WO2006087761A1 - 超電導ケーブルの端末構造 - Google Patents

超電導ケーブルの端末構造 Download PDF

Info

Publication number
WO2006087761A1
WO2006087761A1 PCT/JP2005/002202 JP2005002202W WO2006087761A1 WO 2006087761 A1 WO2006087761 A1 WO 2006087761A1 JP 2005002202 W JP2005002202 W JP 2005002202W WO 2006087761 A1 WO2006087761 A1 WO 2006087761A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
layer
temperature side
gas
superconducting cable
Prior art date
Application number
PCT/JP2005/002202
Other languages
English (en)
French (fr)
Inventor
Yuuichi Ashibe
Takato Masuda
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to KR1020077003643A priority Critical patent/KR101058331B1/ko
Priority to US10/591,949 priority patent/US7729731B2/en
Priority to CN2005800153167A priority patent/CN1954468B/zh
Priority to CA2564235A priority patent/CA2564235C/en
Priority to PCT/JP2005/002202 priority patent/WO2006087761A1/ja
Priority to EP05719104.1A priority patent/EP1850436B1/en
Publication of WO2006087761A1 publication Critical patent/WO2006087761A1/ja
Priority to HK07106294.3A priority patent/HK1101650A1/xx
Priority to NO20074689A priority patent/NO20074689L/no

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/20Cable fittings for cables filled with or surrounded by gas or oil
    • H02G15/22Cable terminations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a terminal structure of a superconducting cable that pulls out a terminal of a superconducting cable from a cryogenic temperature side to a room temperature side through a bushing.
  • the present invention relates to a terminal structure of a superconducting cable that can maintain the hermeticity of a flange disposed between a cryogenic temperature side and a room temperature side for a long period of time.
  • This terminal structure includes a terminal of the superconducting cable 100, a refrigerant tank 101 in which the terminal is accommodated, a pushing 102 that conducts electrical conduction from the superconducting conductor 100a of the cable 100 to the room temperature side, and a vacuum covering the outer periphery of the refrigerant tank 101.
  • a container 103 and a soot tube 104 protruding from the room temperature side of the vacuum container 103 are provided.
  • the bushing 102 has a conductor 102a electrically connected to the superconducting conductor 100a via a joint 105 at the center, and the conductor 102a is covered with a solid insulation 102b such as ethylene propylene rubber. Thus, it is accommodated from the vacuum vessel 103 to the soot tube 104.
  • the stress cones 102c are arranged on the outer periphery of the solid insulation 102b in the vicinity of both ends of the pushing 102, respectively.
  • the soot pipe 104 is filled with an insulating fluid 104a such as insulating oil or SF gas.
  • liquid refrigerant layer 101b filled with a liquid refrigerant 101a such as liquid nitrogen flowing from the supply pipe 106, and the upper layer of the liquid refrigerant tank 101b such as helium gas or nitrogen gas as shown in FIG.
  • the refrigerant gas 101c can be discharged through the discharge pipe 107.
  • the refrigerant gas 101c is maintained in a pressurized state by a pressurizer (not shown) so that the liquid refrigerant 101a does not rise to the normal temperature side.
  • the main object of the present invention is to provide a superconducting cable terminal structure capable of suppressing deterioration in the hermetic performance of the seal disposed at the boundary between the room temperature side and the cryogenic side over a long period of use. Is to provide.
  • the present invention achieves the above object by defining the size of the gas refrigerant layer. That is, the present invention is a superconducting cable terminal structure that pulls out the terminal of the superconducting cable from the cryogenic temperature side to the room temperature side via a bushing, and the cryogenic temperature side is provided with a cooling medium tank for cooling the pushing.
  • the refrigerant tank includes a gas refrigerant layer and a liquid refrigerant layer. In the gas refrigerant layer, the gap between the inner surface of the refrigerant tank and the outer periphery of the pushing is maintained without being pressurized by the pressurizer, and the pressure of the gas refrigerant and the pressure of the liquid refrigerant are balanced. It is the size which carries out.
  • the gas refrigerant layer has been provided with a large interval between the inner surface of the refrigerant tank and the outer periphery of the pushing as shown in FIG.
  • the gap was increased in the vicinity of the flange arranged at the boundary between the normal temperature side and the cryogenic temperature side.
  • the pushing diameter was about 150 mm ⁇
  • the width of the refrigerant tank near the flange was about 400 mm. That is, the distance between the inner surface of the refrigerant tank and the outer periphery of the pushing was about 125 mm.
  • the inventors of the present invention have a sufficiently wide temperature gradient from the cryogenic temperature side to the room temperature side because the width of the refrigerant tank in the vicinity of the flange (the distance between the inner surface of the refrigerant tank and the outer periphery of the bushing) is large.
  • the seal placed in the flange was cooled and hardened by the rising liquid refrigerant, and the airtightness could be lowered by this hardening. Therefore, in order to increase the temperature gradient range, the gas refrigerant layer is moved from the extremely low temperature side to the normal temperature side.
  • the present invention does not increase the length of the gas refrigerant layer in the direction from the extremely low temperature side to the normal temperature side, particularly in the vicinity of the flange, between the inner surface of the refrigerant tank and the outer periphery of the bushing. By reducing the size, a more compact configuration is realized.
  • the pressure of the gaseous refrigerant can be easily increased. Therefore, by appropriately adjusting the size of the gas refrigerant layer, the gas refrigerant can be maintained in a gaseous state without performing pressurization by a pressurizer as in the past. Therefore, the terminal structure that does not require a separate pressurizer can be further downsized.
  • the bushing includes a conductor capable of establishing electrical continuity with the superconducting conductor of the superconducting cable, and solid insulation coated on the outer periphery of the conductor.
  • the solid insulation may be an insulating resin, for example, an insulating rubber material such as ethylene propylene rubber, but in the case of reinforced fiber plastic (FRP), the insulation performance is high, so the width of the gas refrigerant layer (the inner surface of the refrigerant tank) This is preferable because the spacing between the outer circumferences of the bushings can be made smaller.
  • FRP reinforced fiber plastic
  • the refrigerant tank is made of a metal such as stainless steel and solid insulation is used, for example, a structure in which a metal such as stainless steel is applied to the outermost layer of a member that also has FRP force, the gap between the refrigerant tank and the pushing is between metals. Therefore, the so-called bayonet configuration is preferable because the width of the gas refrigerant layer can be further reduced.
  • the refrigerant tank is preferably arranged in a vacuum container having a vacuum heat insulating layer.
  • the refrigerant tank is preferably made of a metal such as stainless steel having excellent strength. It is good also as a structure similar to the conventional vacuum container and a refrigerant tank.
  • the size of the gas refrigerant layer is such that the gap between the inner surface of the refrigerant tank and the outer periphery of the bushing is maintained in a gaseous state without being pressurized by the pressurizer, and the pressure of the gas refrigerant and the pressure of the liquid refrigerant Is a size in which and are balanced. Therefore, it depends on the pressure of the liquid refrigerant and the degree of intrusion heat. For example, when liquid nitrogen is used as the liquid refrigerant and the pressure is about 0.3 to 0.5 MPa, the distance between the inner surface of the refrigerant tank and the outer periphery of the bushing is 0.1 to 2.5 mm.
  • the length of the gas refrigerant layer (distance in the direction toward the room temperature side from the cryogenic temperature side) is about 300 to 500 mm. If the length of the gas refrigerant layer is further reduced, the distance between the inner surface of the refrigerant tank and the outer periphery of the bushing is increased. Therefore, the length and the distance may be selected so as to obtain a terminal structure having a desired size.
  • the gaseous refrigerant and the liquid refrigerant are introduced into the refrigerant tank first by introducing the gaseous refrigerant into the refrigerant tank, and then the liquid refrigerant pressure and the liquid refrigerant pressure are balanced.
  • a refrigerant may be introduced.
  • the refrigerant tank should be sealed so that the equilibrium state is maintained. By sealing the refrigerant tank in this way, the pressurized state of the gaseous refrigerant is maintained without pressurization by the pressurizer.
  • the liquid refrigerant may be cooled by a refrigerator or the like so that an appropriate temperature can be maintained.
  • the liquid refrigerant may be circulated and cooled. At this time, the position of the liquid level may slightly change due to the movement of the liquid refrigerant. Can be maintained.
  • the refrigerant used for the gas refrigerant layer and the liquid refrigerant layer may be the same type or different types.
  • nitrogen gas, helium gas, etc. are mentioned as a refrigerant
  • the refrigerant used for the liquid refrigerant layer include liquid nitrogen.
  • the gas refrigerant in the gas refrigerant layer is in a pressurized state, the force that presses the liquid refrigerant to the cryogenic temperature side and prevents the liquid refrigerant from leaking to the room temperature side. It is preferable to provide a separate so that the leakage of the liquid refrigerant can be prevented more effectively.
  • the shape of the leakage preventing member is not particularly limited as long as it can prevent the liquid refrigerant from leaking to the room temperature side.
  • the leakage preventing member may be a rubber-based resin material such as ethylene propylene rubber, but a silicon-based resin material is preferable because it has excellent resistance to a refrigerant such as liquid nitrogen.
  • the terminal structure of the present invention makes the gas refrigerant layer have a specific size as described above, thereby reducing the temperature gradient to the normal temperature side without excessively increasing the length of the gas refrigerant layer. It can be taken sufficiently. Therefore, when the flange seal is cooled by the gas refrigerant or the like and is cured by the gas refrigerant or the like, and the sealing performance deteriorates due to this curing, the trouble can be prevented. Therefore, the terminal structure of the present invention can prevent the leakage of the gaseous refrigerant to the room temperature side, which is difficult to reduce the sealing performance of the flange seal over a long period of use.
  • the gas refrigerant in the gas refrigerant layer is in a pressurized state by itself without using a pressurizer, so that the liquid refrigerant can be pressed to the cryogenic side, It is possible to suppress the liquid refrigerant from rising to the normal temperature side. Therefore, since the temperature gradient of the gas refrigerant layer is maintained, it is possible to prevent the sealing performance of the flange seal from deteriorating.
  • the pressurizer for the gas refrigerant layer can be eliminated, and the number of constituent members can be reduced.
  • FIG. 1 is a schematic configuration diagram showing a terminal structure of a superconducting cable of the present invention.
  • FIG. 2 is a partially enlarged view of region II in FIG.
  • FIG. 3 is an enlarged view of the vicinity of a flange in which a ring-shaped member is arranged, which is an example in which the terminal structure of the superconducting cable of the present invention is provided with a leakage preventing member.
  • FIG. 4 is an enlarged view of the vicinity of a flange in which a block-like member is arranged as an example of providing a leakage preventing member in the terminal structure of the superconducting cable of the present invention.
  • FIG. 5 is a schematic configuration diagram showing a terminal structure of a conventional superconducting cable.
  • This terminal structure is the same as the terminal structure of the conventional superconducting cable shown in Fig. 5. That is, the terminal 10 of the superconducting cable 100, the pushing 10 connected to the superconducting conductor 100a of the cable 100 to conduct electrical conduction from the cryogenic temperature side to the room temperature side, and the refrigerant tank 11 in which the terminal of the cable 100 and the pushing 10 are housed. And a vacuum vessel 12 that covers the outer periphery of the refrigerant tank 11 and a tube 104 that is in contact with the room temperature side of the vacuum vessel 12.
  • the refrigerant tank 11 includes a liquid nitrogen layer (liquid refrigerant layer) 13 on the extremely low temperature side and a nitrogen gas layer (gas refrigerant layer) 14 adjacent to the normal temperature side.
  • a flange 108 is disposed between the cryogenic temperature side and the room temperature side, and a seal 109 is disposed at the boundary between the flange 108 and the outer periphery of the bushing 10 so as to be airtight.
  • the feature of the present invention is the size of the nitrogen gas layer 14. Specifically, the distance t between the inner surface 11a of the refrigerant tank 11 and the outer periphery of the pushing 10 is determined by pressurization using a pressurizer. This is because the nitrogen gas is maintained in a gaseous state without performing the steps, and the pressure of the nitrogen gas and the pressure of liquid nitrogen are balanced.
  • a pressurizer This is because the nitrogen gas is maintained in a gaseous state without performing the steps, and the pressure of the nitrogen gas and the pressure of liquid nitrogen are balanced.
  • the pushing 10 (diameter 140mm) used in this example is covered with the conductor 10a (diameter 40mm ⁇ ) capable of being electrically connected to the superconducting conductor 100a of the superconducting cable 100 and the outer periphery of the conductor 10a.
  • solid insulation 10b (thickness 50mm).
  • the superconducting conductor 100a and the conductor 10a of the pushing 10 are connected via a joint 100b.
  • the conductor 10a was used in the vicinity of the temperature of liquid nitrogen, which has a low electrical resistance and a copper strength.
  • the solid insulation 10b is made of FRP, which has excellent insulation properties.
  • the upper shield 10c made of copper is provided at the upper end of the pushing 10 in FIG.
  • the refrigerant tank 11 is made of stainless steel and is housed in a vacuum vessel 12 that is also made of stainless steel. Between the vacuum vessel 12 and the refrigerant tank 11, a vacuum heat insulating layer l ib is provided.
  • the refrigerant tank 11 includes a liquid nitrogen layer 13 and a nitrogen gas layer 14.
  • the liquid nitrogen layer 13 is connected with a refrigerator 15 for cooling the liquid nitrogen 13a.
  • liquid nitrogen 13a was filled in order to remove moisture and the like in the refrigerant tank 11. Then, liquid nitrogen 13a is supplied to the liquid nitrogen layer 13, and nitrogen gas is left in a part of the refrigerant tank 11, specifically, in the vicinity of the flange 108 disposed at the boundary between the cryogenic temperature side and the room temperature side. .
  • the portion where the nitrogen gas remains is the nitrogen gas layer 14.
  • the nitrogen gas layer 14 has an interval t between the inner surface 11a of the refrigerant tank 11 and the outer periphery of the pushing 10 of 2.5 mm and a length L of 400 mm.
  • liquid nitrogen is introduced into the refrigerant tank 11 so that the pressure of the liquid nitrogen in the refrigerant tank 11 is about 0.5 MPa, and the refrigerant tank 11 is sealed.
  • the gas state is maintained at the pressure of the nitrogen gas itself, and the pressure of the nitrogen gas 14a and the pressure of the liquid nitrogen 13a are substantially balanced.
  • the terminal structure of the superconducting cable of the present invention having the above configuration can provide a sufficient temperature gradient by directing the cryogenic side force toward the room temperature side without excessively increasing the length of the gas refrigerant layer. . For this reason, it is possible to effectively prevent the seal provided on the flange from being excessively cooled and hardened to deteriorate the seal characteristics. Therefore, the superconducting cable of the present invention can maintain an airtight state between the room temperature side and the cryogenic side over a long period of use.
  • the terminal structure of the superconducting cable of the present invention does not require a pressurizer for maintaining the gaseous refrigerant in the gaseous refrigerant layer in a gaseous state, so that the pressurization equipment can be reduced and the size can be further reduced. Is possible.
  • the size (thickness t and length L) of the nitrogen gas layer was changed, and the deterioration state of the seal disposed on the flange was examined.
  • the pressure of liquid nitrogen was varied in the range of 0.3-0. 5 MPa depending on the thickness t and length L. After holding for 60 hours under the above conditions, when examining the seal, when the thickness t is 0.1 to 2.5 mm and the length L is 300 to 500 mm, the seal performance is sufficient to hardly cure. I understood that I had it. Also, the smaller the thickness t, the easier it is to take a temperature gradient if the length L is increased. all right.
  • the pressure of the liquid nitrogen is preferably adjusted in the range of 0.3 to 0.5 MPa according to the thickness t and the length L so as to be balanced with the pressure of the nitrogen gas.
  • a leakage preventing member for preventing the liquid refrigerant from leaking may be arranged on the room temperature side.
  • a leakage preventing member for preventing the liquid refrigerant from leaking
  • a ring-shaped member 20 that can be fitted in the vicinity of the boundary between the nitrogen gas layer 14 and the liquid nitrogen layer 13 in the refrigerant tank 11 is disposed near the boundary.
  • a ring-shaped member 20 formed of silicon resin having excellent resistance to liquid nitrogen was used.
  • a block-shaped member 21 having a shape fitted in a shape near the boundary between the nitrogen gas layer 14 and the liquid nitrogen layer 13 in the refrigerant tank 11 is disposed near the boundary.
  • the block-shaped member 21 used in this example was made of silicon resin having excellent resistance to liquid nitrogen.
  • the leakage preventing member By disposing the leakage preventing member as described above, the liquid refrigerant can be prevented from leaking to the normal temperature side, and the flange seal can be prevented from being cooled by coming into contact with the liquid refrigerant. .
  • the leakage preventing member does not completely seal between the liquid nitrogen layer 13 and the nitrogen gas layer 14, but has a size that allows the pressure of the liquid nitrogen 13a to be stored in the nitrogen gas 14a.
  • the terminal structure of the present invention is preferably applied to a terminal portion of a superconducting cable.

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Cable Accessories (AREA)

Abstract

 長期の使用に亘り、常温側と極低温側との境界に配置されるシールの気密性能の劣化を抑制することができる超電導ケーブルの端末構造を提供する。超電導ケーブル(100)の端末と、ケーブル(100)の超電導導体(100a)と電気的導通をとるブッシング(10)と、端末及びブッシング(10)が収納される冷媒槽(11)とを具える。冷媒槽(11)には、極低温側に液体窒素層(13)、常温側に窒素ガス層(14)とを隣接して具える。窒素ガス層(14)において冷媒槽(11)の内面(11a)とブッシング(10)の外周との間隔tを、加圧機による加圧を行うことなく窒素ガスが気体状態に維持されると共に、窒素ガスの圧力と液体窒素との圧力が平衡する大きさとする。

Description

明 細 書
超電導ケーブルの端末構造
技術分野
[0001] 本発明は、超電導ケーブルの端末を極低温側から常温側にプッシングを介して引 き出す超電導ケーブルの端末構造に関するものである。特に、極低温側と常温側間 に配置されるフランジの気密性を長期に亘り維持することが可能な超電導ケーブル の端末構造に関するものである。
背景技術
[0002] 従来、超電導ケーブルの端末構造として、例えば、図 5に示す構造のものが知られ ている (特許文献 1参照)。この端末構造は、超電導ケーブル 100の端末と、この端末 が収納される冷媒槽 101と、ケーブル 100の超電導導体 100aから常温側に電気的 導通をとるプッシング 102と、冷媒槽 101の外周を覆う真空容器 103と、真空容器 10 3の常温側に突設される碍管 104とを具える。
[0003] プッシング 102は、中心に、超電導導体 100aとジョイント 105を介して電気的に接 続される導体 102aを有し、導体 102aの周囲にエチレンプロピレンゴムなどの固体絶 縁 102bを被覆したもので、真空容器 103から碍管 104に亘つて収納されている。な お、図 5に示す例では、プッシング 102の両端部付近において、固体絶縁 102bの外 周にそれぞれストレスコーン 102cを配置させて!/、る。
[0004] 碍管 104内には、絶縁油や SFガスなどの絶縁流体 104aが充填される。冷媒槽 10
6
1には、供給管 106から流入される液体窒素などの液体冷媒 101aが充填される液体 冷媒層 101bと、図 5にお!/、て液体冷媒槽 101bの上層にヘリウムガスや窒素ガスな どの冷媒ガス 101cが充填される気体冷媒層 101dとを具える。冷媒ガス 101cは、排 出管 107により排出可能である。また、冷媒ガス 101cは、液体冷媒 101aが常温側 に上昇してこないように、加圧機 (図示せず)により加圧された状態に維持されている。
[0005] 極低温側の真空容器 103と常温側の碍管 104とは、フランジ 108により仕切られて いる。このフランジ 108には、気体冷媒層 101dの冷媒ガス 101cが常温側の碍管 10 4に侵入しな 、ように、通常シール 109を配置して気密に保持して 、る。 特許文献 1 :特開 2002— 238144号公報(図 3)
発明の開示
発明が解決しょうとする課題
[0006] しかし、上記従来の端末構造では、長期の使用に亘ると、フランジのシールが冷媒 により冷却されて硬化することでシール性能が低下して冷媒ガスが常温側に漏洩す る、即ち、気密が保持できなくなる恐れがある、という問題がある。
[0007] そこで、本発明の主目的は、長期の使用に亘り、常温側と極低温側との境界に配 置されるシールの気密性能の劣化を抑制することができる超電導ケーブルの端末構 造を提供することにある。
課題を解決するための手段
[0008] 本発明は、気体冷媒層の大きさを規定することで上記目的を達成する。即ち、本発 明は、超電導ケーブルの端末を極低温側から常温側にプッシングを介して引き出す 超電導ケーブルの端末構造であって、極低温側には、前記プッシングを冷却する冷 媒槽を具え、前記冷媒槽には、気体冷媒層と液体冷媒層とを具える。そして、前記気 体冷媒層において冷媒槽の内面とプッシングの外周との間隔は、加圧機により加圧 することなく気体状態が維持されると共に、気体冷媒の圧力と液体冷媒の圧力とが平 衡する大きさであることを特徴とする。
[0009] 従来、気体冷媒層は、十分な絶縁距離を確保するため、図 5に示すように冷媒槽の 内面とプッシングの外周との間隔を大きくして 、た。常温側と極低温側との境界に配 置されるフランジ付近においても同様に上記間隔を大きくしていた。具体的には、例 えば、プッシング径が 150mm φ程度の場合、フランジ付近の冷媒槽の幅 (内面間の 距離)が 400mm程度であった。即ち、冷媒槽の内面とプッシングの外周との間隔が 1 25mm程度であった。
[0010] しかし、本発明者らは、フランジ近傍の冷媒槽の幅 (冷媒槽の内面とプッシングの外 周間の距離)が広いことで、極低温側から常温側への温度勾配が十分にとれず、フラ ンジに配置されるシールが気体冷媒ゃ上昇してきた液体冷媒により冷却されて硬化 し、この硬化により気密性能を低下させる可能性があることを突き止めた。そこで、温 度勾配の範囲をより大きくするために、気体冷媒層において極低温側から常温側に 向力う方向の長さを長くすることが考えられるが、この延長化により、冷媒槽ゃ真空容 器、引いては端末構造が大型になる。そこで、本発明は、気体冷媒層において極低 温側から常温側に向力う方向の長さを長くするのではなぐ特に、フランジ近傍にお いて、冷媒槽の内面とプッシングの外周間の間隔を小さくすることで、よりコンパクトな 構成を実現する。
[0011] また、冷媒槽の内面とプッシングの外周間の間隔を小さくすることで、気体冷媒の 圧力を高くし易い。従って、気体冷媒層の大きさを適宜調整することで、従来のように 加圧機による加圧を行わなくても、気体冷媒を気体状態に維持することができる。そ のため、加圧機を別途設ける必要がなぐ端末構造をより小型化することができる。
[0012] 本発明にお 、てプッシングは、超電導ケーブルの超電導導体と電気的導通をとる ことが可能な導体と、導体の外周に被覆される固体絶縁とを具えるものとする。ブッシ ングの導体としては、銅やアルミニウム (共に、 77Kの比抵抗 p = 2 X 10— 7 Ω 'cm)な どのように、超電導ケーブルが使用される冷媒温度、例えば、冷媒として液体窒素を 用いる場合、液体窒素の温度近傍にぉ ヽても電気的抵抗が小さ!ヽ金属などの導電 性材料にて形成するとよい。固体絶縁は、絶縁性榭脂、例えば、エチレンプロピレン ゴムなどの絶縁ゴム材料でもよいが、強化繊維プラスチック (FRP)の場合、絶縁性能 力 り高いため、気体冷媒層の幅 (冷媒槽の内面とプッシングの外周間の間隔)をより 小さくすることができて好ましい。特に、冷媒槽をステンレスなどの金属で構成すると 共に、固体絶縁として、例えば、 FRP力もなる部材の最外層にステンレスなどの金属 を施した構成のものを用いると、冷媒槽とプッシング間が金属同士になるため、いわ ゆるバイヨネット方式の構成となることで、気体冷媒層の幅をより小さくすることができ て好ましい。
[0013] 冷媒槽は、真空断熱層を具える真空容器内に配置することが好ましい。また、冷媒 槽は、強度に優れるステンレスなどの金属で構成することが好ましい。従来の真空容 器や冷媒槽と同様の構成としてもよい。
[0014] 気体冷媒層の大きさは、冷媒槽の内面とプッシングの外周との間隔が、加圧機によ り加圧することなく気体状態が維持されると共に、気体冷媒の圧力と液体冷媒の圧力 とが平衡となる大きさとする。従って、液体冷媒の圧力や、侵入熱の度合いなどによ つて調整するとよいが、例えば、液体冷媒として液体窒素を用い、圧力を 0. 3-0. 5 MPa程度とする場合、冷媒槽の内面とプッシングの外周との間隔を 0. 1-2. 5mm 程度、気体冷媒層の長さ (極低温側カゝら常温側に向カゝぅ方向の距離)を 300— 500m m程度が挙げられる。気体冷媒層の長さをより小さくすると、冷媒槽の内面とブッシン グの外周との間隔が大きくなるため、所望の大きさの端末構造となるように、上記長さ 及び間隔を選択するとよい。
[0015] 冷媒槽への気体冷媒及び液体冷媒の導入は、例えば、まず、気体冷媒を冷媒槽 に導入しておき、その後、気体冷媒の圧力と液体冷媒の圧力とが平衡するように液 体冷媒を導入するとよい。そして、平衡状態が保持されるように冷媒槽を密閉すると よい。このように冷媒槽を密閉することで、加圧機による加圧を行うことなく気体冷媒 の加圧状態が保持される。このとき、液体冷媒は、適切な温度を維持できるように冷 凍機などにより冷却を行うとよい。また、液体冷媒は、循環冷却させてもよい。このとき 、液体冷媒の移動により、液面の位置が多少変化することもあるが、気体冷媒の圧力 と液体冷媒の圧力とが平衡するように液体冷媒の圧力などを調整することによって、 平衡状態を維持することができる。
[0016] 気体冷媒層及び液体冷媒層に用いる冷媒は、同種のものでもよいし、異種のもの でもよい。例えば、気体冷媒層に用いる冷媒として、窒素ガス、ヘリウムガスなどが挙 げられる。液体冷媒層に用いる冷媒は、例えば、液体窒素が挙げられる。
[0017] 本発明では、気体冷媒層の気体冷媒が加圧状態にあるため、液体冷媒を極低温 側に押し付け、液体冷媒が常温側に漏洩することを防止している力 更に、漏洩防止 部材を別途具えておくと、液体冷媒の漏洩をより効果的に防止することができて好ま しい。漏洩防止部材の形状は、液体冷媒が常温側に漏れにくくすることができるもの であればよぐ特に問わない。例えば、プッシングの外周に挿通配置可能なリング状 としてもよいし、気体冷媒層と液体冷媒層との境界付近の冷媒槽に嵌合可能な形状 としてもよい。漏洩防止部材の材質は、エチレンプロピレンゴムなどのゴム系榭脂材 料でもよいが、シリコン系榭脂材料の場合、液体窒素などの冷媒に対する耐性に優 れるため好ましい。
発明の効果 [0018] 本発明端末構造は、上記のように気体冷媒層を特定の大きさとすることで、気体冷 媒層の長さを過剰に大きくすることなぐ極低温側力 常温側への温度勾配を十分に とることができる。そのため、気体冷媒などによりフランジのシールが気体冷媒などに より冷却されて硬化し、この硬化によりシール性能が劣化すると 、つた不具合を防止 することができる。従って、本発明端末構造は、長期の使用に亘つて、フランジのシ ールの密閉性能を低下させにくぐ常温側への気体冷媒の漏洩防止を実現すること ができる。
[0019] また、本発明端末構造では、気体冷媒層中の気体冷媒が加圧機を用いることなく それ自身で加圧状態となって ヽるため、液体冷媒を極低温側に押し付けることができ 、液体冷媒が常温側に上昇するのを抑制することができる。従って、気体冷媒層の温 度勾配が維持されるため、フランジのシールのシール性能が劣化するのを防ぐことが できる。
[0020] 更に、本発明端末構造において気体冷媒は、加圧機を用いなくても加圧状態であ るため、気体冷媒層用の加圧機を無くすことができ、構成部材を削減することができ る。
図面の簡単な説明
[0021] [図 1]本発明超電導ケーブルの端末構造を示す概略構成図である。
[図 2]図 1における領域 IIの部分拡大図である。
[図 3]本発明超電導ケーブルの端末構造にぉ 、て、漏洩防止部材を具える例であつ てリング状部材を配置したフランジ近傍の拡大図である。
[図 4]本発明超電導ケーブルの端末構造にぉ 、て、漏洩防止部材を具える例であつ てブロック状部材を配置したフランジ近傍の拡大図である。
[図 5]従来の超電導ケーブルの端末構造を示す概略構成図である。
符号の説明
[0022] 10 プッシング、 10a 導体、 10b 固体絶縁、 10c 上部シールド、 11 冷媒層、 1 la 内面、 l ib 真空断熱層、 12 真空容器、 13 液体窒素層、 13a 液体窒素、 1 4 窒素ガス層、 14a 窒素ガス、 15 冷凍機、 20 リング状部材、 21 ブロック上部 材、 100 超電導ケーブル、 100a 超電導導体、 100b, 105 ジョイント、 101 冷媒 層、 101a 液体冷媒、 101b 液体冷媒層、 101c 気体冷媒、 101d 気体冷媒層、 102 プッシング、 102a 導体、 102b 固体絶縁、 102c ストレスコーン、 103 真空 容器、 104 碍管、 106 供給管、 107 排出管、 108 フランジ、 109 シール。 発明を実施するための最良の形態
[0023] 以下、本発明の実施の形態を説明する。
実施例 1
[0024] 図 1および図 2を参照して、本発明超電導ケーブルの端末構造を説明する。なお、 以下、図中同一符号は同一物を示す。この端末構造は、基本的構造は図 5に示す 従来の超電導ケーブルの端末構造と同様である。即ち、超電導ケーブル 100の端末 と、ケーブル 100の超電導導体 100aに接続されて極低温側から常温側に電気的導 通をとるプッシング 10と、ケーブル 100の端末及びプッシング 10が収納される冷媒槽 11と、冷媒槽 11の外周を覆う真空容器 12と、真空容器 12の常温側に突接される碍 管 104とを具える。冷媒槽 11には、極低温側に液体窒素層 (液体冷媒層) 13、常温 側に窒素ガス層 (気体冷媒層) 14とを隣接して具える。そして、極低温側と常温側間 にフランジ 108を配置すると共に、フランジ 108においてプッシング 10の外周との境 界部にシール 109を配置して気密にしている。
[0025] 本発明の特徴とするところは、窒素ガス層 14の大きさにあり、具体的には、冷媒槽 1 1の内面 11aとプッシング 10の外周との間隔 tを、加圧機による加圧を行うことなく窒 素ガスが気体状態に維持されると共に、窒素ガスの圧力と液体窒素との圧力が平衡 する大きさとしたことにある。以下、各構成を詳しく説明する。
[0026] 本例で用いたプッシング 10(直径 140mm)は、超電導ケーブル 100の超電導導体 100aと電気的導通をとることが可能な導体 10a (直径 40mm φ )と、導体 10aの外周 に被覆される固体絶縁 10b (厚さ 50mm)とを具える。超電導導体 100aとプッシング 1 0の導体 10aとは、ジョイント 100bを介して接続している。本例において導体 10aは、 液体窒素の温度近傍にぉ 、て電気的抵抗が小さ 、銅力もなるものを用いた。また、 固体絶縁 10bは、絶縁性に優れる FRPにて形成した。更に、本例では、図 1におい てプッシング 10の上端 (常温側に配置される端部)に銅製の上部シールド 10cを設け ている。 [0027] 本例において冷媒槽 11は、ステンレスにて形成し、同様にステンレスにて形成した 真空容器 12内に収納させている。真空容器 12と冷媒槽 11間には、真空断熱層 l ib を具える構成である。この冷媒槽 11には、液体窒素層 13と、窒素ガス層 14とを具え る。液体窒素層 13には、液体窒素 13aを冷却するための冷凍機 15を接続している。
[0028] 本例では、冷媒槽 11に液体窒素 13aを導入する前、冷媒槽 11内の水分などを除 去するために窒素ガスを充填した。そして、液体窒素層 13に液体窒素 13aを供給す ると共に、冷媒槽 11の一部、具体的には、極低温側と常温側間の境界に配置される フランジ 108近傍に窒素ガスを残留させる。この窒素ガスが残留する部分が窒素ガス 層 14となる。本例において窒素ガス層 14は、冷媒槽 11の内面 11aとプッシング 10の 外周との間隔 tを 2. 5mm,長さ Lを 400mmとした。このとき、冷媒槽 11内における液 体窒素の圧力が約 0. 5MPaとなるように液体窒素を冷媒槽 11に導入して冷媒槽 11 を密閉する。この構成により、窒素ガス自身の圧力で気体状態が維持されると共に、 窒素ガス 14aの圧力と液体窒素 13aの圧力とがほぼ平衡する。
[0029] 上記構成を具える本発明超電導ケーブルの端末構造は、気体冷媒層の長さを過 剰に大きくすることなく極低温側力も常温側に向力つて十分な温度勾配を設けること ができる。そのため、フランジに設けたシールが過度に冷却されて硬化し、シール特 性が劣化されることを効果的に防止することができる。従って、本発明超電導ケープ ルは、長期の使用に亘り、常温側と極低温側間の気密状態を保持することができる。 また、本発明超電導ケーブルの端末構造では、気体冷媒層内の気体冷媒を気体の 状態に維持するための加圧機を必要としないため、加圧設備を削減することができ、 より小型化することが可能である。
[0030] (試験例)
上記実施例 1のプッシングを用いて、窒素ガス層の大きさ (厚さ t及び長さ L)を変化 させて、フランジに配置されるシールの劣化状態を調べてみた。液体窒素の圧力は、 厚さ t及び長さ Lに応じて 0. 3-0. 5MPaの範囲で変化させた。上記条件で 60時間 保持させた後、シールを調べてみたところ、厚さ tが 0. 1-2. 5mm、長さ Lが 300— 500mmの場合、硬化することがほとんどなぐ十分なシール性能を有することがわか つた。また、厚さ tが小さいほど、長さ Lを大きくしたほうが温度勾配をとりやすいことが わかった。なお、上記実施例 1では、冷媒を循環させない構成を示したが、冷媒を循 環させてもよい。このとき、液体窒素の圧力は、窒素ガスの圧力と平衡するように、厚 さ t及び長さ Lに応じて 0. 3-0. 5MPaの範囲で調整するとよい。
実施例 2
[0031] 上記実施例 1に示す端末構造において、常温側に液体冷媒が漏れ出るのを防止 するための漏洩防止部材を配置してもよい。以下、図 3および図 4を参照して漏洩防 止部材を配置した端末構造の例を説明する。
[0032] 図 3に示す例では、冷媒槽 11において窒素ガス層 14と液体窒素層 13との境界付 近に嵌合可能なリング状部材 20を上記境界付近に配置して 、る。本例で用いたリン グ状部材 20は、液体窒素に対する耐性に優れるシリコン榭脂にて形成したものを用 いた。
[0033] 図 4に示す例では、冷媒槽 11において窒素ガス層 14と液体窒素層 13との境界付 近の形状に嵌合させた形状のブロック状部材 21を上記境界付近に配置して 、る。本 例で用いたブロック状部材 21は、液体窒素に対する耐性に優れるシリコン榭脂にて 形成したものを用いた。
[0034] 上記のような漏洩防止部材を配置することで、液体冷媒が常温側に漏洩するのを 抑制すると共に、フランジのシールが液体冷媒と接触して冷却されることを防止する ことができる。なお、上記漏洩防止部材は、液体窒素層 13と窒素ガス層 14間を完全 にシールするものではなく、液体窒素 13aの圧力が窒素ガス 14aにカ卩えられる大きさ としている。
産業上の利用可能性
[0035] 本発明端末構造は、超電導ケーブルの終端部に適用することが好ましい。

Claims

請求の範囲
[1] 超電導ケーブル (100)の端末を極低温側から常温側にプッシング(10)を介して引 き出す超電導ケーブルの端末構造であって、
極低温側には、前記プッシングを冷却する冷媒槽 (11)を具え、
前記冷媒槽 (11)には、気体冷媒層(14)と液体冷媒層 (13)とを具え、
前記気体冷媒層(14)にお 、て冷媒槽( 11)の内面( 1 la)とプッシング(10)の外周 との間隔は、加圧機により加圧することなく気体状態が維持されると共に、気体冷媒(
14a)の圧力と液体冷媒(13a)の圧力とが平衡する大きさであることを特徴とする超 電導ケーブルの端末構造。
[2] 更に、液体冷媒(13a)の常温側への漏洩を抑制する漏洩防止部材(20, 21)を具 えることを特徴とする請求の範囲第 1項に記載の超電導ケーブルの端末構造。
PCT/JP2005/002202 2005-02-15 2005-02-15 超電導ケーブルの端末構造 WO2006087761A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020077003643A KR101058331B1 (ko) 2005-02-15 2005-02-15 초전도 케이블의 단말 구조체
US10/591,949 US7729731B2 (en) 2005-02-15 2005-02-15 Terminal structure of superconducting cable
CN2005800153167A CN1954468B (zh) 2005-02-15 2005-02-15 超导电缆的终端结构
CA2564235A CA2564235C (en) 2005-02-15 2005-02-15 Terminal structure of superconducting cable
PCT/JP2005/002202 WO2006087761A1 (ja) 2005-02-15 2005-02-15 超電導ケーブルの端末構造
EP05719104.1A EP1850436B1 (en) 2005-02-15 2005-02-15 End structure of superconducting cable
HK07106294.3A HK1101650A1 (en) 2005-02-15 2007-06-12 End structure of superconducting cable
NO20074689A NO20074689L (no) 2005-02-15 2007-09-14 Terminalstruktur for superledende kabel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/002202 WO2006087761A1 (ja) 2005-02-15 2005-02-15 超電導ケーブルの端末構造

Publications (1)

Publication Number Publication Date
WO2006087761A1 true WO2006087761A1 (ja) 2006-08-24

Family

ID=36916177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002202 WO2006087761A1 (ja) 2005-02-15 2005-02-15 超電導ケーブルの端末構造

Country Status (8)

Country Link
US (1) US7729731B2 (ja)
EP (1) EP1850436B1 (ja)
KR (1) KR101058331B1 (ja)
CN (1) CN1954468B (ja)
CA (1) CA2564235C (ja)
HK (1) HK1101650A1 (ja)
NO (1) NO20074689L (ja)
WO (1) WO2006087761A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008113366A2 (en) * 2007-03-21 2008-09-25 Nkt Cables Ultera A/S A cryogenic cable termination unit
US20090239751A1 (en) * 2008-03-20 2009-09-24 Nicolas Lallouet Electrical connection structure for a superconductive element

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2462626B (en) * 2008-08-14 2010-12-29 Siemens Magnet Technology Ltd Cooled current leads for cooled equipment
CN101615469B (zh) * 2009-05-08 2011-02-02 中国科学院电工研究所 高热容材料保护的高温超导磁体***
KR101563003B1 (ko) * 2009-07-10 2015-10-26 엘에스전선 주식회사 분리가능한 초전도 케이블용 종단접속함의 단말 구조체
JP5566714B2 (ja) * 2010-02-04 2014-08-06 古河電気工業株式会社 極低温ケーブルの終端接続部
KR101798659B1 (ko) * 2011-04-27 2017-11-16 엘에스전선 주식회사 초전도 케이블 장치
US9000295B1 (en) * 2012-05-10 2015-04-07 The Florida State University Research Foundation, Inc. Termination for gas cooled cryogenic power cables
KR102005582B1 (ko) * 2013-01-23 2019-07-30 엘에스전선 주식회사 초전도 기기용 종단 구조체
KR102005583B1 (ko) * 2013-01-23 2019-10-08 엘에스전선 주식회사 초전도 기기용 종단 구조체
US9450164B2 (en) * 2013-03-13 2016-09-20 Varian Semiconductor Equipment Associates, Inc. High voltage busing for cryogenics applications
JP2015029372A (ja) * 2013-07-30 2015-02-12 昭和電線ケーブルシステム株式会社 極低温機器の端末装置
WO2015068390A1 (ja) * 2013-11-05 2015-05-14 昭和電線ケーブルシステム株式会社 極低温ケーブルの終端接続部
CN104485631A (zh) * 2014-12-12 2015-04-01 王凡业 一种冷绝缘超导电缆端头
US10892136B2 (en) * 2018-08-13 2021-01-12 Varian Semiconductor Equipment Associates, Inc. Ion source thermal gas bushing
CN110044500B (zh) * 2019-04-15 2020-04-07 西南交通大学 一种电缆接头温度检测及故障预警因子测评方法
CN110518376B (zh) * 2019-08-30 2021-05-28 天津大学 一种高温超导电力电缆多通接头
CN112072606B (zh) * 2020-07-31 2021-12-07 深圳供电局有限公司 三相同轴超导电缆终端***及其组装方法
CN114336102B (zh) * 2021-11-18 2023-07-25 深圳供电局有限公司 超导电缆接头及装置
CN114284761B (zh) * 2021-12-21 2023-09-12 深圳供电局有限公司 一种超导电缆转接头

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070828A (ja) * 1996-08-26 1998-03-10 Sumitomo Electric Ind Ltd 極低温ケーブルの端末構造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485266A (en) * 1982-07-29 1984-11-27 The United States Of America As Represented By The United States Department Of Energy Termination for a superconducting power transmission line including a horizontal cryogenic bushing
JPH08196030A (ja) * 1995-01-13 1996-07-30 Furukawa Electric Co Ltd:The 極低温ケーブルの終端接続装置
IT1281651B1 (it) * 1995-12-21 1998-02-20 Pirelli Cavi S P A Ora Pirelli Terminale per collegare un cavo polifase superconduttivo ad un impianto elettrico a temperatura ambiente
GB2331867A (en) 1997-11-28 1999-06-02 Asea Brown Boveri Power cable termination
JP3563355B2 (ja) 2001-02-13 2004-09-08 住友電気工業株式会社 極低温機器の端末構造
US6888060B2 (en) * 2001-02-13 2005-05-03 Sumitomo Electric Industries, Ltd. Terminal structure of extreme-low temperature equipment
JP4292416B2 (ja) * 2005-01-12 2009-07-08 住友電気工業株式会社 超電導ケーブルの端末構造

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070828A (ja) * 1996-08-26 1998-03-10 Sumitomo Electric Ind Ltd 極低温ケーブルの端末構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008113366A2 (en) * 2007-03-21 2008-09-25 Nkt Cables Ultera A/S A cryogenic cable termination unit
WO2008113366A3 (en) * 2007-03-21 2009-02-19 Nkt Cables Ultera As A cryogenic cable termination unit
US8624109B2 (en) 2007-03-21 2014-01-07 Nkt Cables Ultera A/S Termination unit
US9331468B2 (en) 2007-03-21 2016-05-03 Nkt Cables Ultera A/S Termination unit
US20090239751A1 (en) * 2008-03-20 2009-09-24 Nicolas Lallouet Electrical connection structure for a superconductive element

Also Published As

Publication number Publication date
NO20074689L (no) 2007-09-14
EP1850436B1 (en) 2013-10-02
EP1850436A1 (en) 2007-10-31
HK1101650A1 (en) 2007-10-18
CA2564235A1 (en) 2006-08-24
CA2564235C (en) 2012-08-14
KR101058331B1 (ko) 2011-08-22
KR20070102651A (ko) 2007-10-19
CN1954468A (zh) 2007-04-25
CN1954468B (zh) 2010-05-05
US20070191231A1 (en) 2007-08-16
EP1850436A4 (en) 2011-04-13
US7729731B2 (en) 2010-06-01

Similar Documents

Publication Publication Date Title
WO2006087761A1 (ja) 超電導ケーブルの端末構造
KR100642538B1 (ko) 극저온 기기의 단말 구조
US7849704B2 (en) Cryogenic apparatus of superconducting equipment
DK2698794T3 (en) Arrangement with at least one superconducting cable
TWI287341B (en) Terminal structure of a superconductive cable
WO2006085409A1 (ja) 超電導ケーブルの中間接続構造
KR101190959B1 (ko) 초전도 케이블의 단말 구조체
KR20100092109A (ko) 초전도 케이블의 저온유지장치
JP3563355B2 (ja) 極低温機器の端末構造
US9000295B1 (en) Termination for gas cooled cryogenic power cables
US20070169957A1 (en) Splice structure of superconducting cable
CN100594635C (zh) 用于超导体元件的电连接结构
JP2005009582A (ja) 低温用の締結構造
KR20080013766A (ko) 초전도 케이블용 종단부
KR20040084292A (ko) 초전도 케이블용 단말구조

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10591949

Country of ref document: US

Ref document number: 2007191231

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005719104

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2564235

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580015316.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077003643

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007123021

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 10591949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005719104

Country of ref document: EP