供ステップを含み、 前記カーボンナノチューブ提供ステップにお!、て、前記カーボンナノチューブの少 なくとも一部は、前記カーボンナノチューブ親和性物質との相互作用により基板に固 定される、 [1]に記載のトランジスタの製造方法。 [4] カーボンナノチューブ親和性 物質で修飾されたカーボンナノチューブを用意するステップ;前記ソース電極とドレイ ン電極が形成された基板を用意するステップ;前記基板の電極上に、前記修飾され たカーボンナノチューブを提供するカーボンナノチューブ提供ステップを含み、 前記カーボンナノチューブ提供ステップにお!、て、前記カーボンナノチューブの少 なくとも一部は、前記カーボンナノチューブ親和性物質を介して基板に固定される、 [ 1]に記載のトランジスタの製造方法。 [5] カーボンナノチューブ親和性物質で修飾 されたカーボンナノチューブを用意するステップ;前記基板の電極形成予定部位に、 前記修飾されたカーボンナノチューブを提供するカーボンナノチューブ提供ステップ ;および前記基板の電極形成予定部位に、それぞれソース電極およびドレイン電極 を形成する電極形成ステップを含み、  In the carbon nanotube providing step, at least a part of the carbon nanotube is fixed to the substrate by the interaction with the carbon nanotube affinity substance. The method for producing a transistor according to [1] . [3] preparing a substrate on which the source electrode and the drain electrode are formed; an electrode modifying step of modifying the source electrode and the drain electrode of the substrate with a carbon nanotube affinity substance; and a carbon nanotube on the electrode A step of providing a carbon nanotube, wherein at least a part of the carbon nanotube is fixed to a substrate by interaction with the carbon nanotube affinity substance, The method for producing a transistor according to [1]. [4] A step of preparing a carbon nanotube modified with a carbon nanotube affinity substance; a step of preparing a substrate on which the source electrode and the drain electrode are formed; and a step of preparing the modified carbon nanotube on the electrode of the substrate. Including providing a carbon nanotube providing step, wherein at least a part of the carbon nanotube is fixed to a substrate via the carbon nanotube affinity substance, according to [1]. The manufacturing method of the transistor of description. [5] A step of preparing a carbon nanotube modified with a carbon nanotube affinity substance; a step of providing a carbon nanotube that provides the modified carbon nanotube at a portion of the substrate where the electrode is to be formed; and a portion of the substrate where the electrode is to be formed Each including an electrode forming step of forming a source electrode and a drain electrode,
前記カーボンナノチューブ提供ステップにお!、て、前記カーボンナノチューブの少 なくとも一部は、前記カーボンナノチューブ親和性物質を介して基板に固定される、 [ 1]に記載のトランジスタの製造方法。  The method for producing a transistor according to [1], wherein at least a part of the carbon nanotube is fixed to a substrate via the carbon nanotube affinity substance in the carbon nanotube providing step.
発明の効果 [0010] 本発明によれば、カーボンナノチューブ FETを簡便かつ効率よく製造することがで きる。それにより、カーボンナノチューブ FETを素子として用いることが可能となり、例 えばバイオセンサに応用することが容易となる。 The invention's effect [0010] According to the present invention, a carbon nanotube FET can be produced simply and efficiently. As a result, the carbon nanotube FET can be used as an element, and for example, it can be easily applied to a biosensor.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]カーボンナノチューブ電界効果トランジスタの概略図である。 1は基板、 3および  FIG. 1 is a schematic view of a carbon nanotube field effect transistor. 1 for substrate, 3 and
4はソース電極およびドレイン電極、 7はチャネル、 8はゲート電極、 Gは空隙を示す。  4 is a source electrode and drain electrode, 7 is a channel, 8 is a gate electrode, and G is a gap.
[図 2]カーボンナノチューブ電界効果トランジスタの基板の例を示す図である。 400は 半導体からなる支持基板、 402および 404は絶縁膜、 410は絶縁体カゝらなる基板、 4 20は金属力もなる支持基板、 422および 424は絶縁膜を示す。  FIG. 2 is a diagram showing an example of a substrate of a carbon nanotube field effect transistor. 400 is a support substrate made of a semiconductor, 402 and 404 are insulating films, 410 is a substrate made of an insulator, 420 is a support substrate also having a metal force, and 422 and 424 are insulating films.
[図 3]全体が被膜で覆われたソース'ドレイン電極を示す。 1は基板、 3および 4はソー ス電極およびドレイン電極、 28は被膜を示す。  [Fig. 3] Shows a source / drain electrode entirely covered with a coating. 1 is a substrate, 3 and 4 are source and drain electrodes, and 28 is a coating.
[図 4]ソース'ドレイン電極を示す。 1は基板、 3および 4はソース電極およびドレイン電 極、 7はチャネル、 Gは空隙を示す。  [Fig. 4] Shows source and drain electrodes. 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel, and G is a gap.
[図 5]—部が被膜で覆われたソース'ドレイン電極の概略を示す図である。 1は基板、 3および 4はソース電極およびドレイン電極、 7はチャネル、 28は被膜、 29は被膜で 覆われて ヽな ヽ部分を示す。  FIG. 5 is a diagram showing an outline of a source / drain electrode whose part is covered with a film. 1 is a substrate, 3 and 4 are a source electrode and a drain electrode, 7 is a channel, 28 is a film, 29 is a film and 29 is covered with a film.
[図 6]ソース'ドレイン電極が絶縁膜で保護された、カーボンナノチューブ電界効果ト ランジスタを示す。 1は基板、 3および 4はソース電極およびドレイン電極、 7はチヤネ ル、 8はゲート電極、 13は被検出物質認識分子、 15は試料溶液、 30は絶縁保護膜 を示す。  [Fig. 6] Carbon nanotube field effect transistor with source and drain electrodes protected by an insulating film. 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel, 8 is a gate electrode, 13 is a substance to be detected, 15 is a sample solution, and 30 is an insulating protective film.
[図 7]ソース'ドレイン電極が絶縁膜で保護された、カーボンナノチューブ電界効果ト ランジスタを示す。 7609は基板(7608は支持基板、 7607は絶縁膜)、 7610および 7611はソース電極およびドレイン電極、 7612はチャネル、 7613は被検出物質認識 分子、 7803bはゲート電極、 8501は絶縁性保護膜を示す。  [Fig. 7] A carbon nanotube field-effect transistor in which the source and drain electrodes are protected by an insulating film. 7609 is a substrate (7608 is a supporting substrate, 7607 is an insulating film), 7610 and 7611 are source and drain electrodes, 7612 is a channel, 7613 is a molecule to be detected, 7803b is a gate electrode, and 8501 is an insulating protective film .
[図 8]二以上の多環芳香族官能基を有する分子が、カーボンナノチューブを選択的 に固定する様子を示す図である。 45aおよび 45bはそれぞれ直径が異なるカーボン ナノチューブを示す。  FIG. 8 is a diagram showing how molecules having two or more polycyclic aromatic functional groups selectively fix carbon nanotubes. 45a and 45b indicate carbon nanotubes with different diameters.
[図 9]基板上のカーボンナノチューブを気相成長させる方法を説明する図である。 1 は基板、 3および 4はソース電極およびドレイン電極、 7は分散固定ィ匕法により基板に 固定化されたカーボンナノチューブ、 10は反応容器、 11はカーボンナノチューブの 原料となる炭化水素ガスを示す。 FIG. 9 is a diagram for explaining a method for vapor phase growth of carbon nanotubes on a substrate. 1 Is a substrate, 3 and 4 are a source electrode and a drain electrode, 7 is a carbon nanotube fixed to the substrate by a dispersion fixing method, 10 is a reaction vessel, and 11 is a hydrocarbon gas that is a raw material of the carbon nanotube.
[図 10]1— Vg特性を測定したカーボンナノチューブ電界効果トランジスタを示す。 10 2はシリコン力もなる支持基板、 104および 106はシリコンオキサイド力もなる絶縁膜、 108および 110はソース電極およびドレイン電極、 112はカーボンナノチューブから なるチャネル、 512はゲート電極を示す。  FIG. 10 shows a carbon nanotube field effect transistor whose 1-Vg characteristic was measured. Reference numeral 102 denotes a support substrate having a silicon force, 104 and 106 are insulating films which also have a silicon oxide force, 108 and 110 are source and drain electrodes, 112 is a channel made of carbon nanotubes, and 512 is a gate electrode.
[図 11]図 10に示された電界効果トランジスタの I—Vg特性を示すグラフである。縦軸 がソース'ドレイン電流、横軸がゲート電圧である。  FIG. 11 is a graph showing the I-Vg characteristics of the field effect transistor shown in FIG. The vertical axis is the source-drain current, and the horizontal axis is the gate voltage.
[図 12]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 1は 基板、 3および 4はソース電極およびドレイン電極、 7はチャネル、 8はゲート電極、 13 は被検出物質認識分子、 15は試料溶液を示す。  FIG. 12 shows an example of a back gate type carbon nanotube field effect transistor. 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel, 8 is a gate electrode, 13 is a molecule to be detected, and 15 is a sample solution.
[図 13]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 1は 基板、 3および 4はソース電極およびドレイン電極、 7はチャネル、 8はゲート電極、 13 は被検出物質認識分子、 15は試料溶液を示す。  FIG. 13 is an example of a back gate type carbon nanotube field effect transistor. 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel, 8 is a gate electrode, 13 is a molecule to be detected, and 15 is a sample solution.
[図 14]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 1は 基板、 3および 4はソース電極およびドレイン電極、 7はチャネル、 8はゲート電極、 13 は被検出物質認識分子、 15は試料溶液、 30は絶縁性保護膜を示す。  FIG. 14 is an example of a back gate type carbon nanotube field effect transistor. 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel, 8 is a gate electrode, 13 is a substance to be detected, 15 is a sample solution, and 30 is an insulating protective film.
[図 15]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 1は 基板、 3および 4はソース電極およびドレイン電極、 7はカーボンナノチューブからなる チャネル、 16は基板に形成された凹部を示す (バックゲート電極は不図示)。 FIG. 15 shows an example of a back gate type carbon nanotube field effect transistor. 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel made of carbon nanotubes, and 16 is a recess formed in the substrate (the back gate electrode is not shown).
[図 16]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 3お よび 4はソース電極およびドレイン電極、 7はチャネル、 16は基板に形成された凹部、 13は被検出物質認識分子、 15は試料溶液を示す (バックゲート電極は不図示)。 FIG. 16 shows an example of a back gate type carbon nanotube field effect transistor. 3 and 4 are source and drain electrodes, 7 is a channel, 16 is a recess formed in the substrate, 13 is a substance to be detected, 15 is a sample solution (the back gate electrode is not shown).
[図 17]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 3お よび 4はソース電極およびドレイン電極、 7はチャネル、 8はゲート電極、 15は試料溶 液を示す。 FIG. 17 shows an example of a back gate type carbon nanotube field effect transistor. 3 and 4 are source and drain electrodes, 7 is a channel, 8 is a gate electrode, and 15 is a sample solution.
[図 18]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 3お よび 4はソース電極およびドレイン電極、 7はチャネル、 15は試料溶液、 16は基板に 形成された凹部、 41はゲート電極を示す。 FIG. 18 shows an example of a back gate type carbon nanotube field effect transistor. 3 And 4 are source and drain electrodes, 7 is a channel, 15 is a sample solution, 16 is a recess formed in the substrate, and 41 is a gate electrode.
[図 19]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 1は 基板、 3および 4はソース電極およびドレイン電極、 7はカーボンナノチューブからなる チャネル、 13は被検出物質認識分子、 15は試料、 17は短針 (プローブなど)、 41は ゲート電極を示す。  FIG. 19 shows an example of a back gate type carbon nanotube field effect transistor. 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel made of carbon nanotubes, 13 is a substance-recognizing molecule, 15 is a sample, 17 is a short needle (probe etc.), 41 is a gate electrode.
[図 20]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 102 は支持基板、 104および 106は絶縁膜、 108および 110はソース電極およびドレイン 電極、 112はチャネル、 472は被検出物質認識分子、 490は試料溶液、 512はゲー ト電極を示す。  FIG. 20 shows an example of a back gate type carbon nanotube field effect transistor. 102 is a support substrate, 104 and 106 are insulating films, 108 and 110 are source and drain electrodes, 112 is a channel, 472 is a substance to be detected substance recognition, 490 is a sample solution, and 512 is a gate electrode.
[図 21]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 102 は支持基板、 104および 106は絶縁膜、 108および 110はソース電極およびドレイン 電極、 112はチャネル、 472は被検出物質認識分子、 490は試料溶液、 522および 532はゲート電極を示す。  FIG. 21 shows an example of a back gate type carbon nanotube field effect transistor. 102 is a support substrate, 104 and 106 are insulating films, 108 and 110 are source and drain electrodes, 112 is a channel, 472 is a substance to be detected substance recognition, 490 is a sample solution, and 522 and 532 are gate electrodes.
[図 22]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 102 は支持基板、 104および 106は絶縁膜、 108および 110はソース電極およびドレイン 電極、 112はチャネル、 472a〜bは被検出物質認識分子、 490a〜bは試料溶液、 5 22a〜bおよび 532a〜bはゲート電極を示す。  FIG. 22 shows an example of a back gate type carbon nanotube field effect transistor. 102 is a support substrate, 104 and 106 are insulating films, 108 and 110 are source and drain electrodes, 112 is a channel, 472a-b are target substance recognition molecules, 490a-b are sample solutions, 522a-b and 532a- b represents a gate electrode.
[図 23]バックゲート型のカーボンナノチューブ電界効果トランジスタの例である。 102 は支持基板、 104および 106は絶縁膜、 108および 110はソース電極およびドレイン 電極、 112はチャネル、 114はゲート電極、 472は被検出物質認識分子、 482は試 料溶液、 640は絶縁性保護膜を示す。  FIG. 23 shows an example of a back gate type carbon nanotube field effect transistor. 102 is a supporting substrate, 104 and 106 are insulating films, 108 and 110 are source and drain electrodes, 112 is a channel, 114 is a gate electrode, 472 is a molecule to be detected, 482 is a sample solution, 640 is an insulating protection The membrane is shown.
[図 24]サイドゲート型のカーボンナノチューブ電界効果トランジスタの例である。 1は 基板、 3および 4はソース電極およびドレイン電極、 7はチャネル、 8はゲート電極を示 す。  FIG. 24 is an example of a side-gated carbon nanotube field effect transistor. 1 is the substrate, 3 and 4 are the source and drain electrodes, 7 is the channel, and 8 is the gate electrode.
[図 25]サイドゲート型のカーボンナノチューブ電界効果トランジスタの例である。 102 は支持基板、 104は絶縁膜、 108および 110はソース電極およびドレイン電極、 472 は被検出物質認識分子、 640は絶縁保護膜、 702はゲート電極を示す。 [図 26]サイドゲート(トップゲート)型のカーボンナノチューブ電界効果トランジスタの 例である。 1は基板、 3および 4はソース電極およびドレイン電極、 7はチャネル、 8は ゲート電極、 13は被検出物質認識分子、 15は試料溶液、 40は絶縁性保護膜を示 す。 FIG. 25 shows an example of a side-gated carbon nanotube field effect transistor. Reference numeral 102 denotes a supporting substrate, 104 denotes an insulating film, 108 and 110 denote source and drain electrodes, 472 denotes a substance to be detected, 640 denotes an insulating protective film, and 702 denotes a gate electrode. [Fig.26] This is an example of a carbon nanotube field effect transistor of side gate (top gate) type. 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel, 8 is a gate electrode, 13 is a molecule to be detected, 15 is a sample solution, and 40 is an insulating protective film.
[図 27]サイドゲート(トップゲート)型のカーボンナノチューブ電界効果トランジスタの 例である。 102は支持基板、 104および 106は絶縁膜、 108および 110はソース電 極およびドレイン電極、 472は被検出物質認識分子、 482は試料溶液、 640は絶縁 保護膜、 702はゲート電極を示す。  [Fig.27] An example of a side gate (top gate) type carbon nanotube field effect transistor. Reference numeral 102 denotes a support substrate, 104 and 106 denote insulating films, 108 and 110 denote source and drain electrodes, 472 denotes a substance to be detected, 482 denotes a sample solution, 640 denotes an insulating protective film, and 702 denotes a gate electrode.
[図 28]分離ゲート型のカーボンナノチューブ電界効果トランジスタの例を示す。 102 は支持基板、 104および 106は絶縁膜、 108および 110はソース電極およびドレイン 電極、 112はチャネル、 210は導電性基板、 202は支持基板、 204および 206は絶 縁膜、 472は被検出物質認識分子、 490は試料溶液、 602はゲート電極を示す。 支持基板 102、絶縁膜 104および 106、ソース電極およびドレイン電極 108および 1 10、ならびにチャネル 112を含む素子部をカーボンナノチューブ素子部 212;支持 基板 202、絶縁膜 204および 206、被検出物質認識分子 472、試料溶液 490、なら びにゲート電極 602を含む素子部をゲート素子部 214と称する。  FIG. 28 shows an example of a separation gate type carbon nanotube field effect transistor. 102 is a supporting substrate, 104 and 106 are insulating films, 108 and 110 are source and drain electrodes, 112 is a channel, 210 is a conductive substrate, 202 is a supporting substrate, 204 and 206 are insulating films, 472 is a substance to be detected A recognition molecule, 490 is a sample solution, and 602 is a gate electrode. The element part including the support substrate 102, the insulating films 104 and 106, the source and drain electrodes 108 and 110, and the channel 112 is the carbon nanotube element part 212; the support substrate 202, the insulating films 204 and 206, and the target substance recognition molecule 472 The element part including the sample solution 490 and the gate electrode 602 is referred to as a gate element part 214.
[図 29]図 28のゲート素子部 214の例を示す。 202は支持基板、 204および 206は絶 縁膜、 472は被検出物質認識分子、 490は試料溶液、 612および 622はゲート電極 を示す。 FIG. 29 shows an example of the gate element portion 214 of FIG. Reference numeral 202 denotes a supporting substrate, 204 and 206 denote insulating films, 472 denotes a substance-recognizing molecule, 490 denotes a sample solution, and 612 and 622 denote gate electrodes.
[図 30]図 28のゲート素子部 214の例を示す。 202は支持基板、 204および 206は絶 縁膜、 472a〜bは被検出物質認識分子、 490a〜bは試料溶液、 612&〜1)ぉょび62 2a〜bはゲート電極を示す。  FIG. 30 shows an example of the gate element portion 214 of FIG. 202 is a supporting substrate, 204 and 206 are insulating films, 472a-b are target substance recognition molecules, 490a-b are sample solutions, 612 & -1) and 622a-b are gate electrodes.
[図 31]分離ゲート型のカーボンナノチューブ電界効果トランジスタの例を示す。 102 は支持基板、 104および 106は絶縁膜、 108および 110はソース電極およびドレイン 電極、 112はチャネル、 210は導電性基板、 202は支持基板、 204および 206は絶 縁膜、 472a〜bは被検出物質認識分子、 490a〜bは試料溶液、 622はゲート電極 を示す。  FIG. 31 shows an example of a separation gate type carbon nanotube field effect transistor. 102 is a supporting substrate, 104 and 106 are insulating films, 108 and 110 are source and drain electrodes, 112 is a channel, 210 is a conductive substrate, 202 is a supporting substrate, 204 and 206 are insulating films, 472a-b are covered Detecting substance recognition molecules, 490a-b are sample solutions, 622 is a gate electrode.
[図 32]分離ゲート型のカーボンナノチューブ電界効果トランジスタの例を示す。 102 は支持基板、 104および 106は絶縁膜、 108および 110はソース電極およびドレイン 電極、 112はチャネル、 210は導電性基板、 202は支持基板、 204および 206は絶 縁膜、 472a〜bは被検出物質認識分子、 490a〜bは試料溶液、 612a〜bはゲート 電極を示す。 FIG. 32 shows an example of a separation gate type carbon nanotube field effect transistor. 102 Is a support substrate, 104 and 106 are insulating films, 108 and 110 are source and drain electrodes, 112 is a channel, 210 is a conductive substrate, 202 is a support substrate, 204 and 206 are insulating films, and 472a-b are to be detected Substance recognition molecules, 490a-b are sample solutions, and 612a-b are gate electrodes.
[図 33]分離ゲート型のカーボンナノチューブ電界効果トランジスタの例を示す。 102 は支持基板、 104および 106は絶縁膜、 108および 110はソース電極およびドレイン 電極、 112はチャネル、 302は導電性基板、 306は導電性ワイヤ、 202は支持基板、 204および 206は絶縁膜、 472a〜bは被検出物質認識分子、 490a〜bは試料溶液 、 612a〜bはゲート電極、 304は導電性基板を示す。  FIG. 33 shows an example of a separation gate type carbon nanotube field effect transistor. 102 is a supporting substrate, 104 and 106 are insulating films, 108 and 110 are source and drain electrodes, 112 is a channel, 302 is a conductive substrate, 306 is a conductive wire, 202 is a supporting substrate, 204 and 206 are insulating films, Reference numerals 472a to 472 denote target substance recognition molecules, 490a to b denote sample solutions, 612a to b denote gate electrodes, and 304 denotes a conductive substrate.
[図 34]被検出物質認識分子である IgG抗体の結合様式を示す図である。 50は抗体、 51はヒスタグ、 52は NTA (二トリ口三酢酸)、 53は IgG結合タンパク質、 54は二価性 架橋試薬 (55および 56は官能基)を示す。  FIG. 34 is a view showing a binding mode of an IgG antibody which is a detection substance recognition molecule. 50 is an antibody, 51 is a histag, 52 is NTA (bitrimethyl triacetate), 53 is an IgG binding protein, 54 is a bivalent cross-linking reagent (55 and 56 are functional groups).
[図 35]カーボンナノチューブ電界効果トランジスタに、被検出物質認識分として HA 抗原を結合させて得たバイオセンサを示す。 102はシリコン力もなる支持基板、 104 および 106はシリコンオキサイドからなる絶縁膜、 108および 110はソース電極および ドレイン電極、 112はカーボンナノチューブからなるチャネル、 472は HA抗原からな る被検出物質認識分子、 490は試料溶液、 512はゲート電極を示す。  FIG. 35 shows a biosensor obtained by binding an HA antigen as a substance to be detected to a carbon nanotube field effect transistor. 102 is a support substrate that also has silicon force, 104 and 106 are insulating films made of silicon oxide, 108 and 110 are source and drain electrodes, 112 is a channel made of carbon nanotubes, 472 is a substance-recognizing molecule made of HA antigen, 490 indicates a sample solution, and 512 indicates a gate electrode.
[図 36]図 35に示されたバイオセンサの I—V特性を示すグラフである。縦軸がソース · ドレイン電流、横軸がソース'ドレイン電圧である(ゲート電圧:— 20V)。 niは、 NTA —Ni錯体を形成させたときの I—V特性曲線; HAは、 HA抗原を固定ィ匕したときの I V特性曲線; Serumはヒト血清アルブミンでブロックしたときの I—V特性曲線; anti HA—10〜antiHA—6はそれぞれ、抗 HA抗体のハイプリドーマ上清液を 5 X 10_1 〜5 X 10_6に希釈した希釈液を反応させたときの I—V特性曲線である。 FIG. 36 is a graph showing the IV characteristics of the biosensor shown in FIG. The vertical axis is the source / drain current, and the horizontal axis is the source / drain voltage (gate voltage: -20V). ni is the IV characteristic curve when the NTA-Ni complex is formed; HA is the IV characteristic curve when the HA antigen is immobilized; Serum is the IV characteristic curve when blocked with human serum albumin ; anti HA-10~antiHA-6, respectively, is the I-V characteristic curve when reacted diluted solution diluted with High Priestess dormer supernatant of anti-HA antibody to 5 X 10 _1 ~5 X 10_ 6 .
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
1.本発明のカーボンナノチューブ FET 1. Carbon nanotube FET of the present invention
本発明のカーボンナノチューブ FETは、基板、基板上のソース電極とドレイン電極 、および両電極間を接続するカーボンナノチューブからなるチャネル、ならびにゲー ト電極を有する。さらに前記カーボンナノチャネルを基板に固定するカーボンナノチ ユーブ親和性物質を含むことが好ま 、。 The carbon nanotube FET of the present invention has a substrate, a source electrode and a drain electrode on the substrate, a channel made of carbon nanotubes connecting both electrodes, and a gate electrode. Further, the carbon nanochannel for fixing the carbon nanochannel to the substrate. It is preferable to contain a substance having affinity for eu.
本発明のカーボンナノチューブ FETのソース電極とドレイン電極、およびゲート電 極の電気的な接続関係は、例えば図 1に示されるとおりである。図 1において、 1は基 板であり、 3および 4はソース電極およびドレイン電極であり、 7はカーボンナノチュー ブからなるチャネルであり、 8はゲート電極である。図示されていないが、チャネル 7を 固定ィ匕するためのカーボンナノチューブ親和性物質力 ソース'ドレイン電極または 基板に結合されていることが好ましい。ゲート電極 8に印加された電圧によって、ソー ス電極とドレイン電極間の電流が制御される。  The electrical connection relationship between the source electrode, drain electrode, and gate electrode of the carbon nanotube FET of the present invention is as shown in FIG. 1, for example. In FIG. 1, 1 is a substrate, 3 and 4 are source and drain electrodes, 7 is a channel made of carbon nanotubes, and 8 is a gate electrode. Although not shown, it is preferable that the carbon nanotube affinity material force for fixing the channel 7 is coupled to the source / drain electrode or the substrate. The voltage applied to the gate electrode 8 controls the current between the source electrode and the drain electrode.
[0013] 基板について [0013] About the substrate
本発明のカーボンナノチューブ FETに含まれる基板は、絶縁基板であることが好ま しい。絶縁基板の例には、 1)半導体もしくは金属力もなる支持基板の片面もしくは両 面が絶縁膜で被覆された基板、または 2)絶縁体からなる基板が含まれる。  The substrate included in the carbon nanotube FET of the present invention is preferably an insulating substrate. Examples of insulating substrates include 1) a substrate in which one or both sides of a semiconductor or metal support substrate is covered with an insulating film, or 2) a substrate made of an insulator.
[0014] 図 2に基板の例が示される。図 2 (C)は絶縁体 410からなる基板である。図 2 (B)は 半導体からなる支持基板 400と、第一の絶縁膜 402を含み、図 2 (A)はさらに第二の 絶縁膜 404を含む。図 2 (D)は、金属力もなる支持基板 420と、第一の絶縁膜 422を 含み、図 2 (E)はさらに第二の絶縁膜 424を含む。 FIG. 2 shows an example of the substrate. FIG. 2 (C) shows a substrate made of an insulator 410. 2B includes a support substrate 400 made of a semiconductor and a first insulating film 402, and FIG. 2A further includes a second insulating film 404. FIG. 2D includes a support substrate 420 having a metal force and a first insulating film 422, and FIG. 2E further includes a second insulating film 424.
本発明のカーボンナノチューブ FETに含まれる基板は、好ましくは図 2 (A)もしくは (B)、または図 2 (D)もしくは (E)で示される基板であり、より好ましくは図 2 (A)もしく は(B)で示される基板であり、さらに好ましくは図 2 (A)で示される基板である。  The substrate included in the carbon nanotube FET of the present invention is preferably the substrate shown in FIG. 2 (A) or (B), or FIG. 2 (D) or (E), more preferably FIG. 2 (A). Or a substrate shown in (B), more preferably a substrate shown in FIG.
[0015] 1)支持基板に絶縁体カゝらなる膜が形成された基板にぉ ヽて、支持基板は半導体 または金属からなることが好ましい。半導体の例には、シリコン、ゲルマニウムなどの 1 4族元素、 GaAs, InPなどの III-Vィ匕合物、 ZnTeなどの II-VIィ匕合物などが含まれる力 好ましくはシリコンである。金属の例には、酸化物を形成しやすい金属、例えばアルミ ユウム、マグネシウムなどが含まれる。支持基板の厚さは特に限定されないが、通常 ίま、 0. 1〜1. Omm程度、好ましく ίま 0. 3〜0. 5mm程度である。 [0015] 1) It is preferable that the support substrate is made of a semiconductor or a metal over the substrate in which a film such as an insulator is formed on the support substrate. Examples of semiconductors include Group 14 elements such as silicon and germanium, III-V compounds such as GaAs and InP, II-VI compounds such as ZnTe, and the like, preferably silicon. Examples of the metal include metals that easily form oxides, such as aluminum and magnesium. The thickness of the support substrate is not particularly limited, but is usually about ί, about 0.1 to 1. Omm, preferably about ί to about 0.3 to 0.5 mm.
支持基板を被覆する絶縁膜の材質の例には、酸ィ匕シリコン、窒化シリコン、酸ィ匕ァ ルミ-ゥム、酸ィ匕チタンなどの無機化合物、およびアクリル榭脂ゃポリイミドなどの有 機化合物が含まれる。支持基板の少なくとも一方の面に、好ましくはソース'ドレイン 電極が配置されている面に、絶縁膜が形成されている。ソース'ドレイン電極が配置さ れている絶縁膜の厚さは ΙΟηπ!〜 500nm程度、好ましくは 20〜300nm程度である 。リーク電流が流れるのを防止するためである。 Examples of the material of the insulating film covering the supporting substrate include inorganic compounds such as silicon oxide, silicon nitride, silicon oxide, titanium oxide, and organic materials such as acrylic resin and polyimide. Compounds are included. On at least one side of the support substrate, preferably source'drain An insulating film is formed on the surface on which the electrode is disposed. The thickness of the insulating film where the source and drain electrodes are arranged is ΙΟηπ! About 500 nm, preferably about 20 to 300 nm. This is to prevent leakage current from flowing.
[0016] 2)絶縁体力もなる基板の例には、前述された絶縁体力もなる基板のほか、ガラス基 板が含まれる。ガラスの素材の例には、石英、サファイア、ナトリウム以外の元素を含 むガラスなどを含む。従来のカーボンナノチューブトランジスタは、そのチヤネノレが高 温 (例えば約 800°C)条件を必要とする気相成長法によって作製されて!ヽたため、融 点の低 、ガラスを基板として用いることはできなかった。し力しながら本発明の製造方 法にぉ 、ては、カーボンナノチューブ力 なるチャネルを必ずしも気相成長法によつ て作製する必要はないため(つまり、カーボンナノチューブからなるチャネルを分散固 定ィ匕法によって作製することができるため)、基板を高温に加熱する必要がない。 例えば、基板は、融点 400°C程度のガラス基板 (ナトリウム含有)であってもよい。こ のガラス基板上に、後述の分散固定化法により、電極間をカーボンナノチューブで架 橋して接続することができる。  [0016] 2) Examples of the substrate having the insulating force include a glass substrate in addition to the above-described substrate having the insulating force. Examples of glass materials include quartz, sapphire, and glass containing elements other than sodium. Conventional carbon nanotube transistors are fabricated by vapor deposition, which requires a high temperature (eg about 800 ° C) condition! As a result, glass had a low melting point and glass could not be used as a substrate. However, in the manufacturing method of the present invention, the channel that is the carbon nanotube force is not necessarily produced by the vapor phase growth method (that is, the channel composed of the carbon nanotube is dispersed and fixed). It is not necessary to heat the substrate to a high temperature because it can be manufactured by a dredge method. For example, the substrate may be a glass substrate (containing sodium) having a melting point of about 400 ° C. On this glass substrate, the electrodes can be bridged and connected with carbon nanotubes by a dispersion fixing method described later.
[0017] 基板をガラス基板とすることにより種々のメリットが得られる。 1)透明なガラス基板を 用いると、光学顕微鏡、蛍光顕微鏡、レーザー顕微鏡などを用いることが可能となる( ただし、全反射型の蛍光顕微鏡を用いる場合には、屈折率の関係から石英基板より も、通常のガラス基板が好ましく用いられる)。つまり、これらの顕微鏡により試料や基 板の状態を確認しながら素子を駆動させることができる。例えば、蛍光分子などで標 識されたウィルスや抗原などの検出対象物を蛍光顕微鏡で観察しながら、トランジス タ電気特性の変化 (例えば、ソース'ドレイン電流の変化)を測定して検出することが できる。 2)透明なガラス基板を用いた場合には、基板上に付けたマーカーを基準に 、基板に金属を蒸着させることができるので、電極などを正確な位置に配置すること 力 Sできる。 3)ガラス基板はシリコン基板などと比較して安価でかつ加工が容易であり 、また絶縁性が高いので、本発明の FETの基板として好ましい。 4)従来のカーボン ナノチューブトランジスタでは、絶縁膜で被覆されたシリコン基板上に電極などが形 成されるが、ノ レク電流を発生させること (シリコン基板を被覆する絶縁膜に欠陥が生 じて、シリコン基板内に電流が漏れること)があった。ガラス基板を用いることによって 、このような現象が抑制される。 5)ガラスは熱を吸収しにくいので、素子の冷却が容 易になる。 [0017] Various advantages can be obtained by using a glass substrate as the substrate. 1) When a transparent glass substrate is used, it is possible to use an optical microscope, a fluorescence microscope, a laser microscope, etc. (However, when a total reflection type fluorescence microscope is used, it is more than a quartz substrate due to the refractive index. Ordinary glass substrates are preferably used). In other words, the element can be driven while checking the state of the sample or the substrate with these microscopes. For example, it is possible to detect and detect changes in transistor electrical characteristics (for example, changes in source and drain currents) while observing detection objects such as viruses and antigens labeled with fluorescent molecules with a fluorescence microscope. it can. 2) When a transparent glass substrate is used, it is possible to deposit metal on the substrate based on the marker attached on the substrate, so that it is possible to place electrodes etc. in an accurate position. 3) A glass substrate is preferable as a substrate for the FET of the present invention because it is cheaper and easier to process than a silicon substrate and has high insulation. 4) In a conventional carbon nanotube transistor, electrodes are formed on a silicon substrate covered with an insulating film, but a no-current is generated (a defect occurs in the insulating film covering the silicon substrate, Current leaked into the silicon substrate). By using a glass substrate Such a phenomenon is suppressed. 5) Glass is difficult to absorb heat, making it easier to cool the device.
[0018] また基板を、ガラスよりもさらに安価でかつ加工が容易なプラスチック基板としてもよ い。もちろん、プラスチック基板とした場合には、電極を形成するために金属を蒸着さ せる条件などを適宜に調整する必要がある。  [0018] The substrate may be a plastic substrate that is cheaper than glass and easy to process. Of course, in the case of a plastic substrate, it is necessary to appropriately adjust conditions for depositing metal to form electrodes.
[0019] ソース電極とドレイン電極について  [0019] Source and drain electrodes
本発明のカーボンナノチューブ FETの基板上には、ソース電極およびドレイン電極 が配置されている。ソース電極およびドレイン電極の材質の例には、金、白金、チタン などの金属が含まれる。基板がガラス基板であるときは、金、クロムなどの金属である ことが好ましい。ソース電極およびドレイン電極は、これらの金属を蒸着することによつ て形成される。ソース電極およびドレイン電極はそれぞれ、二種以上の金属で多層 構造にされていてもよい。例えば、チタンの層に金の層を重ねてもよい。金属を蒸着 するにあたって、リソグラフィを用いて、ソース電極およびドレイン電極を形成する基 板面にパターンを転写しておくことが好ましい。ソース'ドレイン電極の膜厚は特に制 限されないが、例えば数十 nmである。  On the substrate of the carbon nanotube FET of the present invention, a source electrode and a drain electrode are disposed. Examples of the material of the source electrode and the drain electrode include metals such as gold, platinum, and titanium. When the substrate is a glass substrate, it is preferably a metal such as gold or chromium. The source electrode and the drain electrode are formed by depositing these metals. Each of the source electrode and the drain electrode may have a multilayer structure of two or more kinds of metals. For example, a gold layer may be superimposed on a titanium layer. In depositing the metal, it is preferable to transfer the pattern onto the substrate surface on which the source electrode and the drain electrode are formed using lithography. The film thickness of the source / drain electrode is not particularly limited, but is, for example, several tens of nm.
[0020] ソース電極とドレイン電極との距離は特に限定されないが、通常は 2〜10 μ m程度 であればよい。当該距離をさらに縮めてもよぐそれにより分散固定ィ匕法によるカーボ ンナノチューブによる接続が容易になる。  [0020] The distance between the source electrode and the drain electrode is not particularly limited, but is usually about 2 to 10 µm. The distance can be further reduced, which facilitates the connection with the carbon nanotubes by the dispersion-fixed method.
[0021] 本発明の電界効果トランジスタはバイオセンサに適用されうるが、その場合には、被 検出物質認識分子を、ソース電極とドレイン電極を接続するカーボンナノチューブ( チャネル)に結合させることがある。その場合には、被検出物質を含む試料溶液が、 ソース電極およびドレイン電極上に添加されうる。添加された試料溶液が、ソース電 極およびドレイン電極の全体を覆ってしまうと、電流測定装置(プローバなど)のプロ ーブと電極との間に被膜が形成されて(図 3を参照)、ソース電極とドレイン電極間を 流れる電流 (ソース ·ドレイン電流)を正確に測定できな 、場合がある。  [0021] The field effect transistor of the present invention can be applied to a biosensor. In that case, a substance to be detected may be bound to a carbon nanotube (channel) that connects a source electrode and a drain electrode. In that case, a sample solution containing a substance to be detected can be added onto the source electrode and the drain electrode. When the added sample solution covers the entire source electrode and drain electrode, a film is formed between the probe and the electrode of the current measuring device (prober etc.) (see Fig. 3), In some cases, the current flowing between the source electrode and the drain electrode (source / drain current) cannot be measured accurately.
したがって、本発明の電界効果トランジスタにおけるソース電極およびドレイン電極 は、添加される試料溶液によって全体が覆われることがないようにすることが好ましい 。例えば、ソース電極およびドレイン電極の、カーボンナノチューブからなるチャネル 力 の長さを長くすればよい。すなわち、図 4および図 5に示されるように、ソース'ドレ イン電極の長さ L3を、例えば 500 m以上にすることが好ましぐ 1mm以上とするこ とがより好ましぐそれ以上としてもよい。また、試料溶液に覆われる電極部位は、なる ベく小さくすることが好ましいので、 W2は 500 μ m以下であることが好ましぐ 100 μ m以下であることがより好ましぐそれ以下であってもよい (数マイクロ程度まで)。また 、図 4および図 5に示されるように、電極のチャネルとの接続部位を突起構造としても よぐその場合には、 W1は例えば 10 /z m程度にすればよい。被検出物質の検出に おいては、被膜に覆われていない部分の電極に、測定装置のプローブをあてればよ い。 Therefore, it is preferable that the source electrode and the drain electrode in the field effect transistor of the present invention are not entirely covered by the added sample solution. For example, the source electrode and drain electrode channels made of carbon nanotubes You can increase the length of the force. That is, as shown in FIG. 4 and FIG. 5, it is preferable to set the length L3 of the source / drain electrode to 500 m or more, for example, 1 mm or more. Good. In addition, since it is preferable to make the electrode part covered with the sample solution as small as possible, W2 is preferably 500 μm or less, more preferably 100 μm or less. Yes (up to a few micro). In addition, as shown in FIGS. 4 and 5, the connecting portion of the electrode with the channel may have a protruding structure, and in this case, W1 may be about 10 / zm, for example. In detecting the substance to be detected, the probe of the measuring device may be applied to the electrode in the part not covered with the film.
[0022] チヤネノレについて  [0022] About Cyanenore
本発明のカーボンナノチューブ FETのソース電極およびドレイン電極を接続するチ ャネルは、カーボンナノチューブで構成されている。チャネルを構成するカーボンナ ノチューブは、単層または多層カーボンナノチューブのいずれでもよいが、好ましくは 単層カーボンナノチューブである。  The channel connecting the source electrode and the drain electrode of the carbon nanotube FET of the present invention is composed of carbon nanotubes. The carbon nanotubes constituting the channel may be either single-walled or multi-walled carbon nanotubes, but are preferably single-walled carbon nanotubes.
[0023] さらにチャネルを構成するカーボンナノチューブには欠陥が導入されていてもよい 。「欠陥」とは、カーボンナノチューブを構成する炭素五員環または六員環が開環し ている状態を意味する。欠陥が導入されたカーボンナノチューブは、切れ切れになつ た状態で力ろうじて繋がっているような構造をしている可能性がある力 実際の構造 は明らかでない。カーボンナノチューブに欠陥を導入する方法は後述されるが、例え ばカーボンナノチューブを焼鈍しすることにより得られる。チャネルを構成するカーボ ンナノチューブに欠陥を導入することにより、 SET (単電子トランジスタ)としての性能 (単一電子トンネル電気特性など)を有しうる。 SETとしての性能については、後述す る。  Furthermore, a defect may be introduced into the carbon nanotube constituting the channel. “Defect” means a state in which the carbon five-membered ring or six-membered ring constituting the carbon nanotube is opened. The carbon nanotubes with defects introduced may have a structure that is barely connected in a state of being cut off. The actual structure is not clear. A method for introducing a defect into the carbon nanotube will be described later. For example, the defect can be obtained by annealing the carbon nanotube. By introducing defects into the carbon nanotubes that make up the channel, it can have SET (single-electron transistor) performance (single-electron tunnel electrical properties, etc.). The performance as a SET will be described later.
[0024] チャネルは、一本のカーボンナノチューブによって接続されていてもよぐ複数本の カーボンナノチューブによって接続されていてもよい。例えば、カーボンナノチューブ のバンドル (bundle)によってソース'ドレイン電極間が接続されていたり、ソース'ドレ イン電極間に複数本のカーボンナノチューブが折り重ねられて接続されて 、てもよ!/ヽ 。ソース電極とドレイン電極を接続するカーボンナノチューブの状態は、 AFM (原子 間力顕微鏡)により確認されうる。 [0024] The channel may be connected by a single carbon nanotube or a plurality of carbon nanotubes. For example, the source and drain electrodes may be connected by a bundle of carbon nanotubes, or a plurality of carbon nanotubes may be folded and connected between the source and drain electrodes! / ヽ. The state of the carbon nanotubes connecting the source and drain electrodes is AFM (atomic It can be confirmed by an atomic force microscope.
後述の通り、本発明のカーボンナノチューブ FETは、そのチャネルが分散固定化 法により作製され得るため、必ずしも一本のカーボンナノチューブでチャネルが構成 されるとは限らない。  As will be described later, since the channel of the carbon nanotube FET of the present invention can be produced by a dispersion-immobilization method, the channel is not necessarily constituted by one carbon nanotube.
[0025] また、本発明のカーボンナノチューブ FETのチャネルは、基板に接触して!/、てもよ V、し、基板との間に空隙が形成されて!、てもよ 、(図 1の空隙 Gを参照)。  [0025] In addition, the channel of the carbon nanotube FET of the present invention may be in contact with the substrate! /, And V may be formed, and a gap may be formed between the substrate and the substrate (FIG. 1). (See Gap G).
[0026] 本発明のカーボンナノチューブ FETに含まれるチャネルは、絶縁性保護膜で保護 されていてもよい。チャネルを構成するカーボンナノチューブは、種々の分子と容易 に相互作用して、その電子状態を変化させる。この電子状態の変化は、ソース'ドレイ ン電流の変化として現れるので、センサの態様によってはノイズ源となることがある。 そこで、カーボンナノチューブの全体または一部、および必要に応じてソース'ドレイ ン電極の全体または一部を、絶縁性保護膜で被覆してもよい。それにより、カーボン ナノチューブが溶液の蒸気などと相互作用することを妨げ、ノイズが低減されうる。 また、絶縁性保護膜でカーボンナノチューブを被覆することにより、トランジスタ全体 を超音波洗浄したり、強酸や強塩基を用いて洗浄したりすることが可能となる。さらに 保護膜を設けることによって損傷が防止されるので、トランジスタの使用寿命を著しく 延ばすことができる。カーボンナノチューブトランジスタの特性は、個々のトランジスタ によって異なることがあるので、その使用寿命を延ばすことは非常に重要である。  [0026] The channel included in the carbon nanotube FET of the present invention may be protected by an insulating protective film. The carbon nanotubes that make up the channel easily interact with various molecules and change their electronic state. This change in the electronic state appears as a change in the source / drain current, and may be a noise source depending on the sensor mode. Therefore, the whole or part of the carbon nanotubes and, if necessary, the whole or part of the source / drain electrode may be covered with an insulating protective film. As a result, the carbon nanotubes are prevented from interacting with solution vapor and the like, and noise can be reduced. In addition, by covering the carbon nanotubes with an insulating protective film, the entire transistor can be cleaned ultrasonically or using a strong acid or a strong base. Further, since the damage is prevented by providing the protective film, the service life of the transistor can be significantly extended. Since the characteristics of carbon nanotube transistors can vary from individual transistor to transistor, it is very important to extend their service life.
[0027] カーボンナノチューブ力もなるチャネルを保護する絶縁性保護膜は、絶縁性の接 着剤により形成させてもよぐノッシベーシヨン膜を用いて形成させてもよい。さらに、 絶縁性保護膜を酸ィ匕シリコン膜とすれば、その絶縁性保護膜に抗体などの被検出物 質認識分子を容易〖こ結合させることができる。  [0027] The insulating protective film that protects the channel also having the carbon nanotube force may be formed using a nosedation film that may be formed of an insulating adhesive. Furthermore, if the insulating protective film is an oxide silicon film, a substance-recognizing molecule such as an antibody can be easily bound to the insulating protective film.
[0028] 図 6および図 7には、絶縁性保護膜によってカーボンナノチューブ力もなるチャネル が保護された電界効果トランジスタ (バックゲート型)の例が示される。  FIG. 6 and FIG. 7 show examples of field effect transistors (back gate type) in which a channel having carbon nanotube force is protected by an insulating protective film.
図 6では、カーボンナノチューブ 7全体と、ソース'ドレイン電極の一部が絶縁性保 護膜 30で保護されている。図 7 (A)では、カーボンナノチューブ 7612全体とソース' ドレイン電極 7610および 7611の全体が絶縁性保護膜 8501で保護されている。図 7 (B)では、カーボンナノチューブ 7612とソース電極 7610との接続部位、およびカー ボンナノチューブ 7612とドレイン電極 7611との接続部位が絶縁性保護膜 8501で 保護されている。 In FIG. 6, the entire carbon nanotube 7 and a part of the source / drain electrode are protected by the insulating protective film 30. In FIG. 7A, the entire carbon nanotube 7612 and the entire source / drain electrodes 7610 and 7611 are protected by an insulating protective film 8501. In FIG. 7 (B), the connection site between the carbon nanotube 7612 and the source electrode 7610, and the car The connection site between the bon nanotube 7612 and the drain electrode 7611 is protected by an insulating protective film 8501.
図 7 (B)の場合には、カーボンナノチューブに被検出物質認識分子 7613 (後述)を 直接結合させることができるので、センサとして用いた場合の感度が向上し、一分子 検出などが可能になりうる。一方で、損傷を受けやすい前記接触部位が保護されて いるので、使用寿命の延長やノイズの防止などが達成されうる。  In the case of Fig. 7 (B), the substance-recognized molecule 7613 (described later) can be directly bonded to the carbon nanotube, so the sensitivity when used as a sensor is improved, and single molecule detection becomes possible. sell. On the other hand, since the contact part that is easily damaged is protected, the service life can be extended and noise can be prevented.
[0029] 本発明のカーボンナノチューブ FETのチャネルは任意の方法で形成されうるが、 分散固定ィ匕法によりカーボンナノチューブでソース'ドレイン間を接続させて形成する ことが好ましい。分散固定ィ匕法については、後に詳細に説明する。  [0029] Although the channel of the carbon nanotube FET of the present invention can be formed by any method, it is preferably formed by connecting the source and the drain with a carbon nanotube by a dispersion fixing method. The dispersion fixed key method will be described in detail later.
[0030] カーボンナノチューブを固定するカーボンナノチューブ親和性物質につ!、て  [0030] A carbon nanotube affinity substance that fixes carbon nanotubes!
本発明のカーボンナノチューブ FETは、チャネルを構成するカーボンナノチューブ を基板に固定するカーボンナノチューブ親和性物質を含むことが好ましい。カーボン ナノチューブ親和性物質は、基板や基板上のソース ·ドレイン電極などに結合 (好ま しくは共有結合)していることが好ましぐさらにカーボンナノチューブとの親和性によ りカーボンナノチューブを基板に固定する。つまり、カーボンナノチューブからなるチ ャネルは、カーボンナノチューブ親和性物質を介して基板に固定される。  The carbon nanotube FET of the present invention preferably contains a carbon nanotube affinity substance that fixes the carbon nanotubes constituting the channel to the substrate. The carbon nanotube affinity substance is preferably bonded (preferably covalently bonded) to the substrate and the source / drain electrodes on the substrate, and the carbon nanotube is fixed to the substrate by affinity with the carbon nanotube. To do. That is, the channel made of carbon nanotubes is fixed to the substrate via the carbon nanotube affinity substance.
[0031] カーボンナノチューブ親和性物質の例には、カーボンナノチューブとの π - π相互 作用を示す芳香族多環分子が含まれる。芳香族多環分子の例には、ピレン、ナフタ レン、ァセトラセン、フエナントレンなどの芳香族炭化水素や、芳香族複素環が含まれ る。芳香族多環分子は、好ましくはピレンである。  [0031] Examples of the substance having affinity for carbon nanotubes include aromatic polycyclic molecules exhibiting π-π interaction with carbon nanotubes. Examples of the aromatic polycyclic molecule include aromatic hydrocarbons such as pyrene, naphthalene, acetracene and phenanthrene, and aromatic heterocycles. The aromatic polycyclic molecule is preferably pyrene.
また、カーボンナノチューブ親和性物質は、二以上の芳香族官能基を有する分子 でもよい。二以上の芳香族官能基があれば、カーボンナノチューブとのファンデルヮ ーノレス力が高まり、安定にカーボンナノチューブを固定できるほか、この二つの官能 基の角度に応じて、所望の直径を有するカーボンナノチューブを選択的に固定しうる 。図 8には、 2つの芳香族官能基 (その二つの官能基の結合角度 Θ )を有する分子が 、カーボンナノチューブ 45aを固定する力 より大きい直径のカーボンナノチューブ 4 5bを固定しない様子が示される。二以上の芳香族官能基を有する分子の例には、 2 分子のピレンをリジンなどを介して架橋させたものが含まれる。 [0032] また前述の通り、カーボンナノチューブ親和性物質は、基板または電極に共有結合 していることが好ましい。例えば、基板に導入された水酸基、アミノ基またはカルボキ シル基に、カーボンナノチューブ親和性物質がエステル結合またはアミド結合により 結合していればよい。 The carbon nanotube affinity substance may be a molecule having two or more aromatic functional groups. If there are two or more aromatic functional groups, the van der Noles force with the carbon nanotubes will increase, and the carbon nanotubes can be fixed stably, and carbon nanotubes with the desired diameter will be selected according to the angle of these two functional groups Can be fixed. FIG. 8 shows that a molecule having two aromatic functional groups (the bonding angle Θ of the two functional groups) does not fix the carbon nanotube 45b having a diameter larger than the force for fixing the carbon nanotube 45a. Examples of molecules having two or more aromatic functional groups include those obtained by crosslinking two molecules of pyrene via lysine or the like. [0032] As described above, the carbon nanotube-affinity substance is preferably covalently bonded to the substrate or the electrode. For example, the carbon nanotube affinity substance may be bonded to the hydroxyl group, amino group, or carboxy group introduced into the substrate by an ester bond or an amide bond.
[0033] 本発明のカーボンナノチューブ FETのチャネルは、カーボンナノチューブ親和性 物質を用いて形成されることが好ましい。この形成法については、後に詳細に説明す る。  [0033] The channel of the carbon nanotube FET of the present invention is preferably formed using a carbon nanotube affinity substance. This forming method will be described later in detail.
[0034] ゲート電極について  [0034] Gate electrode
前述の通り、本発明の電界効果トランジスタにはゲート電極が含まれる。ゲート電極 の材質の例には、ソース'ドレイン電極と同様に、金、白金、チタン、真鍮、アルミ-ゥ ムなどの金属が含まれる力 好ましくは金である。金は導通性が高ぐ電流漏れによる 誤差が小さいためである。これらの金属を蒸着することにより形成され得る。ゲート電 極は、例えばアルミニウムの基板上に配置されていてもよい。  As described above, the field effect transistor of the present invention includes a gate electrode. An example of the material of the gate electrode is a force including gold, platinum, titanium, brass, aluminum, or the like, preferably gold, like the source / drain electrodes. This is because gold has high conductivity and small error due to current leakage. It can be formed by depositing these metals. The gate electrode may be disposed on an aluminum substrate, for example.
ゲート電極は、その電圧によって基板上に配置されたソース'ドレイン電極間を流れ る電流 (ソース ·ドレイン電流)を制御できるように配置されて ヽればよぐ配置の形式 は特に限定されず、トランジスタの用途や製造面の優位性などの条件または観点か ら、適宜に配置されればよい。ゲート電極の例には、(A)バックゲート電極;(B)サイ ドゲート電極;(C)分離ゲート電極などが含まれる。  The arrangement of the gate electrode is not particularly limited as long as the gate electrode is arranged so that the current (source-drain current) flowing between the source and drain electrodes arranged on the substrate can be controlled by the voltage. In view of conditions or viewpoints such as transistor use and manufacturing advantages, the transistors may be arranged as appropriate. Examples of the gate electrode include (A) a back gate electrode; (B) a side gate electrode; (C) a separation gate electrode.
[0035] (A)バックゲート電極とは、カーボンナノチューブで接続されたソース電極およびド レイン電極が配置された基板の、ソース ·ドレイン電極が形成されて!、な!/、面 (裏面) 上に配置されたゲート電極を意味する。ここで面上に配置されているとは、基板面に 接触させて配置されていてもよぐ基板面カゝら離されて配置されていてもよい。基板 面から離されて配置されて 、るバックゲート電極は、サンドイッチ型のバックゲート電 極などと称されることもある。  [0035] (A) A back gate electrode is formed by forming a source / drain electrode of a substrate on which a source electrode and a drain electrode connected by carbon nanotubes are arranged! Wow! /, Means the gate electrode placed on the surface (back surface). Here, the term “arranged on the surface” means that the substrate may be disposed in contact with the substrate surface or may be disposed apart from the substrate surface. The back gate electrode arranged apart from the substrate surface is sometimes referred to as a sandwich type back gate electrode.
ノックゲート電極を配置された基板面 (ソース'ドレイン電極の裏面)には、絶縁膜が 形成されて ヽることが好ま ヽ。  It is preferable that an insulating film be formed on the substrate surface on which the knock gate electrode is disposed (the back surface of the source / drain electrode).
[0036] (B)サイドゲート電極とは、カーボンナノチューブで接続されたソース電極およびド レイン電極が配置された基板の、ソース'ドレイン電極が形成されている面と同一の面 上に配置されたゲート電極を意味する。ここで面上に配置されているとは、基板面に 接触させて配置されていてもよぐ基板面カゝら離されて配置されていてもよい。基板 面から離されて配置されて ヽるサイドゲート電極は、トップゲート電極と称されることも ある。 (B) The side gate electrode is the same surface as the surface on which the source and drain electrodes are formed on the substrate on which the source electrode and the drain electrode connected by carbon nanotubes are arranged. It means the gate electrode arranged on the top. Here, the term “arranged on the surface” means that the substrate may be disposed in contact with the substrate surface or may be disposed apart from the substrate surface. The side gate electrode disposed away from the substrate surface is sometimes referred to as a top gate electrode.
[0037] (C)分離ゲート電極とは、ソース ·ドレイン電極が配置された基板とは別個の絶縁性 基板であって、電気的には接続されている絶縁性基板上に配置されたゲート電極を 意味する。「電気的に接続されている」とは、両基板が一の導電性基板に載置されて Vヽる;両基板がそれぞれ、導電性ワイヤで接続されて!ヽる別個の導電性基板に載置 されている、ことなどを意味する。ここでいう「絶縁性基板」とは、前述のソース'ドレイ ン電極が配置された基板と同様であり、絶縁体からなる基板;または半導体または金 属からなる支持基板と、支持基板の少なくとも一方に形成された絶縁膜を含む基板 でありうる。「導電性基板」の例には、金の薄膜が蒸着されたガラスや真鍮の基板など が含まれる。分離ゲート電極は、この絶縁性基板上に配置されており、基板面に接触 させて配置されて 、てもよく、基板面から離されて配置されて 、てもよ 、。  [0037] (C) The separation gate electrode is an insulating substrate that is separate from the substrate on which the source / drain electrodes are disposed, and is disposed on the electrically connected insulating substrate. Means. “Electrically connected” means that both substrates are placed on one conductive substrate and V are connected; each substrate is connected by a conductive wire! It means that it is mounted on a separate conductive substrate. The term “insulating substrate” as used herein is the same as the substrate on which the source / drain electrodes are disposed, and is a substrate made of an insulator; or a support substrate made of semiconductor or metal; and at least one of the support substrates The substrate may include an insulating film formed on the substrate. Examples of the “conductive substrate” include a glass or brass substrate on which a gold thin film is deposited. The isolation gate electrode is disposed on the insulating substrate, may be disposed in contact with the substrate surface, or may be disposed away from the substrate surface.
[0038] 本発明のカーボンナノチューブ FETは、ゲート電極に印加された電圧によってソー ス 'ドレイン電流が制御されればよいが、例えば、ソース'ドレイン電圧を ± IVとしたと きに、ゲート電圧が 20V〜 + 20Vのレンジにお!、てソース ·ドレイン電流が 10_9〜 10_5Aレベルであり、かつゲート電圧の変化に応じてソース'ドレイン電流が変化す る。 In the carbon nanotube FET of the present invention, it is sufficient that the source / drain current is controlled by the voltage applied to the gate electrode. For example, when the source / drain voltage is ± IV, the gate voltage is The source / drain current is in the 10 _9 to 10 _5 A level in the range of 20 V to +20 V, and the source and drain current changes according to the change in the gate voltage.
[0039] 2.本発明のカーボンナノチューブ FETの製造方法  2. Method for producing carbon nanotube FET of the present invention
本発明のカーボンナノチューブ FETは任意の方法で製造されうる。好ましくは、別 個に製造されたカーボンナノチューブを、カーボンナノチューブとの親和性を有する 物質で基板に固定してチャネルを形成するステップを含む力 その他は通常の方法 と同様にして製造されうる。  The carbon nanotube FET of the present invention can be produced by any method. Preferably, a separately manufactured carbon nanotube may be manufactured in the same manner as a normal method, including a force including a step of forming a channel by fixing the carbon nanotube to a substrate with a substance having an affinity for the carbon nanotube.
別個に製造されたカーボンナノチューブを、基板の電極形成予定部位や電極など に提供して基板に固定することにより、電極間をカーボンナノチューブで接続してチ ャネルを形成する方法を、「分散固定化法」と称することがある。  The method of forming the channel by connecting the carbon nanotubes between the electrodes by providing separately produced carbon nanotubes to the electrode formation site or electrode of the substrate and fixing them to the substrate is called `` dispersion fixation ''. Sometimes referred to as "the law".
[0040] すなわち本発明のカーボンナノチューブ FETの製造方法は、チャネルの形成法に よって以下の態様に分類され得る。 [A] ソース電極とドレイン電極の形成予定部位 力 カーボンナノチューブ親和性物質で修飾された基板を用意し;前記基板の電極 形成予定部位にカーボンナノチューブを提供し;ソース電極およびドレイン電極を形 成する。 [B] ソース電極およびドレイン電極が形成された基板を用意し;前記基板 の電極をカーボンナノチューブ親和性物質で修飾し;前記電極にカーボンナノチュ ーブを提供する。 [C] カーボンナノチューブ親和性物質で修飾されたカーボンナノ チューブ用意し;ソース電極およびドレイン電極が形成された基板を用意し;前記基 板の電極に、前記修飾されたカーボンナノチューブを提供する。 [D] カーボンナノ チューブ親和性物質で修飾されたカーボンナノチューブを用意し;基板の電極形成 予定部位に前記修飾されたカーボンナノチューブを提供し;前記基板の電極形成予 定部位に、それぞれソース電極およびドレイン電極を形成する。 That is, the carbon nanotube FET manufacturing method of the present invention is a method for forming a channel. Therefore, it can be classified into the following modes. [A] Sites where source and drain electrodes are to be formed Force Prepare a substrate modified with a carbon nanotube-affinity substance; provide carbon nanotubes on the substrate where electrodes are to be formed; and form source and drain electrodes . [B] A substrate on which a source electrode and a drain electrode are formed is prepared; the electrode on the substrate is modified with a carbon nanotube-affinity substance; and a carbon nanotube is provided on the electrode. [C] A carbon nanotube modified with a carbon nanotube affinity substance is prepared; a substrate on which a source electrode and a drain electrode are formed is prepared; and the modified carbon nanotube is provided to an electrode of the substrate. [D] preparing carbon nanotubes modified with an affinity substance for carbon nanotubes; providing the modified carbon nanotubes at a predetermined site of electrode formation on the substrate; A drain electrode is formed.
[0041] 本発明の製造方法において用いられる基板は、前述の基板と同様である。 [0041] The substrate used in the production method of the present invention is the same as the above-described substrate.
[0042] 本発明の製造方法において提供されるカーボンナノチューブは、好ましくは単層力 一ボンナノチューブである。提供されるカーボンナノチューブの平均長さは通常は 0. 以上、より好ましくは 1. O /z m以上である。平均長さの上限は特に制限されな いが、 10 μ m以下であればよぐ好ましくは 5 μ m以下、より好ましくは 3 μ m以下であ る。いずれにしてもカーボンナノチューブの長さは、ソース'ドレイン電極間の距離以 上の長さであることが好ましい。提供されるカーボンナノチューブの平均長さは、 AF Mによって測定されうる。 AFMにより測定されるカーボンナノチューブは、酸で洗浄 されていることが好ましい。 [0042] The carbon nanotubes provided in the production method of the present invention are preferably single-walled single-bonn nanotubes. The average length of the provided carbon nanotubes is usually 0. or more, more preferably 1. O / zm or more. The upper limit of the average length is not particularly limited, but is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less. In any case, the length of the carbon nanotubes is preferably longer than the distance between the source and drain electrodes. The average length of the carbon nanotubes provided can be measured by AFM. The carbon nanotubes measured by AFM are preferably washed with an acid.
提供されるカーボンナノチューブは、例えば、 Carbon Nanotechnologies INC社(CN I., US)の単層カーボンナノチューブが挙げられる。  Examples of the provided carbon nanotubes include single-walled carbon nanotubes manufactured by Carbon Nanotechnologies Inc. (CN I., US).
[0043] 本発明の製造方法にお!ヽて提供されるカーボンナノチューブは、酸処理されて!ヽ てもよい。カーボンナノチューブの酸処理は、例えば、カーボンナノチューブを、硫酸 、硝酸またはその混合物で洗浄し、さらに超音波処理することにより行われる。酸処 理することにより、カーボンナノチューブの表面にカルボキシル基が導入されうる。酸 処理されたカーボンナノチューブは、その親水性が向上するため、水中での分散性 が向上する。よって、カーボンナノチューブを、水中に分散させて提供することが容 易になる。 [0043] The carbon nanotubes provided in the production method of the present invention may be subjected to an acid treatment. The acid treatment of the carbon nanotube is performed, for example, by washing the carbon nanotube with sulfuric acid, nitric acid or a mixture thereof, and further ultrasonicating. By the acid treatment, a carboxyl group can be introduced on the surface of the carbon nanotube. Acid-treated carbon nanotubes have improved hydrophilicity, and therefore dispersibility in water is improved. Therefore, it is possible to provide carbon nanotubes dispersed in water. It becomes easy.
[0044] 本発明の製造方法において用いられるカーボンナノチューブ親和性物質とは、前 述の通りであり、カーボンナノチューブとの π - π相互作用を示す芳香族多環分子な どを意味し、二以上の芳香族官能基を有する分子であってもよ 、。  [0044] The substance having affinity for carbon nanotubes used in the production method of the present invention is as described above, and means an aromatic polycyclic molecule exhibiting π-π interaction with carbon nanotubes, and two or more. It may be a molecule having an aromatic functional group.
[0045] また、カーボンナノチューブ親和性物質には、基板表面 (好ましくは、基板の電極 形成予定部位)または基板上に形成されたソース ·ドレイン電極の表面に結合するた めの官能基が導入されていることが好ましい。例えば、基板表面またはソース'ドレイ ン電極表面にァミノ基がある場合には、カーボンナノチューブ親和性物質にカルボキ シル基またはエステル基が導入されて ヽることが好ましく;基板表面または電極表面 にカルボキシル基がある場合には、カーボンナノチューブ親和性物質にァミノ基が導 入されて!、ることが好まし!/、。  [0045] In addition, the functional group for bonding to the carbon nanotube-affinity substance is bonded to the substrate surface (preferably, the electrode formation planned portion of the substrate) or the surface of the source / drain electrode formed on the substrate. It is preferable. For example, in the case where an amino group is present on the substrate surface or the source / drain electrode surface, it is preferable that a carboxyl group or an ester group is introduced into the carbon nanotube affinity substance; a carboxyl group is present on the substrate surface or the electrode surface. If there is, it is preferable that an amino group is introduced into the carbon nanotube affinity substance!
カルボキシル基が導入されたカーボンナノチューブ親和性物質の例には、 1-pyren ebutyric addなどが含まれ、エステル基が導入されたカーボンナノチューブ親和性物 賓の f列に【ま、 1-pyrenebutyric acid N-hyaroxysuccinimide ester力含まれる。 7ミノ ¾ が導入されたカーボンナノチューブ親和性物質の例には、 1-pyrenemethylamineが 含まれる。  Examples of carbon nanotube-affinity substances into which carboxyl groups have been introduced include 1-pyren ebutyric add, etc., and carbon nanotube-affinity substances into which ester groups have been introduced. -Hyroxysuccinimide ester power included. Examples of the carbon nanotube affinity substance into which 7-amino group is introduced include 1-pyrenemethylamine.
[0046] 基板表面にカルボキシル基を導入するには、例えば、基板表面をカルボキシル基 に変換可能である官能基を含むシランカップリング剤で処理し、該官能基をカルボキ シル基に変換すればよい。また、基板表面にアミノ基を導入するには、例えば基板表 面をアミノシランで処理すればょ 、。アミノシランの例には、 3-aminopropyltriethoxysil ane (APS)が含まれる。  In order to introduce a carboxyl group into the substrate surface, for example, the substrate surface may be treated with a silane coupling agent containing a functional group that can be converted into a carboxyl group, and the functional group is converted into a carboxyl group. . In order to introduce amino groups on the surface of the substrate, for example, the surface of the substrate is treated with aminosilane. Examples of aminosilane include 3-aminopropyltriethoxysilane (APS).
電極 (例えば金電極)表面にカルボキシル基を導入するには、電極 (例えば金電極 )表面をチォカルボン酸で処理すればよい。チォカルボン酸の例には、 11-mercapto undecanoic acidが含まれる。また、電極(例えば金電極)表面にアミノ基を導入するに は、例えば金電極をアミノチオールで処理すればよい。アミノチオールの例には、 11-
Figure imgf000020_0001
In order to introduce a carboxyl group on the surface of an electrode (for example, a gold electrode), the surface of the electrode (for example, a gold electrode) may be treated with thiocarboxylic acid. Examples of thiocarboxylic acid include 11-mercapto undecanoic acid. In order to introduce an amino group on the surface of an electrode (for example, a gold electrode), for example, the gold electrode may be treated with aminothiol. Examples of aminothiols include 11-
Figure imgf000020_0001
[0047] 前記 [A]の態様にぉ 、て、電極形成予定部位をカーボンナノチューブ親和性物質 で修飾するには、例えば、リソグラフィ法などにより基板上の電極形成予定部位以外 の領域をレジスト膜でマスキングし;電極形成予定部位 (マスキングされて ヽな 、領域 )に、官能基 (例えばアミノ基)を導入し;電極形成予定部位に導入された官能基に反 応しうる官能基 (例えばエステル基)を有するカーボンナノチューブ親和性物質を提 供することにより行われる。 [0047] In the embodiment of [A], in order to modify the electrode formation planned site with a carbon nanotube-affinity substance, for example, other than the electrode formation planned site on the substrate by lithography or the like Mask the region with a resist film; introduce a functional group (for example, an amino group) into a site where the electrode is to be formed (the region that should be masked); react to the functional group introduced into the site where the electrode is to be formed This is done by providing a carbon nanotube-affinity substance having a functional group (for example, an ester group).
[0048] 前記レジスト膜の材質は PMMAなどであればよぐその膜厚は 1 μ m〜3 μ m程度 であればよい。  [0048] The resist film may be made of PMMA or the like, and the film thickness may be about 1 μm to 3 μm.
電極形成予定部位にアミノ基を導入するには、例えば APSなどのアミノシラン溶液 を電極形成予定部位に滴下し、それを乾燥させて膜としてもよい。当該膜は、 APSな どの縮重合物などであり、その膜厚は Inn!〜 1 μ m程度であればよい。  In order to introduce an amino group into the electrode formation planned site, for example, an aminosilane solution such as APS may be dropped onto the electrode formation planned site and dried to form a film. The film is a condensation polymer such as APS. It should be about ~ 1 μm.
カーボンナノチューブ親和性物質は、 DMFなどの有機溶媒に溶解されて提供され うる。具体的には、例えば、有機溶媒に溶解されたカーボンナノチューブ親和性物質 の溶液を、基板が浸されている溶媒 (例えば水溶液)に少量ずつ添加する。反応後 の洗浄の際に、基板に残った溶媒は、不活性ガスで乾燥させて除去することが好ま しい(以下において同様)。  The carbon nanotube affinity substance may be provided by being dissolved in an organic solvent such as DMF. Specifically, for example, a solution of a carbon nanotube affinity substance dissolved in an organic solvent is added little by little to a solvent (for example, an aqueous solution) in which the substrate is immersed. It is preferable to remove the solvent remaining on the substrate by drying with an inert gas during the cleaning after the reaction (the same applies hereinafter).
[0049] [A]の態様にぉ 、て、カーボンナノチューブの提供は、別途製造されたカーボンナ ノチューブの分散液を提供することによって行われることが好まし 、。カーボンナノチ ユーブの分散液を基板に滴下する力、またはカーボンナノチューブの分散液に基板 を浸漬すればよい。分散液の溶媒の例には、 DMFなどの有機溶媒および水が含ま れる。 [0049] In the embodiment of [A], the provision of the carbon nanotubes is preferably performed by providing a dispersion of separately prepared carbon nanotubes. What is necessary is just to immerse the board | substrate in the force which dripping the dispersion liquid of a carbon nanotube on a board | substrate, or the dispersion liquid of a carbon nanotube. Examples of dispersion solvents include organic solvents such as DMF and water.
酸処理されたカーボンナノチューブは、カルボン酸が導入されるなどして水への分 散性が高められる。よって、酸処理されたカーボンナノチューブの提供は、水性溶媒 に分散させて行うことが好ましい。分散水溶液の pHは、カルボン酸の pKa (約 4)以 上にする、好ましくは 7〜8にする。  The carbon nanotubes subjected to acid treatment are improved in water dispersibility by introducing carboxylic acid. Therefore, the provision of the acid-treated carbon nanotube is preferably carried out by dispersing it in an aqueous solvent. The pH of the aqueous dispersion is at least pKa (about 4) of the carboxylic acid, preferably 7-8.
カーボンナノチューブ分散液におけるカーボンナノチューブの濃度は、 0. OOlmg Zml〜0. lmgZmlであることが好ましい。当該濃度が 0. lmgZmUりも高いと、力 一ボンナノチューブが凝集しやすくなり、分散液の調製が困難になることがある。  The concentration of carbon nanotubes in the carbon nanotube dispersion is preferably from 0.001 mgZml to 0.1 mgZml. If the concentration is as high as 0.1 mgZmU, the strong bon nanotubes tend to aggregate and it may be difficult to prepare a dispersion.
[0050] 修飾部位にカーボンナノチューブを提供することにより、少なくともその一部は基板 に固定されて、ソース'ドレイン電極間を接続させる。しカゝしながら、提供したカーボン ナノチューブの全てが基板の電極形成予定部位に固定されるとは限らない。よって、 カーボンナノチューブを提供したのち、電極を形成する前に、基板を洗浄して、固定 されないカーボンナノチューブを除去することが好ましい。基板の洗浄は、例えば、 基板を溶媒 (例えば DMF)で洗 ヽ流すか、溶媒中で基板を超音波処理することによ り行われる。 [0050] By providing the carbon nanotube at the modification site, at least a part of the carbon nanotube is fixed to the substrate to connect the source and drain electrodes. The carbon provided Not all of the nanotubes are fixed to the electrode formation scheduled portion of the substrate. Therefore, after providing the carbon nanotubes, it is preferable to clean the substrate and remove the unfixed carbon nanotubes before forming the electrodes. The substrate is cleaned by, for example, washing the substrate with a solvent (for example, DMF) or sonicating the substrate in the solvent.
[0051] [A]の態様において、ソース電極およびドレイン電極の形成は、リソグラフィを用い て金属を蒸着させて行えばょ 、。ソース電極またはドレイン電極とチャネルとが重なる 部分を、高電界の電子ビームまたは STMZAFMを使用する局所印加電界によりゥ エルディングして、電極とチャネルを一体ィ匕することができる(以下において同様)。  [0051] In the embodiment of [A], the formation of the source electrode and the drain electrode may be performed by depositing metal using lithography. The portion where the source or drain electrode and the channel overlap can be welded by a high electric field electron beam or a locally applied electric field using STMZAFM, so that the electrode and the channel can be integrated (the same applies hereinafter).
[0052] さらに [A]の態様において、カーボンナノチューブを提供した後(さらに好ましくは 洗浄した後)、基板上のカーボンナノチューブを気相成長させてもよい。カーボンナノ チューブの気相成長は、例えば図 9に示されるように、カーボンナノチューブ 7が固定 された基板 1を、カーボンナノチューブの原料である炭化水素ガス (メタンガスなど) 1 1を供給される反応容器 10に入れて、約 700〜900°Cに加熱すればよい。それによ り、点線で示されるようにカーボンナノチューブ 7が成長する。ソース'ドレイン電極(3 および 4)の間に電圧を印力!]してもよい。  [0052] Further, in the embodiment [A], the carbon nanotubes on the substrate may be vapor-phase grown after providing the carbon nanotubes (more preferably after washing). For example, as shown in FIG. 9, the vapor growth of carbon nanotubes is performed by using a substrate 1 on which carbon nanotubes 7 are fixed and a reaction vessel to which hydrocarbon gas (methane gas, etc.) 11 that is a raw material for carbon nanotubes is supplied. Put in 10 and heat to about 700-900 ° C. Thereby, the carbon nanotubes 7 grow as shown by the dotted line. Apply voltage between source and drain electrodes (3 and 4)! You may do it.
[0053] [A]の態様の具体的な手順が、後述の「具体例 A」に示される。  [0053] A specific procedure of the embodiment of [A] is shown in "Specific Example A" described later.
[0054] 前記 [B]の態様において、基板にソース電極およびドレイン電極を形成するには、 リソグラフィを用いて金属を蒸着させればょ 、。  [0054] In the embodiment [B], in order to form the source electrode and the drain electrode on the substrate, a metal is deposited by lithography.
[B]の態様にぉ 、て、電極 (例えば金電極)表面をカーボンナノチューブ親和性物 質で修飾するには、金属ーチオール結合を利用して電極表面に自己組織化膜を形 成させて、電極表面に官能基 (例えばカルボキシル基ゃァミノ基)を導入し;電極表 面に導入された官能基に反応する官能基 (例えばアミノ基ゃエステル基)を有する力 一ボンナノチューブ親和性物質を提供することにより行われる。電極表面に官能基を 導入するには、電極材質に特異的に反応する官能基 (例えば、チオール基)を有す る化合物(例えば、チオール化カルボン酸やアミノチオール)で電極表面を処理すれ ばよい。  In the embodiment of [B], in order to modify the surface of an electrode (for example, a gold electrode) with a carbon nanotube affinity substance, a self-assembled film is formed on the electrode surface using a metal-thiol bond, and Introducing a functional group (for example, a carboxyl group or amino group) on the electrode surface; providing a force-bonn nanotube affinity substance having a functional group (for example, an amino group or ester group) that reacts with the functional group introduced on the electrode surface Is done. In order to introduce a functional group to the electrode surface, the electrode surface is treated with a compound having a functional group (for example, thiol group) that specifically reacts with the electrode material (for example, thiolated carboxylic acid or aminothiol). Good.
カーボンナノチューブ親和性物質は DMFなどの有機溶媒に溶解されて提供されう る。このとき必要に応じて、電極に導入された官能基 (例えばカルボキシル基)と、力 一ボンナノチューブ親和性物質の官能基 (例えばアミノ基)との反応を促進する試薬 (例えばカルポジイミド)を用いてもょ 、。 The carbon nanotube affinity material is provided by being dissolved in an organic solvent such as DMF. The At this time, if necessary, a reagent (for example, calpositimide) that promotes the reaction between the functional group (for example, carboxyl group) introduced into the electrode and the functional group (for example, amino group) of the strong bon nanotube affinity substance is used. Well ...
[0055] [B]の態様において、修飾部位にカーボンナノチューブを提供するには、 DMFな どの有機溶媒または水にカーボンナノチューブが分散された分散液を、修飾部位に 提供すればよい。 [A]の態様と同様に、酸処理されたカーボンナノチューブは、水中 に分散されて提供されることが好ましい。また、分散液を基板に添加してもよぐ基板 を分散液に浸漬してもよい。 [0055] In the embodiment [B], in order to provide the carbon nanotube to the modification site, a dispersion liquid in which the carbon nanotube is dispersed in an organic solvent such as DMF or water may be provided to the modification site. Similar to the embodiment [A], the acid-treated carbon nanotubes are preferably provided dispersed in water. In addition, the dispersion liquid may be added to the substrate, or the substrate may be immersed in the dispersion liquid.
[B]の態様においても、 [A]の態様と同様に、提供されたカーボンナノチューブの 全てが基板に固定されるとは限らないので、カーボンナノチューブ提供後に基板を 洗浄して、固定されないカーボンナノチューブを除去することが好ましい。基板の洗 浄は、例えば、基板を溶媒で洗い流すか、基板を溶媒中で超音波処理することによ り行われる。  In the embodiment of [B], as in the embodiment of [A], not all of the provided carbon nanotubes are fixed to the substrate. Therefore, the carbon nanotubes that are not fixed by washing the substrate after providing the carbon nanotubes are not fixed. Is preferably removed. The substrate is washed, for example, by rinsing the substrate with a solvent or sonicating the substrate in the solvent.
[0056] [B]の態様において、カーボンナノチューブを提供した後(さらに好ましくは洗浄し た後)に、既に基板に設けられている電極上に、さらに金属を蒸着して電極を形成す ることが好ましい。カーボンナノチューブ提供後にさらに金属を蒸着することにより、 適切なソース'ドレイン電流 (例えば 0. 1〜1. 0 A程度)がより安定に流れうる。また 、 0. 1〜1. 0 A程度の電流が流れる素子は、水などによる数回の洗浄によっても 破損しにくい。  [0056] In the embodiment of [B], after providing the carbon nanotube (more preferably after cleaning), an electrode is formed by further depositing a metal on the electrode already provided on the substrate. Is preferred. By further depositing a metal after providing the carbon nanotube, an appropriate source / drain current (for example, about 0.1 to 1.0 A) can flow more stably. In addition, an element through which a current of about 0.1 to 1.0 A flows is not easily damaged even by washing several times with water or the like.
さらに [B]の態様においても、 [A]の態様と同様に、カーボンナノチューブを提供し た後(さらに好ましくは洗浄した後)、基板上のカーボンナノチューブを気相成長させ てもよい(図 9参照)。  Further, in the embodiment [B], as in the embodiment [A], after providing the carbon nanotubes (more preferably after washing), the carbon nanotubes on the substrate may be vapor-phase grown (FIG. 9). reference).
[0057] [B]の態様の具体的な手順が、後述の「具体例 B」に示される。 [0057] The specific procedure of the embodiment of [B] is shown in "Specific Example B" described later.
[0058] 前記 [C]の態様において、カーボンナノチューブを修飾するカーボンナノチューブ 親和性物質は、電極表面に結合するための官能基を有していることが好ましい。例 えば、電極表面にカルボキシル基を導入した場合には、アミノ基を導入されたカーボ ンナノチューブ親和性物質でカーボンナノチューブを修飾すればよい。 [0058] In the above embodiment [C], the carbon nanotube affinity substance for modifying the carbon nanotubes preferably has a functional group for binding to the electrode surface. For example, when a carboxyl group is introduced on the electrode surface, the carbon nanotube may be modified with a carbon nanotube affinity substance into which an amino group is introduced.
前記 [D]の態様において、カーボンナノチューブを修飾するカーボンナノチューブ 親和性物質は、基板表面 (好ましくは、電極形成予定部位)に結合する官能基を有し ていることが好ましい。例えば、基板表面にカルボキシル基を導入した場合には、アミ ノ基を導入されたカーボンナノチューブ親和性物質でカーボンナノチューブを処理 すればよい。 In the embodiment of [D], the carbon nanotube for modifying the carbon nanotube It is preferable that the affinity substance has a functional group that binds to the substrate surface (preferably, the electrode formation planned site). For example, when a carboxyl group is introduced on the substrate surface, the carbon nanotubes may be treated with a carbon nanotube-affinity substance into which amino groups have been introduced.
[C]または [D]の態様において、カーボンナノチューブの修飾は、カーボンナノチ ユーブ親和性物質を含む溶液 (溶媒はエタノールなど)に、カーボンナノチューブを 添加すればよ ヽ。カーボンナノチューブ親和性物質でカーボンナノチューブを修飾 すると、カーボンナノチューブの表面の全体がカーボンナノチューブ親和性物質で 被覆されうる。  In the embodiment of [C] or [D], the carbon nanotubes may be modified by adding the carbon nanotubes to a solution containing a carbon nanotube compatible substance (the solvent is ethanol or the like). When carbon nanotubes are modified with a carbon nanotube affinity substance, the entire surface of the carbon nanotubes can be covered with the carbon nanotube affinity substance.
カーボンナノチューブ親和性物質の一例であるピレン派生物でカーボンナノチュー ブを処理して、親水性を付加すると、カーボンナノチューブの水溶液中での分散性 が向上するので、カーボンナノチューブをより一様に基板上に分散させることができ る。  When carbon nanotubes are treated with pyrene derivatives, which are examples of carbon nanotube affinity substances, and hydrophilicity is added, the dispersibility of carbon nanotubes in aqueous solution improves, so carbon nanotubes are more uniformly used as a substrate. Can be dispersed on top.
[0059] [C]または [D]の態様にぉ 、て、処理されたカーボンナノチューブを提供するには 、カーボンナノチューブの分散液を基板に滴下するか、またはカーボンナノチューブ の分散液に基板を浸漬すればよい。また、 [C]または [D]の態様においても [A]の 態様と同様に、カーボンナノチューブ提供後に基板を洗浄して、固定されないカーボ ンナノチューブを除去することが好ましぐまた基板上のカーボンナノチューブを気相 成長させてもよい(図 9参照)。さらに [C]の態様においても、 [B]の態様と同様に、力 一ボンナノチューブを提供した後(さらに好ましくは洗浄した後)、既に基板に設けら れて 、る電極上に、さらに金属を蒸着して電極を形成することが好ま 、。  [0059] According to the embodiment of [C] or [D], in order to provide the treated carbon nanotube, the carbon nanotube dispersion liquid is dropped on the substrate, or the substrate is immersed in the carbon nanotube dispersion liquid. do it. In the embodiment [C] or [D], as in the embodiment [A], it is preferable to remove the carbon nanotubes not fixed by washing the substrate after providing the carbon nanotubes. Nanotubes may be vapor grown (see Figure 9). Further, in the embodiment of [C], as in the embodiment of [B], after providing a strong bon nanotube (more preferably after washing), a metal is further provided on the electrode already provided on the substrate. It is preferable to form an electrode by vapor deposition.
[0060] [C]および [D]の態様のより具体的な手順が、後述の「具体例 C」および「具体例 D 」に示される。  [0060] More specific procedures of the embodiments of [C] and [D] are shown in “Example C” and “Example D” described later.
[0061] 具体例 A  [0061] Specific example A
シリコン基板表面の酸ィ匕シリコン膜 (酸ィ匕シリコン膜の膜厚は 300nm程度であれば よい)を 50%硫酸で 30分間、室温で洗浄した後に水で洗浄する。  The silicon oxide film on the surface of the silicon substrate (the film thickness of the silicon oxide film should be about 300 nm) is washed with 50% sulfuric acid for 30 minutes at room temperature and then with water.
洗浄された酸ィ匕シリコン膜上に、フォトレジスト膜 (OEPR-800)をスピンコート法によ りスピンコートする。フォトリソグラフィを用いて、ソース'ドレイン電極の形成予定部位 である一対の領域のフォトレジスト膜を除去する。 A photoresist film (OEPR-800) is spin-coated by spin coating on the cleaned silicon oxide film. Site where source and drain electrodes are to be formed using photolithography The pair of regions of the photoresist film is removed.
一対の領域のフォトレジスト膜が除去された基板上に、 2%の 3-aminopropyltriethox ysilaneを添加する。これを 45°Cで 30分間加熱して溶媒を蒸発させ、さらに 110°Cで 5分間加熱する。加熱後に、十分な量の水で洗浄する。(これにより基板表面にァミノ 基が導入される。 )  2% 3-aminopropyltriethoxysilane is added to the substrate from which the photoresist film in the pair of regions has been removed. This is heated at 45 ° C for 30 minutes to evaporate the solvent and further heated at 110 ° C for 5 minutes. After heating, wash with a sufficient amount of water. (This introduces an amino group on the substrate surface.)
得られた基板を、エタノールと水の混合溶液 (体積比 1 :4、 50ml)に浸して、 65°C にカロ熱する。 1. Omgの 1— pyrenebutync acid N— nydroxysuccinimideesterを 20 1の ジメチルホルムアミドに溶解する。得られた溶液の 10 1を、基板が浸された混合溶 液中に滴下し、 65°Cで 1時間反応させる。(これによりピレンが基板表面に結合する。 )  The obtained substrate is immersed in a mixed solution of ethanol and water (volume ratio 1: 4, 50 ml) and heated to 65 ° C. 1. Dissolve Omg 1-pyrenebutync acid N-nydroxysuccinimideester in 20 1 dimethylformamide. 101 of the obtained solution is dropped into the mixed solution in which the substrate is immersed, and reacted at 65 ° C for 1 hour. (This causes pyrene to bind to the substrate surface.)
得られた基板を 115°Cで 5分間加熱したのち、 DMF中に浸して、フォトレジスト膜を 除去する。  The obtained substrate is heated at 115 ° C. for 5 minutes and then immersed in DMF to remove the photoresist film.
[0062] 0. 5mgの単層カーボンナノチューブ(CM Co., US)を、硫酸および硝酸の混合溶 液で洗浄した後、 1mlの緩衝液に分散させる。得られた溶液を遠心分離して、得られ た残渣を硫酸と過酸化水素水の混合溶媒に懸濁させて 1時間超音波処理する。得ら れた黒色溶液を水で希釈して、蒸留水に透析させて溶液を中性にする。得られた力 一ボンナノチューブ溶液 (使用前に超音波処理する)を前述の基板に滴下した後に 1 時間放置して、カーボンナノチューブをピレン修飾された領域に固定する。得られた 基板を DMF、さらにエタノールで洗浄する。カーボンナノチューブが固定された領域 の状態を ACモードの AFMで観測して、電極形成予定部位の間がカーボンナノチュ ーブで接続されているかどうかを確認することができる。  [0062] 0.5 mg of single-walled carbon nanotubes (CM Co., US) is washed with a mixed solution of sulfuric acid and nitric acid, and then dispersed in 1 ml of a buffer solution. The obtained solution is centrifuged, and the resulting residue is suspended in a mixed solvent of sulfuric acid and hydrogen peroxide solution and sonicated for 1 hour. The resulting black solution is diluted with water and dialyzed against distilled water to neutralize the solution. The obtained force One-bonn nanotube solution (which is sonicated before use) is dropped on the above-mentioned substrate and left for 1 hour to fix the carbon nanotubes to the pyrene-modified region. The obtained substrate is washed with DMF and ethanol. The state of the area where the carbon nanotubes are fixed can be observed with an AC-mode AFM, and it can be confirmed whether the areas where the electrodes are to be formed are connected with carbon nanotubes.
[0063] 得られた基板に、ソース ·ドレイン電極を形成するためのパターンを作る。具体的な 手法は、前述のピレンをパターユングするための手法と同様の手法を用いればよい。 EB蒸着法を用いて 30nm厚の Ptフィルム、さらに lOOnm厚の Auフィルムを蒸着さ せ、ソース'ドレイン電極を形成する。両電極間の距離は 3 m程度とする。  A pattern for forming source / drain electrodes is formed on the obtained substrate. As a specific method, a method similar to the method for patterning pyrene described above may be used. The source and drain electrodes are formed by evaporating 30nm thick Pt film and lOOnm thick Au film using EB vapor deposition. The distance between both electrodes shall be about 3 m.
[0064] 具体例 B  [0064] Example B
シリコン基板の酸ィ匕シリコン膜 (酸ィ匕シリコンの膜厚は 300nm程度であればよい)上 に金電極を蒸着により形成する。金電極が形成された基板を、 11-mercaptoundecano ic acid溶液 (0. 5mM)に浸漬して、室温で 10時間放置する。エタノールで洗浄後、 窒素ガスを吹き付けて乾燥させる。(これにより、金電極表面にカルボキシル基が導 入される。 ) A gold electrode is formed by vapor deposition on the silicon oxide film of the silicon substrate (the film thickness of silicon oxide may be about 300 nm). 11-mercaptoundecano substrate with gold electrode Immerse in ic acid solution (0.5 mM) and let stand at room temperature for 10 hours. After washing with ethanol, blow dry with nitrogen gas. (This introduces carboxyl groups on the gold electrode surface.)
DMF-pH8の緩衝溶液の混合溶液(体積比 1: 1)に、水溶性カルボジイミドと、 1-p yrenemethylamine hydrochloride (ImM)を溶解させる。得られた溶液に、前述の基 板を入れて 35°Cにて 2時間放置する。その後、 DMFと純水で洗浄する(これにより、 金電極にピレンが結合する)。  Dissolve water-soluble carbodiimide and 1-pyrenemethylamine hydrochloride (ImM) in a mixed solution of DMF-pH8 buffer solution (volume ratio 1: 1). Place the above-mentioned substrate in the resulting solution and leave at 35 ° C for 2 hours. Then, clean with DMF and pure water (this will bind pyrene to the gold electrode).
洗浄後、カーボンナノチューブのジメチルホルムアミド溶液 (0. 5mg/5ml)を基板 上に滴下して、 10時間放置する。その後、 DMF中で超音波洗浄し、エタノールで洗 浄した後、基板全体に窒素ガスを吹き付けて乾燥させる。  After cleaning, a dimethylformamide solution of carbon nanotubes (0.5 mg / 5 ml) is dropped on the substrate and left for 10 hours. Then, after ultrasonic cleaning in DMF and ethanol, nitrogen gas is blown over the entire substrate and dried.
[0065] 本方法において基板に形成される金電極は、 0. 1〜1. 0 /z A程度の電流が流れる ように、十分に蒸着されることが好ましい。安定に動作する素子を得るためである。ソ ース ·ドレイン電流が過剰に低 、素子は使用中に導電性に変化がみられ、導電性を 失うことがあるが、 0.: L A程度の電流が流れる素子であれば、水などで洗浄されて も安定した導電性を示す。  [0065] The gold electrode formed on the substrate in this method is preferably sufficiently deposited so that a current of about 0.1 to 1.0 / z A flows. This is to obtain an element that operates stably. The source / drain current is excessively low, and the device may change its conductivity during use, and may lose its conductivity. Stable conductivity even when washed.
[0066] 具体例 C  [0066] Concrete example C
1-pyreneDutyric acid N-hydroxysuccinimide ester 20 μ 1のンメテノレホノレムゾミド【こ 溶解する(濃度: lmgZml)。得られた溶液を、 0. 6mgの 11- amino- 1- undecanethio 1を 100 /z lの DMFに溶解した溶液に添カ卩し、室温で 1時間反応させる。得られた反 応液を、 0. 05mgZmLの酸処理したカーボンナノチューブの分散水溶液(500 L )に加えて、室温で 12時間撹拌する。得られた溶液に金電極を形成した基板を入れ て、 12時間室温で反応させ、カーボンナノチューブを基板に固定する。  1-pyreneDutyric acid N-hydroxysuccinimide ester 20 μ 1 nmetenorephonolemzomid [dissolves (concentration: lmgZml). The obtained solution is added to a solution in which 0.6 mg of 11-amino-1-undecanethio 1 is dissolved in 100 / zL of DMF and allowed to react at room temperature for 1 hour. The obtained reaction solution is added to 0.05 mg ZmL of an aqueous solution (500 L) of acid-treated carbon nanotubes and stirred at room temperature for 12 hours. A substrate on which a gold electrode is formed is put into the obtained solution and reacted at room temperature for 12 hours to fix the carbon nanotubes to the substrate.
[0067] 具体例 D [0067] Example D
1-pyrenebutyric acidの DMF溶液(5mg/ml, 50 μ 1)を、カーボンナノチューブの DMF分散液 (0. Olmg/ml, 500 /z l)に添加し、室温にて 2時間、超音波処理した 。得られた溶液(100 μ 1)に、テトラエチレンジァミン 50 μ 1、エタノール 50 μ 1、水 25 1をカ卩えて分散液を得る。得られた分散液をフィルターで濾過して、大過剰の 1-pyr enebutyric acidを除去する。濾液に、水-エタノール(1: 1)混合溶液をカ卩えて lmlとし て、カーボンナノチューブ分散溶液を得る。 1-pyrenebutyric acidで修飾したカーボン ナノチューブの分散溶液を、アミノシランィ匕処理した電極予定部位に、カルボジィミト などの縮合試薬などを用いて固定する。 A DMF solution of 1-pyrenebutyric acid (5 mg / ml, 50 μ1) was added to a DMF dispersion of carbon nanotubes (0. Olmg / ml, 500 / zl) and sonicated for 2 hours at room temperature. Tetraethylenediamine 50 μ1, ethanol 50 μ1, and water 25 1 are added to the resulting solution (100 μ1) to obtain a dispersion. The resulting dispersion is filtered through a filter to remove a large excess of 1-pyrenebutyric acid. Add water-ethanol (1: 1) mixed solution to the filtrate to make lml. Thus, a carbon nanotube dispersion solution is obtained. Fix the dispersion solution of carbon nanotubes modified with 1-pyrenebutyric acid to the planned electrode treated with aminosilane using a condensation reagent such as carbodimit.
[0068] 分散固定ィヒ法によるカーボンナノチューブチャネルの製造方法には、以下の応用 が考えられる。 [0068] The following applications are conceivable for the method of producing a carbon nanotube channel by the dispersion fixing method.
提供したカーボンナノチューブを、基板の結晶表面にある原子の段差に沿って配 列させるか;または、電気泳動により一定方向に配列させることが考えられる。  It is conceivable that the provided carbon nanotubes are arranged along the steps of atoms on the crystal surface of the substrate; or arranged in a certain direction by electrophoresis.
これらの手段でカーボンナノチューブの配列を制御できれば、より効率的に、かつ 再現性よくソース'ドレイン電極間をカーボンナノチューブで接続することができる。  If the arrangement of the carbon nanotubes can be controlled by these means, the source and drain electrodes can be connected with the carbon nanotubes more efficiently and reproducibly.
[0069] 形成されたチャネルは、 4探針法によりその特性 (体積抵抗値など)を確認されうる。 [0069] The characteristics of the formed channel (volume resistance value, etc.) can be confirmed by a four-probe method.
チャネルに 4つの針状の電極(電極 A、 B, C, D)を直線状に設置し、外側の 2つの 電極(電極 A, D)間に一定の電流を流し、内側の 2つの電極(電極 B, C)間に生じる 電位差を測定して抵抗値を求め、求めた抵抗値にチャネルの厚さおよび補正係数 R CFを乗じて、チャネルの体積抵抗値を算出することができる。  Four acicular electrodes (electrodes A, B, C, D) are installed in a straight line in the channel, a constant current is passed between the two outer electrodes (electrodes A, D), and the two inner electrodes ( The resistance value is obtained by measuring the potential difference generated between the electrodes B and C), and the volume resistance value of the channel can be calculated by multiplying the obtained resistance value by the channel thickness and the correction coefficient RCF.
また、チャネルのトランスポート特性を評価してもよい。具体的には、ノ リスティックな 電気伝導特性やスピン注入の可否、スピントランスポートの可否などが評価されうる。  Further, the channel transport characteristics may be evaluated. Specifically, it is possible to evaluate the characteristics of noistic electrical conduction, the possibility of spin injection, and the possibility of spin transport.
[0070] 本発明の製造方法により、高い確率(ほぼ 100%)でソース'ドレイン電極間をカー ボンナノチューブで接続することができる(チャネルを形成することができる)。したが つて、トランジスタ製造の歩留まりも向上させうる。さらに、カーボンナノチューブを気 相成長させる必要がな ヽので、耐熱性の低 ヽ基板材料 (例えばガラス)などを採用す ることがでさる。 [0070] According to the manufacturing method of the present invention, the source and drain electrodes can be connected with carbon nanotubes (channels can be formed) with a high probability (almost 100%). Therefore, the yield of transistor manufacturing can be improved. Further, since it is necessary to vapor-phase carbon nanotubes, it is possible to employ a heat-resistant low-temperature substrate material (for example, glass).
[0071] 形成されたチャネルを構成するカーボンナノチューブに、欠陥を導入してもよ!ヽ。力 一ボンナノチューブへの欠陥の導入は、例えば、化学的に修飾するか;過剰な電流( 数 mA)を流すか;イオンまたは電子ビームを照射するか; STMまたは AFMカ卩ェする ;ことにより行われる。  [0071] Defects may be introduced into the carbon nanotubes forming the formed channel! Force Introduction of defects into a single-bonn nanotube can be done, for example, by chemically modifying; passing an excess current (several mA); irradiating with an ion or electron beam; Done.
[0072] カーボンナノチューブに欠陥が導入されると、その電気的特性が大幅に変化する。  [0072] When a defect is introduced into a carbon nanotube, its electrical characteristics change significantly.
そこで、欠陥の状態と、電気的特性との相関関係を調べることが好ましい。欠陥の状 態は走査プローブ法(ケルビンプローブ法やマックスウェルプローブ法など)により観 察され、欠陥の密度、分布、大きさ(サイズやエネルギーバリアなど)が評価されうる。 欠陥の状態と電気特性との相関を把握することにより、所望の性質を有するトランジ スタを製造することができる。所望の性質の例には、 SET (単電子トランジスタ)として の性質が含まれる。 SETのチャネルは量子ドット構造を有し、ドット部分に電子が滞 留して電流量が微小になるので、チャネル上のわずかな電荷の変化を敏感に検出 することができる。 Therefore, it is preferable to examine the correlation between the defect state and the electrical characteristics. The state of defects can be observed by scanning probe methods (Kelvin probe method, Maxwell probe method, etc.). And the density, distribution, and size (such as size and energy barrier) of defects can be evaluated. By grasping the correlation between the defect state and the electrical characteristics, a transistor having desired properties can be manufactured. Examples of desired properties include the property as SET (single electron transistor). Since the SET channel has a quantum dot structure, electrons stay in the dot area and the amount of current becomes very small, so that a slight change in charge on the channel can be detected sensitively.
[0073] ノックゲート電極を含むカーボンナノチューブ FET (図 10に示される)を作製した。  [0073] A carbon nanotube FET (shown in Fig. 10) including a knock gate electrode was produced.
チャネルは、前述の分散固定ィ匕法の具体例 Aに準じて形成させた。支持基板である シリコンの膜厚は 500 m、ソース'ドレイン電極側のシリコンオキサイド膜の膜厚は 3 OOnm、ゲート電極側のシリコンオキサイド膜の膜厚は 300nm、 APS膜の厚さは 5〜 10nm、ソース電極とドレイン電極の面積のそれぞれは 0. 20〜0. 25mm2,基板の 面積は lcm2 (lcm X lcm)であった。 AFMにより、数本のカーボンナノチューブでソ ース .ドレイン電極間が接続されて 、ることが確認された。 The channel was formed in accordance with the above-described specific example A of the dispersion fixing method. The silicon thickness of the support substrate is 500 m, the thickness of the silicon oxide film on the source / drain electrode side is 3 OOnm, the thickness of the silicon oxide film on the gate electrode side is 300 nm, and the thickness of the APS film is 5 to 10 nm. The area of the source and drain electrodes was 0.20 to 0.25 mm 2 , and the area of the substrate was lcm 2 (lcm X lcm). AFM confirmed that the source and drain electrodes were connected by several carbon nanotubes.
作製したカーボンナノチューブ FETの I—Vg特性(ソース'ドレイン電圧 =士 IV)を 、図 11に示した。図 11に示されたとおり、ゲート電圧が— 20V〜 + 5Vの領域におい て、 10_7A程度のソース'ドレイン電流が観察され、かつゲート電圧によって制御され ている。よって、 FETとしての性能を有していることがわかる。 Figure 11 shows the I–Vg characteristics (source and drain voltage = Shi IV) of the fabricated carbon nanotube FET. As shown in Fig. 11, in the region where the gate voltage is -20V to + 5V, a source-drain current of about 10 _7 A is observed and is controlled by the gate voltage. Therefore, it turns out that it has the performance as FET.
[0074] 3.本発明のカーボンナノチューブ FETの用途  [0074] 3. Use of carbon nanotube FET of the present invention
本発明のカーボンナノチューブ FETは任意の用途に適用されうるが、好ましくはバ ィォセンサに用いられる。以下において図面を参照しながら、種々の態様のゲート電 極を含むカーボンナノチューブ FETと、それをバイオセンサとして用いた場合の態様 を説明する。ただし、カーボンナノチューブ FETの態様や、バイオセンサの態様がこ れらに限定されるわけではない。  Although the carbon nanotube FET of the present invention can be applied to any application, it is preferably used for a biosensor. Hereinafter, with reference to the drawings, a carbon nanotube FET including various types of gate electrodes and an embodiment in which the carbon nanotube FET is used as a biosensor will be described. However, the aspect of the carbon nanotube FET and the aspect of the biosensor are not limited to these.
[0075] 図 12には、バックゲート電極を含むカーボンナノチューブ FETの一例が示される。  FIG. 12 shows an example of a carbon nanotube FET including a back gate electrode.
図 12において、 1は絶縁基板を示し、絶縁基板 1の一方の面にソース電極 3、ドレイ ン電極 4、カーボンナノチューブからなるチャネル 7が設けられており、絶縁基板 1の もう一方の面上に (表面力も離されて)ゲート電極 8が設けられて 、る(サンドイッチ型 のゲート電極)。 絶縁基板 1のゲート電極側の面に被検出物質認識分子 13を結合させれば、絶縁 基板 1のもう一方の面 (被検出物質認識分子 13が結合した面)とゲート電極 8との間 に試料溶液を介在させることにより、被検出物質を検出するセンサとして用いることが できる。 In FIG. 12, reference numeral 1 denotes an insulating substrate. A source electrode 3, a drain electrode 4, and a channel 7 made of carbon nanotubes are provided on one surface of the insulating substrate 1, and on the other surface of the insulating substrate 1. The gate electrode 8 is provided (with the surface force separated) (sandwich type gate electrode). If the substance-recognized molecule 13 is bonded to the surface of the insulating substrate 1 on the gate electrode side, the other surface of the insulating substrate 1 (the surface to which the substance-recognized molecule 13 is bonded) and the gate electrode 8 are placed. By interposing a sample solution, it can be used as a sensor for detecting a substance to be detected.
図 12に示されたカーボンナノチューブ FETは、カーボンナノチューブが配置された 基板面の裏面に被検出物質認識分子 13が配置されているので、検出反応後に、力 一ボンナノチューブを損傷させることなく該裏面を洗浄して、再利用することができる 。また、図 12に示されたカーボンナノチューブ FETは、絶縁基板の面(チャネルがな い面)全体に、被検出物質認識分子を結合させることができるため、比較的多くの認 識分子を結合させることができる。また、被検出物質認識分子をチャネルであるカー ボンナノチューブに結合させる場合と比較して、洗浄により繰り返して検出に用いるこ とが容易である。洗浄は、例えば、解離定数以下の pHを有する溶液 (NTA— Ni錯 体を用いて被検出物質認識分子を結合して 、る場合には、溶液をイミダゾール環の pKa (約 6)以下とすることにより、 Niを NTAから遊離させやすくする)やイミダゾール を用いて行えばよい。また基板表面を研磨して鏡面シリコン酸化膜を形成すれば、ヒ スタグなどを用いて認識分子 (例えば抗体)を容易〖こ結合させることができる。  In the carbon nanotube FET shown in FIG. 12, the substance-recognized molecules 13 are arranged on the back surface of the substrate surface on which the carbon nanotubes are arranged. Can be cleaned and reused. In addition, since the carbon nanotube FET shown in FIG. 12 can bind the target substance recognition molecule to the entire surface of the insulating substrate (surface without the channel), a relatively large number of recognition molecules are bound. be able to. In addition, compared with the case where a substance-to-be-detected molecule is bound to a carbon nanotube that is a channel, it can be easily used for detection repeatedly by washing. Washing can be performed, for example, with a solution having a pH equal to or lower than the dissociation constant (when NTA-Ni complex is used to bind the substance to be detected, the solution is reduced to pKa (about 6) or less of the imidazole ring). This can be done using imidazole, which facilitates liberation of Ni from NTA). Further, if a mirror-surface silicon oxide film is formed by polishing the substrate surface, recognition molecules (eg, antibodies) can be easily bound using a histag or the like.
[0076] 図 13および図 14にはそれぞれ、バックゲート電極を含むカーボンナノチューブ FE Tの例が示される。図 13および図 14において、 1は絶縁基板を示し、絶縁基板 1の 一方の面にソース電極 3、ドレイン電極 4、カーボンナノチューブからなるチャネル 7が 設けられており、絶縁基板 1のもう一方の面上にゲート電極 8が設けられている。図 1 4にお 、ては、チャネル 7を覆う絶縁薄膜 30が設けられて 、る。  FIG. 13 and FIG. 14 show examples of carbon nanotubes FET including a back gate electrode, respectively. In FIG. 13 and FIG. 14, reference numeral 1 denotes an insulating substrate. A source electrode 3, a drain electrode 4, and a channel 7 made of carbon nanotubes are provided on one surface of the insulating substrate 1, and the other surface of the insulating substrate 1 is provided. A gate electrode 8 is provided on the top. In FIG. 14, an insulating thin film 30 covering the channel 7 is provided.
[0077] 図 13のチャネル 7に被検出物質認識分子 13を結合させれば、試料溶液 15をチヤ ネル 7を覆うように存在させることにより、被検出物質を検出するセンサとして用いるこ とができる。また、図 14の絶縁薄膜 30に被検出物質認識分子 13を結合させれば、 試料溶液をチャネルを覆うように存在させることにより、被検出物質を検出するセンサ として用いることができる。このとき、ソース電極 3またはドレイン電極 4の全体力 試料 溶液によって覆われてしまうことは避けることが好ましい。そのため、前述の通り、ソー ス電極 3またはドレイン電極 4の、チャネルからの長さは長いことが好ましい。また、溶 液に覆われる電極部位は小さ 、ことが好まし 、。 [0077] If the detection substance recognition molecule 13 is bound to the channel 7 of FIG. 13, the sample solution 15 can be used as a sensor for detecting the detection substance by allowing the sample solution 15 to cover the channel 7. . Further, if the substance to be detected recognition molecule 13 is bound to the insulating thin film 30 in FIG. 14, the sample solution can be used as a sensor for detecting the substance to be detected by allowing the sample solution to cover the channel. At this time, it is preferable that the entire force of the source electrode 3 or the drain electrode 4 is not covered with the sample solution. Therefore, as described above, it is preferable that the length of the source electrode 3 or the drain electrode 4 from the channel is long. Also melt It is preferable that the electrode part covered with the liquid is small.
[0078] 図 13に示されるカーボンナノチューブ FETにおいては、被検出物質認識分子 13 がチャネル 7に直接結合して 、るため、このカーボンナノチューブ FETは高感度セン サを提供しうる。 In the carbon nanotube FET shown in FIG. 13, the substance-recognizing molecule 13 is directly bonded to the channel 7, and therefore this carbon nanotube FET can provide a highly sensitive sensor.
図 14に示されるカーボンナノチューブ FETにおいては、チャネル 7が絶縁薄膜 30 によって保護されているため安定性が高ぐまた被検出物質認識分子 13がチャネル を覆う絶縁薄膜 30に結合されている。試料溶液が電極と直接接触することがないの で、高感度センサを提供しうる。  In the carbon nanotube FET shown in FIG. 14, since the channel 7 is protected by the insulating thin film 30, the stability is high, and the substance to be detected substance recognition molecule 13 is bonded to the insulating thin film 30 covering the channel. Since the sample solution does not come into direct contact with the electrode, a highly sensitive sensor can be provided.
[0079] 図 15〜図 18には、バックゲート電極を含むカーボンナノチューブ FETの例が示さ れる。 [0079] FIGS. 15 to 18 show examples of carbon nanotube FETs including a back gate electrode.
図 15において、 1は酸ィ匕シリコン膜とシリコン部力もなる絶縁基板を示し、絶縁基板 1の酸化シリコン膜上にソース'ドレイン電極 3および 4と、カーボンナノチューブから なるチャネル 7が配置されている。さらに、絶縁基板 1のシリコン部の一部が除去され て凹部 16が設けられている。凹部 16は、シリコン部を物理的または化学的にエッチ ングすることで、容易に形成することができる。シリコン部のエッチングは、図 15に示 されるように酸ィ匕シリコン膜が露出するまで行ってもょ 、。  In FIG. 15, reference numeral 1 denotes an oxide silicon film and an insulating substrate which also has a silicon force, and source / drain electrodes 3 and 4 and a channel 7 made of carbon nanotubes are arranged on the silicon oxide film of the insulating substrate 1. . Further, a part of the silicon portion of the insulating substrate 1 is removed to provide a recess 16. The recess 16 can be easily formed by physically or chemically etching the silicon portion. Etch the silicon part until the oxide silicon film is exposed as shown in Figure 15.
シリコン酸ィ匕膜は、ゲート電極 (不図示)の電圧に対する感度を向上させるため、そ の膜厚は薄いことが好ましい。膜厚を薄くするため、シリコン酸ィ匕膜はシリコンを酸ィ匕 させて形成することが好ま 、。  The silicon oxide film is preferably thin in order to improve the sensitivity to the voltage of the gate electrode (not shown). In order to reduce the film thickness, the silicon oxide film is preferably formed by oxidizing silicon.
凹部 16の容積を調整することにより、適切な一定量の試料溶液を提供することがで きる。また、添加された試料溶液が散免されにくぐ試料検出部位に安定して保持さ れうる。また凹部 16に保持された試料溶液は、他の検出装置に輸送されうる。例えば 、マイクロ— TASを用いて、凹部 16に連続的に試料溶液を流してもよい。  By adjusting the volume of the recess 16, an appropriate fixed amount of sample solution can be provided. Further, the added sample solution can be stably held at the sample detection site where it is difficult to escape. Further, the sample solution held in the recess 16 can be transported to another detection device. For example, the sample solution may be continuously flowed into the recess 16 using micro-TAS.
[0080] 図 16に示されたように、凹部 16の内部に被検出物質認識分子 13を結合させ、そこ に試料溶液カ卩えることができる。凹部 16は、図 15のように下向きに配置されても、図 16のように上向きに配置されてもよい。凹部 16が下向きであっても、少量の液体であ れば表面張力によって凹部 16に保持されうる。 [0080] As shown in FIG. 16, a substance-to-be-detected molecule 13 can be bound inside the recess 16 and the sample solution can be held there. The recess 16 may be arranged downward as shown in FIG. 15 or may be arranged upward as shown in FIG. Even if the recess 16 faces downward, a small amount of liquid can be held in the recess 16 by surface tension.
図 16に示されたように、凹部 16に被検出物質認識分子 13を結合させ、試料溶液 をカロえた後、さらにゲート電極を配置して、 I V特性または I Vg特性の変化を観察 することによって、試料溶液に含まれる被検出物質が検出されうる。 As shown in FIG. 16, the detection target substance recognition molecule 13 is bound to the recess 16 and the sample solution After the measurement, the gate electrode is further arranged, and the change in the IV characteristic or the I Vg characteristic is observed, so that the substance to be detected contained in the sample solution can be detected.
[0081] 図 16に示されるような、凹部 16が設けられたカーボンナノチューブ FETのゲート電 極は、例えば凹部 16を塞ぐように配置させたり(図 17参照)、シリコン部やシリコン酸 化膜に接触させて配置させたりすることができる(図 18参照)。  As shown in FIG. 16, the gate electrode of the carbon nanotube FET provided with the recess 16 may be disposed so as to close the recess 16 (see FIG. 17), or may be placed on the silicon portion or the silicon oxide film. They can be placed in contact (see Figure 18).
図 17 (A)には、凹部 16を塞ぐように、かつ試料溶液に接しないように配置させたゲ ート電極が示される。図 17 (B)には、凹部 16を塞ぐように、かつ試料溶液に接するよ うに配置させたゲート電極が示される。凹部 16を塞ぐようにゲート電極を配置すれば 、試料溶液 15の蒸発を抑えることができ、 FETの機械強度を向上させることができる 図 18 (A)および (D)には、シリコン部に接触させて配置させたゲート電極が示され る。図 18 (B)および (C)には、それぞれソース'ドレイン電極が形成されたシリコン酸 化膜の、ソース'ドレイン電極と同一面および裏面に接触させて配置させたゲート電 極が示される。図 18に示されるゲート電極はいずれも、試料溶液と触れることがない ので、ゲート電極を試料溶液で汚したくな 、場合に好ま ヽ。また図 18 (B)〜(D)に 示されるゲート電極によれば、素子全体の厚みを抑制することができる。  FIG. 17A shows a gate electrode arranged so as to close the recess 16 and not to contact the sample solution. FIG. 17B shows the gate electrode arranged so as to close the recess 16 and to be in contact with the sample solution. If the gate electrode is arranged so as to close the recess 16, evaporation of the sample solution 15 can be suppressed, and the mechanical strength of the FET can be improved. FIGS. 18A and 18D are in contact with the silicon portion. Shown are the gate electrodes arranged in such a way. FIGS. 18B and 18C show the gate electrodes of the silicon oxide film on which the source and drain electrodes are formed, arranged in contact with the same surface and the back surface of the source and drain electrodes, respectively. None of the gate electrodes shown in Figure 18 come into contact with the sample solution, so this is preferable if you do not want to contaminate the gate electrode with the sample solution. In addition, according to the gate electrode shown in FIGS. 18B to 18D, the thickness of the entire element can be suppressed.
[0082] 図 19のカーボンナノチューブ FETでは、ソース'ドレイン電極が形成された基板 1 の裏面に、被検出物質認識分子 13を結合させた短針 17が配置され、当該短針 17 力 ノ ックゲート電極 41に接している試料 15に挿入される。短針 17の先端にのみ被 検出物質認識分子 13を結合させれば、試料 15内の検出位置を限定することができ る。試料 15の例には動物の脳内または体表などが含まれ、その電位の測定などが可 能になると考えられる。 In the carbon nanotube FET of FIG. 19, a short needle 17 to which a substance to be detected recognition molecule 13 is bonded is arranged on the back surface of the substrate 1 on which the source and drain electrodes are formed, and the short needle 17 force knock gate electrode 41 is connected. It is inserted into the sample 15 in contact. If the detection substance recognition molecule 13 is bound only to the tip of the short needle 17, the detection position in the sample 15 can be limited. Examples of sample 15 include the brain or body surface of an animal, and it is considered possible to measure the potential.
[0083] 図 20〜図 23にも、被検出物質認識分子を、バックゲートを含むカーボンナノチュー ブ FETに結合させた例が示される。これらの図に示されるカーボンナノチューブ FET の基板は、金属または半導体力もなる支持基板 102と、絶縁膜 104および 106から なる。  [0083] FIGS. 20 to 23 also show examples in which a substance to be detected is bound to a carbon nanotube FET including a back gate. The carbon nanotube FET substrate shown in these figures is composed of a support substrate 102 that also has metal or semiconductor power, and insulating films 104 and 106.
図 20では、被検出物質認識分子 472が絶縁膜 106に結合され、ゲート電極 512と 基板とに挟まれている(サンドイッチ型のゲート電極)。試料溶液 490を、ゲート電極 5 12と基板との間に存在させることによって、被検出物質が検出される。 In FIG. 20, a substance-recognizing molecule 472 is bonded to the insulating film 106 and sandwiched between the gate electrode 512 and the substrate (sandwich gate electrode). Sample solution 490, gate electrode 5 The substance to be detected is detected by being present between 12 and the substrate.
図 21 (A)および (B)では、被検出物質認識分子 472が絶縁膜 106に結合している 力 ゲート電極 522は基板に結合している。試料溶液 490を被検出物質認識分子 4 72と接触させることで、被検出物質が検出されうる。試料溶液 490は、ゲート電極 52 2に接触して 、なくても(図 21 ( A) )、接触して!/、てもよい(図 21 (B) )。図 21 (C)では 、ゲート電極 532に被検出物質認識分子 472が結合している。試料溶液 490を被検 出物質認識分子 472と接触させることで、被検出物質が検出されうる。  In FIGS. 21A and 21B, the target substance recognition molecule 472 is bonded to the insulating film 106. The force gate electrode 522 is bonded to the substrate. By bringing the sample solution 490 into contact with the detection substance recognition molecule 472, the detection substance can be detected. The sample solution 490 may or may not be in contact with the gate electrode 522 (FIG. 21 (A)) or in contact with /! (FIG. 21 (B)). In FIG. 21C, the substance to be detected recognition molecule 472 is bonded to the gate electrode 532. By contacting the sample solution 490 with the substance-recognizing molecule 472, the substance to be detected can be detected.
図 22には、複数のゲート電極を設けた場合に、被検出物質認識分子 472aおよび 472bが絶縁膜 106に結合したカーボンナノチューブ FET (図 22 (A) )、およびゲー ト電極 532aおよび 532bに結合したカーボンナノチューブ FET (図 22 (B) )が示され る。それぞれ、被検出物質認識分子 472a〜bと、試料溶液 490a〜bとを接触させる ことで被検出物質が検出されうる。  In Fig. 22, when a plurality of gate electrodes are provided, carbon nanotube FETs (Fig. 22 (A)) in which the target substance recognition molecules 472a and 472b are bonded to the insulating film 106 and the gate electrodes 532a and 532b are combined. The carbon nanotube FET (Fig. 22 (B)) is shown. The detected substance can be detected by bringing the detected substance recognition molecules 472a to 472b into contact with the sample solutions 490a to 490b, respectively.
図 23には、被検出物質認識分子 472が、カーボンナノチューブ 112を保護する絶 縁性保護膜 640に結合して ヽるカーボンナノチューブ FETが示される。試料溶液 48 2を被検出物質認識分子 472と接触させることで、被検出物質が検出されうる。(ゲー ト電極は 114である。 )  FIG. 23 shows a carbon nanotube FET in which a substance-recognizing molecule 472 is bound to an insulating protective film 640 that protects the carbon nanotube 112. By contacting the sample solution 482 with the substance-recognizing molecule 472, the substance to be detected can be detected. (The gate electrode is 114.)
[0084] 図 24には、サイドゲート電極を含むカーボンナノチューブ FETの一例が示される。  FIG. 24 shows an example of a carbon nanotube FET including a side gate electrode.
ソース'ドレイン電極 3および 4が形成されている基板面と同一の面に、ゲート電極 8 が接触して設けられている。チャネル 7はカーボンナノチューブ力もなる力 欠陥を導 入することによってアイランド構造とされて 、てもよ 、。アイランド構造を有するチヤネ ル 7に対して、ゲート電極 8は、通常 lOOnm未満の距離に配置される。被検出分子 認識分子を、例えばゲート電極に結合させる力 またはチャネルもしくはチャネルを 覆う絶縁膜に結合させることで、センサとして用いられうる。  A gate electrode 8 is provided in contact with the same surface as the substrate surface on which the source / drain electrodes 3 and 4 are formed. Channel 7 is made into an island structure by introducing a force defect that can also be a carbon nanotube force. For the channel 7 having an island structure, the gate electrode 8 is usually disposed at a distance of less than lOOnm. Molecules to be detected Can be used as a sensor by binding a recognition molecule to, for example, a force for binding to a gate electrode or a channel or an insulating film covering the channel.
[0085] 図 25にも、サイドゲート電極を含むカーボンナノチューブ FETの一例が示される。  FIG. 25 also shows an example of a carbon nanotube FET including a side gate electrode.
図 25に示されるカーボンナノチューブ FETの基板は、支持基板 102と絶縁膜 104か らなる。絶縁膜 104の上に、ソース'ドレイン電極 108および 110、カーボンナノチュ ーブからなるチャネル 112、ならびにゲート電極 702が配置されている。ソース'ドレイ ン電極およびゲート電極は、絶縁膜 640で覆われており、絶縁膜 640に被検出物質 認識分子 472が結合して ヽる。被検出物質認識分子 472は絶縁膜 640の任意の位 置に結合していればよぐソース'ドレイン電極部位、ゲート電極部位、もしくはチヤネ ル部位、またはその他の部位の 、ずれに結合して 、てもよ!/、。 The carbon nanotube FET substrate shown in FIG. 25 includes a support substrate 102 and an insulating film 104. On the insulating film 104, source / drain electrodes 108 and 110, a channel 112 made of carbon nanotubes, and a gate electrode 702 are arranged. The source / drain electrode and the gate electrode are covered with the insulating film 640, and the substance to be detected is covered with the insulating film 640. The recognition molecule 472 binds and strikes. The target substance recognition molecule 472 binds to any position of the insulating film 640 as long as it is bound to the source / drain electrode part, gate electrode part, channel part, or other part. Anyway!
[0086] 図 26には、サイドゲート電極(トップゲート電極)を含むカーボンナノチューブ FET に、被検出物質認識分子を結合させた例が示される。絶縁基板 1の面に配置された ソース電極 3およびドレイン電極 4、およびカーボンナノチューブからなるチャネル 7が 、絶縁膜 40 (例えば、ガラス絶縁膜)で覆われている(図 26 (A) )。さらに、絶縁膜 40 の上に、ゲート電極 8が配置されて!、る(図 26 (B) )。  FIG. 26 shows an example in which a substance to be detected is bound to a carbon nanotube FET including a side gate electrode (top gate electrode). The source electrode 3 and the drain electrode 4 disposed on the surface of the insulating substrate 1 and the channel 7 made of carbon nanotubes are covered with an insulating film 40 (for example, a glass insulating film) (FIG. 26A). Further, the gate electrode 8 is disposed on the insulating film 40! (FIG. 26B).
[0087] 絶縁膜 40に被検出物質認識分子 13を結合させれば、絶縁膜 40とゲート電極 8と の間に試料溶液 15を介在させることにより、被検出物質を検出するセンサとして用い ることができる。図 26に示されたカーボンナノチューブ FETでは、絶縁膜 40によって 、チャネル 7と、ゲート電極 8および試料溶液 15とが高度に絶縁されているため、ゲー ト電極一ソース電極間、またはゲート電極ドレイン電極間の電流の漏れを抑制するこ とがでさる。  If the substance to be detected recognition molecule 13 is bonded to the insulating film 40, the sample solution 15 is interposed between the insulating film 40 and the gate electrode 8 to be used as a sensor for detecting the substance to be detected. Can do. In the carbon nanotube FET shown in FIG. 26, since the channel 7 and the gate electrode 8 and the sample solution 15 are highly insulated by the insulating film 40, the gate electrode is connected between the source electrode or the gate electrode and the drain electrode. It is possible to suppress the leakage of current between.
図 26に示されたゲート電極 8にガラス絶縁膜を設けてもよい。ただし、この場合はチ ャネルとゲート電極との距離が遠くなるため、 FETとしての性質が弱まることがある。 さらに図 26におけるカーボンナノチューブ FETにおいて、絶縁基板 1をガラス基板 とすれば、基板 1の裏面 (電極が配置されていない面)側から、光学顕微鏡、蛍光顕 微鏡またはレーザー顕微鏡などにより試料の状態を確認しながら、トランジスタを駆 動させることができる。  A glass insulating film may be provided on the gate electrode 8 shown in FIG. In this case, however, the distance between the channel and the gate electrode increases, which may weaken the properties of the FET. Furthermore, in the carbon nanotube FET in FIG. 26, if the insulating substrate 1 is a glass substrate, the state of the sample is observed from the back side (surface on which no electrode is disposed) of the substrate 1 using an optical microscope, a fluorescence microscope, or a laser microscope. The transistor can be driven while checking the above.
[0088] さらに図 27にも、サイドゲート電極(トップゲート電極)を含むカーボンナノチューブ FETに、被検出物質認識分子を結合させた例が示される。図 27では、被検出物質 認識分子 472がカーボンナノチューブカゝらなるチャネルを保護する絶縁性保護膜 64 0に結合されている。このゲート電極 702は、基板 (支持基板 102、絶縁膜 104およ び絶縁膜 106からなる)に接触せずに配置されて 、る。  Further, FIG. 27 also shows an example in which a substance to be detected is bound to a carbon nanotube FET including a side gate electrode (top gate electrode). In FIG. 27, a substance to be detected recognition molecule 472 is bonded to an insulating protective film 640 that protects a channel made up of carbon nanotubes. The gate electrode 702 is disposed without being in contact with the substrate (consisting of the support substrate 102, the insulating film 104, and the insulating film 106).
[0089] 被検出物質認識分子を、分離ゲート電極を含むカーボンナノチューブ FETに結合 させた例が、図 28〜図 33に示される。  [0089] FIGS. 28 to 33 show examples in which the substance-recognizing molecule to be detected is bound to the carbon nanotube FET including the separation gate electrode.
図 28に示されたカーボンナノチューブ FETは、ソース'ドレイン電極を含む素子部 212と、ゲート電極を含む素子部 214と、素子部 212および素子部 214が載置されて いる導電性基板 210を含み、素子部 212と素子部 214は電気的に接続されている。 素子部 212は、基板 (支持基板 102、絶縁膜 104および 106)と、基板上に配置され たソース ·ドレイン電極 108および 110、カーボンナノチューブからなるチャネル 112 を含む。また素子部 214は、基板 (支持基板 202、絶縁膜 204および 206)と、基板 上に配置されたゲート電極 602を含む。このゲート電極 602は、基板と接触せずに配 置されている (サンドイッチ型のゲート電極)。さらに、被検出物質認識分子 472が、 ゲート電極 602が配置された基板の絶縁膜 204に結合されて 、る。試料溶液 490を 、ゲート電極 602と絶縁膜 204の間に存在させることで、被検出物質が検出されうる。 The carbon nanotube FET shown in Fig. 28 is a device part including source and drain electrodes. 212, an element portion 214 including a gate electrode, and a conductive substrate 210 on which the element portion 212 and the element portion 214 are mounted. The element portion 212 and the element portion 214 are electrically connected. The element section 212 includes a substrate (support substrate 102, insulating films 104 and 106), source / drain electrodes 108 and 110 disposed on the substrate, and a channel 112 made of carbon nanotubes. The element unit 214 includes a substrate (support substrate 202, insulating films 204 and 206) and a gate electrode 602 disposed on the substrate. The gate electrode 602 is disposed without contacting the substrate (sandwich gate electrode). Further, the substance-recognizing molecule 472 is bonded to the insulating film 204 of the substrate on which the gate electrode 602 is disposed. By allowing the sample solution 490 to exist between the gate electrode 602 and the insulating film 204, the substance to be detected can be detected.
[0090] 図 29には、図 28におけるゲート電極を含む素子部 214の変更例が示される。図 29 におけるゲート電極 612または 622は基板に接触して配置されている(非サンドイツ チ型のゲート電極)。図 29 (A)および (B)では被検出物質認識分子 472が基板の絶 縁膜 204に結合され、図 29 (C)では被検出物質認識分子 472がゲート電極 622に 結合されている。試料溶液 490を被検出物質認識分子 472に接触させることで、被 検出物質が検出されうる。試料溶液 490は、ゲート電極 612に接触していても(図 29 (A) )、接触して ヽなくてもょ ヽ(図 29 (B) )。  FIG. 29 shows a modified example of the element portion 214 including the gate electrode in FIG. The gate electrode 612 or 622 in FIG. 29 is placed in contact with the substrate (non-Sanch-type gate electrode). In FIGS. 29A and 29B, the detection substance recognition molecule 472 is bonded to the insulating film 204 of the substrate, and in FIG. 29C, the detection substance recognition molecule 472 is bonded to the gate electrode 622. By contacting the sample solution 490 with the substance-recognizing molecule 472, the substance to be detected can be detected. The sample solution 490 may or may not be in contact with the gate electrode 612 (FIG. 29 (A)) (FIG. 29 (B)).
図 30には、図 28におけるゲート電極を含む素子部 214のさらなる変更例が示され る。 2以上のゲート電極 612aおよび 612b (622aおよび 622b)、ならびに 2種以上の 被検出物質認識分子 472aおよび 472bが配置されている。  FIG. 30 shows a further modification of the element portion 214 including the gate electrode in FIG. Two or more gate electrodes 612a and 612b (622a and 622b) and two or more kinds of detected substance recognition molecules 472a and 472b are arranged.
[0091] 図 31に示されたカーボンナノチューブ FETは、ソース'ドレイン電極を含む素子部 212と、ゲート電極を含む素子部(214aおよび 214b)を 2以上含む力 図 28に示さ れたカーボンナノチューブ FETと同様に、いずれの素子部も一の導電性基板 210に 載置されている。  [0091] The carbon nanotube FET shown in FIG. 31 is a force including two or more element parts 212 including source and drain electrodes and two or more element parts (214a and 214b) including gate electrodes. The carbon nanotube FET shown in FIG. Similarly to the above, all the element portions are mounted on one conductive substrate 210.
[0092] 図 32および図 33には、分離ゲートを含むカーボンナノチューブ FETの他の例が示 される。  FIG. 32 and FIG. 33 show another example of the carbon nanotube FET including the separation gate.
図 32のカーボンナノチューブ FETは、ソース'ドレイン電極を含む素子部 212、ゲ ート電極を含む素子部 214、および素子部 212の基板と素子部 214の基板との間に さしはさまれた導電性基板 210を含む。 図 33のカーボンナノチューブ FETは、ソース'ドレイン電極を含む素子部 212、ゲ ート電極を含む素子部 214、素子部 212が載置された導電性基板 302、素子部 214 が載置された導電性基板 304、および導電性基板 302と 304を電気的に接続する導 電性ワイヤ 306を含む。 The carbon nanotube FET in FIG. 32 is sandwiched between the element part 212 including the source and drain electrodes, the element part 214 including the gate electrode, and the substrate of the element part 212 and the substrate of the element part 214. A conductive substrate 210 is included. The carbon nanotube FET of FIG. 33 includes an element part 212 including a source / drain electrode, an element part 214 including a gate electrode, a conductive substrate 302 on which the element part 212 is placed, and a conductive material on which the element part 214 is placed. Conductive substrate 304, and conductive wires 306 that electrically connect conductive substrates 302 and 304.
図 32および図 33に示されたカーボンナノチューブ FETにおいて、被検出物質認 識分子 472は、素子部 214の絶縁膜 204に結合されている力 (図示)、ゲート電極 61 2に結合されうる(ゲート電極 612に結合された被検出物質認識分子は不図示)。  In the carbon nanotube FET shown in FIG. 32 and FIG. 33, the substance-detecting molecule 472 can be coupled to the gate electrode 612 (force) coupled to the insulating film 204 of the element unit 214 (shown). (Detected substance recognition molecules bound to the electrode 612 are not shown).
[0093] 本発明のバイオセンサについて [0093] Biosensor of the present invention
前述の通り、本発明のカーボンナノチューブ FETはバイオセンサとして用いられうる 。ノィォセンサとして用いる場合は、カーボンナノチューブ FETに被検出物質認識 分子が結合されている。被検出物質の例には、ウィルス、細菌などの微生物、残留農 薬などの化学物質、糖質、核酸、アミノ酸、脂質などが含まれる。被検出物質認識分 子の例には、抗体、抗原、酵素、受容体、核酸、アブタマ一細胞、微生物などが含ま れる。例えば、被検出物質が抗原である場合には抗体やアブタマ一であり、被検出 物質が抗体である場合には抗原である。  As described above, the carbon nanotube FET of the present invention can be used as a biosensor. When used as a nanosensor, the target substance recognition molecule is bound to the carbon nanotube FET. Examples of substances to be detected include microorganisms such as viruses and bacteria, chemical substances such as residual agricultural chemicals, carbohydrates, nucleic acids, amino acids, and lipids. Examples of the substance to be detected include an antibody, an antigen, an enzyme, a receptor, a nucleic acid, an abutama cell, a microorganism, and the like. For example, when the substance to be detected is an antigen, it is an antibody or an Abutama, and when the substance to be detected is an antibody, it is an antigen.
本発明のバイオセンサによれば、感染症の病因ウィルスや細菌などの微生物を超 高感度に、かつ短時間に検出することができる。したがって、感染症の早期発見によ る早期治療や、微生物の研究に有効に利用されうる。また、センサのサイズを小型化 できるため、フィールドでの感染症ウィルスの検出などに活用されうる。  According to the biosensor of the present invention, microorganisms such as pathogenic viruses and bacteria of infectious diseases can be detected with high sensitivity and in a short time. Therefore, it can be effectively used for early treatment by early detection of infectious diseases and for research on microorganisms. In addition, since the size of the sensor can be reduced, it can be used to detect infectious disease viruses in the field.
[0094] 本発明のバイオセンサは、共振回路を用いて交流で動作され、被検出物質が被検 出物質認識分子に結合することにより生じるソース'ドレイン電流または電圧の変化 から、被検出物質を検出することができる。ソース'ドレイン電流または電圧の変化は 、例えば I—V特性曲線または I—Vg特性曲線カゝら確認される。 I— V特性曲線とは、 ゲート電圧を一定にしたときの、ソース ·ドレイン電流とソース ·ドレイン電圧の関係を 示す曲線であり; I—Vg特性曲線とは、ソース'ドレイン電圧を一定にしたときの、ゲー ト電圧とソース'ドレイン電流の関係を示す曲線である。 [0094] The biosensor of the present invention is operated with an alternating current using a resonance circuit, and detects the substance to be detected from a change in the source-drain current or voltage caused by binding of the substance to be detected to the substance to be detected. Can be detected. The change in the source / drain current or voltage is confirmed by, for example, an I-V characteristic curve or an I-Vg characteristic curve. The I—V characteristic curve is the curve showing the relationship between the source-drain current and the source-drain voltage when the gate voltage is constant; the I—Vg characteristic curve is the constant source 'drain voltage. FIG. 5 is a curve showing the relationship between the gate voltage and the source / drain current.
[0095] 本発明のバイオセンサにおける被検出物質認識分子は、被検出物質と反応してソ ース 'ドレイン電流を変化させるように結合されていればよいが、たとえば、前述のゲ ート電極の説明において説明したように、カーボンナノチューブからなるチャネル、ゲ ート電極もしくは基板、またはそれらを保護する絶縁膜などに結合されて 、ればよ!/ヽ [0095] The target substance recognition molecule in the biosensor of the present invention may be bound so as to react with the target substance and change the source drain current. As described in the explanation of the gate electrode, it is only necessary to be bonded to a channel made of carbon nanotubes, a gate electrode or a substrate, or an insulating film for protecting them! / ヽ
[0096] 前述の通り、本発明のバイオセンサは、被検出物質認識分子を結合させたカーボ ンナノチューブ FETを含む力 被検出物質認識分子をカーボンナノチューブ FETに 結合させる手段は特に限定されない。しかしながら、被検出物質認識分子と被検出 物質との相互作用を効率的に生じさせることが好ましい。 [0096] As described above, in the biosensor of the present invention, there is no particular limitation on the means for binding the force detection substance recognition molecule including the carbon nanotube FET to which the detection substance recognition molecule is bound to the carbon nanotube FET. However, it is preferable to efficiently cause the interaction between the detection substance recognition molecule and the detection substance.
以下において、カーボンナノチューブ FETの基板、ゲート電極、またはカーボンナ ノチューブ力 なるチャネルに被検出物質認識分子を結合させる方法を説明する (第 1〜第 4の方法)。特に、被検出物質認識分子が抗体である場合を例にとって説明す る。  In the following, a method for binding a detection substance recognition molecule to a carbon nanotube FET substrate, a gate electrode, or a channel having a carbon nanotube force will be described (first to fourth methods). In particular, the case where the detection substance recognition molecule is an antibody will be described as an example.
[0097] 第 1の方法は、被検出物質認識分子としてヒスタグ融合認識分子を用いる方法であ る。その一例として、カーボンナノチューブ力もなるチャネルにヒスタグ融合抗体を結 合する方法を、図 34を参照して説明する。絶縁基板およびゲート電極にも同様の方 法で結合させることができる。  [0097] The first method uses a histag fusion recognition molecule as a substance to be detected. As an example, a method of binding a histag fusion antibody to a channel that also has a carbon nanotube force will be described with reference to FIG. The insulating substrate and the gate electrode can be bonded in the same way.
まず、遺伝子操作によってヒスタグ 51を付加した抗体 50を作製する。次に、電界効 果トランジスタのカーボンナノチューブをピレン派生物で直接修飾する。 NTA52を、 ピレン派生物で直接修飾したカーボンナノチューブに結合させる。この後、遷移金属 イオン(ニッケルイオンやコバルトイオンなど)を含む溶液をカーボンナノチューブに 滴下し、カーボンナノチューブに固定した NTA52と錯体を形成させる。さらに、ヒスタ グ 51を付カ卩した抗体 50を含む溶液を滴下することにより、図 34 (A)のように抗体 50 をカーボンナノチューブに固定化させる。このように固定された抗体 50は、結合面に 対して一定の配向性を有する。  First, an antibody 50 to which a histag 51 is added is prepared by genetic manipulation. Next, the carbon nanotubes of the field effect transistor are directly modified with a pyrene derivative. NTA52 is bound to carbon nanotubes modified directly with pyrene derivatives. After this, a solution containing transition metal ions (nickel ions, cobalt ions, etc.) is dropped onto the carbon nanotubes to form a complex with NTA52 fixed to the carbon nanotubes. Further, the antibody 50 is immobilized on the carbon nanotubes as shown in FIG. 34 (A) by dropping a solution containing the antibody 50 attached with the histag 51. The antibody 50 thus immobilized has a certain orientation with respect to the binding surface.
基板の絶縁膜に NTA52を結合させる場合は、絶縁膜をシランィ匕カップリング剤で 処理することが好ましい。ゲート電極 (金属、例えば金)に NTA52を結合させる場合 は、チオール基を導入した NTA (N-マレイミド基にチオール基を付カ卩されて!/、る NT Aなど)を利用する方法が有効である。チオール基を導入した NTAは市販されてい る (例えば、同仁化学)。 [0098] 第 2の方法は、被検出物質認識分子を IgG型抗体として、プロテイン A、プロテイン G、プロテイン L、またはそれらの IgG結合ドメインを用いる方法である。ここで述べる 抗体とは、抗原との特異的な結合能を有する一本鎖抗体や Fab、 F(ab')2を含む。 プロテイン A、プロテイン G、またはその IgG結合特性を組み合わせた融合タンパク 質であるプロテイン AZGは、 IgG型免疫グロブリンの Fc領域に結合する能力を有す る。プロテイン Lは、 IgG型免疫グロブリンの軽鎖の κ鎖に結合する能力を有する。ま た、いずれも他のタンパク質と同様に、金表面に付着しやすい特性を有する。 When NTA52 is bonded to the insulating film of the substrate, the insulating film is preferably treated with a silane coupling agent. When NTA52 is bonded to the gate electrode (metal, for example, gold), it is effective to use NTA with a thiol group (N-maleimide group attached with a thiol group! /, NTA, etc.) It is. NTA into which a thiol group is introduced is commercially available (for example, Dojindo). [0098] The second method is a method using protein A, protein G, protein L, or their IgG binding domain as an IgG-type antibody as a substance to be detected. The antibody described here includes a single chain antibody having a specific binding ability to an antigen, Fab, and F (ab ′) 2. Protein AZG, a fusion protein that combines protein A, protein G, or its IgG binding properties, has the ability to bind to the Fc region of IgG-type immunoglobulins. Protein L has the ability to bind to the kappa chain of the light chain of IgG type immunoglobulin. In addition, as with other proteins, all have the property of being easily attached to the gold surface.
これらの特性を利用して、金で作製されたゲート電極に、プロテイン A、プロテイン G 、プロテイン AZG、プロテイン L、またはそれらの IgG結合ドメインを有する組換えタ ンパク質 53 (以下「IgG結合タンパク質」とも ヽぅ)を直接付着させ;付着させた IgG結 合タンパク質 53に、被検出物質認識分子として用いる IgG型抗体 50を結合させるこ とで、抗体 50をある程度配向させることができる。ただしこの第 2の方法では、 IgG結 合タンパク質 53がランダムに電極に結合してしまうため(図 34 (B)を参照)、十分な 配向性が得られな ヽことがある。  Using these characteristics, a recombinant protein 53 (hereinafter referred to as `` IgG binding protein '') having a protein A, protein G, protein AZG, protein L, or their IgG binding domain on a gate electrode made of gold. In both cases, the antibody 50 can be oriented to some extent by binding the IgG-type antibody 50 used as the substance to be detected to the target IgG-binding protein 53. However, in this second method, IgG-binding protein 53 is randomly bound to the electrode (see FIG. 34 (B)), so that sufficient orientation may not be obtained.
[0099] 第 3の方法は、ヒスタグを付カ卩した IgG結合タンパク質を準備し、 NTA— Niとヒスタ グを介して IgG結合タンパク質をゲート電極などに結合させ、さらに第 1の方法と同じ ように被検出物質認識分子 (抗体)を配向させる方法である。ヒスタグを付加すること によって、ゲート電極以外にも、絶縁膜やカーボンナノチューブに被検出物質認識 分子 (抗体)を配向させることができる。 [0099] In the third method, an IgG-binding protein with a histag is prepared, and the IgG-binding protein is bound to a gate electrode or the like via NTA-Ni and a histag, and the same method as in the first method. This is a method of orienting a substance-recognizing molecule (antibody). By adding a histag, in addition to the gate electrode, the target substance recognition molecule (antibody) can be oriented to the insulating film or the carbon nanotube.
以下にお 、て、ヒスタグを付加した IgG結合タンパク質を絶縁膜に結合する方法を 、図 34 (C)を参照して説明する。カーボンナノチューブおよびゲート電極にも同様の 方法で結合させることができる。  Hereinafter, a method for binding an IgG binding protein to which a histag is added to an insulating film will be described with reference to FIG. 34 (C). Carbon nanotubes and gate electrodes can be bonded in the same way.
まず、遺伝子操作によってヒスタグ 51を付加した IgG結合タンパク質 53を作製する 。 IgG結合タンパク質 53において、抗体結合部位の位置を考慮してヒスタグの付カロ 位置を設定することにより、抗体の配向性を高めることができる。次に、絶縁膜をシラ ン化カップリング剤で処理し、修飾した基板に NTA52を結合させ;遷移金属イオン( ニッケルイオンやコバルトイオンなど)を含む溶液を基板上に滴下し、基板上に固定 した NTA52と錯体を形成させ;さらに、ヒスタグ 51を付カ卩した IgG結合タンパク質 53 を含む溶液を滴下することにより、 IgG結合タンパク質 53を絶縁膜に固定する。固定 した IgG結合タンパク質 53に、被検出物質認識分子として用いる IgG型抗体 50また はその Fabや F(ab')2を結合させることで、図 34 (C)のように、抗体に配向性を持た せることができる。 First, IgG binding protein 53 to which a histag 51 is added is prepared by genetic manipulation. In the IgG binding protein 53, the orientation of the antibody can be improved by setting the position of the his-tagged caro in consideration of the position of the antibody binding site. Next, the insulating film is treated with a silanizing coupling agent to bind NTA52 to the modified substrate; a solution containing transition metal ions (such as nickel ions and cobalt ions) is dropped onto the substrate and fixed on the substrate. Complexed with NTA52; IgG binding protein 53 with histag 51 The IgG binding protein 53 is fixed to the insulating film by dropping a solution containing. By binding IgG-type antibody 50 or its Fab or F (ab ') 2 used as a target substance recognition molecule to the immobilized IgG-binding protein 53, the orientation of the antibody is improved as shown in Fig. 34 (C). You can have it.
[0100] 第 4の方法は、図 34 (D)に示されるように、被検出物質認識分子 (抗体や酵素など )を、二つの官能基 55, 56 (それぞれ同一でも異なっていてもよい)を有する二価性 架橋化試薬 54を介して、絶縁膜、ゲート電極またはカーボンナノチューブに結合す る方法である。二価性架橋化試薬 54は、二つの官能基 55, 56と、それを結合するポ リエチレングリコールなどの親水性ポリマー鎖またはアルキル鎖などの疎水性鎖を含 む。官能基 55, 56の組み合わせの例には、一方がァミノ基と共有結合を形成する官 能基、他方がチオール基と共有結合を形成する官能基の組み合せが含まれる。 例えば、絶縁膜に結合させる場合は、 1)被検出物質認識分子 (抗体 50)と二価性 架橋化試薬 54とを反応させた後、透析などにより未反応の二価性架橋化試薬を除 去し;シランィ匕カップリング剤で処理した基板絶縁膜と、被検出物質認識分子—二価 性架橋化試薬複合体を反応させて固定するか、 2)シラン化カップリング剤で処理し た基板絶縁膜面と二価性架橋化試薬 54を反応させ;さらに分子認識物質 (抗体 50) を反応させて固定することができる。  [0100] In the fourth method, as shown in Fig. 34 (D), a substance-recognizing molecule (an antibody, an enzyme, etc.) is divided into two functional groups 55, 56 (which may be the same or different). This is a method of bonding to an insulating film, a gate electrode, or a carbon nanotube through a divalent crosslinking reagent 54 having the following. The bivalent crosslinking reagent 54 includes two functional groups 55 and 56 and a hydrophilic polymer chain such as polyethylene glycol or a hydrophobic chain such as an alkyl chain that connects the two functional groups 55 and 56. Examples of the combination of the functional groups 55 and 56 include a combination of a functional group in which one side forms a covalent bond with an amino group and the other side forms a covalent bond with a thiol group. For example, when binding to an insulating film, 1) react the target substance recognition molecule (antibody 50) with the bivalent crosslinking reagent 54, and then remove the unreacted bivalent crosslinking reagent by dialysis or the like. Yes; either the substrate insulating film treated with the silane coupling agent and the target substance-recognizing molecule-bivalent cross-linking reagent complex are reacted and fixed, or 2) the substrate treated with the silanization coupling agent It can be immobilized by reacting the insulating film surface with the divalent crosslinking reagent 54; and further reacting with a molecular recognition substance (antibody 50).
[0101] 図 34 (A)に示される方法では、ヒスタグが付加された被検出物質認識分子を遺伝 子操作により調製する必要があるが、その調製には通常数ケ月単位の時間を要する 。さらに、被検出物質認識分子が抗体である場合には、ヒスタグが付加された抗体を 調製するために、目的の抗体を産生するノ、イブリドーマが必要となる。ハイプリドーマ の入手は通常困難であり、自ら作製することは多大な労力を要する。 [0101] In the method shown in Fig. 34 (A), it is necessary to prepare a target substance recognition molecule to which a histag is added by genetic manipulation, but the preparation usually takes several months. Furthermore, when the substance to be detected is an antibody, a hybridoma that produces the target antibody is required to prepare an antibody with a histag added. Obtaining Hypridoma is usually difficult, and making it yourself requires a lot of effort.
一方、図 34 (C)に示される方法では、ヒスタグが付加された IgG結合タンパク質を いったん作製すれば、種々の IgG型抗体を適用することができるので、様々な被検 出物質を短時間で検出することができる。  On the other hand, in the method shown in FIG. 34 (C), once an IgG-binding protein with a histag is prepared, various IgG-type antibodies can be applied. Can be detected.
また、図 34 (D)に示されるように二価性架橋化試薬 54による方法では、抗体また はタンパク質にヒスタグを付加するための遺伝子改変操作が必要な 、ので、被検出 物質認識分子をさらに迅速に調製することができる。さらには、抗体を被検出物質認 識分子として用いる場合には、 NTAを用いる方法ではポリクローナル抗体を使用し にくいが、二価性架橋化試薬による固定ィ匕法ではポリクローナル抗体を使用できるの で、バイオセンサとしての感度や精度の向上が期待できる。また二価性架橋化試薬 には、二つの官能基 55、 56の間に親水性ポリマー鎖や疎水性鎖が存在するので、 検出時のノ ックグラウンドが低減されうる。 In addition, as shown in FIG. 34 (D), the method using the bivalent cross-linking reagent 54 requires a genetic modification operation to add a histag to the antibody or protein. It can be prepared quickly. In addition, antibodies are detected When used as a sensing molecule, polyclonal antibodies are difficult to use with NTA methods, but polyclonal antibodies can be used with the immobilization method using a bivalent cross-linking reagent, improving sensitivity and accuracy as a biosensor. Can be expected. In addition, since the bivalent cross-linking reagent has a hydrophilic polymer chain or a hydrophobic chain between the two functional groups 55 and 56, the knock ground during detection can be reduced.
[0102] 本発明のバイオセンサによる検出  [0102] Detection by the biosensor of the present invention
前述の通り、本発明のバイオセンサを用いることにより被検出物質が検出されうる。 被検出物質認識分子に結合することにより生じるソース'ドレイン電流または電圧の 変化から、被検出物質を検出すればよい。  As described above, a substance to be detected can be detected by using the biosensor of the present invention. The substance to be detected may be detected from the change in the source / drain current or voltage generated by binding to the substance to be detected substance recognition.
[0103] 以下において本発明のバイオセンサによる検出プロセスの概略例を示す。この概 略例では、試料として溶液を用いている。 (1) ノィォセンサにおける、被検出物質 認識分子が結合された部位に試料溶液を添加する。例えば、被検出物質認識分子 が結合された基板に試料溶液を添加すればよい。  [0103] The following is a schematic example of a detection process using the biosensor of the present invention. In this schematic example, a solution is used as a sample. (1) Add the sample solution to the site where the target substance recognition molecule is bound in the nanosensor. For example, a sample solution may be added to a substrate to which a substance to be detected recognition molecule is bound.
試料溶液に被検出物質が含まれていれば、被検出物質と被検出物質認識分子と の反応 (例えば抗原—抗体反応)が起こる。 (2) 添加された試料溶液に含まれる溶 媒 (例えば水)は、ソース'ドレイン電流に影響を与えるため、検出におけるノイズを発 生させることがある。当該ノイズを低減させる手段の例として、以下の手段がある。 a)添加された試料溶液の溶媒を、蒸散により除去する。蒸散による除去は、例えば 、窒素ガスなどを用いてブロアするか、ヒーター、熱電変換素子 (ペルチヱ素子)など を利用して行えばよい。ブロアによる蒸散においては、ブロアを僅かにあてながらゆ つくりと蒸散させて、試料を一様な薄膜状にすることが好ましい。  If the sample solution contains a substance to be detected, a reaction (for example, an antigen-antibody reaction) between the substance to be detected and the substance to be detected is recognized. (2) Since the solvent (for example, water) contained in the added sample solution affects the source / drain current, it may generate noise in detection. Examples of means for reducing the noise include the following means. a) The solvent of the added sample solution is removed by evaporation. The removal by transpiration may be performed using, for example, nitrogen gas or the like, or using a heater, a thermoelectric conversion element (Peltier element), or the like. In the transpiration by the blower, it is preferable that the sample is made into a uniform thin film by slowly evaporating while slightly applying the blower.
b)添加された試料溶液を冷却する(好ましくは凍結することにより絶縁ィ匕する)。冷 却は、熱電変換素子 (ペルチェ素子)や液体窒素などにより行うことができる。  b) Cool the added sample solution (preferably insulated by freezing). Cooling can be performed with a thermoelectric conversion element (Peltier element) or liquid nitrogen.
これらの手段により、外気温の変化が激しい野外においても検出することが可能と なり、また厳密な測定が可能となる。 (3) ゲート電極の態様によっては前記試料溶 液が添加された部位に (好ましくは試料溶液を蒸散または冷却した後に)ゲート電極 をあてて、トランジスタを駆動させる。 I— V特性または I— Vg特性を測定する。 I— V特 性は、パラメータアナライザなどによって、短時間で (例えば数秒以内に)測定されう る。 By these means, it is possible to detect even outdoors where the outside air temperature changes drastically, and it is possible to measure accurately. (3) Depending on the mode of the gate electrode, the transistor is driven by applying the gate electrode to the portion where the sample solution is added (preferably after the sample solution is evaporated or cooled). Measure I—V characteristics or I—Vg characteristics. I—V characteristics can be measured in a short time (for example, within a few seconds) by a parameter analyzer. The
ゲート電極を、ガラス薄膜を挟んで前記試料溶液が添加された部位にあててもょ ヽ 。ゲート電極と、ソース'ドレイン電極間との絶縁性が高められ、漏れ電流が低減され うる。  The gate electrode may be applied to a portion where the sample solution is added with a glass thin film interposed therebetween. The insulation between the gate electrode and the source / drain electrodes can be improved, and the leakage current can be reduced.
[0104] 本発明のバイオセンサは、一種類の被検出物質を検出するだけでなぐ二種以上 の被検出物質を検出することもできる。一の試料に含まれる二種以上の被検出物質 を検出することもでき、また二種以上の試料を並行して検出することもできる。  [0104] The biosensor of the present invention can also detect two or more types of detected substances just by detecting one type of detected substance. Two or more kinds of detected substances contained in one sample can be detected, and two or more kinds of samples can be detected in parallel.
[0105] また本発明のノィォセンサは、被検出物質が危険なウィルスである場合には、一の 検出後に使い捨てればよい。また複数回の検出に繰り返して使用することもできる。  [0105] In addition, the nanosensor of the present invention may be disposable after one detection when the substance to be detected is a dangerous virus. It can also be used repeatedly for multiple detections.
[0106] 具体的な検出例について  [0106] Specific detection examples
本発明のバイオセンサによる検出とその結果にっ 、て、抗へマダルチュン (HA)抗 体の検出を例にして説明する。前述の分散固定ィ匕法の具体例 Aにより作製したチヤ ネルを含むカーボンナノチューブ FET (図 10)を準備した。  The detection by the biosensor of the present invention and the results thereof will be described by taking the detection of anti-hemadalchun (HA) antibody as an example. A carbon nanotube FET (Fig. 10) containing a channel prepared according to the specific example A of the above-described dispersion fixing method was prepared.
[0107] NTA— Ni錯体の形成  [0107] Formation of NTA-Ni complex
まず、用意したカーボンナノチューブ FETの基板の背面の酸ィ匕シリコン膜表面(lc m2)を、ピランノヽ溶液およびエタノールで洗浄して乾燥した。次に、この酸ィ匕シリコン 膜表面に、 3 1の(S810)メルカプトプロピルトリメトキシシランを滴下して、 2時間 18 0°Cに加熱した。 30°Cにまで冷却後、同温度で 1時間以上 50mMのジチォスレート ール (DTT)で処理した後、水で洗浄した。 First, the surface of the silicon oxide film (lc m 2 ) on the back surface of the prepared carbon nanotube FET substrate was washed with a piranno-sodium solution and ethanol and dried. Next, (S810) mercaptopropyltrimethoxysilane of 31 was dropped onto the surface of the silicon oxide film and heated to 180 ° C. for 2 hours. After cooling to 30 ° C, it was treated with 50 mM dithiothreol (DTT) at the same temperature for 1 hour or more, and then washed with water.
次に、 10mMリン酸緩衝液 (pH6. 5)を用いて調製したマレイミドー NTA溶液(lm gZml)を、前述の酸ィ匕シリコン膜表面に重層し、室温で 1時間静置した。静置後に 水で洗浄し、窒素ガスで乾燥させた(目視で水滴がなくなるまで乾燥させた)。  Next, a maleimide-NTA solution (lm gZml) prepared using a 10 mM phosphate buffer (pH 6.5) was layered on the surface of the above-described acid-silicon film and allowed to stand at room temperature for 1 hour. After standing, it was washed with water and dried with nitrogen gas (dried until no water droplets disappeared).
さらに、前述の酸ィ匕シリコン膜表面に、 50 1の NiC12溶液(50mM)を滴下した。 1 5分間静置した後、水で洗浄し、窒素ガスで乾燥させた(目視で水滴がなくなるまで 乾燥させた)。ここで、半導体パラメータアナライザに接続したプローブを、ソース'ドレ イン電極に接続して IV特性を測定した。ゲート電圧を一 20Vにして I— V特性曲線( ソース ·ドレイン電流と、ソース ·ドレイン電極との関係を示す)を求めた。  Further, a 50 1 NiC12 solution (50 mM) was dropped onto the surface of the silicon oxide film. 1 After standing for 5 minutes, it was washed with water and dried with nitrogen gas (dried until no water droplets were observed). Here, the probe connected to the semiconductor parameter analyzer was connected to the source drain electrode, and the IV characteristics were measured. The I–V characteristic curve (showing the relationship between the source / drain current and the source / drain electrode) was obtained with a gate voltage of 20V.
[0108] HA抗原の準備 被検出物質認識分子として用いる抗体認識分子である組換えへマダルチュン (H A)タンパク質を用意した。具体的には、 C末端にヒスチジンタグを付加された組換え HAタンパク質であって、種々のレベル(1— 220, 1 - 250, 1— 290, 1— 320 ;数 字は一次配列上のアミノ酸残基の番号を示す)でトランケート (truncate)されたタンパ ク質の発現を試みた。 [0108] Preparation of HA antigen Recombinant hemadalchun (HA) protein, an antibody recognition molecule used as a target substance recognition molecule, was prepared. Specifically, it is a recombinant HA protein with a histidine tag added to the C-terminus, with various levels (1-220, 1-250, 1-290, 1-320; the numbers are amino acids on the primary sequence An attempt was made to express a protein that was truncated at the residue number.
それぞれに対応する組換え HAタンパク質発現プラスミドを、 293T細胞へ導入した 。モノクローナル抗体 E2Z3と、ポリクローナル抗体を用いて、細胞内で組換え HAタ ンパク質が発現されていることを確認した。さらにウェスタンプロット法によって、上清 に組換え HAタンパク質が分泌されることを確認した。  Recombinant HA protein expression plasmids corresponding to each were introduced into 293T cells. Using monoclonal antibody E2Z3 and polyclonal antibody, it was confirmed that recombinant HA protein was expressed in cells. Furthermore, it was confirmed that the recombinant HA protein was secreted into the supernatant by Western plotting.
大量に発現されたのは、 HA1— 290および HA1— 220であった。それぞれ、上清 中の分泌物を NTA-Ni2+カラムで精製した。 ELISA、ウェスタンブロットで目的とす る組換え HAタンパク質が含まれるフラクションを確認してそれを分取した。分取物を PBSで透析して、組換え HAタンパク質を得た。 HA1— 290および HA1— 220のう ち、 HA1— 220はモノクローナル抗体と反応しなくなつたため、 HA1— 290を被検 出物質認識分子として用いた。 HA1-290 and HA1-220 were expressed in large quantities. In each case, the supernatant secretion was purified on an NTA-Ni 2+ column. The fraction containing the target recombinant HA protein was confirmed by ELISA and Western blot, and fractionated. The aliquot was dialyzed against PBS to obtain recombinant HA protein. Of HA1-290 and HA1-220, HA1-220 no longer reacts with the monoclonal antibody, so HA1-290 was used as the analyte recognition molecule.
[0109] 抗 HA抗体の準備  [0109] Preparation of anti-HA antibody
一方、抗 HA抗体 (E2/3)のノ、イブリドーマ培養上清原液を、 5 X 10"6, 5 X 10"7 , 5 X 10—8, 5 X 10—9, 5 X 10—10にそれぞれ希釈した希釈液を得た。 On the other hand, Bruno of anti-HA antibody (E2 / 3), the hybridoma culture supernatant stock solution, 5 X 10 "6, 5 X 10" 7, 5 X 10-8, 5 X 10-9, to 5 X 10- 10 Each diluted solution was obtained.
[0110] HA抗原の基板への固定  [0110] Immobilization of HA antigen to substrate
前述の、 NiC12で処理された基板の背面に、前述のようにして得た組換えへマダル チュン(HA)タンパク質 HA1— 290を(1. 9 /ζ 8Ζπι1; 50 /ζ 1)添カ卩して固定した。こ こで、前記と同様に I—V特性曲線を求めた。 On the back of the NiC12-treated substrate, the recombinant hemadunchun (HA) protein HA1-290 obtained as described above (1.9 / ζ 8 Ζπι1; 50 / ζ 1) was added. And fixed. Here, the IV characteristic curve was obtained in the same manner as described above.
[0111] ΗΑ抗原を結合させた基板に、 40 μ 1のヒト血清を滴下して 1時間放置した。基板洗 浄後、前記と同様に I—V特性曲線を求めた。  [0111] 40 μl of human serum was dropped onto a substrate to which the sputum antigen was bound and left for 1 hour. After the substrate cleaning, the IV characteristic curve was obtained in the same manner as described above.
[0112] 作製されたセンサの概略図が図 35に示される。図 35には、図 10に示されたカーボ ンナノチューブ FETの、バックゲート電極 512側の基板のシリコンオキサイド膜 106に ΗΑ抗原 472を固定し、ノ ックゲート電極 512とシリコンオキサイド膜 106の間に試料 溶液 490を添加した状態のセンサが示される。 [0113] 抗 HA抗体との反応 [0112] A schematic diagram of the fabricated sensor is shown in FIG. In FIG. 35, ΗΑantigen 472 is immobilized on the silicon oxide film 106 on the substrate on the back gate electrode 512 side of the carbon nanotube FET shown in FIG. 10, and the sample is placed between the knock gate electrode 512 and the silicon oxide film 106. The sensor with solution 490 added is shown. [0113] Reaction with anti-HA antibody
HA1— 290を固定された基板の背面に、前述の各希釈液(50 1)を添カ卩して、 25 °Cで 15分間静置した後、水で洗浄し、窒素ガスで乾燥させた(目視で水滴がなくなる まで乾燥させた)。ここで、前記と同様に I—V特性曲線を求めた。  Each of the above dilutions (501) was added to the back of the substrate on which HA1-290 was fixed, allowed to stand at 25 ° C for 15 minutes, washed with water, and dried with nitrogen gas. (It was dried until there was no water drop visually). Here, an IV characteristic curve was obtained in the same manner as described above.
[0114] 得られた I—V特性曲線を図 36に示す。  [0114] Fig. 36 shows the obtained IV characteristic curve.
図 36に示されたように、ソース'ドレイン電圧の約— IV〜― 2Vの領域において、抗 HA抗体の濃度によって、ソース'ドレイン電流が顕著に異なることがわかる。つまり、 抗体原液の希釈率が 5 X 10_9、 5 X 10_8、 5 X 10_7となるにしたがって、ソース'ドレ イン電流の絶対値が上昇している。したがって、このソース'ドレイン電流の変化に基 づいて、抗 HA抗体を検出することができる。一方、希釈率が 5 X 10_6の場合に、 5 X 10_7の場合と比べて電流の絶対値が減少している。これは過剰に高い濃度の試 料が添加されたため、配向性がなくかつ誘電率を有する分子膜が基板表面に形成さ れた結果、電流値が低下しているものと推察される。また、希釈率が 5 X 10_1の場 合と、 5 X 10_9の場合とで、 I—V特性曲線にほとんど変化はみられない。よって検出 可能な濃度レンジは、希釈率 10一9〜 10_7程度であることがわかる。 As shown in FIG. 36, it can be seen that in the region where the source and drain voltages are about −IV to −2 V, the source and drain currents differ significantly depending on the concentration of the anti-HA antibody. That is, according to the dilution rate of the antibody stock solution is 5 X 10 _9, 5 X 10_ 8, 5 X 10 _7, the absolute value of the source 'drain current is increased. Therefore, anti-HA antibody can be detected based on the change in the source / drain current. On the other hand, the dilution ratio in the case of 5 X 10_ 6, the absolute value of the current compared with the case of 5 X 10_ 7 is reduced. This is presumed that the current value decreased as a result of the formation of a molecular film having no orientation and a dielectric constant on the substrate surface because an excessively high concentration of the sample was added. Further, a case of dilution ratio 5 X 10 _1, in the case of 5 X 10_ 9, little change in the I-V characteristic curve is not observed. Therefore detectable concentrations range, it can be seen that a dilution ratio 10 one 9 ~ 10_ 7 about.
[0115] 本願は、 2005年 3月 28曰出願の特願 2005— 092391および 2005年 8月 24曰出 願の特願 2005— 243305に基づく優先権を主張する。当該出願明細書に記載され た内容はすべて、本願明細書に援用される。 [0115] This application claims priority based on Japanese Patent Application 2005-092391 filed on March 28, 2005 and Japanese Patent Application 2005-243305 filed on August 24, 2005. All the contents described in the application specification are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0116] 本発明のカーボンナノチューブ FETは、分散固定ィ匕法によりそのチャネルが形成 されうるので、従来のカーボンナノチューブ FETと比較して、容易に製造されることが でき、かつその製造コストが顕著に低減されうる。 [0116] Since the channel of the carbon nanotube FET of the present invention can be formed by the dispersion-fixing method, it can be easily manufactured and the manufacturing cost is remarkable as compared with the conventional carbon nanotube FET. Can be reduced.
もちろん、本発明のカーボンナノチューブ FETは、従来のカーボンナノチューブ FE Tと同レベル以上の性能を有し、たとえばバイオセンサとして用いれば、高感度の検 出が可能となる。  Of course, the carbon nanotube FET of the present invention has a performance equal to or higher than that of the conventional carbon nanotube FET. For example, if it is used as a biosensor, highly sensitive detection is possible.

Claims

請求の範囲 The scope of the claims
[1] 基板上に形成されたソース電極およびドレイン電極、ならびに前記ソース電極とドレ イン電極とを接続するカーボンナノチューブ力 なるチャネルを有する電界効果トラン ジスタであって、  [1] A field effect transistor having a source electrode and a drain electrode formed on a substrate, and a channel made of a carbon nanotube force connecting the source electrode and the drain electrode,
前記カーボンナノチューブを基板に固定するカーボンナノチューブ親和性物質をさ らに有する電界効果トランジスタ。  A field effect transistor further comprising a carbon nanotube affinity substance for fixing the carbon nanotube to a substrate.
[2] 前記カーボンナノチューブ親和性物質は芳香環を有する分子である、請求項 1に 記載の電界効果トランジスタ。  2. The field effect transistor according to claim 1, wherein the carbon nanotube affinity substance is a molecule having an aromatic ring.
[3] 前記芳香環を有する分子はピレン派生物である、請求項 2に記載の電界効果トラン ジスタ。 [3] The field effect transistor according to [2], wherein the molecule having an aromatic ring is a pyrene derivative.
[4] 前記基板は絶縁基板である、請求項 1に記載の電界効果トランジスタ。  4. The field effect transistor according to claim 1, wherein the substrate is an insulating substrate.
[5] 前記絶縁基板はガラス基板である、請求項 4に記載の電界効果トランジスタ。 5. The field effect transistor according to claim 4, wherein the insulating substrate is a glass substrate.
[6] 前記ソース電極とドレイン電極の形成予定部位力 カーボンナノチューブ親和性物 質で修飾された基板を用意するステップ; [6] A step of preparing a substrate modified with a material having affinity for carbon nanotubes;
前記基板の電極形成予定部位に、カーボンナノチューブを提供するカーボンナノ チューブ提供ステップ;および  A carbon nanotube providing step for providing a carbon nanotube at an electrode formation planned portion of the substrate; and
前記基板の電極形成予定部位に、それぞれソース電極およびドレイン電極を形成 する電極形成ステップを含み、  Including an electrode forming step of forming a source electrode and a drain electrode respectively at the electrode formation scheduled portion of the substrate;
前記カーボンナノチューブ提供ステップにお!、て、前記カーボンナノチューブの少 なくとも一部は、前記カーボンナノチューブ親和性物質との相互作用により基板に固 定される、請求項 1に記載のトランジスタの製造方法。  2. The transistor manufacturing method according to claim 1, wherein at least a part of the carbon nanotube is fixed to the substrate by interaction with the carbon nanotube affinity substance in the carbon nanotube providing step. .
[7] 前記ソース電極とドレイン電極が形成された基板を用意するステップ; [7] preparing a substrate on which the source electrode and the drain electrode are formed;
前記基板のソース電極とドレイン電極を、カーボンナノチューブ親和性物質で修飾 する電極修飾ステップ;および  An electrode modification step of modifying the source electrode and the drain electrode of the substrate with a carbon nanotube affinity material; and
前記電極上に、カーボンナノチューブを提供するカーボンナノチューブ提供ステツ プを含み、  A carbon nanotube providing step for providing carbon nanotubes on the electrode;
前記カーボンナノチューブ提供ステップにお!、て、前記カーボンナノチューブの少 なくとも一部は、前記カーボンナノチューブ親和性物質との相互作用により基板に固 定される、請求項 1に記載のトランジスタの製造方法。 In the carbon nanotube providing step, at least a part of the carbon nanotube is fixed to the substrate by the interaction with the carbon nanotube affinity substance. The method for manufacturing a transistor according to claim 1, wherein the method is defined.
[8] カーボンナノチューブ親和性物質で修飾されたカーボンナノチューブを用意するス テツプ; [8] Step of preparing carbon nanotubes modified with carbon nanotube affinity material;
前記ソース電極とドレイン電極が形成された基板を用意するステップ;および 前記基板の電極上に、前記修飾されたカーボンナノチューブを提供するカーボン ナノチューブ提供ステップを含み、  Providing a substrate on which the source electrode and the drain electrode are formed; and providing a carbon nanotube on the electrode of the substrate to provide the modified carbon nanotube;
前記カーボンナノチューブ提供ステップにお!、て、前記カーボンナノチューブの少 なくとも一部は、前記カーボンナノチューブ親和性物質を介して基板に固定される、 請求項 1に記載のトランジスタの製造方法。  2. The method of manufacturing a transistor according to claim 1, wherein at least a part of the carbon nanotube is fixed to a substrate via the carbon nanotube affinity substance in the carbon nanotube providing step.
[9] カーボンナノチューブ親和性物質で修飾されたカーボンナノチューブを用意するス テツプ; [9] Steps for preparing carbon nanotubes modified with carbon nanotube affinity material;
前記基板の電極形成予定部位に、前記修飾されたカーボンナノチューブを提供す るカーボンナノチューブ提供ステップ;および  A carbon nanotube providing step of providing the modified carbon nanotube at a site where an electrode is to be formed on the substrate; and
前記基板の電極形成予定部位に、それぞれソース電極およびドレイン電極を形成 する電極形成ステップを含み、  Including an electrode forming step of forming a source electrode and a drain electrode respectively at the electrode formation scheduled portion of the substrate;
前記カーボンナノチューブ提供ステップにお!、て、前記カーボンナノチューブの少 なくとも一部は、前記カーボンナノチューブ親和性物質を介して基板に固定される、 請求項 1に記載のトランジスタの製造方法。  2. The method of manufacturing a transistor according to claim 1, wherein at least a part of the carbon nanotube is fixed to a substrate via the carbon nanotube affinity substance in the carbon nanotube providing step.
[10] 前記カーボンナノチューブ提供ステップの後、前記基板上に形成されたソース電極 とドレイン電極上に、それぞれソース電極とドレイン電極をさらに形成する第二の電極 形成ステップを含む、請求項 7または 8に記載のトランジスタの製造方法。 [10] The method according to claim 7 or 8, further comprising a second electrode forming step of further forming a source electrode and a drain electrode on the source electrode and the drain electrode formed on the substrate after the carbon nanotube providing step, respectively. A method for producing the transistor according to 1.
[11] 前記カーボンナノチューブ提供ステップの後、基板上のカーボンナノチューブを気 相成長させるカーボンナノチューブ成長ステップを含む、請求項 6〜9の!、ずれか一 項に記載のトランジスタの製造方法。 [11] The method for producing a transistor according to any one of [6] to [9] above, which includes a carbon nanotube growth step of vapor-growing carbon nanotubes on the substrate after the carbon nanotube providing step.
[12] 前記提供されるカーボンナノチューブの平均長さは、 0. 5 m以上である、請求項[12] The average length of the provided carbon nanotubes is 0.5 m or more.
6〜9のいずれか一項に記載のトランジスタの製造方法。 The manufacturing method of the transistor as described in any one of 6-9.
[13] 前記提供されるカーボンナノチューブは、酸処理されたカーボンナノチューブであ る、請求項 6〜9のいずれか一項に記載のトランジスタの製造方法。 13. The method for producing a transistor according to any one of claims 6 to 9, wherein the provided carbon nanotube is an acid-treated carbon nanotube.
PCT/JP2006/304167 2005-03-28 2006-03-03 Carbon nano tube field effect transistor WO2006103872A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510347A JPWO2006103872A1 (en) 2005-03-28 2006-03-03 Carbon nanotube field effect transistor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005092391 2005-03-28
JP2005-092391 2005-03-28
JP2005243305 2005-08-24
JP2005-243305 2005-08-24

Publications (1)

Publication Number Publication Date
WO2006103872A1 true WO2006103872A1 (en) 2006-10-05

Family

ID=37053140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304167 WO2006103872A1 (en) 2005-03-28 2006-03-03 Carbon nano tube field effect transistor

Country Status (3)

Country Link
JP (1) JPWO2006103872A1 (en)
TW (1) TW200723530A (en)
WO (1) WO2006103872A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006103872A1 (en) * 2005-03-28 2008-09-04 国立大学法人 北海道大学 Carbon nanotube field effect transistor
JP2009030090A (en) * 2007-07-25 2009-02-12 Mitsubishi Materials Corp Metal powder composite and manufacturing method therefor
JP2009064925A (en) * 2007-09-05 2009-03-26 Brother Ind Ltd Manufacturing method of thin-film transistor, and thin-film transistor manufactured by the same manufacturing method
JP2009250631A (en) * 2008-04-01 2009-10-29 Mitsumi Electric Co Ltd Sensor manufacturing method
WO2009144878A1 (en) * 2008-05-28 2009-12-03 ミツミ電機株式会社 Sensor and method for manufacturing the same
WO2010079573A1 (en) * 2009-01-09 2010-07-15 ミツミ電機株式会社 Field effect transistor, method for manufacturing same, and biosensor
JP2010528297A (en) * 2007-05-23 2010-08-19 アリゾナ ボード オブ リージェンツ フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ System and method for integrated electrochemical detection and electrical detection
WO2011007582A1 (en) 2009-07-17 2011-01-20 国立大学法人北海道大学 Method for electric measurement of peroxide using cnt sensor
JP2012032396A (en) * 2010-07-19 2012-02-16 Commissariat A L'energie Atomique & Aux Energies Alternatives Selective functionalization by thermal activation of joule effect
KR101362138B1 (en) * 2007-03-07 2014-02-13 엘지디스플레이 주식회사 Plane Display Panel and Method for Fabricating Thereof
WO2014061273A1 (en) 2012-10-18 2014-04-24 バイオセンサー株式会社 Sensor, sensor module, and detection method
JP2015206763A (en) * 2014-04-23 2015-11-19 バイオセンサー株式会社 Measuring device and measuring method
JP2016527476A (en) * 2013-05-29 2016-09-08 シーエスアイアールCsir Field effect transistor and gas detector including a plurality of field effect transistors
JP2016539327A (en) * 2013-11-09 2016-12-15 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for measuring the voltage and potential of biological samples, chemical samples or other samples
JP2018031740A (en) * 2016-08-26 2018-03-01 国立大学法人東京海洋大学 Electrode and biosensor
WO2018079314A1 (en) 2016-10-24 2018-05-03 東レ株式会社 Semiconductor sensor and manufacturing method for same, and compound sensor
US20200271644A1 (en) * 2013-09-16 2020-08-27 Seoul National University R&Db Foundation Nanovesicle comprising heterodimeric g-protein coupled receptor, method for preparing nanovesicle, field effect transistor-based taste sensor comprising nanovesicle, and method for manufacturing taste sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515782A (en) * 2000-12-11 2004-05-27 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Nano sensor
WO2004104568A1 (en) * 2003-05-23 2004-12-02 Japan Science And Technology Agency Single-electron transistor, field-effect transistor, sensor, method for producing sensor, and sensing method
JP2005034970A (en) * 2003-07-17 2005-02-10 Japan Science & Technology Agency Pattern-arrayed carbon nano-substance structure and method for producing the same
WO2005022134A1 (en) * 2003-08-29 2005-03-10 Japan Science And Technology Agency Field-effect transistor, single electron transistor, and sensor using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103872A1 (en) * 2005-03-28 2006-10-05 National University Corporation Hokkaido University Carbon nano tube field effect transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515782A (en) * 2000-12-11 2004-05-27 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Nano sensor
WO2004104568A1 (en) * 2003-05-23 2004-12-02 Japan Science And Technology Agency Single-electron transistor, field-effect transistor, sensor, method for producing sensor, and sensing method
JP2005034970A (en) * 2003-07-17 2005-02-10 Japan Science & Technology Agency Pattern-arrayed carbon nano-substance structure and method for producing the same
WO2005022134A1 (en) * 2003-08-29 2005-03-10 Japan Science And Technology Agency Field-effect transistor, single electron transistor, and sensor using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN R.J. ET AL.: "Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization", J.AM.CHEM.SOC., vol. 123, 2001, pages 3838 - 3839, XP002350390 *
TAKEDA H. ET AL.: "Kiban Shushoku ni yoru Carbon Nanotubes Sensor no Koschiku", CHEMICAL SENSORS, vol. 21, no. SUPPL. A, 1 April 2005 (2005-04-01), pages 118 - 120, XP003003398 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006103872A1 (en) * 2005-03-28 2008-09-04 国立大学法人 北海道大学 Carbon nanotube field effect transistor
KR101362138B1 (en) * 2007-03-07 2014-02-13 엘지디스플레이 주식회사 Plane Display Panel and Method for Fabricating Thereof
JP2010528297A (en) * 2007-05-23 2010-08-19 アリゾナ ボード オブ リージェンツ フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ System and method for integrated electrochemical detection and electrical detection
JP2009030090A (en) * 2007-07-25 2009-02-12 Mitsubishi Materials Corp Metal powder composite and manufacturing method therefor
JP2009064925A (en) * 2007-09-05 2009-03-26 Brother Ind Ltd Manufacturing method of thin-film transistor, and thin-film transistor manufactured by the same manufacturing method
JP2009250631A (en) * 2008-04-01 2009-10-29 Mitsumi Electric Co Ltd Sensor manufacturing method
WO2009144878A1 (en) * 2008-05-28 2009-12-03 ミツミ電機株式会社 Sensor and method for manufacturing the same
JP2009287989A (en) * 2008-05-28 2009-12-10 Mitsumi Electric Co Ltd Sensor and method for manufacturing the same
US8698210B2 (en) 2008-05-28 2014-04-15 Mitsumi Electric, Co., Ltd. Sensor and method for manufacturing the same
WO2010079573A1 (en) * 2009-01-09 2010-07-15 ミツミ電機株式会社 Field effect transistor, method for manufacturing same, and biosensor
US8487297B2 (en) 2009-01-09 2013-07-16 Mitsumi Electric Co., Ltd. Field effect transistor, method for manufacturing the same, and biosensor
JP2010161288A (en) * 2009-01-09 2010-07-22 Mitsumi Electric Co Ltd Field effect transistor, and method of manufacturing the same
WO2011007582A1 (en) 2009-07-17 2011-01-20 国立大学法人北海道大学 Method for electric measurement of peroxide using cnt sensor
JP2012032396A (en) * 2010-07-19 2012-02-16 Commissariat A L'energie Atomique & Aux Energies Alternatives Selective functionalization by thermal activation of joule effect
WO2014061273A1 (en) 2012-10-18 2014-04-24 バイオセンサー株式会社 Sensor, sensor module, and detection method
JP2016527476A (en) * 2013-05-29 2016-09-08 シーエスアイアールCsir Field effect transistor and gas detector including a plurality of field effect transistors
US20200271644A1 (en) * 2013-09-16 2020-08-27 Seoul National University R&Db Foundation Nanovesicle comprising heterodimeric g-protein coupled receptor, method for preparing nanovesicle, field effect transistor-based taste sensor comprising nanovesicle, and method for manufacturing taste sensor
JP2016539327A (en) * 2013-11-09 2016-12-15 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for measuring the voltage and potential of biological samples, chemical samples or other samples
US10859529B2 (en) 2013-11-09 2020-12-08 Forschungszentrum Juelich Gmbh Device and method for measuring small voltages and potentials on a biological, chemical or other sample
JP2015206763A (en) * 2014-04-23 2015-11-19 バイオセンサー株式会社 Measuring device and measuring method
JP2018031740A (en) * 2016-08-26 2018-03-01 国立大学法人東京海洋大学 Electrode and biosensor
WO2018079314A1 (en) 2016-10-24 2018-05-03 東レ株式会社 Semiconductor sensor and manufacturing method for same, and compound sensor
KR20190072520A (en) 2016-10-24 2019-06-25 도레이 카부시키가이샤 Semiconductor sensor, manufacturing method thereof, and complex sensor

Also Published As

Publication number Publication date
TW200723530A (en) 2007-06-16
JPWO2006103872A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
WO2006103872A1 (en) Carbon nano tube field effect transistor
JP4528986B2 (en) Carbon nanotube field effect transistor and manufacturing method thereof
US8072008B2 (en) Biosensor having ultra fine fiber
US7935989B2 (en) Single-electron transistor, field-effect transistor, sensor, method for producing sensor, and sensing method
JP2008258594A (en) Method of manufacturing carbon nanotube field-effect transistor, and biosensor device
KR100746863B1 (en) Field-effect transistor, single electron transistor, and sensor using same
Chen et al. A protein transistor made of an antibody molecule and two gold nanoparticles
US8716029B1 (en) Carbon nanotube sensors employing synthetic multifunctional peptides for surface functionalization
Mandal et al. Carbon nanotube thin film biosensors for sensitive and reproducible whole virus detection
WO2005108966A1 (en) Biosensor
JP4774476B2 (en) sensor
Takeda et al. A pH sensor based on electric properties of nanotubes on a glass substrate
Byon et al. Label-free biomolecular detection using carbon nanotube field effect transistors
Eliseev et al. Modification in adsorption properties of graphene during the development of viral biosensors
JP2010281769A (en) Immobilization method and sensing method
WO2022239429A1 (en) Sensor, sensing method, and sensing device
JP5294339B2 (en) Method for detecting a substance to be detected in a sample
KR100746867B1 (en) Field-effect transistor, single electron transistor, and sensor using same
JP2009250633A (en) Sensor and detection method
KR20110128754A (en) Electrical biosensor for detecting infinitesimal sample
임재흥 A Biosensor platform based on the Carbon Nanotube Network for detecting antibody antigen reaction
KR20170135255A (en) Protein Detecting Device and Biosensor for Detecting Protein Using the Same
KR20180055094A (en) Method for the surface modification of thin flim active layer in semiconductor based biosensor
Leyden Label free biosensing with carbon nanotube transistors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007510347

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715226

Country of ref document: EP

Kind code of ref document: A1