WO2006082921A1 - REINFORCED α-BRASS AND PROCESS FOR PRODUCING THE SAME - Google Patents

REINFORCED α-BRASS AND PROCESS FOR PRODUCING THE SAME Download PDF

Info

Publication number
WO2006082921A1
WO2006082921A1 PCT/JP2006/301860 JP2006301860W WO2006082921A1 WO 2006082921 A1 WO2006082921 A1 WO 2006082921A1 JP 2006301860 W JP2006301860 W JP 2006301860W WO 2006082921 A1 WO2006082921 A1 WO 2006082921A1
Authority
WO
WIPO (PCT)
Prior art keywords
brass
annealing
mpa
reinforced
grain size
Prior art date
Application number
PCT/JP2006/301860
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Yamaguchi
Original Assignee
Mitsui Mining & Smelting Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd filed Critical Mitsui Mining & Smelting Co., Ltd
Priority to DE112006000331T priority Critical patent/DE112006000331T5/en
Priority to US11/815,607 priority patent/US20090120544A1/en
Publication of WO2006082921A1 publication Critical patent/WO2006082921A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/008Zinc or its alloys

Definitions

  • the present invention relates to a reinforced OC brass material that is excellent in strength and formability, has a balance between strength and formability, and maintains a certain level of stress relaxation characteristics, and a method for producing the same.
  • the conventional brass material has a drawback that if it is desired to obtain a material having higher strength by increasing the processing rate, the bending process becomes poor and the toughness is poor and the bending process becomes difficult. . In other words, when caulking to connectors, etc., it is often necessary to apply a strict bending force. ⁇ .) is 55
  • the processing method using oc brass as a strip is generally performed by semi-continuous forging, hot rolling and chamfering, followed by cold rolling and continuous rolling to a thickness that allows a continuous annealing process. It is cut into strips through the steps of annealing pickling, cold rolling, continuous annealing pickling and cold rolling. In this process, annealing and rolling may be repeated depending on the thickness, or annealing may be a batch method. There are various manufacturing processes, such as omitting the last rolling if dulling is desired, and during or after rolling and heat treatment, such as degreasing, pickling, straightening, cutting, plating, etc. Steps can be added. Such a conventional manufacturing process is hereinafter referred to as a “general manufacturing process” in the present application.
  • the annealing conditions of the above general manufacturing process are performed within a range of 480 ° C to 850 ° C as disclosed in Patent Document 1.
  • the grain size is generally set to ⁇ to 35 / ⁇ m.
  • the Vickers hardness (Hv) Will be 60-80.
  • the crystal grain size is generally 5 ⁇ to 60 / ⁇ ⁇ depending on the application, and the Vickers hardness ( ⁇ ) is 50 to 120.
  • general manufacturing process after the final annealing, the product is finished into a product strip by cutting after passing through the final cold rolling process. And in this application, what passed through this last cold rolling process is hereafter called "general material”.
  • Patent Document 2 As a method for increasing the strength of brass, a force generally known to use work hardening is disclosed in Patent Document 2, in which crystal grains are refined to increase the strength, and cold rolling is applied to this. A method of obtaining high strength by adding is disclosed.
  • Non-patent document 2 and non-patent document 3 disclose the method of crystal grain refinement.
  • Patent Document 2 discloses a method for producing brass having fine crystal grains.
  • it is necessary to repeatedly perform rolling at a large processing rate in multiple stages. Therefore, it is a technology that can be applied when trying to obtain a thin product.
  • it may be difficult to apply the rolling process under multiple conditions multiple times.
  • the contents disclosed in Patent Document 1 although there is a description of the final annealing, there is no disclosure even though the previous annealing conditions are important.
  • Non-Patent Document 4 reports the results of research on increasing the strength by refining crystal grains.
  • fine grains with a two-phase mixed structure force of a phase and ⁇ phase are obtained by strong processing and relatively low temperature annealing for a long time, and when this is further processed and annealed at low temperature, high strength is obtained.
  • a material with relatively good bending workability can be obtained.
  • the stress relaxation characteristics deteriorate as the crystal grains become finer, and that slight improvement is observed by low-temperature annealing.
  • Patent Document 1 JP-A-53-32819
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-292875
  • Non-Patent Document 1 Published by Japan Copper and Brass Association Data book of copper products p. 19
  • Non-patent document 2 Copper and copper alloy 41, 1, 29
  • Non-patent document 3 Copper and copper alloy 43, 1, 21
  • Non-Patent Document 4 Journal of Copper Technology 39, 1, 128
  • Non-Patent Document 5 Japan Copper and Brass Association Data Book p. 226
  • Non-Patent Document 2 the case where annealing was performed at 230 ° CX for 17 hours, which showed the best resistance, was performed by cold working. From the heat-cured state to the state where it cannot be sufficiently softened by annealing, the annealing is stopped to improve bending workability and obtain a relatively high strength. The crystal structure obtained at this time has a 0.2% resistance to resistance ( ⁇ .) Of 534 MPa because a non-uniform recrystallization state is formed.
  • Patent Document 2 suggests a preferable example of a method for producing brass having an excellent balance between strength and bending workability.
  • the balance between concrete strength and bending workability can be considered, and in the evaluation of bending workability, the bending direction (Good Way) that is advantageous for obtaining good bending characteristics is adopted.
  • the inventors of the present invention have come up with a production condition for obtaining a fine crystal grain structure that is excellent in industrial productivity and can reduce variations in product quality. That is, the present invention satisfies the workability required for a general ⁇ -brass material, has a strength higher than that of a general material, and further, has a strength of a hard material of phosphor bronze, which is higher than that of a brass material, or higher than that of a hard material.
  • a method of manufacturing a reinforced O brass material that maintains a certain level of stress relaxation characteristics and a reinforced OC brass material obtained from this method. It is.
  • the present invention is a method for producing reinforced OC brass having a composition of copper 63 wt% to 75 wt%, the balance other than inevitable impurities being zinc.
  • a brass plate having a crystal grain size of 1 ⁇ -2 / ⁇ m was used as a starting plate material, which was cold rolled at a processing rate of 5% to 40% to form a cold rolled brass plate. It is characterized by low-temperature annealing of brass plate and adjusting 0.2% resistance ( ⁇ .: MPa) to 90% or more of the maximum value. O Provide a method for manufacturing brass.
  • the low temperature annealing is preferably performed at a temperature equal to or higher than the annealing temperature at which the 0.2% proof stress shows the maximum value in view of the dependency of the 0.2% proof stress on the annealing temperature.
  • the brass plate having a crystal grain size of 1 ⁇ m to 2 ⁇ m as the starting plate material is a chamfered brass plate after hot rolling or a brass plate having a crystal grain size of 7 ⁇ to 200 / ⁇ m.
  • the brass plate having a crystal grain size of 1 ⁇ m to 2 ⁇ m which is the starting plate material, is a hot-rolled chamfered brass plate or a brass plate having a crystal grain size of 7 m to 200 m as a raw material.
  • Vickers hardness (Hv) is adjusted to the range of 130-170 by recrystallization annealing after applying cold rolling at a processing rate of 80% -95% as a material, and 40% -95% It is also preferable to use the one in which the cold rolling process is carried out at the processing rate and the Vickers hardness (Hv) is adjusted in the range of 130 to 170 by recrystallization annealing.
  • the brass plate having a crystal grain size of 1 ⁇ m to 2 ⁇ m which is the starting plate material, is made of a brass plate having a crystal grain size of 3 ⁇ m to 6 / zm as a raw material. It is also preferable to use a Vickers hardness (Hv) adjusted within the range of 130 to 170 by refining the cold rolling force at the processing rate and performing recrystallization annealing.
  • Hv Vickers hardness
  • the recrystallization annealing is preferably performed at 370 ° C to 650 ° C when continuous annealing is performed, and at 255 ° C to 290 ° C when batch annealing is performed.
  • the present invention is a reinforced OC brass having a composition of 63 wt% to 75 wt% copper obtained by the method for producing reinforced a brass, and the balance other than unavoidable impurities has a zinc strength, and has a tensile strength strength.
  • the reinforced brass has an Erichsen value (Er: mm) and 0.2% resistance ( ⁇ .: MPa).
  • X brass has the above-mentioned excellent physical properties stable and is also suitable for production on an industrial scale.
  • the manufacturing method of the reinforced ⁇ brass according to the present invention is a manufacturing method of reinforced OC brass having a composition in which the balance other than unavoidable impurities is zinc power with a copper particle of 1 wt.
  • a brass plate of ⁇ -2 / ⁇ m cold rolled at a processing rate of 5% to 40% to obtain a cold rolled brass plate, and this cold rolled brass plate is annealed at low temperature.
  • 2% resistance ⁇ .: MPa is adjusted to 90% or more of the maximum value.
  • the starting plate material can be made to have a more uniform grain size distribution after the subsequent cold rolling by making the grain size uniform to 1 m to 2 m by recrystallization treatment. The Then, cold rolling is added to the brass plate at a processing rate of 5% to 40% to obtain a cold rolled brass plate.
  • the processing rate in the cold rolling is less than 5%, the low temperature will be described later.
  • the yield strength is lowered even after annealing, the hardening of the mold progresses when the final cold rolling process rate exceeds 40% and the bending strength is MBRZt even though the yield strength is improved. It is difficult to obtain reinforced OC brass with a good mechanical property balance.
  • 0.2% strength resistance is used as an index of mechanical strength of reinforced ⁇ brass.
  • the mechanical strength of general materials is usually indicated by tensile strength and elongation.
  • the tensile strength is a value calculated from the maximum load force observed up to the break in the tensile test, and this maximum load value has already been subjected to tensile processing and is a factor that changes the cross-sectional shape and physical properties. Therefore, the present inventors thought that it was inappropriate to use tensile strength as an index of workability. Therefore, as an index that can be used to compare and evaluate the properties of the material itself before processing, it is mainly used as a design standard, and the 0.2% resistance ( ⁇ .: MPa) is adopted as an index of strength.
  • the low temperature annealing temperature when the low temperature annealing temperature is raised, the resistance increases with a loose peak, further decreases and then decreases rapidly. This is known as the low temperature annealing hardening phenomenon.
  • the reason why the 0.2% proof stress after low-temperature annealing is limited to a temperature that exceeds 90% of the maximum 0.2% proof stress obtained by the low-temperature annealing hardening phenomenon is to suppress the decrease in strength.
  • the force 0.2% proof stress is the temperature that shows the maximum value of 0.2% proof stress, but the peak width of the maximum 0.2% proof stress is narrow when viewed on the temperature axis or the time axis when the processing rate is low. When the processing rate is high, a broad and gentle peak can be obtained, so the condition for obtaining the maximum value is regarded as the heating condition for obtaining the maximum value over a range showing 99% or more of the maximum value. Is more practical.
  • the low-temperature annealing is preferably performed at a temperature equal to or higher than the annealing temperature at which the 0.2% proof stress shows the maximum value in view of the annealing temperature dependency of the 0.2% proof stress.
  • the low-temperature annealing performed refers to a process involving a so-called low-temperature annealing hardening phenomenon that does not simply refer to strain relief annealing performed at a low temperature.
  • the present inventor has found that the stress relaxation rate of around 55% of the work finish decreases from the annealing temperature that brings about the maximum value of 0.2% proof stress, decreases with increasing temperature, and settles to a certain level. Look at it! Therefore, as a condition for obtaining a stress relaxation rate threshold value of 52% or less, it is necessary to set the low-temperature annealing temperature to a temperature at which 0.2% resistance to the maximum value is higher or higher.
  • low temperature annealing is also a continuous method rather than a batch method
  • the furnace temperature is 250 ° C to 450 ° C
  • the plate passing time is 1 second to 10 seconds.
  • the advantage of continuous low-temperature annealing is that it is easy to reduce costs and ensure quality stability.
  • This low-temperature annealing is the final annealing, and is usually in the state of strips after the low-temperature annealing is completed.
  • batch-type annealing the strips are placed in a heating furnace in the form of a coil and are heated as they are. Therefore, the streaks are attached to the strips, and in the correction process before use as a product, it is necessary to correct up to the curl in addition to the distortion caused by rolling. However, effective correction becomes difficult.
  • the plate material is heated while traveling in the heating zone, and is wound into a coil after completion of the low-temperature annealing. Easy to obtain
  • the brass plate having a crystal grain size of 1 ⁇ m to 2 ⁇ m which is the starting plate material, is made from a face-cut brass plate after hot rolling or a brass plate having a crystal grain size of 7 m to 200 m.
  • the large-diameter brass plate (annealed material) used as a raw material includes the case of hot rolled material.
  • the grain size of the crystal structure of the plate after hot rolling is 100 ⁇ m to 200 ⁇ m when a small test rolling mill is used.
  • the brass plate having a crystal grain size of 1 ⁇ m to 2 ⁇ m which is the starting plate material, is a hot-rolled chamfered brass plate or a brass plate having a crystal grain size of 7 m to 200 m as a raw material.
  • Vickers hardness (Hv) is adjusted to the range of 130-170 by recrystallization annealing after applying cold rolling at a processing rate of 80% -95% as a material, and 40% -95% It is also preferable to use the one in which the cold rolling process is carried out at the processing rate and the Vickers hardness (Hv) is adjusted in the range of 130 to 170 by recrystallization annealing.
  • the brass plate having a crystal grain size of 1 ⁇ m to 2 ⁇ m as the starting plate material is made of a brass plate having a crystal grain size of 3 ⁇ m to 6 / zm as a raw material, and has a 70% to 95% It is also preferable to use a material whose Vickers hardness (Hv) is adjusted in the range of 130 to 170 by refining the cold rolling force with the processing rate and performing recrystallization annealing. If the crystal grain size before processing exceeds 6 m, even if cold rolling is applied at a processing rate of 70%, sufficient crystal grains cannot be refined and bending workability deteriorates.
  • Hv Vickers hardness
  • the average grain size is less than 3 m, it may be disadvantageous because the rolling pressure increases even if the subsequent processing rate is 70%. In addition, if the processing rate exceeds 95% and cold rolling is performed, cracks may occur at the ends during processing, which is not preferable.
  • the recrystallization annealing is preferably performed at 370 ° C to 650 ° C when continuous annealing is performed, and at 255 ° C to 290 ° C when batch annealing is performed.
  • the final recrystallization annealing is performed at a furnace temperature of 370 ° C. to 650 ° C. in continuous annealing.
  • the furnace temperature is less than 370 ° C, the feeding speed is Even if it is dropped and recrystallized, the moldability of the product obtained is deteriorated.
  • the recrystallization annealing time at this time is a force determined by the capacity of the furnace, the plate thickness, and the desired strength. In the case of normal industrial equipment, it is in the range of 2 to 120 seconds. If a practically appropriate time is to be determined, it is simply controlled by the hardness and determined so that the Vickers hardness (Hv) is 130 to 170, preferably 135 to 160.
  • the Vickers hardness (Hv) is less than 130, the recrystallized grain size is large, making it difficult to obtain the desired physical properties even if subsequent processing is performed. It becomes a structure with a higher remaining ratio of cold-worked structure than that of the structure, and strengthens it as a final product (the formability of X brass deteriorates).
  • An advantage of performing recrystallization annealing in a continuous manner is that it is easy to reduce costs and ensure quality stability.
  • the substantial temperature tends to be unevenly distributed due to the position in the furnace.
  • the value of [proof strength] Z [tensile strength] after final recrystallization annealing tends to be less than 80%, whereas the final recrystallization with the continuous heating method is used.
  • the value of [Yield Strength] Z [Tensile Strength] after crystal annealing becomes as high as 80% or more, and finer crystal grains can be obtained. Therefore, the continuous heating method has a better balance between the yield strength and forming processability of the reinforced OC brass obtained through the final cold rolling process and the low temperature annealing, which are the manufacturing methods according to the present invention, than the batch heating process. It becomes.
  • batch annealing is also applicable when the plate thickness is heavy or when a continuous annealing furnace is not provided. Industrially, it is usually held for about 30 minutes to 3 hours after the actual temperature of the coil reaches the set temperature. For this holding time, it is preferable to set the actual temperature to 255 ° C to 290 ° C. If the body temperature of the coil is less than 255 ° C, recrystallization to match the desired strength will result in irregular grain sizes (the horizontal axis is the logarithmic axis of the grain diameter). In the case of the particle size distribution chart, the distribution in which two or more peaks are observed), the bending kayakability is extremely deteriorated even by low-temperature annealing.
  • the present invention is a reinforced OC brass having a composition of 63 wt% to 75 wt% of copper obtained by the method for producing reinforced a brass, and the balance other than unavoidable impurities is a zinc force, and has a tensile strength strength. ⁇ 530MPa ⁇ 790MPa, 0. 2 0/0 ⁇ ( ⁇ .) mosquitoes S450MPa ⁇ 750MPa, 120. CX 10
  • a minimum bending radius (MBR: mm) without cracks is often used. Bending quesability is an important index in the process of forming the terminal.
  • the term “bending workability” is based on the premise that, in various bending tests, evaluation is performed by performing so-called Bad way bending in which the bending axis of right-angle bending is parallel to the rolling direction. Performing a bending test with the direction perpendicular to the rolling direction as the bending axis, so-called ⁇ Goood way '' bending, usually gives better results in comparison with Bad way bending in the case of brass. It was considered unsuitable for this. In this application, therefore, only Bad way bending is used as the evaluation method.
  • MBR Zt is a level that will become 1.0 or more 0.2% resistance ( ⁇ .) Exceeds 550MPa
  • the Japan Copper and Brass Association has established a test method (using a cantilever to measure the permanent deflection displacement due to bending).
  • a temperature of 120 ° C was selected as appropriate, and the treatment time was set to 100 hours because the difference could be evaluated with a force of 100 hours, which is 1000 hours in the test method.
  • the stress relaxation rate is examined, the data power of 40%, 40%, 36%, 40%, 48% to 52% It was found that it varies depending on the quality of additional U and the grain size.
  • the test piece is evaluated within 2 weeks after production in order to avoid the effects of changes over time. Therefore, the present inventor considers the fact that all of these are put into practical use and the fact that the customer dislikes the deterioration of the stress relaxation rate, and the stress relaxation rate required for the reinforced ⁇ brass according to the present invention.
  • the threshold was set at 52%.
  • the reinforced brass has an Erichsen value (Er: mm) and 0.2% resistance ( ⁇ .: MPa).
  • the minimum bending radius of right-angle bending becomes zero, and it cannot be used as an index of moldability to cover a wide range of strength.
  • the Eriksen value (Er: mm) is often used as an index of moldability! Therefore, in the present invention, the Eriksen value (Er: mm) is further used as an additional index. It was.
  • the inventor first collected 17 samples of 1Z2H, H, and EH materials of C2600 or C2680 shown in JIS standard, and 0.2% resistance ( ⁇ . MPa) and Erichsen value (Er: mm). And both
  • the Erichsen value is a numerical value obtained by the following Erichsen test (Erichsen Test), and is used as a standard for determining the deep drawability of a thin metal sheet.
  • Test equipment and test method standards JIS B 7777
  • the Erichsen value (Er: mm) of the reinforced a brass according to the present invention is 0.2% resistance ( ⁇ .
  • Equation 9 Force Satisfies Equation 9 over the entire range of 50MPa to 750MPa, and is at least 0.5mm or more when compared with the same general material that shows the same 0.2% resistance ( ⁇ .: MPa)
  • the bending strength of phosphor bronze can be expressed by the following equation (10).
  • the bending force resistance of phosphor bronze is less than 0.2% resistance ( ⁇ .) 590 MPa.
  • the force that MBRZt is 0.3 or less 0.2% resistance ( ⁇ .) MBRZt is 3 for 800MPa
  • the physical properties of the reinforced ⁇ brass according to the present invention are 0.2% strength ( ⁇ .) Force 50MPa to 750MP.
  • the reinforced ⁇ brass according to the present invention which satisfies Expression 11, takes into account that there is a certain variation in the quality of phosphor bronze, and 0.2% resistance ( ⁇ .: MPa) And bending Karoe
  • the average crystal grain size is generally 2 ⁇ m or less. This is a structure derived from the recrystallized structure, and has a recovery structure as described later.
  • the average crystal grain size is preferably 2 m or less.
  • the crystal structure of the reinforced ex brass according to the present invention described above is the structure of the recrystallized crystal grains using an optical microscope or a scanning electron microscope with a high magnification after electrolytic etching. It can be measured using a line segment method or a photographic comparison method.
  • the structural changes due to low-temperature annealing can be remarkably distinguished when observed using SEM-EBSP.
  • image processing is performed in which the image quality value is less than a certain value (distortion cancellation is less than a certain value)
  • the recovered grains can be recognized as bright grains, and the outline gradually becomes more progressive as recovery progresses.
  • With smooth power the recrystallized grains can be recognized as bright grains with annealing twins. And the bending workability is good!
  • the structure of reinforced ex brass is a microstructure in which grains released from strain (recovered grains or recrystallized grains) and grains not released by low temperature annealing are mixed. Is similar to a fine two-phase mixed structure, which is considered to promote inhomogeneous sliding and improve bending workability.
  • the improvement in stress relaxation characteristics due to low-temperature annealing corresponds to an increase in the area ratio of recovered or recrystallized grains, which ensures favorable stress relaxation characteristics with changes in the texture. That means it is essential.
  • the enhancement ⁇ according to the present invention ⁇ Brass has a fine grain size of 1 ⁇ m to 2 m, so it has high fatigue strength and stress corrosion cracking resistance, and has a small bending deflection coefficient!
  • Table 1 shows the chemical composition of brass ingots used for production and evaluation in the following examples and comparative examples.
  • ingot 1 to ingot 6 are samples obtained by a semi-continuous forging method at a manufacturing site forging factory.
  • Ingot 7, ingot 8, and ingot 9 were obtained by melting in a laboratory melting furnace and forging to 30 mm x 100 mm x 200 mm with a mold.
  • the ingots 1 to 9 are made of 65.2 wt% to 74.2 wt% of copper, and satisfy the conditions of the present invention if they are composed of the balance zinc and inevitable impurities. Furthermore, in the following examples, any of the ingots shown in Table 1 above was used, and the manufacturing conditions consisting of the following steps (a) to (e) shown in Table 2 were applied to form a brass strip. ! / (a) Raw material preparation
  • the ingot 1 obtained above was hot-rolled and then chamfered, cold-rolled and annealed to obtain a raw material with a thickness of 1.8 mm.
  • the raw materials and starting plate 1 were all manufactured on the production line at the site until annealing (c) before the final cold rolling process. Thereafter, the processing conditions applied to Example 1 and Example 2 are shown together with Example 3 in Table 2 in comparison with Comparative Example 1 and Comparative Example 2.
  • Table 2 the previous annealing (a: annealing before recrystallization annealing before final cold rolling) and annealing before final processing (c: recrystallization annealing before final cold rolling) are on-site as described above. It is continuous annealing in the production line.
  • the temperature described here is the set temperature of the furnace.
  • the common starting plate 1 can be used up to the recrystallization annealing before the final cold rolling.
  • the starting plate 1 that also obtained the above-mentioned force was subjected to cold rolling (d) at a processing rate of 10% using an experimental cold rolling mill to form a cold rolled brass plate, and further cooled in a salt bath at a low temperature.
  • Annealing (e) It was.
  • the annealing time in the salt bath is set to a short time of 2 seconds to resemble continuous annealing, and the temperature of the salt bath is set to Example 1–1, 1–2, 1–3 at 280 ° C and 340 ° C, respectively. 420 ° C.
  • the tensile strength is 532 MPa to 556 MPa
  • the resistance is 458 MPa to 504 MPa
  • the Erichsen value ( ⁇ . Force is also calculated) is 8.6 mm (8.3 mm) to 8. 8m
  • Example 2 the same starting plate material 1 as in Example 1 was subjected to cold rolling (d) at a processing rate of 24% using a laboratory cold rolling mill to form a cold rolled brass plate, and further cooled in a salt bath.
  • Annealed (e) The annealing time in the salt bath was set to a short time of 2 seconds to resemble continuous annealing, and the salt bath temperature was set to 260 for each of Examples 2-1, 2- 2, 2-3, and 2-4. C, 280 ° C, 300. C, 340. C.
  • the tensile strength was 667 MPa to 680 MPa
  • the meta force was 622 MPa to 638 MPa
  • the Erichsen value was 6.8 mm
  • the crystal grain size after the final pre-annealing (b) obtained in these examples and comparative examples was about 2 ⁇ m, and the crystal grain size after the final cold rolling cage (d) was 1 ⁇ m. .
  • ingot 2 was used, and after hot rolling, it was chamfered (a) to obtain a raw material having a thickness of 11.5 mm. Then, a preliminary test was performed by changing the processing rate and the annealing temperature to obtain an annealing softening curve.
  • the annealing time in the salt bath used is 10 seconds.
  • Figure 2 shows the annealing softening curve obtained here. According to Fig. 2, the Vickers hardness (Hv) of the recrystallized annealed material is stable at about 150 except for those with a processing rate of 70%.
  • the cache structure remains up to 430 ° C, and at 450 ° C, the maximum grain size is 10 ⁇ m and the grain size is less than 3 / zm. Has a mixed crystal structure.
  • the crystal grain size was approximately 2 ⁇ m.
  • the plate material that had been cold-rolled (b) at a processing rate of 95% was recrystallized in a salt bath at 430 ° C for 10 seconds using a cold rolling mill for experiments.
  • the starting plate was obtained by annealing (c).
  • a cold rolled casing (d) was added to a thickness of 0.52 mm at a rate of 10% to obtain a cold rolled brass sheet, which was annealed at a low temperature for 2 seconds in a 320 ° C salt bath.
  • the strength of the ⁇ brass material is 557 MPa, 0.2% resistance ( ⁇ .) Is 499 MPa, Erichsen
  • Example 4 to Example 8> In these examples, as shown in Table 4, ingot 2 to ingot 6 were used corresponding to each example, and everything from forging to final low-temperature annealing was performed using an on-site production line. First, a plate material that was 11.5 mm thick after face milling after hot rolling was subjected to cold rolling at a processing rate of 84% to 1.8 mm, and the previous annealing shown in Table 4 (a: annealing of the strip) ) To obtain a raw material, cold rolling (b) was added again, and final recrystallization annealing (c) was performed to obtain a sheet material.
  • Example 8 is further subjected to cold rolling and recrystallization annealing before the final recrystallization annealing (described in the upper part of Table 4). Then, a final cold rolling process (d) was added to these to form a cold rolled brass sheet, and then a low temperature annealing (e) was performed to obtain a product.
  • the low-temperature annealing conditions were as follows. In Example 4, continuous annealing was performed with the furnace temperature set at 420 ° C. This continuous annealing condition is set to 0.2%
  • the value is set to 0.3.
  • Example 5 the specimen at the stage after the previous annealing (a: strip annealing) in Example 5 was used as a raw material, and cold rolling (b) ) This strip is subjected to final recrystallization annealing (c) for 10 seconds in a salt bath at 420 ° C to obtain a starting plate, and then cold rolling (d) is added at a processing rate of 30% to cold rolled brass.
  • the plate was subjected to low temperature annealing (e) at 280 ° C for 10 seconds.
  • the tensile strength of the obtained reinforced ⁇ brass material is 651 MPa, 0.2% resistance ( ⁇ .) Is 601 MPa, elongation is 6.9%, Erichsen value (calculated from ⁇ .) Is 7.
  • ingot 7 to ingot 9 are used in correspondence with each example, and after hot rolling in a laboratory to obtain a crystal grain size of 0.15 mm, a processing rate of 86% Then, cold rolling (b) was performed at a processing rate of 78% using a raw material that had been subjected to cold rolling and then recrystallized annealing (a) under the condition that the crystal grain size was 5 m. added.
  • the plate material thus obtained was subjected to recrystallization annealing (c) for 2 hours at an actual temperature of 270 ° C to obtain a starting plate material, and a final cold rolling process (d) with a processing rate of 25% was added to perform cold A rolled brass plate was subjected to final recrystallization annealing (e) at an actual temperature of 205 ° C. All the low-temperature annealing at this time is carried out using a full furnace while measuring the actual temperature.
  • the tensile strength was 671 MPa to 681 MPa
  • the galvanic resistance was 629 MPa to 640 MPa
  • the Erichsen value (value calculated for ⁇ . Force) was 6. 7mm (6.7 mm) to 7
  • Example 1 the first low temperature annealing condition was changed with respect to Example 1 and Example 2, and the same was performed.
  • Table 2 shows the conditions.
  • Comparative Example 1 The same starting plate material 1 used in the examples was subjected to cold rolling at a processing rate of 10% using an experimental cold rolling mill, and further annealed at a low temperature in a salt bath. In Comparative Example 14 the low-temperature annealing was not performed. In Comparative Examples 15 and 16, the annealing time in the salt bath was set to 2 seconds as in the example, and the salt bath temperature was 240 ° C. 260 ° C. As a result of evaluating the physical properties of the obtained samples, the tensile strength was 547 MPa to 559 MPa, the resistance to 495 MPa to 499 MPa, the Erichsen value (calculated from ⁇ . Force) was 8.5 mm (8.2 mm) to 9. lmm (8.3 m
  • Comparative Example 2 The same starting plate material 1 used in Example 1 and Example 2 was subjected to cold rolling at a processing rate of 24% using a laboratory cold rolling mill, and further annealed at low temperature in a salt bath. did. In Comparative Example 25, low-temperature annealing was not performed. In Comparative Examples 2-6 and 2-7, the annealing time in the salt bath was set to 2 seconds, which was the same as in the example, and the temperature of the salt bath was set to 240 ° C and 420 ° C.
  • the tensile strength is 613 MPa to 670 MPa
  • the Erichsen value (value calculated from ⁇ . Force) is 7.3 mm (7. Omm) to
  • Comparative Example 3 Here, an ingot 7 was used, and a sample having the same resistance to that of Example 11 was prepared in a laboratory, which was similar to the conventional process. That is, this sample is hot rolled, cold After annealing to obtain a crystal grain size of 35 m after rolling the roll, cold rolling was applied at a processing rate of 53%. The subsequent recrystallization annealing was performed for 20 seconds using a 650 ° C salt bath to resemble the continuous annealing in the conventional process. As a result, the crystal grain size after final recrystallization annealing was 15 m. The final cold rolling force was added at a processing rate of 65%.
  • MBRZt (a. The value that calculated the force) that is an index of bending caloe is 2.4 (0. 9), which is bad.
  • C2680 Cu / Zn: 65% / 35%) and C2600 (Cu / Zn: 70% / 30%) H and C2680 (CuZZn: 65% Z35%) EH Evaluated as an example.
  • the brass materials of these reference examples were subjected to final cold rolling at a processing rate of 25% 17% 35% after recrystallization annealing, and were not subjected to low temperature annealing.
  • the evaluation results are tensile strength force ⁇ 486MPa 567MPa 0. 2 0/0 ⁇ ( ⁇ .) Force 437MPa 524MPa, stress Yuru ⁇ Roritsu
  • the force was 36% 52%, and the Eriksen value (Er) was 6.9 mm 8.3 mm. Details are shown in Table 7.
  • the mechanical strength and the stress relaxation value are satisfied, but the following Equation 17 regarding M BRZt and the following Equation 18 regarding the Eriksen value (Er) are not satisfied.
  • the reinforced ex brass according to the present invention has a general ex brass composition in terms of composition.
  • an appropriate rolling process and heat treatment which is the manufacturing method according to the present invention, the strength and molding strength of phosphor bronze, which is equivalent to or superior to phosphor bronze, is ineffective in conventional brass. It shows the balance.
  • Such reinforced ⁇ brass is suitable for electronic parts such as connectors and mechanical parts, and can be supplied as an inexpensive material.
  • the method for producing reinforced ⁇ brass according to the present invention can be used as it is without any improvement in the conventional rolling production line, and does not require any special equipment investment. Therefore, efficient production of high-quality reinforced alpha brass on an industrial production scale is possible.
  • FIG. 1 shows the relationship between the low-temperature annealing temperature obtained from Example 1, Example 2, Comparative Example 1 and Comparative Example 2, 0.2% resistance ( ⁇ .), And stress relaxation rate. It is a figure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Metal Rolling (AREA)

Abstract

A reinforced α-brass that as compared with conventional brass material, realizes an excellent balance of high proof stress and moldability without deterioration of stress relaxation characteristics; a process for producing the same. Accordingly, there is employed a reinforced α-brass produced by providing a starting plate material obtained by carrying out recrystallization annealing of a reinforced α-brass composed of 63 to 75 wt.% of copper and the balance of zinc and unavoidable impurities so as to have a crystal particle diameter of 1 to 2 μm, performing cold rolling of the starting plate material at a reduction ratio of 5 to 40%, and carrying out low-temperature annealing at ≥ temperature bringing about the maximum value of 0.2% proof stress (σ0.2: MPa) so that the 0.2% proof stress (σ0.2: MPa) is adjusted to ≥ 90% of the maximum value and ranges from 450 to 750 MPa and so that the minimum bending radius (MBR)/plate thickness (t) and the 0.2% proof stress (σ0.2: MPa) satisfy the relationship: MBR/t ≤ 0.0125×σ0.2 - 6.7, and preferably so that the Erichsen value (Er: mm) and the 0.2% proof stress (σ0.2: MPa) satisfy the relationship: Er ≥ -0.011×σ0.2 + 13.7.

Description

明 細 書  Specification
強化 α黄銅及びその製造方法  Reinforced α brass and method for producing the same
技術分野  Technical field
[0001] 本件発明は、強度及び成形加工性に優れ、且つ強度と成形加工性のバランスがと れ、応力緩和特性が一定レベルを維持した強化 OC黄銅材及びその製造方法に関す る。  TECHNICAL FIELD [0001] The present invention relates to a reinforced OC brass material that is excellent in strength and formability, has a balance between strength and formability, and maintains a certain level of stress relaxation characteristics, and a method for producing the same.
背景技術  Background art
[0002] 従来から、黄銅材は機械的強度が比較的高ぐ導電率も比較的良好で、安価であ るため端子、コネクターなどの電子部品や、機構部品に多用されている。ところが、部 品に厳しい成形加工を施す場合には成形加工性が不足して質別をより軟らかい方 向にしなければならないことが起こりうる。このように質別を軟ら力べすることは材料の 肉厚を増すことなどにつながり、重量増と同時にコスト面での不利が発生してしまうの である。  Conventionally, brass materials are frequently used for electronic parts such as terminals and connectors, and mechanical parts because they have relatively high mechanical strength, relatively good conductivity, and are inexpensive. However, when parts are subjected to strict molding, it may happen that the moldability is insufficient and the grading must be made softer. Softening the material quality in this way leads to an increase in the thickness of the material, resulting in an increase in weight and a cost penalty.
[0003] さらに、従来の黄銅材では、加工率を高くしてより強度の高い材料を得ようとすると 曲げ加工性が悪ぐ靱性にも乏しくなるため曲げ加工が困難になるという欠点があつ た。即ち、コネクターなどにカ卩ェする場合には、厳しい曲げ力卩ェが適用されることが 多ぐ必要とされる程度の曲げ力卩ェで欠陥の出にくいよう、 0. 2%耐カ(σ . )が 55  [0003] Further, the conventional brass material has a drawback that if it is desired to obtain a material having higher strength by increasing the processing rate, the bending process becomes poor and the toughness is poor and the bending process becomes difficult. . In other words, when caulking to connectors, etc., it is often necessary to apply a strict bending force. σ.) is 55
0 2 0 2
OMPa未満である素材の使用が大勢を占めている。そして、このレベルを超えた高い 強度を要する場合には、高価なりん青銅を選択して使用するのが通例となっている。 また、従来の黄銅材は、応力緩和特性においても顕著に優れたと言える特性を示し て!、な 、が、特に結晶粒を微細化した場合には更に応力緩和特性が劣化して実用 上大きな問題となるため、需要者等力 は微細化による応力緩和特性の劣化を避け るよう要望されている。 The use of materials that are less than OMPa dominates. When high strength exceeding this level is required, it is customary to select and use expensive phosphor bronze. In addition, the conventional brass material shows the remarkable characteristics of stress relaxation! However, particularly when the crystal grains are refined, the stress relaxation characteristics further deteriorate and become a serious problem in practical use. Therefore, the customer is requested to avoid the deterioration of the stress relaxation characteristics due to the miniaturization. ing.
[0004] 一方、 oc黄銅を板条とする加工法は、一般的には半連続铸造、熱間圧延、面削の 実施後、連続焼鈍工程を通せる程度の厚みまでに冷間圧延、連続焼鈍酸洗、冷間 圧延、連続焼鈍酸洗、冷間圧延の工程を経て切断し板条としている。この工程にあ つて、厚みにより焼鈍、圧延の繰り返しを行ったり、焼鈍がバッチ方式であったりし、ま た需要者力 鈍し上がりが望まれれば最後の圧延を省略したり等、種々の製造プロ セスが考えられ、圧延と熱処理の間又は後には、脱脂、酸洗、矯正、切断、めっき等 の工程が付加されうるのである。このような従来の製造プロセスを本件出願では以降 「一般的製造プロセス」と称する。 [0004] On the other hand, the processing method using oc brass as a strip is generally performed by semi-continuous forging, hot rolling and chamfering, followed by cold rolling and continuous rolling to a thickness that allows a continuous annealing process. It is cut into strips through the steps of annealing pickling, cold rolling, continuous annealing pickling and cold rolling. In this process, annealing and rolling may be repeated depending on the thickness, or annealing may be a batch method. There are various manufacturing processes, such as omitting the last rolling if dulling is desired, and during or after rolling and heat treatment, such as degreasing, pickling, straightening, cutting, plating, etc. Steps can be added. Such a conventional manufacturing process is hereinafter referred to as a “general manufacturing process” in the present application.
[0005] 上記一般的製造プロセスの焼鈍条件は、連続方式の場合には、特許文献 1に開示 されているように、 480°C〜850°Cの範囲内で行われる。また、バッチ方式の場合は 非特許文献 1にあるように、 425°C〜600°Cで行われる。更に、最初及び中間の焼鈍 は、十分な再結晶組織を得て圧延圧力を下げるため、結晶粒度は πι〜35 /ζ m とされるのが一般的であり、この場合のビッカース硬度(Hv)は 60〜80となる。そして 、最終の焼鈍は、用途に応じて結晶粒径を 5 πι〜60 /ζ πιとするのが一般的で、ビッ カース硬度 (Ην)は 50〜120となる。先に述べたように、一般的製造プロセスでは最 終焼鈍の後に、最終冷間圧延工程を通した後に切断などにより製品板条に仕上げら れる。そして、本件出願ではこの最終冷間圧延工程を経たものを以降「一般材」と称 する。  [0005] In the case of the continuous method, the annealing conditions of the above general manufacturing process are performed within a range of 480 ° C to 850 ° C as disclosed in Patent Document 1. In the case of the batch method, as described in Non-Patent Document 1, it is performed at 425 ° C to 600 ° C. Furthermore, in order to obtain a sufficient recrystallization structure and lower the rolling pressure in the first and intermediate annealing, the grain size is generally set to πι to 35 / ζ m. In this case, the Vickers hardness (Hv) Will be 60-80. In the final annealing, the crystal grain size is generally 5 πι to 60 / ζ πι depending on the application, and the Vickers hardness (Ην) is 50 to 120. As mentioned above, in the general manufacturing process, after the final annealing, the product is finished into a product strip by cutting after passing through the final cold rolling process. And in this application, what passed through this last cold rolling process is hereafter called "general material".
[0006] 黄銅の強度を上げる方法としては、加工硬化を利用することが一般的に知られてい る力 特許文献 2には結晶粒を微細化して強度を上げ、更にこれに冷間圧延加工を 加えることによって高強度を得る方法が開示されている。結晶粒微細化の手法に関し ては、非特許文献 2及び非特許文献 3に開示されて 、る。  [0006] As a method for increasing the strength of brass, a force generally known to use work hardening is disclosed in Patent Document 2, in which crystal grains are refined to increase the strength, and cold rolling is applied to this. A method of obtaining high strength by adding is disclosed. Non-patent document 2 and non-patent document 3 disclose the method of crystal grain refinement.
[0007] ここでは、圧延率が 92%、 91%、 80%、 78%といった高い圧延率を採用しており、 その後の焼鈍は 300°C X 1時間、 270°C X 7時間、 230°C X 17時間という低温域で の長時間焼鈍を行っている。そして、得られる強度は、焼鈍上がりで 300°C X 1時間 の場合の 0. 2%耐カ(σ . WS379MPa、 270°C X 7時間の場合の 0. 2%耐カ(σ  [0007] Here, rolling ratios as high as 92%, 91%, 80%, 78% are adopted, and the subsequent annealing is 300 ° CX for 1 hour, 270 ° CX for 7 hours, 230 ° CX 17 Long-term annealing is performed in a low temperature range of time. And the strength obtained is 0.2% resistance against heat at 300 ° C x 1 hour after annealing (σ WS379MPa, 0.2% resistance against resistance at 270 ° C x 7 hours (σ
0 2  0 2
. )カ 399MPa、 230。C X 17時 f¾の場合の 0. 20/0而力(σ . ; Ηま 534MPaであり) F 399MPa, 230. 0.2 0/0 而力when the CX 17 o'clock f¾ (σ;. Η or be 534MPa
0 2 0 2 0 2 0 2
、焼鈍上がりとしては比較的高強度であることが報告されている。  It is reported that the annealing is relatively high in strength.
[0008] また、特許文献 2には、結晶粒の微細な黄銅を製造する方法が開示されている。と ころが、この特許文献 2に開示されている方法では、大きな加工率による圧延加工を 多段階で繰り返し行う必要がある。従って、肉厚の薄い製品を得ようとする場合に対 しては応用可能な技術である。一方、比較的厚い製品を得ようとする場合には、強力口 ェ条件での圧延加工プロセスを複数回にわたって適用することが困難な場合が起こ りうるのである。また、特許文献 1に開示の内容では、最終的に行う焼鈍の記述はある ものの、その前の焼鈍の条件が重要であるにもかかわらず何ら開示されていない。 [0008] Patent Document 2 discloses a method for producing brass having fine crystal grains. However, in the method disclosed in Patent Document 2, it is necessary to repeatedly perform rolling at a large processing rate in multiple stages. Therefore, it is a technology that can be applied when trying to obtain a thin product. On the other hand, when trying to obtain a relatively thick product, It may be difficult to apply the rolling process under multiple conditions multiple times. In addition, in the contents disclosed in Patent Document 1, although there is a description of the final annealing, there is no disclosure even though the previous annealing conditions are important.
[0009] 更に、 α + β黄銅に関しては、非特許文献 4に、結晶粒微細化による高強度化の 研究結果が報告されて 、る。ここでは強加工と比較的低 、温度での長時間焼鈍によ つて a相と β相との 2相混合組織力 なる微細結晶粒を得て、更にこれを加工し、低 温焼鈍すると高強度且つ曲げ加工性も比較的良好な材料が得られると報告されてい る。また、応力緩和特性が結晶粒微細化に伴って悪化すること、そして低温焼鈍によ り若干の改善を見ることが報告されて 、る。  [0009] Further, regarding α + β brass, Non-Patent Document 4 reports the results of research on increasing the strength by refining crystal grains. Here, fine grains with a two-phase mixed structure force of a phase and β phase are obtained by strong processing and relatively low temperature annealing for a long time, and when this is further processed and annealed at low temperature, high strength is obtained. It has also been reported that a material with relatively good bending workability can be obtained. In addition, it has been reported that the stress relaxation characteristics deteriorate as the crystal grains become finer, and that slight improvement is observed by low-temperature annealing.
[0010] 特許文献 1 :特開昭 53— 32819号公報  [0010] Patent Document 1: JP-A-53-32819
特許文献 2:特開 2004— 292875号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-292875
非特許文献 1 :日本伸銅協会発行 伸銅品データブック p. 19  Non-Patent Document 1: Published by Japan Copper and Brass Association Data book of copper products p. 19
非特許文献 2 :銅と銅合金 41、 1、 29  Non-patent document 2: Copper and copper alloy 41, 1, 29
非特許文献 3 :銅と銅合金 43、 1、 21  Non-patent document 3: Copper and copper alloy 43, 1, 21
非特許文献 4 :伸銅技術研究会誌 39, 1 , 128  Non-Patent Document 4: Journal of Copper Technology 39, 1, 128
非特許文献 5 :日本伸銅協会発行 伸銅品データブック p. 226  Non-Patent Document 5: Japan Copper and Brass Association Data Book p. 226
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] し力しながら、非特許文献 2及び非特許文献 3に開示の報告において、最も優れた 耐カを示した 230°C X 17時間の焼鈍を行った場合を考えるに、冷間加工によって加 ェ硬化した状態から、十分に焼鈍軟ィ匕しきれない状態まで持って行き、そこで焼鈍を 止めて曲げ加工性を改善し比較的高い強度を得ている。このときに得られる結晶組 織は、不均一な再結晶状態が形成されているため 0. 2%耐カ( σ . )は 534MPa [0011] However, in the reports disclosed in Non-Patent Document 2 and Non-Patent Document 3, the case where annealing was performed at 230 ° CX for 17 hours, which showed the best resistance, was performed by cold working. From the heat-cured state to the state where it cannot be sufficiently softened by annealing, the annealing is stopped to improve bending workability and obtain a relatively high strength. The crystal structure obtained at this time has a 0.2% resistance to resistance (σ.) Of 534 MPa because a non-uniform recrystallization state is formed.
0 2  0 2
程度まで低下し、曲げ性改善合金としては不十分なものと判断出来る。  It can be judged that it is insufficient as a bendability improving alloy.
[0012] 一方、特許文献 2に開示されている内容は、強度と曲げ加工性とのバランスに優れ た黄銅の製造方法の好ましい一例を示唆している。しかし、具体的強度と曲げ加工 性とのバランスを考え得る例示は一例のみであり、し力も曲げ加工性の評価では良 好な曲げ特性を得るのに有利な曲げ方向(Good Way)を採用しており、厳しい曲 げカ卩ェ性条件(Bad Way)での良好な曲げカ卩ェ性を示すものではな!/、。 [0012] On the other hand, the content disclosed in Patent Document 2 suggests a preferable example of a method for producing brass having an excellent balance between strength and bending workability. However, there is only one example where the balance between concrete strength and bending workability can be considered, and in the evaluation of bending workability, the bending direction (Good Way) that is advantageous for obtaining good bending characteristics is adopted. A tough song It does not indicate good bending strength under bad conditions (Bad Way)! /.
[0013] そして、一般的な強化 ex黄銅の製造方法であるが、結晶粒を微細にすれば焼鈍後 の強度が高くなることは広く知られている。また、結晶粒が微細な黄銅を製造するに は、高い加工率で冷間圧延した後、比較的低い温度で長時間焼鈍を繰り返しすれ ばよいことも公知である。例えば、特許文献 2に開示の製造方法では、高い加工率に よる加工を複数回組み合わせることが必須要件となって 、るので、比較的厚!、製品 の製造を行おうとすると困難な場合もある。更に、この特許文献 2では、最終の再結 晶焼鈍の前の焼鈍については、数点の焼鈍温度の例示があるのみで、係る焼鈍条 件が重要視されては 、な 、。 [0013] Although it is a general method for producing reinforced ex brass, it is widely known that the strength after annealing increases if the crystal grains are made finer. It is also known that in order to produce brass with fine crystal grains, after cold rolling at a high processing rate, annealing may be repeated for a long time at a relatively low temperature. For example, in the manufacturing method disclosed in Patent Document 2, it is essential to combine processing at a high processing rate multiple times, so it is relatively thick! It may be difficult to manufacture a product. . Furthermore, in this Patent Document 2, there are only a few examples of annealing temperatures for annealing before the final recrystallization annealing, and such annealing conditions are regarded as important.
[0014] また、 α + |8黄銅の場合、 a相と β相との 2相混合組織力 なる微細結晶粒をもつ てしても、リン青銅の持つ耐力と曲げカ卩ェ性とのバランスには遙かに及ばないのが実 情である。 [0014] In the case of α + | 8 brass, the balance between the proof strength and bending strength of phosphor bronze, even if it has fine crystal grains with a two-phase mixed microstructure of a phase and β phase. The situation is far less than that.
[0015] 上述のように、理論的な製造方法に関する種々の提言等は行われていても、製造 条件管理も困難で、工業的に量産可能な製造条件は見い出されていな力つたので ある。  [0015] As described above, even though various proposals relating to the theoretical production method have been made, it is difficult to manage production conditions, and production conditions that can be industrially mass-produced have not been found.
課題を解決するための手段  Means for solving the problem
[0016] そこで、本件発明者等は鋭意研究の結果、工業的な生産性に優れ、しかも製品品 質のバラツキを少なくすることの出来る微細結晶粒組織を得る製造条件に想到した のである。即ち、本件発明は、一般の α黄銅材に求められる加工性を満足しながら 一般材よりも強度が強ぐさらには黄銅材の ΕΗ級あるいはそれを上回るリン青銅の 硬質材レベルの強度と加工性とを持ち、しカゝも応力緩和特性が一定レベルを維持し た強化 O黄銅材を工業的利用の容易な方法で製造する方法と、この方法から得られ た強化 OC黄銅材を提供するものである。  [0016] Therefore, as a result of earnest research, the inventors of the present invention have come up with a production condition for obtaining a fine crystal grain structure that is excellent in industrial productivity and can reduce variations in product quality. That is, the present invention satisfies the workability required for a general α-brass material, has a strength higher than that of a general material, and further, has a strength of a hard material of phosphor bronze, which is higher than that of a brass material, or higher than that of a hard material. A method of manufacturing a reinforced O brass material that maintains a certain level of stress relaxation characteristics and a reinforced OC brass material obtained from this method. It is.
[0017] 本件発明は、銅 63wt%〜75wt%、不可避不純物以外の残部が亜鉛からなる組 成を持つ強化 OC黄銅の製造方法であって、  [0017] The present invention is a method for producing reinforced OC brass having a composition of copper 63 wt% to 75 wt%, the balance other than inevitable impurities being zinc.
出発板材として結晶粒径が 1 μ πι〜2 /ζ mである黄銅板を用い、これに 5%〜40% の加工率で冷間圧延加工を加え冷間圧延黄銅板とし、この冷間圧延黄銅板を低温 焼鈍して 0. 2%耐カ(σ . : MPa)を最高値の 90%以上に調整したことを特徴とす る強化 o黄銅の製造方法を提供する。 A brass plate having a crystal grain size of 1 μπι-2 / ζ m was used as a starting plate material, which was cold rolled at a processing rate of 5% to 40% to form a cold rolled brass plate. It is characterized by low-temperature annealing of brass plate and adjusting 0.2% resistance (σ.: MPa) to 90% or more of the maximum value. O Provide a method for manufacturing brass.
[0018] そして、前記低温焼鈍は、 0. 2%耐力の焼鈍温度依存性からみて、 0. 2%耐力が 最高値を示す焼鈍温度以上の温度で行うものであることが好ましい。  [0018] The low temperature annealing is preferably performed at a temperature equal to or higher than the annealing temperature at which the 0.2% proof stress shows the maximum value in view of the dependency of the 0.2% proof stress on the annealing temperature.
[0019] そして、前記出発板材である結晶粒径が 1 μ m〜2 μ mの黄銅板は、熱間圧延後 の面削黄銅板又は結晶粒径が 7 πι〜200 /ζ mの黄銅板を原料素材とし、これを 80 %〜95%の加工率で冷間圧延カ卩ェをカ卩えた後、再結晶焼鈍することでビッカース硬 度(Hv)を 130〜 170の範囲に調整したものを用 、ることが好まし!/、。  [0019] The brass plate having a crystal grain size of 1 μm to 2 μm as the starting plate material is a chamfered brass plate after hot rolling or a brass plate having a crystal grain size of 7πι to 200 / ζ m. A Vickers hardness (Hv) adjusted to the range of 130 to 170 by recrystallizing annealing after rolling the cold rolled casing at a processing rate of 80% to 95%. I prefer to use! / ,.
[0020] また、前記出発板材である結晶粒径が 1 μ m〜2 μ mの黄銅板は、熱間圧延後の 面削黄銅板又は結晶粒径が 7 m〜200 mの黄銅板を原料素材とし、これを 80% 〜95%の加工率で冷間圧延加工を加えた後、再結晶焼鈍することでビッカース硬度 (Hv)を 130〜170の範囲に調整し、 40%〜95%の加工率で冷間圧延加工をカロえ 、更に再結晶焼鈍することでビッカース硬度 (Hv)が 130〜 170の範囲に調整したも のを用いることも好ましい。  [0020] The brass plate having a crystal grain size of 1 μm to 2 μm, which is the starting plate material, is a hot-rolled chamfered brass plate or a brass plate having a crystal grain size of 7 m to 200 m as a raw material. Vickers hardness (Hv) is adjusted to the range of 130-170 by recrystallization annealing after applying cold rolling at a processing rate of 80% -95% as a material, and 40% -95% It is also preferable to use the one in which the cold rolling process is carried out at the processing rate and the Vickers hardness (Hv) is adjusted in the range of 130 to 170 by recrystallization annealing.
[0021] また、前記出発板材である結晶粒径が 1 μ m〜2 μ mの黄銅板は、結晶粒径 3 μ m 〜6 /z mの黄銅板を原料素材とし、 70%〜95%の加工率で冷間圧延力卩ェをカロえ、 再結晶焼鈍することでビッカース硬度 (Hv)を 130〜 170の範囲に調整したものを用 、ることも好まし 、。  [0021] The brass plate having a crystal grain size of 1 μm to 2 μm, which is the starting plate material, is made of a brass plate having a crystal grain size of 3 μm to 6 / zm as a raw material. It is also preferable to use a Vickers hardness (Hv) adjusted within the range of 130 to 170 by refining the cold rolling force at the processing rate and performing recrystallization annealing.
[0022] 前記再結晶焼鈍は、連続焼鈍を行う場合には 370°C〜650°C、バッチ焼鈍を行う 場合には 255°C〜290°Cで行うことが好ましい。  [0022] The recrystallization annealing is preferably performed at 370 ° C to 650 ° C when continuous annealing is performed, and at 255 ° C to 290 ° C when batch annealing is performed.
[0023] 本件発明は、前記強化 a黄銅の製造方法により得られた銅 63wt%〜75wt%、不 可避不純物以外の残部が亜鉛力 なる組成を持つ強化 OC黄銅であって、引張り強さ 力 ^530MPa〜790MPa、 0. 20/0而力(σ . )カS450MPa〜750MPa、 120。C X 10 [0023] The present invention is a reinforced OC brass having a composition of 63 wt% to 75 wt% copper obtained by the method for producing reinforced a brass, and the balance other than unavoidable impurities has a zinc strength, and has a tensile strength strength. ^ 530MPa~790MPa, 0. 2 0/0 而力(σ.) mosquitoes S450MPa~750MPa, 120. CX 10
0 2  0 2
0時間の応力緩和率が 52%以下で、圧延方向を曲げ軸とする直角曲げでクラックの 生じな 、最小曲げ半径 (MBR: mm)と板厚 (t: mm)と 0. 2%耐カ( σ . : MPa)と  The minimum bending radius (MBR: mm), sheet thickness (t: mm), and 0.2% resistance against cracking when the stress relaxation rate at 0 hours is 52% or less and right-angled bending with the rolling direction as the bending axis. (Σ.: MPa) and
0 2 が数 4 (但し、右辺の計算結果が 0. 3以下となったときは 0. 3と見なす)の条件を満た すことを特徴とした強化 O黄銅を提供する。  Provide reinforced O brass characterized by 0 2 satisfying the condition of number 4 (however, when the calculation result on the right side is 0.3 or less, it is considered 0.3).
[0024] 画 [0024] drawings
M B R / ≤ 0 . 0 1 2 5 X σ 0. 2 - 6 . 7 [0025] そして、前記強化 黄銅は、エリクセン値 (Er : mm)と 0. 2%耐カ ( σ . : MPa)と MBR / ≤ 0. 0 1 2 5 X σ 0. 2-6.7 [0025] The reinforced brass has an Erichsen value (Er: mm) and 0.2% resistance (σ .: MPa).
0 2  0 2
が数 5の条件を満たして 、ることも好まし 、。  It is also preferable to satisfy the condition of number 5.
[0026] [数 5] [0026] [Equation 5]
E r ≥ 一 0 . 0 1 1 X び ο · 2 + 1 3 . 7 発明の効果 E r ≥ 1 0.0 1 1 X and ο 2 + 1 3.7
[0027] 本件発明により、耐力と成形加工性能とのバランスに優れた、しカゝも応力緩和率が 一定限度以下となる強化 α黄銅を得ることが可能となる。そして、本件発明に係る強 化 (X黄銅は上述の優れた物性が安定しており、しかも工業的規模での生産にも適し ている。  [0027] According to the present invention, it is possible to obtain reinforced α brass having an excellent balance between proof stress and molding performance and having a stress relaxation rate of a certain limit or less. The strengthening according to the present invention (X brass has the above-mentioned excellent physical properties stable and is also suitable for production on an industrial scale.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] (本件発明に係る強化 α黄銅の製造方法) [0028] (Method for producing reinforced α brass according to the present invention)
本件発明に係る強化 α黄銅の製造方法は、銅 63wt%〜75wt%、不可避不純物 以外の残部が亜鉛力もなる組成を持つ強化 OC黄銅の製造方法であって、出発板材 として結晶粒径が 1 μ πι〜2 /ζ mである黄銅板を用い、これに 5%〜40%の加工率で 冷間圧延加工を加え冷間圧延黄銅板とし、この冷間圧延黄銅板を低温焼鈍して 0. 2%耐カ( σ . : MPa)を最高値の 90%以上に調整したことを特徴として 、る。  The manufacturing method of the reinforced α brass according to the present invention is a manufacturing method of reinforced OC brass having a composition in which the balance other than unavoidable impurities is zinc power with a copper particle of 1 wt. Using a brass plate of πι-2 / ζ m, cold rolled at a processing rate of 5% to 40% to obtain a cold rolled brass plate, and this cold rolled brass plate is annealed at low temperature. 2% resistance (σ.: MPa) is adjusted to 90% or more of the maximum value.
0 2  0 2
[0029] まず、本件発明に係る強化 a黄銅の組成を上述のように定めた理由を説明する。  [0029] First, the reason why the composition of the reinforced a brass according to the present invention is determined as described above will be described.
銅—亜鉛合金において、銅成分量が 75wt%を超えると強度レベルが低くなり、無理 に強度を上げると曲げ加工性が悪くなる傾向が顕著となるのである。また、銅成分量 が 63wt%未満の場合には、 |8層が出現してしまい、 α層の単相組織とすることがで きない。更に、不可避不純物に関しては、伸銅品一般に言えるようにコストを下げるた めに使用するスクラップ原料に対する配慮が必要である。不純物としての Feは、再結 晶温度に影響を与えるので 0. 01wt%以下であることが好ましい。また、不純物とし ての Snは、特に悪影響は与えないが、 0. lwt%を超えると強度や耐食性に好影響 を与えるので、別合金としてとし扱うべきものである。不純物としての Sは熱間加工性 や最終製品の展伸、切削などの加工性に悪影響を与えるので 0. 003wt%以下に 抑えることが好ましい。 [0030] そして、出発板材が再結晶処理により結晶粒径が 1 m〜2 mに均一化して ヽる ことによりその後の冷間圧延加工後もより均一な粒径分布を持つことができるのであ る。そして、この黄銅板に 5%〜40%の加工率で冷間圧延加工を加えて冷間圧延黄 銅板とするが、当該冷間圧延加工における加工率が 5%未満の場合には後述する 低温焼鈍を行っても耐力が低くなる一方、最終冷間圧延加工の加工率が 40%を超 えるとカ卩工硬化が進行し、耐力の向上はみられても曲げカ卩ェ性が MBRZtで 3を超 えるようになり、機械的特性バランスの良好な強化 OC黄銅が得られにくくなるのである In copper-zinc alloys, when the copper content exceeds 75 wt%, the strength level decreases, and when the strength is forcibly increased, the tendency for bending workability to deteriorate becomes prominent. When the copper content is less than 63 wt%, | 8 layers appear, and the α-layer cannot have a single-phase structure. In addition, with regard to inevitable impurities, it is necessary to consider scrap materials used to reduce costs, as can be said with general copper products. Fe as an impurity affects the recrystallization temperature, and is preferably 0.01 wt% or less. In addition, Sn as an impurity has no particular adverse effect, but if it exceeds 0.1 wt%, it has a positive effect on strength and corrosion resistance, so it should be treated as a separate alloy. S as an impurity has an adverse effect on hot workability, workability of final product expansion, cutting, and the like, so it is preferably suppressed to 0.003 wt% or less. [0030] Then, the starting plate material can be made to have a more uniform grain size distribution after the subsequent cold rolling by making the grain size uniform to 1 m to 2 m by recrystallization treatment. The Then, cold rolling is added to the brass plate at a processing rate of 5% to 40% to obtain a cold rolled brass plate. If the processing rate in the cold rolling is less than 5%, the low temperature will be described later. Although the yield strength is lowered even after annealing, the hardening of the mold progresses when the final cold rolling process rate exceeds 40% and the bending strength is MBRZt even though the yield strength is improved. It is difficult to obtain reinforced OC brass with a good mechanical property balance.
[0031] ところで、本件発明では強化 α黄銅の機械強度の指標として 0. 2%耐カを用いて いる。一般材の機械強度は引張り強さと伸び率で示されているのが通常である。しか し、引張り強さとは引張り試験において破断に至るまでに観察された最大荷重力 計 算された値であって、この最大荷重の値は既に引張り加工が加わり断面形状及び物 性の変化要因が加わった状態で得られたデータとなってしまって 、るため、本件発 明者は引張り強さを加工性の指標とすることは不適当であると考えていたのである。 そこで、加工前の材料そのものの特性を比較評価できる指標として、主に設計の基 準として利用されて 、る 0. 2%耐カ( σ . : MPa)を強度の指標として採用したので [0031] By the way, in the present invention, 0.2% strength resistance is used as an index of mechanical strength of reinforced α brass. The mechanical strength of general materials is usually indicated by tensile strength and elongation. However, the tensile strength is a value calculated from the maximum load force observed up to the break in the tensile test, and this maximum load value has already been subjected to tensile processing and is a factor that changes the cross-sectional shape and physical properties. Therefore, the present inventors thought that it was inappropriate to use tensile strength as an index of workability. Therefore, as an index that can be used to compare and evaluate the properties of the material itself before processing, it is mainly used as a design standard, and the 0.2% resistance (σ .: MPa) is adopted as an index of strength.
0 2  0 2
ある。  is there.
[0032] また、最終冷間圧延後の材料を低温焼鈍する場合、低温焼鈍温度を上げてゆくと 耐カは緩いピークを作って上昇し、さらには次第に減少して次に急激に減少する。こ れは低温焼鈍硬化現象として知られていることである。そして低温焼鈍後の 0. 2%耐 力が低温焼鈍硬化現象で得られる 0. 2%耐力の最高値の 90%超を示す温度に制 限したのは強度の低下を抑えるためである。そして、 0. 2%耐力の最高値を示す温 度である力 0. 2%耐力の最高値は加工率が低い場合には温度軸でとっても時間 軸でとってみてもピーク幅は狭いが、加工率が高い場合には広くなだらかなピーク部 分が得られるので、最高値が得られる条件は 1点としてとらえるより最高値の 99%以 上を示す範囲を最高値が得られる加熱条件としてとらえる方が実際的である。  [0032] When the material after the final cold rolling is subjected to low temperature annealing, when the low temperature annealing temperature is raised, the resistance increases with a loose peak, further decreases and then decreases rapidly. This is known as the low temperature annealing hardening phenomenon. The reason why the 0.2% proof stress after low-temperature annealing is limited to a temperature that exceeds 90% of the maximum 0.2% proof stress obtained by the low-temperature annealing hardening phenomenon is to suppress the decrease in strength. And the force 0.2% proof stress is the temperature that shows the maximum value of 0.2% proof stress, but the peak width of the maximum 0.2% proof stress is narrow when viewed on the temperature axis or the time axis when the processing rate is low. When the processing rate is high, a broad and gentle peak can be obtained, so the condition for obtaining the maximum value is regarded as the heating condition for obtaining the maximum value over a range showing 99% or more of the maximum value. Is more practical.
[0033] そして、前記低温焼鈍は、 0. 2%耐力の焼鈍温度依存性からみて、 0. 2%耐力が 最高値を示す焼鈍温度以上の温度で行うことが好まし 、。ここで行って 、る最終的に 行う低温焼鈍は、単に低い温度で行う歪み取り焼鈍をさすのではなぐいわゆる低温 焼鈍硬化現象を伴う処理を言っている。一方、本件発明者は、加工仕上がりの 55% 近辺という応力緩和率が、 0. 2%耐力の最高値をもたらす焼鈍温度近辺から温度の 上昇とともに減少して一定レベルに落ち着 、てゆくことを見 、だして!/、る。したがって 、 52%以下という応力緩和率の閾値を得る条件として、低温焼鈍温度は 0. 2%耐カ が最高値を示す温度またはそれよりも高い温度に設定する必要があるのである。 [0033] The low-temperature annealing is preferably performed at a temperature equal to or higher than the annealing temperature at which the 0.2% proof stress shows the maximum value in view of the annealing temperature dependency of the 0.2% proof stress. Go here and finally The low-temperature annealing performed refers to a process involving a so-called low-temperature annealing hardening phenomenon that does not simply refer to strain relief annealing performed at a low temperature. On the other hand, the present inventor has found that the stress relaxation rate of around 55% of the work finish decreases from the annealing temperature that brings about the maximum value of 0.2% proof stress, decreases with increasing temperature, and settles to a certain level. Look at it! Therefore, as a condition for obtaining a stress relaxation rate threshold value of 52% or less, it is necessary to set the low-temperature annealing temperature to a temperature at which 0.2% resistance to the maximum value is higher or higher.
[0034] そして、低温焼鈍もバッチ方式よりも連続方式を採用し、炉温を 250°C〜450°Cとし て通板時間は 1秒〜 10秒で行うことが推奨される。連続的に低温焼鈍を行うメリットは 、コスト削減と品質安定性の確保が容易となる点にある。カロえて、この低温焼鈍は、最 終的な焼鈍であり、低温焼鈍の終了後は条の状態となっているのが通常である。バッ チ方式の焼鈍では、条はコイル状のまま加熱炉に入れ、そのまま加熱されることにな る。従って、条に卷き癖がついてしまい、製品として使用する前の矯正工程で、圧延 による歪以外に、巻き癖まで矯正を要するが、効果的な矯正が困難となる。これに対 し、連続方式は、加熱ゾーンを板材が走行しつつ加熱され、低温焼鈍の終了後にコ ィルの状態に巻き取られるため、条としての巻き癖がつかず矯正工程を通せば平坦 な条材が得られやすくなる  [0034] And, it is recommended that low temperature annealing is also a continuous method rather than a batch method, the furnace temperature is 250 ° C to 450 ° C, and the plate passing time is 1 second to 10 seconds. The advantage of continuous low-temperature annealing is that it is easy to reduce costs and ensure quality stability. This low-temperature annealing is the final annealing, and is usually in the state of strips after the low-temperature annealing is completed. In batch-type annealing, the strips are placed in a heating furnace in the form of a coil and are heated as they are. Therefore, the streaks are attached to the strips, and in the correction process before use as a product, it is necessary to correct up to the curl in addition to the distortion caused by rolling. However, effective correction becomes difficult. In contrast, in the continuous method, the plate material is heated while traveling in the heating zone, and is wound into a coil after completion of the low-temperature annealing. Easy to obtain
[0035] そして、前記出発板材である結晶粒径が 1 μ m〜2 μ mの黄銅板は、熱間圧延後 の面削黄銅板又は結晶粒径が 7 m〜200 mの黄銅板を原料素材とし、これを 80 %〜95%の加工率で冷間圧延カ卩ェをカ卩えた後、再結晶焼鈍することでビッカース硬 度 (Hv)を 130〜 170の範囲に調整したものを用 、ることが好ま 、。原料素材として 用いる粒径の大きな黄銅板 (焼鈍材)は、熱間圧延上がり材の場合も含んでいる。な お、熱間圧延上がりの板材の結晶組織の粒径は、小型試験用圧延機を用いると 100 μ m〜200 μ mだが、工業用熱間圧延機の場合は、動的再結晶を起こして 25 μ m 程度となる。そして、冷間圧延加工の加工率を 80%以上とした場合には、前の結晶 粒度が大きくても、その強力卩ェによって、: L m前後のサブグレイン組織となるので、 以後の工程を経ても、本件発明の目的とする良好な耐力と曲げ加工性を得ることが 出来るのである。そして、発明者は、小型試験用と工業用の圧延機のどちらからの熱 間圧延上がり材からスタートしても、加工率 80%以上で冷間圧延加工を加えると、性 能上差がなくなることを確認している。そこで冷間圧延加工の加工率の下限を 80%と している。そして、加工率 95%を超えて冷間圧延すると、加工中に端部に割れを生 ずる場合があって好ましくな 、のである。 [0035] The brass plate having a crystal grain size of 1 μm to 2 μm, which is the starting plate material, is made from a face-cut brass plate after hot rolling or a brass plate having a crystal grain size of 7 m to 200 m. Use a material with a Vickers hardness (Hv) adjusted to the range of 130 to 170 by recold annealing after cold rolling with a processing rate of 80% to 95%. , Prefer to be. The large-diameter brass plate (annealed material) used as a raw material includes the case of hot rolled material. The grain size of the crystal structure of the plate after hot rolling is 100 μm to 200 μm when a small test rolling mill is used. However, in the case of an industrial hot rolling mill, dynamic recrystallization occurs. About 25 μm. And if the cold rolling process rate is 80% or more, even if the previous crystal grain size is large, due to its strong strength, it becomes: subgrain structure around Lm. Even after passing, the desired yield strength and bending workability of the present invention can be obtained. Then, the inventor added cold rolling with a processing rate of 80% or higher, regardless of whether it started with hot rolled material from either a small test mill or an industrial rolling mill. It has been confirmed that there is no difference in performance. Therefore, the lower limit of the cold rolling ratio is 80%. Further, cold rolling exceeding the processing rate of 95% is preferable because cracks may occur at the end during processing.
[0036] また、前記出発板材である結晶粒径が 1 μ m〜2 μ mの黄銅板は、熱間圧延後の 面削黄銅板又は結晶粒径が 7 m〜200 mの黄銅板を原料素材とし、これを 80% 〜95%の加工率で冷間圧延加工を加えた後、再結晶焼鈍することでビッカース硬度 (Hv)を 130〜170の範囲に調整し、 40%〜95%の加工率で冷間圧延加工をカロえ 、更に再結晶焼鈍することでビッカース硬度 (Hv)が 130〜 170の範囲に調整したも のを用いることも好ましい。前述の如く熱間圧延後の面削黄銅板又は 7 m〜200 mの黄銅板を用いて、これを 80%〜95%の加工率で冷間圧延加工を加えた後、再 結晶焼鈍することでビッカース硬度 (Hv)を 130〜 170の範囲に調整した板材は平 均結晶粒径が 1 πι〜2 /ζ mになっていることを考えると、以降の冷間圧延において 40 %〜 95 %の加工率を採用し、低カ卩工率であつても 40%を超えて 、ればその後の 再結晶焼鈍で微細粒を容易に得ることが出来、その後の工程を経ても高い耐力と良 好な曲げ力卩ェ性を得ることが可能となる。しかし、加工率が 95%を超えて冷間圧延 すると、加工中に端部に割れを生ずる場合があって好ましくないのである。  [0036] The brass plate having a crystal grain size of 1 μm to 2 μm, which is the starting plate material, is a hot-rolled chamfered brass plate or a brass plate having a crystal grain size of 7 m to 200 m as a raw material. Vickers hardness (Hv) is adjusted to the range of 130-170 by recrystallization annealing after applying cold rolling at a processing rate of 80% -95% as a material, and 40% -95% It is also preferable to use the one in which the cold rolling process is carried out at the processing rate and the Vickers hardness (Hv) is adjusted in the range of 130 to 170 by recrystallization annealing. As described above, use hot-rolled chamfered brass plate or 7 m to 200 m brass plate, apply cold rolling at a processing rate of 80% to 95%, and then perform recrystallization annealing. In consideration of the fact that the average grain size of the plate material with Vickers hardness (Hv) adjusted in the range of 130 to 170 in the range of 1 πι to 2 / ζ m is 40% to 95% in the subsequent cold rolling. Even if the machining rate is less than 40%, fine grains can be easily obtained by subsequent recrystallization annealing. It is possible to obtain a favorable bending strength. However, cold rolling at a processing rate exceeding 95% is not preferable because a crack may occur at the end during processing.
[0037] また、前記出発板材である結晶粒径が 1 μ m〜2 μ mの黄銅板は、結晶粒径 3 μ m 〜6 /z mの黄銅板を原料素材とし、 70%〜95%の加工率で冷間圧延力卩ェをカロえ、 再結晶焼鈍することでビッカース硬度 (Hv)を 130〜 170の範囲に調整したものを用 いることも好ましい。加工前の結晶粒径が 6 mを超えると 70%の加工率で冷間圧延 加工を加えても、十分な結晶粒の微細化が出来ず曲げ加工性が悪くなつてしまう。ま た、結晶粒径が 3 m未満の平均結晶粒径の場合、その後の加工率を 70%としても 圧延圧力が高くなるので不利な場合がある。また、加工率が 95%を超えて冷間圧延 すると、加工中に端部に割れを生ずる場合があって好ましくないのである。  [0037] Further, the brass plate having a crystal grain size of 1 μm to 2 μm as the starting plate material is made of a brass plate having a crystal grain size of 3 μm to 6 / zm as a raw material, and has a 70% to 95% It is also preferable to use a material whose Vickers hardness (Hv) is adjusted in the range of 130 to 170 by refining the cold rolling force with the processing rate and performing recrystallization annealing. If the crystal grain size before processing exceeds 6 m, even if cold rolling is applied at a processing rate of 70%, sufficient crystal grains cannot be refined and bending workability deteriorates. In addition, when the average grain size is less than 3 m, it may be disadvantageous because the rolling pressure increases even if the subsequent processing rate is 70%. In addition, if the processing rate exceeds 95% and cold rolling is performed, cracks may occur at the ends during processing, which is not preferable.
[0038] 前記再結晶焼鈍は、連続焼鈍を行う場合には 370°C〜650°C、バッチ焼鈍を行う 場合には 255°C〜290°Cで行うことが好ましい。本件発明に係る強化 a黄銅の製造 方法では、上記原料素材に冷間圧延加工を施した後、連続焼鈍では最終再結晶焼 鈍を 370°C〜650°Cの炉温で行う。炉温が 370°C未満とした場合には、通板速度を 落として再結晶を行わせても得られる製品の成型加工性が悪くなる。一方、炉温が 6 50°Cを超えるようにすると、結晶粒径が不揃いとなってしまって 2 mを超えるほど大 きくなり、冷間圧延加工後に得られる冷間圧延黄銅板に低温焼鈍を加えても成型カロ ェ性が悪くなる。このときの再結晶焼鈍時間は、炉の能力と板厚と所望の強度によつ て定めるものである力 通常の工業的設備の場合、 2秒〜 120秒の範囲となる。現実 的に適正な時間を定めようとすれば、簡易的には硬度で管理し、ビッカース硬度 (Hv )が 130〜170、好ましくは 135〜160となるように定める。ビッカース硬度(Hv)が 13 0未満であれば再結晶粒径が大きいものであってその後の加工をカ卩えても所期の物 性を得ることが困難になり、そして 170を超えると再結晶組織より冷間加工組織の残 存比率が高い組織となり最終製品としての強化 (X黄銅の成型性が悪くなるのである。 [0038] The recrystallization annealing is preferably performed at 370 ° C to 650 ° C when continuous annealing is performed, and at 255 ° C to 290 ° C when batch annealing is performed. In the method for producing reinforced a brass according to the present invention, after subjecting the raw material to cold rolling, the final recrystallization annealing is performed at a furnace temperature of 370 ° C. to 650 ° C. in continuous annealing. When the furnace temperature is less than 370 ° C, the feeding speed is Even if it is dropped and recrystallized, the moldability of the product obtained is deteriorated. On the other hand, when the furnace temperature exceeds 650 ° C, the crystal grain size becomes uneven and becomes larger as it exceeds 2 m, and low temperature annealing is applied to the cold rolled brass sheet obtained after cold rolling. Even if it is added, the molding calorie property will deteriorate. The recrystallization annealing time at this time is a force determined by the capacity of the furnace, the plate thickness, and the desired strength. In the case of normal industrial equipment, it is in the range of 2 to 120 seconds. If a practically appropriate time is to be determined, it is simply controlled by the hardness and determined so that the Vickers hardness (Hv) is 130 to 170, preferably 135 to 160. If the Vickers hardness (Hv) is less than 130, the recrystallized grain size is large, making it difficult to obtain the desired physical properties even if subsequent processing is performed. It becomes a structure with a higher remaining ratio of cold-worked structure than that of the structure, and strengthens it as a final product (the formability of X brass deteriorates).
[0039] そして再結晶焼鈍を連続方式で行うメリットは、コスト削減と品質安定性の確保が容 易となることである。バッチ方式では、炉内における位置に起因して実体温度の偏在 が起こりやすくなる傾向がある。また、バッチ方式の焼鈍を行うと最終再結晶焼鈍後 の [耐力] Z [引張強さ]の値が 80%未満になりがちであるのに対し、連続方式加熱 法を採用した場合の最終再結晶焼鈍後の [耐力] Z [引張強さ]の値は 80%以上と 高くなり、より微細な結晶粒が得られるのである。従って、バッチ方式の加熱よりも連 続方式の加熱の方が、本件発明に係る製造方法である最終冷間圧延加工及び低温 焼鈍を経て得られる強化 OC黄銅の耐力と成形加工性のバランスが良くなるのである。  [0039] An advantage of performing recrystallization annealing in a continuous manner is that it is easy to reduce costs and ensure quality stability. In the batch method, there is a tendency that the substantial temperature tends to be unevenly distributed due to the position in the furnace. Also, when batch-type annealing is performed, the value of [proof strength] Z [tensile strength] after final recrystallization annealing tends to be less than 80%, whereas the final recrystallization with the continuous heating method is used. The value of [Yield Strength] Z [Tensile Strength] after crystal annealing becomes as high as 80% or more, and finer crystal grains can be obtained. Therefore, the continuous heating method has a better balance between the yield strength and forming processability of the reinforced OC brass obtained through the final cold rolling process and the low temperature annealing, which are the manufacturing methods according to the present invention, than the batch heating process. It becomes.
[0040] しかし、板厚が厚力つたり、連続焼鈍炉を保有していない場合にはバッチ焼鈍も適 用可能である。工業的にはコイルの実体温度が設定温度に達してから 30分〜 3時間 程度の保持が通常である。この保持時間であれば実体温度を 255°C〜290°Cとする ことが好ま 、のである。コイルの実体温度を 255°C未満とした場合には所望の強度 に合致するように再結晶させると結晶粒の大きさが不揃 、となってしま 、 (横軸を粒 径の対数軸とした粒度分布図とした場合、 2以上のピークが観察される分布)、低温 焼鈍しても曲げカ卩ェ性が極端に悪くなつてしまうのである。一方、コイルの実体温度 を 290°Cを超えるものとしても結晶粒の大きさは不揃いであり、平均粒径が大きぐこ れに冷間圧延加工を加えて低温焼鈍しても成形加工性の悪!、製品しか得られな!/、 のである。 [0041] 本件発明は、前記強化 a黄銅の製造方法により得られた銅 63wt%〜75wt%、不 可避不純物以外の残部が亜鉛力 なる組成を持つ強化 OC黄銅であって、引張り強さ 力 ^530MPa〜790MPa、 0. 20/0而力(σ . )カS450MPa〜750MPa、 120。C X 10 [0040] However, batch annealing is also applicable when the plate thickness is heavy or when a continuous annealing furnace is not provided. Industrially, it is usually held for about 30 minutes to 3 hours after the actual temperature of the coil reaches the set temperature. For this holding time, it is preferable to set the actual temperature to 255 ° C to 290 ° C. If the body temperature of the coil is less than 255 ° C, recrystallization to match the desired strength will result in irregular grain sizes (the horizontal axis is the logarithmic axis of the grain diameter). In the case of the particle size distribution chart, the distribution in which two or more peaks are observed), the bending kayakability is extremely deteriorated even by low-temperature annealing. On the other hand, even if the actual temperature of the coil exceeds 290 ° C, the crystal grains are uneven in size, and the average grain size is large. Only the product can be obtained! [0041] The present invention is a reinforced OC brass having a composition of 63 wt% to 75 wt% of copper obtained by the method for producing reinforced a brass, and the balance other than unavoidable impurities is a zinc force, and has a tensile strength strength. ^ 530MPa~790MPa, 0. 2 0/0 而力(σ.) mosquitoes S450MPa~750MPa, 120. CX 10
0 2  0 2
0時間の応力緩和率が 52%以下で、圧延方向を曲げ軸とする直角曲げでクラックの 生じな 、最小曲げ半径 (MBR: mm)と板厚 (t: mm)と 0. 2%耐カ( σ . : MPa)と  The minimum bending radius (MBR: mm), sheet thickness (t: mm), and 0.2% resistance against cracking when the stress relaxation rate at 0 hours is 52% or less and right-angled bending with the rolling direction as the bending axis. (Σ.: MPa) and
0 2 が数 6 (但し、右辺の計算結果が 0. 3以下となったときは 0. 3と見なす)の条件を満た して 、ることを特徴とした強化 (X黄銅を提供する。  It provides a strengthened (X brass) characterized in that 0 2 satisfies the condition of Equation 6 (however, when the calculation result on the right side is 0.3 or less, it is considered 0.3).
[0042] 園 [0042] Garden
M B R / ≤ 0 . 0 1 2 5 X σ 0. 2 - 6 . 7 MBR / ≤ 0. 0 1 2 5 X σ 0. 2-6.7
[0043] そして、この強化 α黄銅の強度に関しては前述のように設計の基準として利用され ている 0. 2%耐カ(σ . : MPa)を強度の指標として採用している。  [0043] With regard to the strength of this reinforced α brass, 0.2% resistance (σ .: MPa), which is used as a design standard as described above, is employed as an indicator of strength.
0 2  0 2
[0044] また、銅合金の加工性を評価する一般的な指標としてはクラックの発生しな 、最小 曲げ半径 (MBR: mm)を用いることが多 、。そして曲げカ卩ェ性は端子の成形力卩ェの 際などにおいて重要な指標となっている。本件発明で曲げ加工性と称する場合は、 種々の曲げ試験にぉ 、て直角曲げの曲げ軸を圧延方向と平行にして行う所謂 Bad way曲げを行つて評価することを前提として 、る。圧延方向に垂直な方向を曲げ軸と して曲げ試験を行う所謂 Goood way曲げを行うと、黄銅の場合には Bad way曲げ と比べよりよい結果が得られるのが通常であり、製法の比較選別には不適と考えたの である。そこで本件出願では Bad way曲げのみを評価方法として採用している。  [0044] As a general index for evaluating the workability of a copper alloy, a minimum bending radius (MBR: mm) without cracks is often used. Bending quesability is an important index in the process of forming the terminal. In the present invention, the term “bending workability” is based on the premise that, in various bending tests, evaluation is performed by performing so-called Bad way bending in which the bending axis of right-angle bending is parallel to the rolling direction. Performing a bending test with the direction perpendicular to the rolling direction as the bending axis, so-called `` Goood way '' bending, usually gives better results in comparison with Bad way bending in the case of brass. It was considered unsuitable for this. In this application, therefore, only Bad way bending is used as the evaluation method.
[0045] ここで、曲げ加工性の良否について述べると、上記 MBRZtが 0. 3以下であれば、 ほぼどのような曲げ力卩ェを採用しても欠陥を生ぜず問題ない。これに対し、 MBR/t が 1. 0以下であれば、材料設計上許容される場合も多い。更に、 MBRZtが 3を超 えると、曲げ加工がしにくくなり、用途が大幅に制限される。従来の黄銅では、 MBR Ztが 1. 0以上になってきてしまうレベルである 0. 2%耐カ(σ . )が 550MPaを超  [0045] Here, the quality of the bending workability will be described. As long as the MBRZt is 0.3 or less, there is no problem even if almost any bending force is used. On the other hand, if MBR / t is 1.0 or less, it is often acceptable in material design. Furthermore, if MBRZt exceeds 3, bending becomes difficult and the application is greatly limited. In conventional brass, MBR Zt is a level that will become 1.0 or more 0.2% resistance (σ.) Exceeds 550MPa
0 2  0 2
える製品は少なぐまた 0. 2%耐カ(σ . )が 500MPa近辺より低いレベルでは曲  There are few products that can be used, and 0.2% resistance (σ.) Is lower than around 500 MPa.
0 2  0 2
げカ卩ェ性に問題は無くなるのである。  There will be no problem with the darkness.
[0046] そして、応力緩和率に関しては日本伸銅協会が試験法 (片持ち梁を利用し、曲げ による永久たわみ変位を測定)を定めている。本件発明に係る強化 α黄銅に適用す る温度は 120°Cが適当であるとして選択し、処理時間は前記試験法では 1000時間 とされている力 100時間でその違いは評価できるので 100時間とした。この方法で 端子コネクター材として流通して ヽる C2600材及び C2680材につ!/ヽて応力緩和率 を調べると、 40%、 40%、 36%、 40%、 48%〜52%というデータ力得られ、質另 Uと 結晶粒度によりまちまちであることが判明した。このとき、試験片の評価時期は万一の 経時変化の影響を避けるために製造後 2週間以内に実施している。そこで本件発明 者は、これら全てが実用に供されて 、る事実と需要者は応力緩和率の劣化を嫌って いることを勘案し、本件発明に係る強化 α黄銅に要求される応力緩和率の閾値を 52 %に設定したのである。 [0046] With regard to the stress relaxation rate, the Japan Copper and Brass Association has established a test method (using a cantilever to measure the permanent deflection displacement due to bending). Applied to reinforced α brass according to the present invention A temperature of 120 ° C was selected as appropriate, and the treatment time was set to 100 hours because the difference could be evaluated with a force of 100 hours, which is 1000 hours in the test method. C2600 and C2680 materials that are distributed as terminal connector materials by this method! / When the stress relaxation rate is examined, the data power of 40%, 40%, 36%, 40%, 48% to 52% It was found that it varies depending on the quality of additional U and the grain size. At this time, the test piece is evaluated within 2 weeks after production in order to avoid the effects of changes over time. Therefore, the present inventor considers the fact that all of these are put into practical use and the fact that the customer dislikes the deterioration of the stress relaxation rate, and the stress relaxation rate required for the reinforced α brass according to the present invention. The threshold was set at 52%.
[0047] そして、前記強化 黄銅は、エリクセン値 (Er : mm)と 0. 2%耐カ ( σ . : MPa)と  [0047] And, the reinforced brass has an Erichsen value (Er: mm) and 0.2% resistance (σ .: MPa).
0 2  0 2
が数 7の条件を満たして 、ることも好まし 、として 、る。  It is also preferable to satisfy the condition of number 7.
[0048] [数 7] [0048] [Equation 7]
E r ≥ 一 0 . 0 1 1 X び ο · 2 + 1 3 . 7 E r ≥ 1 0.0 1 1 X and ο 2 + 1 3. 7
[0049] 前述のように、上記 MBRZtが 0. 3以下であれば、どのような曲げカ卩ェでも欠陥が 生じることはほぼ無いのである力 厚物の圧着加工、厚物の曲げ Rなしの曲げ、張り 出し加工などで問題になることがある。一方、本件発明者は微細結晶を持つ黄銅は 微細結晶特有の特徴として優れた成形加工性を有して ヽることを既に見 ヽだして ヽ る。そして、結晶を微細化した α黄銅においては 0. 2%耐カ(σ . )がおよそ 540Μ  [0049] As described above, if MBRZt is 0.3 or less, there is almost no defect caused by any bending cache. Pressure bonding of thick material, bending of thick material It may cause problems in bending and overhanging. On the other hand, the present inventors have already found that brass having fine crystals has excellent moldability as a characteristic characteristic of fine crystals. And in α brass with refined crystal, 0.2% resistance (σ.) Is about 540 mm.
0 2  0 2
Paを切る付近で直角曲げの最小曲げ半径はゼロとなってしまい、広い範囲の強度を カバーしょうとする成形加工性の指標としては用い得なくなってしまうのである。  Near the Pa, the minimum bending radius of right-angle bending becomes zero, and it cannot be used as an index of moldability to cover a wide range of strength.
[0050] そして、成形加工性の指標としては一般的にエリクセン値 (Er : mm)が良く用いられ て!、ることから、本件発明では更にエリクセン値 (Er: mm)を追加指標として用いるこ とにしたのである。この選択の適切性を明らかにするために本件発明者は、まず JIS 規格に示す C2600材又は C2680材の 1Z2H、 H、 EH材のサンプル 17種を集め、 0. 2%耐カ( σ . : MPa)とエリクセン値 (Er: mm)を測定してみた。そして、両者の [0050] In general, the Eriksen value (Er: mm) is often used as an index of moldability! Therefore, in the present invention, the Eriksen value (Er: mm) is further used as an additional index. It was. In order to clarify the appropriateness of this selection, the inventor first collected 17 samples of 1Z2H, H, and EH materials of C2600 or C2680 shown in JIS standard, and 0.2% resistance (σ. MPa) and Erichsen value (Er: mm). And both
0 2  0 2
相関を調べてみると数 8に示す範囲に入ったのである。  Examining the correlation, it was in the range shown in Equation 8.
[0051] [数 8] E r = - 0. 01 1 X σ0. a + 1 2. 7 ± 0. 5 [0051] [Equation 8] E r =-0. 01 1 X σ 0 .a + 1 2. 7 ± 0.5
[0052] なお、エリクセン値とは下記エリクセン試験(Erichsen Test)により得られた数値 であり金属薄板の深絞り性を判定する目安とされて 、る。  [0052] The Erichsen value is a numerical value obtained by the following Erichsen test (Erichsen Test), and is used as a standard for determining the deep drawability of a thin metal sheet.
(1)試験器及び試験方法の規格: JIS B 7777  (1) Test equipment and test method standards: JIS B 7777
(2)試験方法: Φ 90板を Φ 27ダイス (ワセリン塗布のしわ押さえつき)、 D= 20半球 状ポンチを使用して、表裏に貫通した亀裂が生じる際のポンチ侵入深さ [エリクセン 値(Er: mm)]を求める。  (2) Test method: Φ 90 plate with Φ 27 dies (wrinkle presser with petrolatum applied), D = 20 hemispherical punch, punch penetration depth when cracks penetrating the front and back [Erichsen value ( Er: mm)].
[0053] そして、本件発明に係る強化 a黄銅のエリクセン値 (Er: mm)は 0. 2%耐カ ( σ .  [0053] And, the Erichsen value (Er: mm) of the reinforced a brass according to the present invention is 0.2% resistance (σ.
0 2 0 2
)力 50MPa〜750MPaの範囲全域にわたって数 9を満足できるものであり、同一の 0. 2%耐カ(σ . : MPa)を示す一般材と比較した場合には少なくとも 0. 5mm以上 ) Force Satisfies Equation 9 over the entire range of 50MPa to 750MPa, and is at least 0.5mm or more when compared with the same general material that shows the same 0.2% resistance (σ.: MPa)
0 2  0 2
エリクセン値 (Er: mm)が優れていることを見いだしたのである。しかしながらエリクセ ン値 (Er: mm)で全ての用途における加工性を評価できるものであるとは言えないた め、特に一般材では MBRZtが 0. 3を超える範囲ではエリクセン値 (Er: mm)のみ でなくより直接的な評価方法である曲げ加工性でも成形加工性を評価することが推 奨されるのである。  They found that the Eriksen value (Er: mm) was excellent. However, it cannot be said that the workability in all applications can be evaluated with the elixir value (Er: mm). Therefore, in general materials, only the elixir value (Er: mm) is used when MBRZt exceeds 0.3. In addition, it is recommended that the formability be evaluated by bending workability, which is a more direct evaluation method.
[0054] [数 9] [0054] [Equation 9]
E r ≥ —0. 01 1 X び ο· 2 + 1 3. 7 E r ≥ —0. 01 1 X and ο 2 + 1 3. 7
[0055] 次に、本件発明に係る強化 (X黄銅の物性をリン青銅のそれと対比しつつ説明する 。そこで、リン青銅の曲げ加工性について、本件発明に係る強化 α黄銅と対比可能 なように、説明を加えておくこととする。本件発明に係る強化 α黄銅の曲げ加工性評 価に用いたと同じ評価法によるデータを上記非特許文献 5で見ると、クラックを生じな い最小曲げ半径を MBR(mm)、板厚を t(mm)、 0. 2%耐カを σ . (MPa)とすると  [0055] Next, the reinforcement according to the present invention will be described while comparing the physical properties of X brass with those of phosphor bronze. Therefore, the bending workability of phosphor bronze can be compared with the reinforced α brass according to the present invention. When the data by the same evaluation method used for evaluating the bending workability of the reinforced α brass according to the present invention is seen in Non-Patent Document 5 above, the minimum bending radius that does not cause cracks is found. MBR (mm), thickness t (mm), 0.2% resistance to σ (MPa)
0 2  0 2
リン青銅の曲げ力卩ェ性は、以下の数 10で表せる。  The bending strength of phosphor bronze can be expressed by the following equation (10).
[0056] [数 10] [0056] [Equation 10]
MBR/t ≤ 0. 01 25 X び。. 2 — 7. 0 MBR / t ≤ 0. 01 25 X. . 2 — 7. 0
[0057] この数 10によればリン青銅の曲げ力卩ェ性は、 0. 2%耐カ(σ . )590MPa未満で は MBRZtが 0. 3以下となる力 0. 2%耐カ(σ . ) 800MPa超では MBRZtが 3 [0057] According to this number 10, the bending force resistance of phosphor bronze is less than 0.2% resistance (σ.) 590 MPa. Is the force that MBRZt is 0.3 or less 0.2% resistance (σ.) MBRZt is 3 for 800MPa
0 2  0 2
を超えることになり曲げ加工が困難となり実用的でない。現実にリン青銅を測定して みると、この関係式に沿わない場合もある、例えば、耐力が低い側また耐力が高い側 では、関係式より高い MBRZtとなる傾向が見られる。このことを前提として、本件発 明に係る強化 α黄銅に関して説明する。  The bending process becomes difficult and is not practical. When actually measuring phosphor bronze, this relational expression may not be met. For example, on the side with low proof stress or high proof stress, there is a tendency for MBRZt to be higher than the relational expression. Based on this premise, we will explain the strengthened α brass according to the present invention.
[0058] 本件発明に係る強化 α黄銅の物性は、 0. 2%耐カ( σ . )力 50MPa〜750MP [0058] The physical properties of the reinforced α brass according to the present invention are 0.2% strength (σ.) Force 50MPa to 750MP.
0 2  0 2
aであり、圧延方向を曲げ軸とする直角曲げ (Bad way曲げ)でクラックの生じない最 小曲げ半径(MBR:mm)と、板厚(t:mm)と、 0. 2%耐カ(σ . : MPa)とが、以下  a, the minimum bending radius (MBR: mm) that does not cause cracks in the right-angle bending (Bad way bending) with the rolling direction as the bending axis, the plate thickness (t: mm), and 0.2% resistance ( σ.: MPa) and below
0 2  0 2
の数 11 (但し、右辺の計算結果が 0. 3以下となったときは 0. 3と見なす)の関係を満 たすことを特徴としたものである。そして、以下の数 11はリン青銅に対する以下の数 1 2を 0. 3だけシフトした状態となる。  This is characterized by satisfying the relationship of number 11 (however, when the calculation result on the right side becomes 0.3 or less, it is considered 0.3). And the following number 11 is in a state where the following number 1 2 for phosphor bronze is shifted by 0.3.
[0059] [数 11] [0059] [Equation 11]
MB R/t ≤ 0. 01 25 X σο. 2 - 6. 7 MB R / t ≤ 0. 01 25 X σο. 2-6. 7
[0060] [数 12]  [0060] [Equation 12]
MB R/t ≤ 0. 01 25 X σ0. 2 — 7. 0 MB R / t ≤ 0. 01 25 X σ 0 2 -. 7. 0
[0061] 従って、数 11を満足している本件発明に係る強化 α黄銅は、リン青銅の品質にも 一定のバラツキが存在することを考慮すると、 0. 2%耐カ(σ . : MPa)と曲げカロェ  [0061] Therefore, the reinforced α brass according to the present invention, which satisfies Expression 11, takes into account that there is a certain variation in the quality of phosphor bronze, and 0.2% resistance (σ.: MPa) And bending Karoe
0 2  0 2
性のバランスにお 、てリン青銅並みの曲げカ卩ェ性を持って 、ると称することが出来る In the balance of sex, it can be said that it has the same bending curve as phosphor bronze.
。 MBRZtの値と、 σ . の値との関係力 数 11を満足できていないときは曲げカロェ . Relationship between MBRZt value and σ. Value
0 2  0 2
性が悪くなる。ここで、 MBRZtの計算値が 0. 3以下になる場合には、 0. 3とみなす としたのは、リン青銅と同様に耐力が低い側では、計算式より高い MBRZtとなる傾 向があること、そして、 MBRZtの計算値が 0. 3以下の場合には曲げカ卩ェ性が問題 となる事が少なぐ更に測定にも一定のバラツキが存在することを前提に考えた故で ある。  Sexuality gets worse. Here, when the calculated value of MBRZt is 0.3 or less, it was regarded as 0.3 because, like phosphor bronze, there is a tendency for MBRZt to be higher than the calculation formula on the side with low yield strength This is because, when the calculated value of MBRZt is less than 0.3, the bending cache property is less likely to be a problem, and there is a certain variation in measurement.
[0062] ここで、曲げ力卩ェ性 (MBRZt)に関する以下の数 13及びエリクセン値 (Er)に関す る以下の数 14を満足する強化 oc黄銅は、総じて平均結晶粒径が 2 μ m以下の再結 晶組織から派生した組織であり、後述するような回復組織を備え、且つ、再結晶時の 平均結晶粒径が 2 m以下の大きさになると好ましいのである。 [0062] Here, the strengthened oc brass satisfying the following number 13 regarding bending force property (MBRZt) and the following number 14 regarding Erichsen value (Er), the average crystal grain size is generally 2 μm or less. This is a structure derived from the recrystallized structure, and has a recovery structure as described later. The average crystal grain size is preferably 2 m or less.
[0063] [数 13] [0063] [Equation 13]
M B R / 1 ≤ 0 . 0 1 2 5 X び。· 2 — 6 . 7 MBR / 1 ≤ 0. 0 1 2 5 X. · 2 — 6.7
[0064] [数 14]  [0064] [Equation 14]
E r ≥ 一 0 . 0 1 1 X び ο · 2 + 1 3 . 7 E r ≥ 1 0.0 1 1 X and ο 2 + 1 3. 7
[0065] さらに、低温焼鈍後の回復組織を備え、且つ再結晶時の [耐力] Z [引張強さ]の値 力 ¾0%以上であって平均結晶粒径が 1. 5 m以下の大きさになると、数 15における 定数 13. 7を 14. 2に、数 16における定数 6. 7を 7. 1に変更しても良いほどの数 15 及び数 16に沿った相関性が見られるようになり好ま 、。  [0065] Further, it has a recovery structure after low-temperature annealing, and has a value of [yield strength] Z [tensile strength] at the time of recrystallization ≥0% and an average crystal grain size of 1.5 m or less So that the constants along the numbers 15 and 16 can be seen so that the constant 13.7 in the number 15 can be changed to 14.2 and the constant 6.7 in the number 16 can be changed to 7.1. I like it.
[0066] [数 15]  [0066] [Equation 15]
E r ≥ 一 0 . 0 1 1 X び ο · 2 + 1 3 . 7 E r ≥ 1 0.0 1 1 X and ο 2 + 1 3. 7
[0067] [数 16]  [0067] [Equation 16]
M B R / ≤ 0 . 0 1 2 5 X σ 0. 2 - 6 . 7 MBR / ≤ 0. 0 1 2 5 X σ 0. 2-6.7
[0068] 以上述べてきた本件発明に係る強化 ex黄銅の結晶組織の構成であるが、再結晶し た結晶粒の粒径は、電解エッチング後高倍率の光学顕微鏡又は走査型電子顕微鏡 を用いて線分法又は写真比較法を用いて測定できる。そして、低温焼鈍による組織 変化は SEM— EBSPを用いて観察すると顕著に識別できる。特に、イメージクウオリ ティー値が一定値以下 (歪みの解消が一定値以下)の部分を黒にする画像処理を行 うと、回復粒は明るい粒として認識でき、回復の進行に伴いその輪郭が次第になめら 力、になって、再結晶粒は焼鈍双晶を伴った明るい粒として認識できる。そして、曲げ 加工性がよ!、強化 ex黄銅の組織は低温焼鈍により歪が開放された粒(回復粒又は 再結晶粒)と開放されていない粒が混合された微細組織であり、この微細組織は微 細 2相混合組織と類似しており、不均質すベりを助長し、曲げ加工性を改善している と解される。また、低温焼鈍により応力緩和特性が改善されるのは、回復粒又は再結 晶粒の面積率が多くなることと対応しており、組織面での変化が良好な応力緩和特 性を確保する意味でも必須と言うことになるのである。なお、本件発明に係る強化 α 黄銅は結晶粒が 1 μ m〜2 mレベルと微細なため疲労強度が高ぐ応力腐食割れ 性にも優れ、曲げたわみ係数が小さ!、と!、う特徴をも併せ持って!/ヽる。 [0068] The crystal structure of the reinforced ex brass according to the present invention described above is the structure of the recrystallized crystal grains using an optical microscope or a scanning electron microscope with a high magnification after electrolytic etching. It can be measured using a line segment method or a photographic comparison method. The structural changes due to low-temperature annealing can be remarkably distinguished when observed using SEM-EBSP. In particular, when image processing is performed in which the image quality value is less than a certain value (distortion cancellation is less than a certain value), the recovered grains can be recognized as bright grains, and the outline gradually becomes more progressive as recovery progresses. With smooth power, the recrystallized grains can be recognized as bright grains with annealing twins. And the bending workability is good! The structure of reinforced ex brass is a microstructure in which grains released from strain (recovered grains or recrystallized grains) and grains not released by low temperature annealing are mixed. Is similar to a fine two-phase mixed structure, which is considered to promote inhomogeneous sliding and improve bending workability. In addition, the improvement in stress relaxation characteristics due to low-temperature annealing corresponds to an increase in the area ratio of recovered or recrystallized grains, which ensures favorable stress relaxation characteristics with changes in the texture. That means it is essential. Note that the enhancement α according to the present invention α Brass has a fine grain size of 1 μm to 2 m, so it has high fatigue strength and stress corrosion cracking resistance, and has a small bending deflection coefficient!
[0069] 以上のように本件発明の製造方法を用いて強化 ex黄銅を得るためには、最終再結 晶焼鈍の際に細力べ均質な結晶粒を得て、それを所望の強度が出るよう圧延し、更 に、これを一部の組織が歪の取れた所望の結晶組織とする低温焼鈍を行うものと言 い表せる。なお、細力べ均質な結晶粒を得るためには、最終再結晶焼鈍前の冷間加 工率及びその前の結晶粒径についても一定のレベルでの制御が必要なのである。 実施例 [0069] As described above, in order to obtain reinforced ex brass by using the manufacturing method of the present invention, in the final recrystallization annealing, a uniform crystal grain is obtained and a desired strength is obtained. It can be said that it is subjected to low-temperature annealing to make a desired crystal structure in which a part of the structure is distorted. In addition, in order to obtain fine grains with uniform strength, it is necessary to control the cold processing rate before the final recrystallization annealing and the crystal grain size before that at a certain level. Example
[0070] 以下、実施例を通じて本件発明をより詳細に説明するが、以下の実施例及び比較 例で製造および評価に用いた黄銅インゴットの化学組成を表 1に示しておくこととす る。ここで、インゴット 1〜インゴット 6は、製造現場铸造工場で半連続铸造法で得た試 料である。インゴット 7、インゴット 8、インゴット 9は、実験室の溶解炉で溶解し、金型で 30mm X 100mm X 200mmに铸造して得たものである。  Hereinafter, the present invention will be described in more detail through examples. Table 1 shows the chemical composition of brass ingots used for production and evaluation in the following examples and comparative examples. Here, ingot 1 to ingot 6 are samples obtained by a semi-continuous forging method at a manufacturing site forging factory. Ingot 7, ingot 8, and ingot 9 were obtained by melting in a laboratory melting furnace and forging to 30 mm x 100 mm x 200 mm with a mold.
[0071] [表 1]  [0071] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
この表 1から分かるように、インゴット 1〜インゴット 9は、銅 65. 2wt%〜74. 2wt% であり、残部亜鉛及び不可避不純物とからなると 、う本件発明の条件を満たして 、る 。更に、以下の実施例では、上記表 1に示したインゴットのいずれかを用い、表 2に示 した以下の(a)〜(e)のステップで構成される製造条件を適用して黄銅条として!/、る。 (a)原料素材調製 As can be seen from Table 1, the ingots 1 to 9 are made of 65.2 wt% to 74.2 wt% of copper, and satisfy the conditions of the present invention if they are composed of the balance zinc and inevitable impurities. Furthermore, in the following examples, any of the ingots shown in Table 1 above was used, and the manufacturing conditions consisting of the following steps (a) to (e) shown in Table 2 were applied to form a brass strip. ! / (a) Raw material preparation
(b)冷間圧延加工  (b) Cold rolling process
(c)再結晶焼鈍  (c) Recrystallization annealing
(d)最終冷間圧延加工  (d) Final cold rolling process
(e)低温焼鈍  (e) Low temperature annealing
表 2]  Table 2]
Figure imgf000019_0001
Figure imgf000019_0001
[0074] <実施例 1及び実施例 2 >  <Example 1 and Example 2>
上記で得られたインゴット 1を熱間圧延した後に面削し、冷間圧延加工を加えて焼 鈍して厚さ 1. 8mmの原料素材を得た。原料素材及び出発板材 1製造は、最終冷間 圧延加工前の焼鈍 (c)までは全て現場の生産ラインで行った。その後実施例 1及び 実施例 2に適用した加工条件を併せて表 2に実施例 3とともに比較例 1及び比較例 2 と対比して示す。表 2中、前の焼鈍 (a :最終冷間圧延加工前の再結晶焼鈍より 前の焼鈍)及び最終加工前の焼鈍 (c:最終冷間圧延前の再結晶焼鈍)は前述のよう に現場生産ラインにおける連続焼鈍である。ここに記載の温度は炉の設定温度であ る。このように最終冷間圧延前の再結晶焼鈍までを共通の出発板材 1を用いたので める。  The ingot 1 obtained above was hot-rolled and then chamfered, cold-rolled and annealed to obtain a raw material with a thickness of 1.8 mm. The raw materials and starting plate 1 were all manufactured on the production line at the site until annealing (c) before the final cold rolling process. Thereafter, the processing conditions applied to Example 1 and Example 2 are shown together with Example 3 in Table 2 in comparison with Comparative Example 1 and Comparative Example 2. In Table 2, the previous annealing (a: annealing before recrystallization annealing before final cold rolling) and annealing before final processing (c: recrystallization annealing before final cold rolling) are on-site as described above. It is continuous annealing in the production line. The temperature described here is the set temperature of the furnace. Thus, the common starting plate 1 can be used up to the recrystallization annealing before the final cold rolling.
[0075] <実施例 1 >  <Example 1>
本実施例では上記力も得られた出発板材 1を、実験用冷間圧延機を用いて加工率 10%で冷間圧延加工 (d)を加えて冷間圧延黄銅板とし、更に塩浴で低温焼鈍 (e)し た。塩浴での焼鈍時間は連続焼鈍に似せるために 2秒と短時間に設定し、塩浴の温 度を実施例 1— 1, 1 - 2, 1— 3をそれぞれ 280°C、 340°C、 420°Cとした。得られた 強化 α黄銅材の物性を評価した結果、引張り強さは 532MPa〜556MPa、耐カは 4 58MPa〜504MPa、エリクセン値(σ . 力も算出)は 8. 6mm (8. 3mm)〜8. 8m In this example, the starting plate 1 that also obtained the above-mentioned force was subjected to cold rolling (d) at a processing rate of 10% using an experimental cold rolling mill to form a cold rolled brass plate, and further cooled in a salt bath at a low temperature. Annealing (e) It was. The annealing time in the salt bath is set to a short time of 2 seconds to resemble continuous annealing, and the temperature of the salt bath is set to Example 1–1, 1–2, 1–3 at 280 ° C and 340 ° C, respectively. 420 ° C. As a result of evaluating the physical properties of the obtained reinforced α brass material, the tensile strength is 532 MPa to 556 MPa, the resistance is 458 MPa to 504 MPa, the Erichsen value (σ. Force is also calculated) is 8.6 mm (8.3 mm) to 8. 8m
O 2  O 2
m (8. 2mm)そして応力緩和率は 47%〜51%と目標値をクリア一していた。詳細は 表 3に示す。  m (8.2 mm) and the stress relaxation rate was 47% -51%, which was clear of the target value. Details are shown in Table 3.
[0076] <実施例 2> <Example 2>
本実施例では実施例 1と同じ出発板材 1を、実験用冷間圧延機を用いて加工率 24 %で冷間圧延加工 (d)を加えて冷間圧延黄銅板とし、更に塩浴で低温焼鈍 (e)した 。塩浴での焼鈍時間は連続焼鈍に似せるために 2秒と短時間に設定し、塩浴の温度 を実施例 2—1, 2- 2, 2— 3、 2— 4をそれぞれ 260。C、 280°C, 300。C、 340。Cとし た。得られた強化 α黄銅材の物性を評価した結果、引張り強さは 667MPa〜680M Pa、而ォ力は 622MPa〜638MPa、エリクセン値(σ . 力ら算出した値)は 6. 8mm (  In this example, the same starting plate material 1 as in Example 1 was subjected to cold rolling (d) at a processing rate of 24% using a laboratory cold rolling mill to form a cold rolled brass plate, and further cooled in a salt bath. Annealed (e). The annealing time in the salt bath was set to a short time of 2 seconds to resemble continuous annealing, and the salt bath temperature was set to 260 for each of Examples 2-1, 2- 2, 2-3, and 2-4. C, 280 ° C, 300. C, 340. C. As a result of evaluating the physical properties of the obtained reinforced α brass material, the tensile strength was 667 MPa to 680 MPa, the meta force was 622 MPa to 638 MPa, the Erichsen value (σ. Force calculated value) was 6.8 mm (
0 2  0 2
6. 7mm)〜8. lmm (6. 9mm)そして応力緩和率は 41 %〜52%であり目標値をク リア一していた。そして曲げカ卩ェ性の指標である MBRZt ( a . 力も算出した値)は  6. 7mm) to 8. lmm (6.9 mm) and the stress relaxation rate was 41% to 52%, clearing the target value. And the MBRZt (a. Force calculated value) which is an index of bending strength is
0 2  0 2
0. 5 (1. 1)〜0. 6 (1. 3)であった。詳細は実施例 1と併記して表 3に示す。そして、 実施例 1及び実施例 2と比較例 1及び比較例 2から得られたデータを用い、低温焼鈍 の温度設定が 0. 2%耐カ( σ . : MPa)及び応力緩和率に与える影響を図 1に示し  It was 0.5 (1. 1) to 0.6 (1. 3). Details are shown in Table 3 together with Example 1. Using the data obtained from Example 1 and Example 2, Comparative Example 1 and Comparative Example 2, the effect of low temperature annealing temperature setting on 0.2% resistance (σ.: MPa) and stress relaxation rate Is shown in Figure 1.
0 2  0 2
た。これら実施例及び比較例で得られた最終加工前焼鈍 (b)後の結晶粒径は約 2 μ m、最終冷間圧延カ卩ェ (d)後の結晶粒径は 1 μ mであった。  It was. The crystal grain size after the final pre-annealing (b) obtained in these examples and comparative examples was about 2 μm, and the crystal grain size after the final cold rolling cage (d) was 1 μm. .
[0077] [表 3] [0077] [Table 3]
引張り強さ 耐カ 伸び率 エリクセン値 (mm) 応力緩和率 MBR/t 試料 (MPa) (MPa) (%) 実測 耐力から算出 (%) 実測 耐力から算出Tensile strength Elongation resistance Erichsen value (mm) Stress relaxation rate MBR / t Sample (MPa) (MPa) (%) Calculated from measured yield strength (%) Calculated from measured yield strength
1 -1 556 504 21 8.8 8.2 51 1 -1 556 504 21 8.8 8.2 51
1 -2 549 492 22 8.6 8.3 47  1 -2 549 492 22 8.6 8.3 47
1-3 532 458 27 8.7 8.7 48  1-3 532 458 27 8.7 8.7 48
実 2-1 672 632 4 7.2 6.7 52 0.6 1.2 施  Actual 2-1 672 632 4 7.2 6.7 52 0.6 1.2
例 2-2 680 638 3 7.0 6.7 51 0.6 1.3 Example 2-2 680 638 3 7.0 6.7 51 0.6 1.3
2-3 673 633 3 6.8 6.7 49 0.6 1.22-3 673 633 3 6.8 6.7 49 0.6 1.2
2-4 667 622 6 8.1 6.9 41 0.5 1.12-4 667 622 6 8.1 6.9 41 0.5 1.1
3 557 499 22 8.8 8.2 49 _ 一 3 557 499 22 8.8 8.2 49 _ One
1 -4 555 496 21 8.7 8.2 53  1 -4 555 496 21 8.7 8.2 53
1 -5 547 495 23 9.1 8.3 54  1 -5 547 495 23 9.1 8.3 54
比 1 -6 559 499 20 8.5 8.2 53  Ratio 1 -6 559 499 20 8.5 8.2 53
 Comparison
例 2-5 653 608 7 7.3 7.0 59 0.6 0.9 Example 2-5 653 608 7 7.3 7.0 59 0.6 0.9
2-6 670 631 4 7.4 6.8 55 0.6 1.22-6 670 631 4 7.4 6.8 55 0.6 1.2
2-7 613 559 13 8.2 7.6 42 0.1 0.3 耐力から算出した MBR/tが 0.3を下回った場合の値は 0.3としている。 2-7 613 559 13 8.2 7.6 42 0.1 0.3 The value when the MBR / t calculated from the proof stress falls below 0.3 is 0.3.
[0078] <実施例 3 > <Example 3>
本実施例ではインゴット 2を用い、熱間圧延した後に面削(a)し、 11. 5mm厚みの 原料素材を得た。そして、加工率と焼鈍温度を変化させた予察試験を実施して焼鈍 軟化曲線を得た。なお、用いた塩浴での焼鈍時間は 10秒である。ここで得られた焼 鈍軟化曲線を図 2に示す。図 2によれば、加工率 70%のものを除き再結晶焼鈍材の ビッカース硬度 (Hv)は約 150と安定している。そして、結晶粒の光学顕微鏡観察に よればカ卩工率 70%のものでは 430°Cまでカ卩ェ組織が残り、 450°Cでは最大 10 μ m の結晶粒と 3 /z m以下の結晶粒が混在している結晶組織となっていた。一方、その他 の加工率で冷間圧延カ卩ェをカ卩えたものを 430°Cで焼鈍した場合にはおよそ 2 μ mの 結晶粒径であった。  In this example, ingot 2 was used, and after hot rolling, it was chamfered (a) to obtain a raw material having a thickness of 11.5 mm. Then, a preliminary test was performed by changing the processing rate and the annealing temperature to obtain an annealing softening curve. The annealing time in the salt bath used is 10 seconds. Figure 2 shows the annealing softening curve obtained here. According to Fig. 2, the Vickers hardness (Hv) of the recrystallized annealed material is stable at about 150 except for those with a processing rate of 70%. According to the optical microscope observation of the crystal grains, when the rate is 70%, the cache structure remains up to 430 ° C, and at 450 ° C, the maximum grain size is 10 μm and the grain size is less than 3 / zm. Has a mixed crystal structure. On the other hand, when other rolling mills with cold rolling caps were annealed at 430 ° C, the crystal grain size was approximately 2 µm.
[0079] 上記予察試験の結果に基づき原料素材に実験用冷間圧延機を用いて加工率 95 %で冷間圧延加工 (b)を加えた板材を 430°Cの塩浴で 10秒間再結晶焼鈍 (c)して 出発板材を得た。その後、更に厚さ 0. 52mmまでカ卩工率 10%で冷間圧延カ卩ェ (d) を加えて冷間圧延黄銅板とし、 320°Cの塩浴で 2秒間低温焼鈍 ( した。得られた強 ィ匕 α黄銅材の引張り強さは 557MPa、 0. 2%耐カ(σ . )は 499MPa、エリクセン  [0079] Based on the results of the above preliminary test, the plate material that had been cold-rolled (b) at a processing rate of 95% was recrystallized in a salt bath at 430 ° C for 10 seconds using a cold rolling mill for experiments. The starting plate was obtained by annealing (c). Thereafter, a cold rolled casing (d) was added to a thickness of 0.52 mm at a rate of 10% to obtain a cold rolled brass sheet, which was annealed at a low temperature for 2 seconds in a 320 ° C salt bath. The strength of the α brass material is 557 MPa, 0.2% resistance (σ.) Is 499 MPa, Erichsen
0 2  0 2
値(σ . 力 算出した値)は 8. 8mm (8. 2mm) ,応力緩和率は 49%と再結晶焼鈍 Value (σ. Force calculated value) is 8.8mm (8.2mm), stress relaxation rate is 49%, recrystallization annealing
0 2 0 2
を 1回しか実施していないにもかかわらず優れた物性が得られた。上記製造条件を 表 2に、結果を実施例 1及び実施例 2と併せて表 3に示す。  Excellent physical properties were obtained even though the test was performed only once. The production conditions are shown in Table 2, and the results are shown in Table 3 together with Examples 1 and 2.
[0080] <実施例 4〜実施例 8 > これらの実施例では表 4に示すように、それぞれの実施例にインゴット 2〜インゴット 6を対応させて用い、铸造から最終低温焼鈍までの全てを現場製造ラインを使用して 実施した。まず、熱間圧延後面削して厚み 11. 5mmとなった板材を、加工率 84%で 冷間圧延加工を加えて 1. 8mmとし、表 4に示す前の焼鈍 (a :素条の焼鈍)を実施し て原料素材とした後再び冷間圧延加工 (b)を加え、最終再結晶焼鈍 (c)を施して出 発板材を得た。この中で、実施例 8については最終再結晶焼鈍前に更に冷間圧延 加工と再結晶焼鈍が施されている(表 4上段部分に記載)。そして、これらに最終冷 間圧延加工 (d)を加えて冷間圧延黄銅板とし、その後低温焼鈍 (e)して製品を得た。 低温焼鈍条件は実施例 4では 200°C1時間のバッチ処理とした力 その他は炉温設 定を 420°Cとした連続焼鈍を実施した。この連続焼鈍条件の設定は 0. 2%耐カ ( σ <Example 4 to Example 8> In these examples, as shown in Table 4, ingot 2 to ingot 6 were used corresponding to each example, and everything from forging to final low-temperature annealing was performed using an on-site production line. First, a plate material that was 11.5 mm thick after face milling after hot rolling was subjected to cold rolling at a processing rate of 84% to 1.8 mm, and the previous annealing shown in Table 4 (a: annealing of the strip) ) To obtain a raw material, cold rolling (b) was added again, and final recrystallization annealing (c) was performed to obtain a sheet material. Among them, Example 8 is further subjected to cold rolling and recrystallization annealing before the final recrystallization annealing (described in the upper part of Table 4). Then, a final cold rolling process (d) was added to these to form a cold rolled brass sheet, and then a low temperature annealing (e) was performed to obtain a product. The low-temperature annealing conditions were as follows. In Example 4, continuous annealing was performed with the furnace temperature set at 420 ° C. This continuous annealing condition is set to 0.2%
0 0
. : MPa)の最高値をねらったものである。各強化 a黄銅を評価した結果、引張り強: The highest value of MPa). As a result of evaluating each strengthening a brass, tensile strength
2 2
さは 534MPa 776MPa、而ォ力は 470MPa 727MPa、エリクセン値(σ . 力ら  Is 534MPa 776MPa, meta-force is 470MPa 727MPa, Eriksen value (σ.
0 2 算出した値)は 6. 2mm (6. lmn!)〜 9. 6mm (8. 5mm)そして応力緩和率は 40% 51%であり目標値をクリア一していた。そして曲げカ卩ェ性の指標である MBR/t ( σ . から算出した値)は 0. 0 (0. 3)〜1. 9 (2. 4)であった。詳細は表 5に示す。な 0 2 calculated value) was 6.2 mm (6. lmn!) To 9.6 mm (8.5 mm), and the stress relaxation rate was 40% 51%, which was clear of the target value. The MBR / t (value calculated from σ.), Which is an index of bending cacheability, was 0.0 (0.3) to 1.9 (2.4). Details are shown in Table 5. Na
0 2 0 2
お、この表では 0. 2%耐カ(σ . : MPa)力 算出した MBRZtが 0. 3を下回った  In this table, the 0.2% strength (σ.: MPa) force calculated MBRZt was less than 0.3.
0 2  0 2
場合にはその値を 0. 3としている。  In that case, the value is set to 0.3.
[0081] [表 4] [0081] [Table 4]
Figure imgf000022_0001
Figure imgf000022_0001
[0082] [表 5] 引張り強さ 耐カ 伸び率 エリクセン値 (mm) 応力緩和率 MBR/t 試料 [0082] [Table 5] Tensile strength Moisture resistance Erichsen value (mm) Stress relaxation rate MBR / t Sample
C Pa) CMPa) (%) 実測 耐力から算出 (%) 実測 耐力から算出 C Pa) CMPa) (%) Calculated from the measured yield strength (%) Calculated from the measured yield strength
4 776 727 0.5 6.4 5.7 41 1.9 2.44 776 727 0.5 6.4 5.7 41 1.9 2.4
5 699 688 1.8 6.2 6.1 40 1.3 1.9 実 6 534 470 24 9.6 8.5 51 0.0 0.3 施 5 699 688 1.8 6.2 6.1 40 1.3 1.9 Actual 6 534 470 24 9.6 8.5 51 0.0 0.3
例 7 598 537 17 8.5 7.8 49 0.0 0.3 Example 7 598 537 17 8.5 7.8 49 0.0 0.3
8 603 554 12.5 7.9 7.6 38 0.1 0.38 603 554 12.5 7.9 7.6 38 0.1 0.3
9 651 601 6.9 7.2 7.1 38 0.6 0.8 耐力から算出した MBR/tが 0.3を下回った場合の値は 0.3としている。 9 651 601 6.9 7.2 7.1 38 0.6 0.8 The value when the MBR / t calculated from the proof stress is below 0.3 is 0.3.
[0083] <実施例 9 > [0083] <Example 9>
本実施例では実施例 5における前の焼鈍 (a:素条焼鈍)の終わった段階の試片を 原料素材として用い、実験用冷間圧延機にて加工率 40%で冷間圧延加工 (b)をカロ えた。この条を 420°Cの塩浴にて 10秒間最終再結晶焼鈍 (c)して出発板材を得、そ の後 30%の加工率で冷間圧延加工 (d)を加えて冷間圧延黄銅板とし、 280°Cにて 1 0秒間低温焼鈍 (e)を施した。得られた強化 α黄銅材の引張り強さは 651MPa、 0. 2%耐カ(σ . )は 601MPa、伸び率は 6. 9%、エリクセン値(σ . から算出)は 7.  In this example, the specimen at the stage after the previous annealing (a: strip annealing) in Example 5 was used as a raw material, and cold rolling (b) ) This strip is subjected to final recrystallization annealing (c) for 10 seconds in a salt bath at 420 ° C to obtain a starting plate, and then cold rolling (d) is added at a processing rate of 30% to cold rolled brass. The plate was subjected to low temperature annealing (e) at 280 ° C for 10 seconds. The tensile strength of the obtained reinforced α brass material is 651 MPa, 0.2% resistance (σ.) Is 601 MPa, elongation is 6.9%, Erichsen value (calculated from σ.) Is 7.
0 2 0 2  0 2 0 2
2mm (7. lmm) , MBR/t ( σ . 力も算出した値)が 0. 6 (0. 8)と優れた物性が得  Excellent physical properties of 2mm (7. lmm) and MBR / t (σ. Force is also calculated) is 0.6 (0.8).
0 2  0 2
られた。  It was.
[0084] <実施例 10〜実施例 12 >  <Example 10 to Example 12>
本実施例では表 4に示すように、それぞれの実施例にインゴット 7〜インゴット 9を対 応させて用い、実験室で熱間圧延して結晶粒径を 0. 15mmとした後加工率 86%で 冷間圧延加工を加え、その後結晶粒径が 5 mとなるよう条件設定して再結晶焼鈍( a)を施した原料素材を用い、さらに加工率 78%で冷間圧延加工 (b)を加えた。この ようにして得られた板材を実体温度 270°Cで 2時間の再結晶焼鈍 (c)を施して出発 板材を得、加工率 25%の最終冷間圧延加工 (d)を加えて冷間圧延黄銅板とし、実 体温度 205°Cでの最終再結晶焼鈍 (e)を施した。このときの低温焼鈍は全てマツフ ル炉を用い、実体温度を測定しながら実施している。ここで得られた厚み 0. 3mmの 強化 α黄銅材の物性を評価した結果、引張り強さは 671MPa〜681MPa、耐カは 6 29MPa〜640MPa、エリクセン値(σ . 力も算出した値)は 6. 7mm (6. 7mm)〜7  In this example, as shown in Table 4, ingot 7 to ingot 9 are used in correspondence with each example, and after hot rolling in a laboratory to obtain a crystal grain size of 0.15 mm, a processing rate of 86% Then, cold rolling (b) was performed at a processing rate of 78% using a raw material that had been subjected to cold rolling and then recrystallized annealing (a) under the condition that the crystal grain size was 5 m. added. The plate material thus obtained was subjected to recrystallization annealing (c) for 2 hours at an actual temperature of 270 ° C to obtain a starting plate material, and a final cold rolling process (d) with a processing rate of 25% was added to perform cold A rolled brass plate was subjected to final recrystallization annealing (e) at an actual temperature of 205 ° C. All the low-temperature annealing at this time is carried out using a full furnace while measuring the actual temperature. As a result of evaluating the physical properties of the 0.3 mm thick reinforced α-brass material obtained here, the tensile strength was 671 MPa to 681 MPa, the galvanic resistance was 629 MPa to 640 MPa, and the Erichsen value (value calculated for σ. Force) was 6. 7mm (6.7 mm) to 7
0 2  0 2
. Omm (6. 8mm)そして応力緩和率は 40%〜41%であり目標値をクリア一していた 。そして曲げカ卩ェ性の指標である MBRZt ( a . 力も算出した値)は 0. 9 (1. 2)〜0 . 9 (1. 3)であった。詳細は表 6に示す。 Omm (6.8 mm) and the stress relaxation rate was 40% to 41%, which was clear of the target value. And the MBRZt (a. Force calculated value) which is an index of bending strength is 0.9 (1.2) to 0 9 (1. 3). Details are shown in Table 6.
[0085] [表 6] [0085] [Table 6]
Figure imgf000024_0001
Figure imgf000024_0001
[0086] <比較例 1及び比較例 2 >  <Comparative Example 1 and Comparative Example 2>
本比較例では実施例 1及び実施例 2に対し、最終低温焼鈍条件を変えたものとして 実施した。条件を表 2に示す。  In this comparative example, the first low temperature annealing condition was changed with respect to Example 1 and Example 2, and the same was performed. Table 2 shows the conditions.
[0087] 比較例 1 : 実施例で用いたと同じ出発板材 1を、実験用冷間圧延機を用いて加工 率 10%で冷間圧延加工を加え、更に塩浴で低温焼鈍した。比較例 1 4では低温 焼鈍をなしとし、比較例 1 5及び 1 6では塩浴での焼鈍時間は実施例と同様 2秒と 短時間に設定し、塩浴の温度を,をそれぞれ 240°C、 260°Cとした。得られた試料の 物性を評価した結果、引張り強さは 547MPa〜559MPa、耐カは 495MPa〜499 MPa、エリクセン値(σ . 力ら算出した値)は 8. 5mm (8. 2mm)〜9. lmm (8. 3m  Comparative Example 1: The same starting plate material 1 used in the examples was subjected to cold rolling at a processing rate of 10% using an experimental cold rolling mill, and further annealed at a low temperature in a salt bath. In Comparative Example 14 the low-temperature annealing was not performed. In Comparative Examples 15 and 16, the annealing time in the salt bath was set to 2 seconds as in the example, and the salt bath temperature was 240 ° C. 260 ° C. As a result of evaluating the physical properties of the obtained samples, the tensile strength was 547 MPa to 559 MPa, the resistance to 495 MPa to 499 MPa, the Erichsen value (calculated from σ. Force) was 8.5 mm (8.2 mm) to 9. lmm (8.3 m
0 2  0 2
m)そして応力緩和率は 53%〜54%であり応力緩和率の目標を満足できて 、な!/、。 詳細は実施例 1と併記して表 3に示す。  m) And the stress relaxation rate is 53% ~ 54%, and the target of stress relaxation rate can be satisfied! Details are shown in Table 3 together with Example 1.
[0088] 比較例 2 : 実施例 1及び実施例 2で用いたと同じ出発板材 1を、実験用冷間圧延 機を用いて加工率 24%で冷間圧延加工を加え、更に塩浴で低温焼鈍した。比較例 2 5では低温焼鈍をなしとし、比較例 2— 6及び 2— 7では塩浴での焼鈍時間は実 施例と同様 2秒と短時間に設定し、塩浴の温度を,をそれぞれ 240°C、 420°Cとした 。得られた試料の物性を評価した結果、引張り強さは 613MPa〜670MPa、耐カは 559MPa〜631MPa、エリクセン値(σ . 力ら算出した値)は 7. 3mm (7. Omm)〜 [0088] Comparative Example 2: The same starting plate material 1 used in Example 1 and Example 2 was subjected to cold rolling at a processing rate of 24% using a laboratory cold rolling mill, and further annealed at low temperature in a salt bath. did. In Comparative Example 25, low-temperature annealing was not performed. In Comparative Examples 2-6 and 2-7, the annealing time in the salt bath was set to 2 seconds, which was the same as in the example, and the temperature of the salt bath was set to 240 ° C and 420 ° C. As a result of evaluating the physical properties of the obtained samples, the tensile strength is 613 MPa to 670 MPa, the resistance to 559 MPa to 631 MPa, the Erichsen value (value calculated from σ. Force) is 7.3 mm (7. Omm) to
0 2  0 2
8. 2mm (7. 6mm)そして応力緩和率は 42%〜59%であり 0. 2%耐カ又は応力緩 和率の目標を満足できて 、な 、。そして曲げ加ェ性の指標である MBRZt ( σ . か  8. 2mm (7.6mm) and the stress relaxation rate is 42% to 59%, and 0.2% resistance to resistance or stress relaxation rate can be satisfied. And MBRZt (σ.
0 2 ら算出した値)は 0. 1 (0. 29)〜0. 6 (1. 19)であった。詳細は実施例 1と併記して 表 3に示す。  The value calculated from 0 2 was 0.1 (0.29) to 0.6 (1.19). Details are shown in Table 3 together with Example 1.
[0089] 比較例 3:ここではインゴット 7を用い、実験室にぉ 、て従来工程に似せ、実施例 11 と同等の耐カを備えた試料を作成した。すなわち、この試料は熱間圧延加工、冷間 圧延カ卩ェをカ卩えた後の結晶粒径が 35 mになるように焼鈍後、加工率 53%で冷間 圧延加工を加えた。その後の再結晶焼鈍は従来工程での連続焼鈍に似せられるよう に 650°Cの塩浴を用い、 20秒間とした。その結果、最終再結晶焼鈍後の結晶粒径 は 15 mであった。そして、加工率 65%で最終冷間圧延力卩ェを加えた。この結果得 られた厚さ 0. 3mmの試料の物性を評価した結果、引張り強さは 666MPa、耐カは 6 09MPa、エリクセン値(σ . 力も算出した値)は 6. Omm (7. Omm)そして応力緩和 Comparative Example 3: Here, an ingot 7 was used, and a sample having the same resistance to that of Example 11 was prepared in a laboratory, which was similar to the conventional process. That is, this sample is hot rolled, cold After annealing to obtain a crystal grain size of 35 m after rolling the roll, cold rolling was applied at a processing rate of 53%. The subsequent recrystallization annealing was performed for 20 seconds using a 650 ° C salt bath to resemble the continuous annealing in the conventional process. As a result, the crystal grain size after final recrystallization annealing was 15 m. The final cold rolling force was added at a processing rate of 65%. As a result of evaluating the physical properties of the 0.3 mm thick sample obtained as a result, the tensile strength was 666 MPa, the resistance to heat was 6 09 MPa, the Erichsen value (calculated value of σ. Force) was 6. Omm (7. Omm) And stress relaxation
0 2  0 2
率は 49%でありエリクセン値の目標値をクリア一できていな力 た。そして曲げカロェ 性の指標である MBRZt ( a . 力も算出した値)は 2. 4 (0. 9)で悪い物となってい  The rate was 49%, which was not enough to clear the Eriksen target value. And MBRZt (a. The value that calculated the force) that is an index of bending caloe is 2.4 (0. 9), which is bad.
0 2  0 2
る。詳細は実施例 10〜実施例 12と合わせて表 6に示す。ここから明らかなように、最 終圧延における加工率を高くして耐カを大きくすると成形加工性が大きく悪化すると 言うことができる。  The Details are shown in Table 6 together with Examples 10-12. As is clear from this, it can be said that if the processing rate in the final rolling is increased to increase the resistance to resistance, the moldability is greatly deteriorated.
[0090] <参考例> [0090] <Reference example>
市販の C2680材 (Cu/Zn: 65%/35%)及び C2600材 (Cu/Zn: 70%/30% )の H材及び C2680材(CuZZn: 65%Z35%)の EH材の物性を参考例として評価 した。これら参考例の黄銅材は再結晶焼鈍後加工率 25% 17% 35%で最終冷間 圧延加工を加えており、低温焼鈍は施していないものである。評価結果は引張り強さ 力 ^486MPa 567MPa 0. 20/0而力 ( σ . )力437MPa 524MPa、応力緩禾ロ率 Refer to physical properties of commercially available C2680 (Cu / Zn: 65% / 35%) and C2600 (Cu / Zn: 70% / 30%) H and C2680 (CuZZn: 65% Z35%) EH Evaluated as an example. The brass materials of these reference examples were subjected to final cold rolling at a processing rate of 25% 17% 35% after recrystallization annealing, and were not subjected to low temperature annealing. The evaluation results are tensile strength force ^ 486MPa 567MPa 0. 2 0/0 而力(σ.) Force 437MPa 524MPa, stress Yuru禾Roritsu
0 2  0 2
力 36% 52%、エリクセン値(Er)が 6. 9mm 8. 3mmであった。詳細は表 7に示 す。そして、参考例 1では機械強度、エリクセン値 (Er)の本件発明に係る以下の数 1 8力 そして参考例 2では参考例 1に比べて結晶粒が小さく仕上がっているためにェ リクセン値 (Er)が相対的に高いものの以下の数 18を満足できておらず応力緩和率 も大きめである。そして、参考例 3では機械強度と応力緩和値は満足できているが M BRZtに関する以下の数 17及びエリクセン値 (Er)に関する以下の数 18を満足でき ていない。  The force was 36% 52%, and the Eriksen value (Er) was 6.9 mm 8.3 mm. Details are shown in Table 7. In Reference Example 1, the mechanical strength and Erichsen value (Er) of the following numbers according to the present invention 1 8 power, and in Reference Example 2, the crystal grains are smaller than in Reference Example 1, so the Elixen value (Er ) Is relatively high, but the following number 18 is not satisfied and the stress relaxation rate is large. In Reference Example 3, the mechanical strength and the stress relaxation value are satisfied, but the following Equation 17 regarding M BRZt and the following Equation 18 regarding the Eriksen value (Er) are not satisfied.
[0091] [表 7] 引張り強さ 耐カ 伸び率 エリクセン値 (mm) 応力緩和率 MBR/t 結晶粒径 試料 質別 CMPa) CMPa) ( ) 実測 耐力から算出 (%) 実測 耐力から算出[0091] [Table 7] Tensile strength Elongation resistance Erichsen value (mm) Stress relaxation rate MBR / t Crystal grain size Sample quality CMPa) CMPa) () Calculated from measured yield strength (%) Calculated from measured yield strength
1 C2680 H 486 437 22 7.6 1 C2680 H 486 437 22 7.6
参 8.9 40 0.0 0.3 1 1 考 2 C2600 H 535 485 21 8.3 8.4 52 0.0 0.3 5 例 3 C2680 EH 567 524 10 6.9 7.9 36 0.5 0.3 15 耐力から算出した MBR/tが 0.3を下回った場合の値は 0.3としている。 [0092] [数 17] Reference 8.9 40 0.0 0.3 1 1 Consideration 2 C2600 H 535 485 21 8.3 8.4 52 0.0 0.3 5 Example 3 C2680 EH 567 524 10 6.9 7.9 36 0.5 0.3 15 When MBR / t calculated from proof stress is less than 0.3, the value is 0.3 It is said. [0092] [Equation 17]
M B R / ≤ 0 . 0 Ί 2 5 X σ 0. 2 - 6 . 7 MBR / ≤ 0 .0 Ί 2 5 X σ 0 .2-6.7
[0093] [数 18]  [0093] [Equation 18]
E r ≥ 一 0 . 0 1 1 X び o . 2 + 1 3 . 7 産業上の利用可能性 E r ≥ 1 0.0 1 1 X and o 2 + 1 3.7 Industrial applicability
[0094] 本件発明に係る強化 ex黄銅は、組成的に見れば一般の ex黄銅組成を備える。しか しながら、本件発明に係る製造方法である適正な圧延加工プロセス及び熱処理を施 すことで、従来のひ黄銅には無力つた、リン青銅と同等若しくはリン青銅を超える強度 と成形カ卩ェ性のバランスを示すものとなる。このような強化 α黄銅は、コネクタ一等の 電子部品や機構部品用途に好適で、且つ、安価な材料としての供給が可能となる。  [0094] The reinforced ex brass according to the present invention has a general ex brass composition in terms of composition. However, by applying an appropriate rolling process and heat treatment, which is the manufacturing method according to the present invention, the strength and molding strength of phosphor bronze, which is equivalent to or superior to phosphor bronze, is ineffective in conventional brass. It shows the balance. Such reinforced α brass is suitable for electronic parts such as connectors and mechanical parts, and can be supplied as an inexpensive material.
[0095] また、本件発明に係る強化 α黄銅の製造方法は、従来力 使用している圧延製造 ラインに何ら改良を加えることなぐそのまま使用することが可能であり、特段の設備 投資を要さないため、工業的生産規模での高品質の強化 α黄銅の効率の良い生産 を可能とする。 [0095] Further, the method for producing reinforced α brass according to the present invention can be used as it is without any improvement in the conventional rolling production line, and does not require any special equipment investment. Therefore, efficient production of high-quality reinforced alpha brass on an industrial production scale is possible.
図面の簡単な説明  Brief Description of Drawings
[0096] [図 1]実施例 1、実施例 2,比較例 1及び比較例 2より得られた低温焼鈍温度と 0. 2% 耐カ(σ . )及び応力緩和率との関係を示している図である。  [0096] FIG. 1 shows the relationship between the low-temperature annealing temperature obtained from Example 1, Example 2, Comparative Example 1 and Comparative Example 2, 0.2% resistance (σ.), And stress relaxation rate. It is a figure.
0 2  0 2
[図 2]実施例 3においてインゴット 2を用いて熱間圧延した後に面削して得た、 11. 5 mm厚みの原料素材に対して加工率と焼鈍温度を変化させた予察試験を実施した 際に得られた焼鈍軟化曲線である。  [Fig. 2] Preliminary test was performed on the 11.5 mm thick raw material obtained by hot rolling using ingot 2 in Example 3 and changing the processing rate and annealing temperature. It is the annealing softening curve obtained in the case.

Claims

請求の範囲 The scope of the claims
[1] 銅 63wt%〜75wt%、不可避不純物以外の残部が亜鉛からなる組成を持つ強化 α 黄銅の製造方法であって、  [1] A method for producing reinforced α brass having a composition of copper 63 wt% to 75 wt% and the balance other than inevitable impurities consisting of zinc,
出発板材として結晶粒径が 1 μ πι〜2 /ζ mである黄銅板を用い、これに 5%〜40% の加工率で冷間圧延加工を加えて冷間圧延黄銅板とし、この冷間圧延黄銅板を低 温焼鈍して 0. 2%耐カ( σ . : MPa)を最高値の 90%以上に調整したことを特徴と  A brass plate having a crystal grain size of 1 μπι-2 / ζ m was used as a starting plate material, and this was cold-rolled at a processing rate of 5% to 40% to obtain a cold-rolled brass plate. It is characterized by adjusting the 0.2% resistance (σ.: MPa) to 90% or more of the maximum value by low-temperature annealing of the rolled brass sheet.
0 2  0 2
する強化 a黄銅の製造方法。  To strengthen a brass manufacturing method.
[2] 前記低温焼鈍は、 0. 2%耐カ( σ . : MPa)の焼鈍温度依存性力 みて、 0. 2%耐 [2] The low temperature annealing is 0.2% resistance in view of the annealing temperature dependence force of 0.2% resistance (σ.: MPa).
0 2  0 2
力( σ . : MPa)が最高値を示す焼鈍温度以上の温度で行うものである請求項 1に 2. The process according to claim 1, wherein the force (σ .: MPa) is higher than the annealing temperature at which the maximum value is obtained.
0 2 0 2
記載の強化 (X黄銅の製造方法。  Reinforcement described (X brass production method.
[3] 前記出発板材である結晶粒径が 1 μ m〜2 μ mの黄銅板は、  [3] The brass plate having a crystal grain size of 1 μm to 2 μm as the starting plate material is
熱間圧延後の面削黄銅板又は結晶粒径が 7 μ m〜200 μ mの黄銅板を原料素材 とし、これを 80%〜95%の加工率で冷間圧延加工を加えた後、再結晶焼鈍すること でビッカース硬度 (Hv)を 130〜170の範囲に調整したものを用いる請求項 1又は請 求項 2に記載の強化 oc黄銅の製造方法。  A hot-rolled chamfered brass plate or a brass plate having a crystal grain size of 7 μm to 200 μm is used as a raw material, and after cold rolling at a processing rate of 80% to 95%, 3. The method for producing reinforced oc brass according to claim 1 or claim 2, wherein a material having a Vickers hardness (Hv) adjusted to a range of 130 to 170 by crystal annealing is used.
[4] 前記出発板材である結晶粒径が 1 μ m〜2 μ mの黄銅板は、  [4] A brass plate having a crystal grain size of 1 μm to 2 μm as the starting plate material,
熱間圧延後の面削黄銅板又は結晶粒径が 7 μ m〜200 μ mの黄銅板を原料素材 とし、これを 80%〜95%の加工率で冷間圧延加工を加えた後、再結晶焼鈍すること でビッカース硬度(Hv)を 130〜 170の範囲に調整し、これに 40%〜95%の加工率 で冷間圧延力卩ェを加えて更に再結晶焼鈍することでビッカース硬度 (Ην)が 130〜1 70の範囲に調整したものを用いる請求項 1又は請求項 2に記載の強化 oc黄銅の製 造方法。  A hot-rolled chamfered brass plate or a brass plate having a crystal grain size of 7 μm to 200 μm is used as a raw material, and after cold rolling at a processing rate of 80% to 95%, The Vickers hardness (Hv) is adjusted to the range of 130 to 170 by crystal annealing, and the Vickers hardness ( The method for producing a reinforced oc brass according to claim 1 or 2, wherein Ην) is adjusted to a range of 130 to 170.
[5] 前記出発板材である結晶粒径が 1 μ m〜2 μ mの黄銅板は、  [5] The brass plate having a crystal grain size of 1 μm to 2 μm, which is the starting plate material,
結晶粒径 3 μ m〜6 μ mの黄銅板を原料素材とし、 70%〜95%の加工率で冷間 圧延加工を加え、再結晶焼鈍することでビッカース硬度 (Hv)を 130〜170の範囲に 調整したものを用いる請求項 1又は請求項 2に記載の強化 oc黄銅の製造方法。  A brass plate with a grain size of 3 μm to 6 μm is used as a raw material, cold rolled at a processing rate of 70% to 95%, and recrystallized and annealed to achieve a Vickers hardness (Hv) of 130 to 170. 3. The method for producing reinforced oc brass according to claim 1 or 2, wherein a material adjusted to a range is used.
[6] 前記再結晶焼鈍は、連続焼鈍を行う場合には 370°C〜650°C、バッチ焼鈍を行う場 合には 255°C〜290°Cで行うものである請求項 3〜請求項 5のいずれかに記載の強 化ひ黄銅の製造方法。 [6] The recrystallization annealing is performed at 370 ° C to 650 ° C when continuous annealing is performed, and at 255 ° C to 290 ° C when batch annealing is performed. Strength described in any of 5 A method for producing cast brass.
[7] 請求項 1〜請求項 6のいずれかに記載の強化 oc黄銅の製造方法により得られた銅 6 3wt%〜75wt%、不可避不純物以外の残部が亜鉛力もなる組成を持つ強化 a黄 銅であって、  [7] Copper obtained by the method for producing reinforced oc brass according to any one of claims 1 to 6 3% by weight to 75% by weight, reinforced a brass having a composition in which the balance other than unavoidable impurities has zinc strength Because
引張り強さ力 s530MPa〜790MPa、 0. 20/0而力(σ . )カS450MPa〜750MPa、 Tensile strength force s 530MPa~790MPa, 0. 2 0/0 而力(sigma.) Mosquito S450MPa~750MPa,
0 2  0 2
120°C X 100時間の応力緩和率が 52%以下であり、且つ圧延方向を曲げ軸とする 直角曲げでクラックの生じな 、最小曲げ半径 (MBR: mm)と板厚 (t: mm)と 0. 2% 耐カ(σ . : MPa)とが以下の数 1 (但し、右辺の計算結果が 0. 3以下となったときは 120 ° CX 100 hours stress relaxation rate is 52% or less, and minimum bending radius (MBR: mm) and sheet thickness (t: mm) are 0, without cracks in right-angle bending with the rolling direction as the bending axis. 2% resistance (σ.: MPa) is the following number 1 (however, when the calculation result on the right side is 0.3 or less)
0 2 0 2
0. 3と見なす)の条件を満たすことを特徴とした強化 (X黄銅。  Strengthening (X brass) characterized by meeting the conditions of 0.3.
[数 1]  [Number 1]
M B R / 1 ≤ 0 . 0 1 2 5 X σ 0. 2 - 6 . 7 MBR / 1 ≤ 0. 0 1 2 5 X σ 0. 2-6.7
[8] 請求項 1〜請求項 6のいずれかに記載の強化 oc黄銅の製造方法により得られた銅 6 3wt%〜75wt%、不可避不純物以外の残部が亜鉛力もなる組成を持つ強化 a黄 銅であって、  [8] Copper 6 3 wt% to 75 wt% obtained by the method for producing reinforced oc brass according to any one of claims 1 to 6, reinforced a brass having a composition in which the balance other than inevitable impurities has zinc strength Because
引張り強さ力 s530MPa〜790MPa、 0. 20/0而力(σ . )カS450MPa〜750MPa、 Tensile strength force s 530MPa~790MPa, 0. 2 0/0 而力(sigma.) Mosquito S450MPa~750MPa,
0 2  0 2
120°C X 100時間の応力緩和率が 52%以下であり、圧延方向を曲げ軸とする直角 曲げでクラックの生じな 、最小曲げ半径 (MBR: mm)と板厚 (t: mm)と 0. 2%耐カ ( σ . : MPa)とが以下の数 2 (但し、右辺の計算結果が 0. 3以下となったときは 0. 3 The stress relaxation rate at 120 ° CX for 100 hours is 52% or less, and the minimum bending radius (MBR: mm) and thickness (t: mm) are 0. 2% resistance (σ.: MPa) is the following number 2 (however, when the calculation result on the right side is 0.3 or less, 0.3
0 2 0 2
と見なす)の条件を満たし、且つ、エリクセン値(Er: mm)と 0· 2%耐カ(σ . : MPa  The Erichsen value (Er: mm) and 0.2% resistance (σ.: MPa
0 2 0 2
)とが以下の数 3の条件を満たすことを特徴とする請求項 7に記載の強化 α黄銅。 The reinforced α brass according to claim 7, wherein:
[数 2]  [Equation 2]
M B R / 1 ≤ 0 . 0 1 2 5 X σ 0. 2 - 6 . 7MBR / 1 ≤ 0. 0 1 2 5 X σ 0. 2-6.7
[数 3] [Equation 3]
E r ≥ 一 0 . 0 1 1 X び 0 · 2 + 1 3 . 7 E r ≥ 1 0.0 1 1 X and 0 2 + 1 3 3.7
PCT/JP2006/301860 2005-02-04 2006-02-03 REINFORCED α-BRASS AND PROCESS FOR PRODUCING THE SAME WO2006082921A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112006000331T DE112006000331T5 (en) 2005-02-04 2006-02-03 Solidified α-brass and process for its preparation
US11/815,607 US20090120544A1 (en) 2005-02-04 2006-02-03 Strengthened Alpha Brass and Method for Manufacturing the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005028484 2005-02-04
JP2005-028484 2005-02-04
JP2005232530A JP4718273B2 (en) 2005-02-04 2005-08-10 Reinforced α brass and method for producing the same
JP2005-232530 2005-08-10

Publications (1)

Publication Number Publication Date
WO2006082921A1 true WO2006082921A1 (en) 2006-08-10

Family

ID=36777303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301860 WO2006082921A1 (en) 2005-02-04 2006-02-03 REINFORCED α-BRASS AND PROCESS FOR PRODUCING THE SAME

Country Status (4)

Country Link
US (1) US20090120544A1 (en)
JP (1) JP4718273B2 (en)
DE (1) DE112006000331T5 (en)
WO (1) WO2006082921A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023272B2 (en) * 2010-07-05 2015-05-05 Ykk Corporation Copper-zinc alloy product and process for producing copper-zinc alloy product
JP5889698B2 (en) * 2012-03-30 2016-03-22 株式会社神戸製鋼所 Cu-Zn alloy plate excellent in stress relaxation resistance and method for producing the same
CN104593706B (en) * 2013-10-31 2017-01-18 宁波金田铜业(集团)股份有限公司 Cold continuous rolling method of brass wires

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447823A (en) * 1977-09-17 1979-04-14 Diehl Brass material and method of making same
JP2004292875A (en) * 2003-03-26 2004-10-21 Sumitomo Kinzoku Kozan Shindo Kk 70/30 brass with crystal grain refined, and production method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189856A (en) * 1997-10-24 1999-07-13 Toto Ltd Brass material, brass pipe material and its production
US20050039827A1 (en) * 2003-08-20 2005-02-24 Yoshinori Yamagishi Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447823A (en) * 1977-09-17 1979-04-14 Diehl Brass material and method of making same
JP2004292875A (en) * 2003-03-26 2004-10-21 Sumitomo Kinzoku Kozan Shindo Kk 70/30 brass with crystal grain refined, and production method therefor

Also Published As

Publication number Publication date
JP2006241584A (en) 2006-09-14
JP4718273B2 (en) 2011-07-06
US20090120544A1 (en) 2009-05-14
DE112006000331T5 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
KR101419149B1 (en) Copper alloy sheet
US7485200B2 (en) Copper alloy and method of manufacturing the same
JP5217197B2 (en) Cold-rolled steel sheet with excellent earring properties and method for producing the same
JP5247010B2 (en) Cu-Zn alloy with high strength and excellent bending workability
WO2018194135A1 (en) Cold rolled steel sheet for drawn can and method for manufacturing same
WO2016035235A1 (en) Material for cold-rolled stainless steel sheets
JP5148930B2 (en) Method for producing Al-Mg-Si aluminum alloy plate for press forming, and Al-Mg-Si aluminum alloy plate for press forming
JP5309528B2 (en) High strength steel plate and manufacturing method thereof
JP4012845B2 (en) 70/30 brass with refined crystal grains and method for producing the same
JP2006257475A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JP2013011013A (en) Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing the same
JP4799294B2 (en) Method for producing high formability Al-Mg alloy plate
WO2020121775A1 (en) Copper alloy sheet, method for manufacturing same, drawing product, electric/electronic component member, electromagnetic shield material, and heat dissipation component
WO2006082921A1 (en) REINFORCED α-BRASS AND PROCESS FOR PRODUCING THE SAME
JP2012237035A (en) HIGHLY FORMABLE Al-Mg-BASED ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP5192648B2 (en) Hard α brass with excellent moldability and method for producing the same
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2004263253A (en) Aluminum alloy hard sheet for can barrel, and production method therefor
JP5874771B2 (en) Steel plate for cans excellent in workability and rough skin resistance and method for producing the same
JP2004315878A (en) Method for manufacturing aluminum alloy sheet to be formed superior in hem bendability and surface quality
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP2002105573A (en) Al-Mg-Si BASED Al ALLOY SHEET HAVING EXCELLENT BENDING WORKABILITY
JP5032011B2 (en) Hard α brass and method for producing the hard α brass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120060003313

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11815607

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112006000331

Country of ref document: DE

Date of ref document: 20080306

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06713003

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713003

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607