WO2006082880A1 - Thermoplastic-resin composite composition, process for producing the same, and use thereof - Google Patents

Thermoplastic-resin composite composition, process for producing the same, and use thereof Download PDF

Info

Publication number
WO2006082880A1
WO2006082880A1 PCT/JP2006/301748 JP2006301748W WO2006082880A1 WO 2006082880 A1 WO2006082880 A1 WO 2006082880A1 JP 2006301748 W JP2006301748 W JP 2006301748W WO 2006082880 A1 WO2006082880 A1 WO 2006082880A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic fine
thermoplastic resin
fine particles
composite composition
resin composite
Prior art date
Application number
PCT/JP2006/301748
Other languages
French (fr)
Japanese (ja)
Inventor
Jeong Chang Lee
Kunihiko Takeda
Mitsuru Tanahashi
Naoki Kanayama
Narihiro Matsuda
Masaki Hirose
Original Assignee
Du Pont-Mitsui Fluorochemicals Co., Ltd.
National University Corporation Nagoya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont-Mitsui Fluorochemicals Co., Ltd., National University Corporation Nagoya University filed Critical Du Pont-Mitsui Fluorochemicals Co., Ltd.
Publication of WO2006082880A1 publication Critical patent/WO2006082880A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture

Definitions

  • Thermoplastic resin composite composition production method and use thereof
  • the present invention relates to a thermoplastic resin composite composition in which inorganic fine particles are dispersed at a primary particle level and a method for producing the same. More specifically, it is obtained by melt-mixing a low-strength inorganic fine particle aggregate formed by the cohesive force between inorganic fine particles and a thermoplastic resin. The inorganic fine particles are dispersed in the resin at the level of the original inorganic fine particles.
  • the present invention relates to a thermoplastic resin composite composition that can be said to be a thermoplastic resin nanocomposite and a method for producing the same.
  • Japanese Patent Application Laid-Open No. 2001-152030 discloses an inorganic porous material having an average particle diameter of 100 nm to 1000 nm obtained by firing an inorganic material such as porous glass or acid silicate (hereinafter sometimes referred to as silicic force).
  • An additive selected from metals, metal salts, and inorganic compounds or a flame retardant is preliminarily supported on the material, and the inorganic porous material is crushed by melting and mixing with the resin, and the average particle size is 10 ⁇ m
  • a resin composite composition characterized in that particles carrying the additive or flame retardant of ⁇ 100 nm are dispersed in the resin, and a method for producing the same is described.
  • the structure of the porous glass described in the above publication is a covalent bond between silicon and oxygen, and crushing and dispersing the porous glass is equivalent to breaking the covalent bond, which is large. Therefore, it is extremely difficult to crush and disperse the porous glass by melt mixing with the resin.
  • an aggregate of inorganic fine particles such as silica fine particles having an average primary particle diameter of 12 nm is 600 ° C to
  • the lOOOnm inorganic porous material is solidified into a skeleton that has solid bonds due to the surface melting of silica particles (or aggregates of silica particles) that are slightly melted and fused together by firing.
  • S and the inorganic porous material after melt mixing have a wide average particle size of 290 nm, particle size distribution of 40 nm to 100, 0 OOnm (100 m), and the original primary particles have not been successfully crushed.
  • the 13th Symposium on Polymer Materials, P10, 2003 the mechanical properties are markedly deteriorated due to the presence of many non-crushed inorganic fine particle aggregated sintered bodies having a particle size of 10 m or more in polystyrene resin.
  • the dispersion state of the inorganic fine particles or the inorganic nanoparticles greatly changes depending on the type of the fine particles to be dispersed and the hydrophobicity / hydrophilicity as well as the kind of the inorganic fine particles or the inorganic nanoparticles and the surface property alone.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-152030
  • Non-Patent Document 1 Proceedings of 13th Symposium on Polymer Materials, P10, 2003
  • the present inventor has found that the strength formed by the cohesive force between the inorganic fine particles is low, and the inorganic fine particle aggregate and the thermoplastic resin are melt-mixed, whereby the inorganic stress is generated by the shear stress generated in the melt mixing apparatus.
  • Fine particle aggregates are uniformly crushed and dispersed to the original inorganic fine particles (hereinafter sometimes referred to as primary particles), and mechanical properties are maintained while maintaining a certain degree of elongation and melt moldability of thermoplastic resin.
  • primary particles original inorganic fine particles
  • the present invention provides a thermoplastic resin composite composition excellent in mechanical properties, dimensional stability, etc., in which inorganic fine particles are dispersed to the level of primary particles.
  • the present invention relates to a thermoplastic resin in which inorganic fine particles are obtained by melt-mixing a low-strength inorganic fine particle aggregate formed by the cohesive force between inorganic fine particles and a thermoplastic resin, and the inorganic fine particles are nano-leveled.
  • a composite composition is provided.
  • the present invention also provides a method for producing a thermoplastic resin composite composition, which can be called a resin nanocomposite, in which inorganic fine particles are dispersed to the level of primary particles.
  • the present invention provides an inorganic fine particle aggregate obtained by drying a mixed liquid of inorganic fine particles and an inorganic salt to obtain a solidified product, removing the inorganic salt from the solidified product using a solvent, and drying.
  • the inorganic fine particle aggregate formed by the cohesive force between the inorganic fine particles obtained by performing the drying at a temperature at which surface fusion between the inorganic fine particles does not substantially occur and the thermoplastic resin are melted.
  • a thermoplastic resin composite composition in which inorganic fine particles having an average particle size of 1 ⁇ m or less obtained by mixing are dispersed in / in a resin.
  • thermoplastic resin composite composition described above in which the crushing strength of the inorganic fine particle aggregate is 1.5 MPa or less is a preferred embodiment of the present invention.
  • thermoplastic resin composite composition described above in which the average primary particle size of the inorganic fine particles is 1 m or less, is a preferred embodiment of the present invention.
  • thermoplastic resin composite composition in which the compression load of the inorganic fine particle aggregate is 40 mN or less is a preferred embodiment of the present invention.
  • thermoplastic rosin composite composition described above having a force particle diameter of not less than 80% of the number of inorganic fine particles dispersed in the rosin and not more than 600 nm is a preferred embodiment of the present invention.
  • thermoplastic resin in which the inorganic fine particles are at least one selected from the group consisting of acid carbonate, titanium oxide, acid aluminum, and zinc oxide and antimony pentaoxide.
  • the fat composite composition is a preferred embodiment of the present invention.
  • the inorganic salt is at least one selected from the group consisting of hydrohalic acid, phosphoric acid, sulfuric acid, nitric acid, and molybdic acid, lithium metal salt, alkaline earth metal salt, and ammonium salt power.
  • a plastic rosin composite composition is a preferred embodiment of the present invention.
  • the inorganic salt is at least one selected from potassium bromide, potassium chloride, ammonium molybdate, sodium hydrogen phosphate, calcium chloride, and ammonium bromide force.
  • the above-described thermoplastic resin composite composition is a preferred embodiment of the present invention.
  • thermoplastic resin composite composition performed at / T) of 0.23 or less is a preferred embodiment of the present invention.
  • the thermoplastic resin is polyethylene (PE), polypropylene (PP), polysalt resin (PV C), polystyrene (PS), polymethacrylic resin (PMMA), polyethylene butyl alcohol copolymer (EVOH), acrylic butadiene styrene resin (ABS), polyacetal (POM), polyamide (PA), polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene ether (PPE), polyphenol- Renoxide (PPO), Polyphenylene-sulfite (PPS), Polysulfone (PSE), Polyimide resin (PI), Polyimide amide resin (PAI), Fully aromatic polyester (Liquid crystal polymer), Polyoxybenzylene (POB) , Polymethylpentene (TPX), Polyethersulfone (PESF), Polyetherimide (PEI), Polyarylate (PAR), Polyetheretherketo The above-mentioned thermoplastic resin composite composition
  • the present invention also prepares a solidified product by drying a mixed solution of inorganic fine particles and inorganic salt, removes the inorganic salt from the solidified product using a solvent, and dries, and then the drying is performed between the inorganic fine particles.
  • the above-described thermoplastic resin composite composition is obtained by melt-mixing an inorganic fine particle aggregate formed by the cohesive force between inorganic fine particles obtained by performing the temperature at which no surface fusion occurs, and a thermoplastic resin. A method of manufacturing an object is provided.
  • thermoplastic resin composite composition in which inorganic fine particles are dispersed up to the primary particle level in a thermoplastic resin.
  • the present invention makes it possible to provide a thermoplastic resin composite composition in which inorganic fine particles are uniformly dispersed at a nano level in thermoplastic resin.
  • inorganic fine particles can be dispersed in thermoplastic resin to the level of primary particles.
  • a method for producing a thermoplastic rosin composite composition is also provided.
  • thermoplastic resin and the inorganic fine particle aggregate having low strength are melt-mixed to disperse the inorganic fine particles to the nano level, so that the thermoplastic resin can be easily nanocomposited. it can.
  • thermoplastic resin composite composition of the present invention can be applied to all fields where particles can be expected to be dispersed at the nano level.
  • thermoplastic resin composite composition excellent in mechanical properties and dimensional stability and a method for producing the same are provided.
  • the present invention provides an inorganic fine particle aggregate formed by the cohesive force of inorganic fine particles and a thermoplastic coagulant obtained by melting and mixing the inorganic fine particles with an average particle size of 1 ⁇ m or less.
  • a thermoplastic resin composite composition that disperses!
  • the inorganic fine particle aggregate formed by the cohesive force between the inorganic fine particles in the present invention means that the inorganic fine particle is formed by the cohesive force between the inorganic fine particles without substantially fusing on the surface. Aggregates.
  • thermoplastic resin used in the present invention is not limited to its kind or chemical structure such as hydrophilic 'hydrophobic', rubber, thermoplastic elastomer, general-purpose resin, engineering ring. Any thermoplastic resin such as plastic can be used.
  • Examples of the rubber include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), chloroprene rubber (CR), -tolyl rubber (NBR), and butyl rubber (IIR). , Ethylene 'propylene rubber (EPDM), chlorosulfonated polyethylene (CSM), attalinole rubber (ACM, ANM), epichlorohydrin rubber (ECO), silicon rubber (VMQ, FVMQ), fluoro rubber (FKM), urethane rubber, etc. Can be mentioned.
  • Thermoplastic elastomers include styrene (SBC), olefin (TPO), vinyl chloride (TPVC), urethane (TPU), ester (TPEE), and amide (TPAE). I can list them.
  • SBC styrene
  • TPO vinyl chloride
  • TPVC vinyl chloride
  • TPU urethane
  • TPEE ester
  • TPAE amide
  • the general-purpose resin a general-purpose resin used in general melt molding can be preferably used.
  • PE polyethylene
  • PP polypropylene
  • PVC polychlorinated butyl
  • PS polystyrene
  • polymethacrylic resin examples thereof include resin (PMMA), polyethylene butyl alcohol copolymer (EV OH), and acrylic butadiene styrene resin (ABS).
  • Engineering plastics include polyacetanol (POM), polyamide (PA), polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene ether (PPE), polyphenol lenoxide (PPO). ), Polyphenylene sulfite (PPS), polysulfone (PSE), polyimide resin (PI), polyimide amide resin (PAI), wholly aromatic polyester (liquid crystal polymer), polyoxybenzylene (POB), polymethyl Examples include rupentene (TPX), polyethersulfone (PESF), polyetherimide (PEI), polyarylate (PAR), polyetheretherketone (PEEK), and polyetherketoneketone (PEKK).
  • POM polyacetanol
  • PA polyamide
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PPE polyphenylene ether
  • PPO polyphenol lenoxide
  • the inorganic fine particles used in the preparation of the inorganic fine particle aggregate in the present invention include silicon oxide, titanium oxide, zeolite, acid zirconium, alumina, pentoxide antimony, silicon carbide, aluminum nitride, and nitride.
  • Dispersions of inorganic fine particles such as silicon, barium titanate, aluminum borate, boron nitrite, lead oxide, zinc oxide, tin oxide, cerium oxide, magnesium oxide, cerium zincate, calcium silicate, zirconium silicate
  • sol (Hereinafter sometimes referred to as sol).
  • sol These inorganic fine particles can be used alone or in combination of two or more.
  • the inorganic fine particle aggregate of the present invention a sol of inorganic fine particles and an inorganic salt are mixed, and the mixed solution is dried to produce a solidified product of the inorganic fine particles and the inorganic salt, and the solvent is removed from the solidified product. And agglomerates of inorganic fine particles obtained by elution and removal of inorganic salts and drying by drying.
  • the inorganic fine particle aggregate of the present invention is formed by a cohesive force between the inorganic fine particles, and a temperature at which surface fusion between the inorganic fine particles does not substantially occur, preferably a temperature at which the neck formation described later does not occur. Agglomerates of inorganic fine particles dried at
  • the temperature at which surface fusion between the inorganic fine particles does not substantially occur is preferably different depending on the type of inorganic fine particles used. Its temperature The inorganic fine particles can be selected by confirming the above.
  • the thus obtained aggregate of inorganic fine particles is an aggregate formed only by the cohesive force between the inorganic fine particles, so that the inorganic fine particles described in JP-A-2001-152030 are used.
  • the mixture of the fine particles and the inorganic salt is fired at a high temperature to form an aggregate of inorganic fine particles having a lower strength than the aggregate of inorganic fine particles prepared by fusing the inorganic fine particles.
  • the inorganic fine particle aggregate obtained by removing the inorganic salt with a solvent and drying in the present invention usually gives a coarse particle or agglomerate having a large particle diameter. It may be pulverized and classified. From the viewpoint of biting in the hopper of the extruder, the average particle size of the aggregate of inorganic fine particles of the present invention is in the range of 50 ⁇ m to 400 ⁇ m, preferably 70 0 ⁇ to 300 / ⁇ ⁇ . A range is preferred. In the case of pulverizing and classifying the aggregate, it is preferable that the average particle diameter is within the above range.
  • the solvent for eluting the inorganic salt from the solidified product of the inorganic fine particles and the inorganic salt may be the same as or different from the solvent used for the mixed liquid of the inorganic fine particles and the inorganic salt. Preferably it is active.
  • a solvent can be appropriately selected from polar solvents, which are poor solvents for inorganic fine particles and good solvents for inorganic salts. Water is one suitable example of such a solvent. Since the inorganic salt is eluted and removed using a solvent that elutes the inorganic salt from the solidified product, it acts as a kind of pore-forming agent for the resulting aggregate.
  • the inorganic fine particle aggregate of the present invention is preferably obtained by using at least one kind selected from silica sol, titanium oxide sol, alumina sol, zeolite sol, a composite oxide of zinc oxide and antimony pentoxide as the inorganic fine particles.
  • Water is used as a solvent, and a water-soluble inorganic salt is used as a pore forming agent.
  • water-soluble inorganic salt examples include hydrohalic acid, phosphoric acid, sulfuric acid, nitric acid, molybdate alkali metal salt, alkaline earth metal salt, ammonium salt, etc., preferably potassium nitrate, potassium iodide, ammonium molybdate. -Um, sodium phosphate-sodium hydrogen, potassium bromide, odor Ammonium chloride, potassium chloride, calcium chloride, copper chloride, calcium nitrate and the like.
  • These inorganic salts can be used alone or in combination of two or more.
  • a form using silica sol as the inorganic fine particles is more preferable.
  • An inorganic fine particle aggregate having a high purity can be obtained as an inorganic fine particle aggregate obtained by using a solvent having a high purity as the solvent. For example, when the residual inorganic salt is eluted repeatedly using pure water, inorganic fine particle aggregates with extremely high purity can be obtained.
  • a high-purity agglomerate having a silica particle force can be obtained by applying this method.
  • the thermoplastic resin composition obtained by melt-mixing the high-purity agglomerate and the thermoplastic resin obtained in this way can be suitably used even for parts that require purity used in semiconductor manufacturing equipment and the like.
  • the inorganic fine particle aggregate is obtained by a method described in Japanese Patent No. 3369193, wherein a fired body produced using silica sol or alumina sol, an alkali metal halide and a substitute agent as raw materials is used. It also has a metal power that has a lower ionization tendency than the metal in the substitution agent. It is immersed in an aqueous solution of the additive or its metal compound to remove the alkali metal halide, and replaces the metal of the additive with the substitution agent and carries it. Silica aggregates may be used. Note that when the firing described in the above patent is performed, the good dispersion expected in the present invention cannot be obtained.
  • Examples of the additive for the composite inorganic fine particles include inorganic substances such as hydroxide-magnesium, hydroxide-aluminum, and trimonate-antimony, which have a catalytic action, palladium, copper, magnesium, iron, aluminum, Metals such as tin, nickel, conoret, titanium, white gold, gold and silver are used.
  • inorganic fine particle aggregates supporting an additive selected from metals, metal salts, and inorganic compounds in the resin By dispersing inorganic fine particle aggregates supporting an additive selected from metals, metal salts, and inorganic compounds in the resin to the nano level, effects such as reduction of the amount added can be obtained.
  • the strength formed by the agglomeration force between the inorganic fine particles obtained in the present invention is low, and the strength of the inorganic fine particle aggregate is the kind and particle size of the inorganic fine particle sol, the pH of the inorganic fine particle sol, the inorganic salt These conditions vary depending on the type, content, drying temperature, etc. By selecting, the strength of the inorganic fine particle aggregate can be controlled.
  • the inorganic fine particle aggregate of the present invention is melt-mixed with the thermoplastic resin to disperse the inorganic fine particles in the resin
  • the type of the thermoplastic resin to be melt-mixed and the melt-mixing device used Depending on the structure (screw structure and combination), melt mixing conditions (temperature and screw rotation speed), etc., the average particle size and dispersion state of the inorganic fine particle aggregates dispersed in the thermoplastic resin change. Therefore, the inorganic fine particle agglomerates and thermoplastics used in order to uniformly crush and disperse the thermoplastic agglomerates and inorganic fine particle agglomerates to the nano level of the original primary particles physically in the hot melt fat. It is necessary to select the conditions for melt mixing according to the type of the resin.
  • thermoplastic resin composite composition can be obtained by controlling both the preparation of inorganic fine particle aggregates and the melt mixing conditions.
  • the strength is the sum of the interparticle adhesion forces acting at the contact points between a large number of primary silica particles forming the porous material. It depends on the next particle size (Chemie Ingenieurtechnik, vol 42, p538, 1970).
  • the average primary particle size is 50 nm or more, preferably 90 nm or more, more preferably llOnm or more and 1 m or less.
  • the agglomerate strength is inversely proportional to the primary particle size, and the average primary particle size force increases, and the agglomerate strength increases and the crushing process becomes difficult during the melt mixing process. Tend.
  • the inorganic fine particle aggregates are uniformly crushed and dispersed in the thermoplastic resin when melt-mixed with a stronger shear stress. .
  • the inorganic salt used in the present invention functions as a kind of pore-forming agent for the aggregate of inorganic fine particles, the strength of the inorganic fine particle aggregate is greatly changed depending on the content of the inorganic salt. . As the content of the inorganic salt with respect to the inorganic fine particles increases, the strength of the inorganic fine particle aggregate decreases. However, if the content of inorganic salt is too high, the inorganic fine particle aggregates are easily crushed by a measuring process and returned to primary particles. Therefore, the content of inorganic salt in the inorganic fine particle aggregate is 1 to 90% by volume, preferably 50 to 85% by volume, more preferably 60 to 80% by volume. %.
  • the mixed liquid After mixing the water-dispersed inorganic fine particle sol and the inorganic salt, the mixed liquid is dried to prepare a solidified product of the inorganic fine particles and the inorganic salt, and the solidification of the inorganic fine particles and the inorganic salt.
  • the temperature at which the inorganic salt is removed and dried by using a solvent that elutes the inorganic salt from the product is a temperature at which surface fusion between the inorganic fine particles does not substantially occur as described above, preferably the formation of a neck Doesn't happen, temperature is desired.
  • the melting point on the surface of the inorganic fine particles is lower than the melting point inside (bulk state)
  • the drying temperature is increased, a part of the surface of the inorganic fine particles is melted, and the aggregate of the inorganic fine particles is formed by the fusion of adjacent inorganic fine particles.
  • the strength of is increased.
  • inorganic fine particles generally have crystal structure defects on the surface of the particles when they are formed. All of these defects are thermally unstable, so they rapidly recover or move when heated.
  • a bonding portion (neck) is formed at the contact portion between adjacent inorganic fine particles. The formation of this neck also increases the strength of the aggregate of inorganic fine particles.
  • the main cause of neck formation is thought to be surface fusion between adjacent inorganic fine particles. Neck formation starts when the ratio (T / T) of the drying temperature (T) expressed in absolute temperature to the melting point (T) of the inorganic fine particles is 0.23.
  • the ratio of the drying temperature shown in absolute temperature to the melting point of the inorganic fine particles is preferably 0.23 or less.
  • the drying be performed at a temperature of 150 ° C or lower, preferably 120 ° C or lower! /.
  • the strength of the inorganic fine particle aggregate of the present invention depends on the type of the resin to be melt-mixed, the structure of the melt-mixing apparatus to be used (screw structure and combination), the melt-mixing conditions (temperature and screw rotation speed), etc. Force due to Compressive Load, measured when the particle size is about 150 m, 0 mN or less, preferably 35 mN or less.
  • the crushing strength S of the inorganic fine particle aggregate of the present invention is 1.50 MPa or less, preferably 1.40 MPa or less. As will be described later, the crushing strength is a strength corrected for the effect of the difference in particle size.
  • the mixing ratio of the inorganic fine particle aggregate to the thermoplastic resin is a force depending on the use of the thermoplastic resin composite composition 0.3 to 70% by weight, more preferably 0.5 to 50% by weight. Most preferably, it is 1 to 30% by weight.
  • Inorganic fine particles are dispersed to the nano level in rosin
  • the interfacial area between the nanoparticle and the rosin matrix is significantly higher in the nano-fax composite mixture or the so-called polymer nano-composite than in the conventional wafer composite mixture in which the filler is dispersed at the micron level. Therefore, there is an advantage that improvement of physical properties can be expected even if a smaller amount of the inorganic fine particle aggregate is added than the conventional resin composite mixture.
  • thermoplastic resin composite composition obtained by the present invention is obtained by melting and mixing the inorganic fine particle aggregate and the thermoplastic resin, and the inorganic fine particles in the resin are 1 ⁇ m (lOOOnm) or less.
  • the thermoplastic thermoplastic resin composite composition is preferably dispersed below 600 nm or less, more preferably 400 nm or less.
  • thermoplastic resin composite composition in which almost all fine particles are dispersed at the nano level.
  • the state in which the inorganic fine particles are dispersed in the thermoplastic resin can be observed with an electron micrograph of the resulting thermoplastic resin composite composition. Using an electron microscope, it is not possible to observe particles of different sizes up to an aggregate of inorganic fine particles with an average particle size of about 12 nm and inorganic fine particles with an average particle size of about 50, OOOnm (50 ⁇ m).
  • Plastic resin composite composition After cooling the sample in liquid nitrogen, the fractured surface obtained by folding is arbitrarily selected from three locations for each sample using an electron microscope, and crushed inorganic fine particle aggregates or primary particles
  • the distribution of the particle size and the number of particles was prepared (the particle size on the horizontal axis is a logarithmic scale), and the particle size with the largest proportion of inorganic fine particles was taken as the average particle. Therefore, when most of the inorganic fine particle aggregates are crushed and dispersed to primary particles, most of the particles counted from the electron micrograph are primary particles, so the average particle size formed inorganic fine particle aggregates. This is the primary particle size.
  • the primary particle when the strength of the inorganic fine particle aggregate is high, the primary particle is not crushed and dispersed, so the average particle size is several hundred times as large as the particle size of the primary particle.
  • the number of inorganic fine particles that can be confirmed by microscopic observation is 80% or more, preferably 90% or more, more preferably 95% or more, force 600 nm or less, more preferably 400 nm or less.
  • a thermoplastic rosin composite composition is a preferred embodiment of the present invention.
  • inorganic fine particles having a lower strength than an inorganic porous material obtained by firing a conventional inorganic material such as porous glass or silica are prepared in advance, and the aggregate and thermoplastic resin are melt-mixed.
  • the strength is low due to shear stress.
  • Manufactures so-called polymer nanocomposites, in which inorganic fine particles are uniformly crushed and dispersed to the nanoscale regardless of the type of thermoplastic resin, hydrophilicity, hydrophobicity, etc. can do.
  • the type of thermoplastic resin used and the melt viscosity are used.
  • the temperature of the resin increases due to internal heat generation, the melt viscosity decreases, and the shear applied to the resin is sheared. Since the stress is low, it is better to set it in consideration of the increase in the resin temperature due to internal heat generation. However, a temperature that does not exceed 50 ° C above the melting point is preferable. In the case of rubber or non-crystalline polymer, it is preferable to lower the mixing temperature as much as possible while suppressing internal heat generation so that large shear stress is applied to the resin.
  • a solidified product is obtained by liquid mixture drying of inorganic fine particles and inorganic salt, and the inorganic salt is removed by using the solidified product solvent, followed by drying.
  • the method of melt-mixing the inorganic fine particle aggregates formed by the cohesive force between the inorganic fine particles, which is obtained by carrying out at a temperature at which no surface fusion occurs, with the thermoplastic resin is the thermoplastic resin of the present invention.
  • a preferred method for producing the composite composition is the thermoplastic resin of the present invention.
  • any kind of particles that can be expected by uniformly dispersing at the nano-level are available. It can be applied to the field and is not particularly limited by the present invention.
  • tubes, sheets, rods, fibers, packings, linings, wire coatings and the like that can be obtained by compression molding, extrusion molding, blow molding, injection molding.
  • the particles are uniformly dispersed in the thermoplastic resin at the nano level, the zero shear viscosity is much higher when the shear rate is low than when the particles are not nano-dispersed.
  • silica when used as the inorganic fine particles, the silica particles increased by nano-dispersion. It can also be used in applications where an improvement in adhesion can be expected due to the interaction between the hydroxyl group bonded to the surface and the metal or substrate.
  • each physical property was measured by the following method.
  • micro-compression tester MCT-W500, manufactured by Shimadzu Corporation
  • spray about lOOmg of sample on a high-rigidity stage measure the particle size D of each sample, and apply a load.
  • the measured experimental force P (Compressive Load) and compression displacement were measured, and the crushing strength S (or breaking strength) of the data was calculated using the following formula (Japan Mining Association, vol. 81, p24, 1965).
  • the experimental force P measured at a compression speed of 103 mNZsec was taken as the compression load.
  • the crushing strength was measured five times for each sample, and the average value was used as the crushing strength (MPa).
  • the inorganic fine particle aggregate of the present invention was selected to have a particle size of about 150 m and the crushing strength was measured.
  • the average particle size of commercially available silica used as a comparative example is smaller than that of the sample of the present invention, the value of the experimental force P is small, but the crushing strength S corrected for the effect of the particle size difference S
  • the fracture surface obtained by folding is arbitrarily selected at three locations for each sample with an electron microscope, and the size of silica particles crushed by the following method The distribution of the silica particle size and its number was prepared (the particle size on the horizontal axis is a logarithmic scale), and the particle size with the largest proportion of silica particles was taken as the average particle.
  • Silica aggregates of 5 m to 20 m The number of silica particles having a particle diameter of 5 ⁇ m to 20 ⁇ m and the particle diameter thereof were measured from the observation result at 500 times (field of view: 180 m ⁇ 180 m). In addition, the number of silica particles corresponding to each particle size counted was multiplied by 6.25 and converted to the result of the area observed at 200 times.
  • silica particles having a particle diameter of 1 ⁇ m to 5 ⁇ m and the particle diameter thereof were measured from the results of observation at 1 to 5 m silica aggregate: 2000 times (field: 45 m ⁇ 45 m). In addition, the number of silica particles corresponding to each particle size counted was multiplied by 100 and converted to the result of the area observed at 200 times.
  • the number of silica particles corresponding to each counted particle size was multiplied by 625 and converted to a result of the area observed at 200 times.
  • the particle size was measured in nm and rounded down to the nearest 100 (eg, 650 nm is 600 nm).
  • the particle size of the silica primary particles was the same as the measured value.
  • Silica aggregate or silica primary particle of 200 nm to 500 nm From the result of observation at 10,000 times (field of view: 9 m X 9 ⁇ m), particle size 200 ⁇ The number of silica aggregates or silica primary particles of ⁇ 500 nm and their particle sizes were measured by the same method as in d), and converted to the result of the area to be observed at 200 times f) Silica aggregates or silica primary of 200 nm or less Particles: From the result of observation at 20000 times (field of view: 4.5 ⁇ ⁇ ⁇ 4.5 ⁇ m), the number of silica aggregates or silica primary particles with a particle size of 200 nm or less and the particle size is the same as d) Measured and converted to the result of the area observed at 200 times. (3) Silica dispersion state
  • thermoplastic resin composite composition sample prepared in liquid nitrogen was observed at three locations for each sample with an electron microscope, and the crushed and dispersed state of the inorganic fine particle aggregates was evaluated according to the following criteria.
  • A Most of the inorganic fine particle aggregates having a particle size of about 150 ⁇ m are crushed and dispersed to the primary silica particles by melt mixing! ⁇ : A few inorganic fine particle aggregates are left without being completely crushed with a size of about 1 m to 20 m.
  • Snowtex MP2040 (silica average primary particle size: 190nm),
  • Snowtex MP1040 (silica average l order particle size: 110nm),
  • Snowtex 30 (silica average primary particle size: 12nm)
  • Solid lOOg and pure water 2.5L were put into a beaker and stirred at 200rpm for 30 minutes while heating at 80 ° C, and then allowed to stand to precipitate the solidified product, and the supernatant containing the eluted KBr was removed. . After removing the supernatant, test for about 10 hours in a 120 ° C dryer. The material is dried and further vacuum dried at 120 ° C for 3 hours to remove KBr, and the SiO skeleton.
  • Fig. 1 shows an electron micrograph of the S4 sample. From FIG. 1, it can be seen that the primary particles of silica form a skeleton three-dimensionally only by physical cohesion.
  • the mixture was pulverized and classified with a sieve having openings of 300 ⁇ m and 75 ⁇ m to obtain a solidified product having an average particle size of 75 ⁇ m to 300 ⁇ m.
  • the obtained solidified product was placed on a baking dish and baked at a temperature of 600 ° C. shown in Table 1 for 2 hours in a fully automatic open / close tubular furnace (manufactured by ISUZU, EKRO-23). 100g of solidified product after baking and 2.5L of pure water were placed in a beaker, stirred while heating at 80 ° C, and allowed to stand to settle the solidified product, and the supernatant liquid containing the eluted KBr was removed. .
  • Figure 2 shows an electron micrograph of the sample. It can be seen from FIG. 2 that the calcined silica fine particle agglomerates form a three-dimensional framework by melting and fusing the silica primary particles. Also, the crush strength of the obtained sample and the commercially available porous silica Table 1 shows the measurement results of the crushing strength of (R1) and commercially available fused silica (R2).
  • the silica fine particle aggregates S1 to S2 (Examples 1 and 2) prepared above and a copolymer (ethylene butyl alcohol, hereinafter referred to as EVOH), which is a polar thermoplastic resin, have the compositions shown in Table 2.
  • EVOH ethylene butyl alcohol
  • Example 1 since the crushing strength of the silica fine particle aggregate used was weaker than that of Comparative Example 1, most of the silica fine particle aggregates were crushed to primary particles by melt mixing, but about 1 to 20 m. A few inorganic fine particle agglomerates remained without being completely crushed.
  • Example 2 a silica fine particle aggregate having the weakest crushing strength was used. Agglomerates of silica particles with a size of approximately 150 m were crushed and dispersed up to the primary silica particles (particle size 190 nm) by melt mixing (Fig. 3). Therefore, the aggregate of silica fine particles having a primary particle force with a large primary particle size has a lower crushing strength, and it is easy to crush and disperse to the silica primary particles by melt mixing.
  • Example 3 using the silica fine particle aggregate (S1) with the weakest crushing strength, the silica fine particle aggregate was completely crushed and dispersed until the silica primary particle (particle size 190 nm) in the melt mixing process. ( Figure 4). In Example 4 where the content was increased to 10% by weight, the silica fine particle aggregates were completely crushed and dispersed by the silica primary particles (Fig. 5).
  • silica fine particle aggregate (S5) having the strongest crushing strength force produced by firing was used.
  • Silica fine particle aggregates cannot be crushed during the melt mixing process, and many silica fine particle aggregates remain as very large uncrushed silica fine particle aggregates with a particle size of about 50 m.
  • Figure 6 This is because the silica fine particle aggregate of the present invention forms the skeleton three-dimensionally only by the physical cohesive force between the silica primary particles (FIG. 1), but the fired silica fine particle aggregate (S5) Due to the melting of the surface of the silica primary particles, the surface layers melt and adhere to each other, or the neck is formed and a skeleton having a strong bond is formed in three dimensions, resulting in high crushing strength. (Fig. 2).
  • the inorganic fine particle aggregate formed by the cohesive force between the inorganic fine particles and the relatively weak adjacent particles is melt-mixed with the inorganic fine particle aggregate and the thermoplastic resin.
  • inorganic fine particle aggregates with low strength can be physically crushed and dispersed by shear stress, so that inorganic fine particles can reach nanoscale regardless of the type of thermoplastic resin or hydrophilicity / hydrophobicity. It can be seen that it is possible to produce a so-called high-molecular nanocomposite that is uniformly crushed and dispersed in a uniform manner.
  • FIG. 7 shows a concept for explaining the preparation procedure of the silica fine particle aggregate used in the present invention and the dispersion state of the silica particles crushed and dispersed in the melt mixing process.
  • thermoplastic resin composite composition in which inorganic fine particles are uniformly dispersed at a nano level in a thermoplastic resin.
  • the present invention provides a method for producing a thermoplastic resin composite composition in which inorganic fine particles are dispersed in a thermoplastic resin to the primary particle level.
  • thermoplastic resin nanocomposite is provided by melt-mixing a thermoplastic resin and an inorganic fine particle aggregate having low strength to disperse the inorganic particles to the nano level.
  • thermoplastic resin composite composition of the present invention can be applied to all fields where particles can be expected to be dispersed at the nano level.
  • a thermoplastic resin composite composition that can be applied to all fields that can be expected by uniformly dispersing particles at a nano level.
  • the zero shear viscosity becomes very high when the shear rate is low compared to when the particles are not nano-dispersed.
  • silica when used as the inorganic fine particles, it can be used for applications in which an improvement in adhesive force can be expected due to the interaction between the hydroxyl group bonded to the silica particle surface increased by nano-dispersion and the metal or the base material.
  • Fig. 1 is an electron micrograph of a silica fine particle aggregate (without firing) used in the present invention.
  • FIG. 2 is an electron micrograph of the silica fine particle aggregate fired at 600 ° C. used in Comparative Example 1.
  • FIG. 3 is an electron micrograph of a fracture surface of a thermoplastic resin mixture composition sample used in Example 2.
  • FIG. 4 is an electron micrograph of a fracture surface of a thermoplastic resin mixture composition sample used in Example 3.
  • FIG. 5 is an electron micrograph of a fracture surface of a thermoplastic resin mixture composition sample used in Example 4.
  • FIG. 6 is an electron micrograph of a fracture surface of the thermoplastic resin mixture composition sample used in Comparative Example 1.
  • FIG. 7 is a conceptual diagram illustrating the procedure for preparing the silica fine particle aggregate used in the present invention and the dispersion state of the silica particles crushed and dispersed in the melt mixing process.

Abstract

A thermoplastic-resin composite composition which contains fine inorganic particles dispersed to a primary-particle level and which is excellent in mechanical properties, dimensional stability, etc.; and a use of the composition. The thermoplastic-resin composite composition is obtained by melt-mixing a thermoplastic resin with fine-inorganic-particle agglomerates obtained by drying a liquid containing a mixture of fine inorganic particles and an inorganic salt to obtain a solid, removing the inorganic salt from the solid with a solvent, and drying the resultant solid at a temperature at which the fine inorganic particles do not undergo surface fusion bonding to one another, the agglomerates being formed based on cohesive force among the fine inorganic particles. In the thermoplastic-resin composite composition, the fine inorganic particles having an average particle diameter of 1 µm or smaller are dispersed in the resin. Preferable uses of the thermoplastic-resin composite composition are molded articles such as tubes, sheets, rods, fibers, packings, linings, and electric-wire coverings.

Description

明 細 書  Specification
熱可塑性樹脂複合体組成物、その製法および用途  Thermoplastic resin composite composition, production method and use thereof
技術分野  Technical field
[0001] 本発明は、無機微粒子が 1次粒子レベルで分散した熱可塑性榭脂複合体組成物 およびその製造方法に関する。さらに詳しくは、無機微粒子同士の凝集力によって 形成された強度が低い無機微粒子凝集体と熱可塑性榭脂との溶融混合で得られる 、無機微粒子が榭脂中にもとの無機微粒子レベルで分散した、熱可塑性榭脂ナノコ ンポジットといえる熱可塑性榭脂複合体組成物およびその製造方法に関する。  The present invention relates to a thermoplastic resin composite composition in which inorganic fine particles are dispersed at a primary particle level and a method for producing the same. More specifically, it is obtained by melt-mixing a low-strength inorganic fine particle aggregate formed by the cohesive force between inorganic fine particles and a thermoplastic resin. The inorganic fine particles are dispersed in the resin at the level of the original inorganic fine particles. The present invention relates to a thermoplastic resin composite composition that can be said to be a thermoplastic resin nanocomposite and a method for producing the same.
背景技術  Background art
[0002] 従来、様々な分野においてより高い性能を有する榭脂組成物が必要とされており、 樹脂に充填材を分散させることで機械的強度、寸法安定性、難燃性などを改善する ことが行われている。  [0002] Conventionally, there has been a need for a resin composition having higher performance in various fields, and by improving the mechanical strength, dimensional stability, flame retardancy, etc. by dispersing a filler in the resin. Has been done.
[0003] 特に、特開 2001— 152030号公報には、多孔質ガラスまたは酸ィ匕ケィ素(以下シリ 力と言うことがある)などの無機材料を焼成した平均粒径 100nm〜1000nmの無機 多孔質体に金属、金属塩、無機化合物から選択される添加剤または難燃剤をあらか じめ担持させておき、榭脂と溶融混合して無機多孔質体が破砕し、平均粒径が 10η m〜100nmの前記添加剤または難燃剤を担持した粒子が榭脂中に分散されたこと を特徴とする榭脂複合組成物とその製造方法が記載されている。  [0003] In particular, Japanese Patent Application Laid-Open No. 2001-152030 discloses an inorganic porous material having an average particle diameter of 100 nm to 1000 nm obtained by firing an inorganic material such as porous glass or acid silicate (hereinafter sometimes referred to as silicic force). An additive selected from metals, metal salts, and inorganic compounds or a flame retardant is preliminarily supported on the material, and the inorganic porous material is crushed by melting and mixing with the resin, and the average particle size is 10η m A resin composite composition characterized in that particles carrying the additive or flame retardant of ˜100 nm are dispersed in the resin, and a method for producing the same is described.
[0004] しかし、上記公報に記載された多孔質ガラスの構造は、ケィ素と酸素の共有結合と なっており、多孔質ガラスを破砕'分散することは共有結合を切ることに相当し、大き なエネルギーが必要なため、榭脂との溶融混合で多孔質ガラスを破砕'分散すること は極めて難しい。  However, the structure of the porous glass described in the above publication is a covalent bond between silicon and oxygen, and crushing and dispersing the porous glass is equivalent to breaking the covalent bond, which is large. Therefore, it is extremely difficult to crush and disperse the porous glass by melt mixing with the resin.
[0005] また、平均 1次粒径 12nmのシリカ微粒子カゝらなる無機微粒子の凝集体を 600°C〜  [0005] In addition, an aggregate of inorganic fine particles such as silica fine particles having an average primary particle diameter of 12 nm is 600 ° C to
700°Cで焼成して得られた平均粒径 ΙΟΟηπ!〜 lOOOnmの無機多孔質体は、焼成 でシリカ粒子 (もしくはシリカ粒子の凝集体)の表面融解によって表層だけが少し融解 してお互いに融着して強固な結合を有する骨格に固化されているため(資源と素材、 Vol 118, P202、 2002)、溶融混合装置で榭脂と溶融混合しても、ポリスチレンに S)と溶融混合後の無機多孔質体の平均粒径は 290nm、粒径分布 40nm〜100, 0 OOnm ( 100 m)と広く、もとの 1次粒子までの破砕には成功してな 、(第 13回高分 子材料シンポジウム予稿集, P10、 2003)。特に、ポリスチレン榭脂中にある粒径 10 m以上の破砕されてない多くの無機微粒子凝集焼結体の存在によって力学物性 の著し 、低下が現れて 、る。 Average particle size obtained by firing at 700 ° C ΙΟΟηπ! The lOOOnm inorganic porous material is solidified into a skeleton that has solid bonds due to the surface melting of silica particles (or aggregates of silica particles) that are slightly melted and fused together by firing. (Resources and materials, Vol 118, P202, 2002). S) and the inorganic porous material after melt mixing have a wide average particle size of 290 nm, particle size distribution of 40 nm to 100, 0 OOnm (100 m), and the original primary particles have not been successfully crushed. (The 13th Symposium on Polymer Materials, P10, 2003). In particular, the mechanical properties are markedly deteriorated due to the presence of many non-crushed inorganic fine particle aggregated sintered bodies having a particle size of 10 m or more in polystyrene resin.
[0006] また、無機微粒子或いは無機ナノ粒子けノメートルレベルの微粒子)を榭脂に溶 融混合する場合、単位体積当たりの微粒子の凝集力は粒径が小さくなるほど大きく なるので、微粒子同士の再凝集が起こる。そのため、ナノ粒子を榭脂と直接溶融混 合してもナノ粒子をそのままナノ分散させることは極めて難しい。  [0006] In addition, when inorganic fine particles or fine particles at the nanometer scale) are melt-mixed in the resin, the cohesive force of the fine particles per unit volume increases as the particle size decreases. Aggregation occurs. For this reason, it is extremely difficult to nano-disperse the nanoparticles as they are even if they are melt-mixed directly with the resin.
[0007] 更に、最近高分子材料にカーボンナノチューブ、カーボンナノファイバーのようなナ ノフイラ一を入れて溶融混合でこれらナノフィラーを榭脂中に分散させた高分子ナノ コンポジット製造する試みにおいては、使用する榭脂の極性によってナノフィラーの 分散状態が変化し、二トリルゴム (NBR)のような極性樹脂にはある程度ナノフィラー の均一分散ができる力 エチレンプロピレンゴム (EPDM)のような疎水性榭脂にカー ボンナノチューブを均一に分散させるのは難しい(Polymer Preprints, Japan, Vo 1 52、 P1785、 2003)。従って、無機微粒子或いは無機ナノ粒子の種類や表面性 質だけではなぐ分散させる榭脂の種類や疎水性'親水性によっても無機微粒子或 いは無機ナノ粒子の分散状態が大きく変化するといえる。  [0007] Furthermore, in recent attempts to manufacture polymer nanocomposites in which nanofillers such as carbon nanotubes and carbon nanofibers are added to polymer materials and these nanofillers are dispersed in resin by melt mixing. The dispersion state of the nanofiller changes depending on the polarity of the resin, and the ability to uniformly disperse the nanofiller to some extent in a polar resin such as nitrile rubber (NBR) makes it a hydrophobic resin such as ethylene propylene rubber (EPDM) It is difficult to uniformly disperse carbon nanotubes (Polymer Preprints, Japan, Vo 1 52, P1785, 2003). Therefore, it can be said that the dispersion state of the inorganic fine particles or the inorganic nanoparticles greatly changes depending on the type of the fine particles to be dispersed and the hydrophobicity / hydrophilicity as well as the kind of the inorganic fine particles or the inorganic nanoparticles and the surface property alone.
[0008] 特許文献 1 :特開 2001— 152030号公報  [0008] Patent Document 1: Japanese Patent Laid-Open No. 2001-152030
非特許文献 1 :第 13回高分子材料シンポジウム予稿集, P10、 2003  Non-Patent Document 1: Proceedings of 13th Symposium on Polymer Materials, P10, 2003
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明者は、無機微粒子同士の凝集力によって形成された強度が低 ヽ無機微粒 子凝集体と熱可塑性榭脂とを溶融混合することにより、溶融混合装置で生じるせん 断応力により無機微粒子凝集体が物理的にもとの無機微粒子 (以下、 1次粒子という ことがある)まで均一に破砕'分散され、熱可塑性榭脂の伸び率や溶融成型性をある 程度維持しながら力学物性、寸法安定性などの改善が可能であることを見出し本発 明に到達した。 [0010] 本発明は、無機微粒子が 1次粒子のレベルまで分散された力学物性、寸法安定性 などに優れた熱可塑性榭脂複合体組成物を提供する。 [0009] The present inventor has found that the strength formed by the cohesive force between the inorganic fine particles is low, and the inorganic fine particle aggregate and the thermoplastic resin are melt-mixed, whereby the inorganic stress is generated by the shear stress generated in the melt mixing apparatus. Fine particle aggregates are uniformly crushed and dispersed to the original inorganic fine particles (hereinafter sometimes referred to as primary particles), and mechanical properties are maintained while maintaining a certain degree of elongation and melt moldability of thermoplastic resin. As a result, the inventors have found that dimensional stability can be improved and reached the present invention. The present invention provides a thermoplastic resin composite composition excellent in mechanical properties, dimensional stability, etc., in which inorganic fine particles are dispersed to the level of primary particles.
本発明は、無機微粒子同士の凝集力によって形成された強度の低 ヽ無機微粒子 凝集体と熱可塑性榭脂とを溶融混合することにより得られる、無機微粒子がナノレべ ルまでされた熱可塑性榭脂複合体組成物を提供する。  The present invention relates to a thermoplastic resin in which inorganic fine particles are obtained by melt-mixing a low-strength inorganic fine particle aggregate formed by the cohesive force between inorganic fine particles and a thermoplastic resin, and the inorganic fine particles are nano-leveled. A composite composition is provided.
また、本発明は、無機微粒子が 1次粒子のレベルまで分散した、榭脂ナノコンポジ ットといえる熱可塑性榭脂複合体組成物の製造方法を提供する。  The present invention also provides a method for producing a thermoplastic resin composite composition, which can be called a resin nanocomposite, in which inorganic fine particles are dispersed to the level of primary particles.
課題を解決するための手段  Means for solving the problem
[0011] 本発明は、無機微粒子と無機塩との混合液カゝら乾燥によって固化物を得て、該固 化物から溶剤を用いて無機塩を除去し乾燥して得られる無機微粒子凝集体であって 、該乾燥が無機微粒子同士の表面融着が実質的に起こらない温度で行うことにより 得られる無機微粒子同士の凝集力によって形成された無機微粒子凝集体と、熱可 塑性榭脂とを溶融混合して得られる平均粒径 1 μ m以下の無機微粒子が榭脂中に 分散して!/ヽる熱可塑性榭脂複合体組成物を提供する。  [0011] The present invention provides an inorganic fine particle aggregate obtained by drying a mixed liquid of inorganic fine particles and an inorganic salt to obtain a solidified product, removing the inorganic salt from the solidified product using a solvent, and drying. Thus, the inorganic fine particle aggregate formed by the cohesive force between the inorganic fine particles obtained by performing the drying at a temperature at which surface fusion between the inorganic fine particles does not substantially occur and the thermoplastic resin are melted. Provided is a thermoplastic resin composite composition in which inorganic fine particles having an average particle size of 1 μm or less obtained by mixing are dispersed in / in a resin.
[0012] 前記無機微粒子凝集体の圧壊強度が 1. 5MPa以下である、前記した熱可塑性榭 脂複合体組成物は本発明の好ま 、態様である。 [0012] The thermoplastic resin composite composition described above in which the crushing strength of the inorganic fine particle aggregate is 1.5 MPa or less is a preferred embodiment of the present invention.
[0013] 前記無機微粒子の平均 1次粒径が 1 m以下である、前記した熱可塑性榭脂複合 体組成物は本発明の好ま U、態様である。 [0013] The thermoplastic resin composite composition described above, in which the average primary particle size of the inorganic fine particles is 1 m or less, is a preferred embodiment of the present invention.
[0014] 前記無機微粒子凝集体の圧縮荷重が 40mN以下である、前記した熱可塑性榭脂 複合体組成物は本発明の好ま U、態様である。 [0014] The above-described thermoplastic resin composite composition in which the compression load of the inorganic fine particle aggregate is 40 mN or less is a preferred embodiment of the present invention.
[0015] 前記榭脂中に分散している無機微粒子の数の 80%以上力 粒径 600nm以下で ある前記した熱可塑性榭脂複合体組成物は本発明の好ましい態様である。 [0015] The thermoplastic rosin composite composition described above having a force particle diameter of not less than 80% of the number of inorganic fine particles dispersed in the rosin and not more than 600 nm is a preferred embodiment of the present invention.
[0016] 前記無機微粒子が酸ィ匕ケィ素、酸化チタン、酸ィ匕アルミニウム、および酸化亜鉛と 五酸ィ匕アンチモンの複合酸ィ匕物力 選ばれた少なくとも 1種である前記した熱可塑 性榭脂複合体組成物は本発明の好ましい態様である。 [0016] The above-mentioned thermoplastic resin in which the inorganic fine particles are at least one selected from the group consisting of acid carbonate, titanium oxide, acid aluminum, and zinc oxide and antimony pentaoxide. The fat composite composition is a preferred embodiment of the present invention.
[0017] 前記無機塩が、ハロゲン化水素酸、燐酸、硫酸、硝酸およびモリブデン酸のアル力 リ金属塩、アルカリ土類金属塩およびアンモニゥム塩力 選ばれた少なくとも 1種であ る、前記した熱可塑性榭脂複合体組成物は本発明の好ま U、態様である。 [0018] 前記無機塩が臭化カリウム、塩ィ匕カリウム、モリブデン酸アンモ-ゥム、リン酸-水素 ナトリウム、塩ィ匕カルシウムおよび臭化アンモ-ゥム力 選ばれた少なくとも 1種である 、前記した熱可塑性榭脂複合体組成物は本発明の好ま 、態様である。 [0017] The heat described above, wherein the inorganic salt is at least one selected from the group consisting of hydrohalic acid, phosphoric acid, sulfuric acid, nitric acid, and molybdic acid, lithium metal salt, alkaline earth metal salt, and ammonium salt power. A plastic rosin composite composition is a preferred embodiment of the present invention. [0018] The inorganic salt is at least one selected from potassium bromide, potassium chloride, ammonium molybdate, sodium hydrogen phosphate, calcium chloride, and ammonium bromide force. The above-described thermoplastic resin composite composition is a preferred embodiment of the present invention.
[0019] 前記乾燥が絶対温度で示した乾燥の温度 (T )と無機微粒子の融点 (T )の比 (T  [0019] The ratio of the drying temperature (T) indicated by the absolute temperature to the melting point (T) of the inorganic fine particles (T)
0 m 0 0 m 0
/T )が 0. 23以下で行われる前記した熱可塑性榭脂複合体組成物は本発明の好ま しい態様である。 The above-described thermoplastic resin composite composition performed at / T) of 0.23 or less is a preferred embodiment of the present invention.
[0020] 前記熱可塑性榭脂が、ポリエチレン (PE)、ポリプロピレン (PP)、ポリ塩ィ匕ビュル (PV C)、ポリスチレン(PS)、ポリメタクリル榭脂(PMMA)、ポリエチレンビュルアルコール 共重合体(EVOH)、アクリルブタジエンスチレン榭脂(ABS)、ポリアセタル(POM) 、ポリアミド(PA)、ポリカーボネート (PC)、ポリエチレンテレフタレート(PET)、ポリブ チレンテレフタレート(PBT)、ポリフエ-レンエーテル(PPE)、ポリフエ-レンォキシド (PPO)、ポリフエ-レンサルファイト(PPS)、ポリスルホン(PSE)、ポリイミド榭脂(PI) 、ポリイミドアミド榭脂(PAI)、全芳香族ポリエステル (液晶高分子)、ポリオキシベンジ レン(POB)、ポリメチルペンテン(TPX)、ポリエーテルサルホン(PESF)、ポリエー テルイミド(PEI)、ポリアリレート(PAR)、ポリエーテルエーテルケトン(PEEK)、ポリ エーテルケトンケトン (PEKK)、熱可塑性エラストマ一 (TPE)力も選ばれた少なくとも 1種である前記した熱可塑性榭脂複合体組成物は本発明の好ましい態様である。  [0020] The thermoplastic resin is polyethylene (PE), polypropylene (PP), polysalt resin (PV C), polystyrene (PS), polymethacrylic resin (PMMA), polyethylene butyl alcohol copolymer ( EVOH), acrylic butadiene styrene resin (ABS), polyacetal (POM), polyamide (PA), polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene ether (PPE), polyphenol- Renoxide (PPO), Polyphenylene-sulfite (PPS), Polysulfone (PSE), Polyimide resin (PI), Polyimide amide resin (PAI), Fully aromatic polyester (Liquid crystal polymer), Polyoxybenzylene (POB) , Polymethylpentene (TPX), Polyethersulfone (PESF), Polyetherimide (PEI), Polyarylate (PAR), Polyetheretherketo The above-mentioned thermoplastic resin composite composition which is at least one selected from the group consisting of PEEK, polyetherketoneketone (PEKK), and thermoplastic elastomer (TPE) is a preferred embodiment of the present invention.
[0021] 本発明はまた、無機微粒子と無機塩との混合液を乾燥して固化物を作製し、該固 化物から溶剤を用いて無機塩を除去し乾燥し、該乾燥を無機微粒子同士の表面融 着が起こらな 、温度で行って得られた、無機微粒子同士の凝集力によって形成され た無機微粒子凝集体を、熱可塑性榭脂と溶融混合して、前記した熱可塑性榭脂複 合体組成物を製造する方法を提供する。  [0021] The present invention also prepares a solidified product by drying a mixed solution of inorganic fine particles and inorganic salt, removes the inorganic salt from the solidified product using a solvent, and dries, and then the drying is performed between the inorganic fine particles. The above-described thermoplastic resin composite composition is obtained by melt-mixing an inorganic fine particle aggregate formed by the cohesive force between inorganic fine particles obtained by performing the temperature at which no surface fusion occurs, and a thermoplastic resin. A method of manufacturing an object is provided.
発明の効果  The invention's effect
[0022] 本発明により、熱可塑性榭脂に無機微粒子を 1次粒子レベルまでに分散させた熱 可塑性榭脂複合組成物を提供する。  [0022] According to the present invention, there is provided a thermoplastic resin composite composition in which inorganic fine particles are dispersed up to the primary particle level in a thermoplastic resin.
本発明によって、熱可塑性榭脂に無機微粒子がナノレベルに均一に分散された熱 可塑性榭脂複合組成物の提供を可能とする。  The present invention makes it possible to provide a thermoplastic resin composite composition in which inorganic fine particles are uniformly dispersed at a nano level in thermoplastic resin.
また本発明により、熱可塑性榭脂に無機微粒子を 1次粒子レベルまでに分散させ た熱可塑性榭脂複合組成物の製造方法が提供される。 In addition, according to the present invention, inorganic fine particles can be dispersed in thermoplastic resin to the level of primary particles. A method for producing a thermoplastic rosin composite composition is also provided.
本発明によれば、熱可塑性榭脂と強度が低い無機微粒子凝集体を、溶融混合して 無機微粒子をナノレベルに分散されることによって、熱可塑性榭脂を ヽゎゆるナノコ ンポジットイ匕することができる。  According to the present invention, the thermoplastic resin and the inorganic fine particle aggregate having low strength are melt-mixed to disperse the inorganic fine particles to the nano level, so that the thermoplastic resin can be easily nanocomposited. it can.
本発明の熱可塑性榭脂複合組成物は、粒子がナノレベルに分散されることで期待 できるあらゆる分野に応用することができる。  The thermoplastic resin composite composition of the present invention can be applied to all fields where particles can be expected to be dispersed at the nano level.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明は、無機微粒子凝集体を熱可塑性榭脂と溶融混合して、凝集体を物理的 に破砕'分散させることにより、熱可塑性榭脂に無機微粒子が 1次粒子レベルまでに 分散された、力学物性、寸法安定性などに優れた熱可塑性榭脂複合体組成物およ びその製造方法を提供する。  [0023] In the present invention, inorganic fine particles aggregates are melt-mixed with thermoplastic resin, and the aggregates are physically crushed and dispersed to disperse the inorganic fine particles in the thermoplastic resin to the primary particle level. A thermoplastic resin composite composition excellent in mechanical properties and dimensional stability and a method for producing the same are provided.
[0024] 本発明は、無機微粒子同士の凝集力によって形成された無機微粒子凝集体と、熱 可塑性榭脂を溶融混合して得られる、榭脂中に無機微粒子が平均粒径 1 μ m以下 で分散して!/ゝる熱可塑性榭脂複合体組成物を提供する。  [0024] The present invention provides an inorganic fine particle aggregate formed by the cohesive force of inorganic fine particles and a thermoplastic coagulant obtained by melting and mixing the inorganic fine particles with an average particle size of 1 μm or less. Provided is a thermoplastic resin composite composition that disperses!
[0025] 本発明における無機微粒子同士の凝集力によって形成された無機微粒子凝集体 とは、無機微粒子が、表面で実質的に融着することなく無機微粒子同士の凝集力よ つて形成されて 、る凝集体である。  [0025] The inorganic fine particle aggregate formed by the cohesive force between the inorganic fine particles in the present invention means that the inorganic fine particle is formed by the cohesive force between the inorganic fine particles without substantially fusing on the surface. Aggregates.
[0026] 本発明で用いられる熱可塑性榭脂は、その種類又は親水性 '疎水性などの化学的 な構造などに限定されることなぐゴム、熱可塑性エラストマ一、汎用榭脂、ェンジ- ァリングプラスチックなどあらゆる熱可塑性榭脂を用いることができる。  [0026] The thermoplastic resin used in the present invention is not limited to its kind or chemical structure such as hydrophilic 'hydrophobic', rubber, thermoplastic elastomer, general-purpose resin, engineering ring. Any thermoplastic resin such as plastic can be used.
[0027] ゴムとしては、例えば天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、 スチレンブタジエンゴム(SBR)、クロロプレンゴム(CR)、 -トリルゴム(NBR)、ブチル ゴム(IIR)、エチレン 'プロピレンゴム(EPDM)、クロロスルホン化ポリエチレン(CSM )、アタリノレゴム(ACM, ANM)、ェピクロロヒドリンゴム (ECO)、シリコンゴム(VMQ, FVMQ)、フッ素ゴム(FKM)、ウレタンゴム等を挙げることができる。  [0027] Examples of the rubber include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), chloroprene rubber (CR), -tolyl rubber (NBR), and butyl rubber (IIR). , Ethylene 'propylene rubber (EPDM), chlorosulfonated polyethylene (CSM), attalinole rubber (ACM, ANM), epichlorohydrin rubber (ECO), silicon rubber (VMQ, FVMQ), fluoro rubber (FKM), urethane rubber, etc. Can be mentioned.
[0028] 熱可塑性エラストマ一 (TPE)としては、スチレン系 (SBC)、ォレフィン系(TPO)、塩 ビ系(TPVC)、ウレタン系 (TPU),エステル系(TPEE)、アミド系(TPAE)を挙げるこ とがでさる。 [0029] 汎用榭脂としては、一般溶融成形に用いられている汎用樹脂が好ましく使用でき、 例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビュル(PVC)、ポリスチレ ン(PS)、ポリメタクリル榭脂(PMMA)、ポリエチレンビュルアルコール共重合体(EV OH)、アクリルブタジエンスチレン榭脂 (ABS)などを挙げることができる。 [0028] Thermoplastic elastomers (TPE) include styrene (SBC), olefin (TPO), vinyl chloride (TPVC), urethane (TPU), ester (TPEE), and amide (TPAE). I can list them. [0029] As the general-purpose resin, a general-purpose resin used in general melt molding can be preferably used. For example, polyethylene (PE), polypropylene (PP), polychlorinated butyl (PVC), polystyrene (PS), polymethacrylic resin. Examples thereof include resin (PMMA), polyethylene butyl alcohol copolymer (EV OH), and acrylic butadiene styrene resin (ABS).
[0030] エンジニアリングプラスチックとしては、ポリアセタノレ (POM)、ポリアミド(PA)、ポリ カーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート( PBT)、ポリフエ-レンエーテル(PPE)、ポリフエ-レンォキシド(PPO)、ポリフエ-レ ンサルファイト (PPS)、ポリスルホン (PSE)、ポリイミド榭脂(PI)、ポリイミドアミド榭脂( PAI)、全芳香族ポリエステル (液晶高分子)、ポリオキシベンジレン (POB)、ポリメチ ルペンテン (TPX)、ポリエーテルサルホン(PESF)、ポリエーテルイミド(PEI)、ポリ ァリレート(PAR)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン( PEKK)などを挙げることができる。  [0030] Engineering plastics include polyacetanol (POM), polyamide (PA), polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene ether (PPE), polyphenol lenoxide (PPO). ), Polyphenylene sulfite (PPS), polysulfone (PSE), polyimide resin (PI), polyimide amide resin (PAI), wholly aromatic polyester (liquid crystal polymer), polyoxybenzylene (POB), polymethyl Examples include rupentene (TPX), polyethersulfone (PESF), polyetherimide (PEI), polyarylate (PAR), polyetheretherketone (PEEK), and polyetherketoneketone (PEKK).
[0031] 本発明に無機微粒子凝集体の調製に用いられる無機微粒子としては、酸化ケィ素 、酸化チタン、ゼォライト、酸ィ匕ジルコニウム、アルミナ、五酸ィ匕アンチモン、炭化ケィ 素、窒化アルミニウム、窒化ケィ素、チタン酸バリウム、ホウ酸アルミニウム、ボロンナイ トライト、酸化鉛、酸化亜鉛、酸化すず、酸化セリウム、酸化マグネシウム、セリウムジ ルコネイト、カルシウムシリケート、ジルコニウムシリケートなどの無機微粒子の分散液 [0031] The inorganic fine particles used in the preparation of the inorganic fine particle aggregate in the present invention include silicon oxide, titanium oxide, zeolite, acid zirconium, alumina, pentoxide antimony, silicon carbide, aluminum nitride, and nitride. Dispersions of inorganic fine particles such as silicon, barium titanate, aluminum borate, boron nitrite, lead oxide, zinc oxide, tin oxide, cerium oxide, magnesium oxide, cerium zincate, calcium silicate, zirconium silicate
(以下、ゾルと言うことがある)を挙げることができる。これら無機微粒子は、単独または 二種以上の組み合わせで使用することができる。 (Hereinafter sometimes referred to as sol). These inorganic fine particles can be used alone or in combination of two or more.
[0032] 本発明の好ま ヽ無機微粒子凝集体として、無機微粒子のゾルと無機塩とを混合 して、混合液を乾燥して無機微粒子と無機塩の固化物を作製し、固化物から溶剤を 用いて、無機塩を溶出除去してカゝら乾燥して得られる無機微粒子の凝集体を挙げる ことができる。 [0032] As the inorganic fine particle aggregate of the present invention, a sol of inorganic fine particles and an inorganic salt are mixed, and the mixed solution is dried to produce a solidified product of the inorganic fine particles and the inorganic salt, and the solvent is removed from the solidified product. And agglomerates of inorganic fine particles obtained by elution and removal of inorganic salts and drying by drying.
[0033] 本発明の好ま ヽ無機微粒子凝集体は、無機微粒子同士の凝集力によって形成 され、無機微粒子同士の表面融着が実質的に起こらない温度、好ましくは後述する ネックの形成が起こらない温度で乾燥した無機微粒子の凝集体である。  [0033] The inorganic fine particle aggregate of the present invention is formed by a cohesive force between the inorganic fine particles, and a temperature at which surface fusion between the inorganic fine particles does not substantially occur, preferably a temperature at which the neck formation described later does not occur. Agglomerates of inorganic fine particles dried at
[0034] 無機微粒子同士の表面融着が実質的に起こらない温度は、好ましくは後述するネ ックの形成が起こらない温度は用いる無機微粒子の種類によって異なる。その温度 を確認して無機微粒子を選択することができる。 [0034] The temperature at which surface fusion between the inorganic fine particles does not substantially occur is preferably different depending on the type of inorganic fine particles used. Its temperature The inorganic fine particles can be selected by confirming the above.
[0035] 無機微粒子同士の表面融着が実質的に起こらないことは、乾燥後の無機微粒子凝 集体の電子顕微鏡写真を観察して、無機微粒子同士の表面融着が実質的に認めら れないことによって確認することができる。  [0035] The fact that the surface fusion between the inorganic fine particles does not substantially occur is that the surface fusion between the inorganic fine particles is not substantially observed by observing an electron micrograph of the dried inorganic fine particle aggregate. Can be confirmed.
[0036] このようにして得られた無機微粒子の凝集体は、無機微粒子同士の凝集力のみに より形成された凝集体であるため、特開 2001— 152030号公報に記載されているよ うな無機微粒子と無機塩との混合体を高温で焼成して、無機微粒子同士が融着させ て作製した無機微粒子の凝集体よりも強度が低い無機微粒子の凝集体になる。  [0036] The thus obtained aggregate of inorganic fine particles is an aggregate formed only by the cohesive force between the inorganic fine particles, so that the inorganic fine particles described in JP-A-2001-152030 are used. The mixture of the fine particles and the inorganic salt is fired at a high temperature to form an aggregate of inorganic fine particles having a lower strength than the aggregate of inorganic fine particles prepared by fusing the inorganic fine particles.
[0037] 本発明で無機塩を溶剤で除去し、乾燥して得られる無機微粒子の凝集体は、通常 は粒径が大きい粗粒子または塊状の凝集体が得られるが、必要に応じて適当に粉 砕し、分級を行ってもよい。本発明の無機微粒子の凝集体の粒径は、押出機のホッ パーでの食い込みの観点から、平均粒径が 50 μ m〜400 μ mの範囲、好ましくは 7 0 πι〜300 /ζ πιの範囲が好ましい。凝集体を粉砕し、分級する場合には、平均粒 径が上記範囲になるように行うのが好ま 、。  [0037] The inorganic fine particle aggregate obtained by removing the inorganic salt with a solvent and drying in the present invention usually gives a coarse particle or agglomerate having a large particle diameter. It may be pulverized and classified. From the viewpoint of biting in the hopper of the extruder, the average particle size of the aggregate of inorganic fine particles of the present invention is in the range of 50 μm to 400 μm, preferably 70 0 πι to 300 / ζ πι. A range is preferred. In the case of pulverizing and classifying the aggregate, it is preferable that the average particle diameter is within the above range.
[0038] 無機微粒子と無機塩の固化物から無機塩を溶出するための溶剤は、無機微粒子と 無機塩との混合液に用いる溶剤と同じでも異なっていてもよいが、無機微粒子に対し て不活性であることが好ましい。このような溶剤としては、極性溶剤であって、無機微 粒子に対しては貧溶媒で、無機塩に対しては良溶媒であるものから適宜選択して使 用することができる。水はこのような溶剤の好適な例の一つである。無機塩は、固化 物から無機塩を溶出させる溶剤を用いて溶出 ·除去されるので、得られる凝集体に対 して一種の孔形成剤の役割をする。  [0038] The solvent for eluting the inorganic salt from the solidified product of the inorganic fine particles and the inorganic salt may be the same as or different from the solvent used for the mixed liquid of the inorganic fine particles and the inorganic salt. Preferably it is active. Such a solvent can be appropriately selected from polar solvents, which are poor solvents for inorganic fine particles and good solvents for inorganic salts. Water is one suitable example of such a solvent. Since the inorganic salt is eluted and removed using a solvent that elutes the inorganic salt from the solidified product, it acts as a kind of pore-forming agent for the resulting aggregate.
[0039] 本発明の無機微粒子凝集体を得る好ま 、形態としては、無機微粒子としてシリカ ゾル、酸化チタンゾル、アルミナゾル、ゼォライトゾル、酸化亜鉛と五酸化アンチモン の複合酸化物から選ばれる少なくとも 1種を用い、溶剤として水を用い、孔形成剤とし ての水溶性の無機塩を用いるものである。  [0039] The inorganic fine particle aggregate of the present invention is preferably obtained by using at least one kind selected from silica sol, titanium oxide sol, alumina sol, zeolite sol, a composite oxide of zinc oxide and antimony pentoxide as the inorganic fine particles. Water is used as a solvent, and a water-soluble inorganic salt is used as a pore forming agent.
[0040] 水溶性の無機塩としては、ハロゲン化水素酸、燐酸、硫酸、硝酸、モリブデン酸の アルカリ金属塩、アルカリ土類金属塩、アンモニゥム塩など、好ましくは硝酸カリウム、 ヨウ化カリウム、モリブデン酸アンモ-ゥム、リン酸-水素ナトリウム、臭化カリウム、臭 化アンモ-ゥム、塩ィ匕カリウム、塩ィ匕カルシウム、塩化銅、硝酸カルシウムなどが挙げ られる。これら無機塩は、単独でもまたは二種以上の組み合わせでも使用することが できる。 [0040] Examples of the water-soluble inorganic salt include hydrohalic acid, phosphoric acid, sulfuric acid, nitric acid, molybdate alkali metal salt, alkaline earth metal salt, ammonium salt, etc., preferably potassium nitrate, potassium iodide, ammonium molybdate. -Um, sodium phosphate-sodium hydrogen, potassium bromide, odor Ammonium chloride, potassium chloride, calcium chloride, copper chloride, calcium nitrate and the like. These inorganic salts can be used alone or in combination of two or more.
上記の形態の中でも、無機微粒子としてシリカゾルを使用した形態がより好ましい。  Among the above forms, a form using silica sol as the inorganic fine particles is more preferable.
[0041] 溶剤として純度の高い溶剤を使用すると得られる無機微粒子凝集体として、純度の 高い無機微粒子凝集体を得ることができる。例えば、純水を用いて繰り返して残留無 機塩の溶出を行うと、極めて純度が高い無機微粒子凝集体を得ることができる。高純 度のシリカゾルを原料としてシリカ粒子力もなる凝集体を得る際に、この方法を適用 するとシリカ粒子力もなる高純度の凝集体を得ることができる。このようにして得られる 高純度凝集体と熱可塑性榭脂の溶融混合により得られる熱可塑性榭脂組成物は、 半導体製造装置などに用いられる純粋性が要求される部品しても好適に用いられる [0041] An inorganic fine particle aggregate having a high purity can be obtained as an inorganic fine particle aggregate obtained by using a solvent having a high purity as the solvent. For example, when the residual inorganic salt is eluted repeatedly using pure water, inorganic fine particle aggregates with extremely high purity can be obtained. When obtaining an agglomerate having a silica particle force using a high purity silica sol as a raw material, a high-purity agglomerate having a silica particle force can be obtained by applying this method. The thermoplastic resin composition obtained by melt-mixing the high-purity agglomerate and the thermoplastic resin obtained in this way can be suitably used even for parts that require purity used in semiconductor manufacturing equipment and the like.
[0042] また、前記無機微粒子凝集体は、特許第 3369193号に記載される方法で、シリカ ゾル又はアルミナゾル、アルカリ金属ハロゲン化物及び被置換剤を原料として製造さ れた、焼成体を、該被置換剤中の金属よりも低いイオン化傾向を有する金属力もなる 添加物又はその金属化合物の水溶液に浸漬してアルカリ金属ハロゲン化物を除去 するとともに、前記添加物の金属を被置換剤と置換して担持させたシリカ凝集体であ つてもよい。なお、上記特許で述べられている焼成を行うと本発明で期待する良好な 分散は得られない。複合無機微粒子の添加剤としては、例えば、触媒などの作用の ある水酸ィ匕マグネシウム、水酸ィ匕アルミニウム、三酸ィ匕アンチモン、などの無機物、パ ラジウム、銅、マグネシウム、鉄、アルミニウム、すず、ニッケル、コノ レト、チタン、白 金、金、銀、などの金属が用いられる。金属、金属塩、無機化合物から選択される添 加剤を担持した無機微粒子凝集体を榭脂中にナノレベルまで分散させることにより、 添加量の削減など効果が得られる。 [0042] Further, the inorganic fine particle aggregate is obtained by a method described in Japanese Patent No. 3369193, wherein a fired body produced using silica sol or alumina sol, an alkali metal halide and a substitute agent as raw materials is used. It also has a metal power that has a lower ionization tendency than the metal in the substitution agent. It is immersed in an aqueous solution of the additive or its metal compound to remove the alkali metal halide, and replaces the metal of the additive with the substitution agent and carries it. Silica aggregates may be used. Note that when the firing described in the above patent is performed, the good dispersion expected in the present invention cannot be obtained. Examples of the additive for the composite inorganic fine particles include inorganic substances such as hydroxide-magnesium, hydroxide-aluminum, and trimonate-antimony, which have a catalytic action, palladium, copper, magnesium, iron, aluminum, Metals such as tin, nickel, conoret, titanium, white gold, gold and silver are used. By dispersing inorganic fine particle aggregates supporting an additive selected from metals, metal salts, and inorganic compounds in the resin to the nano level, effects such as reduction of the amount added can be obtained.
[0043] 本発明で得られる、無機微粒子同士の凝集力によって形成された強度が低 、無機 微粒子凝集体の強度は、無機微粒子ゾルの種類および粒径、無機微粒子ゾルの p H、無機塩の種類および含量、乾燥温度などによって変化するので、これらの条件を 選択することによって無機微粒子凝集体の強度を制御することができる。 [0043] The strength formed by the agglomeration force between the inorganic fine particles obtained in the present invention is low, and the strength of the inorganic fine particle aggregate is the kind and particle size of the inorganic fine particle sol, the pH of the inorganic fine particle sol, the inorganic salt These conditions vary depending on the type, content, drying temperature, etc. By selecting, the strength of the inorganic fine particle aggregate can be controlled.
[0044] また、本発明の無機微粒子凝集体を熱可塑性榭脂と溶融混合して、榭脂中に無機 微粒子を分散させる場合、溶融混合する熱可塑性榭脂の種類や使用する溶融混合 装置の構造 (スクリューの構造および組み合わせ)、溶融混合条件 (温度およびスクリ ユー回転数)などによって、熱可塑性榭脂中に分散された無機微粒子凝集体の平均 粒径および分散状態が変わる。したがって、熱可塑性榭脂と無機微粒子凝集体を熱 溶融性脂中に物理的にもとの 1次粒子のナノレベルまで均一に破砕 ·分散させるた めに、使用する無機微粒子凝集体および熱可塑性榭脂の種類に応じて、溶融混合 の条件を選択することが必要である。  [0044] In addition, when the inorganic fine particle aggregate of the present invention is melt-mixed with the thermoplastic resin to disperse the inorganic fine particles in the resin, the type of the thermoplastic resin to be melt-mixed and the melt-mixing device used Depending on the structure (screw structure and combination), melt mixing conditions (temperature and screw rotation speed), etc., the average particle size and dispersion state of the inorganic fine particle aggregates dispersed in the thermoplastic resin change. Therefore, the inorganic fine particle agglomerates and thermoplastics used in order to uniformly crush and disperse the thermoplastic agglomerates and inorganic fine particle agglomerates to the nano level of the original primary particles physically in the hot melt fat. It is necessary to select the conditions for melt mixing according to the type of the resin.
[0045] 本発明にお ヽて、所望の熱可塑性榭脂複合体組成物は、無機微粒子凝集体の調 製および溶融混合条件両方を制御することによって得ることができる。  In the present invention, a desired thermoplastic resin composite composition can be obtained by controlling both the preparation of inorganic fine particle aggregates and the melt mixing conditions.
[0046] シリカ多孔体の場合、強度は多孔体を形成する多数のシリカ 1次粒子間の接触点 に働く粒子間付着力の和であるため、主にシリカ多孔体の空孔率とシリカ 1次粒径に よって決まり、(Chemie Ingenieur Technik, vol 42, p538, 1970)、強度力低 い無機微粒子凝集体としてシリカ多孔体を作製するためには、無機塩の含量を増や して空孔率を大きくするか、シリカ微粒子の平均 1次粒径が大きいものを使用すること が好ましい。従って、平均 1次粒径が 50nm以上、好ましくは 90nm以上、更に好まし くは l lOnm以上、 1 m以下であることがよい。空孔率が同じ場合には凝集体の強 度は 1次粒子径に反比例する関係があり、平均 1次粒径力 、さくなると凝集体の強度 が強くなり、溶融混合過程で破砕され難くなる傾向がある。また、同じ強度の無機微 粒子の凝集体を用いる場合は、より強いせん断応力で溶融混合した方が、無機微粒 子の凝集体が熱可塑性榭脂中に無機微粒子が均一に破砕 ·分散される。  [0046] In the case of a porous silica material, the strength is the sum of the interparticle adhesion forces acting at the contact points between a large number of primary silica particles forming the porous material. It depends on the next particle size (Chemie Ingenieur Technik, vol 42, p538, 1970). In order to produce a porous silica as an inorganic fine particle aggregate with low strength, it is necessary to increase the content of inorganic salt to increase porosity. It is preferable to increase the ratio or use silica fine particles having a large average primary particle size. Therefore, the average primary particle size is 50 nm or more, preferably 90 nm or more, more preferably llOnm or more and 1 m or less. When the porosity is the same, the agglomerate strength is inversely proportional to the primary particle size, and the average primary particle size force increases, and the agglomerate strength increases and the crushing process becomes difficult during the melt mixing process. Tend. In addition, when using inorganic fine particle aggregates of the same strength, the inorganic fine particle aggregates are uniformly crushed and dispersed in the thermoplastic resin when melt-mixed with a stronger shear stress. .
[0047] 更に、本発明に使用する無機塩は、無機微粒子の凝集体に対して一種の孔形成 剤の役割をするため、無機塩の含量によっても無機微粒子凝集体の強度が大きく変 化する。無機微粒子に対する無機塩の含量が増えるほど、無機微粒子凝集体の強 度が弱くなる。しかし、無機塩の含量が多すぎると、無機微粒子凝集体が計量工程な どで簡単に破砕され、 1次粒子に戻ってしまう。従って、無機微粒子凝集体中の無機 塩の含量は 1〜90体積%、好ましくは 50〜85体積%、更に好ましくは 60〜80体積 %である。 [0047] Furthermore, since the inorganic salt used in the present invention functions as a kind of pore-forming agent for the aggregate of inorganic fine particles, the strength of the inorganic fine particle aggregate is greatly changed depending on the content of the inorganic salt. . As the content of the inorganic salt with respect to the inorganic fine particles increases, the strength of the inorganic fine particle aggregate decreases. However, if the content of inorganic salt is too high, the inorganic fine particle aggregates are easily crushed by a measuring process and returned to primary particles. Therefore, the content of inorganic salt in the inorganic fine particle aggregate is 1 to 90% by volume, preferably 50 to 85% by volume, more preferably 60 to 80% by volume. %.
[0048] 水分散の無機微粒子ゾルと無機塩とを混合してから、混合液を乾燥して無機微粒 子と無機塩の固化物を作製する際の乾燥温度および、無機微粒子と無機塩の固化 物から無機塩を溶出させる溶剤を用いて、無機塩を除去してカゝら乾燥を行う温度は、 前記したとおり無機微粒子同士の表面融着が実質的に起こらない温度、好ましくは ネックの形成が起こらな 、温度が望ま 、。無機微粒子の表面での融点は内部 (バ ルク状態)の融点より低いため、乾燥温度が高くなると無機微粒子の表面の一部が融 解し、隣接無機微粒子同士の融着によって無機微粒子の凝集体の強度が高くなる。 また、無機微粒子は一般に生成された時に粒子表面に結晶構造の欠陥を持ってお り、このような欠陥はいづれも熱的に不安定であるため、加熱すると急速に回復したり 移動したりし、隣接無機微粒子の接触部に結合部 (ネック)が形成する。このネックの 形成によっても無機微粒子の凝集体の強度は強くなる。ネックの形成の主要因は、 隣接無機微粒子同士の表面融着であると考えられる。ネックの形成は、絶対温度で 示した乾燥の温度 (T )と無機微粒子の融点 (T )の比 (T /T )が 0. 23のころから  [0048] After mixing the water-dispersed inorganic fine particle sol and the inorganic salt, the mixed liquid is dried to prepare a solidified product of the inorganic fine particles and the inorganic salt, and the solidification of the inorganic fine particles and the inorganic salt. The temperature at which the inorganic salt is removed and dried by using a solvent that elutes the inorganic salt from the product is a temperature at which surface fusion between the inorganic fine particles does not substantially occur as described above, preferably the formation of a neck Doesn't happen, temperature is desired. Since the melting point on the surface of the inorganic fine particles is lower than the melting point inside (bulk state), when the drying temperature is increased, a part of the surface of the inorganic fine particles is melted, and the aggregate of the inorganic fine particles is formed by the fusion of adjacent inorganic fine particles. The strength of is increased. In addition, inorganic fine particles generally have crystal structure defects on the surface of the particles when they are formed. All of these defects are thermally unstable, so they rapidly recover or move when heated. A bonding portion (neck) is formed at the contact portion between adjacent inorganic fine particles. The formation of this neck also increases the strength of the aggregate of inorganic fine particles. The main cause of neck formation is thought to be surface fusion between adjacent inorganic fine particles. Neck formation starts when the ratio (T / T) of the drying temperature (T) expressed in absolute temperature to the melting point (T) of the inorganic fine particles is 0.23.
0 m 0 m  0 m 0 m
始まるため、絶対温度で示した乾燥の温度と無機微粒子の融点の比は 0. 23以下が 好ましい。よって、例えば、無機微粒子がシリカである場合、乾燥は 150°C以下、好ま しくは 120°C以下の温度で行うのが望まし!/、。  Therefore, the ratio of the drying temperature shown in absolute temperature to the melting point of the inorganic fine particles is preferably 0.23 or less. Thus, for example, when the inorganic fine particles are silica, it is desirable that the drying be performed at a temperature of 150 ° C or lower, preferably 120 ° C or lower! /.
[0049] 本発明の無機微粒子凝集体の強度は、溶融混合する榭脂の種類や使用する溶融 混合装置の構造 (スクリューの構造および組み合わせ)、溶融混合条件 (温度および スクリュー回転数)などにもよる力 粒径が約 150 mの大きさのときに測定した圧縮 荷重(Compressive Load、)力 0mN以下、好ましくは 35mN以下であるものが好 ましい。 [0049] The strength of the inorganic fine particle aggregate of the present invention depends on the type of the resin to be melt-mixed, the structure of the melt-mixing apparatus to be used (screw structure and combination), the melt-mixing conditions (temperature and screw rotation speed), etc. Force due to Compressive Load, measured when the particle size is about 150 m, 0 mN or less, preferably 35 mN or less.
[0050] また、本発明の無機微粒子凝集体の圧壊強度 Sは、 1. 50MPa以下、好ましくは 1 . 40MPa以下であるものが好ましい。圧壊強度は、後述のとおり、粒径の違いの効 果が補正された強度である。  [0050] The crushing strength S of the inorganic fine particle aggregate of the present invention is 1.50 MPa or less, preferably 1.40 MPa or less. As will be described later, the crushing strength is a strength corrected for the effect of the difference in particle size.
[0051] 前記無機微粒子凝集体の熱可塑性榭脂に対する混合比率は、熱可塑性榭脂複 合体組成物の用途にもよる力 0. 3〜70重量%、更に好ましくは 0. 5〜50重量%、 もっとも好ましくは 1〜30重量%である。無機微粒子が榭脂中にナノレベルまで分散 されたナノ榭脂複合体混合物或いはいわゆる高分子ナノコンポジットは、フィラーがミ クロンレベルで分散された従来の榭脂複合体混合物に比べて、ナノ粒子と榭脂マトリ ックス間の界面積が大幅に増えるため、無機微粒子凝集体を従来の榭脂複合体混 合物より少量入れても物性の改善が期待できる利点がある。 [0051] The mixing ratio of the inorganic fine particle aggregate to the thermoplastic resin is a force depending on the use of the thermoplastic resin composite composition 0.3 to 70% by weight, more preferably 0.5 to 50% by weight. Most preferably, it is 1 to 30% by weight. Inorganic fine particles are dispersed to the nano level in rosin The interfacial area between the nanoparticle and the rosin matrix is significantly higher in the nano-fax composite mixture or the so-called polymer nano-composite than in the conventional wafer composite mixture in which the filler is dispersed at the micron level. Therefore, there is an advantage that improvement of physical properties can be expected even if a smaller amount of the inorganic fine particle aggregate is added than the conventional resin composite mixture.
[0052] 本発明により得られる熱可塑性榭脂複合体組成物は、前記無機微粒子凝集体と熱 可塑性榭脂を溶融混合して得られる、榭脂中に無機微粒子が 1 μ m (lOOOnm)以 下、好ましくは 600nm以下、より好ましくは 400nm以下で分散している熱熱可塑性 榭脂複合体組成物である。  [0052] The thermoplastic resin composite composition obtained by the present invention is obtained by melting and mixing the inorganic fine particle aggregate and the thermoplastic resin, and the inorganic fine particles in the resin are 1 μm (lOOOnm) or less. The thermoplastic thermoplastic resin composite composition is preferably dispersed below 600 nm or less, more preferably 400 nm or less.
[0053] 本発明の無機微粒子凝集体と熱可塑性榭脂の溶融混合により、ほぼ全微粒子が ナノレベルで分散された熱可塑性榭脂複合体組成物を得ることが可能となる。無機 微粒子が熱可塑性榭脂中に分散した様子は、得られる熱熱可塑性榭脂複合体組成 物の電子顕微鏡写真で観察することができる。電子顕微鏡を用いて、平均粒径約 12 nmの無機微粒子の 1次粒子力 約 50, OOOnm (50 μ m)の無機微粒子凝集体まで 大きが異なる粒子を同時に観察することは出来ないため、熱可塑性榭脂複合体組成 物試料を液体窒素に入れ冷却した後、折って得られる破断面を電子顕微鏡で各試 料につき 3ケ所を任意に選んで、破砕された無機微粒子凝集体又は 1次粒子の大き さを観察し、粒径とその数の分布図を作成し (横軸の粒径が対数スケール)、無機微 粒子の割合が一番多い粒径を平均粒子とした。従って、無機微粒子凝集体の殆どが 1次粒子まで破砕'分散されている場合には、電子顕微鏡写真から数えられた殆どの 粒子は 1次粒子なので、平均粒径は無機微粒子凝集体を形成した 1次粒子の粒径 になる。また、無機微粒子凝集体の強度が高い場合は、 1次粒子まで破砕 '分散され てないため、平均粒径は 1次粒子の粒径の数十倍力も数百倍以上になる。上記の条 件で顕微鏡写真観察して、確認することができる無機微粒子数の 80%以上、好まし くは 90%以上、より好ましくは 95%以上力 600nm以下、より好ましくは 400nm以 下である熱可塑性榭脂複合体組成物は、本発明の好ま U、態様である。  [0053] By melt-mixing the inorganic fine particle aggregate and thermoplastic resin of the present invention, it is possible to obtain a thermoplastic resin composite composition in which almost all fine particles are dispersed at the nano level. The state in which the inorganic fine particles are dispersed in the thermoplastic resin can be observed with an electron micrograph of the resulting thermoplastic resin composite composition. Using an electron microscope, it is not possible to observe particles of different sizes up to an aggregate of inorganic fine particles with an average particle size of about 12 nm and inorganic fine particles with an average particle size of about 50, OOOnm (50 μm). Plastic resin composite composition After cooling the sample in liquid nitrogen, the fractured surface obtained by folding is arbitrarily selected from three locations for each sample using an electron microscope, and crushed inorganic fine particle aggregates or primary particles The distribution of the particle size and the number of particles was prepared (the particle size on the horizontal axis is a logarithmic scale), and the particle size with the largest proportion of inorganic fine particles was taken as the average particle. Therefore, when most of the inorganic fine particle aggregates are crushed and dispersed to primary particles, most of the particles counted from the electron micrograph are primary particles, so the average particle size formed inorganic fine particle aggregates. This is the primary particle size. In addition, when the strength of the inorganic fine particle aggregate is high, the primary particle is not crushed and dispersed, so the average particle size is several hundred times as large as the particle size of the primary particle. Under the above conditions, the number of inorganic fine particles that can be confirmed by microscopic observation is 80% or more, preferably 90% or more, more preferably 95% or more, force 600 nm or less, more preferably 400 nm or less. A thermoplastic rosin composite composition is a preferred embodiment of the present invention.
[0054] 本発明においては、従来の多孔質ガラスまたはシリカなどの無機材料を焼成した無 機多孔質体より更に強度が低い無機微粒子を予め調製し、その凝集体と熱可塑性 榭脂を溶融混合しながらせん断応力により強度が低 ヽ無機微粒子の凝集体を物理 的に破砕 ·分散させるため、熱可塑性榭脂の種類や親水性 ·疎水性などに関係なく 無機微粒子がナノスケールまでに均一に破砕'分散された熱可塑性榭脂、いわゆる 高分子ナノコンポジットを製造することができる。従って、上記の強度が低い無機微 粒子凝集体を熱可塑性榭脂にもとの 1次粒子のナノレベルまで均一に破砕 ·分散さ せるためには、使用する熱可塑性榭脂の種類や溶融粘度にもよるが、せん断応力の 面から 2軸押し出し機を用いるのが好ま 、。 2軸押し出し機のスクリュー構成や回転 速度を変えることで更に無機微粒子凝集体を熱可塑性榭脂にナノレベルまで均一に 破砕'分散させることができる。また、 2軸押し出し機による溶融混合温度は、強いせ ん断応力が力かるスクリュー構成で高速回転させると内部発熱によって榭脂温度が 上昇し、溶融粘度が低下してしまい、榭脂にかかるせん断応力が低くなるため、内部 発熱による榭脂温度上昇を考慮して設定する方が良いが、融点より 50°C以上高くな らない温度が好ましい。ゴムや非結晶性高分子の場合は、内部発熱を抑えながらで きるだけ混合温度を下げて、榭脂に大きなせん断応力が力かるようにするのが好まし い。 [0054] In the present invention, inorganic fine particles having a lower strength than an inorganic porous material obtained by firing a conventional inorganic material such as porous glass or silica are prepared in advance, and the aggregate and thermoplastic resin are melt-mixed. The strength is low due to shear stress. Manufactures so-called polymer nanocomposites, in which inorganic fine particles are uniformly crushed and dispersed to the nanoscale regardless of the type of thermoplastic resin, hydrophilicity, hydrophobicity, etc. can do. Therefore, in order to uniformly crush and disperse the above-mentioned inorganic fine particle aggregates having low strength to the nano level of the primary particles based on the thermoplastic resin, the type of thermoplastic resin used and the melt viscosity are used. However, it is preferable to use a biaxial extruder in terms of shear stress. By changing the screw configuration and rotation speed of the twin screw extruder, the inorganic fine particle aggregates can be further crushed and dispersed uniformly in the thermoplastic resin to the nano level. In addition, when the melt mixing temperature by the twin screw extruder is rotated at a high speed with a screw configuration in which strong shear stress is applied, the temperature of the resin increases due to internal heat generation, the melt viscosity decreases, and the shear applied to the resin is sheared. Since the stress is low, it is better to set it in consideration of the increase in the resin temperature due to internal heat generation. However, a temperature that does not exceed 50 ° C above the melting point is preferable. In the case of rubber or non-crystalline polymer, it is preferable to lower the mixing temperature as much as possible while suppressing internal heat generation so that large shear stress is applied to the resin.
[0055] 以上の詳細な説明に従って、無機微粒子と無機塩との混合液力 乾燥によって固 化物を得て、該固化物力 溶剤を用いて無機塩を除去し乾燥し、該乾燥が無機微粒 子同士の表面融着が起こらない温度で行うことにより得られる、無機微粒子同士の凝 集力によって形成された無機微粒子凝集体を、熱可塑性榭脂と溶融混合する方法 は、本発明の熱可塑性榭脂複合体組成物を製造する好ま 、方法である。  [0055] In accordance with the above detailed description, a solidified product is obtained by liquid mixture drying of inorganic fine particles and inorganic salt, and the inorganic salt is removed by using the solidified product solvent, followed by drying. The method of melt-mixing the inorganic fine particle aggregates formed by the cohesive force between the inorganic fine particles, which is obtained by carrying out at a temperature at which no surface fusion occurs, with the thermoplastic resin is the thermoplastic resin of the present invention. A preferred method for producing the composite composition.
[0056] 最終的に製造する成形品の種類は、力学物性や寸法安定性などを必要とする全 ての成形品を対象とするので、粒子がナノレベルに均一に分散されことで期待できる あらゆる分野に応用することができ、特に本発明で限定するようなことはない。例えば 、圧縮成形、押出し成形、ブロー成形、射出成形で得ることができる、チューブ類、シ ート類、棒類、繊維類、パッキング類、ライニング類、電線被覆などがある。更に、熱 可塑性榭脂中に粒子がナノレベルに均一に分散されるとずり速度が遅い時にゼロず り粘度が粒子がナノ分散されてない場合に比べて非常に高くなるため、電線などの 榭脂製品に火災が発生した時の火災点滴が落ち難い (ドリップ防止)にも使用できる 。また、無機微粒子としてシリカを用いた場合は、ナノ分散によって増えたシリカ粒子 表面に結合されている水酸基と金属または基材との相互作用によって接着力の向上 が期待できる用途にも使用できる。 [0056] Since the types of molded products to be finally produced are all molded products that require mechanical properties, dimensional stability, etc., any kind of particles that can be expected by uniformly dispersing at the nano-level are available. It can be applied to the field and is not particularly limited by the present invention. For example, there are tubes, sheets, rods, fibers, packings, linings, wire coatings and the like that can be obtained by compression molding, extrusion molding, blow molding, injection molding. Furthermore, when the particles are uniformly dispersed in the thermoplastic resin at the nano level, the zero shear viscosity is much higher when the shear rate is low than when the particles are not nano-dispersed. It can also be used to prevent fire drip from dropping when a fire occurs in a fat product (prevents drip). In addition, when silica is used as the inorganic fine particles, the silica particles increased by nano-dispersion. It can also be used in applications where an improvement in adhesion can be expected due to the interaction between the hydroxyl group bonded to the surface and the metal or substrate.
実施例  Example
[0057] 以下に本発明を、実施例および比較例を挙げてさらに具体的に説明するが、これ らの説明が本発明を限定するものではない。  [0057] Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but these descriptions do not limit the present invention.
[0058] 本発明において各物性の測定は、下記の方法によって行った。  In the present invention, each physical property was measured by the following method.
[0059] (1)無機微粒子凝集体の圧縮荷重および圧壊強度  [0059] (1) Compressive load and crushing strength of inorganic fine particle aggregates
微小圧縮試験機 (MCT— W500,株式会社島津製作所製)を用いて、高剛性ステ ージに試料を約 lOOmg散布し、試料一粒ずつ粒径 Dを測定してカゝら負荷を与え、測 定値である実験力 P (Compressive Load)と圧縮変位を測定し、下記の式で資料 の圧壊強度 S (または破壊強度)を求めた(日本鉱業会誌、 vol. 81, p24, 1965)。 負荷荷重 103mNZsecの圧縮速度で測定した実験力 Pを圧縮荷重とした。  Using a micro-compression tester (MCT-W500, manufactured by Shimadzu Corporation), spray about lOOmg of sample on a high-rigidity stage, measure the particle size D of each sample, and apply a load. The measured experimental force P (Compressive Load) and compression displacement were measured, and the crushing strength S (or breaking strength) of the data was calculated using the following formula (Japan Mining Association, vol. 81, p24, 1965). The experimental force P measured at a compression speed of 103 mNZsec was taken as the compression load.
圧壊強度は、各試料につき 5回測定しその平均値を圧壊強度 (MPa)にした。本発 明の無機微粒子凝集体は、粒径が約 150 mの大きさのものを選んで圧壊強度を 測定した。但し、比較例として用いた市販のシリカの平均粒径は本発明の試料より小 さいので、実験力 Pの値は小さくなるが、粒径の違いの効果が補正された圧壊強度 S  The crushing strength was measured five times for each sample, and the average value was used as the crushing strength (MPa). The inorganic fine particle aggregate of the present invention was selected to have a particle size of about 150 m and the crushing strength was measured. However, since the average particle size of commercially available silica used as a comparative example is smaller than that of the sample of the present invention, the value of the experimental force P is small, but the crushing strength S corrected for the effect of the particle size difference S
t はもつと大きくなる。  t increases with time.
S = 2. 8Ρ/( π ϋ2) S = 2.8 Ρ / (π ϋ 2 )
S (MPa) :試料の圧壊強度 (または破壊強度)  S (MPa): Crush strength (or fracture strength) of the sample
P (N):微小圧縮試験機で測定した実験力(Compressive Load)  P (N): Experimental force measured with a micro compression tester (Compressive Load)
D (mm):試料の粒径  D (mm): Particle size of the sample
[0060] (2)平均粒径 [0060] (2) Average particle diameter
熱可塑性榭脂複合体組成物試料を液体窒素に入れ冷却した後、折って得られる 破断面を電子顕微鏡で各試料につき 3ケ所を任意に選んで、下記の方法で破砕され たシリカ粒子の大きさを観察し、シリカ粒径とその数の分布図を作成し (横軸の粒径 が対数スケール)、シリカ粒子の割合が一番多い粒径を平均粒子とした。  After the thermoplastic resin composite composition sample is cooled in liquid nitrogen, the fracture surface obtained by folding is arbitrarily selected at three locations for each sample with an electron microscope, and the size of silica particles crushed by the following method The distribution of the silica particle size and its number was prepared (the particle size on the horizontal axis is a logarithmic scale), and the particle size with the largest proportion of silica particles was taken as the average particle.
a) 20 μ m以上のシリカ凝集体: 200倍 (視野: 450 m X 450 μ m)で観察した結果 から粒径 20 m以上のシリカ粒子の数とその粒径を測定した。粒径は 1の位を切り捨 てて粒径にした。(例えば、 28 μ mは 20 μ mにする) a) The number of silica particles having a particle size of 20 m or more and the particle size thereof were measured from the result of observation at 200 times the silica aggregate of 20 μm or more (field of view: 450 m × 450 μm). Particle size is rounded down And made the particle size. (For example, 28 μm should be 20 μm)
b) 5 m〜20 mのシリカ凝集体: 500倍(視野: 180 m X 180 m)で観察した 結果から粒径 5 μ m〜20 μ mのシリカ粒子の数とその粒径を測定した。また、数えた 各粒径に対応するシリカ粒子の数を 6. 25倍して 200倍で観察する面積の結果に換 昇した。 b) Silica aggregates of 5 m to 20 m: The number of silica particles having a particle diameter of 5 μm to 20 μm and the particle diameter thereof were measured from the observation result at 500 times (field of view: 180 m × 180 m). In addition, the number of silica particles corresponding to each particle size counted was multiplied by 6.25 and converted to the result of the area observed at 200 times.
c) 1 m〜5 mのシリカ凝集体: 2000倍 (視野: 45 m X 45 m)で観察した結果 から粒径 1 μ m〜5 μ mのシリカ粒子の数とその粒径を測定した。また、数えた各粒 径に対応するシリカ粒子の数を 100倍して 200倍で観察する面積の結果に換算した d) 500nm〜l μ mのシリカ凝集体又はシリカ 1次粒子: 5000倍(視野: 18 m X 18 μ m)で観察した結果から粒径 500nm〜l μ mのシリカ凝集体又はシリカ 1次粒子の 数とその粒径を測定した。また、数えた各粒径に対応するシリカ粒子の数を 625倍し て 200倍で観察する面積の結果に換算した。粒径は nm単位で測定し、 100の位で 切り捨てて粒径にした(例えば、 650nmは 600nmにする)。但し、シリカ 1次粒子の 粒径は測定値をそのまま粒径にした。 c) The number of silica particles having a particle diameter of 1 μm to 5 μm and the particle diameter thereof were measured from the results of observation at 1 to 5 m silica aggregate: 2000 times (field: 45 m × 45 m). In addition, the number of silica particles corresponding to each particle size counted was multiplied by 100 and converted to the result of the area observed at 200 times. D) Silica aggregate or silica primary particle of 500 nm to l μm: 5000 times ( The number of silica aggregates or silica primary particles having a particle diameter of 500 nm to l μm and the particle diameter thereof were measured from the results of observation at 18 m × 18 μm. In addition, the number of silica particles corresponding to each counted particle size was multiplied by 625 and converted to a result of the area observed at 200 times. The particle size was measured in nm and rounded down to the nearest 100 (eg, 650 nm is 600 nm). However, the particle size of the silica primary particles was the same as the measured value.
e) 200nm〜500nmのシリカ凝集体又はシリカ 1次粒子: 10000倍(視野: 9 m X 9 μ m)で観察した結果から粒径 200ηπ!〜 500nmのシリカ凝集体又はシリカ 1次粒子 の数とその粒径を d)と同じ方法で測定し、 200倍で観察する面積の結果に換算した f) 200nm以下のシリカ凝集体又はシリカ 1次粒子: 20000倍 (視野: 4. 5 ^ πι Χ 4. 5 μ m)で観察した結果から粒径 200nm以下のシリカ凝集体又はシリカ 1次粒子の数 とその粒径を d)と同じ方法で測定し、 200倍で観察する面積の結果に換算した。 (3)シリカ分散状態 e) Silica aggregate or silica primary particle of 200 nm to 500 nm: From the result of observation at 10,000 times (field of view: 9 m X 9 μm), particle size 200ηπ The number of silica aggregates or silica primary particles of ~ 500 nm and their particle sizes were measured by the same method as in d), and converted to the result of the area to be observed at 200 times f) Silica aggregates or silica primary of 200 nm or less Particles: From the result of observation at 20000 times (field of view: 4.5 ^ πι Χ 4.5 μm), the number of silica aggregates or silica primary particles with a particle size of 200 nm or less and the particle size is the same as d) Measured and converted to the result of the area observed at 200 times. (3) Silica dispersion state
熱可塑性榭脂複合体組成物試料を液体窒素に入れ作製した破断面を電子顕微 鏡で各試料につき 3ケ所観察し、無機微粒子凝集体の破砕'分散状態を下記基準に 従って評価した。  The fracture surface of the thermoplastic resin composite composition sample prepared in liquid nitrogen was observed at three locations for each sample with an electron microscope, and the crushed and dispersed state of the inorganic fine particle aggregates was evaluated according to the following criteria.
◎:溶融混合によって粒子径約 150 μ mの無機微粒子凝集体の殆どがシリカ 1次粒 子まで破砕 ·分散されて!ヽる。 〇: 1 m〜20 m程度の大きさの完全に破砕されてな 、無機微粒子凝集体が僅か に残っている。 A: Most of the inorganic fine particle aggregates having a particle size of about 150 μm are crushed and dispersed to the primary silica particles by melt mixing! ◯: A few inorganic fine particle aggregates are left without being completely crushed with a size of about 1 m to 20 m.
X: 20 m以上の破砕されてな 、無機微粒子凝集体が数多く残って 、る。  X: A large number of inorganic fine particle aggregates remain without being crushed over 20 m.
[0062] 本発明の実施例、および比較例で用いた原料は下記の通りである。 [0062] The raw materials used in Examples and Comparative Examples of the present invention are as follows.
( 1)シリカゾル  (1) Silica sol
日産化学工業製  Made by Nissan Chemical Industries
スノーテックス MP2040 (シリカ平均 1次粒径: 190nm)、  Snowtex MP2040 (silica average primary particle size: 190nm),
スノーテックス MP1040 (シリカ平均l次粒径:110nm)、  Snowtex MP1040 (silica average l order particle size: 110nm),
スノーテックス ST—YL (シリカ平均 1次粒径: 57nm)、  Snowtex ST—YL (silica average primary particle size: 57nm),
スノーテックス 30 (シリカ平均 1次粒径: 12nm)  Snowtex 30 (silica average primary particle size: 12nm)
[0063] (2)多孔体シリカ [0063] (2) Porous silica
富士シリシァ化学製、 C 1504 (平均粒径 : 4 μ ΐη)  C 1504 (average particle size: 4 μΐη), manufactured by Fuji Silysia Chemical
(3)溶融シリカ  (3) Fused silica
電気化学工業製、 FB— 74 (平均粒径 : 32 m)  FB—74 (average particle size: 32 m), manufactured by Denki Kagaku Kogyo
(4) (エチレン'ビニルアルコール)共重合体(EVOH)  (4) (Ethylene 'vinyl alcohol) copolymer (EVOH)
クラレ製、ェバール H101  Made by Kuraray, Eval H101
(5)ポリスチレン(PS)  (5) Polystyrene (PS)
旭化成製、スタイロン 685  Asahi Kasei, Stylon 685
[0064] (シリカ微粒子凝集体の作製) [0064] (Preparation of silica fine particle aggregate)
ビーカーに水 1L、表 1に示した平均 1次粒径のシリカ粒子が水中に分散されたシリ カゾル 245. 7g (シリカ粒子 40重量0 /0)、孔形成剤となる無機塩の臭化カリウム (KBr) を 292. 3gを順に加え KBrが溶解するまで攪拌し、シリカゾルの微粒子の凝集を促 すために 60%硝酸を pH4. 0程度となるように加えた。次に、攪拌した混合液をフッ 素榭脂製容器に移し、 80°Cの乾燥機で重量変化がなくなるまで乾燥を行った。乾燥 後粉枠し、目開き 300 μ mと 75 μ mのふる!/ヽで分級して平均粒径 75 μ m〜300 μ m の固化物を得た。固形物 lOOgと純水 2. 5Lをビーカーに入れ、 80°Cで加熱しながら 200rpmで 30分間攪拌した後、静置して固化物を沈殿させ、溶出された KBrを含む 上澄み液を取り除いた。上澄み液を取り除いた後、 120°Cの乾燥機で約 10時間試 料を乾燥させ、更に 120°Cで 3時間真空乾燥を行い、 KBrが除去され、 SiOの骨格 Water 1L beaker, average primary particle size of the silica particles is silica Kazoru 245. 7 g dispersed in water (silica particles 40 weight 0/0), potassium bromide inorganic salt comprising a pore-forming agent shown in Table 1 (KBr) was added in an order of 292.3 g and stirred until KBr was dissolved, and 60% nitric acid was added to a pH of about 4.0 to promote aggregation of silica sol fine particles. Next, the stirred liquid mixture was transferred to a fluorine resin container and dried with a dryer at 80 ° C. until there was no change in weight. After drying, the powder was framed and classified with sieves of 300 μm and 75 μm openings! / ヽ to obtain a solidified product having an average particle size of 75 μm to 300 μm. Solid lOOg and pure water 2.5L were put into a beaker and stirred at 200rpm for 30 minutes while heating at 80 ° C, and then allowed to stand to precipitate the solidified product, and the supernatant containing the eluted KBr was removed. . After removing the supernatant, test for about 10 hours in a 120 ° C dryer. The material is dried and further vacuum dried at 120 ° C for 3 hours to remove KBr, and the SiO skeleton.
2 のみが残ったシリカ微粒子凝集体試料 Sl、 S2, S3, S4を得た。得られた試料の圧 壊強度を表 1に示す。  Silica fine particle agglomerate samples Sl, S2, S3, and S4 were obtained. Table 1 shows the crushing strength of the obtained samples.
また、 S4試料の電子顕微鏡写真を図 1に示す。図 1から、シリカ 1次粒子同士は物 理的な凝集力のみにより骨格を立体的に形成していることがわかる。  Fig. 1 shows an electron micrograph of the S4 sample. From FIG. 1, it can be seen that the primary particles of silica form a skeleton three-dimensionally only by physical cohesion.
[0065] (焼成したシリカ微粒子凝集体の作製) [0065] (Preparation of calcined silica fine particle aggregate)
ビーカーに水 1L、表 1に示した平均 1次粒径 0. 012 mのシリカ微粒子が水中に 分散されたシリカゾル 245. 7g (シリカ微粒子 40重量%)、 KBrを 292. 3gを順にカロ え、 KBrが全て溶解するまで攪拌し、シリカゾルの微粒子の凝集を促すための 60% 硝酸を pH4. 0程度となるように加えた。次に、攪拌した混合液をフッ素榭脂製容器 に移し、 80°Cの乾燥機で重量変化がなくなるまで乾燥を行った。乾燥後粉砕し、目 開き 300 μ mと 75 μ mのふるいで分級して平均粒径 75 μ m〜300 μ mの固化物を 得た。得られた固化物を焼成皿にのせ、全自動開閉式管状炉 (ISUZU製、 EKRO — 23)にて、表 1に示した温度 600°Cで 2時間焼成した。焼成後の固化物 100gと純 水 2. 5Lをビーカーに入れ、 80°Cで加熱しながら攪拌した後、静置して固化物を沈 殿させ、溶出された KBrを含む上澄み液を取り除いた。上澄み液を取り除いた後、 1 20°Cの乾燥機で約 10時間試料を乾燥し、更に 120°Cで 3時間真空乾燥を行い、 K Brが除去され、 SiOの骨格のみが残ったシリカ微粒子凝集体試料 S5を得た。得ら  1L of water in a beaker, 245.7 g of silica sol in which silica fine particles with an average primary particle size of 0.012 m shown in Table 1 are dispersed in water (405.7% by weight of silica fine particles), and 292.3 g of KBr were sequentially added. The mixture was stirred until all the KBr was dissolved, and 60% nitric acid for promoting aggregation of silica sol microparticles was added to a pH of about 4.0. Next, the stirred mixed solution was transferred to a fluororesin container and dried with a dryer at 80 ° C. until there was no change in weight. After drying, the mixture was pulverized and classified with a sieve having openings of 300 μm and 75 μm to obtain a solidified product having an average particle size of 75 μm to 300 μm. The obtained solidified product was placed on a baking dish and baked at a temperature of 600 ° C. shown in Table 1 for 2 hours in a fully automatic open / close tubular furnace (manufactured by ISUZU, EKRO-23). 100g of solidified product after baking and 2.5L of pure water were placed in a beaker, stirred while heating at 80 ° C, and allowed to stand to settle the solidified product, and the supernatant liquid containing the eluted KBr was removed. . After removing the supernatant, 1) Dry the sample for about 10 hours with a dryer at 20 ° C, and then vacuum dry at 120 ° C for 3 hours to remove KBr and leave only the SiO skeleton. Aggregate sample S5 was obtained. Obtained
2  2
れた試料の電子顕微鏡写真を図 2に示す。図 2から、焼成したシリカ微粒子凝集体 は、シリカ 1次粒子同士の溶融 ·融着により骨格を立体的に形成して 、ることがわかる また、得られた試料の圧壊強度と市販多孔体シリカ (R1)および市販溶融シリカ (R 2)の圧壊強度測定結果を表 1に示す。  Figure 2 shows an electron micrograph of the sample. It can be seen from FIG. 2 that the calcined silica fine particle agglomerates form a three-dimensional framework by melting and fusing the silica primary particles. Also, the crush strength of the obtained sample and the commercially available porous silica Table 1 shows the measurement results of the crushing strength of (R1) and commercially available fused silica (R2).
[0066] [表 1] 斗番号 [0066] [Table 1] Doo number
シ リ カ平均 次  Silica Average Next
― ― 粒径  - - Particle size
乾燥温度 c )  Drying temperature c)
(乾燥) (焼成)  (Dry) (Firing)
粒径  Particle size
約 約 約 約 約  About About About About
 Shi
力 圧縮荷重  Force compressive load
 Clump
 Collection
体 圧壌強度  Body
[0067] (実施例 1〜2) [0067] (Examples 1-2)
上記で作製したシリカ微粒子の凝集体 S1〜S2 (実施例 1〜2)と、極性熱可塑性榭 脂である(エチレン 'ビュルアルコール、以下 EVOHという)共重合体を、表 2に示し た組成で、溶融混合装置 (東洋精機製作所製、 KF— 70V小型セグメントミキサー)を 5枚の Kneading discの位相を 0. 5pitchずらした高せん断の組み合わせで用いて、 1 90°C、 200rpmで 1分 20秒間溶融混合し、複合体組成物を得た。電子顕微鏡で複 合体組成物破断面からシリカの破砕'分散状態を評価し、得られた結果を表 2に示す  The silica fine particle aggregates S1 to S2 (Examples 1 and 2) prepared above and a copolymer (ethylene butyl alcohol, hereinafter referred to as EVOH), which is a polar thermoplastic resin, have the compositions shown in Table 2. , Using a melt mixing device (Toyo Seiki Seisakusho, KF—70V small segment mixer) with a combination of high shear in which the phases of five Kneading discs are shifted 0.5 pitch, 1 90 ° C, 200 rpm for 1 minute 20 seconds It melt-mixed and obtained the composite composition. Using an electron microscope, the fracture state of silica was evaluated from the fracture surface of the composite composition, and the results obtained are shown in Table 2.
[0068] (実施例 3〜5および比較例 1) (Examples 3 to 5 and Comparative Example 1)
上記で用いたシリカ微粒子の凝集体 Sl、 S2 (実施例 3〜5)および S5 (比較例 1)と 、殆ど極性を持たない汎用熱可塑性榭脂であるポリスチレンとを、表 2に示した組成 で、溶融混合装置 (東洋精機製作所製、 KF— 70V小型セグメントミキサー)を 5枚の Kneading discの位相を 0. 5pitchずらした高せん断の組み合わせで用いて、 190°C、 200rpmで 1分 20秒間溶融混合し、複合体組成物を得た。複合体組成物破断面の 電子顕微鏡観察からシリカの破砕'分散状態を評価し、得られた結果を表 2に示す。  Aggregates of silica fine particles used above, Sl, S2 (Examples 3 to 5) and S5 (Comparative Example 1), and polystyrene, which is a general-purpose thermoplastic resin having almost no polarity, are shown in Table 2. Then, using a melt mixing device (Toyo Seiki Seisakusho, KF—70V small segment mixer) with a combination of high shear with the phase of 5 Kneading discs shifted 0.5pitch, 190 ° C, 200rpm for 1 minute 20 seconds It melt-mixed and obtained the composite composition. Table 2 shows the results obtained by evaluating the crushed and dispersed state of silica from electron microscope observation of the fracture surface of the composite composition.
[0069] (参考例 1〜2)  [0069] (Reference Examples 1-2)
本発明で用いたシリカ微粒子の凝集体より強度が高い市販多孔体シリカ (R1)およ び巿販溶融シリカ (R2)とポリスチレンとを、表 2に示した組成で、溶融混合装置 (東 洋精機製作所製、 KF— 70V小型セグメントミキサー)を 5枚の Kneading discの位相 を 0. 5pitchずらした高せん断の組み合わせで用いて、 190°C、 200rpmで 1分 20秒 間溶融混合し、混合組成物を得た。混合組成物破断面の電子顕微鏡観察からシリカ の破砕'分散状態を評価し、得られた結果を表 2に示す。 Commercially available porous silica (R1) and commercially available fused silica (R2), which have higher strength than the aggregates of silica fine particles used in the present invention, and polystyrene have the compositions shown in Table 2 and a melt mixing device (Toyo KF—70V small segment mixer manufactured by Seiki Seisakusho Co., Ltd.) was melted and mixed at 190 ° C and 200rpm for 1 minute and 20 seconds using a combination of high shear with the phase of 5 Kneading discs shifted 0.5pitch. I got a thing. Silica from electron microscope observation of fracture surface of mixed composition Table 2 shows the results obtained by evaluating the crushed and dispersed state.
[0070] [表 2] [0070] [Table 2]
Figure imgf000020_0001
Figure imgf000020_0001
[0071] 実施例 1では、使用したシリカ微粒子凝集体の圧壊強度が比較例 1より弱いため、 溶融混合でシリカ微粒子凝集体が大部分 1次粒子まで破砕されたが、 1 m〜20 m程度の大きさの完全に破砕されてな 、無機微粒子凝集体が僅かに残って 、た。実 施例 2では、圧壊強度が最も弱いシリカ微粒子凝集体を使用した。溶融混合で大きさ 約 150 mのシリカ微粒子凝集体がシリカ 1次粒子 (粒径 190nm)までに破砕'分散 されていた(図 3)。従って、一次粒径が大きいシリカ 1次粒子力もなるシリカ微粒子凝 集体ほど圧壊強度が弱くなり、溶融混合でシリカ 1次粒子までに破砕'分散され易い ことが分力ゝる。 [0071] In Example 1, since the crushing strength of the silica fine particle aggregate used was weaker than that of Comparative Example 1, most of the silica fine particle aggregates were crushed to primary particles by melt mixing, but about 1 to 20 m. A few inorganic fine particle agglomerates remained without being completely crushed. In Example 2, a silica fine particle aggregate having the weakest crushing strength was used. Agglomerates of silica particles with a size of approximately 150 m were crushed and dispersed up to the primary silica particles (particle size 190 nm) by melt mixing (Fig. 3). Therefore, the aggregate of silica fine particles having a primary particle force with a large primary particle size has a lower crushing strength, and it is easy to crush and disperse to the silica primary particles by melt mixing.
[0072] 殆ど極性を持たな!、汎用熱可塑性榭脂であるポリスチレンを使用した実施例 3〜5 でも同じ傾向が現れた。圧壊強度が最も弱いシリカ微粒子凝集体 (S1)を使用した実 施例 3では、溶融混合過程でシリカ微粒子凝集体がシリカ 1次粒子 (粒径 190nm)ま でに完全に破砕 '分散されていた(図 4)。また、含量を 10重量%に増やした実施例 4 でも、シリカ微粒子凝集体がシリカ 1次粒子までに完全に破砕'分散されていた(図 5 [0072] Almost no polarity! The same tendency appeared in Examples 3 to 5 using polystyrene, which is a general-purpose thermoplastic resin. In Example 3 using the silica fine particle aggregate (S1) with the weakest crushing strength, the silica fine particle aggregate was completely crushed and dispersed until the silica primary particle (particle size 190 nm) in the melt mixing process. (Figure 4). In Example 4 where the content was increased to 10% by weight, the silica fine particle aggregates were completely crushed and dispersed by the silica primary particles (Fig. 5).
) o ) o
[0073] 比較例 1では、焼成して作製した圧壊強度力もっとも強いシリカ微粒子凝集体 (S5) を使用した。溶融混合過程でシリカ微粒子凝集体が破砕できず、多くのシリカ微粒子 凝集体が粒径 50 m程度の非常に大きな未破砕シリカ微粒子凝集体として残って いた(図 6)。これは、本発明のシリカ微粒子凝集体はシリカ 1次粒子同士が物理的な 凝集力のみにより骨格を立体的に形成しているが(図 1)、焼成したシリカ微粒子凝集 体 (S5)は、シリカ 1次粒子表面の融解によって表層が融解して互いに融着して、もし くはネックが形成されて強固な結合を有する骨格を立体的に形成して 、るため、圧壊 強度が高くなつたためである(図 2)。 [0073] In Comparative Example 1, the silica fine particle aggregate (S5) having the strongest crushing strength force produced by firing was used. Silica fine particle aggregates cannot be crushed during the melt mixing process, and many silica fine particle aggregates remain as very large uncrushed silica fine particle aggregates with a particle size of about 50 m. (Figure 6). This is because the silica fine particle aggregate of the present invention forms the skeleton three-dimensionally only by the physical cohesive force between the silica primary particles (FIG. 1), but the fired silica fine particle aggregate (S5) Due to the melting of the surface of the silica primary particles, the surface layers melt and adhere to each other, or the neck is formed and a skeleton having a strong bond is formed in three dimensions, resulting in high crushing strength. (Fig. 2).
[0074] 参考例 1および 2では、本発明の強度が低いシリカ微粒子凝集体より強度が高い巿 販のシリカ粒子を使用したため、溶融混合しても殆どのシリカ粒子は混合前の大きさ のまま残っていた。従って、参考例 1および 2のような従来の強度が高いシリカ粒子は 、熱可塑性榭脂と直接溶融混合しても、溶融混合過程でシリカ粒子を破砕 '分散させ て榭脂中にナノレベルに分散させることができな 、ことを示す。  [0074] In Reference Examples 1 and 2, since commercially available silica particles having higher strength than the silica fine particle aggregates having low strength of the present invention were used, even when melt-mixed, most of the silica particles remain in the size before mixing. It remained. Therefore, even if the conventional high-strength silica particles such as Reference Examples 1 and 2 are directly melt-mixed with the thermoplastic resin, the silica particles are crushed and dispersed during the melt-mixing process to the nano level in the resin. Indicates that it cannot be dispersed.
[0075] 従って、本発明にお ヽては、無機微粒子無機微粒子同士が比較的弱い隣接粒子 との凝集力によって形成された強度が低 ヽ無機微粒子凝集体と熱可塑性榭脂とを溶 融混合しながらせん断応力により強度が低い無機微粒子凝集体を物理的に破砕,分 散されることができるため、熱可塑性榭脂の種類や親水性'疎水性などに関係なく無 機微粒子がナノスケールまでに均一に破砕'分散された熱可塑性榭脂、いわゆる高 分子ナノコンポジットを製造することができる事が分かる。また、本発明に用いるシリカ 微粒子凝集体の作製手順と溶融混合過程で破砕'分散されたシリカ粒子の分散状 態を説明する概念を図 7に示す。  Therefore, in the present invention, the inorganic fine particle aggregate formed by the cohesive force between the inorganic fine particles and the relatively weak adjacent particles is melt-mixed with the inorganic fine particle aggregate and the thermoplastic resin. In addition, inorganic fine particle aggregates with low strength can be physically crushed and dispersed by shear stress, so that inorganic fine particles can reach nanoscale regardless of the type of thermoplastic resin or hydrophilicity / hydrophobicity. It can be seen that it is possible to produce a so-called high-molecular nanocomposite that is uniformly crushed and dispersed in a uniform manner. FIG. 7 shows a concept for explaining the preparation procedure of the silica fine particle aggregate used in the present invention and the dispersion state of the silica particles crushed and dispersed in the melt mixing process.
産業上の利用可能性  Industrial applicability
[0076] 本発明によって、熱可塑性榭脂に無機微粒子がナノレベルに均一に分散された熱 可塑性榭脂複合組成物の提供が可能となる。 [0076] According to the present invention, it is possible to provide a thermoplastic resin composite composition in which inorganic fine particles are uniformly dispersed at a nano level in a thermoplastic resin.
本発明により、熱可塑性榭脂に無機微粒子を 1次粒子レベルまでに分散させた熱 可塑性榭脂複合組成物の製造方法が提供される。  The present invention provides a method for producing a thermoplastic resin composite composition in which inorganic fine particles are dispersed in a thermoplastic resin to the primary particle level.
本発明によれば、熱可塑性榭脂と強度が低い無機微粒子凝集体を、溶融混合して 無機微粒子をナノレベルに分散されることによって、熱可塑性榭脂ナノコンポジットが 提供される。  According to the present invention, a thermoplastic resin nanocomposite is provided by melt-mixing a thermoplastic resin and an inorganic fine particle aggregate having low strength to disperse the inorganic particles to the nano level.
本発明の熱可塑性榭脂複合組成物は、粒子がナノレベルに分散されることで期待 できるあらゆる分野に応用することができる。 本発明によって、粒子がナノレベルに均一に分散されことで期待できるあらゆる分 野に応用することができる熱可塑性榭脂複合体組成物が提供される。例えば、圧縮 成形、押出し成形、ブロー成形、射出成形で得ることができる、チューブ類、シート類 、棒類、繊維類、ノ ッキング類、ライニング類、電線被覆などがある。更に、熱可塑性 榭脂中に粒子がナノレベルに均一に分散されるとずり速度が遅い時にゼロずり粘度 が粒子がナノ分散されてない場合に比べて非常に高くなるため、電線などの榭脂製 品に火災が発生した時の火災点滴が落ち難い (ドリップ防止)にも使用できる。また、 無機微粒子としてシリカを用いた場合は、ナノ分散によって増えたシリカ粒子表面に 結合されている水酸基と金属または基材との相互作用によって接着力の向上が期待 できる用途にも使用できる。 The thermoplastic resin composite composition of the present invention can be applied to all fields where particles can be expected to be dispersed at the nano level. According to the present invention, there is provided a thermoplastic resin composite composition that can be applied to all fields that can be expected by uniformly dispersing particles at a nano level. For example, there are tubes, sheets, rods, fibers, knocks, linings, wire coatings and the like that can be obtained by compression molding, extrusion molding, blow molding, injection molding. In addition, when the particles are uniformly dispersed at the nano level in the thermoplastic resin, the zero shear viscosity becomes very high when the shear rate is low compared to when the particles are not nano-dispersed. It can also be used to prevent fire drip from dropping when a fire occurs in the product (prevents drip). In addition, when silica is used as the inorganic fine particles, it can be used for applications in which an improvement in adhesive force can be expected due to the interaction between the hydroxyl group bonded to the silica particle surface increased by nano-dispersion and the metal or the base material.
図面の簡単な説明  Brief Description of Drawings
[0077] [図 1]本発明に用いる (焼成なし)シリカ微粒子凝集体の電子顕微鏡写真。 [0077] Fig. 1 is an electron micrograph of a silica fine particle aggregate (without firing) used in the present invention.
[図 2]比較例 1に使用した 600°Cで焼成したシリカ微粒子凝集体の電子顕微鏡写真。  FIG. 2 is an electron micrograph of the silica fine particle aggregate fired at 600 ° C. used in Comparative Example 1.
[図 3]実施例 2で使用した熱可塑性榭脂混合組成物試料の破断面の電子顕微鏡写 真。  FIG. 3 is an electron micrograph of a fracture surface of a thermoplastic resin mixture composition sample used in Example 2.
[図 4]実施例 3で使用した熱可塑性榭脂混合組成物試料の破断面の電子顕微鏡写 真。  FIG. 4 is an electron micrograph of a fracture surface of a thermoplastic resin mixture composition sample used in Example 3.
[図 5]実施例 4で使用した熱可塑性榭脂混合組成物試料の破断面の電子顕微鏡写 真。  FIG. 5 is an electron micrograph of a fracture surface of a thermoplastic resin mixture composition sample used in Example 4.
[図 6]比較例 1で使用した熱可塑性榭脂混合組成物試料の破断面の電子顕微鏡写 真。  FIG. 6 is an electron micrograph of a fracture surface of the thermoplastic resin mixture composition sample used in Comparative Example 1.
[図 7]本発明に用いるシリカ微粒子凝集体の作製手順と溶融混合過程で破砕'分散 されたシリカ粒子の分散状態を説明する概念図。  FIG. 7 is a conceptual diagram illustrating the procedure for preparing the silica fine particle aggregate used in the present invention and the dispersion state of the silica particles crushed and dispersed in the melt mixing process.
符号の説明  Explanation of symbols
[0078] 1:シリカゾルと KBrの混合液 [0078] 1: Mixture of silica sol and KBr
2 :シリカ 1次粒子  2: Silica primary particles
3 : KBr  3: KBr
4 :混合液の乾燥体 5 :KBrを溶出させて除去したシリカ微粒子凝集体 4: Dried mixture 5: Silica fine particle aggregate from which KBr was eluted and removed
6 :KBrが除去された空間(孔)  6: Space from which KBr is removed (hole)
7:本発明のシリカ微粒子凝集体が 1次粒子までに破砕'分散された熱可塑性榭脂混 合組成物  7: Thermoplastic resin mixture composition in which the silica fine particle aggregate of the present invention is crushed and dispersed to primary particles

Claims

請求の範囲 The scope of the claims
[1] 無機微粒子と無機塩との混合液から乾燥によって固化物を得て、該固化物力 溶 剤を用いて無機塩を除去し乾燥して得られる無機微粒子凝集体であって、該乾燥が 無機微粒子同士の表面融着が起こらない温度で行うことにより得られる無機微粒子 同士の凝集力によって形成された無機微粒子凝集体と、熱可塑性榭脂とを溶融混 合して得られる平均粒径 1 μ m以下の無機微粒子が榭脂中に分散している熱可塑 性榭脂複合体組成物。  [1] An inorganic fine particle aggregate obtained by drying from a mixed solution of inorganic fine particles and inorganic salt by drying, removing the inorganic salt using the solidified power solvent, and drying the inorganic fine particle aggregate Average particle size obtained by melt-mixing inorganic fine particle aggregates formed by the cohesive strength of inorganic fine particles obtained by performing fusion at a temperature at which surface fusion between inorganic fine particles does not occur and thermoplastic resin 1 A thermoplastic resin composite composition in which inorganic fine particles of μm or less are dispersed in the resin.
[2] 前記無機微粒子凝集体が、その圧壊強度が 1. 5MPa以下である請求項 1に記載 の熱可塑性榭脂複合体組成物。  [2] The thermoplastic resin composite composition according to [1], wherein the inorganic fine particle aggregate has a crushing strength of 1.5 MPa or less.
[3] 無機微粒子の平均 1次粒径が 1 m以下である請求項 1または 2に記載の熱可塑 性榭脂複合体組成物。 [3] The thermoplastic resin composite composition according to claim 1 or 2, wherein the inorganic fine particles have an average primary particle size of 1 m or less.
[4] 前記無機微粒子凝集体圧縮荷重が 40mN以下である請求項 1〜3の ヽずれかに 記載の熱可塑性榭脂複合体組成物。  [4] The thermoplastic resin composite composition according to any one of claims 1 to 3, wherein the compressive load of the inorganic fine particle aggregate is 40 mN or less.
[5] 榭脂中に分散している無機微粒子の数の 80%以上力 粒径 600nm以下である請 求項 1〜4のいずれかに記載の熱可塑性榭脂複合体組成物。 [5] The thermoplastic resin composite composition according to any one of claims 1 to 4, which has a force particle diameter of not less than 80% of the number of inorganic fine particles dispersed in the resin but not more than 600 nm.
[6] 前記無機微粒子が酸ィ匕ケィ素、酸化チタン、酸ィ匕アルミニウム、及び酸化亜鉛と五 酸ィ匕アンチモンの複合酸ィ匕物力も選ばれた少なくとも 1種であることを特徴とする請 求項 1〜5のいずれかに記載の熱可塑性榭脂複合体組成物。 [6] The inorganic fine particles are at least one selected from acid silicate, titanium oxide, acid aluminum, and a composite acid strength of zinc oxide and antimony pentoxide. Claims 1 to 5. A thermoplastic resin composite composition according to any one of claims 1 to 5.
[7] 前記無機塩が、ハロゲン化水素酸、燐酸、硫酸、硝酸およびモリブデン酸のアル力 リ金属塩、アルカリ土類金属塩またはアンモニゥム塩力 選ばれた少なくとも 1種であ ることを特徴とする請求項 1〜6のいずれかに記載の熱可塑性榭脂複合体組成物。 [7] The inorganic salt is at least one member selected from the group consisting of hydrohalic acid, phosphoric acid, sulfuric acid, nitric acid, and molybdic acid. The thermoplastic resin composite composition according to any one of claims 1 to 6.
[8] 前記無機塩が臭化カリウム、塩ィ匕カリウム、モリブデン酸アンモ-ゥム、リン酸-水素 ナトリウム、塩ィ匕カルシウムおよび臭化アンモ-ゥム力 選ばれた少なくとも 1種である ことを特徴とする請求項 7に記載の熱可塑性榭脂複合体組成物。 [8] The inorganic salt is at least one selected from potassium bromide, potassium chloride, ammonium molybdate, sodium hydrogen phosphate, calcium chloride and ammonium bromide. The thermoplastic resin composite composition according to claim 7, wherein:
[9] 前記乾燥が絶対温度で示した乾燥の温度 (T )と無機微粒子の融点 (T )の比 (T [9] Ratio of drying temperature (T) indicated by absolute temperature to the melting point (T) of inorganic fine particles (T
0 m 0 0 m 0
/T )が 0. 23以下で行われることを特徴とする請求項 1〜8のいずれかに記載の熱 可塑性榭脂複合体組成物。 The thermoplastic resin composite composition according to any one of claims 1 to 8, wherein / T) is performed at 0.23 or less.
[10] 前記熱可塑性榭脂が、ポリエチレン (PE)、ポリプロピレン (PP)、ポリ塩ィ匕ビュル (P VC)、ポリスチレン(PS)、ポリメタクリル榭脂(PMMA)、ポリエチレンビュルアルコー ル共重合体(EVOH)、アクリルブタジエンスチレン榭脂(ABS)、ポリアセタル(POM )、ポリアミド(PA)、ポリカーボネート (PC)、ポリエチレンテレフタレート(PET)、ポリ ブチレンテレフタレート(PBT)、ポリフエ-レンエーテル(PPE)、ポリフエ-レンォキ シド(PPO)、ポリフエ-レンサルファイト(PPS)、ポリスルホン(PSE)、ポリイミド榭脂( PI)、ポリイミドアミド榭脂(PAI)、全芳香族ポリエステル (液晶高分子)、ポリオキシべ ンジレン(POB)、ポリメチルペンテン(TPX)、ポリエーテルサルホン(PESF)、ポリエ 一テルイミド(PEI)、ポリアリレート(PAR)、ポリエーテルエーテルケトン(PEEK)、ポ リエーテルケトンケトン (PEKK)、熱可塑性エラストマ一 (TPE)力も選ばれた少なくと も 1種である請求項 1〜9のいずれかに記載の熱可塑性榭脂複合体組成物。 [10] The thermoplastic resin is polyethylene (PE), polypropylene (PP), polysalt resin (P VC), polystyrene (PS), polymethacrylic resin (PMMA), polyethylene butyl alcohol copolymer (EVOH), acrylic butadiene styrene resin (ABS), polyacetal (POM), polyamide (PA), polycarbonate (PC) , Polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene ether (PPE), polyphenylene-sulfide (PPO), polyphenylene sulfite (PPS), polysulfone (PSE), polyimide resin (PI), Polyimide amide resin (PAI), wholly aromatic polyester (liquid crystal polymer), polyoxybenzylene (POB), polymethylpentene (TPX), polyethersulfone (PESF), polyether imide (PEI), polyarylate ( PAR), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), and thermoplastic elastomer (TPE) strength are also selected. 10. The thermoplastic resin composite composition according to any one of claims 1 to 9, wherein there is at least one kind.
[11] 無機微粒子と無機塩との混合液から乾燥によって固化物を得て、該固化物力 溶 剤を用いて無機塩を除去し乾燥し、該乾燥が無機微粒子同士の表面融着が起こら ない温度で行うことにより得られる、無機微粒子同士の凝集力によって形成された無 機微粒子凝集体を、熱可塑性榭脂と溶融混合する請求項 1〜10のいずれかに記載 の熱可塑性榭脂複合体組成物の製造方法。 [11] A solidified product is obtained by drying from a mixed liquid of inorganic fine particles and inorganic salt, the inorganic salt is removed using the solidified power solvent, and drying is performed. The drying does not cause surface fusion between the inorganic fine particles. The thermoplastic resin composite according to any one of claims 1 to 10, wherein an inorganic fine particle aggregate formed by agglomeration force between inorganic fine particles obtained by performing at a temperature is melt-mixed with a thermoplastic resin. A method for producing the composition.
[12] 請求項 1〜10の ヽずれかに記載の熱可塑性榭脂複合体組成物からなる成形品。 [12] A molded article comprising the thermoplastic resin composite composition according to any one of claims 1 to 10.
[13] 成形品が、チューブ類、シート類、棒類、繊維類、パッキング類、ライニング類、電 線被覆力も選ばれたものである請求項 12に記載の成形品。 [13] The molded article according to claim 12, wherein the molded article is selected from tubes, sheets, rods, fibers, packings, linings, and wire covering power.
PCT/JP2006/301748 2005-02-04 2006-02-02 Thermoplastic-resin composite composition, process for producing the same, and use thereof WO2006082880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-029824 2005-02-04
JP2005029824A JP2006213870A (en) 2005-02-04 2005-02-04 Thermoplastic resin composite composition and method for producing the same

Publications (1)

Publication Number Publication Date
WO2006082880A1 true WO2006082880A1 (en) 2006-08-10

Family

ID=36777263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301748 WO2006082880A1 (en) 2005-02-04 2006-02-02 Thermoplastic-resin composite composition, process for producing the same, and use thereof

Country Status (2)

Country Link
JP (1) JP2006213870A (en)
WO (1) WO2006082880A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104723572A (en) * 2015-03-31 2015-06-24 鹰领航空高端装备技术秦皇岛有限公司 Preparation method of high-temperature-resistant microwave-transmitting high-silica fireproof fiber-polyphenylene sulfide-polyether sulfone composite material
CN107722404A (en) * 2017-11-06 2018-02-23 安徽蓝德集团股份有限公司 A kind of thermocouple temperature measurement route protection pipe

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013610A (en) * 2006-07-03 2008-01-24 Du Pont Mitsui Fluorochem Co Ltd Molded article composed of fluororesin composite composition
JP2010111760A (en) * 2008-11-06 2010-05-20 Hitachi Cable Ltd Non-halogen resin composition, non-halogen insulated electrical wire, and non-halogen cable
JP5874357B2 (en) * 2011-12-05 2016-03-02 住友ベークライト株式会社 Resin composition, resin kneaded material and molded article
JP6544194B2 (en) * 2015-10-23 2019-07-17 三菱ケミカル株式会社 Method for producing (meth) acrylic resin composite composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427425A (en) * 1990-05-22 1992-01-30 Nippon Kayaku Co Ltd Microbead and its production
JPH0427424A (en) * 1990-05-22 1992-01-30 Nippon Kayaku Co Ltd Microbead and its production
JPH04288353A (en) * 1991-03-15 1992-10-13 Mizusawa Ind Chem Ltd Amorphous silica filler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615427B2 (en) * 1984-11-15 1994-03-02 旭化成工業株式会社 Inorganic porous body and method for producing the same
JP3369137B2 (en) * 1999-11-30 2003-01-20 学校法人 芝浦工業大学 Resin composite composition, flame-retardant material and method for producing them
JP4067900B2 (en) * 2001-07-25 2008-03-26 住友ベークライト株式会社 Transparent composite sheet and substrate for liquid crystal display element using the same
JP2006213577A (en) * 2005-02-04 2006-08-17 Du Pont Mitsui Fluorochem Co Ltd Inorganic particulate agglomerate and its producing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427425A (en) * 1990-05-22 1992-01-30 Nippon Kayaku Co Ltd Microbead and its production
JPH0427424A (en) * 1990-05-22 1992-01-30 Nippon Kayaku Co Ltd Microbead and its production
JPH04288353A (en) * 1991-03-15 1992-10-13 Mizusawa Ind Chem Ltd Amorphous silica filler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104723572A (en) * 2015-03-31 2015-06-24 鹰领航空高端装备技术秦皇岛有限公司 Preparation method of high-temperature-resistant microwave-transmitting high-silica fireproof fiber-polyphenylene sulfide-polyether sulfone composite material
CN107722404A (en) * 2017-11-06 2018-02-23 安徽蓝德集团股份有限公司 A kind of thermocouple temperature measurement route protection pipe

Also Published As

Publication number Publication date
JP2006213870A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
Nilagiri Balasubramanian et al. Role, effect, and influences of micro and nano‐fillers on various properties of polymer matrix composites for microelectronics: a review
Šupová et al. Effect of nanofillers dispersion in polymer matrices: a review
Camargo et al. Nanocomposites: synthesis, structure, properties and new application opportunities
Mirjalili et al. Mechanical and morphological properties of polypropylene/nano α-Al 2 O 3 composites
Liu et al. Enhancement of mechanical properties of poly (vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube.
JP6638257B2 (en) Polyarylene sulfide resin powder mixture
Baskaran et al. Mechanical and thermal properties of unsaturated polyester/calcium carbonate nanocomposites
Petrucci et al. Filled polymer composites
US20070117900A1 (en) Melt processible fluoropolymer composition containing nano particles
Amin Methods for preparation of nano-composites for outdoor insulation applications
WO2006082880A1 (en) Thermoplastic-resin composite composition, process for producing the same, and use thereof
EP2831183B1 (en) Composite particles, methods of making, and articles including the same
TW200909500A (en) Barium sulfate-containing composite (1)
Thabet et al. A review of nano-fillers effects on industrial polymers and their characteristics
Almuallim et al. Thermally conductive polymer nanocomposites for filament-based additive manufacturing
JP6654562B2 (en) Thermally conductive electrical insulating particles and compositions
JP6195108B2 (en) Modified boron nitride, its production method and composition
Pal et al. Fly ash-reinforced polypropylene composites
TWI403551B (en) Melt processible fluoropolymer composition containing nano particles
WO2007120122A1 (en) Melt processible fluoropolymer composition containing nano particles
JP2008013610A (en) Molded article composed of fluororesin composite composition
JP2006213577A (en) Inorganic particulate agglomerate and its producing method
Hatui et al. Modification of CNT and its effect on thermo mechanical, morphological as well as rheological properties of Polyether Imide (PEI)/Liquid Crystalline Polymer (LCP) blend system
WO2014163765A1 (en) Pet nanocomposite materials and containers prepared therefrom
JP2023021089A (en) Spherical particles comprising nanoclay-filled-polymer, and methods of production and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712891

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712891

Country of ref document: EP