WO2006093265A1 - コヒーレントフォノンによるテラヘルツ電磁波発生方法 - Google Patents

コヒーレントフォノンによるテラヘルツ電磁波発生方法 Download PDF

Info

Publication number
WO2006093265A1
WO2006093265A1 PCT/JP2006/304077 JP2006304077W WO2006093265A1 WO 2006093265 A1 WO2006093265 A1 WO 2006093265A1 JP 2006304077 W JP2006304077 W JP 2006304077W WO 2006093265 A1 WO2006093265 A1 WO 2006093265A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz electromagnetic
coherent
electromagnetic wave
phonon
generating
Prior art date
Application number
PCT/JP2006/304077
Other languages
English (en)
French (fr)
Inventor
Masaaki Nakayama
Kohji Mizoguchi
Kiyomi Sakai
Shingo Saito
Original Assignee
National Institute Of Information And Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Information And Communications Technology filed Critical National Institute Of Information And Communications Technology
Priority to JP2007506019A priority Critical patent/JPWO2006093265A1/ja
Priority to EP06715160A priority patent/EP1855156A1/en
Priority to US11/885,651 priority patent/US20080279227A1/en
Publication of WO2006093265A1 publication Critical patent/WO2006093265A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2302/00Amplification / lasing wavelength
    • H01S2302/02THz - lasers, i.e. lasers with emission in the wavelength range of typically 0.1 mm to 1 mm

Definitions

  • the present invention relates to a method for efficiently generating a terahertz electromagnetic wave with high intensity using coherent phonon.
  • Non-Patent Documents 1 and 2 Research on terahertz electromagnetic waves is a relatively new field that can be generated and detected by the development of laser technology in the 1990s. Early research was mainly related to terahertz electromagnetic waves radiated from the semiconductor surface when irradiated with a pulsed laser.
  • Non-Patent Document 1 P. R. Smith and D. H. Auston, IEEE J. Quantum Electron. 24, 255 (19 88)
  • Non-Patent Document 2 X-- C. Zhang, B. B. Hu, J. T. Darrowand D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990)
  • Non-patent literature 3 4, 5, 6
  • Non-Patent Document 3 T. Dekorsy, H. Auer, H. J. Bakker'H. G. Roskos and H. Kurz, Phys.
  • Non-Patent Document 4 M. Tani, R. Fukasawa, H. Abe, S. Matsuura, S. Nakashima and K. Sak ai, Phys. Rev. B 83, 2473 (1998)
  • Non-Patent Document 5 A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss and W. H. Knox, Phys. Rev. Lett. 82, 5140 (1999)
  • Non-Patent Document 6 YC Shen, PC Upadhya, HE Beere, AG Davies, IS Gregory, C. Baker, WRTribe, MJ Evans and EH Linfield, Phys. Rev. B 85, 164 (2004) [0006]
  • the radiation mechanism of the terahertz electromagnetic wave from the coherent LO phonon is radiated by the translational symmetry disorder of the coherent LO phonon on the sample surface. It is.
  • terahertz electromagnetic waves from coherent LO phonon is very weak, so it is difficult to apply to terahertz technologies such as communication, spectroscopy, and imaging.
  • an object of the present invention is to provide a method for efficiently generating high-intensity electromagnetic waves from coherent phonon to terahertz. Means for solving the problem
  • the present invention is designed so that coherent phonon energy and the energy of elementary excitation in the semiconductor quantum structure are resonated to generate high-density coherent phonon sources. Based on what to do.
  • the oscillation region of polarization due to LO phonon confined in each well layer radiates terahertz electromagnetic waves, so the radiation region of terahertz electromagnetic waves is considered to be larger than that of thin films. It was. As a result, the intensity of the terahertz electromagnetic wave from the coherent LO phonon emitted is increased.
  • coherent LO phonons are confined in each well layer, so the scattering process is suppressed and a very high coherence and terahertz electromagnetic wave is generated.
  • a method for generating a terahertz electromagnetic wave using a coherent phonon of the present invention is a method for generating a terahertz electromagnetic wave using a coherent phonon in a quantum structure, and a coherent phonon that is a source of generation of a terahertz electromagnetic wave. Is generated under the condition that the energy of the phonon resonates with the energy of the elementary excitation by the quantum structure, so that the coherent phonon can be obtained at a high density and the terahertz electromagnetic wave can be generated by the oscillation of the polarization.
  • instantaneous optical pulse excitation may be performed to generate coherent phonon via the elementary excitation.
  • a quantum well structure is effective as the quantum structure, and the scattering process may be suppressed by confining coherent LO phonon in the well layer.
  • the quantum structure may be a single quantum well or a multiple quantum well.
  • quantum structure a superlattice or a self-formed quantum dot can also be used.
  • Examples of the semiconductor include a GaAs / AlAs multiple quantum well structure.
  • GaAs / AlAs multiple quantum well structure having an approximately 50 period composition of (GaAs) 35 / (AlAs) 35 (35 means the number of constituent atomic layers) can be used effectively.
  • the quantum structure can be composed of a dielectric material, a semimetal, or an organic material.
  • FIG. 1 A schematic diagram showing the band structure near the surface of a semiconductor and representing the surface potential of an n-type semiconductor
  • FIG.2 Schematic representation of surface potential of p-type semiconductor
  • FIG.7 Graph showing the terahertz electromagnetic wave signal when the excitation light intensity is changed in (35, 35) 50 MQW.
  • FIG.9 Terahertz electromagnetic wave measurement results when the excitation light energy is changed, and shows the dependence of the terahertz electromagnetic wave on the excitation light energy observed at (35, 35) 50MQW.
  • FIG. 10 A graph plotting the maximum amplitude of terahertz electromagnetic waves from a coherent LO phonon, with each amplitude as a function of excitation light energy.
  • FIG. 11 Comparison of terahertz electromagnetic radiation intensity from coherent GaAs L0 phonons in samples with different period numbers, and obtained at (35,35) 50MQW and (35,35) 30MQW.
  • FIG. 12 Graph plotting the amplitude intensity of the signal in Fig. 7 as a function of excitation intensity.
  • FIG.13 A graph of the measured terahertz electromagnetic wave dependence of the terahertz electromagnetic wave observed at (35,35) 50MQW, plotting the signal of the emitted terahertz electromagnetic wave.
  • FIG.14 Graph showing the amplitude as a function of excitation light intensity.
  • FIG.15 Graph showing temperature dependence of terahertz electromagnetic wave observed in GaAs thin film.
  • FIG.16 Graph plotting amplitude at temperature
  • FIG.17 A graph showing the temperature dependence of terahertz electromagnetic waves observed at (35,35) 50 MQW. rough
  • FIG. 19 is a graph showing the output of terahertz electromagnetic waves observed at (35, 35) 50 MQW.
  • a typical mechanism by which terahertz electromagnetic waves are radiated from the semiconductor surface is as follows.
  • the main radiation mechanisms of terahertz radiation from the semiconductor surface by femtosecond laser pulse excitation proposed in the past can be classified into two types.
  • the first is a model in which terahertz electromagnetic waves are generated by irradiating a femtosecond pulse laser without generating photoexcited carriers in the sample.
  • Such a model is known as an optical rectification effect or difference frequency generation.
  • the other is a model in which terahertz electromagnetic waves are generated by irradiating a sample with a femtosecond pulse laser and generating a photoexcited carrier in the sample.
  • the photoexcited carriers generated in the sample are accelerated by an electric field or diffusion in the sample, and a transient current is generated. This transient current generates a terahertz electromagnetic wave.
  • Such a model is known as a transient current effect.
  • This model is divided into two types depending on factors that cause transient currents.
  • One is a ⁇ transient current model due to surface electric field '' where the photoexcited carriers are accelerated by the surface electric field on the semiconductor surface, and the other is ⁇ optical denver model '' where the transient current is caused by the diffusion current of the photoexcited carriers. It is.
  • the semiconductor surface takes an energy state different from the inside of the crystal because the periodicity is interrupted unlike the inside of the Balta crystal.
  • the Fermi level plays an important role in determining its energy state.
  • the Fermi level on the semiconductor surface is generally in an intrinsic state, but the Fermi level inside the crystal is determined by the amount of electron holes. In the equilibrium state, the Fermi levels inside the crystal and the crystal have the same value, so carriers (electrons and holes) move between the surface and the level inside the crystal near the surface. This carrier movement causes the band structure to bend near the surface and generate a surface electric field.
  • FIGS. 1 and 2 are schematic diagrams showing a band structure near the surface of a semiconductor
  • FIG. 1 is a schematic diagram of a surface potential of an n-type semiconductor
  • FIG. 2 is a schematic diagram of a surface potential of a p-type semiconductor. It is a figure.
  • An example of a semiconductor is GaAs.
  • n-type GaAs As shown in Fig. 1, the band bends upward and the surface electric field Esurface is in the surface direction from the back of the sample.
  • the direction of band bending and surface electric field is opposite to that of n-type semiconductors.
  • band offset The direction and amount of bending of this band (band offset) is determined by the positional relationship between the Fermi level at the surface and the Fermi level inside the crystal.
  • the Fermi level at the surface exists 0.5 eV higher than the upper part of the valence band.
  • the Fermi level in the crystal exists near the conduction band. The band bends upward so that they are equal and take a position. Therefore, the band offset ( ⁇ 1) corresponds to the difference between the Fermi level ( ⁇ fermi) inside the crystal and the Fermi level ( ⁇ surface) at the surface.
  • the Fermi level in the crystal exists near the valence band, so the band bends downward.
  • FIG. 3 is a schematic diagram showing a transient current effect due to a surface electric field.
  • Non-patent Document 7 The electric field amplitude (ETHz) of the terahertz wave generated in the transient current model by the surface electric field is expressed by the following equation (Non-patent Document 7).
  • Non-Patent Document 7 X.-C. Zhang, and DH Auston, J. Appl. Phys. 71, 326 (1992) Equation 1
  • J is the charge density
  • z is the distance from the surface
  • Ed is the spatial distribution of the surface electric field
  • w is the depletion layer width.
  • is the response function corresponding to the mobility of photoexcited carriers (electrons and holes)
  • Iop (t ”) is the waveform of the optical pulse
  • is the relaxation time of photoexcited carriers
  • t ′ is the time when the optical panel is irradiated Indicates.
  • Non-Patent Documents 8 and 9 disclose terahertz electromagnetic radiation from InAs and InSb surfaces.
  • Non-Patent Document 8 L. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies and E.
  • Non-Patent Document 9 P. Gu, M. Tani, M. Kono, X.-C. Zhang and K. Sakai, J. Appl. Phys. 9 1, 5533 (2002)
  • the Denver effect is that a diffusion current is generated due to a difference in diffusion speed between electrons and holes, and an electric field (Denver electric field) is generated accordingly. This is the electric field that is generated because of the difference in the spatial distribution of electrons and holes due to the difference in diffusion rate, which is generally greater than the diffusion rate of holes.
  • the fact that a Denver electric field is generated by irradiating light is called the optical Denver effect.
  • FIG. 4 shows an optical denver model, which shows the optical denver effect on the semiconductor surface.
  • D is a diffusion coefficient
  • Einstein the equation of Einstein is established in an equilibrium state.
  • kB is a Boltzmann constant
  • Te is a carrier temperature
  • is a mobility
  • the diffusion rate increases as the gradient of the spatial distribution of carriers with a large diffusion coefficient increases.
  • the photoexcited carrier Nex generated by the light pulse excitation shows a distribution that depends on the absorption coefficient (f) of the substance.
  • the penetration depth is 0.8 ⁇ m for light of 800 nm, and in the case of a relatively narrow band gap, InAs, the penetration depth is 0.15 ⁇ m.
  • the narrower the band gap the smaller the penetration depth for specific light, and the steep gradient of the spatial distribution of photoexcited carriers, and the greater the contribution of the optical Denver effect.
  • the steady state on the semiconductor surface corresponds to a state where the drift current and the diffusion current are balanced.
  • the carriers generated by the light pulse are affected by both the drift motion due to the surface electric field and the diffusion motion due to the inhomogeneity of the spatial distribution of the carriers.
  • Non-Patent Document 10 T. Dekorsy, H. Auer, C. Waschke, H.J. Bakker, H. G. Roskos, H. Kurz, V. Vagner, and P. Grosse, Phys. Rev. Lett. 74, 738 (1995)
  • the monochromatic terahertz radiation is expected from the terahertz electromagnetic wave from the coherent phonon because the terahertz electromagnetic wave corresponding to the natural frequency of the coherent phonon is emitted.
  • terahertz electromagnetic radiation by coherent phonon is different from transverse mode polaritons propagating inside the material. Polaritons do not cause macroscopic polarization of matter, so electromagnetic radiation does not occur.
  • the terahertz electromagnetic wave from coherent phonon is observed in a far field outside the material, and is generated coherently by the collective movement of particles inside the excited sample.
  • the field is uniform, the polarization due to coherent phonon cancels out, so the terahertz electromagnetic wave from coherent LO phonon is not emitted.
  • the longitudinal oscillation of polarization occurs inside the sample by making the field non-uniform due to the disorder of translational symmetry on the sample surface.
  • the electric field E (t) of the radiated electromagnetic wave is related to the electric field Eint (t) in the substance because it is related to macroscopic polarization, and is expressed by the following equation. (Non-patent document 11) In other words, it is considered that radiation of terahertz electromagnetic waves from coherent LO phonon is generated by the time change of the electric field inside the sample.
  • Equation 4 [0051] ⁇ m + t + s r—. 1 ⁇ ⁇ 2 ⁇ ⁇
  • Non-Patent Document 11 Is the radiation volume, r is the distance to the sample force detector.
  • Non-Patent Document 11 A. V. Kuznetsov and C. J. Stanton, Phys. Rev. B 51, 7555 (1995)
  • the sample mainly used is a (GaAs) 35 / (AlAs) 35MQW50 period grown epitaxially on a GaAs (lOO) face substrate by MBE.
  • 35 means the number of constituent atomic layers.
  • we used a GaAs thin film epitaxially grown on a GaAs (100) surface substrate by MBE and a (GaAs) 35 / (AlAs) 35MQW30 period sample with a different period number.
  • these samples are called (35, 35) 50, MQW, (30, 30) 30MQW in order to distinguish the difference in the number of periods.
  • the excitation light uses a femtosecond pulse laser, and the pulse width is about 40 fs.
  • the sample temperature was changed from 20 K to 280 K, and the excitation light energy was changed from 1.485 eV to 1.570 eV.
  • Fig. 5 is a graph showing (35, 35) 50 MQW and terahertz electromagnetic waves in a GaAs thin film. Is a graph showing the Fourier transform (FT) of the signal.
  • FT Fourier transform
  • the sample temperature was 150K.
  • terahertz electromagnetic waves from coherent phonon, it is necessary to have a liquid nitrogen temperature or a temperature that can be achieved by a Peltier cooling element. Therefore, in this example, terahertz electromagnetic waves were observed at a temperature sufficiently higher than the liquid nitrogen temperature of 150K.
  • the center energy of (HH) -light hole (LH) exciton energy is 1.540 eV, and for GaAs thin films, the band gap energy of GaAs is 1.485 eV.
  • Non-Patent Document 12 when a well layer of a GaAs / AlAs multiple quantum well is excited by a pulse laser, quantum interference of HH and LH excitons occurs instantaneously, and instantaneous polarization in the growth direction Has been reported to cause.
  • Non-Patent Document 12 O. Kojima, K. Mizoguchi and M. Nakayama, Phys. Rev. B 70,233306 (2004)
  • the signal at 50 MQW has a longer decay time, which is about 10 times stronger than that of the GaAs thin film.
  • Non-Patent Document 13 H. Takeuchi, K. Mizoguchi, M. Nakayama, K. Kuroyanagi, T. Aida, M. Nakajima and H. Harima, J. Phys. Soc. Jpn., 70, 2598 (2001 )
  • the terahertz electromagnetic wave from coherent LO phonon is observed with a time delay.
  • the signal at (35, 35) 50 MQW does not show a simple exponential decay, the amplitude peaks around 3 ps, and then decays, but the signal strength increases again around 6 ps.
  • the reason why the signal peak is delayed is considered to be the same as in the case of GaAs thin film.
  • the reason why the signal increases again is thought to be that the terahertz electromagnetic wave propagated in the sample is reflected from the back surface of the GaAs substrate and radiated again.
  • Fig. 7 is a graph showing the terahertz electromagnetic wave signal when the excitation light intensity is changed in (35, 35) 50 MQW
  • Fig. 8 is a graph showing the FT spectrum. Both the terahertz electromagnetic wave signal at around 0 hours and the terahertz electromagnetic wave signal from the coherent LO phonon change greatly depending on the excitation light intensity. The signal near 0 hours becomes sharper as the excitation light intensity increases.
  • the coherent GaAs LO phonon band near 8.8 THz has a shape with a tail on the high frequency side as the excitation light intensity is increased.
  • Non-Patent Document 14 G. C. Cho, T. Dekorsy, H. J. Bakker, R. Hovel and H. Kurz, Phys.
  • the terahertz electromagnetic wave from the coherent LO phonon observed in (35,35) 50MQW is the terahertz electromagnetic wave from the GaAs-type LO phonon confined in the quantum well layer.
  • the dependence of excitation light energy on (35,35) 50MQW was measured.
  • Figs. 9 and 10 show the results of terahertz electromagnetic wave measurement when the excitation light energy is changed, and Fig. 9 shows the excitation light energy of the terahertz electromagnetic wave observed at (35, 35) 50 MQW.
  • Fig. 10 is a graph plotting the maximum amplitude of a terahertz electromagnetic wave from a coherent LO phonon, with each amplitude as a function of the excitation light energy.
  • Plot ⁇ shows the carrier response and the amplitude of the coherent GaAs LO phonon.
  • the intensity of the terahertz electromagnetic wave is changed by changing the excitation light energy.
  • the terahertz electromagnetic wave from the coherent LO phonon is remarkably changed with the excitation light energy.
  • the terahertz electromagnetic wave is resonantly enhanced near the HH and LH exciton energies. This result indicates that the terahertz electromagnetic wave radiated from the quantum well structure is a coherent GaAs type ⁇ phonon confined in the well layer.
  • a terahertz electromagnetic wave from a coherent LO phonon is enhanced in a multiple quantum well structure.
  • terahertz electromagnetic waves from coherent LO phonons are radiated due to the disorder of translational symmetry of coherent LO phonons on the sample surface. Therefore, in the GaAs thin film, the radiation region of the terahertz electromagnetic wave is limited to the vicinity of the surface, and the strength is weak.
  • the GaAs type LOO phonon exists only in the GaAs well layer and has B2 symmetry.
  • Patents H ⁇ io P. Y. Yuand M. uardona, in rundamentalsof Semiconductors, (Sprm ger-Verlag, Berlin, 199b, Chap. 9
  • n the number of well layers.
  • the intensity of the terahertz electromagnetic wave can be considered to depend on the number of constituent periods. In other words, if the number of periods increases, terahertz electromagnetic waves from coherent GaAs LO phonons are also expected to increase. Based on these predictions, Terahertz electromagnetic waves were measured using samples with different constituent frequency.
  • Figure 11 shows a comparison of terahertz radiation intensity from coherent GaAs-type LO phonons for samples with different period numbers. (35, 35) 50MQW and (35, 35) 30MQW. It is a graph which shows the signal of the obtained terahertz electromagnetic wave.
  • Terahertz electromagnetic waves from samples with 50 periods are about 3 times stronger than those with 30 periods It was observed that This result suggests that the terahertz electromagnetic wave enhancement was induced by the superposition of polarization by coherent GaAs-type LO phonon in each GaAs well layer in the multiple quantum well structure.
  • Fig. 12 is a graph plotting the amplitude intensity of the signal of Fig. 7 as a function of excitation intensity, where ⁇ is the signal at around 0 hours, and KI is a coherent GaAs type L0 phonon terahertz electromagnetic wave. Indicates the amplitude of the signal.
  • the solid line is the result of fitting by the method of least squares.
  • the amplitude of the coherent phonon is said to increase by the first power relative to the excitation light intensity.
  • the signal in the vicinity of time 0 increases with an amplitude of 0.7 to the excitation intensity.
  • the amplitude of the terahertz electromagnetic wave from the surface in the sample without the quantum well structure is considered to be proportional to the intensity of the excitation light, and the result shows a saturation tendency, but is almost consistent.
  • the signal intensity of the terahertz electromagnetic wave from the coherent LO phonon increases to the 0.9th power, which is close to the first power of the excitation light intensity on the low excitation density side, but the excitation density increases. As it goes on, it increases by a power of 0.68, which is close to the rate of signal increase around 0 hours, indicating a saturation trend.
  • FIG. 14 is a graph plotting the amplitude of each signal as a function of the excitation light intensity.
  • is the response of the carrier
  • Ki is the coherent GaAs type
  • The amplitude intensity of phonon
  • the solid line is the result of fitting by the least square method.
  • the signal amplitude of coherent LO phonon increases with the power of the pump light. This result indicates that the coherent LO phonon generation mechanism is DECP or ISRS mechanism. is doing.
  • Figure 15 is a graph showing the temperature dependence of the terahertz electromagnetic wave observed in a GaAs thin film.
  • the excitation light energy is 1 OmeV higher than the GaAs bandgap energy at each temperature.
  • the signal obtained by subtracting the back-round around the signal due to water vapor absorption is numerically subtracted.
  • Fig. 16 is a graph plotting the amplitude at each temperature, where ⁇ indicates the signal near 0 hour, and ⁇ indicates the maximum vibration amplitude of the coherent GaAs LO phonon signal.
  • the signal of the coherent GaAs type LO phonon has a smaller amplitude and a shorter decay time as the temperature rises. This shows the same behavior as the temperature dependence of the coherent phonon reported so far by the reflection pump probe method. (Non-patent document 16)
  • Non-Patent Document 16 M. Hase, K. Mizoguchi, H. Harima, S.I. Nakashima and K. Sakai, Phy s. Rev. B 58,5448 (1998)
  • Non-Patent Document 17 Non-Patent Document 17
  • Non-Patent Document 17 B. B. Hu, X.-C. Zhang and D.H. Auston, Appl. Phys. Lett. 57, 26 29 (1990)
  • Non-Patent Document 17 it is reported that the intensity of the radiated terahertz electromagnetic wave decreases as the temperature increases, because the carrier mobility decreases. However, the results of this experiment are like that.
  • Figure 17 is a graph showing the temperature dependence of terahertz electromagnetic waves observed at (35, 35) 50 MQW, and the excitation light energy is the same as the central energy of the HH-LH exciton energy at each temperature.
  • the excitation light energy was the central energy of the heavy hole (HH) -light hole (LH) exciton energy at each temperature, and the excitation light intensity was 120 mW.
  • HH heavy hole
  • LH light hole
  • the wave signal does not show a large change up to around 140K by changing the temperature, but the signal becomes extremely small at 160K, and the sign is inverted at a temperature higher than 180K.
  • the signal from the coherent LO phonon does not show any significant change up to around 140K, but at higher temperatures than 180K, the signal intensity gradually decreases and the decay time also becomes shorter.
  • Fig. 18 is a graph in which the amplitude at each temperature is plotted as a function of the excitation light intensity.
  • is the maximum amplitude of the signal intensity at around 0 hour, and the signal is coherent GaAs type L ⁇ phonon. Show.
  • the coherent phonon signal is considered to be affected by thermal phonon as the temperature rises and the coherent LO phonon generation efficiency decreases, and the coherence cannot be maintained.
  • the temperature dependence of the amplitude shows almost the same tendency as the GaAs thin film compared with the GaAs thin film, but the long decay time is kept at a high temperature compared to the GaAs thin film. This is because the coherent LO phonon in the quantum well state is confined in the well layer, and the scattering process is suppressed, so that it is possible to maintain coherence up to high temperatures.
  • Non-Patent Document 18 M. Nakajima, M. Takahashi and M. Hangyo, J. Lumin. 94-95, 627 (20 01)
  • the directions of the drift current Jdrift of the transient current model due to the surface electric field and the diffusion current Jdiffhsion of the optical denver model are opposite to each other. Therefore, when the radiation mechanism of the dominant terahertz electromagnetic wave is changed by changing the temperature, the sign of the observed electromagnetic wave is reversed.
  • the band structure on the surface is p-type, so it is said that the sign inversion occurs when the temperature is increased.
  • the terahertz electromagnetic wave from the surface in this example is predominantly generated from the GaAs substrate.
  • the potential structure at the surface of GaAs is generally known to be n-type, but by growing a quantum well structure on a GaAs substrate, Some change in the potential structure may occur, and the potential structure at the interface with the GaAs substrate may be P-type.
  • FIG. 19 is a graph showing the output of terahertz electromagnetic waves observed at (35, 35) 50 MQW.
  • a terahertz electromagnetic wave can be efficiently generated from a coherent phonon with a high resonance intensity even at a relatively high temperature.
  • the electromagnetic radiation intensity from Onon could be increased about 100 times compared to Epoxy film GaAs. It is useful for light sources and electromagnetic waves for communication in various sensing system fields, and has high industrial utility value.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

   量子構造におけるコヒーレントフォノンを用いてテラヘルツ電磁波を発生させる方法において、テラヘルツ電磁波の発生源となるコヒーレントフォノンを、そのフォノンのエネルギーが、量子構造による素励起のエネルギーと共鳴する条件で生成することによって、コヒーレントフォノンを高密度に得て、それによる分極の振動でテラヘルツ電磁波を発生させる。瞬間的な光パルス励起を行ない、素励起を介在したコヒーレントフォノン生成を行うようにしてもよい。量子構造としては量子井戸構造が有効であり、コヒーレントLOフォノンを井戸層に閉じ込めることで、散乱過程を抑制してもよい。重い正孔と軽い正孔励起子を一度に生成し、その両励起子のエネルギー差をLOフォノンのエネルギーと一致させてもよい。これによって、コヒーレントフォノンからテラヘルツ電磁波を効率よく高強度発生する。                                

Description

明 細 書
コヒーレントフオノンによるテラへルツ電磁波発生方法
技術分野
[0001] 本発明は、コヒーレントフオノンを用いてテラへルツ電磁波を効率よく高強度で発生 する方法に関する。 背景技術
[0002] テラへルツ電磁波に関する研究は、 1990年代のレーザー技術の発展により、発生お よび検出が可能となった比較的新しい分野である。初期の研究は、主にパルスレー ザ一を照射した際、半導体表面から放射されるテラへルツ電磁波に関するものであ つた。 (非特許文献 1、 2)
[0003] 非特許文献 1 : P. R.Smith and D. H. Auston, IEEE J. Quantum Electron. 24,255 (19 88)
非特許文献 2 : X·- C.Zhang, B. B. Hu, J. T. Darrowand D. H. Auston, Appl. Phys.Le tt. 56, 1011(1990)
[0004] 近年、コヒーレント LOフオノンからのテラへルツ電磁波も観測されており、物性研究 や応用への観点から盛んに研究が行なわれている。 (非特許文献 3、 4、 5、 6)
[0005] 非特許文献 3 : T. Dekorsy, H. Auer, H. J. Bakker'H. G. Roskos and H. Kurz, Phys.
Rev. B 53, 4005(1996)
非特許文献 4 : M. Tani, R. Fukasawa, H. Abe, S.Matsuura, S. Nakashima and K. Sak ai, Phys. Rev.B 83,2473 (1998)
非特許文献 5 : A. Leitenstorfer, S. Hunsche, J.Shah, M. C. Nuss and W. H. Knox, P hys. Rev. Lett.82, 5140 (1999)
非特許文献 6 : Y. C. Shen, P. C. Upadhya, H. E. Beere, A. G. Davies, I. S. Gregory, C. Baker, W. R.Tribe, M. J. Evans and E. H. Linfield,Phys. Rev. B 85, 164 (2004) [0006] これらの文献におけるコヒーレント LOフオノンからのテラへルツ電磁波の放射機構は 、試料表面におけるコヒーレント LOフオノンの並進対称性の乱れにより放射されたも のである。
しかしながら、コヒーレント LOフオノンからのテラへルツ電磁波の振幅は非常に弱レ、た め、通信、分光、イメージングなどのテラへルツ技術への応用は困難である。
そこで、強度の強ぐコヒーレンスの高いコヒーレントフオノンからのテラへルツ電磁波 が求められている。
[0007] 例えば、多重量子井戸カスケードレーザーによるテラへルツ電磁波発生法では液 体窒素温度以下に冷却する必要がある。また、半導体バルタ結晶への短パルスレー ザ一照射による発生方法では、共鳴的な増大は見られない。
従来技術には、コヒーレントフオノンによる発生増強法を開示するものはなかった。 発明の開示
発明が解決しょうとする課題
[0008] そこで、本発明は、コヒーレントフオノンからテラへルツ電磁波を効率よく高強度発 生する方法を提供することを課題とする。 課題を解決するための手段
[0009] 上記課題を解決するために、本発明は、コヒーレントフオノンのエネルギーと半導体 量子構造中の素励起のエネルギーを共鳴させ、発生源となるコヒーレントフオノンが 高密度に発生するように設計することを基礎とした。
GaAs/AlAs多重量子井戸構造に注目し、各井戸層に閉じ込められた LOフオノン による分極の振動がテラへルツ電磁波を放射するため、薄膜と比べ、テラへルツ電磁 波の放射領域は大きくなると考えた。これにより、放射されるコヒーレント LOフオノンか らのテラへルツ電磁波の強度は強くなる。また、多重量子井戸構造では、コヒーレント LOフオノンは、各井戸層に閉じ込められているため、散乱過程が抑制され、非常に コヒーレンスの高レ、テラへルツ電磁波を発生する。
[0010] そこで、 GaAs/AlAs多重量子井戸構造を用いることにより、コヒーレンスの高ぐ強度 の強レ、コヒーレント LOフオノンからのテラへルツ電磁波発生を得るようにした。
半導体量子構造の材料や構造を選択設計することにより、半導体中の素励起工ネル ギ一と電子状態を制御し、なおかつコヒーレントフオノンのエネルギーと共鳴させる。 その上で、瞬間的な光パルス励起を行なうことで、素励起を介在してコヒーレントフォ ノン生成を強力に起こし、これによつてテラへルツ電磁波を増大させることができる。
[0011] 本発明のコヒーレントフオノンによるテラへルツ電磁波発生方法は、量子構造にお けるコヒーレントフオノンを用いてテラへルツ電磁波を発生させる方法において、テラ ヘルツ電磁波の発生源となるコヒーレントフオノンを、そのフォノンのエネルギーが、 量子構造による素励起のエネルギーと共鳴する条件で生成することによって、コヒー レントフオノンを高密度に得て、それによる分極の振動でテラへルツ電磁波を発生さ せることを特徴とする。
[0012] ここで、量子構造における素励起エネルギーとコヒーレントフオノンのエネルギーと を共鳴させた上で、瞬間的な光パルス励起を行ない、素励起を介在したコヒーレント フオノン生成を行うようにしてもよい。
[0013] 量子構造としては量子井戸構造が有効であり、コヒーレント LOフオノンを井戸層に閉 じ込めることで、散乱過程を抑制してもよい。
[0014] 重い正孔 (HH)と軽い正孔 (LH)励起子を一度に生成し、その両励起子のエネルギー 差を LOフオノンのエネルギーと一致させてもょレ、。
[0015] 量子構造は、単一量子井戸であっても、多重量子井戸であってもよい。
[0016] また、量子構造としては、超格子や、 自己形成量子ドットも利用できる。
[0017] 製造面では、半導体で量子構造を構成するのが利便性が高い。
[0018] 半導体としては、 GaAs/AlAs多重量子井戸構造が挙げられる。
[0019] さらに、半導体 GaAs/AlAs多重量子井戸構造が、(GaAs)35/(AlAs)35の約 50周期構 成物である(35は構成原子層数を意味する)ものが有効に使える。
[0020] (GaAs)35/(AlAs)35の約 50周期構成物は、 GaAsの (100)面などの基板上に比較的簡 易にェピタキシャル成長させられる。
[0021] 量子構造は、誘電体や、半金属や、有機物でも構成可能である。 発明の効果
[0022] 本発明によると、比較的高温でも可能であり、共鳴的な増大によって、コヒーレント フオノンからテラへルツ電磁波を効率よく高強度発生できる。 図面の簡単な説明
[図 1]半導体の表面近くのバンド構造を示し、 n型半導体の表面ポテンシャルを表わ す模式図
[図 2]同、 p型半導体の表面ポテンシャルを表わす模式図
[図 3]表面電場による過渡電流効果を示す模式図
[図 4]半導体表面における光デンバー効果の模式図
[図 5](35,35)50MQWと GaAs薄膜におけるテラへルツ電磁波を示すグラフ
[図 6]同、フーリエ変換して示したグラフ
[図 7](35,35)50MQWにおいて励起光強度を変化させたときのテラへルツ電磁波の信 号を示すグラフ
[図 8]同、フーリエ変換して示したグラフ
[図 9]励起光エネルギーを変化させたときのテラへルツ電磁波測定の結果であり、 (35 , 35)50MQWにおレ、て観測されたテラへルツ電磁波の励起光エネルギー依存性を示 すグラフ
[図 10]同、それぞれの振幅を励起光エネルギーの関数として、コヒーレント LOフオノ ンからのテラへルツ電磁波の最大振幅をプロットしたグラフ
[図 11]周期数の異なる試料におけるコヒーレント GaAs型 L〇フォノンからのテラへルツ 電磁波放射強度の比較を示すものであり、(35,35)50MQWと (35,35)30MQWにおいて 得られたテラへルツ電磁波の信号を示すグラフ
[図 12]図 7における信号の振幅強度を励起強度の関数としてプロットしたグラフ
[図 13](35,35)50MQWにおいて観測されたテラへルツ電磁波の励起光強度依存性を 測定した結果であり、放射されたテラへルツ電磁波の信号をプロットしたグラフ
[図 14]同、それぞれの振幅を励起光強度の関数として、振幅をプロットしたグラフ [図 15]GaAs薄膜において観測されたテラへルツ電磁波の温度依存性を示すグラフ [図 16]同、各温度における振幅をプロットしたグラフ
[図 17](35,35)50MQWにおいて観測されたテラへルツ電磁波の温度依存性を示すグ ラフ
[図 18]各温度における振幅を励起光強度の関数としてプロットしたグラフ
[図 19](35,35)50MQWにおいて観測されたテラへルツ電磁波の出力を示すグラフ 発明を実施するための最良の形態
[0024] 以下に、図面を基に本発明の実施形態を説明する。
テラへルツ電磁波が半導体表面から放射される代表的な機構は、次の通りである。 従来提案されているフェムト秒レーザーパルス励起による半導体表面からのテラヘル ッ波放射の主要な放射機構は、 2つの種類に分けられる。 1つは、フェムト秒パルスレ 一ザ一を照射することで、試料内に光励起キャリアを生じさせずに、テラへルツ電磁 波が発生するモデルである。このようなモデルは、光整流効果、または、差周波発生 として知られている。もう 1つは、フェムト秒パルスレーザーを試料に照射し、光励起キ ャリアを試料内に生成させることによって、テラへルツ電磁波が発生するモデルであ る。試料中に生成された光励起キャリアは、試料内の電場または拡散によって、加速 され、過渡電流を生じさせる。この過渡電流により、テラへルツ電磁波が発生する。こ のようなモデルは過渡電流効果として知られている。
[0025] また、このモデルは過渡電流が生じる要因によって 2つに分けられる。 1つは半導体 表面の表面電場によって、光励起キャリアが加速され過渡電流が生じる「表面電場に よる過渡電流モデル」であり、もう 1つは光励起キャリアの拡散電流によって過渡電流 が生じる「光デンバーモデノレ」である。
本実施例における半導体表面からの電磁波放射は全て実励起によるものであるので 、ここでは、過渡電流効果について説明する。
[0026] 半導体表面はバルタ結晶の内部とは異なり、周期性が途切れるために、結晶内部と は異なるエネルギー状態を取ることが知られてレ、る。そのエネルギー状態を決定する 際、フェルミ準位が重要な役割を果たす。半導体表面のフェルミ準位は、おおむね 固有な状態を取るが、結晶内部のフェルミ準位は、その電子正孔の量によって決定 される。平衡状態では、表面と結晶内部のフェルミ準位は同じ値を取るために、表面 付近では表面状態と結晶内部の準位との間でキャリア (電子及び正孔)の移動が起こ る。このキャリアの移動によって表面付近では、バンド構造が曲がり、表面電場が生じ る。
[0027] このとき、多数キャリアが表面準位にトラップされると、表面付近にキャリアの少ない空 乏層 (deletion layer)が生じることになり、また条件によってはキャリアの多い蓄積層 (a ccumulation layer)や、少数キャリア; 0表面に集まってレ、る反転層 (inversion layer)か 生じることあある。
[0028] 図 1及び 2は、半導体の表面近くのバンド構造を示す模式図であり、図 1は、 n型半 導体の表面ポテンシャルの模式図、図 2は、 p型半導体の表面ポテンシャルの模式図 である。半導体の例としては、 GaAsが挙げられる。
一般に n型 GaAsの場合は、図 1のように、バンドは上向きに曲がり、表面電場 Esurface は試料奥より表面方向になる。一方、 p型 GaAsでは図 2のように、バンドの曲がり及び 表面電場の方向は n型半導体とは逆の方向になる。
[0029] このバンドの曲がる向き及び量 (バンドオフセット)は、表面でのフェルミ準位と結晶内 部のフェルミ準位の位置関係で決まる。 GaAsの場合、表面でのフェルミ準位は、価 電子帯の上部より 0.5eV高い位置に存在する。そして n型 GaAsでは結晶内部におけ るフェルミ準位は伝導帯近くに存在する。これらが等しレ、位置を取るようにバンドは上 向きに曲がる。そのためバンドオフセット(φ )は、結晶内部におけるフェルミ準位( ε fe rmi)と表面でのフェルミ準位( ε surface)の差に対応する。
φ = ε fermi- ε surface
また、 p型では結晶内部でのフェルミ準位が価電子帯の近くに存在するために、バ ンドは下向きに曲がることになる。
[0030] 図 3は、表面電場による過渡電流効果を示す模式図である。
このような表面電場を有する半導体表面にフェムト秒パルスレーザーが照射されると 、光励起キャリア (電子及び正孔)が生成される。そして、生成された光励起キャリアは 、表面電場によって電子と正孔は逆向きに加速され、ドリフト電流が生じる。このドリフ ト電流が生じることによってテラへルツ波が放射されるとするのが、表面電場による過 渡電流モデルである。
[0031] 表面電場による過渡電流モデルで生じるテラへルツ波の電場振幅 (ETHz)は、以下 の式で表される(非特許文献 7)。 [0032] 非特許文献 7 : X.-C.Zhang, and D. H. Auston, J. Appl.Phys. 71, 326 (1992) 式 1
[0033]
Figure imgf000009_0001
[0034] ここで、 Jは電荷密度、 zは表面からの距離、 ひは吸収係数、 Edは表面電場の空間分 布、 wは空乏層幅を示す。 μ は光励起キャリア (電子及び正孔)の移動度に対応する 応答関数、 Iop(t")は光パルスの波形、 τ θは光励起キャリアの緩和時間、 t 'は光パ ノレスが照射された時間を示す。
[0035] 光励起キャリアの拡散による光デンバーモデルは 1995年に Dekorsyらによって、 Te表 面から放射されるテラへルツ波の放射機構として提案された (非特許文献 3)。 Teのよ うなバンドギャップが小さい物質では、その表面電場は小さぐ表面電場による過渡 電流効果はテラへルツ波の放射機構として期待できない。
[0036] 最近では、 InAsや InSb表面からのテラへルツ電磁波放射も、この光デンバーモデル によって放射されているという報告もある。 (非特許文献 8、 9)
[0037] 非特許文献 8 : L. M. B.Johnston, D. M. Whittaker, A. Corchia, A. G. Davies andE.
H. Linfield,Phys. Rev. B 65, 165301 (2002)
非特許文献 9 : P. Gu, M. Tani, M. Kono, X.-C. Zhang and K. Sakai, J. Appl.Phys. 9 1, 5533 (2002)
[0038] デンバー効果とは、電子と正孔の拡散速度の違いによって拡散電流が生じ、それに 伴って電場 (デンバー電場)が生じることである。これは一般に電子の拡散速度は正 孔の拡散速度より大きぐこの拡散速度の違いのために電子と正孔の空間分布には 違いが生じ、そのために生じる電場である。特に、光を照射することによってデンバー 電場が生じることを光デンバー効果とレ、う。
光デンバー効果によって、拡散電流がピコ秒及びサブピコ秒領域で生じるとき、電流 の時間微分に比例したテラへルツ電磁波が放射される。これが光デンバーモデルで ある。
[0039] 図 4は、光デンバーモデルを示すものであり、半導体表面における光デンバー効果 の模式図である。
1次元での拡散によるキャリアの空間分布 Nの変化は以下の式で表される。
式 2
[0040] m(z, t) — ί)
[0041] ここで、 Dは拡散係数であり、平衡状態ではアインシユタインの関係式が成立する。
式 3
[0042]
Figure imgf000010_0001
[0043] ここで、 kBはボルツマン定数であり、 Teはキャリア温度、 μは移動度である。
[0044] 前式によれば、拡散速度は、拡散係数が大きぐキャリアの空間分布の勾配が急峻 であるほど大きくなる。光パルス励起によって生じる光励起キャリア Nexは、物質の吸 収係数 (ひ)に依存した分布を示す。
Nex oc exp、-ひ z)
[0045] 比較的バンドギャップの広い GaAsの場合、その侵入長は 800nmの光に対して、 0.8 μ mであり、また比較的バンドギャップの狭レ、 InAsの場合、その侵入長は 0.15 μ mとなる 一般に、バンドギャップが狭い物質ほど、特定の光に対する侵入長は小さくなり、光 励起キャリアの空間分布の勾配が急峻になるために、光デンバー効果の寄与は大き くなる。
[0046] 半導体表面での定常状態は、ドリフト電流と拡散電流が釣り合った状態に対応する。
光パルスによって生成されたキャリアは、表面電場によるドリフト運動とキャリアの空間 分布の不均一さによる拡散運動の両方の影響を受ける。
し力 ながら、たいていの物質では、どちらかの寄与が支配的であり、一方の寄与に よってテラへルツ電磁波は放射されると考えて差し支えない。
バンドギャップが比較的大きな半導体では表面電場が大きぐ表面電場による過渡 電流モデルによる寄与が大きぐバンドギャップが小さい半導体では光デンバーモデ ルの寄与が大きい。
[0047] コヒーレントフオノンからのテラへルツ電磁波は、 1995年に Dekorsyらにより Te
において初めて報告された。 (非特許文献 10)
非特許文献 10 : T. Dekorsy, H. Auer, C. Waschke, H.J. Bakker, H. G. Roskos, H.K urz, V. Vagner,and P.Grosse, Phys. Rev. Lett. 74, 738 (1995)
[0048] それまでは、表面電場、もしくは直流電流を試料に印加した状態において、超短パ ノレスレーザーにより引き起こされた電流の時間変化に対応したテラへルツ電磁波の みが観測されていた。
し力、しながら、これらの電磁波はコヒーレンスが小さいため、単色テラへルツ電磁波源 としての利用は困難であった。
[0049] 一方、コヒーレントフオノンからのテラへルツ電磁波は、コヒーレントフオノンの固有振 動数に対応したテラへルツ電磁波が放射されることより、単色なテラへルツ放射が期 待される。
ここで、コヒーレントフオノンによるテラへルツ電磁波放射は、物質の内部で伝搬する 横モードのポラリトンとは異なる。ポラリトンは物質の巨視的な分極を生じないために、 電磁波の放射は起こらない。コヒーレントフオノンからのテラへルツ電磁波は物質の 外側の、遠く離れた場において観測されるものであり、励起された試料内部での粒子 の集合的な動きによってコヒーレントに作られたものである。ここで、場が均一ならば、 コヒーレントフオノンによる分極は打ち消しあうために、コヒーレント LOフオノンからのテ ラヘルツ電磁波は放射されなレ、。つまり、試料表面において、並進対称性が乱れに より、場が不均一になることで、試料内部に分極の縦振動が生じると考えられる。
[0050] したがって、励起領域におけるダイポールの振動によりテラへルツ電磁波が放射され ると考えると、次のようにして扱うことができる。
放射される電磁波の電場 E(t)は、巨視的な分極に関連することより、物質中での電場 Eint(t)に関連し、下式で表わされる。 (非特許文献 11)すなわち、試料内部における 電場の時間変化により、コヒーレント LOフオノンからのテラへルツ電磁波の放射が生 じると考えられる。
式 4 [0051] β m + ts r—. 1 ύη νί2ΕΜ
[0052] ここで、 φ は入射角、 V
は放射体積、 rは試料力 検出器までの距離である。 (非特許文献 11)
[0053] 非特許文献 11 : A. V. Kuznetsov and C. J.Stanton, Phys. Rev. B 51, 7555 (1995)
[0054] 以下に、 GaAs/AlAs多重量子井戸におけるコヒーレント縦光学フォノンからのテラ ヘルツ電磁波放射にっレ、て、実施例の実験結果にっレ、て述べる。
主として用いた試料は、 MBE法により GaAs(lOO)面基板上にェピタキシャル成長させ た (GaAs)35/(AlAs)35MQW50周期である。ここで、 35は構成原子層数を意味する。比 較のために、 MBE法により GaAs(100)面基板上にェピタキシャル成長させた GaAs薄 膜と、周期数の異なる (GaAs)35/(AlAs)35MQW30周期の試料を用いた。以下では、 周期数の違いを区別するために、これらの試料を (35, 35)50、 MQW,(30,30)30MQWと よぶ。
[0055] 励起光はフェムト秒パルスレーザーを用レ、、パルス幅は約 40fsである。試料温度は 20 Kから 280Kまで変化させ、励起光エネルギーは 1.485eVから 1.570eVまで変化させた 図 5は、(35,35)50MQWと GaAs薄膜におけるテラへルツ電磁波を示すグラフであり、 図 6は、その信号をフーリエ変換 (FT)して示したグラフである。
[0056] ここで、試料温度は 150Kとした。コヒーレントフオノンからのテラへルツ電磁波を工業 的に応用するためには、液体窒素温度または、ペルチェ冷却素子で達成できる温度 である必要がある。そこで本実施例では、 150Kという液体窒素温度よりも十分高い温 度におけるテラへルツ電磁波の観測を行なった。
[0057] 励起光強度は 120mWとし、励起光エネルギーは (35,35)50MQWの場合は、重い正孔
(HH)-軽い正孔 (LH)励起子エネルギーの中心エネルギーである 1.540eV、 GaAs薄膜 では GaAsのバンドギャップエネルギーである 1.485eVとした。
どちらの試料においても、信号の 0時間付近において振幅の大きな信号が観測され ている。 GaAs薄膜では、このように大きな振幅をもつ信号はこれまでに多く観測され ており、ポンプ光が照射されたことにより生じた表面電場の過渡電流もしくは、光デン バー効果のドリフト電流によるテラへルツ電磁波である。
[0058] (35,35)50MQWにおける 0時間付近の大きな振幅をもつテラへルツ電磁波は、 GaAs 基板での過渡電流、デンバー効果によるドリフト電流が起源であると考えられるが、 実際には GaAs薄膜よりも信号強度が大きい。したがって、さらに GaAs量子井戸層で の HH、 LH励起子の成長方向での瞬間的な量子干渉により生じる分極の変化も起源 であると考えられる。
[0059] 非特許文献 12によると、パルスレーザーにより、 GaAs/AlAs多重量子井戸の井戸 層を励起することにより、瞬時に HH、 LH励起子の量子干渉が生じ、成長方向の瞬 間的な分極を引き起こすと報告されている。 (非特許文献 12)
[0060] 非特許文献 12 : O.Kojima, K. Mizoguchi and M. Nakayama, Phys. Rev. B 70,233306 (2004)
[0061] したがって、量子井戸構造では励起子の瞬間的な量子干渉によるテラへルツ電磁波 も同時に放射されていると考えられる。
一方、どちらの試料においても、 0時間付近での大きなテラへルツ電磁波の後には、 時間周期が約 l lOfsの信号が観測されている。この信号は、 GaAsの LOフオノンエネ ルギ一より見積もった周期と一致していることより、この振動構造はコヒーレント LOフォ ノンによるものである。
[0062] ここで、 2つの試料におけるコヒーレント LOフオノンからの電磁波強度を比較すると、 (
35,35)50MQWにおける信号は、 GaAs薄膜のそれに比べて約 10倍ほど強ぐ減衰時 間も長くなつている。
すなわち、量子井戸構造では非常に強ぐコヒーレンス時間の長いテラへルツ電磁波 が観測されている。このコヒーレント時間が長いという特徴は、これまでに観測されて レ、る量子井戸層に閉じ込められたコヒーレント LOフオノンの特徴と同様の傾向を示し ている。 (非特許文献 13)
[0063] 非特許文献 13 : H.Takeuchi, K. Mizoguchi, M. Nakayama, K. Kuroyanagi, T. Aida, M. Nakajima and H. Harima, J. Phys.Soc. Jpn., 70, 2598 (2001)
[0064] GaAs薄膜におけるコヒーレント LOフオノンからのテラへルツ電磁波は、単純な指数関 数的な減衰を示しておらず、 2ps付近で大きくなり、その後減衰している。非特許文献 6では、フオノン-ポラリトン分散の群速度が振動数に依存するために、レストストラー レンバンドに近い振動数成分は、放射される前に一度物質内に蓄えられると報告さ れている。
したがって、コヒーレント LOフオノンからのテラへルツ電磁波は、時間的に遅れて観 測されると考えられる。
[0065] (35, 35)50MQWにおける信号も同様に、単純な指数関数的な減衰を示しておらず、 3 ps辺りで振幅はピークとなり、その後減衰するが、 6ps辺りで再び信号強度は増大す る。信号のピークが遅れる理由は GaAs薄膜の場合と同様であると考えられる。信号が 再び増大する理由については、試料内に伝搬したテラへルツ電磁波が GaAs基板の 裏面で反射し、再び放射されたことに起因すると考えられる。
[0066] 図 6に示したように、どちらの FTスペクトルにおいても、 [0- 7THz]の領域においてブ ロードなバンドが観測されている。これは、 0時間付近での過渡的な光電流に依存し た信号である。
(35,35)50MQWでは、 GaAs薄膜よりも大きなバンドが観測されている。これは量子井 戸層での瞬間的な HH、 LH励起子の量子干渉による分極の変化が関与しているため であると考えられる。
なお、ブロードなバンド中の多くのディップは、空気中での水蒸気による吸収に起因 している。
[0067] また、どちらの試料においても 8.8THz付近にピークが観測されている力 (35,35)50M QWでは GaAs薄膜の場合に比べ、約 100倍の強度であり、 FTバンド幅はシャープな 形状を示している。これは、量子井戸層に閉じ込められたコヒーレント LOフオノンから のテラへルツ電磁波のコヒーレンスが非常に高レ、ことを示してレ、る。
[0068] ここで、 [0-7THz]付近に観測されているバンドは、これまで報告されている GaAs表面 力、らのテラへルツ電磁波の FTバンドに比べ、広い帯域まで広がっている。このような 特性は、 LOフオノン-プラズモン結合によるものであると示唆される。
[0069] そこで (35,35)50MQWにおいて励起光強度依存性を測定した。図 7は、 (35,35)50MQ Wにおいて、励起光強度を変化させたときのテラへルツ電磁波の信号を示すグラフ であり、図 8はその FTスペクトルを示すグラフである。 0時間付近におけるテラへルツ電磁波の信号も、コヒーレント LOフオノンからのテラへ ルツ電磁波の信号も、共に励起光強度により大きく変化している。 0時間付近の信号 は励起光強度が増加するにつれて、シャープになっている。
[0070] 図 8における [0-7THZ]付近のバンドから明らかなように、励起光強度を増加させると、 ブロードに広がっていたバンドは高振動数側にシフトしていく。
また、 8.8THz付近のコヒーレント GaAs型 LOフオノンのバンドは、励起光強度を増加さ せるに従レ、、高振動数側に裾を引く形状をしてレ、る。
この振る舞いは LOフオノン-プラズモン結合において見られる特徴を示しており、本 実施例においても、プラズモン- L〇フオノン結合モードが観測されていると考えられる 。 (非特許文献 14)
[0071] 非特許文献 14 : G. C. Cho, T. Dekorsy, H. J. Bakker, R. Hovel and H. Kurz, Phys.
Rev. Lett. 77, 4062(1996)
[0072] 次に、(35,35)50MQWにおいて観測されているコヒーレント LOフオノンからのテラへ ルツ電磁波が、量子井戸層に閉じ込められた、 GaAs型 LOフオノンからのテラへルツ 電磁波であることを確かめるために、(35,35)50MQWにおいて励起光エネルギー依 存性を測定した。
[0073] 図 9及び 10は、励起光エネルギーを変化させたときのテラへルツ電磁波測定の結果 であり、図 9は、(35,35)50MQWにおいて観測されたテラへルツ電磁波の励起光エネ ルギー依存性を示すグラフ、図 10は、それぞれの振幅を励起光エネルギーの関数と して、コヒーレント LOフオノンからのテラへルツ電磁波の最大振幅をプロットしたグラフ である。プロット〇はキャリアの応答、きはコヒーレント GaAs型 LOフオノンの振幅強度 を示す。
[0074] 励起光エネルギーを変化させることにより、テラへルツ電磁波の強度が変化しており 、特にコヒーレント LOフオノンからのテラへルツ電磁波においては顕著に励起光エネ ルギ一と共に変化している。
図 10からわかるように、テラへルツ電磁波は HH、 LH励起子エネルギー付近で共鳴 的に増強されている。この結果は、量子井戸構造から放射されるテラへルツ電磁波 は井戸層に閉じ込められたコヒーレント GaAs型し〇フオノンであるということを示してい る。
[0075] 多重量子井戸構造にぉレ、てコヒーレント LOフオノンからのテラへルツ電磁波が増強さ れる機構は次の通りである。 GaAs薄膜ではコヒーレント LOフオノンからのテラへルツ 電磁波は、試料表面におけるコヒーレント LOフオノンの並進対称性の乱れにより放射 される。したがって、 GaAs薄膜ではテラへルツ電磁波の放射領域は表面付近に限ら れ、強度は弱いものとなる。一方、 GaAs/AlAs多重量子井戸構造中では、 GaAs型 L〇 フオノンは、 GaAs井戸層のみに存在しており、 B2対称性を有している。 (非特許文献 15)
[0076] ^^特許乂 H^io : P. Y. Yuand M. uardona, in rundamentalsof Semiconductors, (Sprm ger-Verlag ,Berlin, 199bノ, Chap. 9
[0077] この B2対称性を持つ閉じ込め GaAs型 LOフオノンのうち、最も低いモード (次数 m
=1)は井戸層内に振動分極を生じさせる。したがって、互いの GaAs井戸層におけるコ ヒーレント GaAs型 LOフオノンの振動が同位相で始まり、各井戸層において微小分極 piが生じるならば、多重量子井戸構造における巨視的な分極は、 GaAs井戸層におけ る微小分極の総和であると考えられる。
式 5
Figure imgf000016_0001
[0079] ここで、 nは井戸層数を表わす。
[0080] したがって、コヒーレント GaAs型 LOフオノンからのテラへルツ電磁波が各井戸層での 分極の重ね合わせとして生じるならば、テラへルツ電磁波の強度は構成周期数に依 存すると考えらえる。すなわち、周期数が増加すれば、コヒーレント GaAs型 LOフオノ ンからのテラへルツ電磁波も増加すると予測される。このような予測のもと、構成周期 数の異なる試料を用い、テラへルツ電磁波測定を行なった。
[0081] 図 11は、周期数の異なる試料におけるコヒーレント GaAs型 LOフオノンからのテラへ ルツ電磁波放射強度の比較を示すものであり、(35,35)50MQWと (35,35)30MQWにお いて得られたテラへルツ電磁波の信号を示すグラフである。
50周期を持つ試料からのテラへルツ電磁波は 30周期のものと比べ、約 3倍強いもの であることが観測された。この結果は、多重量子井戸構造において、それぞれの GaA s井戸層でのコヒーレント GaAs型 LOフオノンによる分極の重ね合わせによりテラヘル ッ電磁波の増強が誘起されたことを示唆してレ、る。
[0082] 図 12は、図 7の信号の振幅強度を励起強度の関数としてプロットしたグラフであり、〇 は 0時間付近での信号、きはコヒーレント GaAs型 L〇フォノンからのテラへルツ電磁波 の信号の振幅を示す。実線は最小二乗法によりフィッティングした結果である。
コヒーレントフオノンの生成機構がこれまで提案されている DECP、または ISRS機構で あるならば、コヒーレントフオノンの振幅は励起光強度に対し、 1乗で増加するとされて いる。図 12によると、 0時間付近における信号は励起強度に対し 0.7乗で振幅が増加 してレ、る。量子井戸構造を持たない試料における表面からのテラへルツ電磁波の振 幅は、励起光強度に比例すると考えられ、結果は飽和傾向を示しているが、ほぼ一 致している。
[0083] また、コヒーレント LOフオノンのからのテラへルツ電磁波の信号強度は、低励起密度 側では励起光強度に対し、 1乗に近い 0. 9乗で増加しているが、励起密度が増加す るにつれて、 0時間付近での信号の増加率に近い 0.68乗で増加しており、飽和傾向 を示している。
この結果は、励起密度を上げるにつれて、キャリアによる散乱、またはスクリーニング の影響を受け、このような飽和傾向を示すと考えられる。
[0084] そこで次に、励起光エネルギーを 60meV低くし、再び励起光強度依存性を測定した。
励起光エネルギーを低くすることにより、量子井戸層での励起子生成を抑制され、キ ャリアによる散舌し、またはスクリーニングの影響が小さくなると考えらえる。
図 13及び 14は、励起光エネルギーを 1.480eVとして、(35,35)50MQWにおいて観測 されたテラへルツ電磁波の励起光強度依存性を測定した結果であり、図 13は、放射 されたテラへルツ電磁波の信号、図 14はそれぞれの振幅を励起光強度の関数として 、振幅をプロットしたグラフである。〇はキャリアの応答、きはコヒーレント GaAs型し〇フ オノンの振幅強度、実線は最小二乗法によりフィッティングした結果である。
コヒーレント LOフオノンの信号振幅は、励起光強度に対し、 1乗で増加している。この 結果は、コヒーレント LOフオノンの生成機構力 DECPまたは ISRS機構であることを示 している。
[0085] 図 15は、 GaAs薄膜において観測されたテラへルツ電磁波の温度依存性を示すダラ フであり、励起光エネルギーは各温度における GaAsバンドギャップエネルギーよりも 1 OmeV高いエネルギーとし、 0.4ps以降の信号の水蒸気吸収により変化するバックダラ ゥンドを数値的に差し引いた信号を載せている。図 16は、各温度における振幅をプ ロットしたグラフであり、〇は 0時間付近の信号、秦はコヒーレント GaAs型 LOフオノン の信号の最大振動振幅を示してレ、る。
[0086] コヒーレント GaAs型 LOフオノンの信号は、温度が上昇するにつれて振幅が小さくなり 、また、減衰時間も短くなつている。これは、反射型ポンププローブ法などにより、これ までに報告されてきたコヒーレントフオノンの温度依存性と同様の振る舞いを示してい る。 (非特許文献 16)
[0087] 非特許文献 16 : M. Hase, K. Mizoguchi, H. Harima,S.I. Nakashima and K. Sakai, Phy s. Rev. B 58,5448 (1998)
[0088] 温度上昇と共に、サーマルフォノンの影響で、コヒーレント LOフオノンの生成効率が 低下し、コヒーレンスが保たれなくなるために、このような振る舞いを示すと考えらえる 。一方、 0時間付近の信号は、温度上昇と共に強度が増大している。この結果は非特 許文献 17によって開示された GaAsにおける表面からのテラへルツ電磁波放射の温 度依存性とは異なる振る舞いを示している。 (非特許文献 17)
[0089] 非特許文献 17 : B. B. Hu, X.-C. Zhang and D.H. Auston, Appl. Phys. Lett. 57, 26 29 (1990)
[0090] すなわち、非特許文献 17では、温度が上昇するにしたがって、キャリアの移動度が 低下するために、放射されるテラへルツ電磁波の強度は減少すると報告されている。 しかし、本実験結果ではそのようになってレ、なレ、。
図 17は、(35,35)50MQWにおいて観測されたテラへルツ電磁波の温度依存性を示 すグラフであり、励起光エネルギーは各温度において HH-LH励起子エネルギーの 中心エネノレギ一とした。
励起光エネルギーは各温度において重い正孔 (HH)-軽い正孔 (LH)励起子エネルギ 一の中心エネルギーとし、励起光強度は 120mWとした。 0時間付近のテラへルツ電磁 波の信号は温度を変化させることにより、 140Kあたりまでは大きな変化を示さなレ、が、 160 Kでは信号が極端に小さくなり、また、 180Kよりも高温では、符号が反転している 。また、コヒーレント LOフオノンからの信号も同様に、 140Kあたりまでは大きな変化を 示さないが、 180Kよりも高温では、徐々に信号強度が減少しており、また減衰時間も 短くなつている。
[0091] 図 18は、各温度における振幅を励起光強度の関数としてプロットしたグラフであり、 〇は 0時間付近での信号、きはコヒーレント GaAs型 L〇フォノンの信号の振幅強度の 最大振幅を示している。
コヒーレントフオノンの信号は GaAs薄膜と同様、温度上昇と共に、サーマルフォノンの 影響で、コヒーレント LOフオノンの生成効率が低下し、コヒーレンスが保たれなくなつ ていると考えられる。ここで、 GaAs薄膜と比較すると、振幅の温度依存性は GaAs薄膜 とほぼ同様な傾向を示しているが、 GaAsと比べ、長い減衰時間が高温まで保たれて いる。これは量子井戸状態におけるコヒーレント LOフオノンは井戸層に閉じ込められ ており、散乱過程が抑制されるため、高温までコヒーレンスを保つことが可能であると 考えられる。
[0092] 一方、 0時間付近の信号は、温度上昇と共に強度が増大し、 120Kで一度ピークとなり 、その後強度は急激に減少し、信号の符号が反転する。このような符号の反転は、 In Pにおレ、て報告されてレ、る現象と類似してレ、る。 (非特許文献 18)
[0093] 非特許文献 18 : M. Nakajima,M. Takahashi and M. Hangyo, J. Lumin.94-95, 627 (20 01)
[0094] p型半導体では表面電場による過渡電流モデルのドリフト電流 Jdriftと、光デンバー モデルの拡散電流 Jdiffhsionの向きは、互いに逆の方向になる。したがって、温度が 変化することにより、支配的なテラへルツ電磁波の放射機構が入れ替わると、観測さ れる電磁波の符号が反転する。 InPでは表面でのバンド構造は p型となるため、温度 を上昇させることにより、符号の反転が生じると言われている。
一方、本実施例における表面からのテラへルツ電磁波は GaAs基板から生じているも のが支配的であると考えられる。 GaAsの表面におけるポテンシャル構造は一般に n型 であることが知られているが、 GaAs基板上に量子井戸構造を成長させることにより、 ポテンシャル構造に何らかの変化が生じ、 GaAs基板との界面のポテンシャル構造は P型になる可能性が考えられる。
[0095] 図 19は、(35,35)50MQWにおいて観測されたテラへルツ電磁波の出力を示すダラ フである。
このように本発明によると、 200mW励起で の放射が得られている。従来強く発 生すると言われてレ、た半導体 InAsの表面からのテラへルツ波放射に比べて、効率に して 10倍以上の値が得られた。 産業上の利用可能性
[0096] 本発明によると、比較的高温でも、共鳴的な増大によって、コヒーレントフオノンからテ ラヘルツ電磁波を効率よく高強度発生可能であり、例えば、 GaAs/AlAs多重量子井 戸構造では、コヒーレントフオノンからの電磁波放射強度をェピフィルム GaAsに比べ て約 100倍に増強できた。各種センシングシステム分野における光源や通信用電磁 波などに有用であり、産業上利用価値が高い。

Claims

請求の範囲
[1] 量子構造におけるコヒーレントフオノンを用いてテラへルツ電磁波を発生させる方法 であって、
テラへルツ電磁波の発生源となるコヒーレントフオノンを、そのフォノンのエネルギー が、量子構造による素励起のエネルギーと共鳴する条件で生成することによって、コ ヒーレントフオノンを高密度に得て、それによる分極の振動でテラへルツ電磁波を発 生させる
ことを特徴とするコヒーレントフオノンによるテラへルツ電磁波発生方法。
[2] 量子構造における素励起エネルギーとコヒーレントフオノンのエネルギーとを共鳴さ せた上で、瞬間的な光パルス励起を行ない、素励起を介在したコヒーレントフオノン 生成を行う
請求項 1に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[3] 量子構造が量子井戸構造であり、
コヒーレント LOフオノンを井戸層に閉じ込めることで、散乱過程を抑制する 請求項 1または 2に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[4] 重い正孔 (HH)と軽い正孔 (LH)励起子を一度に生成し、その両励起子のエネルギー 差を LOフオノンのエネルギーと一致させる
請求項 1ないし 3に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[5] 量子構造が単一量子井戸である
請求項 1ないし 4に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[6] 量子構造が多重量子井戸である
請求項 1ないし 4に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[7] 量子構造が超格子である
請求項 1ないし 4に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[8] 量子構造が自己形成量子ドットである
請求項 1ないし 4に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[9] 量子構造が半導体で構成される
請求項 1ないし 8に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[10] 半導体が GaAs/AlAs多重量子井戸構造であり、
量子構造が自己形成量子ドットである
請求項 9に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[11] 半導体 GaAs/AlAs多重量子井戸構造力 (GaAs)35/(AlAs)35の約 50周期構成物で ある(35は構成原子層数を意味する)
請求項 10に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[12] (GaAs)35/(AlAs)35の約 50周期構成物力 GaAsの (100)面基板上にェピタキシャル成 長されたものである
請求項 11に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[13] 量子構造が誘電体で構成される
請求項 1ないし 8に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[14] 量子構造が半金属で構成される
請求項 1ないし 8に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
[15] 量子構造が有機物で構成される 請求項 1ないし 8に記載のコヒーレントフオノンによるテラへルツ電磁波発生方法。
PCT/JP2006/304077 2005-03-03 2006-03-03 コヒーレントフォノンによるテラヘルツ電磁波発生方法 WO2006093265A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007506019A JPWO2006093265A1 (ja) 2005-03-03 2006-03-03 コヒーレントフォノンによるテラヘルツ電磁波発生方法
EP06715160A EP1855156A1 (en) 2005-03-03 2006-03-03 Method for generating terahertz electromagnetic wave by coherent phonon
US11/885,651 US20080279227A1 (en) 2005-03-03 2006-03-03 Method for Generating Terahertz Electromagnetic Waves by Using Coherent Phonons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005059520 2005-03-03
JP2005-059520 2005-03-03

Publications (1)

Publication Number Publication Date
WO2006093265A1 true WO2006093265A1 (ja) 2006-09-08

Family

ID=36941295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304077 WO2006093265A1 (ja) 2005-03-03 2006-03-03 コヒーレントフォノンによるテラヘルツ電磁波発生方法

Country Status (4)

Country Link
US (1) US20080279227A1 (ja)
EP (1) EP1855156A1 (ja)
JP (1) JPWO2006093265A1 (ja)
WO (1) WO2006093265A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049159A (ja) * 2007-08-20 2009-03-05 National Institute Of Information & Communication Technology コヒーレントフォノンによるテラヘルツ電磁波発生方法
JP2016072255A (ja) * 2014-09-26 2016-05-09 株式会社Screenホールディングス 改質処理装置、改質モニター装置および改質処理方法
CN111341630A (zh) * 2020-04-07 2020-06-26 电子科技大学 一种光阴极激发的电磁波发生器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563955B2 (en) * 2009-06-12 2013-10-22 Baden-Wurttemberg Stiftung Ggmbh Passive terahertz radiation source
DE102010049658A1 (de) 2010-10-25 2012-04-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Effizienz-verbessertes fasergekoppeltes Terahertzsystem
CN113178766B (zh) * 2021-04-20 2022-08-09 中国科学院合肥物质科学研究院 一种基于二维材料声子模的太赫兹发生器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUZNETSOV A.V. AND STANTON C.J.: "Coherent phonon oscillation in GaAs", PHYSICAL REVIEW B, vol. 51, no. 12, March 1995 (1995-03-01), pages 7555 - 7565, XP003002849 *
MIZOGUCHI K. ET AL.: "Intense terahertz radiation from longitudinal optical phonons in GaAs/AlAs multiple quantum wells", APPLIED PHYSICS LETTERS, vol. 87, no. 9, August 2005 (2005-08-01), pages 093102-1 - 093102-3, XP012077634 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049159A (ja) * 2007-08-20 2009-03-05 National Institute Of Information & Communication Technology コヒーレントフォノンによるテラヘルツ電磁波発生方法
JP2016072255A (ja) * 2014-09-26 2016-05-09 株式会社Screenホールディングス 改質処理装置、改質モニター装置および改質処理方法
CN111341630A (zh) * 2020-04-07 2020-06-26 电子科技大学 一种光阴极激发的电磁波发生器

Also Published As

Publication number Publication date
JPWO2006093265A1 (ja) 2008-08-07
EP1855156A1 (en) 2007-11-14
US20080279227A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
Naeem et al. Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets
Achtstein et al. Linear absorption in CdSe nanoplates: thickness and lateral size dependency of the intrinsic absorption
Gibbs et al. Exciton–polariton light–semiconductor coupling effects
Otsuji et al. Graphene-based devices in terahertz science and technology
Martin et al. Encapsulation Narrows and Preserves the Excitonic Homogeneous Linewidth of Exfoliated Monolayer Mo Se 2
Otsuji et al. Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-heterostructures
Terashima et al. GaN-based terahertz quantum cascade lasers
WO2006093265A1 (ja) コヒーレントフォノンによるテラヘルツ電磁波発生方法
Liu et al. Toward engineering intrinsic line widths and line broadening in perovskite nanoplatelets
Aleshkin et al. Plasmon recombination in narrowgap HgTe quantum wells
JP2008052224A (ja) コヒーレントフォノンによるテラヘルツ電磁波発生方法
Reznik et al. MBE growth, structural and optical properties of multilayer heterostructures for quantum-cascade laser
Trifonov et al. Strong enhancement of heavy-hole Land\'e factor $ q $ in InGaAs symmetric quantum dots revealed by coherent optical spectroscopy
Zhukov et al. Multilayer heterostructures for quantum-cascade lasers operating in the terahertz frequency range
Asano et al. Ultrafast energy relaxation time in short wavelength intersubband transition measured by pump & probe method
Sanguinetti et al. Accessing structural and electronic properties of semiconductor nanostructures via photoluminescence
Hasselbeck et al. Direct observation of Landau damping in a solid state plasma
Mikhailov et al. Exciton dynamics in CdTe/CdZnTe quantum well
Sekyi-Arthur et al. High frequency amplification of acoustic phonons in fluorine-doped single-walled carbon nanotubes
Gladysiewicz et al. Influence of quantum well inhomogeneities on absorption, spontaneous emission, photoluminescence decay time, and lasing in polar InGaN quantum wells emitting in the blue-green spectral region
Scalari Magneto-spectroscopy and development of terahertz quantum cascade lasers
Kats et al. Polarization spectroscopy of an isolated quantum dot and an isolated quantum wire
Khabibullin et al. 3.3 THz Quantum Cascade Laser Based on a Three GaAs/AlGaAs Quantum-Well Active Module with an Operating Temperature above 120 K
Kent et al. Generation and Propagation of Monochromatic Acoustic Phonons in Gallium Arsenide
Burmistrov et al. Piezoelectric relaxation of two-dimentional electron gas in InGaN/GaN heterostructures with quantum wells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007506019

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006715160

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715160

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11885651

Country of ref document: US