WO2006095572A1 - Refrigeration cycle system - Google Patents

Refrigeration cycle system Download PDF

Info

Publication number
WO2006095572A1
WO2006095572A1 PCT/JP2006/303228 JP2006303228W WO2006095572A1 WO 2006095572 A1 WO2006095572 A1 WO 2006095572A1 JP 2006303228 W JP2006303228 W JP 2006303228W WO 2006095572 A1 WO2006095572 A1 WO 2006095572A1
Authority
WO
WIPO (PCT)
Prior art keywords
expander
compressor
refrigerant
oil
lubricating oil
Prior art date
Application number
PCT/JP2006/303228
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoichiro Tamura
Hiroshi Hasegawa
Masaru Matsui
Atsuo Okaichi
Takeshi Ogata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005065238A external-priority patent/JP2008133967A/en
Priority claimed from JP2005065239A external-priority patent/JP2008133968A/en
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006095572A1 publication Critical patent/WO2006095572A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a refrigeration cycle apparatus including a compressor and an expander.
  • V a so-called vapor compression refrigeration cycle apparatus
  • An apparatus having an expander instead of an expansion valve is known.
  • the expansion energy in the process of expansion of the refrigerant can be recovered in the form of electric power or power, and the efficiency of the cycle can be improved by the amount of the recovered energy. it can.
  • a refrigeration cycle apparatus equipped with an expander, lubricating oil is also required for an expander that is not only a compressor. Therefore, a refrigeration cycle apparatus has been proposed in which an oil separator is provided on the refrigerant circuit and the lubricating oil separated by the oil separator is supplied to the expander.
  • Japanese Patent Application Laid-Open No. 2001-141315 discloses an oil separator provided between a compressor and a radiator, and an oil feed pipe connecting the oil separator and an inlet side pipe of the expander.
  • a refrigerating air conditioner provided is disclosed.
  • the refrigeration air conditioner disclosed in the above document aims to prevent a decrease in refrigeration capacity, and therefore there is a dedicated cooling source (for example, cooling water) for the cooler of the oil feed pipe. It was essential.
  • a dedicated cooling source for example, cooling water
  • the heat dissipation from the lubricating oil results in energy loss, which reduces the heating efficiency or heating efficiency of the entire cycle, in other words, the COP (coefficient of performa on the heating side of the cycle. nce).
  • the present invention has been made in view of the strong point, and an object of the present invention is to achieve both sufficient supply of lubricating oil to the expander and improvement of COP as a whole cycle. It is in.
  • the present invention provides a refrigerant circuit in which a compressor, a radiator, an expander, and an evaporator are connected in this order,
  • An oil supply passage provided separately from the refrigerant circuit for supplying the lubricating oil in the compressor or the lubricating oil discharged from the compressor between the radiator and the expander in the expander or the refrigerant circuit;
  • Expanding power in refrigerant circuit Provided is a refrigeration cycle apparatus comprising: a cooling device that cools lubricating oil by heat-exchanging refrigerant in a low-pressure portion that reaches the compressor through the evaporator and lubricating oil in the oil supply passage. To do.
  • the refrigeration cycle apparatus of the present invention since the lubricating oil can be transported from the compressor side to the expander side through the oil supply passage, a sufficient amount of lubricating oil can be supplied to the expander. . Further, since the lubricating oil in the oil supply passage is cooled by the refrigerant in the low-pressure part of the refrigerant circuit (hereinafter referred to as low-pressure refrigerant), no special cooling source is required. In addition, the heat release from the lubricant can be recovered, so the COP of the entire cycle can be improved. Therefore, it is possible to achieve both a sufficient supply of lubricating oil to the expander and an improvement in the COP of the entire cycle.
  • the oil supply passage may communicate the compressor and the expander.
  • the compressor and the expander each include a storage unit that stores lubricating oil
  • the storage unit of the compressor and the storage unit of the expander can be communicated with each other through the oil supply passage.
  • the compressor includes a compression mechanism that compresses the refrigerant, and a refrigerant that covers the compression mechanism and is compressed by the compression mechanism. It has a compressor shell that forms the space to be discharged, and the expander covers the expansion mechanism that expands the refrigerant and the expansion mechanism! And an expander shell that forms a space in which the refrigerant before being decompressed by the expansion mechanism is stored, and the compressor and the expander reservoir are provided inside the compressor shell and the expander shell, respectively.
  • the oil supply passage is at one end Is preferably connected to the compressor shell and the other end is connected to the expander shell.
  • an oil separator may be disposed between the compressor and the radiator in the refrigerant circuit.
  • the lubricating oil separated by the oil separator can be supplied between the radiator and the expander in the expander or refrigerant circuit through the oil supply passage.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a first embodiment.
  • FIG. 2 is a longitudinal sectional view of the compressor.
  • FIG. 3 is a longitudinal sectional view of the expander.
  • FIG. 4 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a second embodiment.
  • FIG. 5 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a third embodiment.
  • FIG. 6 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a fourth embodiment.
  • FIG. 7 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a fifth embodiment.
  • FIG. 8 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a sixth embodiment.
  • FIG. 9 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a seventh embodiment.
  • FIG. 10 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to an eighth embodiment.
  • FIG. 11 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a ninth embodiment.
  • the refrigeration cycle apparatus 10A includes a refrigerant circuit 11 in which a compressor radiator 2, an expander 3, and an evaporator 5 are connected in this order.
  • the refrigeration cycle apparatus 10A includes an oil supply pipe 7 (oil supply passage) that communicates the compressor 1 and the expander 3.
  • the oil supply pipe 7 also has a piping force provided separately from the refrigerant circuit 11, and this oil supply pipe 7 is provided with a cooler 6 (cooling device) and a valve 8 (flow rate adjusting device)! / ⁇
  • the valve 8 is a valve whose opening can be adjusted.
  • the refrigerant charged in the refrigerant circuit 11 is a refrigerant that is in a supercritical state in a high-pressure portion (portion from the compressor 1 through the radiator 2 to the expander 3) during operation.
  • Refrigerant of this embodiment The circuit 11 is filled with carbon dioxide (CO 2) as such a refrigerant.
  • CO 2 carbon dioxide
  • the type of the medium is not particularly limited.
  • the compressor 1 is a rotary compressor.
  • the compressor 1 is not limited to the rotary type, and may be another type of compressor (for example, a scroll compressor).
  • the compressor 1 includes a sealed container 21 constituting a compressor shell, an electric motor 24 and a compression mechanism 25 accommodated in the sealed container 21.
  • the compressor 1 is a so-called high-pressure dome type compressor, and a high-pressure side refrigerant (hereinafter simply referred to as a high-pressure refrigerant) of the refrigerant circuit 11 is stored in an internal space formed by the sealed container 21.
  • the sealed container 21 is a so-called vertically long container whose vertical length is longer than the horizontal length.
  • a terminal 43 to which a power cable or the like is connected is fixed to the upper wall of the sealed container 21.
  • a discharge pipe 31 is connected to the upper wall of the sealed container 21.
  • a suction pipe 32 is connected to the side wall of the sealed container 21, and an oil supply pipe 7 is connected to the bottom of the side wall of the sealed container 21.
  • the electric motor 24 includes a stator 22 fixed to the inner wall of the hermetic container 21 and a rotor 23 arranged inside the stator 22. On the outer peripheral side of the stator 22, a plurality of notches 41 serving as refrigerant flow paths are formed. A gap 42 is provided between the stator 22 and the rotor 23.
  • a shaft 26 is fixed to the center portion of the rotor 23.
  • the shaft 26 extends below the rotor 23.
  • an eccentric portion 26a in which the axial center L force of the shaft 26 is also offset is provided in the lower part of the shaft 26.
  • the upper part of the shaft 26 above the eccentric part 26 a is supported by the upper bearing member 27, and the lower part of the eccentric part 26 a is supported by the lower bearing member 28.
  • a cylinder 30 is disposed between the upper bearing member 27 and the lower bearing member 28.
  • An annular roller 29 is accommodated in the cylinder 30, and an eccentric portion 26 a is accommodated in the roller 29.
  • a vane 33 that contacts the roller 29 and a spring 34 that urges the vane 33 toward the roller 29 are provided.
  • the upper bearing member 27 includes a suction hole 35 for guiding the refrigerant from the suction pipe 32 into the cylinder 30, and A discharge hole 36 for discharging the refrigerant compressed in the cylinder 30 of the compression mechanism 25 into the internal space of the sealed container 21 is formed.
  • the bottom of the sealed container 21 forms an oil reservoir 37 (storage part) for storing lubricating oil.
  • the oil supply pipe 7 opens toward the oil reservoir 37. Force not shown
  • the oil pump 38 for pumping up the lubricating oil in the oil reservoir 37 is provided at the lower end of the shaft 26.
  • An oil supply hole (not shown) for supplying the lubricating oil pumped up by the oil pump 38 to the sliding portion is formed inside the shaft 26.
  • the expander 3 is a two-stage rotary expander that expands the refrigerant in two stages.
  • the type of the expander 3 is not limited at all.
  • the expander 3 may be a single-stage rotary expander or another type of expander (for example, a scroll expander).
  • the expander 3 includes a sealed container 51 constituting an expander shell, a generator 52 accommodated in the sealed container 51, and an expansion mechanism 55. That is, the expander 3 is an expander with a built-in generator 52.
  • the expander 3 is a so-called high-pressure dome type expander, and high-pressure refrigerant is stored in the internal space formed by the sealed container 51.
  • the sealed container 51 is a vertically long container, similar to the sealed container 21 of the compressor 1. However, the shape and dimensions of the sealed container 51 are not limited at all.
  • a terminal 56 to which an electrical cable (not shown) is connected is fixed to the upper wall of the sealed container 51.
  • An inlet side pipe 57 is connected to the upper wall of the sealed container 51.
  • An outlet side pipe 58 is connected to the side wall of the sealed container 51, and an oil supply pipe 7 is connected to the bottom of the side wall of the sealed container 51.
  • the generator 52 includes a stator 53 that is fixed to the inner wall of the hermetic container 51, and a rotor 54 that is disposed inside the stator 53.
  • a shaft 59 is fixed to the center of the rotor 54. The shaft 59 extends upward and downward from the rotor 54, respectively.
  • a first eccentric portion 61 and a second eccentric portion 62 in which the axial force of the shaft 59 is also biased are provided on the upper side of the shaft 59.
  • the lower portion of the first eccentric portion 61 of the shaft 59 is supported by the lower bearing member 65 via the bearing 63.
  • a first cylinder 66 is provided on the lower bearing member 65.
  • a first roller 71 is accommodated in the first cylinder 66, and the inside of the first roller 71
  • the first eccentric portion 61 is arranged in the first.
  • An intermediate plate 67 is provided above the first cylinder 66, and a second cylinder 68 is disposed on the intermediate plate 67.
  • a second roller 72 is accommodated in the second cylinder 68, and a second eccentric portion 62 is disposed in the second roller 72.
  • An upper bearing member 69 is provided on the second roller 72.
  • the upper end portion of the shaft 59 is supported by the upper bearing member 69 via the bearing 64.
  • a block 70 is provided on the upper bearing member 69.
  • the lower bearing member 65 is formed with a suction hole 73 that communicates the internal space of the sealed container 51 with the inside of the first cylinder 66.
  • the intermediate plate 67 is formed with a communication hole 74 that communicates the inside of the first cylinder 66 and the inside of the second cylinder 68.
  • the upper bearing member 69 has a discharge hole 75 connected to the second cylinder 68.
  • the block 70 has a discharge hole 76 that communicates the discharge hole 75 and the outlet side pipe 58.
  • the bottom of the sealed container 51 forms an oil reservoir 77 for storing lubricating oil.
  • the oil supply pipe 7 opens toward the oil reservoir 77 by force.
  • an oil pump 78 for pumping up lubricating oil is also provided at the lower end of the shaft 59 of the expander 3.
  • an oil supply hole (not shown) for supplying the lubricating oil pumped up by the oil pump 78 to the sliding portion is formed inside the shaft 59! Speak.
  • the compressor 1 may have a configuration in which the electric motor 24 is externally attached by extending one end of the force shaft 26 configured to incorporate the electric motor 24 to the outside of the sealed container 21.
  • the expander 3 has a configuration in which the generator 52 is incorporated, but the configuration in which the generator 52 is externally attached by extending one end of the shaft 59 to the outside of the sealed container 51 may be used. Good
  • the configurations of the radiator 2 and the evaporator 5 are not limited at all.
  • the radiator 2 or the evaporator 5 for example, air-cooled or water-cooled heat exchange may be used.
  • the cooler 6 cools the lubricating oil in the oil supply pipe 7 with the low-pressure refrigerant in the refrigerant circuit 11.
  • the cooler 6 of the present embodiment is provided between the expander 3 and the evaporator 5.
  • the cooler 6 is configured by so-called liquid-liquid heat exchange that directly exchanges heat between the lubricating oil and the low-pressure refrigerant.
  • the specific form of the cooler 6 is not limited at all. A heavy tube heat exchanger, a plate heat exchanger, a shell and tube heat exchanger, and the like can be suitably used.
  • the oil supply pipe 7 and the pipe forming the refrigerant circuit 11 are arranged in parallel and brought into contact with each other, and further joined in that state (for example, brazed), thereby cooling. It is also possible to configure vessel 6.
  • the coolant may flow through the inner flow path and the lubricating oil may flow through the outer flow path. .
  • This can suppress an increase in pressure loss of the low-pressure refrigerant.
  • the cooler 6 is preferably a so-called counter-flow type heat exchanger that allows the refrigerant and the lubricating oil to flow in a facing state.
  • the overall refrigeration cycle apparatus 10 can reduce the number of parts and save energy.
  • the refrigerant discharged from the expander 3 is preliminarily heated before the evaporator 5. Therefore, the amount of heat exchange required for the evaporator 5 can be reduced, and the evaporator 5 can be made compact. Further, the low pressure side pressure that is the pressure in the low pressure portion of the refrigerant circuit 11 can be increased, and the load on the compressor 1 can be reduced. Therefore, COP can be improved.
  • the inlet side pipe 57 of the expander 3 is provided with a temperature sensor 81 for detecting the refrigerant temperature.
  • the temperature sensor 81 may be any sensor that substantially detects the refrigerant temperature. Therefore, the temperature sensor 81 detects the refrigerant temperature indirectly, for example, by detecting the wall surface temperature of the inlet side pipe 57, which may directly detect the refrigerant temperature in the inlet side pipe 57. There may be. Further, the temperature sensor 81 may be provided in the expander 3 itself (that is, in the sealed container 51) as long as it can detect the inlet refrigerant temperature that is the refrigerant temperature on the inlet side of the expander 3. .
  • the refrigeration cycle apparatus 10A is provided with a controller 80.
  • the controller 80 receives the detection signal from the temperature sensor 81 and controls the opening degree of the valve 8. It should be noted that the controller 80 is not necessarily a dedicated controller provided for the control of the valve 8. Of course, you can control it.
  • the temperature sensor 81 is arranged on the expander 3 side in view of the merging point force between the inlet side pipe 57 and the oil supply pipe 7 of the expander 3. In this way, it is possible to accurately measure the temperature of the refrigerant immediately before being sucked into the expander 3.
  • the refrigerant discharged from the compressor 1 dissipates heat in the radiator 2, expands in the expander 3, evaporates in the evaporator 5, and then sucked into the compressor 1.
  • the electric motor 24 is driven, and the roller 29 rotates in the cylinder 30 as the shaft 26 rotates.
  • the refrigerant is sucked into the cylinder 30 of the compression mechanism 25 from the suction pipe 32, and the refrigerant is compressed in the cylinder 30.
  • the compressed high-pressure refrigerant is discharged into the space in the sealed container 21 through the discharge hole 36 and then discharged from the discharge pipe 31.
  • the high-pressure refrigerant is sucked into the sealed container 51 through the inlet side pipe 57.
  • the high-pressure refrigerant flows into the first cylinder 66 through the suction hole 73 and expands in the first cylinder 66.
  • the first roller 71 is rotated by the expansion force of the refrigerant.
  • the refrigerant expanded in the first cylinder 66 flows into the second cylinder 68 through the communication hole 74 and further expands in the second cylinder 68.
  • the second roller 72 is rotated by the expansion force of the refrigerant.
  • the low-pressure refrigerant expanded in the second cylinder 68 is discharged from the outlet side pipe 58 through the discharge hole 75 and the discharge hole 76.
  • the internal pressure of the sealed container 21 of the compressor 1 is higher than the internal pressure of the sealed container 51 of the expander 3. Therefore, due to the internal pressure difference between the compressor 1 and the expander 3, the lubricating oil in the oil reservoir 37 of the compressor 1 flows into the oil reservoir 77 of the expander 3 through the oil supply pipe 7. At this time, the lubricating oil flowing through the oil supply pipe 7 is cooled in the cooler 6. In addition, by adjusting the opening of the valve 8 of the oil supply pipe 7, the oil supply pipe 7 The flow rate, that is, the amount of lubricating oil flowing into the expander 3 can be adjusted.
  • the controller 80 controls the opening degree of the valve 8 based on the inlet refrigerant temperature of the expander 3. For example, the controller 80 may adjust the inflow amount of the lubricating oil so that the internal temperature of the expander 3 does not increase or decrease too much. In the present embodiment, the controller 80 controls the opening degree of the valve 8 so that the inlet refrigerant temperature of the expander 3 becomes a predetermined value. For example, the controller 80 decreases the opening degree of the valve 8 when the inlet refrigerant temperature of the expander 3 is equal to or higher than a predetermined value, and increases the opening degree of the valve 8 when the inlet refrigerant temperature is lower than the predetermined value.
  • the oil supply pipe 7 that communicates the compressor 1 and the expander 3 is provided, and the lubricating oil in the compressor 1 is supplied to the expander 3 through the oil supply pipe 7. Since it is supplied, it is not necessary to install an oil separator in the refrigerant circuit 11 separately. Therefore, the number of parts can be reduced and the cost can be reduced as much as the oil separator is unnecessary. Further, since the cooler 6 is provided in the oil supply pipe 7, it is possible to prevent the high-temperature lubricating oil in the compressor 1 from flowing into the expander 3 as it is. For this reason, it is possible to avoid an excessive increase in the temperature of the refrigerant before expansion, and to suppress a decrease in evaporator capacity.
  • the lubricating oil can be sufficiently supplied to the expander 3 and the refrigeration cycle apparatus 10A can be reduced in size or weight.
  • the lubricating oil in the oil supply pipe 7 is cooled by the low-pressure refrigerant in the refrigerant circuit 11, there is no need to provide a dedicated cooling source for cooling the lubricating oil. Further, the heat radiation from the lubricating oil can be recovered in the refrigerant circuit 11, and the COP of the entire cycle can be improved. Therefore, it is possible to achieve both the sufficient supply of the lubricating oil to the expander 3 and the improvement of the COP of the entire cycle.
  • this refrigeration cycle apparatus 10A by heating the low-pressure refrigerant with lubricating oil, the low-pressure side pressure of the refrigerant circuit 11 can be increased, and the load on the compressor 1 can be reduced. Therefore, the COP of the refrigeration cycle can be improved. Further, since the refrigerant is heated in the cooler 6, the required heating amount in the evaporator 5 can be reduced. Therefore, it is possible to make the evaporator 5 compact.
  • the oil reservoir 37 is provided in the compressor 1, the oil reservoir 77 is provided in the expander 3, and the oil supply pipe 7 is interposed. Since the oil reservoirs 37 and 77 are communicated with each other, the lubricating oil can be supplied from the compressor 1 to the expander 3 with a simple configuration.
  • the compressor 1 and the expander 3 are both high-pressure dome type, and the pressure applied to the lubricating oil in the compressor 1 and the expander 3 is the compression mechanism 25 and the expansion mechanism 55.
  • the sliding part is at a pressure higher than the pressure applied to the lubricating oil during lubrication. Accordingly, the lubricating oil is satisfactorily supplied from the oil reservoirs 37 and 77 to the sliding portions of the compression mechanism 25 and the expansion mechanism 55.
  • the valve 8 capable of adjusting the opening degree is provided in the oil supply pipe 7, the supply amount of the lubricating oil to the expander 3 can be freely adjusted. That is, an appropriate amount of lubricating oil can always be supplied to the expander 3. Further, the refrigerant temperature before expansion can be controlled by adjusting the opening degree of the valve 8 based on the inlet refrigerant temperature of the expander 3. Therefore, a decrease in evaporator capacity can be suppressed, and an increase in load on the compressor 1 can be suppressed. Therefore, the COP of the refrigeration cycle apparatus 10 can be improved regardless of fluctuations in the operating state.
  • a lance between the internal pressure of the compressor 1 and the internal pressure of the expander 3 can be obtained by appropriately adjusting the opening degree of the valve 8.
  • the difference between the internal pressure of the compressor 1 and the internal pressure of the expander 3 can be maintained at a predetermined value by adjusting the opening of the valve 8. Therefore, a refrigerant pipe (equal pressure line) for connecting the compressor 1 and the expander 3 is not particularly necessary.
  • the amount of oil in the compressor 1 and the amount of oil in the expander 3 can be balanced by controlling the opening degree of the valve 8.
  • the lubricating oil supplied to the expander 3 is returned to the compressor 1 again through the evaporator 5.
  • the amount of lubricating oil discharged from the expander 3 exceeds the amount of lubricating oil discharged from the compressor 1. Therefore, the line for supplying the lubricating oil from the expander 3 side to the compressor 1 side need not be considered.
  • the oil supply pipe 7 communicates with the oil reservoir 37 of the compressor 1 and the oil reservoir 77 of the expander 3, but the arrangement of the oil supply pipe 7 is It is not limited to this. That is, one end of the oil supply pipe 7 of the refrigeration cycle apparatus 10B shown in FIG. The other end of the refrigerant circuit 11 is connected to a pipe 57 (an inlet side pipe 57 of the expander 3) between the radiator 2 and the expander 3.
  • the controller 80 controls the opening degree of the valve 8 based on the inlet refrigerant temperature of the expander 3.
  • the control executed by the controller 80 is not limited to the above control.
  • a rotation speed detection sensor 82 for detecting the rotation speed of the expander 3 is provided, and the opening degree of the valve 8 is controlled based on the rotation speed of the expander 3. It may be.
  • the controller 80 increases the opening degree of the valve 8 when the rotational speed of the expander 3 is greater than or equal to a predetermined value, and decreases the opening degree of the valve 8 when the rotational speed is less than a predetermined value. As a result, a sufficient amount of lubricating oil can always be supplied in accordance with the rotational speed, and cycle efficiency can be improved.
  • controlling the rotational speed of the expander 3 means controlling the operating capacity of the expander 3.
  • the method of controlling the operating capacity of the expander 3 is not limited to the method of controlling the rotational speed.
  • the expander 3 may be a plurality of expander cables connected in parallel to each other. In this case as well, the overall operating capacity of the expander 3 can be controlled by adjusting the number of expander units.
  • the refrigeration cycle apparatus 10D of the fourth embodiment is a modification of the cooler 6 of the oil supply pipe 7 in the refrigeration cycle apparatus 10A of the first embodiment.
  • the cooler 6 is configured to indirectly exchange heat between the lubricating oil and the low-pressure refrigerant.
  • the evaporator 5 of the present embodiment also has a so-called air heat exchange force that exchanges heat between the air and the refrigerant, and the cooler 6 is the air before being cooled by the evaporator 5 or after being cooled. Air heat exchange ⁇ for heat exchange between oil and lubricating oil Therefore, it is comprised.
  • a blower 9 common to the evaporator 5 and the cooler 6 is provided. However, it goes without saying that a fan is provided in each of the evaporator 5 and the cooler 6.
  • the oil supply pipe 7 is provided with the valve 8.
  • the oil supply pipe 7 may be provided with an oil pump 8a instead of the valve 8 (or together with the valve 8).
  • the oil pump 8a plays a role of a conveying device that conveys the lubricating oil in the oil supply pipe 7.
  • the controller 80 may control the oil pump 8a based on the inlet refrigerant temperature or the operating capacity of the expander 3.
  • the flow rate of the lubricating oil in the oil supply pipe 7 can be increased even when the pressure difference between the compressor 1 and the expander 3 is small. it can. Therefore, a sufficient amount of lubricating oil can always be supplied to the expander 3. Moreover, it becomes possible to control the flow rate of the lubricating oil widely.
  • each embodiment described below employs a configuration in which an oil separator is disposed on the outlet side of the compressor 1 in the refrigerant circuit 11 and the lubricating oil recovered by the oil separator is supplied to the expander 3 side. To do.
  • the refrigeration cycle apparatus 10F includes a refrigerant circuit 11 in which a compressor radiator 2, an expander 3, and an evaporator 5 are connected in this order.
  • An oil separator 9 is disposed between the compressor 1 and the radiator 2 in the refrigerant circuit 11.
  • the refrigeration cycle apparatus 10F includes an oil supply pipe 7 that supplies the lubricating oil of the oil separator 9 to the expander 3.
  • the oil supply pipe 7 has one end connected to the oil separator 9 and the other end connected to the inlet side pipe 57 of the expander 3.
  • the oil supply pipe 7 is provided with a cooler 6 and a valve 8.
  • the valve 8 is a valve whose opening can be adjusted.
  • the refrigerant discharged from the compressor 1 is separated from the lubricating oil in the oil separator 9, then radiates heat in the heat radiator 2, expands in the expander 3, and becomes a low-temperature and low-pressure refrigerant.
  • the low-temperature and low-pressure refrigerant is heated by the cooler 6 at the same time as the lubricating oil is cooled. At this time, a part of the cooling medium may or may not evaporate. Then, the refrigerant heated by the cooler 6 evaporates by the evaporator 5 and then is sucked into the compressor 1.
  • the lubricating oil separated by the oil separator 9 flows through the oil supply pipe 7 and is cooled by exchanging heat with the refrigerant in the cooler 6.
  • the cooled lubricating oil flows into the inlet side pipe 57 of the expander 3, merges with the refrigerant from the radiator 2, and flows into the expander 3.
  • the flow rate of lubricating oil is adjusted by valve 8.
  • the opening degree of the valve 8 may be controlled based on the inlet refrigerant temperature of the expander 3, and the opening degree of the valve 8 may be controlled based on the rotation speed of the expander 3. Even so,
  • the refrigerant and the lubricating oil are separated by the oil separator 9, and the lubricating oil is supplied to the expander 3 through the oil supply pipe 7.
  • a sufficient amount of lubricating oil can be supplied for 3. Since the lubricating oil in the oil supply pipe 7 is cooled by the low-pressure refrigerant in the refrigerant circuit 11, it is not necessary to newly provide a cooling source. Further, the heat radiation from the lubricating oil can be recovered in the refrigerant circuit 11, and the COP of the entire cycle can be improved. Accordingly, it is possible to achieve both sufficient supply of lubricating oil to the expander 3 and improvement of COP of the entire site.
  • this refrigeration cycle apparatus 10F by heating the low-pressure refrigerant with lubricating oil, the low-pressure side pressure of the refrigerant circuit 11 can be increased, and the load on the compressor 1 can be reduced. Therefore, the COP of the refrigeration cycle can be improved. Further, since the refrigerant is heated in the cooler 6, the required heating amount in the evaporator 5 can be reduced. Therefore, it is possible to make the evaporator 5 compact. [0070] Further, according to the present embodiment, since the valve 8 capable of adjusting the opening degree is provided in the oil supply pipe 7, the supply amount of the lubricating oil to the expander 3 can be freely adjusted.
  • the refrigerant temperature before expansion can be controlled. Therefore, it is possible to suppress a decrease in the viscosity of the lubricating oil due to a decrease in the refrigerant temperature before expansion and a decrease in the evaporator capacity due to an increase in the refrigerant temperature before expansion.
  • a decrease in the viscosity of the lubricating oil due to a decrease in the refrigerant temperature before expansion
  • a decrease in the evaporator capacity due to an increase in the refrigerant temperature before expansion By suppressing the decrease in the lubricating oil viscosity, an increase in sliding loss in the expander 3 can be suppressed, and as a result, the reliability and performance of the expander 3 can be improved.
  • the refrigeration cycle apparatus 10F of the present embodiment it is possible to improve the COP of the refrigeration cycle while ensuring the reliability of the expander 3 regardless of fluctuations in the operating state.
  • the refrigerant after being separated from the lubricating oil by the oil separator 9 flows through the radiator 2. Therefore, it is possible to prevent or suppress the lubricating oil from flowing into the radiator 2, so that the heat transfer coefficient on the refrigerant side of the radiator 2 can be increased, and the performance of the radiator 2 can be improved. . Therefore, COP can be further improved.
  • the seventh embodiment is obtained by changing the cooler 6 of the oil supply pipe 7 in the refrigeration cycle apparatus 10F of the sixth embodiment.
  • the cooler 6 is configured to indirectly exchange heat between the lubricating oil and the low-pressure refrigerant, similarly to the refrigeration cycle apparatus 10D of the fourth embodiment (see FIG. 6). It is configured.
  • a common blower 17 is provided for the evaporator 5 and the cooler 6.
  • the eighth embodiment is also a modification of the cooler 6 of the oil supply pipe 7 in the refrigeration cycle apparatus 10F of the sixth embodiment.
  • the cooler 6 is integrated with the evaporator 5.
  • the oil supply pipe 7 is steamed It passes through the generator 5, and in the evaporator 5, the lubricating oil and the refrigerant (or air before being cooled by the refrigerant or air after being cooled) exchange heat.
  • Other configurations are the same as those in the sixth embodiment.
  • the valve 8 is provided in the oil supply pipe 7.
  • the oil supply pipe 7 may be provided with an oil pump 8a instead of the valve 8 (or together with the valve 8).
  • the controller 80 may control the oil pump 8a based on the inlet refrigerant temperature or the operating capacity of the expander 3. The effect of oil pump 8a is as explained in Fig. 7.
  • the downstream end of the oil supply pipe 7 is connected to the inlet side pipe 5 7 of the expander 3.
  • the oil supply pipe 7 supplies lubricating oil to the expander 3
  • the downstream end of the oil supply pipe 7 is connected to the expander 3 itself, specifically, to the oil reservoir 77 of the expander 3. You can be ⁇ .
  • a throttle mechanism such as a capillary tube may be provided instead of the valve 8 whose opening degree can be adjusted.
  • the valve 8 can be omitted.
  • the type of the oil supply pipe 7 is not limited at all.
  • the oil supply pipe 7 may be formed of a flexible pipe so that the oil supply pipe 7 is not easily damaged by vibration of the compressor 1 or the expander 3.
  • the length and shape of the oil supply pipe 7 are not limited at all. However, from the viewpoint of reducing the pressure loss of the oil supply pipe 7, it is preferable that the length of the oil supply pipe 7 is short, and it is preferable that the oil supply pipe 7 is a straight pipe.
  • the compressor 1 and the expander 3 are high-pressure dome types. However, as long as the performance of the lubricating oil is not deteriorated, the compressor 1 and the expander 3 may be a low-pressure dome type in which low-pressure refrigerant is stored inside.
  • the refrigerant charged in the refrigerant circuit 11 is not limited to a refrigerant that is in a supercritical state in the high pressure portion of the refrigerant circuit 11, and may be a refrigerant that does not enter a supercritical state in the high pressure portion.
  • the present invention is useful for a refrigeration cycle apparatus including a compressor and an expander.
  • the present invention can be suitably applied to a water heater, a heating device, and a dryer that heat an object such as water or air with a radiator.

Abstract

A refrigeration cycle system (10A) comprising a refrigerant circuit (11) where a compressor (1), a radiator (2), an expansion device (3) and an evaporator (5) are connected in this order and an oil supply pipe (7) for communication of the oil sump of the compressor (1) with the oil sump of the expansion device (3). The oil supply pipe (7) is provided with a cooler (6) for cooling lubricant and a valve (8) for regulating the flow rate of the lubricant. The inlet-side piping (57) of the expansion device (3) is provided with a temperature sensor (81). A controller (80) controls the opening of the valve (8) according to the inlet refrigerant temperature of the expansion device (3).

Description

明 細 書  Specification
冷凍サイクル装置  Refrigeration cycle equipment
技術分野  Technical field
[0001] 本発明は、圧縮機と膨張機とを備えた冷凍サイクル装置に関するものである。  [0001] The present invention relates to a refrigeration cycle apparatus including a compressor and an expander.
背景技術  Background art
[0002] V、わゆる蒸気圧縮式の冷凍サイクル装置にお!、て、膨張弁の代わりに膨張機を備 えた装置が知られている。この種の冷凍サイクル装置では、膨張機を用いることにより 、冷媒が膨張する過程の膨張エネルギーを電力又は動力の形で回収することができ 、その回収エネルギーの分だけサイクルの効率を向上させることができる。  [0002] V, a so-called vapor compression refrigeration cycle apparatus! An apparatus having an expander instead of an expansion valve is known. In this type of refrigeration cycle apparatus, by using an expander, the expansion energy in the process of expansion of the refrigerant can be recovered in the form of electric power or power, and the efficiency of the cycle can be improved by the amount of the recovered energy. it can.
[0003] 膨張機を備えた冷凍サイクル装置では、圧縮機だけでなぐ膨張機にも潤滑油が 必要となる。そこで、冷媒回路上に油分離器を設け、当該油分離器で分離した潤滑 油を膨張機に供給する冷凍サイクル装置が提案されている。例えば、特開 2001— 1 41315号公報には、圧縮機と放熱器との間に設けられた油分離器と、油分離器と膨 張機の入口側配管とを接続する油送り管とを備えた冷凍空調機が開示されている。  [0003] In a refrigeration cycle apparatus equipped with an expander, lubricating oil is also required for an expander that is not only a compressor. Therefore, a refrigeration cycle apparatus has been proposed in which an oil separator is provided on the refrigerant circuit and the lubricating oil separated by the oil separator is supplied to the expander. For example, Japanese Patent Application Laid-Open No. 2001-141315 discloses an oil separator provided between a compressor and a radiator, and an oil feed pipe connecting the oil separator and an inlet side pipe of the expander. A refrigerating air conditioner provided is disclosed.
[0004] 圧縮機から吐出された冷媒及びこれに含まれる潤滑油は高温であるため、油分離 器から油送り管へ流れる潤滑油も高温となる。一方、油分離器を通過した冷媒は放 熱器において冷却されるため、膨張機の直前においては低温となっている。そのた め、油送り管の潤滑油が膨張機の入口側の冷媒と合流すると、膨張機入口の冷媒温 度が上昇し、ひいては冷凍能力の低下を招くことになる。そこで、上記文献には、膨 張機に供給される潤滑油の温度を低下させるため、油送り管に冷却器を設けることが 提案されている。  [0004] Since the refrigerant discharged from the compressor and the lubricating oil contained therein are at a high temperature, the lubricating oil flowing from the oil separator to the oil feed pipe is also at a high temperature. On the other hand, since the refrigerant that has passed through the oil separator is cooled in the heat radiator, the temperature is low immediately before the expander. For this reason, when the lubricating oil in the oil feed pipe merges with the refrigerant on the inlet side of the expander, the refrigerant temperature at the inlet of the expander rises, resulting in a decrease in the refrigerating capacity. Therefore, in the above document, it is proposed to provide a cooler in the oil feed pipe in order to reduce the temperature of the lubricating oil supplied to the expander.
発明の開示  Disclosure of the invention
[0005] しかし、上記文献に開示された冷凍空調機では、冷凍能力の低下を防止することを 目的としているため、油送り管の冷却器のための専用の冷却源 (例えば冷却水等)が 必要不可欠であった。  [0005] However, the refrigeration air conditioner disclosed in the above document aims to prevent a decrease in refrigeration capacity, and therefore there is a dedicated cooling source (for example, cooling water) for the cooler of the oil feed pipe. It was essential.
[0006] また、潤滑油からの放熱がエネルギー損失となり、サイクル全体として加熱効率又 は暖房効率の低下、換言すれば、サイクルの加熱側の COP (coefficient of performa nce)の低下を招いていた。 [0006] In addition, the heat dissipation from the lubricating oil results in energy loss, which reduces the heating efficiency or heating efficiency of the entire cycle, in other words, the COP (coefficient of performa on the heating side of the cycle. nce).
[0007] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、膨張機 に対する潤滑油の十分な供給と、サイクル全体としての COPの向上とを両立させるこ とにある。 [0007] The present invention has been made in view of the strong point, and an object of the present invention is to achieve both sufficient supply of lubricating oil to the expander and improvement of COP as a whole cycle. It is in.
[0008] すなわち、本発明は、圧縮機、放熱器、膨張機及び蒸発器がこの順に接続されて なる冷媒回路と、  That is, the present invention provides a refrigerant circuit in which a compressor, a radiator, an expander, and an evaporator are connected in this order,
圧縮機内の潤滑油又は圧縮機から吐出された潤滑油を、膨張機又は冷媒回路に おける放熱器と膨張機との間に供給する、冷媒回路とは別に設けられた油供給通路 と、  An oil supply passage provided separately from the refrigerant circuit for supplying the lubricating oil in the compressor or the lubricating oil discharged from the compressor between the radiator and the expander in the expander or the refrigerant circuit;
冷媒回路における膨張機力 蒸発器を経て圧縮機に至る低圧部分の冷媒と油供 給通路の潤滑油とを熱交換させることによって潤滑油を冷却する冷却装置と、 を備えた冷凍サイクル装置を提供する。  Expanding power in refrigerant circuit Provided is a refrigeration cycle apparatus comprising: a cooling device that cools lubricating oil by heat-exchanging refrigerant in a low-pressure portion that reaches the compressor through the evaporator and lubricating oil in the oil supply passage. To do.
[0009] 上記本発明の冷凍サイクル装置によれば、油供給通路を通じて圧縮機側から膨張 機側に潤滑油を輸送できるので、膨張機に対して十分な量の潤滑油を供給すること ができる。また、油供給通路の潤滑油は冷媒回路の低圧部分の冷媒 (以下、低圧冷 媒という)によって冷却されるので、特別な冷却源は不要である。さらに、潤滑油から の放熱を回収することができるので、サイクル全体の COPを向上させることができる。 よって、膨張機に対する潤滑油の十分な供給とサイクル全体の COPの向上とを両立 させることが可會となる。 [0009] According to the refrigeration cycle apparatus of the present invention, since the lubricating oil can be transported from the compressor side to the expander side through the oil supply passage, a sufficient amount of lubricating oil can be supplied to the expander. . Further, since the lubricating oil in the oil supply passage is cooled by the refrigerant in the low-pressure part of the refrigerant circuit (hereinafter referred to as low-pressure refrigerant), no special cooling source is required. In addition, the heat release from the lubricant can be recovered, so the COP of the entire cycle can be improved. Therefore, it is possible to achieve both a sufficient supply of lubricating oil to the expander and an improvement in the COP of the entire cycle.
[0010] なお、油供給通路は、圧縮機と膨張機とを連通するものであってよい。圧縮機及び 膨張機が、それぞれ潤滑油を貯留する貯留部を備える場合には、油供給通路により 、圧縮機の貯留部と膨張機の貯留部とを連通することができる。  [0010] The oil supply passage may communicate the compressor and the expander. In the case where the compressor and the expander each include a storage unit that stores lubricating oil, the storage unit of the compressor and the storage unit of the expander can be communicated with each other through the oil supply passage.
[0011] 圧縮機と膨張機とを連通する油供給通路を設けた冷凍サイクル装置において、圧 縮機は、冷媒を圧縮する圧縮機構と、圧縮機構を覆い且つ圧縮機構によって圧縮さ れた冷媒が吐出される空間を形成する圧縮機シェルとを備え、膨張機は、冷媒を膨 張させる膨張機構と、膨張機構を覆!ヽ且つ膨張機構によって減圧される前の冷媒が 貯留される空間を形成する膨張機シェルとを備え、圧縮機及び膨張機の貯留部は、 それぞれ圧縮機シェル及び膨張機シェルの内部に設けられ、油供給通路は、一端 が圧縮機シェルに接続され且つ他端が膨張機シェルに接続された配管カゝらなってい ることが好ましい。 [0011] In the refrigeration cycle apparatus provided with an oil supply passage that communicates the compressor and the expander, the compressor includes a compression mechanism that compresses the refrigerant, and a refrigerant that covers the compression mechanism and is compressed by the compression mechanism. It has a compressor shell that forms the space to be discharged, and the expander covers the expansion mechanism that expands the refrigerant and the expansion mechanism! And an expander shell that forms a space in which the refrigerant before being decompressed by the expansion mechanism is stored, and the compressor and the expander reservoir are provided inside the compressor shell and the expander shell, respectively. The oil supply passage is at one end Is preferably connected to the compressor shell and the other end is connected to the expander shell.
[0012] さらに、冷媒回路における圧縮機と放熱器との間に油分離器を配置してもよい。こ の場合、油供給通路により、油分離器で分離された潤滑油を膨張機又は冷媒回路 における放熱器と膨張機との間に供給することができる。  Furthermore, an oil separator may be disposed between the compressor and the radiator in the refrigerant circuit. In this case, the lubricating oil separated by the oil separator can be supplied between the radiator and the expander in the expander or refrigerant circuit through the oil supply passage.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]図 1は、第 1実施形態に係る冷凍サイクル装置の冷媒回路図である。 FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a first embodiment.
[図 2]図 2は、圧縮機の縦断面図である。  FIG. 2 is a longitudinal sectional view of the compressor.
[図 3]図 3は、膨張機の縦断面図である。  FIG. 3 is a longitudinal sectional view of the expander.
[図 4]図 4は、第 2実施形態に係る冷凍サイクル装置の冷媒回路図である。  FIG. 4 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a second embodiment.
[図 5]図 5は、第 3実施形態に係る冷凍サイクル装置の冷媒回路図である。  FIG. 5 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a third embodiment.
[図 6]図 6は、第 4実施形態に係る冷凍サイクル装置の冷媒回路図である。  FIG. 6 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a fourth embodiment.
[図 7]図 7は、第 5実施形態に係る冷凍サイクル装置の冷媒回路図である。  FIG. 7 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a fifth embodiment.
[図 8]図 8は、第 6実施形態に係る冷凍サイクル装置の冷媒回路図である。  FIG. 8 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a sixth embodiment.
[図 9]図 9は、第 7実施形態に係る冷凍サイクル装置の冷媒回路図である。  FIG. 9 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a seventh embodiment.
[図 10]図 10は、第 8実施形態に係る冷凍サイクル装置の冷媒回路図である。  FIG. 10 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to an eighth embodiment.
[図 11]図 11は、第 9実施形態に係る冷凍サイクル装置の冷媒回路図である。  FIG. 11 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to a ninth embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015] (第 1実施形態) [0015] (First embodiment)
図 1に示すように、第 1実施形態に係る冷凍サイクル装置 10Aは、圧縮機 放熱 器 2、膨張機 3及び蒸発器 5がこの順に接続されてなる冷媒回路 11を備えている。ま た、冷凍サイクル装置 10Aは、圧縮機 1と膨張機 3とを連通する油供給管 7 (油供給 通路)を備えている。油供給管 7は、冷媒回路 11とは別に設けられた配管力もなり、こ の油供給管 7には、冷却器 6 (冷却装置)及び弁 8 (流量調整装置)が設けられて!/ヽる 。なお、弁 8は開度を調整可能な弁である。  As shown in FIG. 1, the refrigeration cycle apparatus 10A according to the first embodiment includes a refrigerant circuit 11 in which a compressor radiator 2, an expander 3, and an evaporator 5 are connected in this order. The refrigeration cycle apparatus 10A includes an oil supply pipe 7 (oil supply passage) that communicates the compressor 1 and the expander 3. The oil supply pipe 7 also has a piping force provided separately from the refrigerant circuit 11, and this oil supply pipe 7 is provided with a cooler 6 (cooling device) and a valve 8 (flow rate adjusting device)! / ヽThe The valve 8 is a valve whose opening can be adjusted.
[0016] 冷媒回路 11に充填された冷媒は、運転時に高圧部分 (圧縮機 1から放熱器 2を経 て膨張機 3に至る部分)において超臨界状態となる冷媒である。本実施形態の冷媒 回路 11には、そのような冷媒として二酸ィ匕炭素 (CO )が充填されている。ただし、冷 [0016] The refrigerant charged in the refrigerant circuit 11 is a refrigerant that is in a supercritical state in a high-pressure portion (portion from the compressor 1 through the radiator 2 to the expander 3) during operation. Refrigerant of this embodiment The circuit 11 is filled with carbon dioxide (CO 2) as such a refrigerant. However, cold
2  2
媒の種類は特に限定されるものではない。  The type of the medium is not particularly limited.
[0017] 図 2に示すように、圧縮機 1は、ロータリー圧縮機である。ただし、圧縮機 1はロータ リー式に限らず、他の形式の圧縮機 (例えばスクロール圧縮機等)であってもよい。こ の圧縮機 1は、圧縮機シェルを構成する密閉容器 21、密閉容器 21内に収容された 電動機 24及び圧縮機構 25を備えて 、る。  [0017] As shown in FIG. 2, the compressor 1 is a rotary compressor. However, the compressor 1 is not limited to the rotary type, and may be another type of compressor (for example, a scroll compressor). The compressor 1 includes a sealed container 21 constituting a compressor shell, an electric motor 24 and a compression mechanism 25 accommodated in the sealed container 21.
[0018] 圧縮機 1はいわゆる高圧ドーム型の圧縮機であり、密閉容器 21が形成する内部空 間には、冷媒回路 11の高圧側の冷媒 (以下、単に高圧冷媒という)が貯留される。本 実施形態では、密閉容器 21は、鉛直方向長さが水平方向長さよりも長いいわゆる縦 長の容器である。ただし、密閉容器 21の形状や寸法等は、特に限定される訳ではな い。密閉容器 21の上壁には、電源ケーブル等が接続される端子 43が固定されてい る。また、密閉容器 21の上壁には、吐出管 31が接続されている。密閉容器 21の側 壁には吸入管 32が接続され、密閉容器 21の側壁の底部には、油供給管 7が接続さ れている。  [0018] The compressor 1 is a so-called high-pressure dome type compressor, and a high-pressure side refrigerant (hereinafter simply referred to as a high-pressure refrigerant) of the refrigerant circuit 11 is stored in an internal space formed by the sealed container 21. In the present embodiment, the sealed container 21 is a so-called vertically long container whose vertical length is longer than the horizontal length. However, the shape and dimensions of the sealed container 21 are not particularly limited. A terminal 43 to which a power cable or the like is connected is fixed to the upper wall of the sealed container 21. A discharge pipe 31 is connected to the upper wall of the sealed container 21. A suction pipe 32 is connected to the side wall of the sealed container 21, and an oil supply pipe 7 is connected to the bottom of the side wall of the sealed container 21.
[0019] 電動機 24は、密閉容器 21の内壁に固定された固定子 22と、固定子 22の内側に 配置された回転子 23とから構成されている。固定子 22の外周側には、冷媒の流路と なる複数の切り欠き 41が形成されている。固定子 22と回転子 23との間には、隙間 4 2が設けられている。  The electric motor 24 includes a stator 22 fixed to the inner wall of the hermetic container 21 and a rotor 23 arranged inside the stator 22. On the outer peripheral side of the stator 22, a plurality of notches 41 serving as refrigerant flow paths are formed. A gap 42 is provided between the stator 22 and the rotor 23.
[0020] 回転子 23の中心部には、シャフト 26が固定されている。シャフト 26は回転子 23の 下方に延びている。シャフト 26の下部には、シャフト 26の軸心 L力も偏倚した偏心部 26aが設けられている。シャフト 26の偏心部 26aよりも上側部分は、上軸受部材 27に よって支持され、偏心部 26aよりも下側部分は、下軸受部材 28によって支持されてい る。  A shaft 26 is fixed to the center portion of the rotor 23. The shaft 26 extends below the rotor 23. In the lower part of the shaft 26, an eccentric portion 26a in which the axial center L force of the shaft 26 is also offset is provided. The upper part of the shaft 26 above the eccentric part 26 a is supported by the upper bearing member 27, and the lower part of the eccentric part 26 a is supported by the lower bearing member 28.
[0021] 上軸受部材 27と下軸受部材 28との間には、シリンダ 30が配置されている。シリンダ 30の内部には円環状のローラ 29が収容され、ローラ 29の内部には偏心部 26aが収 容されている。また、シリンダ 30内には、ローラ 29〖こ当接するベーン 33と、ベーン 33 をローラ 29側に付勢するばね 34とが設けられている。  A cylinder 30 is disposed between the upper bearing member 27 and the lower bearing member 28. An annular roller 29 is accommodated in the cylinder 30, and an eccentric portion 26 a is accommodated in the roller 29. In the cylinder 30, a vane 33 that contacts the roller 29 and a spring 34 that urges the vane 33 toward the roller 29 are provided.
[0022] 上軸受部材 27には、吸入管 32からシリンダ 30内に冷媒を案内する吸入孔 35と、 圧縮機構 25のシリンダ 30内で圧縮された冷媒を密閉容器 21の内部空間に吐出す る吐出孔 36とが形成されている。 [0022] The upper bearing member 27 includes a suction hole 35 for guiding the refrigerant from the suction pipe 32 into the cylinder 30, and A discharge hole 36 for discharging the refrigerant compressed in the cylinder 30 of the compression mechanism 25 into the internal space of the sealed container 21 is formed.
[0023] 密閉容器 21の底部は、潤滑油を貯留する油溜まり 37 (貯留部)を形成している。油 供給管 7は、この油溜まり 37に向かって開口している。図示は省略する力 シャフト 2 6の下端には、油溜まり 37の潤滑油を汲み上げる油ポンプ 38が設けられている。ま た、シャフト 26の内部には、上記油ポンプ 38で汲み上げられた潤滑油を摺動部分に 供給する給油孔(図示せず)が形成されている。  [0023] The bottom of the sealed container 21 forms an oil reservoir 37 (storage part) for storing lubricating oil. The oil supply pipe 7 opens toward the oil reservoir 37. Force not shown The oil pump 38 for pumping up the lubricating oil in the oil reservoir 37 is provided at the lower end of the shaft 26. An oil supply hole (not shown) for supplying the lubricating oil pumped up by the oil pump 38 to the sliding portion is formed inside the shaft 26.
[0024] 図 3に示すように、膨張機 3は、冷媒を 2段階に膨張させる 2段ロータリー膨張機で ある。ただし、膨張機 3の種類は何ら限定されない。膨張機 3は、単段のロータリー膨 張機であってもよぐ他の形式の膨張機 (例えばスクロール式の膨張機等)であっても よい。  As shown in FIG. 3, the expander 3 is a two-stage rotary expander that expands the refrigerant in two stages. However, the type of the expander 3 is not limited at all. The expander 3 may be a single-stage rotary expander or another type of expander (for example, a scroll expander).
[0025] 膨張機 3は、膨張機シェルを構成する密閉容器 51、密閉容器 51内に収容された 発電機 52及び膨張機構 55を備えている。すなわち、膨張機 3は、発電機 52を内蔵 した膨張機である。また、膨張機 3はいわゆる高圧ドーム型の膨張機であり、密閉容 器 51が形成する内部空間には高圧冷媒が貯留される。密閉容器 51は、圧縮機 1の 密閉容器 21と同様に、縦長の容器である。ただし、密閉容器 51の形状や寸法等は、 何ら限定される訳ではない。密閉容器 51の上壁には、図示しない電気ケーブル等が 接続される端子 56が固定されている。また、密閉容器 51の上壁には、入口側配管 5 7が接続されている。密閉容器 51の側壁には出口側配管 58が接続され、密閉容器 5 1の側壁の底部には、油供給管 7が接続されている。  The expander 3 includes a sealed container 51 constituting an expander shell, a generator 52 accommodated in the sealed container 51, and an expansion mechanism 55. That is, the expander 3 is an expander with a built-in generator 52. The expander 3 is a so-called high-pressure dome type expander, and high-pressure refrigerant is stored in the internal space formed by the sealed container 51. The sealed container 51 is a vertically long container, similar to the sealed container 21 of the compressor 1. However, the shape and dimensions of the sealed container 51 are not limited at all. A terminal 56 to which an electrical cable (not shown) is connected is fixed to the upper wall of the sealed container 51. An inlet side pipe 57 is connected to the upper wall of the sealed container 51. An outlet side pipe 58 is connected to the side wall of the sealed container 51, and an oil supply pipe 7 is connected to the bottom of the side wall of the sealed container 51.
[0026] 発電機 52は、密閉容器 51の内壁に固定された固定子 53と、固定子 53の内側に 配置された回転子 54とから構成されている。回転子 54の中心部には、シャフト 59が 固定されている。シャフト 59は、回転子 54から上方及び下方にそれぞれ延びている  The generator 52 includes a stator 53 that is fixed to the inner wall of the hermetic container 51, and a rotor 54 that is disposed inside the stator 53. A shaft 59 is fixed to the center of the rotor 54. The shaft 59 extends upward and downward from the rotor 54, respectively.
[0027] シャフト 59の上側には、シャフト 59の軸心力も偏倚した第 1偏心部 61及び第 2偏心 部 62が設けられている。シャフト 59の第 1偏心部 61の下側部分は、軸受 63を介して 下軸受部材 65に支持されている。下軸受部材 65の上には第 1シリンダ 66が設けら れている。第 1シリンダ 66の内部には第 1ローラ 71が収容され、第 1ローラ 71の内部 には第 1偏心部 61が配置されている。第 1シリンダ 66の上方には中間プレート 67が 設けられ、中間プレート 67の上には第 2シリンダ 68が配置されている。第 2シリンダ 6 8の内部には第 2ローラ 72が収容され、第 2ローラ 72の内部には第 2偏心部 62が配 置されている。第 2ローラ 72の上には上軸受部材 69が設けられている。シャフト 59の 上端部は、軸受 64を介して上軸受部材 69に支持されている。上軸受部材 69の上に は、ブロック 70が設けられている。 [0027] On the upper side of the shaft 59, a first eccentric portion 61 and a second eccentric portion 62 in which the axial force of the shaft 59 is also biased are provided. The lower portion of the first eccentric portion 61 of the shaft 59 is supported by the lower bearing member 65 via the bearing 63. A first cylinder 66 is provided on the lower bearing member 65. A first roller 71 is accommodated in the first cylinder 66, and the inside of the first roller 71 The first eccentric portion 61 is arranged in the first. An intermediate plate 67 is provided above the first cylinder 66, and a second cylinder 68 is disposed on the intermediate plate 67. A second roller 72 is accommodated in the second cylinder 68, and a second eccentric portion 62 is disposed in the second roller 72. An upper bearing member 69 is provided on the second roller 72. The upper end portion of the shaft 59 is supported by the upper bearing member 69 via the bearing 64. A block 70 is provided on the upper bearing member 69.
[0028] 下軸受部材 65には、密閉容器 51の内部空間と第 1シリンダ 66内とを連通する吸入 孔 73が形成されている。中間プレート 67には、第 1シリンダ 66内と第 2シリンダ 68内 とを連通する連通孔 74が形成されている。上軸受部材 69には、第 2シリンダ 68内に つながる吐出孔 75が形成されている。ブロック 70には、吐出孔 75と出口側配管 58と を連通する吐出孔 76が形成されている。  The lower bearing member 65 is formed with a suction hole 73 that communicates the internal space of the sealed container 51 with the inside of the first cylinder 66. The intermediate plate 67 is formed with a communication hole 74 that communicates the inside of the first cylinder 66 and the inside of the second cylinder 68. The upper bearing member 69 has a discharge hole 75 connected to the second cylinder 68. The block 70 has a discharge hole 76 that communicates the discharge hole 75 and the outlet side pipe 58.
[0029] 密閉容器 51の底部は、潤滑油を貯留する油溜まり 77を形成している。油供給管 7 は、油溜まり 77に向力つて開口している。圧縮機 1のシャフト 26と同様に、膨張機 3の シャフト 59の下端にも、潤滑油を汲み上げる油ポンプ 78が設けられている。また、シ ャフト 59の内部には、油ポンプ 78で汲み上げられた潤滑油を摺動部分に供給する 給油孔(図示せず)が形成されて!ヽる。  [0029] The bottom of the sealed container 51 forms an oil reservoir 77 for storing lubricating oil. The oil supply pipe 7 opens toward the oil reservoir 77 by force. As with the shaft 26 of the compressor 1, an oil pump 78 for pumping up lubricating oil is also provided at the lower end of the shaft 59 of the expander 3. In addition, an oil supply hole (not shown) for supplying the lubricating oil pumped up by the oil pump 78 to the sliding portion is formed inside the shaft 59! Speak.
[0030] なお、図 2では、圧縮機 1が電動機 24を内蔵する構成となっている力 シャフト 26の 一端を密閉容器 21の外部に延出させて、電動機 24を外付けする構成としてもよい。 同様に、図 3では、膨張機 3が発電機 52を内蔵する構成となっているが、シャフト 59 の一端を密閉容器 51の外部に延出させて、発電機 52を外付けする構成としてもよい  In FIG. 2, the compressor 1 may have a configuration in which the electric motor 24 is externally attached by extending one end of the force shaft 26 configured to incorporate the electric motor 24 to the outside of the sealed container 21. . Similarly, in FIG. 3, the expander 3 has a configuration in which the generator 52 is incorporated, but the configuration in which the generator 52 is externally attached by extending one end of the shaft 59 to the outside of the sealed container 51 may be used. Good
[0031] 図 1に戻って説明を続ける。冷媒回路 11において、放熱器 2及び蒸発器 5の構成 は何ら限定されない。放熱器 2又は蒸発器 5として、例えば空冷式又は水冷式の熱 交翻等を用いてもよい。 [0031] Returning to FIG. In the refrigerant circuit 11, the configurations of the radiator 2 and the evaporator 5 are not limited at all. As the radiator 2 or the evaporator 5, for example, air-cooled or water-cooled heat exchange may be used.
[0032] 冷却器 6は、油供給管 7の潤滑油を冷媒回路 11の低圧冷媒で冷却するものである 。詳しくは、本実施形態の冷却器 6は、膨張機 3と蒸発器 5との間に設けられている。 冷却器 6は、潤滑油と低圧冷媒とを直接的に熱交換させるいわゆる液一液熱交翻 によって構成されている。冷却器 6の具体的形態は何ら限定されないが、例えば、二 重管式熱交換器、プレート式熱交換器、シェルアンドチューブ式熱交換器等を好適 に利用することができる。また、専用の熱交 を用いずに、例えば、油供給管 7と 冷媒回路 11を形成する配管とを平行に並べて接触させる、さらにはその状態で接合 する(例えばロウ接する)こと〖こより、冷却器 6を構成することも可能である。 The cooler 6 cools the lubricating oil in the oil supply pipe 7 with the low-pressure refrigerant in the refrigerant circuit 11. Specifically, the cooler 6 of the present embodiment is provided between the expander 3 and the evaporator 5. The cooler 6 is configured by so-called liquid-liquid heat exchange that directly exchanges heat between the lubricating oil and the low-pressure refrigerant. The specific form of the cooler 6 is not limited at all. A heavy tube heat exchanger, a plate heat exchanger, a shell and tube heat exchanger, and the like can be suitably used. In addition, without using dedicated heat exchange, for example, the oil supply pipe 7 and the pipe forming the refrigerant circuit 11 are arranged in parallel and brought into contact with each other, and further joined in that state (for example, brazed), thereby cooling. It is also possible to configure vessel 6.
[0033] 冷却器 6として内側流路と外側流路とを備えた二重管式熱交換器を用いる場合、 内側流路に冷媒を流し、外側流路に潤滑油を流すようにしてもよい。このことにより、 低圧冷媒の圧力損失の増加を抑えることができる。逆に、内側流路に潤滑油を流し、 外側流路に冷媒を流すことも可能である。この場合、潤滑油の圧力損失が低減し、 潤滑油の流量を十分に確保することができる。なお、冷却器 6は、冷媒と潤滑油とを 対向状態で流通させる 、わゆる対向流式の熱交^^であることが好まし 、。  [0033] When a double-pipe heat exchanger having an inner flow path and an outer flow path is used as the cooler 6, the coolant may flow through the inner flow path and the lubricating oil may flow through the outer flow path. . This can suppress an increase in pressure loss of the low-pressure refrigerant. Conversely, it is also possible to flow lubricating oil in the inner flow path and flow refrigerant in the outer flow path. In this case, the pressure loss of the lubricating oil is reduced, and a sufficient flow rate of the lubricating oil can be secured. The cooler 6 is preferably a so-called counter-flow type heat exchanger that allows the refrigerant and the lubricating oil to flow in a facing state.
[0034] 上記のような冷却器 6の採用により、油供給管 7の潤滑油の冷却に関して、外部の 冷却源が不要となる。そのため、冷凍サイクル装置 10の全体として、部品点数の削 減及び省エネルギー化を図ることができる。  By adopting the cooler 6 as described above, no external cooling source is required for cooling the lubricating oil in the oil supply pipe 7. Therefore, the overall refrigeration cycle apparatus 10 can reduce the number of parts and save energy.
[0035] また、膨張機 3から吐出された冷媒は、蒸発器 5の手前で予備的に加熱されること になる。そのため、蒸発器 5で必要とされる熱交換量を低減することができ、蒸発器 5 のコンパクトィ匕を図ることができる。また、冷媒回路 11の低圧部分の圧力である低圧 側圧力を上昇させることができ、圧縮機 1の負荷を軽減することが可能となる。したが つて、 COPを向上させることが可能となる。  In addition, the refrigerant discharged from the expander 3 is preliminarily heated before the evaporator 5. Therefore, the amount of heat exchange required for the evaporator 5 can be reduced, and the evaporator 5 can be made compact. Further, the low pressure side pressure that is the pressure in the low pressure portion of the refrigerant circuit 11 can be increased, and the load on the compressor 1 can be reduced. Therefore, COP can be improved.
[0036] 図 1に示すように、膨張機 3の入口側配管 57には、冷媒温度を検出する温度セン サ 81が設けられている。温度センサ 81は、実質的に冷媒温度を検出するものであれ ばよい。したがって、温度センサ 81は、入口側配管 57内の冷媒温度を直接検出する ものであってもよぐ入口側配管 57の壁面温度を検出すること等により冷媒温度を間 接的に検出するものであってもよい。また、温度センサ 81は膨張機 3の入口側の冷 媒温度である入口冷媒温度を検出するものであればよぐ膨張機 3自体 (つまり密閉 容器 51内)に設けられて 、てもよ 、。  As shown in FIG. 1, the inlet side pipe 57 of the expander 3 is provided with a temperature sensor 81 for detecting the refrigerant temperature. The temperature sensor 81 may be any sensor that substantially detects the refrigerant temperature. Therefore, the temperature sensor 81 detects the refrigerant temperature indirectly, for example, by detecting the wall surface temperature of the inlet side pipe 57, which may directly detect the refrigerant temperature in the inlet side pipe 57. There may be. Further, the temperature sensor 81 may be provided in the expander 3 itself (that is, in the sealed container 51) as long as it can detect the inlet refrigerant temperature that is the refrigerant temperature on the inlet side of the expander 3. .
[0037] また、冷凍サイクル装置 10Aには、コントローラ 80が設けられている。コントローラ 8 0は、温度センサ 81の検出信号を受け、弁 8の開度を制御する。なお、コントローラ 8 0は弁 8の制御のために設けられた専用のコントローラである必要はなぐ圧縮機 1の 制御等も行ってもょ 、ことは勿論である。 [0037] The refrigeration cycle apparatus 10A is provided with a controller 80. The controller 80 receives the detection signal from the temperature sensor 81 and controls the opening degree of the valve 8. It should be noted that the controller 80 is not necessarily a dedicated controller provided for the control of the valve 8. Of course, you can control it.
[0038] なお、本実施形態において、温度センサ 81は、膨張機 3の入口側配管 57と油供給 管 7との合流点力も見て膨張機 3側に配置されている。このようにすれば、膨張機 3に 吸入される直前の冷媒の温度を正確に測定することが可能となる。  In the present embodiment, the temperature sensor 81 is arranged on the expander 3 side in view of the merging point force between the inlet side pipe 57 and the oil supply pipe 7 of the expander 3. In this way, it is possible to accurately measure the temperature of the refrigerant immediately before being sucked into the expander 3.
[0039] 次に、冷凍サイクル装置 10Aの運転動作について説明する。冷媒回路 11におい ては、圧縮機 1から吐出された冷媒は、放熱器 2で放熱し、膨張機 3で膨張し、蒸発 器 5で蒸発した後、圧縮機 1に吸入される。  [0039] Next, the operation of the refrigeration cycle apparatus 10A will be described. In the refrigerant circuit 11, the refrigerant discharged from the compressor 1 dissipates heat in the radiator 2, expands in the expander 3, evaporates in the evaporator 5, and then sucked into the compressor 1.
[0040] 圧縮機 1 (図 2参照)では、電動機 24が駆動され、シャフト 26の回転に伴ってローラ 29がシリンダ 30内で回転する。その結果、吸入管 32から圧縮機構 25のシリンダ 30 内に冷媒が吸い込まれ、この冷媒はシリンダ 30内で圧縮される。圧縮された高圧冷 媒は、吐出孔 36を通じて密閉容器 21内の空間に放出され、その後、吐出管 31から 吐出される。  In the compressor 1 (see FIG. 2), the electric motor 24 is driven, and the roller 29 rotates in the cylinder 30 as the shaft 26 rotates. As a result, the refrigerant is sucked into the cylinder 30 of the compression mechanism 25 from the suction pipe 32, and the refrigerant is compressed in the cylinder 30. The compressed high-pressure refrigerant is discharged into the space in the sealed container 21 through the discharge hole 36 and then discharged from the discharge pipe 31.
[0041] 膨張機 3 (図 3参照)では、入口側配管 57を通じて密閉容器 51内に高圧冷媒が吸 入される。この高圧冷媒は、吸入孔 73を通じて第 1シリンダ 66内に流入し、第 1シリン ダ 66内において膨張する。この際、冷媒の膨張力によって第 1ローラ 71が回転する 。第 1シリンダ 66内で膨張した冷媒は、連通孔 74を通じて第 2シリンダ 68内に流れ込 み、第 2シリンダ 68内で更に膨張する。この際、冷媒の膨張力によって第 2ローラ 72 が回転する。そして、第 2シリンダ 68内で膨張した低圧冷媒は、吐出孔 75及び吐出 孔 76を経て、出口側配管 58から吐出される。  In the expander 3 (see FIG. 3), the high-pressure refrigerant is sucked into the sealed container 51 through the inlet side pipe 57. The high-pressure refrigerant flows into the first cylinder 66 through the suction hole 73 and expands in the first cylinder 66. At this time, the first roller 71 is rotated by the expansion force of the refrigerant. The refrigerant expanded in the first cylinder 66 flows into the second cylinder 68 through the communication hole 74 and further expands in the second cylinder 68. At this time, the second roller 72 is rotated by the expansion force of the refrigerant. The low-pressure refrigerant expanded in the second cylinder 68 is discharged from the outlet side pipe 58 through the discharge hole 75 and the discharge hole 76.
[0042] 上述のように第 1ローラ 71及び第 2ローラ 72が回転すると、第 1ローラ 71内及び第 2 ローラ 72内の第 1偏心部 61及び第 2偏心部 62が回転し、それに従ってシャフト 59も 回転する。その結果、発電機 52の回転子 54が回転し、発電が行われる。すなわち、 冷媒の膨張エネルギーが電力として回収される。  [0042] When the first roller 71 and the second roller 72 rotate as described above, the first eccentric portion 61 and the second eccentric portion 62 in the first roller 71 and the second roller 72 rotate, and the shaft accordingly 59 also rotates. As a result, the rotor 54 of the generator 52 rotates and power is generated. That is, the expansion energy of the refrigerant is recovered as electric power.
[0043] 冷凍サイクル装置 10Aの運転中は、圧縮機 1の密閉容器 21の内部圧力は、膨張 機 3の密閉容器 51の内部圧力よりも高くなる。そのため、圧縮機 1と膨張機 3との間の 内部圧力差によって、圧縮機 1の油溜まり 37の潤滑油は、油供給管 7を通じて膨張 機 3の油溜まり 77に流入する。この際、油供給管 7を流れる潤滑油は、冷却器 6にお いて冷却される。なお、油供給管 7の弁 8の開度を調整することにより、油供給管 7の 流量、すなわち膨張機 3に流入する潤滑油の量を調整することができる。 [0043] During operation of the refrigeration cycle apparatus 10A, the internal pressure of the sealed container 21 of the compressor 1 is higher than the internal pressure of the sealed container 51 of the expander 3. Therefore, due to the internal pressure difference between the compressor 1 and the expander 3, the lubricating oil in the oil reservoir 37 of the compressor 1 flows into the oil reservoir 77 of the expander 3 through the oil supply pipe 7. At this time, the lubricating oil flowing through the oil supply pipe 7 is cooled in the cooler 6. In addition, by adjusting the opening of the valve 8 of the oil supply pipe 7, the oil supply pipe 7 The flow rate, that is, the amount of lubricating oil flowing into the expander 3 can be adjusted.
[0044] コントローラ 80は、膨張機 3の入口冷媒温度に基づいて弁 8の開度を制御する。例 えば、コントローラ 80は、膨張機 3の内部温度が上昇しすぎないように、あるいは低下 しすぎないように、潤滑油の流入量を調整することとしてもよい。本実施形態では、コ ントローラ 80は、膨張機 3の入口冷媒温度が所定値になるように弁 8の開度を制御す る。例えば、コントローラ 80は、膨張機 3の入口冷媒温度が所定値以上のときには弁 8の開度を小さくし、入口冷媒温度が所定値未満のときには弁 8の開度を大きくする。  The controller 80 controls the opening degree of the valve 8 based on the inlet refrigerant temperature of the expander 3. For example, the controller 80 may adjust the inflow amount of the lubricating oil so that the internal temperature of the expander 3 does not increase or decrease too much. In the present embodiment, the controller 80 controls the opening degree of the valve 8 so that the inlet refrigerant temperature of the expander 3 becomes a predetermined value. For example, the controller 80 decreases the opening degree of the valve 8 when the inlet refrigerant temperature of the expander 3 is equal to or higher than a predetermined value, and increases the opening degree of the valve 8 when the inlet refrigerant temperature is lower than the predetermined value.
[0045] 以上のように、本実施形態によれば、圧縮機 1と膨張機 3とを連通する油供給管 7を 備え、油供給管 7を通じて圧縮機 1内の潤滑油を膨張機 3に供給するので、冷媒回 路 11に油分離器を別途設ける必要はない。そのため、油分離器が不要な分だけ部 品点数の削減及び低コストィ匕を図ることができる。また、油供給管 7には冷却器 6が設 けられているので、圧縮機 1内の高温の潤滑油がそのまま膨張機 3に流れ込むことを 防止することができる。そのため、膨張前の冷媒の温度が過度に上昇することを回避 することができ、蒸発器能力の低下を抑制することができる。したがって、圧縮機 1の 負荷の増大を抑えることができ、 COPの低下を抑制することができる。その結果、膨 張機 3に対して潤滑油を十分に供給するとともに冷凍サイクル装置 10Aの小型化又 は軽量ィ匕を図ることができる。  As described above, according to the present embodiment, the oil supply pipe 7 that communicates the compressor 1 and the expander 3 is provided, and the lubricating oil in the compressor 1 is supplied to the expander 3 through the oil supply pipe 7. Since it is supplied, it is not necessary to install an oil separator in the refrigerant circuit 11 separately. Therefore, the number of parts can be reduced and the cost can be reduced as much as the oil separator is unnecessary. Further, since the cooler 6 is provided in the oil supply pipe 7, it is possible to prevent the high-temperature lubricating oil in the compressor 1 from flowing into the expander 3 as it is. For this reason, it is possible to avoid an excessive increase in the temperature of the refrigerant before expansion, and to suppress a decrease in evaporator capacity. Therefore, an increase in load on the compressor 1 can be suppressed, and a decrease in COP can be suppressed. As a result, the lubricating oil can be sufficiently supplied to the expander 3 and the refrigeration cycle apparatus 10A can be reduced in size or weight.
[0046] カロえて、油供給管 7の潤滑油を冷媒回路 11内の低圧冷媒で冷却することとしたの で、潤滑油を冷却するための専用の冷却源を設ける必要がない。また、潤滑油から の放熱を冷媒回路 11内で回収することができ、サイクル全体の COPを向上させるこ とができる。したがって、膨張機 3に対する潤滑油の十分な供給とサイクル全体の CO Pの向上とを両立させることが可能となる。  [0046] Since the lubricating oil in the oil supply pipe 7 is cooled by the low-pressure refrigerant in the refrigerant circuit 11, there is no need to provide a dedicated cooling source for cooling the lubricating oil. Further, the heat radiation from the lubricating oil can be recovered in the refrigerant circuit 11, and the COP of the entire cycle can be improved. Therefore, it is possible to achieve both the sufficient supply of the lubricating oil to the expander 3 and the improvement of the COP of the entire cycle.
[0047] すなわち、本冷凍サイクル装置 10Aでは、低圧冷媒を潤滑油で加熱することにより 、冷媒回路 11の低圧側圧力を上昇させることができ、圧縮機 1の負荷を低減すること ができる。したがって、冷凍サイクルの COPを向上させることができる。また、冷媒は 冷却器 6において加熱されるので、蒸発器 5における必要加熱量を低減することがで きる。したがって、蒸発器 5のコンパクトィ匕を図ることも可能である。  That is, in this refrigeration cycle apparatus 10A, by heating the low-pressure refrigerant with lubricating oil, the low-pressure side pressure of the refrigerant circuit 11 can be increased, and the load on the compressor 1 can be reduced. Therefore, the COP of the refrigeration cycle can be improved. Further, since the refrigerant is heated in the cooler 6, the required heating amount in the evaporator 5 can be reduced. Therefore, it is possible to make the evaporator 5 compact.
[0048] また、圧縮機 1に油溜まり 37を設け、膨張機 3に油溜まり 77を設け、油供給管 7を介 してそれら油溜まり 37, 77同士を連通することとしたので、簡易な構成により、圧縮機 1から膨張機 3に潤滑油を供給することができる。 [0048] Further, the oil reservoir 37 is provided in the compressor 1, the oil reservoir 77 is provided in the expander 3, and the oil supply pipe 7 is interposed. Since the oil reservoirs 37 and 77 are communicated with each other, the lubricating oil can be supplied from the compressor 1 to the expander 3 with a simple configuration.
[0049] 本実施形態によれば、圧縮機 1及び膨張機 3はいずれも高圧ドーム型であり、圧縮 機 1内及び膨張機 3内の潤滑油にかかる圧力は、圧縮機構 25及び膨張機構 55の摺 動部を潤滑中の潤滑油にかかる圧力よりも高圧となる。したがって、各油溜まり 37, 7 7から圧縮機構 25及び膨張機構 55の各摺動部への潤滑油供給が良好に行われる [0049] According to the present embodiment, the compressor 1 and the expander 3 are both high-pressure dome type, and the pressure applied to the lubricating oil in the compressor 1 and the expander 3 is the compression mechanism 25 and the expansion mechanism 55. The sliding part is at a pressure higher than the pressure applied to the lubricating oil during lubrication. Accordingly, the lubricating oil is satisfactorily supplied from the oil reservoirs 37 and 77 to the sliding portions of the compression mechanism 25 and the expansion mechanism 55.
[0050] また、本実施形態によれば、油供給管 7に開度を調整可能な弁 8が設けられている ので、膨張機 3に対する潤滑油の供給量を自由に調整することができる。つまり、膨 張機 3に対して常に適切な量の潤滑油を供給することができる。また、膨張機 3の入 ロ冷媒温度に基づいて弁 8の開度を調整することにより、膨張前の冷媒温度を制御 することができる。そのため、蒸発器能力の低下を抑制することができ、圧縮機 1の負 荷の増大を抑えることができる。したがって、運転状態の変動に拘わらず、冷凍サイク ル装置 10の COPを向上させることができる。 [0050] Further, according to the present embodiment, since the valve 8 capable of adjusting the opening degree is provided in the oil supply pipe 7, the supply amount of the lubricating oil to the expander 3 can be freely adjusted. That is, an appropriate amount of lubricating oil can always be supplied to the expander 3. Further, the refrigerant temperature before expansion can be controlled by adjusting the opening degree of the valve 8 based on the inlet refrigerant temperature of the expander 3. Therefore, a decrease in evaporator capacity can be suppressed, and an increase in load on the compressor 1 can be suppressed. Therefore, the COP of the refrigeration cycle apparatus 10 can be improved regardless of fluctuations in the operating state.
[0051] また、本実施形態によれば、弁 8の開度を適宜調整することにより、圧縮機 1の内部 圧力と膨張機 3の内部圧力とのノ《ランスをとることができる。例えば、弁 8の開度を調 整することにより、圧縮機 1の内部圧力と膨張機 3の内部圧力との差を所定値に保つ ことができる。そのため、圧縮機 1と膨張機 3とを連通させる冷媒配管 (均圧ライン)は 特に必要ではない。また、弁 8の開度を制御することにより、圧縮機 1内の油量と、膨 張機 3内の油量とをバランスさせることができる。  [0051] Further, according to the present embodiment, a lance between the internal pressure of the compressor 1 and the internal pressure of the expander 3 can be obtained by appropriately adjusting the opening degree of the valve 8. For example, the difference between the internal pressure of the compressor 1 and the internal pressure of the expander 3 can be maintained at a predetermined value by adjusting the opening of the valve 8. Therefore, a refrigerant pipe (equal pressure line) for connecting the compressor 1 and the expander 3 is not particularly necessary. In addition, the amount of oil in the compressor 1 and the amount of oil in the expander 3 can be balanced by controlling the opening degree of the valve 8.
[0052] なお、膨張機 3に供給された潤滑油は、蒸発器 5を通って再び圧縮機 1に戻される 。一般に、蒸気圧縮式の冷凍サイクル装置においては、膨張機 3からの潤滑油の吐 出量が、圧縮機 1からの潤滑油の吐出量を上回る。したがって、膨張機 3側から圧縮 機 1側に潤滑油を供給するラインは、特に考慮しなくともよい。  Note that the lubricating oil supplied to the expander 3 is returned to the compressor 1 again through the evaporator 5. In general, in a vapor compression refrigeration cycle apparatus, the amount of lubricating oil discharged from the expander 3 exceeds the amount of lubricating oil discharged from the compressor 1. Therefore, the line for supplying the lubricating oil from the expander 3 side to the compressor 1 side need not be considered.
[0053] (第 2実施形態)  [0053] (Second Embodiment)
第 1実施形態の冷凍サイクル装置 10Aにおいて、油供給管 7は、圧縮機 1の油貯ま り 37と、膨張機 3の油貯まり 77とを連通しているが、油供給管 7の配置形態はこれに 限定されない。すなわち、図 4に示す冷凍サイクル装置 10Bの油供給管 7は、一端が 圧縮機 1の油貯まり 37に接続され、他端が冷媒回路 11における放熱器 2と膨張機 3 との間の配管 57 (膨張機 3の入口側配管 57)に接続されている。 In the refrigeration cycle apparatus 10A of the first embodiment, the oil supply pipe 7 communicates with the oil reservoir 37 of the compressor 1 and the oil reservoir 77 of the expander 3, but the arrangement of the oil supply pipe 7 is It is not limited to this. That is, one end of the oil supply pipe 7 of the refrigeration cycle apparatus 10B shown in FIG. The other end of the refrigerant circuit 11 is connected to a pipe 57 (an inlet side pipe 57 of the expander 3) between the radiator 2 and the expander 3.
[0054] (第 3実施形態)  [0054] (Third embodiment)
第 1実施形態の冷凍サイクル装置 10Aでは、コントローラ 80は、膨張機 3の入口冷 媒温度に基づいて弁 8の開度を制御していた。し力しながら、コントローラ 80の実行 する制御は上記制御に限定される訳ではない。例えば、図 5に示す冷凍サイクル装 置 10Cのように、膨張機 3の回転数を検出する回転数検出センサ 82を設け、膨張機 3の回転数に基づいて弁 8の開度を制御するようにしてもよい。例えば、コントローラ 8 0は、膨張機 3の回転数が所定値以上のときには弁 8の開度を大きくし、回転数が所 定値未満のときには弁 8の開度を小さくする。これにより、回転数に応じて常に十分な 量の潤滑油を供給することができ、また、サイクル効率の向上を図ることができる。  In the refrigeration cycle apparatus 10A of the first embodiment, the controller 80 controls the opening degree of the valve 8 based on the inlet refrigerant temperature of the expander 3. However, the control executed by the controller 80 is not limited to the above control. For example, as in the refrigeration cycle apparatus 10C shown in FIG. 5, a rotation speed detection sensor 82 for detecting the rotation speed of the expander 3 is provided, and the opening degree of the valve 8 is controlled based on the rotation speed of the expander 3. It may be. For example, the controller 80 increases the opening degree of the valve 8 when the rotational speed of the expander 3 is greater than or equal to a predetermined value, and decreases the opening degree of the valve 8 when the rotational speed is less than a predetermined value. As a result, a sufficient amount of lubricating oil can always be supplied in accordance with the rotational speed, and cycle efficiency can be improved.
[0055] なお、膨張機 3の回転数を制御することは、膨張機 3の運転容量を制御することを 意味する。ここで、膨張機 3の運転容量を制御する方法は、回転数を制御する方法 に限定される訳ではない。例えば、膨張機 3が互いに並列に接続された複数の膨張 機構を備えている場合、それら複数の膨張機構の運転台数を調整することによって、 膨張機 3の全体の運転容量を制御することも可能である。また、膨張機 3は、互いに 並列に接続された複数台の膨張機カゝらなっていてもよい。この場合にも、膨張機の運 転台数を調整することによって、膨張機 3の全体の運転容量を制御することができる  Note that controlling the rotational speed of the expander 3 means controlling the operating capacity of the expander 3. Here, the method of controlling the operating capacity of the expander 3 is not limited to the method of controlling the rotational speed. For example, when the expander 3 has a plurality of expansion mechanisms connected in parallel to each other, it is possible to control the overall operating capacity of the expander 3 by adjusting the number of operating expansion units. It is. The expander 3 may be a plurality of expander cables connected in parallel to each other. In this case as well, the overall operating capacity of the expander 3 can be controlled by adjusting the number of expander units.
[0056] (第 4実施形態) [0056] (Fourth embodiment)
図 6に示すように、第 4実施形態の冷凍サイクル装置 10Dは、第 1実施形態の冷凍 サイクル装置 10Aにおいて、油供給管 7の冷却器 6に変更をカ卩えたものである。ただ し、冷媒回路 11の低圧冷媒を利用して油供給管 7の潤滑油を冷却するという点は共 通である。  As shown in FIG. 6, the refrigeration cycle apparatus 10D of the fourth embodiment is a modification of the cooler 6 of the oil supply pipe 7 in the refrigeration cycle apparatus 10A of the first embodiment. However, it is common to use the low-pressure refrigerant in the refrigerant circuit 11 to cool the lubricating oil in the oil supply pipe 7.
[0057] 図 6に示す冷凍サイクル装置 10Dにおいて、冷却器 6は、潤滑油と低圧冷媒とを間 接的に熱交換させるように構成されている。具体的には、本実施形態の蒸発器 5は、 空気と冷媒とを熱交換させるいわゆる空気熱交翻力もなり、冷却器 6は、蒸発器 5 で冷却される前又は冷却された後の空気と潤滑油とを熱交換させる空気熱交^^に よって構成されている。本実施形態の冷凍サイクル装置 10には、蒸発器 5及び冷却 器 6に共通の送風機 9が設けられている。ただし、蒸発器 5及び冷却器 6のそれぞれ に送風機が設けられて 、てもよ 、ことは勿論である。 In the refrigeration cycle apparatus 10D shown in FIG. 6, the cooler 6 is configured to indirectly exchange heat between the lubricating oil and the low-pressure refrigerant. Specifically, the evaporator 5 of the present embodiment also has a so-called air heat exchange force that exchanges heat between the air and the refrigerant, and the cooler 6 is the air before being cooled by the evaporator 5 or after being cooled. Air heat exchange ^^ for heat exchange between oil and lubricating oil Therefore, it is comprised. In the refrigeration cycle apparatus 10 of the present embodiment, a blower 9 common to the evaporator 5 and the cooler 6 is provided. However, it goes without saying that a fan is provided in each of the evaporator 5 and the cooler 6.
[0058] その他の構成は第 1実施形態と同様であるので、それらの説明は省略する。  Since other configurations are the same as those of the first embodiment, description thereof will be omitted.
[0059] 本実施形態においても、第 1実施形態の効果を得ることができる。  [0059] Also in this embodiment, the effect of the first embodiment can be obtained.
[0060] (第 5実施形態)  [0060] (Fifth embodiment)
第 1〜第 4実施形態では、油供給管 7に弁 8が設けられていた。し力しながら、図 7 に示す冷凍サイクル装置 10Eのように、油供給管 7には、弁 8の代わりに(または弁 8 と共に)油ポンプ 8aが設けられていてもよい。油ポンプ 8aは、油供給管 7の潤滑油を 搬送する搬送装置の役割を担う。また、コントローラ 80は、膨張機 3の入口冷媒温度 又は運転容量に基づ 、て、油ポンプ 8aを制御するようにしてもょ 、。  In the first to fourth embodiments, the oil supply pipe 7 is provided with the valve 8. However, as in the refrigeration cycle apparatus 10E shown in FIG. 7, the oil supply pipe 7 may be provided with an oil pump 8a instead of the valve 8 (or together with the valve 8). The oil pump 8a plays a role of a conveying device that conveys the lubricating oil in the oil supply pipe 7. Further, the controller 80 may control the oil pump 8a based on the inlet refrigerant temperature or the operating capacity of the expander 3.
[0061] 油供給管 7に油ポンプ 8aを設けることにより、圧縮機 1と膨張機 3との圧力差が小さ い場合であっても、油供給管 7の潤滑油の流量を多くすることができる。そのため、膨 張機 3に対して常に十分な量の潤滑油を供給することができる。また、潤滑油の流量 を幅広く制御することが可能となる。  [0061] By providing the oil pump 8a in the oil supply pipe 7, the flow rate of the lubricating oil in the oil supply pipe 7 can be increased even when the pressure difference between the compressor 1 and the expander 3 is small. it can. Therefore, a sufficient amount of lubricating oil can always be supplied to the expander 3. Moreover, it becomes possible to control the flow rate of the lubricating oil widely.
[0062] (第 6実施形態)  [0062] (Sixth embodiment)
これまでに説明した冷凍サイクル装置 10A〜10Eは、圧縮機 1の油貯まり 37に油 供給管 7を接続し、膨張機 3又は膨張機 3の入口側配管 57に潤滑油を供給する構成 を採用している。他方、以下に説明する各実施形態は、冷媒回路 11における圧縮機 1の出口側に油分離器を配置し、この油分離器で回収した潤滑油を膨張機 3側に供 給する構成を採用する。  The refrigeration cycle apparatuses 10A to 10E described so far adopt a configuration in which the oil supply pipe 7 is connected to the oil reservoir 37 of the compressor 1 and the lubricating oil is supplied to the inlet side pipe 57 of the expander 3 or the expander 3. is doing. On the other hand, each embodiment described below employs a configuration in which an oil separator is disposed on the outlet side of the compressor 1 in the refrigerant circuit 11 and the lubricating oil recovered by the oil separator is supplied to the expander 3 side. To do.
[0063] 図 8に示すように、第 6実施形態に係る冷凍サイクル装置 10Fは、圧縮機 放熱器 2、膨張機 3及び蒸発器 5がこの順に接続されてなる冷媒回路 11を備えている。冷媒 回路 11における圧縮機 1と放熱器 2との間には、油分離器 9が配置されている。また 、冷凍サイクル装置 10Fは、油分離器 9の潤滑油を膨張機 3に供給する油供給管 7を 備えている。油供給管 7は、一端が油分離器 9に接続され、他端が膨張機 3の入口側 配管 57に接続されている。この油供給管 7には、冷却器 6及び弁 8が設けられている 。なお、弁 8は開度を調整可能な弁である。 [0064] 圧縮機 1及び膨張機 3の構成については、油貯まり 37, 77に油供給管 7が接続さ れていない点を除き、先の実施形態で説明した通りである。また、放熱器 2、蒸発器 5 及び冷却器 6についても、既に説明した通りである。 As shown in FIG. 8, the refrigeration cycle apparatus 10F according to the sixth embodiment includes a refrigerant circuit 11 in which a compressor radiator 2, an expander 3, and an evaporator 5 are connected in this order. An oil separator 9 is disposed between the compressor 1 and the radiator 2 in the refrigerant circuit 11. In addition, the refrigeration cycle apparatus 10F includes an oil supply pipe 7 that supplies the lubricating oil of the oil separator 9 to the expander 3. The oil supply pipe 7 has one end connected to the oil separator 9 and the other end connected to the inlet side pipe 57 of the expander 3. The oil supply pipe 7 is provided with a cooler 6 and a valve 8. The valve 8 is a valve whose opening can be adjusted. [0064] The configurations of the compressor 1 and the expander 3 are the same as described in the previous embodiment, except that the oil supply pipe 7 is not connected to the oil reservoirs 37 and 77. Further, the radiator 2, the evaporator 5 and the cooler 6 are also as already described.
[0065] 次に、冷凍サイクル装置 10Fの運転動作について説明する。冷媒回路 11において 、圧縮機 1から吐出された冷媒は、油分離器 9において潤滑油から分離された後、放 熱器 2で放熱し、膨張機 3で膨張し、低温低圧の冷媒となる。この低温低圧の冷媒は 、冷却器 6において、潤滑油を冷却すると同時に自らは加熱される。なお、この際、冷 媒の一部は蒸発してもよぐ蒸発しなくてもよい。そして、冷却器 6で加熱された冷媒 は、蒸発器 5で蒸発した後、圧縮機 1に吸入される。  [0065] Next, the operation of the refrigeration cycle apparatus 10F will be described. In the refrigerant circuit 11, the refrigerant discharged from the compressor 1 is separated from the lubricating oil in the oil separator 9, then radiates heat in the heat radiator 2, expands in the expander 3, and becomes a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant is heated by the cooler 6 at the same time as the lubricating oil is cooled. At this time, a part of the cooling medium may or may not evaporate. Then, the refrigerant heated by the cooler 6 evaporates by the evaporator 5 and then is sucked into the compressor 1.
[0066] 一方、油分離器 9で分離された潤滑油は、油供給管 7を流通し、冷却器 6で冷媒と 熱交換することによって冷却される。そして、冷却後の潤滑油は、膨張機 3の入口側 配管 57に流れ込み、放熱器 2からの冷媒と合流して膨張機 3に流入する。これにより 、膨張機 3に潤滑油が供給される。なお、潤滑油の流量は弁 8によって調整される。  On the other hand, the lubricating oil separated by the oil separator 9 flows through the oil supply pipe 7 and is cooled by exchanging heat with the refrigerant in the cooler 6. The cooled lubricating oil flows into the inlet side pipe 57 of the expander 3, merges with the refrigerant from the radiator 2, and flows into the expander 3. As a result, the lubricating oil is supplied to the expander 3. The flow rate of lubricating oil is adjusted by valve 8.
[0067] コントローラ 80の動作は、先に説明した通りである。すなわち、膨張機 3の入口冷媒 温度に基づ 、て弁 8の開度を制御するようにしてもょ 、し、膨張機 3の回転数に基づ V、て弁 8の開度を制御するようにしてもょ 、。  [0067] The operation of the controller 80 is as described above. That is, the opening degree of the valve 8 may be controlled based on the inlet refrigerant temperature of the expander 3, and the opening degree of the valve 8 may be controlled based on the rotation speed of the expander 3. Even so,
[0068] 以上のように、本実施形態によれば、油分離器 9によって冷媒と潤滑油とを分離し、 油供給管 7を通じて潤滑油を膨張機 3に供給することとしたので、膨張機 3に対して 十分な量の潤滑油を供給することができる。カロえて、油供給管 7の潤滑油を冷媒回 路 11内の低圧冷媒で冷却することとしたので、冷却源を新たに設ける必要がな 、。 また、潤滑油からの放熱を冷媒回路 11内で回収することができ、サイクル全体の CO Pを向上させることができる。したがって、膨張機 3に対する潤滑油の十分な供給とサ イタル全体の COPの向上とを両立させることが可能となる。  [0068] As described above, according to this embodiment, the refrigerant and the lubricating oil are separated by the oil separator 9, and the lubricating oil is supplied to the expander 3 through the oil supply pipe 7. A sufficient amount of lubricating oil can be supplied for 3. Since the lubricating oil in the oil supply pipe 7 is cooled by the low-pressure refrigerant in the refrigerant circuit 11, it is not necessary to newly provide a cooling source. Further, the heat radiation from the lubricating oil can be recovered in the refrigerant circuit 11, and the COP of the entire cycle can be improved. Accordingly, it is possible to achieve both sufficient supply of lubricating oil to the expander 3 and improvement of COP of the entire site.
[0069] すなわち、本冷凍サイクル装置 10Fでは、低圧冷媒を潤滑油で加熱することにより 、冷媒回路 11の低圧側圧力を上昇させることができ、圧縮機 1の負荷を低減すること ができる。したがって、冷凍サイクルの COPを向上させることができる。また、冷媒は 冷却器 6において加熱されるので、蒸発器 5における必要加熱量を低減することがで きる。したがって、蒸発器 5のコンパクトィ匕を図ることも可能である。 [0070] また、本実施形態によれば、油供給管 7に開度を調整可能な弁 8が設けられている ので、膨張機 3に対する潤滑油の供給量を自由に調整することができる。また、膨張 機 3の入口冷媒温度に基づいて弁 8の開度を調整することにより、膨張前の冷媒温 度を制御することができる。そのため、膨張前の冷媒温度低下による潤滑油粘度の 低下及び膨張前の冷媒温度上昇による蒸発器能力の低下を抑えることができる。潤 滑油粘度の低下を抑えることにより、膨張機 3における摺動損失の増加を抑制でき、 ひいては膨張機 3の信頼性、性能を高めることにつながる。また、蒸発器能力の低下 を抑えることにより、蒸発圧力が低くなつてしまうことを防止でき、ひいては圧縮機 1の 負荷を軽減することができる。したがって、本実施形態の冷凍サイクル装置 10Fによ れば、運転状態の変動に拘わらず、膨張機 3の信頼性を確保しつつ、冷凍サイクル の COPを向上させることができる。 [0069] That is, in this refrigeration cycle apparatus 10F, by heating the low-pressure refrigerant with lubricating oil, the low-pressure side pressure of the refrigerant circuit 11 can be increased, and the load on the compressor 1 can be reduced. Therefore, the COP of the refrigeration cycle can be improved. Further, since the refrigerant is heated in the cooler 6, the required heating amount in the evaporator 5 can be reduced. Therefore, it is possible to make the evaporator 5 compact. [0070] Further, according to the present embodiment, since the valve 8 capable of adjusting the opening degree is provided in the oil supply pipe 7, the supply amount of the lubricating oil to the expander 3 can be freely adjusted. Further, by adjusting the opening degree of the valve 8 based on the inlet refrigerant temperature of the expander 3, the refrigerant temperature before expansion can be controlled. Therefore, it is possible to suppress a decrease in the viscosity of the lubricating oil due to a decrease in the refrigerant temperature before expansion and a decrease in the evaporator capacity due to an increase in the refrigerant temperature before expansion. By suppressing the decrease in the lubricating oil viscosity, an increase in sliding loss in the expander 3 can be suppressed, and as a result, the reliability and performance of the expander 3 can be improved. Further, by suppressing the decrease in the evaporator capacity, it is possible to prevent the evaporation pressure from being lowered, and thus the load on the compressor 1 can be reduced. Therefore, according to the refrigeration cycle apparatus 10F of the present embodiment, it is possible to improve the COP of the refrigeration cycle while ensuring the reliability of the expander 3 regardless of fluctuations in the operating state.
[0071] また、放熱器 2には、油分離器 9で潤滑油と分離された後の冷媒が流通する。その ため、放熱器 2に潤滑油が流れ込むことを防止又は抑制することができるので、放熱 器 2の冷媒側の熱伝達率を高めることができ、放熱器 2の性能を向上させることがで きる。したがって、 COPを更に向上させることができる。  In addition, the refrigerant after being separated from the lubricating oil by the oil separator 9 flows through the radiator 2. Therefore, it is possible to prevent or suppress the lubricating oil from flowing into the radiator 2, so that the heat transfer coefficient on the refrigerant side of the radiator 2 can be increased, and the performance of the radiator 2 can be improved. . Therefore, COP can be further improved.
[0072] (第 7実施形態)  [0072] (Seventh embodiment)
図 9に示すように、第 7実施形態は、第 6実施形態の冷凍サイクル装置 10Fにおい て、油供給管 7の冷却器 6に変更を加えたものである。具体的に、本実施形態の冷凍 サイクル装置 10Gにおいて、冷却器 6は、第 4実施形態の冷凍サイクル装置 10D (図 6参照)と同様、潤滑油と低圧冷媒とを間接的に熱交換させるように構成されている。 蒸発器 5及び冷却器 6に共通の送風機 17が設けられている点も共通である。  As shown in FIG. 9, the seventh embodiment is obtained by changing the cooler 6 of the oil supply pipe 7 in the refrigeration cycle apparatus 10F of the sixth embodiment. Specifically, in the refrigeration cycle apparatus 10G of the present embodiment, the cooler 6 is configured to indirectly exchange heat between the lubricating oil and the low-pressure refrigerant, similarly to the refrigeration cycle apparatus 10D of the fourth embodiment (see FIG. 6). It is configured. A common blower 17 is provided for the evaporator 5 and the cooler 6.
[0073] その他の構成は第 6実施形態と同様であるので、それらの説明は省略する。  [0073] The other configuration is the same as that of the sixth embodiment, and a description thereof will be omitted.
[0074] したがって、本実施形態においても、第 4実施形態及び第 6実施形態と同様の効果 を得ることができる。  Therefore, also in this embodiment, the same effect as in the fourth embodiment and the sixth embodiment can be obtained.
[0075] (第 8実施形態)  [0075] (Eighth embodiment)
図 10に示すように、第 8実施形態も、第 6実施形態の冷凍サイクル装置 10Fにおい て、油供給管 7の冷却器 6に変更を加えたものである。本実施形態の冷凍サイクル装 置 10Hでは、冷却器 6は蒸発器 5と一体化されている。具体的には、油供給管 7は蒸 発器 5内を通過しており、蒸発器 5において潤滑油と冷媒 (あるいは、冷媒に冷却さ れる前の空気又は冷却された後の空気)とが熱交換を行う。その他の構成は第 6実 施形態と同様である。 As shown in FIG. 10, the eighth embodiment is also a modification of the cooler 6 of the oil supply pipe 7 in the refrigeration cycle apparatus 10F of the sixth embodiment. In the refrigeration cycle apparatus 10H of the present embodiment, the cooler 6 is integrated with the evaporator 5. Specifically, the oil supply pipe 7 is steamed It passes through the generator 5, and in the evaporator 5, the lubricating oil and the refrigerant (or air before being cooled by the refrigerant or air after being cooled) exchange heat. Other configurations are the same as those in the sixth embodiment.
[0076] したがって、本実施形態においても、第 6実施形態と同様の効果を得ることができる  Therefore, also in the present embodiment, the same effect as in the sixth embodiment can be obtained.
[0077] (第 9実施形態) [0077] (Ninth embodiment)
第 6〜第 8実施形態では、油供給管 7に弁 8が設けられていた。し力しながら、図 11 に示す冷凍サイクル装置 101のように、油供給管 7には、弁 8の代わりに(または弁 8と 共に)油ポンプ 8aが設けられていてもよい。また、コントローラ 80は、膨張機 3の入口 冷媒温度又は運転容量に基づいて、油ポンプ 8aを制御するようにしてもよい。油ボン プ 8aがもたらす効果については、図 7で説明した通りである。  In the sixth to eighth embodiments, the valve 8 is provided in the oil supply pipe 7. However, as in the refrigeration cycle apparatus 101 shown in FIG. 11, the oil supply pipe 7 may be provided with an oil pump 8a instead of the valve 8 (or together with the valve 8). Further, the controller 80 may control the oil pump 8a based on the inlet refrigerant temperature or the operating capacity of the expander 3. The effect of oil pump 8a is as explained in Fig. 7.
[0078] (その他の実施形態)  [0078] (Other Embodiments)
図 8〜図 11の各実施形態では、油供給管 7の下流端は、膨張機 3の入口側配管 5 7に接続されていた。しかしながら、油供給管 7は膨張機 3に潤滑油を供給するもの であればよぐ油供給管 7の下流端は膨張機 3自体、具体的には、膨張機 3の油貯ま り 77に接続されて ヽてもよ ヽ。  8 to 11, the downstream end of the oil supply pipe 7 is connected to the inlet side pipe 5 7 of the expander 3. However, if the oil supply pipe 7 supplies lubricating oil to the expander 3, the downstream end of the oil supply pipe 7 is connected to the expander 3 itself, specifically, to the oil reservoir 77 of the expander 3. You can be ヽ.
[0079] また、油供給管 7の潤滑油の流量を制御する必要がな 、場合には、開度を調整可 能な弁 8の代わりにキヤビラリ一チューブ等の絞り機構を設けるようにしてもよ!、。また 、油供給管 7における圧力損失が適当な範囲 (膨張機 3に適正量の潤滑油を供給で きる範囲)であれば、弁 8を省略することも可能である。  [0079] In addition, in the case where it is not necessary to control the flow rate of the lubricating oil in the oil supply pipe 7, a throttle mechanism such as a capillary tube may be provided instead of the valve 8 whose opening degree can be adjusted. Yeah! If the pressure loss in the oil supply pipe 7 is in an appropriate range (a range in which an appropriate amount of lubricating oil can be supplied to the expander 3), the valve 8 can be omitted.
[0080] 油供給管 7の種類は何ら限定されるものではない。油供給管 7は、圧縮機 1又は膨 張機 3の振動によって破損しにくいように、可撓管によって形成されていてもよい。ま た、油供給管 7の長さや形状等も何ら限定される訳ではない。ただし、油供給管 7の 圧力損失を低減する観点からは、油供給管 7の長さは短い方が好ましぐまた、真つ 直ぐな管であることが好ま 、。  [0080] The type of the oil supply pipe 7 is not limited at all. The oil supply pipe 7 may be formed of a flexible pipe so that the oil supply pipe 7 is not easily damaged by vibration of the compressor 1 or the expander 3. Also, the length and shape of the oil supply pipe 7 are not limited at all. However, from the viewpoint of reducing the pressure loss of the oil supply pipe 7, it is preferable that the length of the oil supply pipe 7 is short, and it is preferable that the oil supply pipe 7 is a straight pipe.
[0081] 前記実施形態では、圧縮機 1及び膨張機 3は高圧ドーム型であった。しかしながら 、潤滑油の性能劣化を招力ない限り、圧縮機 1及び膨張機 3は、内部に低圧冷媒が 貯留される ヽゎゆる低圧ドーム型であってもよ 、。 [0082] 冷媒回路 11に充填される冷媒は、冷媒回路 11の高圧部分にお!、て超臨界状態と なる冷媒に限らず、高圧部分で超臨界状態とならない冷媒であってもよい。 In the embodiment, the compressor 1 and the expander 3 are high-pressure dome types. However, as long as the performance of the lubricating oil is not deteriorated, the compressor 1 and the expander 3 may be a low-pressure dome type in which low-pressure refrigerant is stored inside. The refrigerant charged in the refrigerant circuit 11 is not limited to a refrigerant that is in a supercritical state in the high pressure portion of the refrigerant circuit 11, and may be a refrigerant that does not enter a supercritical state in the high pressure portion.
[0083] 以上説明したように、本発明は、圧縮機と膨張機とを備えた冷凍サイクル装置につ いて有用である。具体的には、水、空気等の対象物を放熱器で加熱する給湯機、暖 房装置、乾燥機に本発明を好適に採用できる。  [0083] As described above, the present invention is useful for a refrigeration cycle apparatus including a compressor and an expander. Specifically, the present invention can be suitably applied to a water heater, a heating device, and a dryer that heat an object such as water or air with a radiator.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機、放熱器、膨張機及び蒸発器がこの順に接続されてなる冷媒回路と、  [1] a refrigerant circuit in which a compressor, a radiator, an expander, and an evaporator are connected in this order;
前記圧縮機内の潤滑油又は前記圧縮機から吐出された潤滑油を、前記膨張機又 は前記冷媒回路における前記放熱器と前記膨張機との間に供給する、前記冷媒回 路とは別に設けられた油供給通路と、  Provided separately from the refrigerant circuit for supplying lubricating oil in the compressor or lubricating oil discharged from the compressor between the radiator and the expander in the expander or the refrigerant circuit. Oil supply passage,
前記冷媒回路における前記膨張機力 前記蒸発器を経て前記圧縮機に至る低圧 部分の冷媒と前記油供給通路の潤滑油とを熱交換させることによって前記潤滑油を 冷却する冷却装置と、  A cooling device that cools the lubricating oil by exchanging heat between the refrigerant in the low-pressure part that reaches the compressor through the evaporator and the lubricating oil in the oil supply passage in the refrigerant circuit;
を備えた冷凍サイクル装置。  A refrigeration cycle apparatus comprising:
[2] 前記油供給通路は、前記圧縮機と前記膨張機とを連通している、請求項 1に記載 の冷凍サイクル装置。  [2] The refrigeration cycle apparatus according to claim 1, wherein the oil supply passage communicates the compressor and the expander.
[3] 前記圧縮機及び前記膨張機は、それぞれ潤滑油を貯留する貯留部を備え、  [3] The compressor and the expander each include a reservoir that stores lubricating oil,
前記油供給通路は、前記圧縮機の貯留部と前記膨張機の貯留部とを連通して ヽる 、請求項 2に記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to claim 2, wherein the oil supply passage communicates between a storage part of the compressor and a storage part of the expander.
[4] 前記圧縮機は、冷媒を圧縮する圧縮機構と、前記圧縮機構を覆!ゝ且つ前記圧縮 機構によって圧縮された冷媒が吐出される空間を形成する圧縮機シェルとを備え、 前記膨張機は、冷媒を膨張させる膨張機構と、前記膨張機構を覆い且つ前記膨張 機構によって減圧される前の冷媒が貯留される空間を形成する膨張機シェルとを備 え、 [4] The compressor includes: a compression mechanism that compresses the refrigerant; and a compressor shell that covers the compression mechanism and forms a space in which the refrigerant compressed by the compression mechanism is discharged. Comprises an expansion mechanism that expands the refrigerant, and an expander shell that covers the expansion mechanism and forms a space for storing the refrigerant before being decompressed by the expansion mechanism.
前記圧縮機及び前記膨張機の貯留部は、それぞれ前記圧縮機シェル及び前記膨 張機シェルの内部に設けられ、  The compressor and the expander reservoir are provided inside the compressor shell and the expander shell, respectively.
前記油供給通路は、一端が前記圧縮機シェルに接続され且つ他端が前記膨張機 シェルに接続された配管力もなる、請求項 3に記載の冷凍サイクル装置。  4. The refrigeration cycle apparatus according to claim 3, wherein the oil supply passage has a piping force with one end connected to the compressor shell and the other end connected to the expander shell.
[5] 前記冷媒回路における前記圧縮機と前記放熱器との間に配置された油分離器をさ らに備え、 [5] The oil circuit further includes an oil separator disposed between the compressor and the radiator in the refrigerant circuit,
前記油供給通路は、前記油分離器で分離された潤滑油を前記膨張機又は前記冷 媒回路における前記放熱器と前記膨張機との間に供給する、請求項 1記載の冷凍サ イタル装置。 The refrigeration sanitary apparatus according to claim 1, wherein the oil supply passage supplies the lubricating oil separated by the oil separator between the radiator and the expander in the expander or the refrigerant circuit.
[6] 前記冷却装置は、前記冷媒回路の低圧部分の冷媒と前記油供給通路の潤滑油と を熱交換させる熱交 を備えて 、る、請求項 1に記載の冷凍サイクル装置。 6. The refrigeration cycle apparatus according to claim 1, wherein the cooling device includes a heat exchange that exchanges heat between the refrigerant in the low-pressure portion of the refrigerant circuit and the lubricating oil in the oil supply passage.
[7] 前記冷却装置は、前記蒸発器で冷却される前の空気又は前記蒸発器で冷却され た後の空気と前記油供給通路の潤滑油とを熱交換させる熱交 を備えている、請 求項 1に記載の冷凍サイクル装置。 [7] The cooling device includes heat exchange for exchanging heat between the air before being cooled by the evaporator or the air after being cooled by the evaporator and the lubricating oil in the oil supply passage. The refrigeration cycle apparatus according to claim 1.
[8] 前記油供給通路の潤滑油を搬送する搬送装置をさらに備えた、請求項 1に記載の 冷凍サイクル装置。 8. The refrigeration cycle apparatus according to claim 1, further comprising a transport device that transports the lubricating oil in the oil supply passage.
[9] 前記油供給通路の潤滑油の流量を調整する流量調整装置をさらに備えた、請求 項 1に記載の冷凍サイクル装置。  9. The refrigeration cycle apparatus according to claim 1, further comprising a flow rate adjusting device that adjusts a flow rate of the lubricating oil in the oil supply passage.
[10] 前記膨張機の入口側の冷媒温度を検出する温度センサと、 [10] a temperature sensor for detecting a refrigerant temperature on the inlet side of the expander;
前記温度センサの検出温度に基づいて前記流量調整装置を制御するコントローラ と、  A controller for controlling the flow rate adjusting device based on a temperature detected by the temperature sensor;
を備えた請求項 9に記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to claim 9, comprising:
[11] 前記膨張機は、運転容量を調整可能な膨張機カゝらなり、 [11] The expander is an expander with an adjustable operating capacity,
前記膨張機の運転容量を検出する運転容量検出装置と、  An operating capacity detection device for detecting the operating capacity of the expander;
前記運転容量検出装置が検出する前記膨張機の運転容量に基づいて前記流量 調整装置を制御するコントローラと、  A controller for controlling the flow rate adjusting device based on the operating capacity of the expander detected by the operating capacity detecting device;
を備えた請求項 9に記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to claim 9, comprising:
[12] 前記冷媒回路における前記圧縮機力 前記放熱器を経て前記膨張機に至る高圧 部分の冷媒が超臨界状態となる、請求項 1に記載の冷凍サイクル装置。 12. The refrigeration cycle apparatus according to claim 1, wherein the compressor power in the refrigerant circuit is in a supercritical state in a high-pressure portion of the refrigerant that reaches the expander through the radiator.
PCT/JP2006/303228 2005-03-09 2006-02-23 Refrigeration cycle system WO2006095572A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-065239 2005-03-09
JP2005065238A JP2008133967A (en) 2005-03-09 2005-03-09 Refrigerating cycle device
JP2005-065238 2005-03-09
JP2005065239A JP2008133968A (en) 2005-03-09 2005-03-09 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
WO2006095572A1 true WO2006095572A1 (en) 2006-09-14

Family

ID=36953173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303228 WO2006095572A1 (en) 2005-03-09 2006-02-23 Refrigeration cycle system

Country Status (1)

Country Link
WO (1) WO2006095572A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075531A (en) * 2006-09-21 2008-04-03 Fujitsu General Ltd Refrigerant circuit provided with expander
WO2008108055A1 (en) * 2007-03-08 2008-09-12 Daikin Industries, Ltd. Refrigerating device
JP2008223651A (en) * 2007-03-14 2008-09-25 Daikin Ind Ltd Fluid machine
JP2009174476A (en) * 2008-01-25 2009-08-06 Daikin Ind Ltd Expansion device
JP2009228927A (en) * 2008-03-19 2009-10-08 Daikin Ind Ltd Refrigerating device
JP2011510258A (en) * 2008-01-17 2011-03-31 キャリア コーポレイション Refrigerant vapor compression system with lubricant cooler
JP2012167926A (en) * 2012-06-12 2012-09-06 Daikin Industries Ltd Refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696259U (en) * 1979-12-24 1981-07-30
JP2001141315A (en) * 1999-11-10 2001-05-25 Aisin Seiki Co Ltd Refrigerating air conditioner
JP2002005021A (en) * 2000-06-16 2002-01-09 Mitsubishi Heavy Ind Ltd Oil separator built-in compressor
JP2003148814A (en) * 2001-11-15 2003-05-21 Matsushita Electric Ind Co Ltd Refrigerating machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696259U (en) * 1979-12-24 1981-07-30
JP2001141315A (en) * 1999-11-10 2001-05-25 Aisin Seiki Co Ltd Refrigerating air conditioner
JP2002005021A (en) * 2000-06-16 2002-01-09 Mitsubishi Heavy Ind Ltd Oil separator built-in compressor
JP2003148814A (en) * 2001-11-15 2003-05-21 Matsushita Electric Ind Co Ltd Refrigerating machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075531A (en) * 2006-09-21 2008-04-03 Fujitsu General Ltd Refrigerant circuit provided with expander
US20100101268A1 (en) * 2007-03-08 2010-04-29 Katsumi Sakitani Refrigeration system
JP2008224053A (en) * 2007-03-08 2008-09-25 Daikin Ind Ltd Refrigerating device
WO2008108055A1 (en) * 2007-03-08 2008-09-12 Daikin Industries, Ltd. Refrigerating device
AU2008222268B2 (en) * 2007-03-08 2011-05-26 Daikin Industries, Ltd. Refrigeration system
AU2008222268C1 (en) * 2007-03-08 2012-03-29 Daikin Industries, Ltd. Refrigeration system
CN101627265B (en) * 2007-03-08 2013-04-17 大金工业株式会社 Refrigerating device
JP2008223651A (en) * 2007-03-14 2008-09-25 Daikin Ind Ltd Fluid machine
JP2011510258A (en) * 2008-01-17 2011-03-31 キャリア コーポレイション Refrigerant vapor compression system with lubricant cooler
US8424337B2 (en) 2008-01-17 2013-04-23 Carrier Corporation Refrigerant vapor compression system with lubricant cooler
JP2009174476A (en) * 2008-01-25 2009-08-06 Daikin Ind Ltd Expansion device
JP2009228927A (en) * 2008-03-19 2009-10-08 Daikin Ind Ltd Refrigerating device
JP2012167926A (en) * 2012-06-12 2012-09-06 Daikin Industries Ltd Refrigerator

Similar Documents

Publication Publication Date Title
US9897360B2 (en) Refrigeration apparatus
JP4949768B2 (en) Screw compressor
JP2009127902A (en) Refrigerating device and compressor
JP4816220B2 (en) Refrigeration equipment
WO2007123088A1 (en) Refrigerating apparatus
WO2006095572A1 (en) Refrigeration cycle system
JP4065313B2 (en) Refrigeration cycle equipment
KR101020916B1 (en) Refrigerant cycle apparatus
KR20030095240A (en) Supercritical Refrigerant Cycle Device
JP2007271211A (en) Refrigerating device
JP2010107181A (en) Refrigeration system
JP2008133968A (en) Refrigerating cycle device
JP2007212024A (en) Refrigerating cycle device and its control method
JP2007154726A (en) Hermetic compressor and refrigeration cycle device
JP2021021509A (en) Air-conditioning apparatus
JP2003065618A (en) Heat carrying equipment
JP4278402B2 (en) Refrigerant cycle equipment
US11885548B2 (en) Refrigeration cycle apparatus that injects refrigerant into compressor during low load operation
WO2009098900A1 (en) Refrigeration system
WO2009098863A1 (en) Refrigeration device
JP2013096602A (en) Refrigeration cycle device
JP2004286322A (en) Refrigerant cycle device
WO2015104822A1 (en) Refrigeration cycle device
JP2004028485A (en) Co2 cooling medium cycle device
JP2007010257A (en) Heat pump device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP