WO2006095795A1 - Cyclic dinitrone compound and process for producing the same - Google Patents

Cyclic dinitrone compound and process for producing the same Download PDF

Info

Publication number
WO2006095795A1
WO2006095795A1 PCT/JP2006/304546 JP2006304546W WO2006095795A1 WO 2006095795 A1 WO2006095795 A1 WO 2006095795A1 JP 2006304546 W JP2006304546 W JP 2006304546W WO 2006095795 A1 WO2006095795 A1 WO 2006095795A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic
compound
producing
dinitrone
reaction
Prior art date
Application number
PCT/JP2006/304546
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Naota
Yasushi Imada
Original Assignee
Japan Science And Technology Agency
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Osaka University filed Critical Japan Science And Technology Agency
Publication of WO2006095795A1 publication Critical patent/WO2006095795A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D245/00Heterocyclic compounds containing rings of more than seven members having two nitrogen atoms as the only ring hetero atoms
    • C07D245/02Heterocyclic compounds containing rings of more than seven members having two nitrogen atoms as the only ring hetero atoms not condensed with other rings

Definitions

  • the present invention relates to, for example, cyclic diamine compounds having various substituents expected to be used as ligands of metal complexes and various functional materials, and precursors of cyclic dihydroxyamine compounds, which are important.
  • This invention relates to Thoron compound and its manufacturing method.
  • Macrocyclic (more than 10-membered) cyclic diamine compounds having various substituents are expected to be used as ligands of metal complexes and various functional materials.
  • Non-Patent Document 1 Nature, 177, 128-129 (1956)
  • Non-Patent Document 2 J. Chem. Soc. (C), 1103—1107 (1966)
  • Non-Patent Documents 1 and 2 the polymerization reaction proceeds more preferentially than the ring expansion dimerization reaction. Therefore, since a large amount of chain polymer is formed, the yield is very low (about 8.5%), which is not practical.
  • 1,8-diazacyclotetradeca 1,8-gen 1,8-dioxide, which is the target product, is unstable in an oxygen atmosphere, it is reacted in the presence of hydroquinone, an antioxidant. For this reason, it is impossible to obtain the desired strength in the state of salt with S-hydroquinone.
  • the starting material N-hydroxy Cyclic hydroxyamines such as hexamethylenemine are difficult to obtain industrially.
  • the above-described conventional production method has a problem that a macrocyclic dinitrone compound cannot be produced easily and efficiently.
  • the present invention has been made in view of the above problems, and an object thereof is a precursor of a macrocyclic (10-membered or more) cyclic diamine compound or a cyclic dihydroxyamine compound. It is an object of the present invention to provide a cyclic di-tron compound and a method for producing the same. That is, the present invention provides a method for producing a macrocyclic (10-membered or more) cyclic dinitrone compound easily and efficiently, as well as a cyclic diamine compound and a cyclic dihydroxyamine compound. An object of the present invention is to provide a cyclic di-tron compound suitable as a precursor.
  • the cyclic di-tronich compound according to the present invention has the following structural formula:
  • the method for producing a cyclic di-tron compound useful for the present invention is characterized in that a solution containing a cyclic-throne compound is stirred in the presence of an acid catalyst.
  • the obtained cyclic di-trony compound has the following structural formula: [Chemical 2]
  • n is an integer of 5 to 10, and the configuration at two double bonds is independently E or Z.
  • the solution is more preferably a black mouth form solution.
  • the acid catalyst is more preferably para-toluenesulfonic acid monohydrate.
  • the reaction temperature is more preferably within the range of 0 to 50 ° C.
  • a cyclic di-tron compound can be produced simply by stirring a solution containing a cyclic ditron compound in the presence of an acid catalyst. Accordingly, it is possible to provide a method capable of easily and efficiently producing a cyclic di-tron compound, and a cyclic di-tron compound suitable as a precursor of a cyclic diamine compound or a cyclic dihydroxyamine compound. Can do.
  • the method for producing a cyclic di-tron compound useful in the present invention stirs a solution containing a cyclic-throne compound in the presence of an acid catalyst.
  • a macrocyclic (more than 10-membered) cyclic dinitrone compound from an industrially available cyclic two-tron compound.
  • a cyclic dinitron compound suitable as a precursor of a macrocyclic (over 10-membered ring) cyclic diamine compound or a cyclic dihydroxyamine compound is an organic compound suitable as a precursor of a macrocyclic (over 10-membered ring) cyclic diamine compound or a cyclic dihydroxyamine compound.
  • FIG. 6 is a 13 C-NMR chart of Compound A.
  • FIG. 7 is an MS chart of Compound A.
  • FIG. 8 is an IR chart of Compound A.
  • FIG. 10 is a 13 C-NMR chart of Compound B.
  • FIG. 11 is an MS chart of Compound B.
  • FIG. 12 is an IR chart of Compound B.
  • FIG. 14 is a 13 C-NMR chart of Compound C.
  • FIG. 15 is an MS chart of the compound C.
  • FIG. 16 is an IR chart of Compound C.
  • the cyclic di-tron compound obtained by the production method according to the present invention is a macrocycle (10-membered ring or more), more preferably a 10-membered ring to a 20-membered ring.
  • the above cyclic di-trony compound is produced by stirring a solution containing a cyclic ditron compound in the presence of an acid catalyst. More specifically, the cyclic dinitrone compound has the following reaction formula:
  • n is an integer of 5 or more, more preferably an integer of 5 to 10, and
  • the configuration at two double bonds is independently E or Z)
  • reaction a ring expansion dimerization reaction represented by the following (hereinafter sometimes simply referred to as reaction).
  • reaction a ring expansion dimerization reaction represented by the following (hereinafter sometimes simply referred to as reaction).
  • the ring expansion dimerization reaction is a reversible reaction.
  • the cyclic-throne complex used as a starting material is preferably a 5-membered ring or more, more preferably a 5-membered ring to a 10-membered ring. .
  • the carbon at the 3rd position to the (n-1) position in the n-membered cyclic ditrony compound may be substituted with a heteroatom such as nitrogen, oxygen, or sulfur.
  • the cyclic-thromonic compound as a starting material can be easily produced by performing a known reaction such as catalytic oxidation of the corresponding cyclic secondary amine (for example, special (See Kaisho 63-63651 (published March 22, 1988)).
  • the acid catalyst suitable for the reaction according to the present invention is not particularly limited, and various compounds generally used as an acid catalyst can be used.
  • the acid catalyst specifically, for example, p-toluenesulfonic acid monohydrate [p-TsOH.H 2 O], benzoic acid
  • hydrochloric acid [HC1] eg 36% hydrochloric acid
  • sulfuric acid SO eg 96% sulfuric acid
  • Lewis acids such as Y (OTf) and CoCl are listed. These acid catalysts alone
  • the amount of the acid catalyst used with respect to the cyclic ditron compound is preferably in the range of 0.05 to 0.5 equivalent, and optimally in the range of 0.05 to 0.2 equivalent. If the amount used is less than 0.05 equivalent, the reaction may take a long time. On the other hand, the amount used may be larger than 0.5 equivalent, but an effect commensurate with that amount cannot be obtained.
  • a cyclic dinitrone compound can be formed by merely stirring the solution without using an acid catalyst.
  • Solvents suitable for the reaction according to the present invention are not particularly limited, and various compounds generally used as reaction solvents can be used. Specific examples of the solvent include halogenated hydrocarbons such as chloroform and dichloromethane, aromatic hydrocarbons such as benzene, toluene and xylene, alcohols such as methyl alcohol, dimethyl ether, and jetyl ether. And ethers such as ether and ethyl acetate
  • solvents may be used alone or as a mixed solvent appropriately combined (for example, an ethyl acetate-toluene methyl alcohol mixed solvent).
  • the concentration (substrate concentration) of the solution containing the cyclic-trony compound is preferably a force of 0.1M or more depending on the type of solvent used, and is in the range of 0.1 to 1M. Is more preferable. When the concentration is less than 0.1M, the use efficiency of the reactor becomes low.
  • the reaction according to the present invention does not require the reaction conditions to be anhydrous or in an inert gas atmosphere. Therefore, the reaction operation and the target object isolation operation can be performed easily. In addition, the order and timing of charging the cyclic-tron compound, the solvent and the acid catalyst into the reactor can be arbitrarily set.
  • the reaction temperature is more preferably in the range of 0 to 50 ° C, more preferably in the range of 20 to 50 ° C, and even more preferably in the range of 22 to 35 ° C.
  • the reaction temperature is less than 0 ° C, the reaction rate becomes slow and the reaction may take a long time.
  • the reaction temperature exceeds 50 ° C, the yield may decrease because the equilibrium of the ring expansion dimerization reaction is biased toward the original system.
  • the reaction time may be appropriately set according to other reaction conditions such as the amount of the acid catalyst used and the reaction temperature.
  • the force at which the reaction is completed can be easily determined by sampling, for example, by TLC (thin layer chromatography).
  • the cyclic di-trony compound obtained by the above reaction is a macrocycle (10-membered ring or more), more preferably the following structural formula:
  • n is an integer of 5 to 10, and the configuration at two double bonds is independently E or Z.
  • a ring expansion dimerization reaction can be allowed to proceed selectively in the presence of an acid catalyst, starting from an n-membered cyclic-thronic compound. Therefore, it is possible to produce the corresponding 2n-membered cyclic di-tron compounds (configurations with two double bonds are E / E, Z / Z, EZZ) at a much higher yield than before. Can do.
  • the isomers of the cyclic di-tron compound can be isolated by purifying by, for example, silica gel column chromatography.
  • a cyclic di-trony compound can undergo a conversion reaction similar to that of a -throny compound. Therefore, cyclic di-tron compounds can easily undergo transformation reactions such as nucleophilic addition to the ⁇ -position carbon (2-position carbon and (n + 2) -position carbon) and 1,3-dipole addition reactions. It can be carried out. That is, by performing these conversion reactions, various functional groups can be introduced into the cyclic dinitrone compound.
  • the macrocyclic (10-membered or higher) cyclic dinitrone compound according to the present invention is important as a precursor of a macrocyclic (10-membered or higher) cyclic diamine compound or a cyclic dihydroxyamine compound. is there.
  • the above-mentioned cyclic dihydroxyamine compound can be easily produced by subjecting the cyclic dihydroxylone compound to a hydrogenation reaction using, for example, PtO as a catalyst.
  • the above-mentioned cyclic diamine compound is easily produced by performing a known reaction such as a reduction reaction using, for example, Raney nickel as a catalyst on the cyclic dihydroxyamine compound. be able to.
  • various cyclic di-throne compounds specifically, for example, 5 to: It is also possible to produce a cyclic di-trony compound having 10 to 20 members (an odd number of members with only an even number of members). The resulting mixture of cyclic di-tron compounds can be isolated, for example, by purification by silica gel column chromatography.
  • the analysis results are as follows.
  • the H-NMR chart is shown in FIG. 1
  • the 13 C-NMR chart is shown in FIG. 2
  • the MS (mass spectrometry) chart is shown in FIG. 3
  • the IR chart is shown in FIG.
  • An acid monohydrate (0.665 mmol, 0.05 equivalent) was charged and stirred at room temperature (22 ° C.) for 4 hours.
  • FIG. 5 a 1 H-NMR chart of Compound A is shown in FIG. 5
  • a 13 C-NMR chart is shown in FIG. 6
  • an MS chart is shown in FIG. 7
  • an IR chart is shown in FIG.
  • the 1 H-NMR chart of Compound B is shown in FIG. 9, the 13 C-NMR chart is shown in FIG. 10, the MS chart is shown in FIG. 11, and the IR chart is shown in FIG.
  • FIG. 13 shows the 1 H-NMR chart of Compound C
  • FIG. 14 shows the 13 C-NMR chart
  • FIG. 15 shows the MS chart
  • FIG. 16 shows the IR chart.
  • Table 1 summarizes the solution concentration (substrate concentration), the type and equivalent of the acid catalyst used, the reaction time, and the yield.
  • Example 7 The same reaction as in Example 7 was carried out except that no acid catalyst was used. The results are also shown in Table 1.
  • Table 3 summarizes the acid catalyst used and the yield.
  • Table 4 summarizes the solution concentration (substrate concentration) and yield.
  • Table 5 summarizes the solution concentration (substrate concentration) and yield.
  • Macrocyclic (more than 10-membered ring) cyclic di-trony compounds are macrocyclic (more than 10-membered) cyclic diamine compounds expected to be used as ligands and various functional materials of metal complexes. And can be suitably used as a precursor for cyclic dihydroxyamine compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A cyclic dinitron compound is produced by stirring a cyclic nitron compound-containing solution in the presence of an acid catalyst to selectively conduct a ring enlarging dimerization reaction. The cyclic nitron compound is more preferably a five- to ten-membered ring compound. The above solution is more preferably a chloroform solution. The acid catalyst is more preferably a p-toluenesulfonic acid monohydrate. The reaction temperature is more preferably in the range of 0 to 50°C. Thus, for example, it is possible to provide a production process that can simply and efficiently produce a large-ring (ten- or larger- membered ring) cyclic dinitron compound, which is important as a precursor of large-ring (ten- or larger- membered ring) cyclic diamine compounds and cyclic dihydroxyamine compounds containing a various substituents expected to be utilized as ligands of metal complexes and various functional materials.

Description

明 細 書  Specification
環状ジニトロン化合物およびその製造方法  Cyclic dinitrone compound and method for producing the same
技術分野  Technical field
[0001] 本発明は、例えば、金属錯体の配位子や各種機能性材料としての利用が期待され る各種置換基を有する環状ジァミン化合物や環状ジヒドロキシァミン化合物の前躯体 として重要な、環状ジ-トロンィ匕合物およびその製造方法に関するものである。  [0001] The present invention relates to, for example, cyclic diamine compounds having various substituents expected to be used as ligands of metal complexes and various functional materials, and precursors of cyclic dihydroxyamine compounds, which are important. -This invention relates to Thoron compound and its manufacturing method.
背景技術  Background art
[0002] 各種置換基を有する大環状(10員環以上)の環状ジァミン化合物は、金属錯体の 配位子や各種機能性材料としての利用が期待されており、それゆえ、該環状ジァミン 化合物の前躯体である大環状(10員環以上)の環状ジニトロンィ匕合物の効率的な製 造方法 (合成方法)が求められている。  [0002] Macrocyclic (more than 10-membered) cyclic diamine compounds having various substituents are expected to be used as ligands of metal complexes and various functional materials. There is a need for an efficient production method (synthesis method) of a macrocyclic (10-membered or more) cyclic dinitron compound that is a precursor.
[0003] ところが、大環状の環状ジ-トロンィ匕合物は、現在まで、その効率的な製造方法が 確立されていない。  However, an efficient manufacturing method has not been established so far for macrocyclic cyclic di-trony compounds.
[0004] 従来の製造方法としては、 7員環の環状ヒドロキシルァミンである N—ヒドロキシへキ サメチレンイミンを酸素雰囲気下で自動酸化することにより、 14員環の環状ジ-トロン 化合物である 1, 8—ジァザシクロテトラデカー 1, 8—ジェン = 1 , 8—ジォキシドを得 る方法 (非特許文献 1, 2参照)が知られているだけである。  As a conventional production method, a 14-membered cyclic di-tron compound is obtained by auto-oxidizing N-hydroxyhexamethyleneimine, which is a 7-membered cyclic hydroxylamine, in an oxygen atmosphere. Only a method for obtaining 1,8-diazacyclotetradeca 1,8-gen = 1,8-dioxide (see Non-Patent Documents 1 and 2) is known.
非特許文献 1 : Nature, 177, 128 - 129 (1956)  Non-Patent Document 1: Nature, 177, 128-129 (1956)
非特許文献 2 :J. Chem. Soc. (C) , 1103— 1107 (1966)  Non-Patent Document 2: J. Chem. Soc. (C), 1103—1107 (1966)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、上記非特許文献 1, 2に記載の製造方法は、環拡大二量化反応より も重合反応が優位に進行する。従って、鎖状ポリマーが大量に生成するので、非常 に低収率 (8. 5%程度)であり、実用的ではない。また、目的物である 1, 8—ジァザ シクロテトラデカー 1, 8—ジェン = 1, 8—ジォキシドが酸素雰囲気下では不安定なこ とから、抗酸化剤であるヒドロキノンの存在下で反応させているため、目的物力 Sヒドロ キノンとの塩の状態でし力得ることができない。さらに、出発原料である N—ヒドロキシ へキサメチレンィミン等の環状ヒドロキシァミンは、工業的に入手困難である。 However, in the production methods described in Non-Patent Documents 1 and 2, the polymerization reaction proceeds more preferentially than the ring expansion dimerization reaction. Therefore, since a large amount of chain polymer is formed, the yield is very low (about 8.5%), which is not practical. In addition, since 1,8-diazacyclotetradeca 1,8-gen = 1,8-dioxide, which is the target product, is unstable in an oxygen atmosphere, it is reacted in the presence of hydroquinone, an antioxidant. For this reason, it is impossible to obtain the desired strength in the state of salt with S-hydroquinone. In addition, the starting material N-hydroxy Cyclic hydroxyamines such as hexamethylenemine are difficult to obtain industrially.
[0006] 即ち、上記従来の製造方法では、大環状の環状ジニトロン化合物を簡単にかつ効 率的に製造することがでな 、と 、う問題点を有して 、る。  [0006] That is, the above-described conventional production method has a problem that a macrocyclic dinitrone compound cannot be produced easily and efficiently.
[0007] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、大環状(10員 環以上)の環状ジァミンィ匕合物や環状ジヒドロキシァミンィ匕合物の前躯体として重要 な、環状ジ-トロンィ匕合物およびその製造方法を提供することにある。つまり、本発明 は、簡単にかつ効率的に、大環状(10員環以上)の環状ジニトロン化合物を製造す ることができる方法、並びに、環状ジァミンィ匕合物や環状ジヒドロキシァミンィ匕合物の 前躯体として好適な環状ジ-トロンィ匕合物を提供することを目的として!/、る。  [0007] The present invention has been made in view of the above problems, and an object thereof is a precursor of a macrocyclic (10-membered or more) cyclic diamine compound or a cyclic dihydroxyamine compound. It is an object of the present invention to provide a cyclic di-tron compound and a method for producing the same. That is, the present invention provides a method for producing a macrocyclic (10-membered or more) cyclic dinitrone compound easily and efficiently, as well as a cyclic diamine compound and a cyclic dihydroxyamine compound. An object of the present invention is to provide a cyclic di-tron compound suitable as a precursor.
課題を解決するための手段  Means for solving the problem
[0008] 本発明にかかる環状ジ-トロンィヒ合物は、下記構造式  [0008] The cyclic di-tronich compound according to the present invention has the following structural formula:
[化 1]  [Chemical 1]
Figure imgf000003_0001
Figure imgf000003_0001
(但し、 mは 5, 6, 8, 9または 10であり、二つの二重結合での立体配置はそれぞれ 独立して Eまたは Z) (However, m is 5, 6, 8, 9 or 10, and the configuration at two double bonds is independently E or Z.)
で表される構造を有して ヽる。  It has a structure represented by
[0009] 本発明に力かる環状ジ-トロンィ匕合物の製造方法は、上記の課題を解決するため に、環状-トロン化合物を含む溶液を酸触媒の存在下で攪拌することを特徴として 、 る。  [0009] In order to solve the above-mentioned problem, the method for producing a cyclic di-tron compound useful for the present invention is characterized in that a solution containing a cyclic-throne compound is stirred in the presence of an acid catalyst. The
[0010] 上記環状-トロンィ匕合物は、 5〜10員環であることがより好ましぐ 1—ァザ— 1—シ クロヘプテン = N ォキシドまたは 1ーァザ 1 シクロオタテン = N ォキシドであ ることがさらに好ましい。また、得られる環状ジ-トロンィ匕合物は、下記構造式 [化 2] [0010] It is more preferable that the above-mentioned cyclic-throne compound is a 5- to 10-membered ring. It may be 1-aza-1-cycloheptene = N oxide or 1-aza 1 cyclootaten = N oxide. Further preferred. In addition, the obtained cyclic di-trony compound has the following structural formula: [Chemical 2]
Figure imgf000004_0001
Figure imgf000004_0001
(但し、 nは 5〜10の整数であり、二つの二重結合での立体配置はそれぞれ独立し て Eまたは Z) (However, n is an integer of 5 to 10, and the configuration at two double bonds is independently E or Z.)
で表される構造を有することがより好まし 、。  It is more preferable to have a structure represented by:
[0011] また、上記溶液は、クロ口ホルム溶液であることがより好ましい。上記酸触媒は、パラ トルエンスルホン酸一水和物であることがより好ましい。反応温度は、 0〜50°Cの範 囲内であることがより好ましい。 [0011] Further, the solution is more preferably a black mouth form solution. The acid catalyst is more preferably para-toluenesulfonic acid monohydrate. The reaction temperature is more preferably within the range of 0 to 50 ° C.
[0012] 上記の方法によれば、環状二トロン化合物を含む溶液を酸触媒の存在下で攪拌す るだけで、環状ジ-トロンィ匕合物を製造することができる。従って、簡単にかつ効率的 に、環状ジ-トロン化合物を製造することができる方法、並びに、環状ジァミン化合物 や環状ジヒドロキシァミン化合物の前躯体として好適な環状ジ-トロンィ匕合物を提供 することができる。 [0012] According to the above method, a cyclic di-tron compound can be produced simply by stirring a solution containing a cyclic ditron compound in the presence of an acid catalyst. Accordingly, it is possible to provide a method capable of easily and efficiently producing a cyclic di-tron compound, and a cyclic di-tron compound suitable as a precursor of a cyclic diamine compound or a cyclic dihydroxyamine compound. Can do.
発明の効果  The invention's effect
[0013] 本発明に力かる環状ジ-トロンィ匕合物の製造方法は、以上のように、環状-トロン 化合物を含む溶液を酸触媒の存在下で攪拌する。これにより、工業的に入手可能な 環状二トロンィ匕合物から、大環状(10員環以上)の環状ジニトロンィ匕合物を、簡単に かつ効率的に製造することができるという効果を奏する。並びに、大環状(10員環以 上)の環状ジァミンィ匕合物や環状ジヒドロキシァミンィ匕合物の前躯体として好適な環 状ジニトロンィ匕合物を提供することができるという効果を奏する。  [0013] As described above, the method for producing a cyclic di-tron compound useful in the present invention stirs a solution containing a cyclic-throne compound in the presence of an acid catalyst. As a result, it is possible to easily and efficiently produce a macrocyclic (more than 10-membered) cyclic dinitrone compound from an industrially available cyclic two-tron compound. In addition, there is an effect that it is possible to provide a cyclic dinitron compound suitable as a precursor of a macrocyclic (over 10-membered ring) cyclic diamine compound or a cyclic dihydroxyamine compound.
[0014] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって充 分判るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白になる であろう。 [0014] Still other objects, features, and advantages of the present invention will be fully understood from the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings. Will.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]実施例 1で得られた 1, 8 ジァザシクロテトラデカー 1, 8 ジェン = 1, 8 ジ ォキシドの1 H- NMRのチャートである。 1 is a 1 H-NMR chart of 1,8 diazacyclotetradeca 1,8 gen = 1,8 dioxide obtained in Example 1. FIG.
[図 2]上記 1, 8 ジァザシクロテトラデカー 1, 8 ジェン = 1, 8 ジォキシドの13 C- NMRのチャートである。 FIG. 2 is a 13 C-NMR chart of the 1,8 diazacyclotetradeca 1,8 gen = 1,8 dioxide.
[図 3]上記 1, 8 ジァザシクロテトラデカー 1, 8 ジェン = 1, 8 ジォキシドの MS ( 質量分析)のチャートである。  FIG. 3 is an MS (mass spectrometry) chart of 1,8 diazacyclotetradeca 1,8 gen = 1,8 dioxide.
[図 4]上記 1, 8 ジァザシクロテトラデカー 1, 8 ジェン = 1, 8 ジォキシドの IRの チャートである。  FIG. 4 is an IR chart of 1,8 diazacyclotetradeca 1,8 gen = 1,8 dioxide.
[図 5]実施例 2で得られた化合物 A (1, 9 ジァザシクロへキサデ力 1, 9 ジェン = 1, 9 ジォキシド)の1 H-NMRのチャートである。 FIG. 5 is a 1 H-NMR chart of compound A (1,9 diazacyclohexade force 1,9 gen = 1,9 dioxide) obtained in Example 2.
[図 6]上記化合物 Aの13 C-NMRのチャートである。 FIG. 6 is a 13 C-NMR chart of Compound A.
[図 7]上記化合物 Aの MSのチャートである。  FIG. 7 is an MS chart of Compound A.
[図 8]上記化合物 Aの IRのチャートである。  FIG. 8 is an IR chart of Compound A.
[図 9]実施例 2で得られた化合物 B (1, 9 ジァザシクロへキサデ力 1, 9 ジェン = 1, 9 ジォキシド)の1 H-NMRのチャートである。 FIG. 9 is a 1 H-NMR chart of Compound B (1,9 diazacyclohexade force 1,9 gen = 1,9 dioxide) obtained in Example 2.
[図 10]上記化合物 Bの13 C- NMRのチャートである。 FIG. 10 is a 13 C-NMR chart of Compound B.
[図 11]上記化合物 Bの MSのチャートである。  FIG. 11 is an MS chart of Compound B.
[図 12]上記化合物 Bの IRのチャートである。  FIG. 12 is an IR chart of Compound B.
[図 13]実施例 2で得られた化合物 C (l, 9ージァザシクロへキサデカー 1, 9 ジェン = 1, 9 ジォキシド)の1 H-NMRのチャートである。 FIG. 13 is a 1 H-NMR chart of Compound C (1,9-diazacyclohexadeca 1,9 gen = 1,9 dioxide) obtained in Example 2.
[図 14]上記化合物 Cの13 C- NMRのチャートである。 FIG. 14 is a 13 C-NMR chart of Compound C.
[図 15]上記化合物 Cの MSのチャートである。  FIG. 15 is an MS chart of the compound C.
[図 16]上記化合物 Cの IRのチャートである。  FIG. 16 is an IR chart of Compound C.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明の一実施形態について説明すると、以下の通りである。 [0016] One embodiment of the present invention will be described as follows.
[0017] 但し、本発明は下記の実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を 組み合わせて得られる実施形態につ!、ても、本発明の技術的範囲に含まれる。 [0017] However, the present invention is not limited to the following embodiments, but within the scope shown in the claims. Various changes are possible. That is, an embodiment obtained by combining technical means appropriately changed within the scope of the claims is also included in the technical scope of the present invention.
[0018] 本発明にかかる製造方法によって得られる環状ジ-トロン化合物は、大環状(10員 環以上)であり、より好ましくは 10員環から 20員環である。上記の環状ジ-トロンィ匕合 物は、環状二トロン化合物を含む溶液を酸触媒の存在下で攪拌することにより製造さ れる。より具体的には、環状ジニトロン化合物は、下記反応式  [0018] The cyclic di-tron compound obtained by the production method according to the present invention is a macrocycle (10-membered ring or more), more preferably a 10-membered ring to a 20-membered ring. The above cyclic di-trony compound is produced by stirring a solution containing a cyclic ditron compound in the presence of an acid catalyst. More specifically, the cyclic dinitrone compound has the following reaction formula:
[化 3]  [Chemical 3]
+— 0一
Figure imgf000006_0001
+ —0
Figure imgf000006_0001
(但し、 nは 5以上の整数であり、より好ましくは 5〜10の整数であり、目的物におけ (However, n is an integer of 5 or more, more preferably an integer of 5 to 10, and
0 0
る二つの二重結合での立体配置はそれぞれ独立して Eまたは Z)  The configuration at two double bonds is independently E or Z)
で表される環拡大二量化反応(以下、単に反応と記す場合がある)を選択的に行うこ とにより製造される。尚、環拡大二量化反応は可逆反応である。  It is produced by selectively carrying out a ring expansion dimerization reaction represented by the following (hereinafter sometimes simply referred to as reaction). The ring expansion dimerization reaction is a reversible reaction.
[0019] 本発明にかかる反応にお!、て出発原料として用いられる環状-トロンィ匕合物は、 5 員環以上であることが好ましぐ 5員環〜 10員環であることがより好ましい。  [0019] In the reaction according to the present invention, the cyclic-throne complex used as a starting material is preferably a 5-membered ring or more, more preferably a 5-membered ring to a 10-membered ring. .
[0020] n員環 (n= 5〜10)の環状-トロンィ匕合物における 3位〜 n位の炭素は、炭化水素 基ゃヒドロキシ基、アルコキシ基、アミノ基等の置換基を有していてもよい。また、 n員 環の環状二トロンィ匕合物における 3位〜 (n— 1)位の炭素は、窒素や酸素、硫黄等の ヘテロ原子に置換されて 、てもよ 、。  [0020] The 3-position to n-position carbon in the n-membered ring (n = 5 to 10) cyclic-thronic compound has a substituent such as a hydrocarbon group, a hydroxy group, an alkoxy group, or an amino group. May be. In addition, the carbon at the 3rd position to the (n-1) position in the n-membered cyclic ditrony compound may be substituted with a heteroatom such as nitrogen, oxygen, or sulfur.
[0021] 上記環状-トロンィ匕合物としては、具体的には、例えば、 1 ァザー 1ーシクロペン テン =N—ォキシド、 1—ァザ— 1—シクロへキセン =N—ォキシド、 1—ァザ— 1—シ クロヘプテン =N—ォキシド、 1ーァザ 1ーシクロオタテン =N—ォキシド、 1ーァザ — 1—シクロノネン = N—ォキシド、 1—ァザ一 1—シクロデセン = N ォキシド等が 挙げられる。 [0021] Specific examples of the cyclic-tron compound include, for example, 1 other 1-cyclopentene = N-oxide, 1-aza- 1-cyclohexene = N-oxide, 1-aza- 1-cycloheptene = N-oxide, 1-aza 1-cyclootaten = N-oxide, 1-aza — 1-cyclononene = N-oxide, 1-aza 1-cyclodecene = N oxide, etc. Can be mentioned.
[0022] 尚、出発原料である環状-トロンィ匕合物は、対応する環状第二アミンを触媒的酸化 反応させる等の公知の反応を行うことにより、容易に製造することができる(例えば、 特開昭 63— 63651号公報(1988年 3月 22日公開)を参照)。  [0022] It should be noted that the cyclic-thromonic compound as a starting material can be easily produced by performing a known reaction such as catalytic oxidation of the corresponding cyclic secondary amine (for example, special (See Kaisho 63-63651 (published March 22, 1988)).
[0023] 本発明にかかる反応に好適な酸触媒は、特に限定されるものではなぐ一般的に 酸触媒として用いられている各種ィ匕合物を用いることができる。該酸触媒としては、具 体的には、例えば、パラトルエンスルホン酸一水和物〔p— TsOH.H O] ,安息香酸  [0023] The acid catalyst suitable for the reaction according to the present invention is not particularly limited, and various compounds generally used as an acid catalyst can be used. As the acid catalyst, specifically, for example, p-toluenesulfonic acid monohydrate [p-TsOH.H 2 O], benzoic acid
2  2
[C H COOH] ,酢酸〔CH COOH〕(例えば氷酢酸),トリフルォロ酢酸〔CF COO [C H COOH], acetic acid [CH COOH] (eg glacial acetic acid), trifluoroacetic acid [CF COO
6 5 3 3 6 5 3 3
H〕,塩酸〔HC1〕(例えば 36%塩酸),硫酸 SO〕(例えば 96%硫酸),リン酸  H], hydrochloric acid [HC1] (eg 36% hydrochloric acid), sulfuric acid SO] (eg 96% sulfuric acid), phosphoric acid
2 4 3 2 4 3
PO〕(例えば 85%リン酸)等のプロトン酸、 Ti(0- i- Pr), Ti(C H ) CI , Sc(OTf),PO] (for example, 85% phosphoric acid), Ti (0-i-Pr), Ti (C H) CI, Sc (OTf),
4 4 5 5 2 2 34 4 5 5 2 2 3
Y(OTf) , CoCl等のルイス酸 (各種金属塩)が挙げられる。これら酸触媒は、単独でLewis acids (various metal salts) such as Y (OTf) and CoCl are listed. These acid catalysts alone
3 2 3 2
用いてもよぐ適宜組み合わせて用いてもよい。上記例示の酸触媒のうち、パラトルェ ンスルホン酸一水和物がより好まし 、。  It may be used or may be used in combination as appropriate. Of the acid catalysts exemplified above, p-toluenesulfonic acid monohydrate is more preferred.
[0024] 環状二トロン化合物に対する酸触媒の使用量は、 0. 05-0. 5当量の範囲内が好 適であり、 0. 05-0. 2当量の範囲内が最適である。使用量が 0. 05当量未満である 場合には、反応に長時間を要するおそれがある。一方、使用量を 0. 5当量より多くし ても構わな 、が、それに見合う程の効果は得られな 、。  [0024] The amount of the acid catalyst used with respect to the cyclic ditron compound is preferably in the range of 0.05 to 0.5 equivalent, and optimally in the range of 0.05 to 0.2 equivalent. If the amount used is less than 0.05 equivalent, the reaction may take a long time. On the other hand, the amount used may be larger than 0.5 equivalent, but an effect commensurate with that amount cannot be obtained.
[0025] 尚、環拡大二量ィ匕反応は可逆反応であるので、酸触媒を用いなくとも、溶液を攪拌 するだけで環状ジニトロンィ匕合物は生成する。し力 ながら、その収率は非常に低 例えば、 22〜50°Cで 86時間攪拌した後の 1, 8 ジァザシクロテトラデカ— 1, 8 ジ ェン = 1, 8 ジォキシドの収率は 4%)、それゆえ、実用的ではない。  [0025] Since the ring expansion dimerization reaction is a reversible reaction, a cyclic dinitrone compound can be formed by merely stirring the solution without using an acid catalyst. However, the yield is very low. For example, after stirring at 22-50 ° C for 86 hours, 1,8 diazacyclotetradeca-1,8 diene = 1,8 dioxide yield is 4%) and therefore not practical.
[0026] 本発明にかかる反応に好適な溶媒は、特に限定されるものではなぐ一般的に反 応溶媒として用いられている各種ィ匕合物を用いることができる。該溶媒としては、具体 的には、例えば、クロ口ホルム,ジクロルメタン等のハロゲン化炭化水素、ベンゼン,ト ルェン,キシレン等の芳香族炭化水素、メチルアルコール等のアルコール、ジメチル エーテル,ジェチルエーテル等のエーテル、酢酸ェチル等のエステルが挙げられる [0026] Solvents suitable for the reaction according to the present invention are not particularly limited, and various compounds generally used as reaction solvents can be used. Specific examples of the solvent include halogenated hydrocarbons such as chloroform and dichloromethane, aromatic hydrocarbons such as benzene, toluene and xylene, alcohols such as methyl alcohol, dimethyl ether, and jetyl ether. And ethers such as ether and ethyl acetate
。これら溶媒は、単独で用いてもよぐ適宜組み合わせた混合溶媒 (例えば、酢酸ェ チルートルエン メチルアルコール混合溶媒)として用いてもょ 、。上記例示の溶媒 のうち、クロ口ホルムがより好ましい。 . These solvents may be used alone or as a mixed solvent appropriately combined (for example, an ethyl acetate-toluene methyl alcohol mixed solvent). Solvent exemplified above Of these, black mouth form is more preferable.
[0027] 環状-トロンィ匕合物を含む溶液の濃度 (基質濃度)は、用いる溶媒の種類にもよる 力 0. 1M以上であることが好ましぐ 0. 1〜1Mの範囲内であることがより好ましい。 濃度が 0. 1M未満である場合には、反応器の使用効率が低くなる。  [0027] The concentration (substrate concentration) of the solution containing the cyclic-trony compound is preferably a force of 0.1M or more depending on the type of solvent used, and is in the range of 0.1 to 1M. Is more preferable. When the concentration is less than 0.1M, the use efficiency of the reactor becomes low.
[0028] 本発明にかかる反応にぉ 、ては、反応条件として無水条件下であることや不活性 ガス雰囲気下であることを必要としない。それゆえ、反応操作や目的物の単離操作を 簡便に行うことができる。また、反応器に環状-トロン化合物、溶媒および酸触媒を仕 込む順序やタイミングは、任意に設定することができる。  [0028] The reaction according to the present invention does not require the reaction conditions to be anhydrous or in an inert gas atmosphere. Therefore, the reaction operation and the target object isolation operation can be performed easily. In addition, the order and timing of charging the cyclic-tron compound, the solvent and the acid catalyst into the reactor can be arbitrarily set.
[0029] 反応温度は、 0〜50°Cの範囲内がより好ましぐ 20〜50°Cの範囲内がさらに好まし ぐ 22〜35°Cの範囲内が特に好ましい。反応温度が 0°C未満である場合には、反応 速度が遅くなり、反応に長時間を要するおそれがある。一方、反応温度が 50°Cを越 える場合には、環拡大二量化反応の平衡が原系に偏るため、収率が低下するおそ れがある。  [0029] The reaction temperature is more preferably in the range of 0 to 50 ° C, more preferably in the range of 20 to 50 ° C, and even more preferably in the range of 22 to 35 ° C. When the reaction temperature is less than 0 ° C, the reaction rate becomes slow and the reaction may take a long time. On the other hand, when the reaction temperature exceeds 50 ° C, the yield may decrease because the equilibrium of the ring expansion dimerization reaction is biased toward the original system.
[0030] 反応時間は、用いる酸触媒の量や反応温度等の他の反応条件に応じて適宜設定 すればよい。反応が終了した力 (平衡に達した力 否かは、例えば TLC (薄層クロマト グラフィー)によってサンプリングすることにより、容易に知ることができる。  [0030] The reaction time may be appropriately set according to other reaction conditions such as the amount of the acid catalyst used and the reaction temperature. The force at which the reaction is completed (whether or not the force reaches equilibrium) can be easily determined by sampling, for example, by TLC (thin layer chromatography).
[0031] 上記の反応によって得られる環状ジ-トロンィ匕合物は、大環状(10員環以上)であ り、より好ましくは下記構造式  [0031] The cyclic di-trony compound obtained by the above reaction is a macrocycle (10-membered ring or more), more preferably the following structural formula:
[化 4]  [Chemical 4]
Figure imgf000008_0001
Figure imgf000008_0001
(但し、 nは 5〜10の整数であり、二つの二重結合での立体配置はそれぞれ独立し て Eまたは Z) で表される構造を有する 10〜20員環であり、さらに好ましくは 12〜 16員環 (n= 6〜 8)であり、特に好ましくは 14員環 (n= 7)および 16員環 (n=8)である。 (However, n is an integer of 5 to 10, and the configuration at two double bonds is independently E or Z.) 10 to 20-membered ring having a structure represented by the formula, more preferably 12 to 16-membered ring (n = 6 to 8), particularly preferably 14-membered ring (n = 7) and 16-membered ring (n = 8).
[0032] 上記の環状ジニトロン化合物のうち、 10員環、 12員環、 16員環、 18員環および 20 員環の環状ジニトロン化合物、即ち、下記構造式  [0032] Among the above cyclic dinitrones, 10-membered, 12-membered, 16-membered, 18-membered and 20-membered cyclic dinitrones, that is, the following structural formula
[化 5]  [Chemical 5]
Figure imgf000009_0001
Figure imgf000009_0001
(但し、 mは 5, 6, 8, 9または 10であり、二つの二重結合での立体配置はそれぞれ 独立して Eまたは Z) (However, m is 5, 6, 8, 9 or 10, and the configuration at two double bonds is independently E or Z.)
で表される構造を有する 1, 6 ジァザシクロデカー 1, 6 ジェン = 1, 6 ジォキシド 、 1, 7 ジァザシクロドデカー 1, 7 ジェン = 1, 7 ジォキシド、 1, 9ージァザシクロ へキサデカー 1, 9 ジェン = 1, 9 ジォキシド、 1, 10 ジァザシクロォクタデカー 1 , 10—ジェン = 1, 10—ジォキシド、 1, 11ージァザシクロエイコー 1, 11 ジェン = 1, 11 -ジォキシドは、新規な化合物である。  1,6 diazacyclodeca 1,6 gen = 1,6 dioxide, 1,7 diazacyclododeca 1,7 gen = 1,7 dioxide, 1,9 diazacyclohexadeca having the structure represented by 1, 9 Gen = 1, 9 Dioxide, 1, 10 Diazacyclota Deca 1, 10-Gen = 1, 10-Dioxide, 1, 11-Diazacycloeco 1, 11 Gen = 1, 11- Dioxide is a novel compound.
[0033] 本発明にかかる製造方法によれば、例えば、 n員環の環状-トロンィ匕合物を出発原 料として、酸触媒の存在下で環拡大二量化反応を選択的に進行させることができる ので、対応する 2n員環の環状ジ-トロン化合物(二つの二重結合での立体配置は E /E, Z/Z, EZZ)を、従来よりも遙かに高収率で製造することができる。環状ジ-ト ロンィ匕合物の異性体は、例えばシリカゲルカラムクロマトグラフィーにより精製を行うこ とにより、それぞれ単離することができる。  [0033] According to the production method of the present invention, for example, a ring expansion dimerization reaction can be allowed to proceed selectively in the presence of an acid catalyst, starting from an n-membered cyclic-thronic compound. Therefore, it is possible to produce the corresponding 2n-membered cyclic di-tron compounds (configurations with two double bonds are E / E, Z / Z, EZZ) at a much higher yield than before. Can do. The isomers of the cyclic di-tron compound can be isolated by purifying by, for example, silica gel column chromatography.
[0034] 環状ジ-トロンィ匕合物は、 -トロンィ匕合物と同様の変換反応を行うことができる。そ れゆえ、環状ジ-トロンィ匕合物は、その α位炭素(2位炭素および (n+ 2)位炭素)へ の求核付加反応や 1, 3 双極子付加反応等の変換反応を容易に行うことができる。 つまり、これら変換反応を行うことにより、環状ジニトロンィ匕合物に種々の官能基を導 人することができる。 [0034] A cyclic di-trony compound can undergo a conversion reaction similar to that of a -throny compound. Therefore, cyclic di-tron compounds can easily undergo transformation reactions such as nucleophilic addition to the α-position carbon (2-position carbon and (n + 2) -position carbon) and 1,3-dipole addition reactions. It can be carried out. That is, by performing these conversion reactions, various functional groups can be introduced into the cyclic dinitrone compound.
[0035] 本発明にかかる大環状(10員環以上)の環状ジニトロン化合物は、大環状(10員環 以上)の環状ジァミンィ匕合物や環状ジヒドロキシァミンィ匕合物の前躯体として重要で ある。上記の環状ジヒドロキシァミンィ匕合物は、環状ジ-トロンィ匕合物に対して例えば PtO等を触媒として水素添加反応を行うことにより、容易に製造することができる。ま The macrocyclic (10-membered or higher) cyclic dinitrone compound according to the present invention is important as a precursor of a macrocyclic (10-membered or higher) cyclic diamine compound or a cyclic dihydroxyamine compound. is there. The above-mentioned cyclic dihydroxyamine compound can be easily produced by subjecting the cyclic dihydroxylone compound to a hydrogenation reaction using, for example, PtO as a catalyst. Ma
2 2
た、上記の環状ジァミンィ匕合物は、該環状ジヒドロキシァミンィ匕合物に対して例えばラ ネーニッケル等を触媒として用いて還元反応させる等の公知の反応を行うことにより、 容易に製造することができる。  In addition, the above-mentioned cyclic diamine compound is easily produced by performing a known reaction such as a reduction reaction using, for example, Raney nickel as a catalyst on the cyclic dihydroxyamine compound. be able to.
[0036] 以下、実施例を挙げて、本発明にかかる製造方法をさらに具体的に説明する。 Hereinafter, the production method according to the present invention will be described more specifically with reference to examples.
[0037] 尚、上述した実施形態においては、一種類 (単一)の環状-トロンィ匕合物を出発原 料として環状ジ-トロンィ匕合物を製造する方法について説明した。し力しながら、本 発明の方法によれば、例えば、 7員環の環状二トロンィ匕合物と 8員環の環状二トロン 化合物とを出発原料とすることにより、 15員環の環状ジ-トロンィ匕合物を製造すること も可能である。つまり、二種類の環状-トロンィ匕合物を組み合わせて用いることにより 、種々の環状ジ-トロン化合物、具体的には、例えば 5〜: L0員環の環状-トロンィ匕合 物を適宜組み合わせることにより、 10〜20員環の(偶数の員環数だけでなぐ奇数の 員環数の)環状ジ-トロンィ匕合物を製造することもできる。得られた環状ジ-トロン化 合物の混合物は、例えばシリカゲルカラムクロマトグラフィーにより精製を行うことによ り、それぞれ単離することができる。 [0037] In the above-described embodiment, the method for producing a cyclic di-trony compound using one kind (single) of the cyclic-trony compound as a starting material has been described. However, according to the method of the present invention, for example, by using a 7-membered cyclic ditron compound and an 8-membered cyclic ditron compound as starting materials, a 15-membered cyclic di- It is also possible to produce trony compounds. That is, by using a combination of two kinds of cyclic-throne compounds, various cyclic di-throne compounds, specifically, for example, 5 to: It is also possible to produce a cyclic di-trony compound having 10 to 20 members (an odd number of members with only an even number of members). The resulting mixture of cyclic di-tron compounds can be isolated, for example, by purification by silica gel column chromatography.
[0038] 〔実施例 1〕 [Example 1]
磁気攪拌子を入れた 25πύナス型フラスコに、 7員環の環状-トロンィ匕合物である 1 —ァザ一 1—シクロヘプテン =Ν—ォキシドを 0. 5mmol含む 0. 1Mクロ口ホルム溶液 と、酸触媒であるパラトルエンスルホン酸一水和物〔ρ— TsOH'H O〕0. 025mmol (  In a 25π eggplant-shaped flask containing a magnetic stirrer, a 0.1 M black mouth form solution containing 0.5 mmol of 1-aza-1-cycloheptene = Ν-oxide, which is a 7-membered ring-tron compound, Acid catalyst p-toluenesulfonic acid monohydrate [ρ-TsOH'H 2 O] 0.025 mmol (
2  2
0. 05当量)とを仕込み、室温(22°C)で 24時間攪拌した。  0.05 equivalent) and stirred at room temperature (22 ° C) for 24 hours.
[0039] 得られた反応液力 クロ口ホルムを減圧留去した後、シリカゲルカラムクロマトグラフ ィ一により残留物の精製を行った。その結果、 14員環の環状ジ-トロンィ匕合物である 1, 8—ジァザシクロテトラデカー 1, 8—ジェン = 1, 8—ジォキシド(EZE, Z/Z, E ,2)カ 率72% (40. 8mg, 0. 36mmol)で得られた。 [0039] After the reaction solution obtained was evaporated under reduced pressure, the residue was purified by silica gel column chromatography. As a result, the 14-membered cyclic di-trony compound 1,8-diazacyclotetradeca 1,8-gen = 1,8-dioxide (EZE, Z / Z, E 2) The ratio was 72% (40.8 mg, 0.36 mmol).
[0040] 分析結果は以下の通り。また、 H- NMRのチャートを図 1に、 13C- NMRのチャート を図 2に、 MS (質量分析)のチャートを図 3に、 IRのチャートを図 4にそれぞれ示す。 [0040] The analysis results are as follows. The H-NMR chart is shown in FIG. 1, the 13 C-NMR chart is shown in FIG. 2, the MS (mass spectrometry) chart is shown in FIG. 3, and the IR chart is shown in FIG.
[0041] R =0.63 (SiO , CH CI— MeOH=4:l); IR (neat) 1594cm"1; 1H-NMR (270MHz, CDCl f 2 2 2 3[0041] R = 0.63 (SiO 2, CH CI— MeOH = 4: l); IR (neat) 1594cm "1; 1H-NMR (270 MHz, CDCl f 2 2 2 3
, r.t.) δ 1.35-2.05 (m, 6H, CH CH CH ), 2.36 (m, 2H, CH CH CHN), 4.10 (m, 2H , r.t.) δ 1.35-2.05 (m, 6H, CH CH CH), 2.36 (m, 2H, CH CH CHN), 4.10 (m, 2H
2 2 2 2 2  2 2 2 2 2
, CH CH N), 7.23 (t, J=7.0Hz, 1H, CH CHN); 13C- NMR (68MHz, CDCl , r.t.) δ 2, CH CH N), 7.23 (t, J = 7.0Hz, 1H, CH CHN); 13 C-NMR (68MHz, CDCl, rt) δ 2
2 2 2 32 2 2 3
4.0, 25.0, 27.1, 30.2, 65.7, 139.7; m/z 227.2 (M++H, 38%) 4.0, 25.0, 27.1, 30.2, 65.7, 139.7; m / z 227.2 (M + + H, 38%)
〔実施例 2〕  Example 2
磁気攪拌子を入れた 200πύナス型フラスコに、 8員環の環状-トロンィ匕合物である 1 —ァザ一 1 シクロオタテン = Ν ォキシドを 13mmol含む 0. 1 Mクロ口ホルム溶液と 、パラトルエンスルホン酸一水和物 0. 65mmol (0. 05当量)とを仕込み、室温(22°C )で 4時間攪拌した。  A 200π eggplant-shaped flask containing a magnetic stir bar contains 13 mmol of 1-aza-cycloataten = キ シ oxide, which is an 8-membered cyclic-tron compound, and a 0.1 M chloroform solution with para-toluenesulfone. An acid monohydrate (0.665 mmol, 0.05 equivalent) was charged and stirred at room temperature (22 ° C.) for 4 hours.
[0042] 得られた反応液を水洗した後、該反応液からクロ口ホルムを減圧留去した。その後 、シリカゲルカラムクロマトグラフィーにより残留物の精製を行った。その結果、 16員 環の環状ジ-トロン化合物である 1, 9ージァザシクロへキサデカー 1, 9 ジェン = 1 , 9 ジォキシドの 3種類の異性体力 収率 10% (165mg,以下、化合物 Aと記す), 15% (248mg,以下、化合物 Bと記す), 10% (173mg,以下、化合物 Cと記す)で得 られた。  [0042] After the obtained reaction solution was washed with water, black mouth form was distilled off from the reaction solution under reduced pressure. Thereafter, the residue was purified by silica gel column chromatography. As a result, 1,9-diazacyclohexadeca, which is a 16-membered cyclic di-tron compound, 1, 9 gen = 1, 9 Dioxide power of 10% (165 mg, hereinafter referred to as Compound A), 15% (248 mg, hereinafter referred to as Compound B) and 10% (173 mg, hereinafter referred to as Compound C).
[0043] 分析結果は以下の通り。また、化合物 Aの1 H- NMRのチャートを図 5に、 13C-NM Rのチャートを図 6に、 MSのチャートを図 7に、 IRのチャートを図 8にそれぞれ示す。 化合物 Bの1 H- NMRのチャートを図 9に、 13C- NMRのチャートを図 10に、 MSのチ ヤートを図 11に、 IRのチャートを図 12にそれぞれ示す。化合物 Cの1 H- NMRのチヤ 一トを図 13に、 13C- NMRのチャートを図 14に、 MSのチャートを図 15に、 IRのチヤ 一トを図 16にそれぞれ示す。 [0043] The analysis results are as follows. Further, a 1 H-NMR chart of Compound A is shown in FIG. 5, a 13 C-NMR chart is shown in FIG. 6, an MS chart is shown in FIG. 7, and an IR chart is shown in FIG. The 1 H-NMR chart of Compound B is shown in FIG. 9, the 13 C-NMR chart is shown in FIG. 10, the MS chart is shown in FIG. 11, and the IR chart is shown in FIG. FIG. 13 shows the 1 H-NMR chart of Compound C, FIG. 14 shows the 13 C-NMR chart, FIG. 15 shows the MS chart, and FIG. 16 shows the IR chart.
[0044] 化合物 A : R =0.46 (SiO , CH CI - MeOH=4:l); IR (neat) 1605cm—1; 1H- NMR (270M f 2 2 2 [0044] Compound A: R = 0.46 (SiO 2, CH CI-MeOH = 4: l); IR (neat) 1605cm— 1 ; 1H-NMR (270M f 2 2 2
Hz, CDCl , r.t.) δ 1.27-1.47 (m, 8H), 1.62—1.71 (m, 4H), 1.89—1.98 (m, 4H), 2.49  Hz, CDCl, r.t.) δ 1.27-1.47 (m, 8H), 1.62—1.71 (m, 4H), 1.89—1.98 (m, 4H), 2.49
3  Three
-2.56 (q, 4H), 3.78 (t, 4H, J=5.4Hz), 6.73 (t, 2H, J=5.4Hz),; 13C— NMR (68MHz, CD CI , r.t.) δ 25.1, 25.6, 26.0, 26.2, 28.6, 64.3, 139.7; m/z 255.2 (M++H, 65%) 化合物 B: R =0.31 (SiO , CH CI - MeOH=4:l); IR (neat) 1604cm ; H- NMR (270M f 2 2 2 -2.56 (q, 4H), 3.78 (t, 4H, J = 5.4Hz), 6.73 (t, 2H, J = 5.4Hz) ,; 13 C-NMR (68MHz, CD CI, rt) δ 25.1, 25.6, 26.0, 26.2, 28.6, 64.3, 139.7; m / z 255.2 (M ++ H, 65%) Compound B: R = 0.31 (SiO, CH CI-MeOH = 4: l); IR (neat) 1604cm; H-NMR (270M f 2 2 2
Hz, CDCl , r.t.) δ 1.24-1.46 (m, 8H), 1.48-1.56 (m, 4H), 1.84-1.94 (m, 4H), 2.45  Hz, CDCl, r.t.) δ 1.24-1.46 (m, 8H), 1.48-1.56 (m, 4H), 1.84-1.94 (m, 4H), 2.45
3  Three
-2.52 (q, 4H), 3.75 (t, 4H, J=5.4Hz), 6.68 (t, 2H, J=5.4Hz),; 13C- NMR (68MHz, CD CI , r.t.) δ 25.4, 25.7, 26.1, 26.7, 28.6, 65.1, 139.3; m/z 255.2 (M++H, 15%) -2.52 (q, 4H), 3.75 (t, 4H, J = 5.4Hz), 6.68 (t, 2H, J = 5.4Hz) ,; 13 C-NMR (68MHz, CD CI, rt) δ 25.4, 25.7, 26.1, 26.7, 28.6, 65.1, 139.3; m / z 255.2 (M ++ H, 15%)
3  Three
化合物 C : R =0.14 (SiO , CH CI - MeOH=4:l); IR (neat) 1596cm—1; 1H-NMR (270M f 2 2 2 Compound C: R = 0.14 (SiO, CH CI-MeOH = 4: l); IR (neat) 1596cm— 1 ; 1H-NMR (270M f 2 2 2
Hz, CDCl , r.t.) δ 1.34-1.38 (m, 8H), 1.53—1.55 (m, 4H), 1.88—1.95 (m, 4H), 2.45  Hz, CDCl, r.t.) δ 1.34-1.38 (m, 8H), 1.53—1.55 (m, 4H), 1.88—1.95 (m, 4H), 2.45
3  Three
-2.52 (q, 4H), 3.75 (t, 4H, J=5.4Hz), 6.70 (t, 2H, J=5.4Hz),; 13C— NMR (68MHz, CD CI , r.t.) δ 25.3, 25.9, 26.4, 26.9, 28.8, 65.2, 139.3; m/z 255.2 (M++H, 5%) -2.52 (q, 4H), 3.75 (t, 4H, J = 5.4Hz), 6.70 (t, 2H, J = 5.4Hz) ,; 13 C-NMR (68MHz, CD CI, rt) δ 25.3, 25.9, 26.4, 26.9, 28.8, 65.2, 139.3; m / z 255.2 (M ++ H, 5%)
3  Three
〔実施例 3〜7〕  (Examples 3 to 7)
直径 5mmの NMRチューブに、 1—ァザ一 1—シクロヘプテン =N—ォキシドの 0. 2 5Mまたは 0. 1M重クロ口ホルム溶液と、酸触媒 (Ti(0 -卜 Pr) , Y(OTf) , Sc(OTf)  In a 5 mm diameter NMR tube, add 0.25 M or 0.1 M heavy chloroform solution of 1-aza-1-cycloheptene = N-oxide and acid catalyst (Ti (0-卜 Pr), Y (OTf) , Sc (OTf)
4 3 3 または p—TsOH*H O) 0. 2当量, 0. 1当量または 0. 05当量とを仕込んだ。上記  4 3 3 or p—TsOH * H 2 O) 0.2 equivalent, 0.1 equivalent or 0.05 equivalent. the above
2  2
の NMRチューブを 22°Cの恒温槽内に、 36時間または 60時間置いた。その後、 1, 1, 2, 2—テトラクロルエタンを内部基準として、1 H-NMR測定により 1, 8—ジァザシ クロテトラデカー 1, 8—ジェン = 1, 8—ジォキシド(EZE, Z/Z, EZZ)の収率を求 めた。 The NMR tube was placed in a constant temperature bath at 22 ° C for 36 hours or 60 hours. Then, using 1, 1, 2, 2-tetrachloroethane as an internal standard, 1 H-NMR measurement revealed that 1,8-diazacyclotetradeca 1,8-gen = 1,8-dioxide (EZE, Z / Z, EZZ) yield was determined.
[0045] 溶液の濃度 (基質濃度)、使用した酸触媒の種類および当量、反応時間、並びに 収率をまとめて表 1に示す。  [0045] Table 1 summarizes the solution concentration (substrate concentration), the type and equivalent of the acid catalyst used, the reaction time, and the yield.
[0046] 〔比較例 1〕 [Comparative Example 1]
酸触媒を用いない以外は、実施例 7と同様の反応を行った。結果を表 1に併せて示 す。  The same reaction as in Example 7 was carried out except that no acid catalyst was used. The results are also shown in Table 1.
[0047] [表 1] 酸触媒 (当量) 基質濃度 (M) 反応時間 (h) 収率 (%) 実施例 3 T i (O-i-P r)4 0. 2 0. 25 36 24 実施例 4 Y(OT f )3 0. 2 0. 25 36 24 実施例 5 S c (OT f )3 0. 2 〇 . 25 3 6 23 実施例 6 S c (OT f )3 0. 1 0. 1 6〇 50 実施例 7 p -T s OH - H20 0. 0 5 0. 1 36 73 比較例 1 なし 0. 1 3 6 3 [0047] [Table 1] Acid catalyst (equivalent) Substrate concentration (M) Reaction time (h) Yield (%) Example 3 T i (OiP r) 4 0. 2 0. 25 36 24 Example 4 Y (OT f) 3 0.2 0.25 36 24 Example 5 S c (OT f) 3 0. 2 〇 .25 3 6 23 Example 6 S c (OT f) 3 0. 1 0. 1 600 000 Example 7 p -T s OH-H 2 0 0. 0 5 0. 1 36 73 Comparative Example 1 None 0. 1 3 6 3
〔実施例 8〜10〕 (Examples 8 to 10)
直径 5mmの NMRチューブに、 1—ァザ一 1—シクロヘプテン =N—ォキシドの 0.2 M重クロ口ホルム溶液と、酸触媒(Sc(OTf) , 36%HCほたは p— TsOH'H O)0.0  In a 5 mm diameter NMR tube, add 1-aza-1-cycloheptene = N-oxide in 0.2 M heavy chloroform solution and acid catalyst (Sc (OTf), 36% HC or p-TsOH'H 2 O) 0.0
3 2 3 2
5当量とを仕込んだ。上記の NMRチューブを 35°Cの恒温槽内に 5時間置いた。その 後、 1, 1, 2, 2—テトラクロルエタンを内部基準として、 ^-NMR測定により 1, 8—ジ ァザシクロテトラデカー 1, 8—ジェン =1, 8—ジォキシド(EZE, Z/Z, EZZ)の収 率を求めた。 5 equivalents were charged. The NMR tube was placed in a 35 ° C constant temperature bath for 5 hours. After that, 1,8-diazacyclotetradeca 1,8-gen = 1,8-dioxide (EZE, Z / The yield of Z, EZZ) was obtained.
[0048] 使用した酸触媒および収率をまとめて表 2に示す。  [0048] The acid catalyst used and the yield are summarized in Table 2.
[0049] [表 2] [0049] [Table 2]
Figure imgf000013_0001
Figure imgf000013_0001
〔実施例 11〜: L 5〕 [Example 11-: L 5]
直径 5mmの NMRチューブに、 1—ァザ一 1—シクロヘプテン =N—ォキシドの 0.1 M重クロ口ホルム溶液と、酸触媒(C H COOH, CH COOH, CF COOH, 96%  In a 5 mm diameter NMR tube, add 1-aza-1-cycloheptene = N-oxide in 0.1 M heavy chloroform solution and acid catalyst (C H COOH, CH COOH, CF COOH, 96%
6 5 3 3  6 5 3 3
H SOまたは 85%H PO )0. 1当量とを仕込んだ。上記の NMRチューブを 30°Cの H 2 SO or 85% H 2 PO 4) 0.1 equivalent. Attach the above NMR tube at 30 ° C
2 4 3 4 2 4 3 4
恒温槽内に 36時間置いた。その後、 1, 1, 2, 2—テトラクロルエタンを内部基準とし て、1 H- NMR測定により 1, 8—ジァザシクロテトラデカー 1, 8—ジェン =1, 8—ジォ キシド(EZE, Z/Z, EZZ)の収率を求めた。 It was placed in a thermostatic bath for 36 hours. Then, 1, 1, 2, 2-tetrachloroethane and as the internal standard, 1 by 1 H- NMR measurement, 8-di § The cycloalkyl tetradecanol-1, 8-Gen = 1, 8-di O The yield of xoxide (EZE, Z / Z, EZZ) was determined.
[0050] 使用した酸触媒および収率をまとめて表 3に示す。  [0050] Table 3 summarizes the acid catalyst used and the yield.
[0051] [表 3] [0051] [Table 3]
Figure imgf000014_0001
Figure imgf000014_0001
〔実施例 16〜19〕 Examples 16-19
直径 5mmの NMRチューブに、 1—ァザ一 1—シクロヘプテン =N—ォキシドの 0. 1 M, 0. 25M, 0. 5Mまたは 0. 1M重クロ口ホルム溶液と、 Sc(OTf) 0. 1当量とを仕  In a NMR tube with a diameter of 5 mm, add 0.1 M, 0.25 M, 0.5 M or 0.1 M heavy chloroform solution of 1-aza-1-cycloheptene = N-oxide, and Sc (OTf) 0.1 Equivalent
3  Three
込んだ。上記の NMRチューブを 22°Cの恒温槽内に 86時間置いた。その後、 1, 1, 2, 2—テトラクロルエタンを内部基準として、1 H-NMR測定により 1, 8—ジァザシクロ テトラデカー 1, 8—ジェン = 1, 8—ジォキシド(EZE, Z/Z, EZZ)の収率を求め た。 It was crowded. The NMR tube was placed in a thermostat at 22 ° C for 86 hours. Then, 1, 1, 2, 2-tetrachloroethane as internal standard, 1 1 H-NMR measurement 8- Jiazashikuro Tetoradeka 1, 8-Gen = 1, 8- Jiokishido (EZE, Z / Z, EZZ ) The yield of was determined.
[0052] 溶液の濃度 (基質濃度)および収率をまとめて表 4に示す。  [0052] Table 4 summarizes the solution concentration (substrate concentration) and yield.
[0053] [表 4] [0053] [Table 4]
Figure imgf000014_0002
Figure imgf000014_0002
〔実施例 20, 21〕 (Examples 20, 21)
直径 5mmの NMRチューブに、 1—ァザ一 1—シクロヘプテン =N—ォキシドの 0. 1 Mまたは 0. 5M重クロ口ホルム溶液と、 p— TsOH'H O0. 05当量とを仕込んだ。上  A 5 mm diameter NMR tube was charged with 0.1 M or 0.5 M heavy chloroform solution of 1-aza-1-cycloheptene = N-oxide and 0.05 equivalent of p-TsOH'H 2 O 3. Up
2  2
記の NMRチューブを 35°Cの恒温槽内に 6時間置いた。その後、 1, 1, 2, 2—テトラ クロルエタンを内部基準として、 H- NMR測定により 1, 8—ジァザシクロテトラデカー 1, 8 ジェン = 1, 8 ジォキシド(EZE, Z/Z, EZZ)の収率を求めた。 The NMR tube described above was placed in a thermostat at 35 ° C for 6 hours. Thereafter, 1, 1, 2, 2-tetrachloroethane was used as an internal reference, and 1, 8-diazacyclotetradeca was determined by 1 H-NMR measurement. 1,8 Gen = 1,8 The yield of dioxide (EZE, Z / Z, EZZ) was determined.
[0054] 溶液の濃度 (基質濃度)および収率をまとめて表 5に示す。 [0054] Table 5 summarizes the solution concentration (substrate concentration) and yield.
[0055] [表 5] [0055] [Table 5]
Figure imgf000015_0001
Figure imgf000015_0001
〔実施例 22〕 Example 22
直径 5mmの NMRチューブに、 1—ァザ一 1—シクロヘプテン =N—ォキシドの 0. 1 Mメチルアルコール d溶液と、 Sc(OTf) 0. 05当量とを仕込んだ。上記の NMRチ  An NMR tube having a diameter of 5 mm was charged with 0.1 M methyl alcohol d solution of 1-aza-1-cycloheptene = N-oxide and 0.05 equivalent of Sc (OTf). NMR NMR above
4 3  4 3
ユーブを 22°Cの恒温槽内に 30時間置いた。その後、 1, 1, 2, 2—テトラクロルェタン を内部基準として、1 H- NMR測定により 1, 8 ジァザシクロテトラデカー 1, 8 ジェ ン = 1, 8 ジォキシド (EZE, Z/Z, EZZ)の収率を求めた。その結果収率は 38 %であった。 The tube was placed in a thermostat at 22 ° C for 30 hours. Then, 1, 1 2, 2, 2-tetrachloroethane was used as an internal standard, and 1 H-NMR measurement revealed that 1, 8 diazacyclotetradeca 1,8 gen = 1,8 dioxide (EZE, Z / Z , EZZ). As a result, the yield was 38%.
[0056] 〔実施例 23〜25〕 [Examples 23 to 25]
直径 5mmの NMRチューブに、 1—ァザ一 1—シクロヘプテン =N—ォキシドの 0. 1 M重クロ口ホルム溶液と、 p-TsOH-H O0. 05当量とを仕込んだ。上記の NMRチ  An NMR tube having a diameter of 5 mm was charged with 0.1 M deuterated chloroform solution of 1-aza-1-cycloheptene = N-oxide and 0.05 equivalent of p-TsOH-H 2 O 3. NMR NMR above
2  2
ユーブを 35°C, 22°Cまたは 0°Cの恒温槽内に、 6時間, 24時間または 80時間置いた 。その後、 1, 1, 2, 2—テトラクロルエタンを内部基準として、 ^-NMR測定により 1, 8 ジァザシクロテトラデカー 1, 8 ジェン = 1, 8 ジォキシド(EZE, Z/Z, E/Z )の収率を求めた。  The tube was placed in a constant temperature bath at 35 ° C, 22 ° C or 0 ° C for 6 hours, 24 hours or 80 hours. Then, using 1, 1, 2, 2-tetrachloroethane as an internal standard, ^ -NMR measurement revealed that 1,8 diazacyclotetradeca 1,8 gen = 1,8 dioxide (EZE, Z / Z, E / The yield of Z) was determined.
[0057] 反応温度、反応時間、並びに収率をまとめて表 6に示す。  [0057] The reaction temperature, reaction time, and yield are summarized in Table 6.
[0058] [表 6] 反応温度 CO 反応時間 (h ) 収率 (%) [0058] [Table 6] Reaction temperature CO Reaction time (h) Yield (%)
実施例 2 3 3 5 6 5 2  Example 2 3 3 5 6 5 2
実施例 2 4 2 2 2 4 7 3  Example 2 4 2 2 2 4 7 3
実施例 2 5 0 8 0 6 4  Example 2 5 0 8 0 6 4
尚、発明を実施するための最良の形態の項においてなした具体的な実施態様また は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような 具体例にのみ限定して狭義に解釈されるべきものではなぐ本発明の精神と次に記 載する特許請求の範囲内で、いろいろと変更して実施することができるものである。 産業上の利用可能性 It should be noted that the specific embodiments or examples made in the section of the best mode for carrying out the invention are merely to clarify the technical contents of the present invention, and only such specific examples. Various modifications can be made within the spirit of the present invention, which should not be construed as being limited to a narrow sense, and within the scope of the following claims. Industrial applicability
大環状(10員環以上)の環状ジ-トロンィ匕合物は、金属錯体の配位子や各種機能 性材料としての利用が期待される大環状(10員環以上)の環状ジァミンィ匕合物や環 状ジヒドロキシァミン化合物の前躯体として好適に利用することができる。  Macrocyclic (more than 10-membered ring) cyclic di-trony compounds are macrocyclic (more than 10-membered) cyclic diamine compounds expected to be used as ligands and various functional materials of metal complexes. And can be suitably used as a precursor for cyclic dihydroxyamine compounds.

Claims

請求の範囲 The scope of the claims
下記構造式  The following structural formula
Figure imgf000017_0001
Figure imgf000017_0001
(但し、 mは 5, 6, 8, 9または 10であり、二つの二重結合での立体配置はそれぞれ 独立して Eまたは Z) (However, m is 5, 6, 8, 9 or 10, and the configuration at two double bonds is independently E or Z.)
で表される構造を有する環状ジニトロン化合物。  The cyclic dinitrone compound which has a structure represented by these.
[2] 環状二トロン化合物を含む溶液を酸触媒の存在下で攪拌することを特徴とする環 状ジニトロン化合物の製造方法。 [2] A method for producing a cyclic dinitrone compound, comprising stirring a solution containing a cyclic ditron compound in the presence of an acid catalyst.
[3] 上記環状二トロン化合物が 5〜10員環であることを特徴とする請求項 2記載の環状 ジ-トロン化合物の製造方法。  [3] The method for producing a cyclic di-tron compound according to claim 2, wherein the cyclic ditron compound is a 5- to 10-membered ring.
[4] 上記環状-トロンィ匕合物が 1—ァザ— 1—シクロヘプテン =N—ォキシドまたは 1— ァザー 1ーシクロオタテン =N—才キシドであることを特徴とする請求項 2記載の環状 ジ-トロン化合物の製造方法。  [4] The cyclic di-tron according to claim 2, wherein the cyclic-trony compound is 1-aza-1-cycloheptene = N-oxide or 1-other 1-cyclootaten = N-oxide. Compound production method.
[5] 得られる環状ジニトロンィ匕合物が下記構造式  [5] The obtained cyclic dinitron compound is represented by the following structural formula
[化 2]
Figure imgf000018_0001
[Chemical 2]
Figure imgf000018_0001
(但し、 nは 5〜10の整数であり、二つの二重結合での立体配置はそれぞれ独立し て Eまたは Z) (However, n is an integer of 5 to 10, and the configuration at two double bonds is independently E or Z.)
で表される構造を有することを特徴とする請求項 2記載の環状ジニトロン化合物の製 造方法。  3. The method for producing a cyclic dinitrone compound according to claim 2, which has a structure represented by:
[6] 上記溶液力 Sクロ口ホルム溶液であることを特徴とする請求項 2な ヽし 5の何れか一項 に記載の環状ジニトロン化合物の製造方法。  [6] The method for producing a cyclic dinitrone compound according to any one of [2] to [5], wherein the solution power is an S-cloform solution.
[7] 上記酸触媒がパラトルエンスルホン酸一水和物であることを特徴とする請求項 2な いし 6の何れか一項に記載の環状ジ-トロンィ匕合物の製造方法。 [7] The method for producing a cyclic di-tronyo compound according to any one of [2] to [6], wherein the acid catalyst is para-toluenesulfonic acid monohydrate.
[8] 反応温度が 0〜50°Cの範囲内であることを特徴とする請求項 2ないし 7の何れか一 項に記載の環状ジニトロン化合物の製造方法。 [8] The method for producing a cyclic dinitrone compound according to any one of [2] to [7], wherein the reaction temperature is in the range of 0 to 50 ° C.
PCT/JP2006/304546 2005-03-10 2006-03-09 Cyclic dinitrone compound and process for producing the same WO2006095795A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-067786 2005-03-10
JP2005067786 2005-03-10

Publications (1)

Publication Number Publication Date
WO2006095795A1 true WO2006095795A1 (en) 2006-09-14

Family

ID=36953388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304546 WO2006095795A1 (en) 2005-03-10 2006-03-09 Cyclic dinitrone compound and process for producing the same

Country Status (1)

Country Link
WO (1) WO2006095795A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106390A1 (en) * 2002-06-13 2003-12-24 A H Marks & Company Limited Polymerisation inhibitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106390A1 (en) * 2002-06-13 2003-12-24 A H Marks & Company Limited Polymerisation inhibitor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALFORD E.J. ET AL.: "Aliphatic Hydroxylamines. Part IV. N-Hydroxyhexamethyleneimine", JOURNAL OF THE CHEMICAL SOCIETY, (C): ORGANIC, 1966, pages 1103 - 1107, XP003003348 *
AL-JAROUDI S.S. ET AL.: "1,3-Dipolar Cyclo addition Reaction of 1-Aza-1-Cyclooctene 1-oxide", TETRAHEDRON, vol. 53, no. 15, 14 April 1997 (1997-04-14), pages 5581 - 5592, XP004105597 *
BROWN C.J. AND ROGERS M.A.T.: "Synthesis of 1:8-Diazacyclo-tetradecane", NATURE, vol. 177, 21 January 1956 (1956-01-21), pages 128 - 129, XP003003349 *

Similar Documents

Publication Publication Date Title
Yoshimura et al. o‐Alkoxyphenyliminoiodanes: Highly Efficient Reagents for the Catalytic Aziridination of Alkenes and the Metal‐Free Amination of Organic Substrates
CN112898192B (en) Preparation method of N-acyl indole compound
Han et al. A combination of polarity reversal, Diels–Alder cycloaddition and skeletal remodeling to access pyridine-fused nitrones
CN109516986B (en) 2,4,4,8, 8-pentanitro-2-azaadamantane and synthetic method thereof
CN108840814B (en) Preparation method of 8-oxo-2, 6, 9-triazaspiro [4.5] decane-2-carboxylic acid tert-butyl ester
WO2006095795A1 (en) Cyclic dinitrone compound and process for producing the same
CN111978194B (en) Preparation method of aryl acetamide compound
RU2550812C2 (en) Novel method of agomelatine synthesis
Lin et al. New, general, and practical preparation of methyl ketones via the direct coupling of amides with CH2Cl2 promoted by TiCl4/Mg
CN115490698A (en) 6-nitro-2-oxa-6-azaadamantane-4,8-diol dinitrate and preparation method thereof
CN112939780B (en) Synthetic method of indanone derivatives
RU2439066C2 (en) Method of producing 2-(4-hydroxy-morpholinyl)-2-cyclohexenone
CN114195787A (en) 2-nitro-2-azaadamantane-4, 6, 8-triol trinitrate and preparation method thereof
Walton et al. An efficient, simple synthesis of 4-azidobenzaldehyde
CN110372774B (en) Isoindolone substituted alpha-acyloxy amide dipeptide derivative and synthesis method thereof
Tomiya et al. Ring‐Opening Amino Esterification of Cyclic Ketones to Access Distal Amino Acid Derivatives
CN111285846B (en) 2- (2-indolyl) -acetate derivative and synthesis method thereof
CN115286628B (en) Preparation method of indolo [2,1a ] isoquinoline compound
CN114853756B (en) Preparation process of compound Tomivosertib
CN115057808B (en) Synthesis method of Z-3-vinyl substituted isoindolinone compound
CN108530381B (en) Method for preparing diamine derivative from amide ester
CN118108623A (en) Preparation method of organic nitrogen oxide
CN115260169A (en) Synthesis method of ethylene oxide compound
Хузам SYNTHESIS AND CHARACTERIZATION OF NICOTINE ESTER FROM DINICOTINIC ACID AND 3-AMINO-1-PROPANOL
CN115433097A (en) Method for preparing 4-butoxybenzoic acid (2-diethylaminoethyl) ester without metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP