WO2006098320A1 - Wave activated power device and method - Google Patents

Wave activated power device and method Download PDF

Info

Publication number
WO2006098320A1
WO2006098320A1 PCT/JP2006/305020 JP2006305020W WO2006098320A1 WO 2006098320 A1 WO2006098320 A1 WO 2006098320A1 JP 2006305020 W JP2006305020 W JP 2006305020W WO 2006098320 A1 WO2006098320 A1 WO 2006098320A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
wave
water
power generation
chamber
Prior art date
Application number
PCT/JP2006/305020
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Nakamura
Akiyoshi Nakayama
Yoshihiro Ohmura
Kazuki Nakahashi
Hiroshi Tanaka
Original Assignee
The Calamity Science Institute
Incorporated Administrative Agency, Fisheries Research Agency
Oriental Construction Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Calamity Science Institute, Incorporated Administrative Agency, Fisheries Research Agency, Oriental Construction Co., Ltd. filed Critical The Calamity Science Institute
Priority to KR1020077022930A priority Critical patent/KR101289271B1/en
Publication of WO2006098320A1 publication Critical patent/WO2006098320A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/22Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the flow of water resulting from wave movements to drive a motor or turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a wave power generation apparatus and method for generating electric power by extracting electric energy from wave power.
  • Wave power generation uses a wave energy in the ocean as a motive power to rotate a turbine and operate a generator, which is converted into electric energy. In order to use this wave energy, it is converted into mechanical energy such as air energy and mechanical energy. Then, the converted mechanical energy is further extracted as electrical energy using a turbine, a generator or the like.
  • this wave power generation is a system that converts wave power into air energy and rotates the turbine based on this, and a system that converts wave power into mechanical energy and rotates the turbine based on this. It will be roughly divided into two.
  • a wave power generation device 106 As a method for converting wave power into air energy, a wave power generation device 106 as shown in FIG. 14 has been conventionally proposed.
  • This wave power generator 106 is constructed by constructing a breakwater 102 on a wide area mound 101 provided on the seabed of a port or the like, and incorporating caisson vertically into the breakwater 102 to form an opening 103a that leads to open sea water.
  • An air chamber 103 fixed to the dam 102, an air damper chamber 104 and a power generation chamber 105 disposed above the air chamber 103 are provided.
  • the wave power generation device 106 includes a vent hole 107 that connects the air chamber 103 and the air damper chamber 104, an input port 108 that connects the air damper chamber 104 and the power generation chamber 105, and a power generation chamber 105.
  • An intake / exhaust port 109 communicating with the outside is formed in the partition wall of each chamber.
  • a dust removing screen 110 is formed in the vent hole 107, an input pipe 111 is attached to the input port 108 toward the inside of the air damper chamber 104, and a float is provided at the tip thereof.
  • a valve 112 is provided.
  • a turbine 113 and a generator 114 are disposed at the input port 108 of the power generation chamber 105.
  • the wave power generation device 106 configured as described above has an ocean wave. By moving the water surface of the air chamber 103 up and down and swinging the air inside, the turbine 113 and the generator 114 are operated to obtain electric energy.
  • a seawater reduction chamber 152 is provided between an air chamber 133 and a power generation chamber 135 containing a turbine 143 and a generator 144.
  • the air chamber 133 and the seawater reduction chamber 152 are communicated with each other through a ventilation pipe 153, and the seawater suppression chamber 152 and the turbine 143 of the power generation chamber 135 are communicated with each other through an input pipe 154.
  • this wave power generation device 130 the wave pressure in the air chamber 133 raises and lowers the air above, and the turbine 143 connected through the vent pipe 153 and the seawater depletion chamber 152 is operated.
  • the air that escapes upward from the air chamber 133 is throttled sufficiently small by the vent pipe 153 and expanded by the seawater depletion chamber 152. It will be.
  • the seawater reduction chamber 152 the rising speed of the sea surface is slowed, so that it is possible to prevent the effects of abnormal seawater rising without providing a special mechanism.
  • a so-called pendulum type wave power generation apparatus As a method for converting wave power into mechanical energy, a so-called pendulum type wave power generation apparatus has been proposed in which force is applied from a wave force to a generator through a pendulum.
  • This pendulum type is a wave power generation system that captures wave energy as the pendulum motion of the pressure-receiving plate and converts it into hydraulic pressure.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-246171
  • Patent Document 2 JP 2000-87838 A
  • the present invention has been devised in view of the above-described problems, and an object of the present invention is to provide a wave power generation apparatus and method that can further improve energy efficiency. There is.
  • a wave power generation device to which the present invention is applied has an i-th wall and a second wall that are erected at intervals from each other, and the first wall It is surrounded by a horizontal plate arranged in a substantially horizontal direction from the lower end to the lower end of the second wall, and is formed in a water reserving chamber having an opening formed in the lower portion of the first wall and in the water reserving chamber.
  • the wave power generation device to which the present invention is applied has a first wall and a second wall each having a lower end fixed to the sea bottom. And a horizontal plate disposed in a substantially horizontal direction from the lower end of the first wall to the second wall, and also has an opening formed in the lower portion of the first wall.
  • Room, Power generation means for generating electric power by rotating a rotating shaft to which blades are fixed in accordance with the swirl of water generated in the water reserving chamber and extracting electric energy based on the rotation of the rotating shaft.
  • the wave power generation method to which the present invention is applied includes a first wall and a second wall that are erected at intervals from each other, and the second wall from the lower end of the first wall.
  • a vortex flow of water is generated in a recreational chamber that is surrounded by a horizontal plate arranged in a substantially horizontal direction toward the lower end and has an opening formed in the lower portion of the first wall.
  • a rotating shaft with a fixed blade is rotated according to the eddy current, and electric energy is extracted based on the rotation of the rotating shaft to generate electricity.
  • a water turbine composed of a rotating shaft to which arc blades are fixed rotates counterclockwise based on the steady vortex.
  • wave energy can be directly converted into electrical energy, and energy efficiency can be further improved compared to the case where it is once converted into mechanical energy such as air energy or mechanical energy.
  • mechanical energy such as air energy or mechanical energy.
  • the initial cost can be reduced, and the feasibility of wave power generation itself can be greatly enhanced.
  • FIG. 1 is a diagram showing a wave power generator to which the present invention is applied.
  • FIG. 2 is a cross-sectional view of the power generation unit.
  • FIG. 3 is a diagram for explaining a steady vortex generated in a water-reservoir chamber.
  • FIG. 4 is a view showing an example in which chamfered portions are formed at corners in the water reserving chamber.
  • FIG. 5 is a diagram showing an experimental system of a wave power generator to which the present invention is applied.
  • FIG. 6 is a diagram showing data on the number of rotations of a turbine per wave cycle.
  • FIG. 7 is a diagram showing data with the horizontal axis indicating the wavelength / water chamber width ratio L / B per rotation speed of the turbine per wave cycle.
  • FIG. 8 is a diagram showing the relationship between transmission and reflectance.
  • FIG. 9 is a diagram showing average rotation angular velocity data of arc blades.
  • FIG. 10 is a diagram showing the temporal change in the rotational speed of the arc blade when the wave period T is 1.4 s.
  • FIG. 11 A diagram showing the results of reflectance and transmittance when a water turbine is installed in the recreational water chamber, as a change in the wavelength / reservoir width ratio L / B.
  • FIG. 12 is a diagram showing a change in wave height in the water reserving chamber due to L / B.
  • FIG. 13 is a diagram showing another example of a wave power generator to which the present invention is applied.
  • FIG. 14 is a diagram showing a conventional wave power generator.
  • FIG. 15 is another view showing a conventional wave power generation device.
  • FIG. 1 shows a wave power generator 1 to which the present invention is applied.
  • This wave power generator 1 It is a lower transmission type and has a double curtain type structure with different dredging water, and the drowning wall 2 on the sea side is adjusted to be shallower than the impermeable wall 3 on the land side. That is, the flooded lower end 2a located at the lower end of the drooping wall 2 is provided so as to be closer to the hydrostatic surface 4 than the flooded lower end 3a located at the lower end of the impermeable wall 3.
  • the drooping wall 2 and the impervious wall 3 are arranged in parallel with a distance from each other, and a water reserving chamber 10 is formed between the walls 2 and 3. Incidentally, it is assumed that the hydrostatic surface 4 in the water reserving chamber 10 is open to the outside.
  • a lower water flow opening 6a is provided between the water-filled lower end 3a and the seabed 5 of the impermeable wall 3. Is formed
  • a submerged horizontal plate 8 is disposed in a horizontal direction at a height substantially coinciding with the upper end of the lower water passage opening 6a and from the flooded lower end 2a to the flooded lower end 3a.
  • This submerged horizontal plate 8 makes it possible to control the vortex water generated from the lower end of the drooping wall 2 due to the transmission wave reduction and the action of the wave, and to generate an off-shore unidirectional flow by the control effect.
  • An opening 7 is formed from the lower end of the hanging wall 2 to the submerged flat plate 8. Seawater will flow from the opening 7 into the reclaimed water chamber 10.
  • the wave power generation device 1 is provided with a power generation unit 11 that generates power using a vortex of seawater generated in a specific direction in the water reserving chamber 10 as power.
  • the power generation unit 11 takes out electric energy by rotating the rotary shaft 13 that plays a role as a so-called water wheel having a circular arc blade 12 fixed thereto, and by rotating the rotary shaft 13 based on the vortex of seawater. And a generator (not shown) for generating power.
  • the circular arc blade 12 may be constituted by a blade having a shape.
  • FIG. 2 (a) is a view of the power generation unit 11 as viewed from the direction A in FIG. 1, and FIG. 2 (b) is a cross-sectional view of the power generation unit 11.
  • the arc blade 12 is made of, for example, a material such as vinyl chloride, and is fixed around the rotating shaft 13 at intervals of about 180 °. Incidentally, the arcuate blades 12 may be formed in any shape not limited to a powerful configuration, and in any number of angles at any angular interval.
  • the rotating shaft 13 is supported by a bearing 15.
  • This bearing 15 is, for example, a ball bearing using a sphere as a rotating body.
  • a friction bearing or the like is applied and friction caused by rotation of the rotary shaft 13 can be effectively reduced. As a result, the rotating shaft 13 can be smoothly rotated by receiving the wave force, and the position thereof is strongly held.
  • Discs 16 are disposed at both ends of the rotating shaft 13, respectively. By disposing the disk 16, seawater can be effectively taken in and the arc blade 12 can be propelled, and thus the rotational driving force of the rotating shaft 13 can be increased. Incidentally, the configuration of the disc 16 may be omitted.
  • the rotary shaft 13 is adjusted so as to be almost the same height as the lower end of the hanging wall 2 in the vertical direction.
  • the generator 14 is a so-called prime mover that receives pressure based on the vortex of seawater, converts wave energy into rotational energy based on the rotating shaft 13, and extracts kinetic energy from this force.
  • the wave power generation device 1 having such a configuration, the water flow function of a flow such as a tidal current and a wave current is maintained by the seawater permeation section 6 formed between the submerged horizontal plate 8 and the seabed.
  • the vortex flow is generated from the lower end 3a of the flooded water using the piston mode wave motion in the basin 10 and the energy of the wave motion is finally efficiently converted into one-way flow energy.
  • the submerged horizontal plate 8 accumulates a counterclockwise vortex in the state shown in the drawing as shown in FIG. 3 and this vortex flows in the seawater permeation section 6. It is possible to suppress interference with the fluid.
  • the submerged horizontal plate 8 forms a lower water passage extending in the front-rear direction in the seawater permeation portion 6, and in particular plays a role of forming a ceiling surface in the seawater permeation portion 6.
  • the seawater permeable portion 6 formed by such a submerged horizontal plate 8 By the seawater permeable portion 6 formed by such a submerged horizontal plate 8, the fluid flowing through the seawater permeable portion 6 is forcibly rectified into a water flow in a predetermined direction as shown in FIG. Since it is strongly influenced by the clockwise vortex formed on the sea side, it is transported to the sea side when averaged over one wave period. That is, the submerged horizontal plate 8 that forms the seawater transmission part 6 is It will play a role in causing the average flow of seawater facing the sea, and this will further promote the exchange of seawater inside and outside the port.
  • a counterclockwise vortex generated from the lower end of the drooping wall 2 along with the wave motion is accumulated in the water reserving chamber 10.
  • This vortex flows constantly in a specific direction of rotation that is related to the time phase.
  • the strength of this steady vortex is also related to the magnitude of the mean off-shore transport flow through the seawater permeation section6.
  • the water turbine composed of the rotating shaft 13 to which the circular arc blade 12 is fixed rotates counterclockwise based on the steady vortex.
  • wave energy into electrical energy
  • mechanical energy such as air energy and mechanical energy.
  • initial costs can be reduced, and the feasibility of wave power generation itself can be greatly enhanced.
  • a chamfered portion 9 that is chamfered at least at one corner of the water reserving chamber 10 is formed. It may be. As a result, the steady vortex described above can be generated more efficiently, and the energy efficiency can be further improved.
  • the model used for this examination experiment is the same section as the wave power generator 1 as shown in Fig. 1, and the length of one dam body is 50cm.
  • two models 21 of this wave power generation device 1 were manufactured so that they occupy the entire channel width of lm.
  • the scale of the model 21 I made is 1Z20.
  • the model 21 of the produced wave power generation device 1 is provided in a wave-making water tank.
  • the wave-making water tank 20 is a long water channel having a length of 100 m, a width of 2 m, and a height of 2 m.
  • the wave-making water tank 20 is divided into two substantially in the width direction by a concrete partition wall 28, and two models 21 of the wave power generator 1 are fixed in a test channel 20a having a lm width on one side.
  • the other water channel 20b in the wave-making water tank 20 is provided with a permeable wave-dissipating wave 22 at the end.
  • a slope 25 having a 1/30 slope is formed, and a horizontal floor 26 is laid so as to smoothly connect to the top 25a.
  • the model 21 was fixed on the horizontal floor 26 with bolts and nuts not shown. By the way, the installation position of the rotating shaft 13 in the model 21 is selected after a plurality of trials and errors at a position considered to have the highest number of rotations for a specific wave condition.
  • the wave height of the incident wave was measured with a capacitive wave height meter (not shown) provided near the start end of the 1/30 slope in the test channel.
  • a capacitive wave height meter (not shown) provided near the start end of the 1/30 slope in the test channel.
  • two capacitive wave height meters were installed on the sea side of the model 21 and the wave height was measured by reading the record of water surface fluctuation.
  • the reflectance was obtained from the water surface fluctuation records of these two wave height meters through the method of separating and estimating the incoming reflected wave.
  • FIG. 6 shows the number of rotations N of the circular arc blade 12 per wave period as a change due to the wave period T. From FIG. 6, it can be seen that the rotation speed per wave period of the arc blade 12 increases when the wave period is long and the working wave height is large, and is approximately 2.5 rotations.
  • FIG. 9 shows the average rotational angular velocity of the arc blade 12.
  • the rotation angular velocity was about 8-9radian / s when the wave height H was about 10cm with little change due to the wave period.
  • only two types of wave heights of 5 cm and 10 cm are used, but it is assumed that the rotational angular velocity further increases under higher wave height conditions.
  • FIG. 10 shows a temporal change in the rotational speed of the arc blade 12 when the wave period T is 1.4 s as a representative example. From Fig. 10, it can be seen that the rotational angular velocity has a temporal fluctuation component, but the steady velocity component has an outstanding magnitude, and it can be used as a power source for wave power generation. is doing.
  • FIG. 11 shows the results of the reflectance Cr and the transmittance Ct when a water turbine is installed in the recreational water chamber, as a change in the wavelength / reservoir width ratio L / B.
  • Figure 11 also shows the calculation results based on the damped wave theory. However, in this calculation result, it is assumed that there is no influence from the turbine.
  • FIG. 12 shows a change in wave height in the water reserving chamber 10 due to L / B.
  • the wave height He in the water reserving chamber 10 is represented by the wave height gain obtained by dividing the wave height He by the incident wave height H.
  • the wave power generation device 1 When the wave power generation device 1 is used as a breakwater, the reduction of transmitted waves and reflected waves, which is the function of the breakwater, is almost completely affected by the installation of the water turbine in the reclaimed water chamber 10. I found it impossible. However, it was confirmed that the wave period at which the reflectivity was minimized shifted somewhat to the long period side by installing a water turbine.
  • the wave power generator 1 to which the present invention is applied may be configured such that the land-side impermeable wall 3 is in contact with the shore 31 as shown in FIG.
  • the same elements and members as those in the configuration of FIG. 1 described above are denoted by the same reference numerals and description thereof is omitted here.
  • the impervious wall 3 is also extended to a portion corresponding to the lower water passage opening 6a.
  • seawater does not pass through the seawater transmission part 6.
  • the present invention may include the case where the land-side impermeable wall 3 is disposed on the sea without contacting the shore 31.
  • the wave power generator 1 to which the present invention is applied is not limited to the case where the drooping wall 2 provided on the sea side and the non-permeable wall 3 provided on the land side are provided.
  • the first wall and the second wall may be replaced with a space between each other.
  • the first wall and the second wall are limited to cases where they are provided on the sea side and land side, respectively. It may be arranged at any location in the water.
  • the submerged horizontal plate 8 may be replaced with any horizontal plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Wave activated power generating device and method capable of enhancing energy efficiency furthermore. An eddy current of sea water is generated in a specific direction within a retarding chamber (10) formed between a hanging wall (2) and an impermeable wall (3) having a draft deeper than the hanging wall which are standing at an interval from the sea side to the land side, with an opening (7) being provided at the lower end of the hanging wall (2). A rotary shaft (13) secured with arcuate blades (12) is rotated depending on that eddy current and electric energy based on the rotation of the rotary shaft is taken out, thus generating power.

Description

明 細 書  Specification
波力発電装置及び方法  Wave power generation apparatus and method
技術分野  Technical field
[0001] 本発明は、波力から電気エネルギーを取り出して発電する波力発電装置及び方法 に関するものである。  [0001] The present invention relates to a wave power generation apparatus and method for generating electric power by extracting electric energy from wave power.
背景技術  Background art
[0002] 波力発電は、海洋における波エネルギーを動力としてタービンを回転させるとともに 発電機を作動させ、これを電気エネルギーに変換して利用する。この波エネルギー を利用するためには、これを空気エネルギーや機械的エネルギー等の力学的ェネル ギ一に変換する。そして、この変換された力学的エネルギーを、さらにタービンや発 電機等を用いて電気エネルギーとして取り出す。  Wave power generation uses a wave energy in the ocean as a motive power to rotate a turbine and operate a generator, which is converted into electric energy. In order to use this wave energy, it is converted into mechanical energy such as air energy and mechanical energy. Then, the converted mechanical energy is further extracted as electrical energy using a turbine, a generator or the like.
[0003] 即ち、この波力発電は、波力を空気エネルギーに変換し、これに基づきタービンを 回転させる方式と、波力を機械的なエネルギーに変換し、これに基づきタービンを回 転させる方式の 2つに大別されることになる。  [0003] That is, this wave power generation is a system that converts wave power into air energy and rotates the turbine based on this, and a system that converts wave power into mechanical energy and rotates the turbine based on this. It will be roughly divided into two.
[0004] 波力を空気エネルギーに変換する方式として、従来において図 14に示すような波 力発電装置 106が従来において提案されている。この波力発電装置 106は、港湾等 の海底に設けた広域面積のマウンド 101に防波堤 102を構築し、防波堤 102にケー ソンを上下方向に組み入れ、外洋水中に通じる開口部 103aを形成させるとともに防 波堤 102に固着された空気室 103と、当該空気室 103の上部に配設された空気ダン パ室 104並びに発電室 105とを備えている。  As a method for converting wave power into air energy, a wave power generation device 106 as shown in FIG. 14 has been conventionally proposed. This wave power generator 106 is constructed by constructing a breakwater 102 on a wide area mound 101 provided on the seabed of a port or the like, and incorporating caisson vertically into the breakwater 102 to form an opening 103a that leads to open sea water. An air chamber 103 fixed to the dam 102, an air damper chamber 104 and a power generation chamber 105 disposed above the air chamber 103 are provided.
[0005] 波力発電装置 106は、空気室 103と空気ダンパ室 104とを連通させた通気孔 107 と、空気ダンパ室 104と発電室 105とを連通させた入力口 108、及び発電室 105と外 部とを連通させた吸排気口 109とを各室の隔壁に形成させている。  [0005] The wave power generation device 106 includes a vent hole 107 that connects the air chamber 103 and the air damper chamber 104, an input port 108 that connects the air damper chamber 104 and the power generation chamber 105, and a power generation chamber 105. An intake / exhaust port 109 communicating with the outside is formed in the partition wall of each chamber.
[0006] また、通気孔 107には、除塵用のスクリーン 110が形成され、入力口 108には、空 気ダンパ室 104内部に向けて入力管 111が取り付けられ、さらにその先端にはフロ ート弁 112が配設されている。発電室 105の入力口 108にはタービン 113及び発電 機 114が配設されている。このような構成からなる波力発電装置 106は、外洋の波が 空気室 103の水面を昇降させ、内部の空気を揺動させることにより、タービン 113お よび発電機 114を作動させて電気エネルギーを得る。 [0006] Further, a dust removing screen 110 is formed in the vent hole 107, an input pipe 111 is attached to the input port 108 toward the inside of the air damper chamber 104, and a float is provided at the tip thereof. A valve 112 is provided. A turbine 113 and a generator 114 are disposed at the input port 108 of the power generation chamber 105. The wave power generation device 106 configured as described above has an ocean wave. By moving the water surface of the air chamber 103 up and down and swinging the air inside, the turbine 113 and the generator 114 are operated to obtain electric energy.
[0007] また、特に近年において、特別の複雑な機構を用いることなぐ空気室等建物の高 さを高くせず、流体の持つ性質を利用することにより発電室 105への海水の侵入を防 ぐことが可能な波力発電装置も提案されている (例えば、特許文献 1参照。)。  [0007] In particular, in recent years, it is possible to prevent the intrusion of seawater into the power generation chamber 105 by using the properties of the fluid without increasing the height of a building such as an air chamber without using a special complicated mechanism. A wave power generator capable of this is also proposed (for example, see Patent Document 1).
[0008] この特許文献 1において開示される波力発電装置 130では、例えば図 15に示すよ うに、空気室 133とタービン 143 ·発電機 144を収納した発電室 135の間に海水減勢 室 152を設け、空気室 133と海水減勢室 152とを通気管 153で連通させ、海水減勢 室 152と発電室 135のタービン 143とを入力管 154で連通させている。  In the wave power generation device 130 disclosed in Patent Document 1, for example, as shown in FIG. 15, a seawater reduction chamber 152 is provided between an air chamber 133 and a power generation chamber 135 containing a turbine 143 and a generator 144. The air chamber 133 and the seawater reduction chamber 152 are communicated with each other through a ventilation pipe 153, and the seawater suppression chamber 152 and the turbine 143 of the power generation chamber 135 are communicated with each other through an input pipe 154.
[0009] この波力発電装置 130では、空気室 133内における波圧力が上方の空気を昇降さ せ、通気管 153、海水減勢室 152を通じて連結されているタービン 143を作動させる ことにより、電気エネルギーを取得するものであるが、異常な波高が作用したときの海 面上昇時には、空気室 133から上方に抜ける空気は通気管 153で十分に小さく絞ら れ、海水減勢室 152で拡張されることになる。その結果、海水減勢室 152では海面 の上昇速度が遅くなるため、特別な機構を設けなくとも海水の異常な上昇による影響 を防止すること力 Sできる。  [0009] In this wave power generation device 130, the wave pressure in the air chamber 133 raises and lowers the air above, and the turbine 143 connected through the vent pipe 153 and the seawater depletion chamber 152 is operated. Although energy is acquired, when the sea level rises when an abnormal wave height acts, the air that escapes upward from the air chamber 133 is throttled sufficiently small by the vent pipe 153 and expanded by the seawater depletion chamber 152. It will be. As a result, in the seawater reduction chamber 152, the rising speed of the sea surface is slowed, so that it is possible to prevent the effects of abnormal seawater rising without providing a special mechanism.
[0010] また、波力を機械的なエネルギーに変換する方式として、波力から振り子を通して 発電機に力を加える、いわゆる振り子式と呼ばれる波力発電装置も提案されている。 この振り子式では、波エネルギーを受圧板の振り子運動として捕捉し、油圧に変換す る波力発電方式である。  [0010] Further, as a method for converting wave power into mechanical energy, a so-called pendulum type wave power generation apparatus has been proposed in which force is applied from a wave force to a generator through a pendulum. This pendulum type is a wave power generation system that captures wave energy as the pendulum motion of the pressure-receiving plate and converts it into hydraulic pressure.
[0011] 通常、沖合から進行してきた波が壁に当たると、後退する波が発生し、両方の波が 混じり合って壁の前に定常波と呼ばれる波ができる。この定常波は水粒子が上下動 する振動の「腹」と水平運動をする「節」の部分からなり、この節の部分に可動物体を 置けば、そのエネルギーを吸収することができる。振り子式は、かかる可動物体として 振り子を適用するものである。  [0011] Normally, when a wave traveling from offshore strikes a wall, a retreating wave is generated, and both waves mix to form a so-called standing wave in front of the wall. This standing wave consists of a “belly” of vibrations in which water particles move up and down and a “node” that moves horizontally. If a movable object is placed in this node, the energy can be absorbed. The pendulum type applies a pendulum as such a movable object.
[0012] また、波力発電用のタービンに関しても、特に近年において研究が進展し、例えば 、特許文献 2に開示されているように、波がもたらしてくれるエネルギーを最大限に取 り込むことが可能な波力用案内板空気噴出口付無弁タービンも提案されている。この 特許文献 2において開示されているタービンでは、タービン外装部の上下に、空気の 噴出口、吸引口ともなる切れ目を開け、回りを案内板を兼ねる空気噴出口で囲み、 中にランナーを入れる。 [0012] Further, research on wave power generation turbines has also progressed particularly in recent years, and, for example, as disclosed in Patent Document 2, it is possible to maximize the energy brought by waves. Valveless turbines with possible wave power guide plate air jets have also been proposed. this In the turbine disclosed in Patent Document 2, a notch that serves as an air outlet and suction port is opened above and below the turbine exterior, and the periphery is surrounded by an air outlet that also serves as a guide plate, and a runner is placed therein.
特許文献 1 :特開平 10— 246171号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-246171
特許文献 2 :特開 2000— 87838号公報  Patent Document 2: JP 2000-87838 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] ところで、上述した従来における波力発電装置では、波のエネルギーを空気エネル ギーゃ機械的エネルギー等の力学的エネルギーに一度変換する必要があるところ、 波のエネルギーで直接的にタービン等を回転させる構成と比較して、少量のェネル ギーしか取得することができなレ、。即ち、波のエネルギーを直接的に電気エネルギー に変換する場合と比較して、エネルギー効率を向上させることが困難であった。この ため、イニシャルコストの方がはるかに高くなり、波力発電そのものの実現化へ向けて 大きな障壁となっていた。  [0013] By the way, in the conventional wave power generation apparatus described above, it is necessary to convert the wave energy into mechanical energy such as air energy or mechanical energy. Compared to a rotating configuration, only a small amount of energy can be acquired. That is, it is difficult to improve energy efficiency as compared with the case where wave energy is directly converted into electric energy. For this reason, the initial cost was much higher, which was a major obstacle to the realization of wave power generation itself.
[0014] そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とする ところは、エネルギー効率をより向上させることが可能な波力発電装置及び方法を提 供することにある。 Therefore, the present invention has been devised in view of the above-described problems, and an object of the present invention is to provide a wave power generation apparatus and method that can further improve energy efficiency. There is.
課題を解決するための手段  Means for solving the problem
[0015] 本発明を適用した波力発電装置は、上述した課題を解決するために、互いに間隔 を空けてそれぞれ立設された第 iの壁並びに第 2の壁と、この第 1の壁の下端から第 2の壁の下端にかけて略水平方向に向けて配設された水平板とにより囲まれてなると ともに、第 1の壁の下部に開口部が形成された遊水室と、遊水室内に生じた水の渦 流に応じて羽根を固着させた回転軸を回転させ、その回転軸の回転に基づく電気工 ネルギーを取り出して発電する発電手段とを備える。 [0015] In order to solve the above-described problem, a wave power generation device to which the present invention is applied has an i-th wall and a second wall that are erected at intervals from each other, and the first wall It is surrounded by a horizontal plate arranged in a substantially horizontal direction from the lower end to the lower end of the second wall, and is formed in a water reserving chamber having an opening formed in the lower portion of the first wall and in the water reserving chamber. And a power generation means for generating electric power by rotating the rotating shaft to which the blades are fixed according to the vortex of the water and taking out the electric energy based on the rotation of the rotating shaft.
[0016] 本発明を適用した波力発電装置は、上述した課題を解決するために、互いに間隔 を空けてそれぞれ立設された第 1の壁並びに下端が海底面に固定された第 2の壁と 、この第 1の壁の下端から第 2の壁にかけて略水平方向に向けて配設された水平板 とにより囲まれてなるとともに、上記第 1の壁の下部に開口部が形成された遊水室と、 上記遊水室内に生じた水の渦流に応じて羽根を固着させた回転軸を回転させ、その 回転軸の回転に基づく電気エネルギーを取り出して発電する発電手段とを備える。 [0016] In order to solve the above-described problems, the wave power generation device to which the present invention is applied has a first wall and a second wall each having a lower end fixed to the sea bottom. And a horizontal plate disposed in a substantially horizontal direction from the lower end of the first wall to the second wall, and also has an opening formed in the lower portion of the first wall. Room, Power generation means for generating electric power by rotating a rotating shaft to which blades are fixed in accordance with the swirl of water generated in the water reserving chamber and extracting electric energy based on the rotation of the rotating shaft.
[0017] また、本発明を適用した波力発電方法は、互いに間隔を空けてそれぞれ立設され た第 1の壁並びに第 2の壁と、この第 1の壁の下端から第 2の壁の下端にかけて略水 平方向に向けて配設された水平板とにより囲まれてなるとともに、上記第 1の壁の下 部に開口部が形成された遊水室内で、水の渦流を発生させ、当該渦流に応じて羽 根を固着させた回転軸を回転させ、その回転軸の回転に基づく電気エネルギーを取 り出して発電する。  [0017] In addition, the wave power generation method to which the present invention is applied includes a first wall and a second wall that are erected at intervals from each other, and the second wall from the lower end of the first wall. A vortex flow of water is generated in a recreational chamber that is surrounded by a horizontal plate arranged in a substantially horizontal direction toward the lower end and has an opening formed in the lower portion of the first wall. A rotating shaft with a fixed blade is rotated according to the eddy current, and electric energy is extracted based on the rotation of the rotating shaft to generate electricity.
発明の効果  The invention's effect
[0018] 円弧羽根を固着させた回転軸からなる水車は、この定常渦流に基づいて反時計周 りに回転することになる。その結果、波エネルギーを直接的に電気エネルギーに変換 することが可能となり、空気エネルギーや機械的エネルギー等の力学的エネルギー に一度変換する場合と比較して、エネルギー効率をより向上させることが可能となる。 このため、イニシャルコストを抑えることが可能となり、波力発電そのものの実現性を 大いに高めることが可能となる。  [0018] A water turbine composed of a rotating shaft to which arc blades are fixed rotates counterclockwise based on the steady vortex. As a result, wave energy can be directly converted into electrical energy, and energy efficiency can be further improved compared to the case where it is once converted into mechanical energy such as air energy or mechanical energy. Become. As a result, the initial cost can be reduced, and the feasibility of wave power generation itself can be greatly enhanced.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明を適用した波力発電装置を示す図である。  FIG. 1 is a diagram showing a wave power generator to which the present invention is applied.
[図 2]発電部の横断面図である。  FIG. 2 is a cross-sectional view of the power generation unit.
[図 3]遊水室内において生成される定常渦流につき説明するための図である。  FIG. 3 is a diagram for explaining a steady vortex generated in a water-reservoir chamber.
[図 4]遊水室内において隅に面取り部を形成した例を示す図である。  FIG. 4 is a view showing an example in which chamfered portions are formed at corners in the water reserving chamber.
[図 5]本発明を適用した波力発電装置の実験系につき示す図である。  FIG. 5 is a diagram showing an experimental system of a wave power generator to which the present invention is applied.
[図 6]波 1周期当たりの水車の回転数のデータを示す図である。  FIG. 6 is a diagram showing data on the number of rotations of a turbine per wave cycle.
[図 7]波 1周期当たりの水車の回転数につき波長 ·遊水室幅比 L/Bを横軸にしたデ ータを示す図である。  FIG. 7 is a diagram showing data with the horizontal axis indicating the wavelength / water chamber width ratio L / B per rotation speed of the turbine per wave cycle.
[図 8]透過、反射率の関係を示す図である。  FIG. 8 is a diagram showing the relationship between transmission and reflectance.
[図 9]円弧羽根の平均回転角速度のデータを示す図である。  FIG. 9 is a diagram showing average rotation angular velocity data of arc blades.
[図 10]波周期 Tが 1. 4sのときにおける円弧羽根の回転速度の時間的な変化を示す 図である。 [図 11]遊水室内に水車を設置したときにおける反射率と透過率の結果を、波長 ·遊 水室幅比 L/Bの変化で示した図である。 FIG. 10 is a diagram showing the temporal change in the rotational speed of the arc blade when the wave period T is 1.4 s. [FIG. 11] A diagram showing the results of reflectance and transmittance when a water turbine is installed in the recreational water chamber, as a change in the wavelength / reservoir width ratio L / B.
[図 12]遊水室内における波高の L/Bによる変化を示す図である。  FIG. 12 is a diagram showing a change in wave height in the water reserving chamber due to L / B.
[図 13]本発明を適用した波力発電装置における他の例を示す図である。  FIG. 13 is a diagram showing another example of a wave power generator to which the present invention is applied.
[図 14]従来の波力発電装置を示す図である。  FIG. 14 is a diagram showing a conventional wave power generator.
[図 15]従来の波力発電装置を示す他の図である。  FIG. 15 is another view showing a conventional wave power generation device.
符号の説明  Explanation of symbols
[0020] 1 波力発電装置 [0020] 1 wave power generator
2 垂下壁  2 Hanging wall
3 不透過壁  3 Impervious wall
4 静水面  4 Still water surface
5 海底部  5 Seabed
6 海水透過部  6 Seawater passage
7 開口部  7 opening
8 没水平版  8 Submerged horizontal version
9 面取り部  9 Chamfer
10 遊水室  10 Reservoir room
11 発電部  11 Power generation department
12 円弧羽根  12 Arc blade
13 回転軸  13 Rotating axis
14 発電機  14 Generator
15 軸受け  15 Bearing
16 円板  16 disc
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明を実施するための最良の形態として、波力から電気エネルギーを取り 出して発電する波力発電装置及び方法について、図面を参照しながら詳細に説明 する。 Hereinafter, as the best mode for carrying out the present invention, a wave power generation apparatus and method for generating electric power by extracting electric energy from wave power will be described in detail with reference to the drawings.
[0022] 図 1は、本発明を適用した波力発電装置 1を示している。この波力発電装置 1は、 下部透過型で、かつ異吃水 2重カーテン式構造であり、海側の垂下壁 2の吃水が、 陸側の不透過壁 3よりも浅くなるように調整されている。即ち、垂下壁 2下端に位置す る吃水下端部 2aが不透過壁 3下端に位置する吃水下端部 3aよりも静水面 4に近い 位置になるように設けられている。また、これら垂下壁 2と不透過壁 3は、互いに間隔 をあけて平行に配置されてなり、両壁 2、 3の間には遊水室 10が形成されている。ち なみに、この遊水室 10内における静水面 4は、外部に対して開放されていることが前 提となる。 FIG. 1 shows a wave power generator 1 to which the present invention is applied. This wave power generator 1 It is a lower transmission type and has a double curtain type structure with different dredging water, and the drowning wall 2 on the sea side is adjusted to be shallower than the impermeable wall 3 on the land side. That is, the flooded lower end 2a located at the lower end of the drooping wall 2 is provided so as to be closer to the hydrostatic surface 4 than the flooded lower end 3a located at the lower end of the impermeable wall 3. The drooping wall 2 and the impervious wall 3 are arranged in parallel with a distance from each other, and a water reserving chamber 10 is formed between the walls 2 and 3. Incidentally, it is assumed that the hydrostatic surface 4 in the water reserving chamber 10 is open to the outside.
[0023] このような異吃水 2重カーテン壁で構成されている波力発電装置 1において、不透 過壁 3の吃水下端部 3aと海底部 5との間には、下部通水開口部 6aが形成されている  [0023] In the wave power generator 1 configured with such double-walled double curtain walls, a lower water flow opening 6a is provided between the water-filled lower end 3a and the seabed 5 of the impermeable wall 3. Is formed
[0024] また、下部通水開口部 6aの上端に略一致する高さで、かつ、吃水下端部 2aから吃 水下端部 3aにかけて、水平方向に没水平版 8が配設されている。この没水平版 8は 、透過波低減および波の作用に伴う垂下壁 2下端より発生する渦流水の制御や、そ の制御効果による沖向き一方向流の生成を可能とする。また、垂下壁 2下端から没水 平版 8に至るまで開口部 7が形成されている。この開口部 7から遊水室 10内へ海水 が行き来することになる。 [0024] Further, a submerged horizontal plate 8 is disposed in a horizontal direction at a height substantially coinciding with the upper end of the lower water passage opening 6a and from the flooded lower end 2a to the flooded lower end 3a. This submerged horizontal plate 8 makes it possible to control the vortex water generated from the lower end of the drooping wall 2 due to the transmission wave reduction and the action of the wave, and to generate an off-shore unidirectional flow by the control effect. An opening 7 is formed from the lower end of the hanging wall 2 to the submerged flat plate 8. Seawater will flow from the opening 7 into the reclaimed water chamber 10.
[0025] さらに、この波力発電装置 1は、遊水室 10内における特定の方向に生じた海水の 渦流を動力として発電する発電部 11が配設されてレ、る。  Furthermore, the wave power generation device 1 is provided with a power generation unit 11 that generates power using a vortex of seawater generated in a specific direction in the water reserving chamber 10 as power.
[0026] この発電部 11は、円弧羽根 12を固着させたいわゆる水車としての役割を担う回転 軸 13と、海水の渦流に基づいてこの回転軸 13を回転駆動させることにより、電気工 ネルギーを取り出して発電する図示しない発電機とを備えている。ちなみに、この円 弧羽根 12は、レ、かなる形状からなる羽根で構成されていてもよい。  [0026] The power generation unit 11 takes out electric energy by rotating the rotary shaft 13 that plays a role as a so-called water wheel having a circular arc blade 12 fixed thereto, and by rotating the rotary shaft 13 based on the vortex of seawater. And a generator (not shown) for generating power. Incidentally, the circular arc blade 12 may be constituted by a blade having a shape.
[0027] 図 2(a)は、この発電部 11を図 1中 A方向から見た図であり、図 2(b)は、この発電部 1 1の横断面図である。円弧羽根 12は、例えば塩化ビニル等の材料で構成されてなり 、回転軸 13の周囲に略 180° 間隔で固着させている。ちなみに、この円弧羽根 12 は、力かる構成に限定される趣旨ではなぐいかなる形状で、またいかなる角度間隔 で、レ、かなる枚数で構成されていてもよい。また、この回転軸 13は、軸受け 15により 支持されている。この軸受け 15は、例えば回転体として球体を用いたボールべアリン グ軸受け等が適用され、回転軸 13の回転に伴う摩擦を効果的に減らすことができる 。これにより、回転軸 13は、波力を受けて円滑に回転駆動することが可能となるととも に、その位置が強力に保持されることになる。 FIG. 2 (a) is a view of the power generation unit 11 as viewed from the direction A in FIG. 1, and FIG. 2 (b) is a cross-sectional view of the power generation unit 11. The arc blade 12 is made of, for example, a material such as vinyl chloride, and is fixed around the rotating shaft 13 at intervals of about 180 °. Incidentally, the arcuate blades 12 may be formed in any shape not limited to a powerful configuration, and in any number of angles at any angular interval. The rotating shaft 13 is supported by a bearing 15. This bearing 15 is, for example, a ball bearing using a sphere as a rotating body. A friction bearing or the like is applied and friction caused by rotation of the rotary shaft 13 can be effectively reduced. As a result, the rotating shaft 13 can be smoothly rotated by receiving the wave force, and the position thereof is strongly held.
[0028] 回転軸 13の両端には、それぞれ円板 16が配設されている。この円板 16を配設す ることにより、海水を効果的に取り込んで円弧羽根 12を推進させることができ、ひいて は回転軸 13の回転駆動力を増加させることが可能となる。ちなみに、この円板 16の 構成は省略してもよい。この回転軸 13は、上下方向において垂下壁 2下端とほぼ同 じ高さとなるように調整されてレ、てもよレ、。  [0028] Discs 16 are disposed at both ends of the rotating shaft 13, respectively. By disposing the disk 16, seawater can be effectively taken in and the arc blade 12 can be propelled, and thus the rotational driving force of the rotating shaft 13 can be increased. Incidentally, the configuration of the disc 16 may be omitted. The rotary shaft 13 is adjusted so as to be almost the same height as the lower end of the hanging wall 2 in the vertical direction.
[0029] 発電機 14は、海水の渦流に基づく圧力を受けて、波エネルギーを回転軸 13に基 づく回転運動のエネルギーに変換し、これ力、ら運動エネルギーを取り出す、いわゆる 原動機である。  [0029] The generator 14 is a so-called prime mover that receives pressure based on the vortex of seawater, converts wave energy into rotational energy based on the rotating shaft 13, and extracts kinetic energy from this force.
[0030] なお、この図 2に示す例においては、円弧羽根 12と回転軸 13からなる水車を 2基 設ける場合を例にとり説明をしたが、かかる構成に限定されるものではなぐ 1基以上 であればレ、かなる数で構成されてレ、てもよレ、。  [0030] In the example shown in Fig. 2, the case where two water turbines including the arc blade 12 and the rotating shaft 13 are provided has been described as an example. However, the present invention is not limited to such a configuration. If there is, it is made up of a number of numbers.
[0031] このような構成からなる波力発電装置 1では、没水平版 8と海底との間に形成された 海水透過部 6によって潮流や波浪流等の流れの通水機能が維持されるとともに、遊 水室 10内でのピストンモードの波動運動を利用して吃水下端部 3aより渦流れを発生 し、波動運動のエネルギーを最終的に一方向流のエネルギーに効率的に変換する  [0031] In the wave power generation device 1 having such a configuration, the water flow function of a flow such as a tidal current and a wave current is maintained by the seawater permeation section 6 formed between the submerged horizontal plate 8 and the seabed. The vortex flow is generated from the lower end 3a of the flooded water using the piston mode wave motion in the basin 10 and the energy of the wave motion is finally efficiently converted into one-way flow energy.
[0032] このとき、没水平版 8は、図 3に示すように遊水室 10内に図中の状態で反時計まわ りの渦流を集積するとともに、この渦流が、海水透過部 6中を流れる流体へ干渉を及 ぼすことを抑えることが可能となる。別の表現をすれば、没水平版 8は、海水透過部 6 において前後方向に延びる下部通水路を形成するもので、特に、この海水透過部 6 における天井面を形成する役目を果たしている。 At this time, the submerged horizontal plate 8 accumulates a counterclockwise vortex in the state shown in the drawing as shown in FIG. 3 and this vortex flows in the seawater permeation section 6. It is possible to suppress interference with the fluid. In other words, the submerged horizontal plate 8 forms a lower water passage extending in the front-rear direction in the seawater permeation portion 6, and in particular plays a role of forming a ceiling surface in the seawater permeation portion 6.
[0033] このような没水平版 8で形成される海水透過部 6により、海水透過部 6を流れる流体 は、図 3に示すように、所定方向の水流に強制的に整流され、かつ垂下壁 2の海側に 形成される時計回りの渦の影響を強く受けることから、波の一周期間で平均化すると 海側に輸送される。すなわち、海水透過部 6を形成する没水平版 8は、陸側から海側 に向力う海水の平均流を引き起す役割を果たすことになり、これにより港湾の内外に おいて海水の交流がより促進されることになる。 [0033] By the seawater permeable portion 6 formed by such a submerged horizontal plate 8, the fluid flowing through the seawater permeable portion 6 is forcibly rectified into a water flow in a predetermined direction as shown in FIG. Since it is strongly influenced by the clockwise vortex formed on the sea side, it is transported to the sea side when averaged over one wave period. That is, the submerged horizontal plate 8 that forms the seawater transmission part 6 is It will play a role in causing the average flow of seawater facing the sea, and this will further promote the exchange of seawater inside and outside the port.
[0034] また、このような海水透過部 6を設けることにより、波運動に伴って垂下壁 2下端より 発生する反時計周りの渦流が遊水室 10内において累積される。この渦流は、時間位 相に関係なぐ特定の回転方向へ定常的に生じる。この定常渦流の強さは、海水透 過部 6を介した沖向きの平均輸送流量の大きさにも関係している。  Further, by providing such a seawater permeable portion 6, a counterclockwise vortex generated from the lower end of the drooping wall 2 along with the wave motion is accumulated in the water reserving chamber 10. This vortex flows constantly in a specific direction of rotation that is related to the time phase. The strength of this steady vortex is also related to the magnitude of the mean off-shore transport flow through the seawater permeation section6.
[0035] このため、円弧羽根 12を固着させた回転軸 13からなる水車は、この定常渦流に基 づいて反時計周りに回転することになる。その結果、波エネルギーを直接的に電気 エネルギーに変換することが可能となり、空気エネルギーや機械的エネルギー等の 力学的エネルギーに一度変換する場合と比較して、エネルギー効率をより向上させ ること力 S可能となる。このため、イニシャルコストを抑えることが可能となり、波力発電そ のものの実現性を大いに高めることが可能となる。  [0035] For this reason, the water turbine composed of the rotating shaft 13 to which the circular arc blade 12 is fixed rotates counterclockwise based on the steady vortex. As a result, it becomes possible to directly convert wave energy into electrical energy, and to improve energy efficiency compared to the case where it is once converted into mechanical energy such as air energy and mechanical energy. It becomes possible. For this reason, initial costs can be reduced, and the feasibility of wave power generation itself can be greatly enhanced.
[0036] なお、本発明は、上述した実施の形態に限定されるものではなぐ例えば図 4に示 すように遊水室 10の少なくとも一の隅部につき面取りがなされた面取り部 9が形成さ れていてもよい。これにより、上述した定常渦流をより効率的に生成することが可能と なり、エネルギー効率をさらに向上させることも可能となる。  It should be noted that the present invention is not limited to the above-described embodiment. For example, as shown in FIG. 4, a chamfered portion 9 that is chamfered at least at one corner of the water reserving chamber 10 is formed. It may be. As a result, the steady vortex described above can be generated more efficiently, and the energy efficiency can be further improved.
[0037] 以下、このような遊水室 10内の渦流の回転運動エネルギーを円弧羽根 12により取 り込むことによる発電利用への可能性につき検討した結果につき説明をする。  [0037] Hereinafter, the results of studying the possibility of using power generation by taking in the rotational kinetic energy of the vortex flow in the water reserving chamber 10 by the arc blade 12 will be described.
[0038] この検討実験につき使用したモデルは、図 1に示すような波力発電装置 1と同一断 面であり、 1基の堤体長は 50cmである。実験では、この波力発電装置 1の模型 21を 2基製作して、 lmの水路幅全体を占めるようにした。ちなみに、製作した模型 21の 縮尺は 1Z20である。  [0038] The model used for this examination experiment is the same section as the wave power generator 1 as shown in Fig. 1, and the length of one dam body is 50cm. In the experiment, two models 21 of this wave power generation device 1 were manufactured so that they occupy the entire channel width of lm. By the way, the scale of the model 21 I made is 1Z20.
[0039] 次に、この製作した波力発電装置 1の模型 21を造波水槽中に設ける。この造波水 槽 20は、図 5に示すように、長さ 100m、幅 2m、高さ 2mの長水路である。造波水槽 2 0は、コンクリート製の隔壁 28により幅方向にほぼ 2等分されており、片側 lm幅の試 験水路 20a内にこの波力発電装置 1の模型 21を 2基固定した。この造波水槽 20にお けるもう一方の水路 20bには、端部に透過性の消波ェ 22が設けられている。これによ り、試験水路 20aにおいて平均流が生じたときに容易に流れが還流して水位差が生 じることを防ぐこと力 S可言 となる。 [0039] Next, the model 21 of the produced wave power generation device 1 is provided in a wave-making water tank. As shown in FIG. 5, the wave-making water tank 20 is a long water channel having a length of 100 m, a width of 2 m, and a height of 2 m. The wave-making water tank 20 is divided into two substantially in the width direction by a concrete partition wall 28, and two models 21 of the wave power generator 1 are fixed in a test channel 20a having a lm width on one side. The other water channel 20b in the wave-making water tank 20 is provided with a permeable wave-dissipating wave 22 at the end. As a result, when an average flow occurs in the test channel 20a, the flow easily recirculates, causing a difference in water level. The ability to prevent twisting S
[0040] 試験水路 20aでは、 1/30勾配の斜面 25が形成され、その頂部 25aに滑らかに接 続するように水平床 26が敷設されている。模型 21は、この水平床 26上において図 示しないボルトとナットで固定した。ちなみに、この模型 21における回転軸 13の設置 位置は、特定の波条件に対して最も回転数が多いと考えられる位置を、複数回の試 行錯誤の後に選定したものである。  [0040] In the test channel 20a, a slope 25 having a 1/30 slope is formed, and a horizontal floor 26 is laid so as to smoothly connect to the top 25a. The model 21 was fixed on the horizontal floor 26 with bolts and nuts not shown. By the way, the installation position of the rotating shaft 13 in the model 21 is selected after a plurality of trials and errors at a position considered to have the highest number of rotations for a specific wave condition.
[0041] また、実験では、試験水路内の 1/30斜面の始端部付近に設けた図示しない容量 式波高計で入射波の波高を測定した。また、模型 21からの反射波に関しては、かか る模型 21の海側に 2台の容量式波高計を設置し、水面変動記録を読み取ることによ りその波高を測定した。さらに、これら 2台の波高計の水面変動記録から、入反射波 の分離推定法を介して反射率を求めた。  [0041] In addition, in the experiment, the wave height of the incident wave was measured with a capacitive wave height meter (not shown) provided near the start end of the 1/30 slope in the test channel. Regarding the reflected wave from the model 21, two capacitive wave height meters were installed on the sea side of the model 21 and the wave height was measured by reading the record of water surface fluctuation. Furthermore, the reflectance was obtained from the water surface fluctuation records of these two wave height meters through the method of separating and estimating the incoming reflected wave.
[0042] また、模型 21の陸側と、模型 21における遊水室 10内には、それぞれ 1台ずつの容 量式波高計を設置することにより、透過波高と、遊水室 10内の波高とを測定すること ができるようにした。  [0042] In addition, by installing one capacitive wave height meter on the land side of the model 21 and in the reclaimed water chamber 10 of the model 21, the transmitted wave height and the wave height in the reclaimed water chamber 10 are reduced. It was made possible to measure.
[0043] また、海水透過部 6における水平流速を測定することができるようにするため、下部 通水開口部 6a周辺において電磁流速計を設置した。  [0043] Further, in order to be able to measure the horizontal flow velocity in the seawater permeable portion 6, an electromagnetic velocimeter was installed around the lower water flow opening 6a.
[0044] また、波条件は、下記表に示すような条件を用いた。 [0044] Further, as the wave conditions, conditions shown in the following table were used.
[表 1] [table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0045] 図 6は、円弧羽根 12の波一周期当たりの回転数 Nを波周期 Tによる変化で表したも のである。この図 6より、円弧羽根 12の波一周期あたりの回転数 Νは、波周期が長ぐ 作用波高 Ηが大きい場合において多くなり、ほぼ 2. 5回転程度であることが認められ る。 FIG. 6 shows the number of rotations N of the circular arc blade 12 per wave period as a change due to the wave period T. From FIG. 6, it can be seen that the rotation speed per wave period of the arc blade 12 increases when the wave period is long and the working wave height is large, and is approximately 2.5 rotations.
[0046] 作用波高 Ηが大きいと回転数 Νが増加する理由としては、垂下壁 2下端からの渦の 量が過度に増加するためであると考えられる。また、作用波の周期が長くなると回転 数が増加する理由としては、遊水室 10内におけるピストンモード波動運動の増幅度 が長周期側で大きくなるためであると考えられる。これは、円弧羽根 12の回転数と波 長 L'遊水室幅 Bの比( = L/B)の関係を示す図 7や、力かる L/Bに対する反射率 C r、透過率 Ctの関係を示す図 8との比較からもある程度類推することができる。 [0046] The reason why the rotational speed Ν increases when the working wave height Η is large is considered to be that the amount of vortex from the lower end of the hanging wall 2 increases excessively. Further, the reason why the rotational speed increases as the period of the action wave becomes longer is considered to be that the amplification degree of the piston mode wave motion in the water reserving chamber 10 becomes larger on the long period side. This is because the rotation speed and wave of the arc blade 12 From some comparison with Fig. 7, which shows the relationship between the ratio of long L 'water chamber width B (= L / B), and Fig. 8, which shows the relationship between reflectivity C r and transmittance Ct for the strong L / B. can do.
[0047] 図 9は、円弧羽根 12の平均回転角速度を示している。いずれの周期条件において も、作用波高が大きいときに平均回転角速度が高速になる傾向を示している。そして 、回転角速度は、波周期による変化があまりみられず、作用波高 Hが 10cm程度であ るとき 8〜9radian/s程度であった。本実験では、作用波高として 5cmと 10cmの 2種 類しか採用していないが、より高い波高の条件下では更に回転角速度は増加すると 推測される。 FIG. 9 shows the average rotational angular velocity of the arc blade 12. In any periodic condition, the average rotational angular velocity tends to increase when the acting wave height is large. The rotation angular velocity was about 8-9radian / s when the wave height H was about 10cm with little change due to the wave period. In this experiment, only two types of wave heights of 5 cm and 10 cm are used, but it is assumed that the rotational angular velocity further increases under higher wave height conditions.
[0048] 図 10は、代表例として波周期 Tが 1. 4sのときにおける円弧羽根 12の回転速度の 時間的な変化を示している。この図 10から、回転角速度は、時間的な変動成分を有 するものの定常的な速度成分が卓越した大きさであることが認められ、波力発電の動 力源として利用することができることを示唆している。  FIG. 10 shows a temporal change in the rotational speed of the arc blade 12 when the wave period T is 1.4 s as a representative example. From Fig. 10, it can be seen that the rotational angular velocity has a temporal fluctuation component, but the steady velocity component has an outstanding magnitude, and it can be used as a power source for wave power generation. is doing.
[0049] 図 11は、遊水室内に水車を設置したときにおける反射率 Crと透過率 Ctの結果を、 波長 ·遊水室幅比 L/Bの変化で示している。この図 11では、減衰波理論による算定 結果についても示してある。但し、この算定結果では、水車の影響はないものと仮定 している。  FIG. 11 shows the results of the reflectance Cr and the transmittance Ct when a water turbine is installed in the recreational water chamber, as a change in the wavelength / reservoir width ratio L / B. Figure 11 also shows the calculation results based on the damped wave theory. However, in this calculation result, it is assumed that there is no influence from the turbine.
[0050] この図 11と水車の存在しない図 8との比較から、水車を設置することによる影響は、 反射率の極小値が現われる L/Bの条件がそれの大きな長周期側に移行するように なること力 S分力る。但し、透過率に関しては、水車の設置による影響は殆どみられな かった。  [0050] From the comparison between Fig. 11 and Fig. 8 where there is no water turbine, the effect of installing a water turbine is that the L / B condition where the minimum value of the reflectance appears shifts to the long-period side where it is larger. Power to become S Power for S. However, with regard to the transmittance, there was almost no effect due to the installation of the water turbine.
[0051] 図 12は、遊水室 10内における波高の L/Bによる変化を示している。この図 12で は、遊水室 10内における波高 Heを入射波高 Hで除した波高増幅度で表してある。  FIG. 12 shows a change in wave height in the water reserving chamber 10 due to L / B. In FIG. 12, the wave height He in the water reserving chamber 10 is represented by the wave height gain obtained by dividing the wave height He by the incident wave height H.
[0052] この図から、反射率が低減するのは、波高増幅度が比較的大きくなる LZB = 12付 近であることや、水車の回転数が 2. 5回転/周期と増加するのもこの条件以降であ ること力 S確認できる。このように、反射波の逸散や水車の回転数が著しくなるのは、原 因としては遊水室内のピストンモードの波動運動の増幅によるものと考えられる。  [0052] From this figure, the reflectivity decreases because the wave height gain is relatively large around LZB = 12, and the rotation speed of the water turbine increases to 2.5 rotations / cycle. It is possible to confirm that it is after the condition. In this way, it is thought that the reason why the dissipation of the reflected wave and the rotation speed of the water turbine become remarkable is due to the amplification of the piston mode wave motion in the water chamber.
[0053] 以上、波エネルギーの取得を目的として、遊水室 10内に形成される渦流れの運動 エネルギーを利用する方法の有効性につき、実験的検討を行ってきた。 [0054] その結果、遊水室 10内に設けられた水車は、遊水室 10内に発生する一方向回転 渦により、波の一周期当り 1. 5〜2. 5回転程度の割合で一方向に回転することが判 明した。そして、その回転数は、入射波高及び波周期が大きくなると増大傾向を示す ことも確認することができた。 As described above, for the purpose of acquiring wave energy, experimental studies have been conducted on the effectiveness of the method using the kinetic energy of the vortex flow formed in the water reserving chamber 10. [0054] As a result, the water wheel provided in the water reserving chamber 10 is unidirectionally rotated at a rate of about 1.5 to 2.5 rotations per wave cycle due to the one-way rotating vortex generated in the water reserving chamber 10. It turns out that it rotates. It was also confirmed that the number of rotations showed a tendency to increase as the incident wave height and wave period increased.
[0055] そして、この波力発電装置 1を防波堤として併用する場合において、その防波堤の 機能である、透過波及び反射波の低減に関しては、水車を遊水室 10内に設けること による影響は殆どみられないことが分かった。但し、反射率が極小となる波周期は、 水車を設けることにより、多少ながら長周期側へ移行することが確認された。  [0055] When the wave power generation device 1 is used as a breakwater, the reduction of transmitted waves and reflected waves, which is the function of the breakwater, is almost completely affected by the installation of the water turbine in the reclaimed water chamber 10. I found it impossible. However, it was confirmed that the wave period at which the reflectivity was minimized shifted somewhat to the long period side by installing a water turbine.
[0056] なお、上述した実施の形態では、海側から陸側にかけて垂下壁 2、不透過壁を配 置する場合を例にとり説明をしたが、力かる構成に限定されるものではなぐ海、河川 、湖等の水の流れが存在する如何なる箇所において、レ、かなる方向へ向けて配設さ れていてもよい。  [0056] In the above-described embodiment, the case where the drooping wall 2 and the impervious wall are arranged from the sea side to the land side has been described as an example, but the sea is not limited to a powerful configuration, In any place where there is a flow of water such as a river or a lake, it may be arranged in a direction.
[0057] また、本発明を適用した波力発電装置 1は、例えば図 13に示すように、陸側の不透 過壁 3を岸 31に接するようにして構成してもよい。この図 13の構成において、上述し た図 1の構成と同一の要素、部材に関しては、同一の番号を付すことによりここでの 説明を省略する。この図 13の構成では、不透過壁 3の下端を海底部 5に固定させる 結果、下部通水開口部 6aに相当する部分にも不透過壁 3が延設されることになる。ま た、海水透過部 6において海水は通水することもなくなる。  [0057] In addition, the wave power generator 1 to which the present invention is applied may be configured such that the land-side impermeable wall 3 is in contact with the shore 31 as shown in FIG. In the configuration of FIG. 13, the same elements and members as those in the configuration of FIG. 1 described above are denoted by the same reference numerals and description thereof is omitted here. In the configuration of FIG. 13, as a result of fixing the lower end of the impervious wall 3 to the seabed 5, the impervious wall 3 is also extended to a portion corresponding to the lower water passage opening 6a. In addition, seawater does not pass through the seawater transmission part 6.
[0058] 力かる場合においても同様に、この開口部 7から遊水室 10内へ海水が行き来する ことになる。その結果、遊水室 10内において定常渦流を発生させることが可能となり 、円弧羽根 12を固着させた回転軸 13からなる水車を反時計周りに回転させることが でき、発電させることが可能となる。  [0058] In the case where power is applied, similarly, seawater goes back and forth from the opening 7 into the water reserving chamber 10. As a result, it is possible to generate a steady vortex in the water reserving chamber 10, and the water turbine composed of the rotating shaft 13 to which the arc blade 12 is fixed can be rotated counterclockwise to generate electric power.
[0059] また、この図 13に示すように、陸側の不透過壁 3を岸 31に接触させることなぐ海上 においてこれを配設する場合も本発明に含めてもよいことは勿論である。  Further, as shown in FIG. 13, it is needless to say that the present invention may include the case where the land-side impermeable wall 3 is disposed on the sea without contacting the shore 31.
[0060] さらに、本発明を適用した波力発電装置 1は、海側に設けられた垂下壁 2並びに陸 側に設けられた不透過壁 3を設ける場合に限定されるものではなぐこれらにつき、互 レ、に間隔を空けてそれぞれ立設された第 1の壁並びに第 2の壁に代替してもよい。こ の第 1の壁並びに第 2の壁は、それぞれ海側、陸側に設けられる場合に限定されるこ となぐ水中のいかなる箇所において配設されていてもよい。また、没水平版 8も、い かなる水平板に代替するようにしてもよい。 [0060] Further, the wave power generator 1 to which the present invention is applied is not limited to the case where the drooping wall 2 provided on the sea side and the non-permeable wall 3 provided on the land side are provided. Alternatively, the first wall and the second wall may be replaced with a space between each other. The first wall and the second wall are limited to cases where they are provided on the sea side and land side, respectively. It may be arranged at any location in the water. The submerged horizontal plate 8 may be replaced with any horizontal plate.

Claims

請求の範囲 The scope of the claims
[1] 互いに間隔を空けてそれぞれ立設された第 1の壁並びに第 2の壁と、この第 1の壁 の下端から第 2の壁の下端にかけて略水平方向に向けて配設された水平板とにより 囲まれてなるとともに、上記第 1の壁の下部に開口部が形成された遊水室と、 上記遊水室内に生じた水の渦流に応じて羽根を固着させた回転軸を回転させ、そ の回転軸の回転に基づく電気エネルギーを取り出して発電する発電手段とを備える こと  [1] A first wall and a second wall standing upright apart from each other, and a horizontal wall arranged in a substantially horizontal direction from the lower end of the first wall to the lower end of the second wall. A revolving water chamber surrounded by a plate and having an opening formed in the lower portion of the first wall, and a rotating shaft to which a blade is fixed according to the vortex of water generated in the reclaiming water chamber, And a power generation means for generating electric power by taking out electrical energy based on the rotation of the rotating shaft.
を特徴とする波力発電装置。  A wave power generator characterized by.
[2] 上記遊水室は、波の進入方向に向かって上記開口部が形成されてなること [2] The water reserving chamber is formed with the opening toward the wave approaching direction.
を特徴とする請求項 1記載の波力発電装置。  The wave power generation device according to claim 1.
[3] 上記第 1の壁並びに第 2の壁は、海側から陸側にかけて間隔を空けてそれぞれ立 設されてなること [3] The first wall and the second wall should be set up at intervals from the sea side to the land side.
を特徴とする請求項 1又は 2記載の波力発電装置。  The wave power generator according to claim 1 or 2, wherein
[4] 互いに間隔を空けてそれぞれ立設された第 1の壁並びに下端が海底面に固定され た第 2の壁と、この第 1の壁の下端から第 2の壁にかけて略水平方向に向けて配設さ れた水平板とにより囲まれてなるとともに、上記第 1の壁の下部に開口部が形成され た遊水室と、 [4] A first wall standing upright and spaced apart from each other, a second wall whose lower end is fixed to the bottom of the sea, and a substantially horizontal direction from the lower end of the first wall to the second wall A water-reserving chamber that is surrounded by a horizontal plate disposed at the same time and that has an opening formed in the lower portion of the first wall;
上記遊水室内に生じた水の渦流に応じて羽根を固着させた回転軸を回転させ、その 回転軸の回転に基づく電気エネルギーを取り出して発電する発電手段とを備えること を特徴とする波力発電装置。  A wave power generation comprising: a power generation means for generating electric power by rotating a rotating shaft to which a blade is fixed in accordance with a vortex of water generated in the water reserving chamber and taking out electric energy based on the rotation of the rotating shaft. apparatus.
[5] 互いに間隔を空けてそれぞれ立設された第 1の壁並びに第 2の壁と、この第 1の壁 の下端から第 2の壁の下端にかけて略水平方向に向けて配設された水平板とにより 囲まれてなるとともに、上記第 1の壁の下部に開口部が形成された遊水室内で、水の 渦流を発生させ、 [5] A first wall and a second wall standing upright apart from each other, and a horizontal wall disposed in a substantially horizontal direction from the lower end of the first wall to the lower end of the second wall. A vortex of water in the water chamber, which is surrounded by a plate and has an opening formed in the lower part of the first wall,
当該渦流に応じて羽根を固着させた回転軸を回転させ、その回転軸の回転に基づ く電気エネルギーを取り出して発電すること  Rotating the rotating shaft with the blades fixed according to the vortex, taking out the electrical energy based on the rotation of the rotating shaft, and generating electricity
を特徴とする波力発電方法。  A wave power generation method characterized by the above.
PCT/JP2006/305020 2005-03-15 2006-03-14 Wave activated power device and method WO2006098320A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020077022930A KR101289271B1 (en) 2005-03-15 2006-03-14 Wave activied power device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-073027 2005-03-15
JP2005073027A JP4958403B2 (en) 2005-03-15 2005-03-15 Wave power generation method

Publications (1)

Publication Number Publication Date
WO2006098320A1 true WO2006098320A1 (en) 2006-09-21

Family

ID=36991663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305020 WO2006098320A1 (en) 2005-03-15 2006-03-14 Wave activated power device and method

Country Status (3)

Country Link
JP (1) JP4958403B2 (en)
KR (1) KR101289271B1 (en)
WO (1) WO2006098320A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075674A1 (en) * 2010-12-07 2012-06-14 Chen He High-efficiency power generation device using wave energy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858376B2 (en) * 2011-06-20 2016-02-10 公立大学法人大阪市立大学 Wave power generation system
JP6092725B2 (en) * 2013-07-04 2017-03-08 三井造船株式会社 Wave power generation system
KR101604780B1 (en) 2014-08-26 2016-03-18 (주) 호창엠에프 Wave power generator
KR101976623B1 (en) * 2017-12-12 2019-05-09 유원산업(주) Load control system and simulation method for wave power generation device
KR101960705B1 (en) 2018-11-06 2019-03-21 울산대학교 산학협력단 A wave energy converter with variable stiffness

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512218A (en) * 1978-07-12 1980-01-28 Kenryu Takahashi Power generation set with use of marine wave
JPS5685569A (en) * 1979-12-14 1981-07-11 Ohbayashigumi Ltd Wave power electricity generator
JPS58178883A (en) * 1982-04-13 1983-10-19 Toshio Takayama Covering device for water wheel with horizontal shaft
DE4324110A1 (en) * 1993-07-19 1995-01-26 Graw Kai Uwe Dr Ing Device for generating electric power (electric energy) from water wave energy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1601219A (en) * 1977-08-31 1981-10-28 Energy Secretary Of State For Devices for extracting energy from wave power
JPS572277U (en) * 1980-06-04 1982-01-07
JPS5783670A (en) * 1980-11-14 1982-05-25 Mitsubishi Heavy Ind Ltd Biaxial type water mill and wind mill
JPS58200081A (en) * 1982-05-17 1983-11-21 Mitsubishi Electric Corp Wave energy converting apparatus
JPH0231378A (en) * 1988-07-20 1990-02-01 Hitachi Ltd Sound recording sensitivity automatic controller
JP2758418B2 (en) * 1988-12-19 1998-05-28 海洋科学技術センター Wave energy utilization device
JPH02163474A (en) * 1988-12-19 1990-06-22 Ishikawajima Harima Heavy Ind Co Ltd Wave energy utilizer
JPH10288139A (en) * 1997-04-14 1998-10-27 Toshio Hatakeyama Unidirectional turbine and wave activated generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512218A (en) * 1978-07-12 1980-01-28 Kenryu Takahashi Power generation set with use of marine wave
JPS5685569A (en) * 1979-12-14 1981-07-11 Ohbayashigumi Ltd Wave power electricity generator
JPS58178883A (en) * 1982-04-13 1983-10-19 Toshio Takayama Covering device for water wheel with horizontal shaft
DE4324110A1 (en) * 1993-07-19 1995-01-26 Graw Kai Uwe Dr Ing Device for generating electric power (electric energy) from water wave energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075674A1 (en) * 2010-12-07 2012-06-14 Chen He High-efficiency power generation device using wave energy

Also Published As

Publication number Publication date
KR20070114385A (en) 2007-12-03
JP4958403B2 (en) 2012-06-20
KR101289271B1 (en) 2013-07-24
JP2006257898A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
AU2008361028B2 (en) Device for conversion of wave energy
JP4958403B2 (en) Wave power generation method
CN100363613C (en) Adaptive ocean current generator
CN104329205A (en) Water flow power generating device
KR20110058998A (en) Tide generator having multi-winges type
JP2014522933A (en) Sea wave power generation device and system
CN204226095U (en) A kind of stream generating device
JP2014522933A5 (en)
KR101369966B1 (en) Floating wind power generation unit
JP2003307173A (en) Buoyancy type power generation device
Ram et al. Experimental studies on the flow characteristics in an inclined bend-free OWC device
US20180030952A1 (en) Water flow power generating device
JP3530871B2 (en) Hydro, wave and wind energy converters
WO2011025387A1 (en) Apparatus for extracting tidal and wave energy
JP2011012588A (en) Straight blade multiple orbit arrangement vertical shaft type turbine and power generating apparatus
KR101879604B1 (en) Breakwater capable of generating electricity
JP5858376B2 (en) Wave power generation system
KR20110031517A (en) The tidal current generation apparatus of the floating type
JP5371081B2 (en) Water wheel and wave energy utilization device using the water wheel
CN209083460U (en) A kind of combined multi-stage capacitation marine tidal-current energy generation platform
JP2017053320A (en) Power generator
JP2006322440A (en) Building method for stream wheel and application method to power generating device
CN109236547A (en) A kind of combined multi-stage capacitation marine tidal-current energy generation platform
CN213596918U (en) Wave-crossing type open sea wall system capable of generating electricity by utilizing wave energy
KR102020171B1 (en) Wave power generation system using winch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077022930

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729054

Country of ref document: EP

Kind code of ref document: A1