WO2006092950A1 - Method of purifying polluted soil - Google Patents

Method of purifying polluted soil Download PDF

Info

Publication number
WO2006092950A1
WO2006092950A1 PCT/JP2006/302442 JP2006302442W WO2006092950A1 WO 2006092950 A1 WO2006092950 A1 WO 2006092950A1 JP 2006302442 W JP2006302442 W JP 2006302442W WO 2006092950 A1 WO2006092950 A1 WO 2006092950A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
contaminated soil
temperature
air
polluted soil
Prior art date
Application number
PCT/JP2006/302442
Other languages
French (fr)
Japanese (ja)
Inventor
Yoji Ishikawa
Naoya Takada
Toru Komatsu
Kiwamu Shiiba
Noriko Komine
Original Assignee
Obayashi Corporation
Nisshin Flour Milling Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corporation, Nisshin Flour Milling Inc. filed Critical Obayashi Corporation
Priority to KR1020077017821A priority Critical patent/KR101284966B1/en
Priority to JP2007505837A priority patent/JP5145034B2/en
Priority to CN2006800047389A priority patent/CN101119812B/en
Publication of WO2006092950A1 publication Critical patent/WO2006092950A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes

Definitions

  • the present invention aerates polluted soil contaminated with organic pollutants, activates aerobic microorganisms capable of decomposing organic pollutants, and fermentatively decomposes organic pollutants.
  • the present invention relates to a method for purifying contaminated soil for purifying soil.
  • the present invention controls the temperature of contaminated soil even at low temperatures, promotes the activity of aerobic microorganisms having the ability to decompose organic pollutants, and sufficiently improves the purification efficiency of contaminated soil. It is an object of the present invention to provide a purification method that can be improved.
  • the present invention is configured to ventilate contaminated soil contaminated with an organic pollutant, activate an aerobic microorganism having a decomposition performance of the organic pollutant, and A method for purifying contaminated soil by purifying the contaminated soil by fermenting and decomposing the pollutant, wherein a fermentation aid containing moss is added to the contaminated soil, and the temperature of the contaminated soil is adjusted to 10 50 °.
  • the air flow rate is controlled so as to be C.
  • the present invention is characterized in that the fermentation aid is added in an amount of 0.25% by mass based on the mass of the contaminated soil.
  • the present invention is characterized in that the air flow control is performed by combining intake air and air supply.
  • the present invention is characterized in that the ventilation is temporarily stopped in the control of the ventilation amount.
  • the present invention is characterized in that the air flow rate is reduced after the readily decomposable component of the organic pollutant is decomposed.
  • FIG. 1 is a graph showing changes in soil temperature in a purification method using biopile-type ventilation when 2% by mass of HC is added to the soil.
  • FIG. 2 A graph showing the results of examining the purification efficiency of contaminated soil in the aeration-type aeration method for contaminated soil contaminated with pollutant oil (n-xan extract).
  • FIG. 3 is a graph showing the relationship between air temperature and soil temperature according to the amount of HC added.
  • FIG. 4 is a graph showing the relationship between the amount of HC added to the contaminated soil and the amount of ventilation.
  • FIG. 5 is a graph showing test results when air intake and air supply are combined.
  • FIG. 6 is a graph showing test results when ventilation is temporarily stopped.
  • FIG. 7 A graph showing the test results when the air flow rate is decreased after the readily decomposable components of organic pollutants are decomposed.
  • (A) shows the change in soil temperature over time
  • (b ) Indicates the change over time in the oil content.
  • the method for purifying contaminated soil ventilates contaminated soil contaminated with organic pollutants (hereinafter, also simply referred to as “soil”) to improve the degradation performance of organic pollutants.
  • a method for purifying contaminated soil by selectively activating the aerobic microorganisms provided and fermenting and decomposing the pollutants, and adding a fermentation aid containing moss to the contaminated soil
  • the air flow rate is controlled so that the temperature of the contaminated soil is 10-50 ° C.
  • the organic pollutants to be purified by the present invention include, for example, petroleum-derived oils such as gasoline, kerosene, light oil, heavy oil, machine oil, lubricating oil, and crude oil, and stones such as tar and benzene.
  • petroleum-derived oils such as gasoline, kerosene, light oil, heavy oil, machine oil, lubricating oil, and crude oil
  • stones such as tar and benzene.
  • oils include oil derived from charcoal, organochlorine compounds such as trichlorethylene and tetrachloroethylene, and benzene, toluene, ethylbenzene, and xylene contained in the oil.
  • the aerobic microorganisms in the above-described configuration include general viable bacteria, filamentous fungi, actinomycetes, petroleum-utilizing bacteria, and the like.
  • organic contamination is not necessarily limited to these microorganisms. Any other aerobic microorganism may be used as long as it has the ability to fermentatively decompose the substance.
  • a method of activating aerobic microorganisms contained in the contaminated soil is preferable, but is not limited thereto.
  • the fermentation aid in the present invention is mainly composed of rice bran, and as the rice bran, at least one selected from the group power consisting of wheat bran, powder, rice bran, corn bran and darten field is selected. It is a seed.
  • the fermentation aid is, for example, all made of moss.
  • pH buffering agents, humic acids, minerals such as calcium and magnesium, minerals such as perlite, zeolite and diatomaceous earth, and other soil improvement materials may be appropriately distributed as necessary.
  • Examples of the fermentation aid of the present invention include a commercially available heat component (trade name) mainly composed of wheat bran. In the examples of the present invention, this heat component was used as a fermentation aid.
  • HC heat component
  • the soil temperature is less than 10 ° C, the degradation activity of the aerobic microorganism contaminants in the soil becomes so low that it can hardly be confirmed.
  • the soil temperature exceeds 50 ° C, the flora is completely different! /, And the degradation activity of pollutants cannot be expected.
  • the soil temperature preferably has an optimum decomposition activity of 25 to 40 ° C, the purification efficiency of organic pollutants is sufficiently improved.
  • Fig. 1 shows the change in soil temperature in the purification method by adding HC2% by mass to the above-mentioned soil and using bionoir type ventilation.
  • Fig. 1 (a) is a graph showing changes in soil temperature in the air supply type ventilation method
  • Fig. 1 (b) is a graph showing changes in soil temperature in the intake type ventilation method.
  • GL means the ground level.
  • GL + 30 means a section of +30 cm from the ground level.
  • Fig. 2 (a) is a graph showing the results of oil concentration measurement using the GCZFID (gas chromatograph with hydrogen flame ion detector) method for the purification efficiency of contaminated soil.
  • Fig. 2 (b) It is a graph which shows the measurement result of the oil content density
  • the FID Hydrogen Flame Ionization Detector
  • the carbon tetrachloride ZIR method analyzes organic compounds extracted with carbon tetrachloride based on the absorption state by infrared irradiation.
  • the main readily decomposable components of the oil component for example, gasoline components, light oil components, etc., or aliphatic carbonization with a relatively small number of carbon atoms
  • the main readily decomposable components of the oil component for example, gasoline components, light oil components, etc., or aliphatic carbonization with a relatively small number of carbon atoms
  • Hydrogen, aromatic hydrocarbons up to 3 rings, etc. were decomposed, suggesting the possibility that the equilibrium state was reached quickly.
  • the cause of the decrease in the oil concentration may be that volatile components in the oil have been promoted by the increase in soil temperature, along with the improvement in the oil decomposition activity of aerobic microorganisms.
  • the fermentation aid in the present invention contains a lot of plant fibers, the fermentation aid is added. By doing so, the air permeability of the soil is improved, and the ignition loss is also increased. As a result, soil improvement effect was observed.
  • Table 1 shows the wet density (gZcm 3 ) and the porosity (%) between soil particles, which represent the air permeability of the soil.
  • Table 2 shows the loss on ignition (%), which is a measure of the amount of organic matter contained in the soil.
  • Fig. 3 is a graph showing the relationship between air temperature and soil temperature according to the amount of HC added. Based on these relationships, when the soil temperature is 10-50 ° C, the amount of HC added should be 0.2-5% by mass. If the soil temperature is 25 to 40 ° C, which is a more preferable temperature, the amount of HC added may be 0.5 to 5% by mass. The specific amount added will be determined appropriately according to the temperature and other conditions.
  • FIG. 4 is a graph showing the relationship between the amount of HC added to the contaminated soil and the amount of ventilation. Even if HC is added, aerobic microorganisms will have insufficient activity unless sufficient aeration is performed.On the other hand, if aeration is performed more than necessary, for example, if the aeration rate is too high at low temperatures. This can result in lowering the soil temperature. Therefore, it is desirable to control the air flow rate so that it meets the required air flow rate, and further the required air flow rate is in the range of + 0.03WM.
  • the ventilation in the purification process described above is due to the control of either intake or supply.
  • These control methods can be determined by pile size and ventilation performance.
  • air intake control is performed by either intake or air supply
  • air streaks are created in the pile, or oxygen in the air is consumed due to activation of aerobic microorganisms in the pile.
  • the air does not spread sufficiently and the aerobic microorganisms throughout the pile are not sufficiently activated. Therefore, it is preferable to carry out a combination of inhalation and insufflation in order to cause sufficient degradation activity of the aerobic microorganisms throughout the nozzle. This makes it possible to change the air streak or vent the inside and outside edge forces of the pile and allow the air to reach the soil well.
  • the combination of intake air and air supply is set as appropriate, and is performed periodically, for example, while alternately switching between intake air and air supply.
  • the timing of switching from intake to air supply and switching from air supply to intake is set as appropriate, taking into account the measurement results of soil temperature and carbon dioxide concentration during ventilation.
  • the oxygen concentration was increased and the carbon dioxide concentration was decreased.
  • the ventilation method By switching the ventilation method, the effect of diffusing air (oxygen) into the soil has been improved, and the oil decomposition effect has also been improved.
  • the oil concentration which was 413 mgZkg on the first day, was only slightly reduced to 378 mgZkg on the 16th day.
  • the ventilation method to air supply on the 20th day, on the 26th day, the oil concentration greatly decreased to 250 mgZkg or less.
  • a method of sufficiently spreading air there is also a method of providing a time during which air circulation is not performed by temporarily stopping ventilation (for example, intermittent ventilation).
  • temporarily stopping ventilation for example, intermittent ventilation
  • the microorganism activity can be improved when a load is applied to the microorganism and the next ventilation is performed. For example, after 12 hours of ventilation, it may be possible to repeatedly stop ventilation for 12 hours.
  • the timing for such airflow control is set as appropriate depending on soil conditions, pile conditions, pollution conditions, temperature, etc.
  • FIG. 6 shows the results of the working example.
  • 2 mass% of HC was added to the soil, and intermittent ventilation was performed at an air flow rate of 20 mLZminZL and an ambient temperature of 5 ° C. This intermittent aeration was repeated for 8 hours and a Z day.
  • continuous aeration 24 hours aeration Z days was also performed.
  • the pollution-decomposing activity of such aerobic microorganisms also depends on the mass of the organic pollutant as the substance to be decomposed. Therefore, easily decomposable components are almost decomposed and oxygen consumption due to microbial activity is reduced. After the cost has been reduced, for example, the temperature of the soil can be lowered because low temperature outside air is sent into the pile by aeration at low temperatures. The remaining organic pollutants are not readily decomposable components, so by reducing the air flow rate, it is possible to promote further pollution purification by maintaining the soil temperature at which aerobic microorganisms are activated appropriately.
  • FIG. 7 shows the results of the working example. Add 2% by mass of HC to the soil and stir in the first month (28th day). After that, the soil is fractionated to control the air flow rate (this example) and the air flow rate not controlled (Comparative example). In the section where the air flow was controlled, the air flow was decreased from 25mLZminZL to 5mLZminZL from the 28th day. On the 28th day, it was suggested that the temperature in the soil decreased rapidly and the readily degradable components of organic pollutants contained in the soil were decomposed. On the other hand, in the section where the air flow was controlled, the air flow was kept at 25 mLZminZL.
  • the decrease in the soil temperature can be made smaller than in the section where the air flow rate is not controlled (see Fig. 7 (a)).
  • the decrease in the oil content could be increased (see Fig. 7 (b)).
  • the temperature of the contaminated soil can be controlled to a temperature sufficient for the activity of the aerobic microorganisms, and the purification efficiency of the contaminated soil can be sufficiently improved. be able to. Moreover, since the air permeability of soil improves, the property of soil can also be improved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

It is intended to provide a purification method whereby the efficiency of the purification of polluted soil can be sufficiently elevated by controlling the temperature of the polluted soil even at a low temperature and promoting the activation of an aerobic microorganism capable of decomposing an organic pollutant. Namely, a method of purifying polluted soil which comprises supplying air through soil having been polluted with an organic pollutant, thus activating an aerobic microorganism capable of decomposing the organic pollutant, and decomposing the organic pollutant via fermentation to thereby purify the polluted soil, wherein a fermentation aid containing a rice bran paste is added to the polluted soil and the air supply rate is controlled so as to maintain the temperature of the polluted soil to 10 to 50oC.

Description

明 細 書  Specification
汚染土壌の浄化方法  Purification method for contaminated soil
技術分野  Technical field
[0001] 本発明は、有機汚染物質に汚染された汚染土壌に通気し、有機汚染物質の分解 性能を備えた好気性微生物を活性化させて、有機汚染物質を発酵分解することによ り汚染土壌を浄ィ匕する汚染土壌の浄ィ匕方法に関する。  [0001] The present invention aerates polluted soil contaminated with organic pollutants, activates aerobic microorganisms capable of decomposing organic pollutants, and fermentatively decomposes organic pollutants. The present invention relates to a method for purifying contaminated soil for purifying soil.
背景技術  Background art
[0002] 近年、有機汚染物質に汚染された汚染土壌の浄化方法としては、有機汚染物質に 汚染された汚染土壌に通気し、有機汚染物質の分解性能を備えた好気性微生物を 活性化させて、有機汚染物質を発酵分解させることにより汚染土壌の浄ィ匕を行う通 気型バイオレメディエーシヨン工法 (例えば、特開平 7— 100459号公報参照)がある  [0002] In recent years, as a method for remediation of contaminated soil contaminated with organic pollutants, aerobic microorganisms capable of degrading organic pollutants are activated by ventilating contaminated soil contaminated with organic pollutants. There is a ventilated bioremediation method for purifying contaminated soil by fermenting and decomposing organic pollutants (see, for example, JP-A-7-100459)
[0003] このような汚染土壌の浄ィ匕方法では、冬期や寒冷地など低温時には冷たい空気が 汚染土壌に通気されるため汚染土壌の温度が低下してしまい、好気性微生物を充 分に活性化させることができない。その結果、汚染土壌の浄化効率が著しく低下して しまう。 [0003] In such a purification method for contaminated soil, cold air is ventilated into the contaminated soil at low temperatures, such as in winter and in cold regions, so the temperature of the contaminated soil decreases, and aerobic microorganisms are fully activated. It cannot be made. As a result, the purification efficiency of contaminated soil is significantly reduced.
[0004] そこで、従来、冬期や寒冷地などの低温時にも好気性微生物を活性ィ匕させるため、 人工腐植土と糖類を利用した汚染土壌の浄ィ匕方法 (例えば、特開 2002— 1303号 公報参照)や、糟糠類を利用した汚染土壌の浄ィ匕方法 (例えば、特開 2004- 2545 08号公報参照)がある。  [0004] Therefore, conventionally, a method for purifying contaminated soil using artificial humus soil and saccharides to activate aerobic microorganisms even at low temperatures such as in winter and in cold regions (for example, Japanese Patent Application Laid-Open No. 2002-1303). And a method for purifying contaminated soil using moss (see, for example, Japanese Patent Laid-Open No. 2004-254508).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、汚染土壌の浄ィ匕効率を充分に向上させるには、有機汚染物質の分解性 能を備えた好気性微生物の活性を促す温度帯に、汚染土壌を制御する必要がある 。し力しながら、従来の方法では、低温時における汚染土壌の温度を充分に上昇さ せることができず、好気性微生物の活性ィ匕が不充分であるという問題があった。また 、必要以上に汚染土壌の温度が上昇してしまうような場合には土壌内で活性ィ匕して いる菌叢が異なり、浄ィ匕効率を充分に向上させることができないという問題があった。 [0005] By the way, in order to sufficiently improve the purification efficiency of contaminated soil, it is necessary to control the contaminated soil to a temperature range that promotes the activity of aerobic microorganisms having the ability to decompose organic pollutants. However, the conventional method has a problem that the temperature of the contaminated soil at a low temperature cannot be sufficiently increased, and the activity of aerobic microorganisms is insufficient. Also, if the temperature of contaminated soil rises more than necessary, it will become active in the soil. There was a problem in that the fungus flora was different and the purification efficiency could not be improved sufficiently.
[0006] そこで、本発明は、低温時においても汚染土壌の温度を制御し、有機汚染物質の 分解性能を備えた好気性微生物の活性ィヒを促進させ、汚染土壌の浄ィヒ効率を充分 に向上させることができる浄ィ匕方法を提供することを目的とする。  [0006] Therefore, the present invention controls the temperature of contaminated soil even at low temperatures, promotes the activity of aerobic microorganisms having the ability to decompose organic pollutants, and sufficiently improves the purification efficiency of contaminated soil. It is an object of the present invention to provide a purification method that can be improved.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するために、本発明は、有機汚染物質に汚染された汚染土壌に通 気し、前記有機汚染物質の分解性能を備えた好気性微生物を活性化させて、前記 有機汚染物質を発酵分解することにより前記汚染土壌を浄化する汚染土壌の浄ィ匕 方法であって、前記汚染土壌に糟糠類を含有する発酵助材を添加し、この汚染土壌 の温度を 10 50°Cとなるように通気量を制御することを特徴とする。  [0007] In order to solve the above-mentioned problem, the present invention is configured to ventilate contaminated soil contaminated with an organic pollutant, activate an aerobic microorganism having a decomposition performance of the organic pollutant, and A method for purifying contaminated soil by purifying the contaminated soil by fermenting and decomposing the pollutant, wherein a fermentation aid containing moss is added to the contaminated soil, and the temperature of the contaminated soil is adjusted to 10 50 °. The air flow rate is controlled so as to be C.
[0008] また、本発明は、前記発酵助材を、前記汚染土壌の質量に対して 0. 2 5質量% 添加することを特徴とする。  [0008] Further, the present invention is characterized in that the fermentation aid is added in an amount of 0.25% by mass based on the mass of the contaminated soil.
[0009] また、本発明は、前記通気量の制御を、吸気と送気を組合せて行うことを特徴とす る。  [0009] Further, the present invention is characterized in that the air flow control is performed by combining intake air and air supply.
[0010] また、本発明は、前記通気量の制御において、通気を一時的に停止することを特 徴とする。  [0010] The present invention is characterized in that the ventilation is temporarily stopped in the control of the ventilation amount.
[0011] また、本発明は、前記有機汚染物質の易分解性成分が分解された後に、前記通気 量を減少させることを特徴とする。  [0011] Further, the present invention is characterized in that the air flow rate is reduced after the readily decomposable component of the organic pollutant is decomposed.
[0012] <関連文献とのクロスリファレンス >  [0012] <Cross-reference with related literature>
本出願は、 2005年 2月 28日付けで出願した日本国特願 2005— 54140号に基づ く優先権を主張し、その内容を援用するものである。  This application claims priority based on Japanese Patent Application No. 2005-54140 filed on Feb. 28, 2005, and uses the contents thereof.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]HC2質量%を上記土壌に添加し、バイオパイル型の通気による浄ィ匕方法にお ける土壌温度の変化を示すグラフである。  [0013] FIG. 1 is a graph showing changes in soil temperature in a purification method using biopile-type ventilation when 2% by mass of HC is added to the soil.
[図 2]汚染物質である油分 (n キサン抽出物)で汚染された汚染土壌を対象として 、吸気型通気方式における汚染土壌の浄ィ匕効率を調べた結果を示すグラフである。  [Fig. 2] A graph showing the results of examining the purification efficiency of contaminated soil in the aeration-type aeration method for contaminated soil contaminated with pollutant oil (n-xan extract).
[図 3]気温と土壌温度との関係を HCの添加量別に示すグラフである。  FIG. 3 is a graph showing the relationship between air temperature and soil temperature according to the amount of HC added.
[図 4]汚染土壌への HC添加量と通気量との関係を示すグラフである。 [図 5]吸気と送気を組合せた場合の試験結果を示すグラフである。 FIG. 4 is a graph showing the relationship between the amount of HC added to the contaminated soil and the amount of ventilation. FIG. 5 is a graph showing test results when air intake and air supply are combined.
[図 6]通気を一時的に停止した場合の試験結果を示すグラフである。  FIG. 6 is a graph showing test results when ventilation is temporarily stopped.
[図 7]有機汚染物質の易分解性成分が分解された後に、通気量を減少させた場合の 試験結果を示すグラフであり、(a)は土中温度の経時的変化を示し、(b)は油分含有 量の経時的変化を示す。  [Fig. 7] A graph showing the test results when the air flow rate is decreased after the readily decomposable components of organic pollutants are decomposed. (A) shows the change in soil temperature over time, (b ) Indicates the change over time in the oil content.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明を実施するための最良の形態について、添付図面を参照しながら説明 する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the accompanying drawings.
[0015] まず、本発明の実施形態における汚染土壌の浄ィ匕方法は、有機汚染物質に汚染 された汚染土壌 (以下、単に「土壌」ともいう)に通気し、有機汚染物質の分解性能を 備えた好気性微生物を選択的に活性化させて、汚染物質を発酵分解することにより 汚染土壌を浄化する汚染土壌の浄化方法であって、汚染土壌に糟糠類を含有する 発酵助材を添加し、汚染土壌の温度を 10〜50°Cとなるように通気量を制御するとい う構成を担っている。  [0015] First, the method for purifying contaminated soil according to the embodiment of the present invention ventilates contaminated soil contaminated with organic pollutants (hereinafter, also simply referred to as “soil”) to improve the degradation performance of organic pollutants. A method for purifying contaminated soil by selectively activating the aerobic microorganisms provided and fermenting and decomposing the pollutants, and adding a fermentation aid containing moss to the contaminated soil In addition, the air flow rate is controlled so that the temperature of the contaminated soil is 10-50 ° C.
[0016] なお、本発明が浄化対象とする有機汚染物質としては、例えば、ガソリン、灯油、軽 油、重油、機械油、潤滑油、原油等、石油由来の油分や、タールやベンゼン等の石 炭由来の油分、トリクロロエチレンやテトラクロロエチレン等の有機塩素系化合物や、 上記油分に含まれるベンゼン、トルエン、ェチルベンゼン、キシレン等が挙げられる。  [0016] The organic pollutants to be purified by the present invention include, for example, petroleum-derived oils such as gasoline, kerosene, light oil, heavy oil, machine oil, lubricating oil, and crude oil, and stones such as tar and benzene. Examples include oil derived from charcoal, organochlorine compounds such as trichlorethylene and tetrachloroethylene, and benzene, toluene, ethylbenzene, and xylene contained in the oil.
[0017] また、上記構成における好気性微生物としては、一般生菌、糸状菌、放線菌、石油 資化性菌等が挙げられる力 本発明では必ずしもこれらの微生物に限定されるもの ではなぐ有機汚染物質を発酵分解させる性能を持つものであるならば、その他の好 気性微生物であっても良い。また、浄化土壌の再利用を考慮すれば汚染土壌に含ま れる好気性微生物を活性ィ匕させる方法が良いが、これに限定されるものではない。  [0017] In addition, the aerobic microorganisms in the above-described configuration include general viable bacteria, filamentous fungi, actinomycetes, petroleum-utilizing bacteria, and the like. In the present invention, organic contamination is not necessarily limited to these microorganisms. Any other aerobic microorganism may be used as long as it has the ability to fermentatively decompose the substance. In consideration of the reuse of the purified soil, a method of activating aerobic microorganisms contained in the contaminated soil is preferable, but is not limited thereto.
[0018] 次に、本発明の効果、すなわち汚染土壌の適正な温度制御による浄化効率の向 上効果および土壌改善効果について、各々説明する。  [0018] Next, the effect of the present invention, that is, the effect of improving the purification efficiency and the soil improvement effect by appropriate temperature control of the contaminated soil will be described.
[0019] 本発明における発酵助材は、糟糠類を主成分とするものであり、糟糠類としては、 小麦フスマ、末粉、米糠、コーンブランおよびダルテンフィールドからなる群力 選択 される少なくとも 1種である。また、当該発酵助材は、例えば、全て糟糠類からなるも のであってもよく、さらに必要に応じて pH緩衝剤、腐植酸類、カルシウムやマグネシ ゥム等のミネラル類、パーライト、ゼォライト、ケイソゥ土等の鉱物、その他土壌改良材 を適宜配給してもよい。本発明の発酵助材としては、例えば、小麦フスマを主成分と する市販のヒートコンポ (商品名)が挙げられる。なお、本発明の実施例では、発酵助 材としてこのヒートコンポを使用した。このような発酵助材、例えばヒートコンポ(以下「 HC」と略する。)を汚染土壌に添加'配合することにより、土壌温度を十分に上昇させ ることがでさる。 [0019] The fermentation aid in the present invention is mainly composed of rice bran, and as the rice bran, at least one selected from the group power consisting of wheat bran, powder, rice bran, corn bran and darten field is selected. It is a seed. In addition, the fermentation aid is, for example, all made of moss. Further, pH buffering agents, humic acids, minerals such as calcium and magnesium, minerals such as perlite, zeolite and diatomaceous earth, and other soil improvement materials may be appropriately distributed as necessary. Examples of the fermentation aid of the present invention include a commercially available heat component (trade name) mainly composed of wheat bran. In the examples of the present invention, this heat component was used as a fermentation aid. By adding such a fermentation aid such as a heat component (hereinafter abbreviated as “HC”) to the contaminated soil, the soil temperature can be sufficiently increased.
[0020] このため、冬期や寒冷地などの低温時に汚染土壌に通気し、冷たい空気を土壌中 に送気および Z又は吸気させたとしても、好気性微生物は活性化され、汚染物質分 解性能は向上するが、ともすれば温度上昇が過ぎる場合があるので通気による制御 を行う。  [0020] For this reason, even if aerated soil is ventilated at low temperatures, such as in winter or in cold regions, and aerobic microorganisms are activated and pollutant decomposition performance even if cold air is fed into the soil and Z or sucked into the soil. However, if the temperature rises too much, control by ventilation is performed.
[0021] なお、土壌温度が 10°C未満では、土壌中における好気性微生物の汚染物質の分 解活性が殆ど確認できないほど低くなつてしまう。他方、土壌温度が 50°Cを超えた範 囲では完全に菌叢が異なってしま!/、、汚染物質の分解活性が期待できなくなつてし まう。また、好ましくは土壌温度として 25〜40°Cが最適な分解活性を有するため、有 機汚染物質の浄化効率は充分向上する。  [0021] When the soil temperature is less than 10 ° C, the degradation activity of the aerobic microorganism contaminants in the soil becomes so low that it can hardly be confirmed. On the other hand, when the soil temperature exceeds 50 ° C, the flora is completely different! /, And the degradation activity of pollutants cannot be expected. Moreover, since the soil temperature preferably has an optimum decomposition activity of 25 to 40 ° C, the purification efficiency of organic pollutants is sufficiently improved.
[0022] 実施例ではバイオパイル型の通気による浄ィ匕を行った。なお、 HCの添加量を 2質 量%とした。また、好気性微生物の分解活性が高くなる土壌温度に調整するため、汚 染土壌に通気する風量は、土壌 lm3当たり、 0. 02m3Z分( = 0. 02VVM)とした。 さらに栄養源として、窒素およびリンを C (油分): N (窒素): P (リン) = 100 : 5 : 0. 5の 割合で添加した。 [0022] In the examples, purification by biopile ventilation was performed. The amount of HC added was 2% by mass. In order to adjust the soil temperature so that the degradation activity of aerobic microorganisms is increased, the air volume to be passed through the contaminated soil was set to 0.02 m 3 Z per soil lm 3 (= 0.02 VVM). Furthermore, as a nutrient source, nitrogen and phosphorus were added at a ratio of C (oil): N (nitrogen): P (phosphorus) = 100: 5: 0.5.
[0023] このように HC2質量%を上記土壌に添加し、バイオノィル型の通気による浄ィ匕方 法における土壌温度の変化を図 1に示す。なお、図 1 (a)は送気型通気方式におけ る土壌温度の変化を示すグラフであり、図 1 (b)は吸気型通気方式における土壌温 度の変化を示すグラフである。なお、同図における GLとはグラウンドレベルのことを 意味し、例えば、 GL+ 30とはグラウンドレベルから + 30cmの区画をいう。  [0023] Thus, Fig. 1 shows the change in soil temperature in the purification method by adding HC2% by mass to the above-mentioned soil and using bionoir type ventilation. Fig. 1 (a) is a graph showing changes in soil temperature in the air supply type ventilation method, and Fig. 1 (b) is a graph showing changes in soil temperature in the intake type ventilation method. In the figure, GL means the ground level. For example, GL + 30 means a section of +30 cm from the ground level.
[0024] HCの添加により、図 1 (a)に示すように送気型通気方式における土壌温度は、最 大で約 30°Cの温度上昇が確認された。一方、図 1 (b)に示すように吸気型通気方式 における土壌温度は、 5°C程度の温度上昇であった。その原因として、吸気型通気 方式のパイルが小型 (送気型通気方式のノィルが 32m3と比して吸気型通気方式は 5m3)であり、放熱しやすくなつたことが考えられる。なお、標準区は牛糞堆肥と栄養 源を添加したものであり、攪拌区は標準区と同様に牛糞堆肥と栄養源を添加した上 で 1週毎に攪拌を行ったものである。 [0024] With the addition of HC, it was confirmed that the soil temperature in the air supply type aeration system increased by about 30 ° C at the maximum, as shown in Fig. 1 (a). On the other hand, as shown in Fig. 1 (b) The soil temperature in was about 5 ° C. As its cause, pile aspirated ventilation system is small (Noiru of the air type ventilation system has the intake-type ventilation system compared with 32m 3 5 m 3) was considered that there was summer easy heat dissipation. The standard zone is the one with added cow manure compost and nutrients, and the agitation zone is the one with weekly fertilizer and nutrient sources added, just like the standard zone.
[0025] さらに、汚染物質である油分 (n キサン抽出物)で汚染された汚染土壌を対象と して、吸気型通気方式における汚染土壌の浄化効率を調べた。その結果を図 2に示 す。 [0025] Further, the polluted soil contaminated with the pollutant oil (n-xan extract) was examined, and the purification efficiency of the contaminated soil in the intake-type aeration method was investigated. Figure 2 shows the results.
[0026] 図 2 (a)は汚染土壌の浄ィ匕効率を GCZFID (水素炎イオンィ匕検出器付きガスクロ マトグラフ)法を利用した油分濃度の測定結果を示すグラフであり、図 2 (b)は四塩ィ匕 炭素 ZIR法を利用した油分濃度の測定結果を示すグラフである。なお、 FID (水素 炎イオン化検出器)は、可燃性の有機化合物を水素炎中で燃焼させたときに生成さ れるイオンと電子により、流れる電流を検出するものである。また、四塩化炭素 ZIR 法は四塩化炭素で抽出した有機化合物を赤外線照射による吸収状態により分析す るものである。  [0026] Fig. 2 (a) is a graph showing the results of oil concentration measurement using the GCZFID (gas chromatograph with hydrogen flame ion detector) method for the purification efficiency of contaminated soil. Fig. 2 (b) It is a graph which shows the measurement result of the oil content density | concentration using the tetra-salt 匕 carbon ZIR method. The FID (Hydrogen Flame Ionization Detector) detects the flowing current using ions and electrons generated when a combustible organic compound is burned in a hydrogen flame. The carbon tetrachloride ZIR method analyzes organic compounds extracted with carbon tetrachloride based on the absorption state by infrared irradiation.
[0027] 図 2に示すように、吸気型パイルにおいて、 0じ7?10法(図2 (&)参照)と四塩ィ匕炭 素 ZIR法(図 2 (b)参照)に基づく油分濃度は、いずれも標準区では 1ヶ月目まで継 続して減少したのに対し、 HC添カ卩区では 2週目まで急激に減少した力 その後 1ケ 月目まで濃度変化が観察されな力つた。また、 HC添加区では 2週目まで急激に減 少したが、その後 1ヶ月目まで濃度変化が観察されな力つた。また、 HC添加区では 油分濃度の減少速度が上昇した結果、 2週間目までに油分の主な易分解性成分 (例 えば、ガソリン成分や軽油成分等、或いは炭素数が比較的少ない脂肪族炭化水素 や 3環までの芳香族炭化水素等)が分解され、速やかに平衡状態に達している可能 性が示唆された。なお、油分濃度が減少する原因としては、好気性微生物の油分分 解活性が向上したことに合わせ、土壌温度の上昇により油分中の揮発性成分の蒸散 が促進されたことも考えられる。  [0027] As shown in Fig. 2, in the intake pile, the oil concentration based on the 0-7 7-10 method (see Fig. 2 (&)) and the tetra-salt-carbon ZIR method (see Fig. 2 (b)) In the standard zone, all of them continued to decrease until the first month, whereas in the HC supplement zone, the force decreased rapidly until the second week, and then the concentration change was not observed until the first month. . In the HC addition group, it decreased rapidly until the 2nd week, but after that, the concentration change was not observed until the 1st month. In addition, in the HC addition zone, as a result of the increase in the oil concentration decrease rate, the main readily decomposable components of the oil component (for example, gasoline components, light oil components, etc., or aliphatic carbonization with a relatively small number of carbon atoms) by the second week. Hydrogen, aromatic hydrocarbons up to 3 rings, etc.) were decomposed, suggesting the possibility that the equilibrium state was reached quickly. The cause of the decrease in the oil concentration may be that volatile components in the oil have been promoted by the increase in soil temperature, along with the improvement in the oil decomposition activity of aerobic microorganisms.
[0028] <土壌改善効果 >  [0028] <Soil improvement effect>
また、本発明における発酵助材は植物性の繊維を多く含むため、発酵助材を添加 することにより、土壌の通気性が向上し、さらに強熱減量も増加している。その結果、 土壌改善効果が見られた。このような土壌の通気性を表す湿潤密度 (gZcm3)及び 土壌粒子間の間隙率 (%)を表 1に示す。他方、土壌中に含まれる有機物量の目安と なる強熱減量(%)を表 2に示す。 In addition, since the fermentation aid in the present invention contains a lot of plant fibers, the fermentation aid is added. By doing so, the air permeability of the soil is improved, and the ignition loss is also increased. As a result, soil improvement effect was observed. Table 1 shows the wet density (gZcm 3 ) and the porosity (%) between soil particles, which represent the air permeability of the soil. On the other hand, Table 2 shows the loss on ignition (%), which is a measure of the amount of organic matter contained in the soil.
[0029] 表 1 [0029] Table 1
Figure imgf000008_0001
Figure imgf000008_0001
表 1に示すように、 HCを 2質量%添加することにより、湿潤密度は減少するとともに 、土粒子間の間隙率が増加した。このことから、 HCを 2質量%添加することにより、土 壌の通気性が向上することがわかる。  As shown in Table 1, the addition of 2% by mass of HC decreased the wet density and increased the porosity between soil particles. This indicates that the addition of 2% by mass of HC improves the air permeability of the soil.
[0030]  [0030]
表 2  Table 2
Figure imgf000008_0002
表 2に示すように、 HCを 2質量%添加することにより、強熱減量は約 0. 6%増加し た。なお、上記表には示していないが、夏場の HC添加量は土壌温度が充分高いこ とから低温時に比して少量であってもよい。土壌の通気性が向上し、有機物が多く含 まれるような土壌となることで好気性微生物の活性ィ匕を妨げるものが無くなり、好気性 微生物による有機汚染物質の分解が促進される。 [0031] 図 3は、気温と土壌温度との関係を HCの添加量別に示すグラフである。これらの関 係により、土壌温度を 10〜50°Cとする場合には HCの添加量を 0. 2〜5質量%とす れば良い。また、土壌温度をより好ましい温度である 25〜40°Cとする場合には HCの 添加量を 0. 5〜5質量%とすれば良い。具体的な添加量は、気温等の条件に応じて 適宜決めることとする。
Figure imgf000008_0002
As shown in Table 2, the loss on ignition increased by about 0.6% by adding 2% by mass of HC. Although not shown in the above table, the amount of HC added in summer may be smaller than that at low temperatures because the soil temperature is sufficiently high. By improving the air permeability of the soil and making the soil rich in organic matter, there is no obstacle to the activity of aerobic microorganisms, and the degradation of organic pollutants by aerobic microorganisms is promoted. [0031] Fig. 3 is a graph showing the relationship between air temperature and soil temperature according to the amount of HC added. Based on these relationships, when the soil temperature is 10-50 ° C, the amount of HC added should be 0.2-5% by mass. If the soil temperature is 25 to 40 ° C, which is a more preferable temperature, the amount of HC added may be 0.5 to 5% by mass. The specific amount added will be determined appropriately according to the temperature and other conditions.
[0032] 図 4は、汚染土壌への HC添カ卩量と通気量との関係を示すグラフである。 HCを添加 しても充分な通気が行われて ヽなければ好気性微生物の活性が不充分となり、他方 、必要以上に通気が行われた場合、例えば低温時に通気量が多すぎた場合には、 土壌温度を下げる結果となりかねない。従って、通気量は必要通気量を満たし、更に 必要通気量 +0. 03WM程度の範囲に制御することが望ましい。  [0032] FIG. 4 is a graph showing the relationship between the amount of HC added to the contaminated soil and the amount of ventilation. Even if HC is added, aerobic microorganisms will have insufficient activity unless sufficient aeration is performed.On the other hand, if aeration is performed more than necessary, for example, if the aeration rate is too high at low temperatures. This can result in lowering the soil temperature. Therefore, it is desirable to control the air flow rate so that it meets the required air flow rate, and further the required air flow rate is in the range of + 0.03WM.
[0033] 以上に記載した浄ィ匕工事における通気は、吸気もしくは送気のいずれか一方の制 御によるものである。これらの制御方法はパイルの大きさや通気性能により決定する こともできる。しかし、土質によっては吸気若しくは送気のどちらかによる通気制御を 行った場合パイル内に空気筋ができてしまったり、パイル中の好気性微生物の活性 化により空気中の酸素が消費されてしまったりして、空気が十分に行き渡らずパイル 内全体の好気性微生物が充分に活性ィ匕しないことも考えられる。そこで、ノィル内全 体で好気性微生物の充分な分解活性を行わせるために、吸気及び送気を組合せて 行うことが好ましい。これにより、空気筋を変更したり、或いはパイルの内部及び外縁 力 の通気が可能となり、空気を土壌中に十分に行き渡らせることができる。このよう な通気制御を行うと、ノィル内の温度を好気性微生物の活性ィ匕が充分に行われるよ うにコントロールすることが容易となる。なお、吸気と送気との組合せは、適宜設定す ることとし、例えば、吸気と送気とを交互に切り替えながら周期的に行う。また、吸気か ら送気への切り替え及び送気から吸気への切り替えのタイミングは、例えば通気の際 に土壌温度や二酸化炭素濃度を測定し、その測定結果を考慮しながら適宜設定す る。  [0033] The ventilation in the purification process described above is due to the control of either intake or supply. These control methods can be determined by pile size and ventilation performance. However, depending on the soil, when air intake control is performed by either intake or air supply, air streaks are created in the pile, or oxygen in the air is consumed due to activation of aerobic microorganisms in the pile. It is also conceivable that the air does not spread sufficiently and the aerobic microorganisms throughout the pile are not sufficiently activated. Therefore, it is preferable to carry out a combination of inhalation and insufflation in order to cause sufficient degradation activity of the aerobic microorganisms throughout the nozzle. This makes it possible to change the air streak or vent the inside and outside edge forces of the pile and allow the air to reach the soil well. When such aeration control is performed, it becomes easy to control the temperature in the nozzle so that the activity of the aerobic microorganism is sufficiently performed. Note that the combination of intake air and air supply is set as appropriate, and is performed periodically, for example, while alternately switching between intake air and air supply. In addition, the timing of switching from intake to air supply and switching from air supply to intake is set as appropriate, taking into account the measurement results of soil temperature and carbon dioxide concentration during ventilation.
[0034] 力かる実施例の結果を図 5に示す。本実施例では、土壌に HCを 0. 3質量%添カロ して初日(0日)力 20日までを吸気とし、 20日目から送気に切り替えて通気を行つ [0035] 図 5に示すように、土壌に HCを添加することにより、土中温度は上昇し始め 7〜11 日で最大温度 30°Cに到達すると、その後、次第に低下した。土中温度の上昇に伴 い、酸素濃度が減少して二酸化炭素濃度が上昇した。このことから、微生物活性が 高まったことが示唆される。一方、土中温度が次第に低下しつつある期間(11日目か ら 20日目まで)にも、酸素濃度及び二酸化炭素濃度の値は殆ど変わらず、微生物活 性の必要な酸素の飢餓が危惧される。そこで、 20日目に吸気力 送気に切り替える ことにより、酸素濃度を上昇させ、二酸化炭素濃度を減少させた。このような通気方式 の切り替えにより、空気 (酸素)の土中への拡散効果が向上し、油分分解効果も向上 した。すなわち、初日目に 413mgZkgであった油分濃度は、 16日目には 378mgZ kgへと微減したに過ぎな力つた。しかし、 20日目に通気方式を送気に切り替えること により、 26日目には油分濃度は 250mgZkg以下へと大きく減少した。 [0034] The results of the working example are shown in FIG. In this example, 0.3% by mass of HC was added to the soil, and the first day (day 0) was forced up to the 20th day. [0035] As shown in FIG. 5, by adding HC to the soil, the temperature in the soil began to increase and reached a maximum temperature of 30 ° C within 7 to 11 days, and then gradually decreased. As the soil temperature increased, the oxygen concentration decreased and the carbon dioxide concentration increased. This suggests that microbial activity has increased. On the other hand, even during the period when the soil temperature is gradually decreasing (from the 11th day to the 20th day), the values of oxygen concentration and carbon dioxide concentration remain almost unchanged, and there is a risk of starvation of oxygen that requires microbial activity. It is. Therefore, by switching to inspiratory power delivery on the 20th day, the oxygen concentration was increased and the carbon dioxide concentration was decreased. By switching the ventilation method, the effect of diffusing air (oxygen) into the soil has been improved, and the oil decomposition effect has also been improved. In other words, the oil concentration, which was 413 mgZkg on the first day, was only slightly reduced to 378 mgZkg on the 16th day. However, by switching the ventilation method to air supply on the 20th day, on the 26th day, the oil concentration greatly decreased to 250 mgZkg or less.
[0036] また、空気を十分に行き渡らせる方法として、通気を一時的に停止することで空気 の流通を行わない時間を設ける方法 (例えば、間欠通気)もある。このような制御方法 では低温時にパイル内の温度を一定ィ匕させることが容易である。さらに、好気性微生 物が消費する酸素の供給を一時的に停止することで、微生物に負荷を与え、次に通 気を行った場合では微生物活性の向上を図ることができる。例えば、 12時間の通気 の後、 12時間の通気停止を繰り返す等が考えられる。このような通気制御を行うタイ ミングは土壌等、パイルの状況や汚染状態、気温などにより適宜設定する。  [0036] Further, as a method of sufficiently spreading air, there is also a method of providing a time during which air circulation is not performed by temporarily stopping ventilation (for example, intermittent ventilation). With such a control method, it is easy to keep the temperature in the pile constant at low temperatures. Furthermore, by temporarily stopping the supply of oxygen consumed by the aerobic microorganism, the microorganism activity can be improved when a load is applied to the microorganism and the next ventilation is performed. For example, after 12 hours of ventilation, it may be possible to repeatedly stop ventilation for 12 hours. The timing for such airflow control is set as appropriate depending on soil conditions, pile conditions, pollution conditions, temperature, etc.
[0037] 力かる実施例の結果を図 6に示す。本実施例では、土壌に HCを 2質量%添加し、 通気量 20mLZminZL、雰囲気温度 5°Cで間欠通気を行った。この間欠通気は 8 時間通気 Z日で繰り返した。また、比較例として連続通気(24時間通気 Z日)も行つ た。  [0037] FIG. 6 shows the results of the working example. In this example, 2 mass% of HC was added to the soil, and intermittent ventilation was performed at an air flow rate of 20 mLZminZL and an ambient temperature of 5 ° C. This intermittent aeration was repeated for 8 hours and a Z day. As a comparative example, continuous aeration (24 hours aeration Z days) was also performed.
[0038] 図 6に示すように、間欠通気を実施した場合には、連続通気を実施した場合と比べ ると、土中温度の最高温度は低いものの、温度の高い状態が持続した。このことから 、 2〜3週間の浄化試験では、間欠通気の方が連続通気よりも浄化効果の促進が期 待できる。  [0038] As shown in Fig. 6, when intermittent ventilation was performed, the maximum temperature in the soil was lower than when continuous ventilation was performed, but the state of high temperature was maintained. Therefore, in the purification test for 2 to 3 weeks, the intermittent ventilation can be expected to promote the purification effect than the continuous ventilation.
[0039] このような好気性微生物の汚染分解活性は、被分解物質である有機汚染物質の質 量にも左右される。よって、易分解性成分がほぼ分解され微生物活性による酸素消 費量が減少した後には、例えば、低温時には通気によって低温の外気をパイル内部 に送込むため、土壌温度が低下することが起こりうる。残る有機汚染物質は易分解性 成分ではな 、ので通気量を減少させることにより、好気性微生物が活性ィ匕する土壌 温度を適正に維持することで更なる汚染浄化を促進することができる。 [0039] The pollution-decomposing activity of such aerobic microorganisms also depends on the mass of the organic pollutant as the substance to be decomposed. Therefore, easily decomposable components are almost decomposed and oxygen consumption due to microbial activity is reduced. After the cost has been reduced, for example, the temperature of the soil can be lowered because low temperature outside air is sent into the pile by aeration at low temperatures. The remaining organic pollutants are not readily decomposable components, so by reducing the air flow rate, it is possible to promote further pollution purification by maintaining the soil temperature at which aerobic microorganisms are activated appropriately.
[0040] 力かる実施例の結果を図 7に示す。土壌に HCを 2質量%添加して 1ヶ月目(28日 目)に攪拌し、その後、この土壌を分画して、通気量をコントロールする区 (本実施例 )と通気量をコントロールしない区 (比較例)とに分けた。なお、通気量をコントロール する区では、 28日目以降、通気量を 25mLZminZLから 5mLZminZLへと減少 させた。 28日目〖こは、土中温度が急激に減少し、土壌に含まれている有機汚染物質 の易分解性成分が分解されたものと示唆される。一方、通気量をコントロールする区 では、通気量を 25mLZminZLのまま継続した。その結果、本実施例のように通気 量をコントロールする区では、通気量をコントロールしない区と比べると、土中温度の 減少幅を小さくすることが可能となり(図 7 (a)参照)、また、油分含有量の減少幅を大 きくすることができた (図 7 (b)参照)。  [0040] FIG. 7 shows the results of the working example. Add 2% by mass of HC to the soil and stir in the first month (28th day). After that, the soil is fractionated to control the air flow rate (this example) and the air flow rate not controlled (Comparative example). In the section where the air flow was controlled, the air flow was decreased from 25mLZminZL to 5mLZminZL from the 28th day. On the 28th day, it was suggested that the temperature in the soil decreased rapidly and the readily degradable components of organic pollutants contained in the soil were decomposed. On the other hand, in the section where the air flow was controlled, the air flow was kept at 25 mLZminZL. As a result, in the section where the air flow rate is controlled as in this embodiment, the decrease in the soil temperature can be made smaller than in the section where the air flow rate is not controlled (see Fig. 7 (a)). As a result, the decrease in the oil content could be increased (see Fig. 7 (b)).
産業上の利用可能性  Industrial applicability
[0041] 本発明によれば、低温時にお 、ても汚染土壌の温度を好気性微生物の活性が充 分となる温度に制御することができ、汚染土壌の浄ィ匕効率を充分に向上させることが できる。また、土壌の通気性も向上するので、土壌の性状を改善することもできる。 [0041] According to the present invention, even at a low temperature, the temperature of the contaminated soil can be controlled to a temperature sufficient for the activity of the aerobic microorganisms, and the purification efficiency of the contaminated soil can be sufficiently improved. be able to. Moreover, since the air permeability of soil improves, the property of soil can also be improved.

Claims

請求の範囲 The scope of the claims
[1] 有機汚染物質に汚染された汚染土壌に通気し、前記有機汚染物質の分解性能を 備えた好気性微生物を活性化させて、前記有機汚染物質を発酵分解することにより 前記汚染土壌を浄化する汚染土壌の浄化方法であって、  [1] Purify the contaminated soil by ventilating the contaminated soil contaminated with organic pollutants, activating aerobic microorganisms capable of decomposing the organic pollutants, and fermenting and decomposing the organic pollutants A method for purifying contaminated soil,
前記汚染土壌に糟糠類を含有する発酵助材を添加し、この汚染土壌の温度を 10 A fermentation aid containing moss is added to the contaminated soil, and the temperature of the contaminated soil is adjusted to 10%.
〜50°Cとなるように通気量を制御することを特徴とする汚染土壌の浄ィ匕方法。 A method for purifying contaminated soil, characterized in that the air flow is controlled to be -50 ° C.
[2] 前記発酵助材を、前記汚染土壌の質量に対して 0. 2〜5質量%添加することを特 徴とする請求項 1に記載の汚染土壌の浄化方法。 [2] The method for purifying contaminated soil according to claim 1, wherein 0.2 to 5% by mass of the fermentation aid is added to the mass of the contaminated soil.
[3] 前記通気量の制御を、吸気と送気を組合せて行うことを特徴とする請求項 1又は 2 に記載の汚染土壌の浄化方法。 [3] The method for purifying contaminated soil according to claim 1 or 2, wherein the air flow is controlled by combining intake air and air supply.
[4] 前記通気量の制御において、通気を一時的に停止することを特徴とする請求項 1 力 3のいずれか〖こ記載の汚染土壌の浄ィ匕方法。 [4] The method for purifying contaminated soil according to any one of claims 1 to 3, wherein aeration is temporarily stopped in the control of the aeration amount.
[5] 前記有機汚染物質の易分解性成分が分解された後に、前記通気量を減少させる ことを特徴とする請求項 1から 4のいずれかに記載の汚染土壌の浄化方法。 [5] The method for purifying contaminated soil according to any one of [1] to [4], wherein the air flow rate is decreased after the readily decomposable component of the organic pollutant is decomposed.
PCT/JP2006/302442 2005-02-28 2006-02-13 Method of purifying polluted soil WO2006092950A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020077017821A KR101284966B1 (en) 2005-02-28 2006-02-13 Method of purifying polluted soil
JP2007505837A JP5145034B2 (en) 2005-02-28 2006-02-13 Purification method for contaminated soil
CN2006800047389A CN101119812B (en) 2005-02-28 2006-02-13 Method of purifying polluted soil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-054140 2005-02-28
JP2005054140 2005-02-28

Publications (1)

Publication Number Publication Date
WO2006092950A1 true WO2006092950A1 (en) 2006-09-08

Family

ID=36940987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302442 WO2006092950A1 (en) 2005-02-28 2006-02-13 Method of purifying polluted soil

Country Status (4)

Country Link
JP (1) JP5145034B2 (en)
KR (1) KR101284966B1 (en)
CN (1) CN101119812B (en)
WO (1) WO2006092950A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872862B1 (en) 2008-06-11 2008-12-10 주식회사 한미엔텍 Remediation of the contaminated soil
JP2009154152A (en) * 2007-12-07 2009-07-16 Kurita Water Ind Ltd Method for clarifying contaminated soil or ground water
JP2011072923A (en) * 2009-09-30 2011-04-14 Kurita Water Ind Ltd Method for purifying contaminated soil or ground water
JP2011212669A (en) * 2010-12-17 2011-10-27 Eco Renaissance Entec:Kk Decontaminating method for soil pollution
CN109604330A (en) * 2018-12-05 2019-04-12 唐山柯林环保科技有限公司 A kind of system and method by microorganism remediation cold district winter soil
JP2020192517A (en) * 2019-05-30 2020-12-03 有限会社エコルネサンス・エンテック Method for recycling contaminated soil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852330B2 (en) * 2016-09-26 2021-03-31 株式会社大林組 How to purify contaminated soil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100459A (en) * 1993-10-07 1995-04-18 Kajima Corp Polluted soil purifying method
JP2001008550A (en) * 1999-06-30 2001-01-16 Goko Kikaku:Kk Method for reducing nitrate nitrogen in soil and material used for the method
JP2003154352A (en) * 2001-09-10 2003-05-27 Fuji Photo Film Co Ltd Method for restoring contaminated soil by microorganism
JP2003340431A (en) * 2002-05-23 2003-12-02 Kajima Corp Biological cleaning method and apparatus for polluted soil
JP2004025172A (en) * 2002-05-09 2004-01-29 Nisshin Flour Milling Inc Method of purifying contaminated soil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100459A (en) * 1993-10-07 1995-04-18 Kajima Corp Polluted soil purifying method
JP2001008550A (en) * 1999-06-30 2001-01-16 Goko Kikaku:Kk Method for reducing nitrate nitrogen in soil and material used for the method
JP2003154352A (en) * 2001-09-10 2003-05-27 Fuji Photo Film Co Ltd Method for restoring contaminated soil by microorganism
JP2004025172A (en) * 2002-05-09 2004-01-29 Nisshin Flour Milling Inc Method of purifying contaminated soil
JP2003340431A (en) * 2002-05-23 2003-12-02 Kajima Corp Biological cleaning method and apparatus for polluted soil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154152A (en) * 2007-12-07 2009-07-16 Kurita Water Ind Ltd Method for clarifying contaminated soil or ground water
KR100872862B1 (en) 2008-06-11 2008-12-10 주식회사 한미엔텍 Remediation of the contaminated soil
JP2011072923A (en) * 2009-09-30 2011-04-14 Kurita Water Ind Ltd Method for purifying contaminated soil or ground water
JP2011212669A (en) * 2010-12-17 2011-10-27 Eco Renaissance Entec:Kk Decontaminating method for soil pollution
CN109604330A (en) * 2018-12-05 2019-04-12 唐山柯林环保科技有限公司 A kind of system and method by microorganism remediation cold district winter soil
CN109604330B (en) * 2018-12-05 2020-11-13 唐山柯林环保科技有限公司 System and method for repairing winter soil in cold area through microorganisms
JP2020192517A (en) * 2019-05-30 2020-12-03 有限会社エコルネサンス・エンテック Method for recycling contaminated soil
JP7334932B2 (en) 2019-05-30 2023-08-29 有限会社エコルネサンス・エンテック Method for recycling contaminated soil

Also Published As

Publication number Publication date
JP5145034B2 (en) 2013-02-13
KR20070110843A (en) 2007-11-20
KR101284966B1 (en) 2013-07-10
CN101119812B (en) 2012-11-07
CN101119812A (en) 2008-02-06
JPWO2006092950A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5145034B2 (en) Purification method for contaminated soil
Nikiema et al. Elimination of methane generated from landfills by biofiltration: a review
Huang et al. Carbon and N conservation during composting: A review
Wu et al. Removal of methyl acrylate by ceramic-packed biotrickling filter and their response to bacterial community
Zheng et al. Factors impacting the performance and microbial populations of three biofilters for co-treatment of H2S and NH3 in a domestic waste landfill site
Zhang et al. Integrated application effects of biochar and plant residue on ammonia loss, heavy metal immobilization, and estrogen dissipation during the composting of poultry manure
KR100378667B1 (en) Orderlessfying and converting method into compost of excreta and composition thereof
EP2767585A1 (en) Microbiological method of H2S removal from biogas
Hu et al. Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process
CN103638545B (en) A kind of microbial deodorant and preparation method thereof
CN114260308B (en) Repairing method for organochlorine pesticide polluted soil field
Chen et al. Optimization strategies for mitigating nitrogen loss in the aerobic composting of pig manure and microbial changes revealed by metagenomic analysis
Ouyang et al. Effect of biochar structure on H2S emissions during sludge aerobic composting: insights into microscale characterization and microbial mechanism
JP2009057235A (en) Method for producing compost
JP3676884B2 (en) Recycling method of organic waste
KR100267632B1 (en) Method for removing volatile organic componets, hydrogen sulfide and ammonia gas employing biological filter system with immobilized microorganisms
JP2879808B2 (en) How to clean contaminated soil
KR102184326B1 (en) The method of recovering contaminated soil environment using indigenous microorganisms
Salazar et al. Biodegradation of methyl tert-butyl ether by cometabolism with hexane in biofilters inoculated with Pseudomonas aeruginosa
Tsang et al. Biodegradation of ammonia in biofiltration systems: Changes of metabolic products and microbial communities
CN212425605U (en) Deodorant sewage treatment system
JP5682994B2 (en) Covering waste disposal site
JP6864944B1 (en) Manufacturing method of soil conditioner
US20110048085A1 (en) Temporary slurry sprayed permeable cover design for erosion protection and passive biofiltration of methane, volatile organic compounds (VOCs) and odors from area sources.
JP2005145769A (en) Method for composting organic waste with high nitrogen content

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007505837

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077017821

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680004738.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713584

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713584

Country of ref document: EP