WO2006082876A1 - Axial flow blower - Google Patents

Axial flow blower Download PDF

Info

Publication number
WO2006082876A1
WO2006082876A1 PCT/JP2006/301737 JP2006301737W WO2006082876A1 WO 2006082876 A1 WO2006082876 A1 WO 2006082876A1 JP 2006301737 W JP2006301737 W JP 2006301737W WO 2006082876 A1 WO2006082876 A1 WO 2006082876A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
rotating
stationary
axial
stationary blade
Prior art date
Application number
PCT/JP2006/301737
Other languages
French (fr)
Japanese (ja)
Inventor
Katsumichi Ishihara
Honami Oosawa
Original Assignee
Sanyo Denki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co., Ltd. filed Critical Sanyo Denki Co., Ltd.
Priority to CN2006800042652A priority Critical patent/CN101115926B/en
Priority to US11/815,620 priority patent/US7866945B2/en
Priority to EP06712880.1A priority patent/EP1847716B1/en
Publication of WO2006082876A1 publication Critical patent/WO2006082876A1/en
Priority to HK08107140.6A priority patent/HK1112044A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes

Definitions

  • the present invention relates to an axial blower used for cooling the inside of an electric device or the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-257597 (FIGS. 1 and 4)
  • An object of the present invention is to provide an axial blower having a larger air volume and a higher static pressure than conventional ones.
  • Another object of the present invention is to provide an axial blower that can reduce noise as compared with the prior art.
  • An axial blower of the present invention includes a housing, an impeller, a motor that rotates the impeller, and a plurality of stationary blades.
  • the winging includes a wind tunnel having a suction opening on one side in the axial direction of the rotating shaft and a discharge opening on the other side in the axial direction.
  • the impeller includes a plurality of rotating blades that rotate in the wind tunnel. Duplicate Several rotating blades are arranged at equal intervals in the circumferential direction of the rotating shaft.
  • the motor then rotates the impeller in one direction of rotation about the rotation axis.
  • the plurality of stationary blades are arranged near the discharge opening in the wind tunnel.
  • the plurality of stationary blades are arranged at equal intervals in the circumferential direction of the rotating shaft.
  • the number of the plurality of rotating blades is seven, and the number of the plurality of stationary blades is eight.
  • the plurality of rotating blades have a cross-sectional shape when the rotating blade is cut in a direction orthogonal to the axial direction, and a curved shape in which a concave portion opens in one rotation direction of the impeller.
  • the curved shape of the plurality of rotating blades in this case is a curved shape in which the cross-sectional shape when the rotating blades are cut in the axial direction is convex in the direction opposite to the rotating direction.
  • the stationary blade preferably has a cross-sectional shape when the stationary blade is cut in a direction perpendicular to the axial direction, and has a curved shape in which the concave portion is opened in a direction opposite to the rotational direction. .
  • the curved shape of the plurality of stationary blades in this case is a curved shape that is convex in the direction of rotation of the cross-sectional shape force when the stationary blades are cut in the axial direction.
  • the maximum air flow can be increased to increase the maximum static pressure, and the suction force can be reduced to reduce noise.
  • the impeller includes a rotating blade fixing member in which a plurality of rotating blades are fixed to the peripheral wall portion.
  • Each of the plurality of stationary blades has an outer end portion fixed to the inner wall portion of the wind tunnel, and an inner end portion located on the radially opposite side of the rotating shaft.
  • a stationary blade fixing member having a peripheral wall portion having an outer diameter dimension equal to or smaller than the outer diameter dimension of the peripheral wall portion is disposed.
  • the inner end portions of the plurality of stationary blades are fixed to the peripheral wall portion of the stationary blade fixing member.
  • the stationary blade fixing member is fixed to the housing by a plurality of stationary blades.
  • Such a stationary blade fixing member can support a bearing that rotatably supports the stator and rotating shaft of the motor.
  • the length of the side of the outer end of the stationary blade that extends along the inner wall of the wind tunnel is measured.
  • the length of the side of the inner end of the stationary blade that extends along the peripheral wall of the stationary blade fixing member It is preferable to define the shape of multiple stationary blades so that they are longer than the length.
  • a more preferable shape of the stationary blade is determined as follows. First, assume a first virtual plane extending radially through an end portion closest to the discharge opening on the inner end side of the stationary blade and a center line passing through the center of the rotating shaft. Next, a second imaginary plane extending in the radial direction through the end portion and the center line located closest to the discharge opening on the side of the outer end having the stationary blade is assumed. Further, assume a third virtual plane extending in the radial direction through the end portion located near the suction edge of the stationary blade and the center opening and the center line. Then, the first virtual plane force and the second virtual plane force and the second virtual plane force are stationary so that the direction facing the third virtual plane is opposite to the impeller rotation direction. Determine the shape of the blade.
  • the shape of the stationary blade is determined in this way, it becomes easy to determine the shape of the stationary blade according to the required characteristics.
  • the angle ⁇ 1 between the first virtual plane and the second virtual plane is larger than the angle ⁇ 2 between the second virtual plane and the third virtual plane, the air volume increases. The effect is obtained.
  • a preferable range of the angle ⁇ 1 is 25 to 30 degrees, and a range of the angle ⁇ 2 is 15 to 20 degrees. With such a value, it becomes easy to design an axial fan with a large air volume and a high static pressure.
  • the length dimension of the outer end portion of the stationary blade is preferably 40% to 50% of the length dimension extending in the axial direction of the rotating blade. With such dimensions, it becomes easy to design a fan with a large air volume and high static pressure.
  • a plurality of lead wires are used without using an electrical connector to supply power to the motor. In this case, in order to draw a plurality of lead wires out of the housing, the plurality of lead wires pass through the wind tunnel.
  • the housing is provided with a lead wire locking portion for locking a plurality of lead wires.
  • the lead wire locking portion is provided on a wall portion surrounding the discharge opening of the housing and is configured to lock a plurality of lead wires connected to the motor.
  • a guide groove for accommodating a plurality of lead wires and guiding them to the lead wire engaging portion is formed between one stationary blade adjacent to the lead wire engaging portion.
  • a guide wall should be provided. If such a guide wall is provided and a plurality of lead wires are accommodated in the guide groove, the presence of the plurality of lead wires will adversely affect the air flow and static pressure and may be a source of noise. Can be reduced.
  • each of the plurality of stationary blades includes an outer end portion fixed to the inner wall portion of the wind tunnel, and an inner end portion positioned on the radially opposite side of the rotating shaft from the outer end portion.
  • a stationary blade fixing member having a peripheral wall portion to which the inner end portions of the plurality of stationary blades are fixed is disposed at the central portion near the discharge opening in the wind tunnel.
  • the guide wall has a first end located on the discharge opening side, a second end located on the suction opening side, a third end located on the inner wall side of the wind tunnel, and a stationary blade fixed And a fourth end located on the member side.
  • the first end portion of the guide wall portion is connected to the suction opening side end portion of one stationary blade that extends toward the stationary blade fixing member of the inner wall portion of the wind tunnel and is located on the suction opening side, A guide groove is formed between the guide wall and one stationary blade.
  • the third end of the guide wall is preferably fixed to the inner wall of the wind tunnel. With such a structure, the mechanical strength of the guide wall can be increased.
  • the shape of the connecting portion between the first end portion of the guide wall portion and the suction of the single stationary blade and the end portion on the suction opening side is determined so that the thickness becomes thinner toward the suction opening portion. Is preferred. In this way, it is possible to suppress a large resistance against the wind flow generated by the rotation of the connecting portion force impeller.
  • the second end of the guide wall is flush with the opening surface of the discharge opening.
  • the first end force also extends to the second end so that the guide wall portion is substantially orthogonal to the opening surface of the discharge opening.
  • the lead wire locking portion is formed in the housing adjacent to the outer end portion of one stationary blade, and is formed in the housing and a through hole that communicates the inside of the wind tunnel and the outside of the housing. And a slit that communicates with the through-hole and opens to the other side in the axial direction.
  • the size of the slit is determined so that a plurality of lead wires that are accommodated in the guide groove and go out to the outside through the through hole cap do not easily come out of the slit.
  • the third end portion of the guide wall portion is fixed to the inner wall portion of the wind tunnel.
  • the length of the guide wall extending along the stationary blade should be set to a length that prevents a part of the air flow generated by the rotation of the impeller from actively flowing out of the housing through the through hole. preferable. In this way, the wind that flows through the through hole is substantially eliminated, and noise generation can be reduced.
  • FIG. 1A is a perspective view of an axial flow fan as an example of an embodiment of the present invention when viewed from the front right side oblique upward force
  • FIG. 1B is a rear left side diagonal upward force view of the axial flow fan
  • (C) is a perspective view of the axial blower of the embodiment excluding three lead wires as viewed from the diagonally upper front right side.
  • FIG. 2 (A) and (B) are a front view and a rear view of the embodiment shown in FIG. 1 with the motor-side seal removed.
  • FIG. 3 is a plan view of an axial blower with three lead wires and a seal removed.
  • FIG. 4 is a right side view of the axial blower shown in FIG. 2 (A).
  • FIG. 5 is a diagram used for explaining the relationship between a rotating blade and a stationary blade.
  • FIG. 6 is a diagram used for explaining the relationship between a rotating blade and a stationary blade.
  • FIG. 7 is a cross-sectional view taken along line AA, with the internal structure of the motor of FIG. 4 omitted.
  • FIG. 8 This is a cross-sectional view taken along line B-B in FIG.
  • FIG. 9 is a cross-sectional view taken along line CC with the internal structure of the motor of FIG. 4 omitted.
  • FIG. 10 is a cross-sectional view taken along the line D-D in FIG.
  • FIG. 11 is a cross-sectional view taken along line EE of FIG.
  • FIG. 12 is a cross-sectional view taken along line FF in FIG.
  • FIG. 13 is a cross-sectional view taken along line GG in FIG.
  • FIG. 14 is a diagram showing the results of measuring the static pressure-air volume characteristics with and without the guide wall.
  • FIG. 15 is a diagram showing the measurement results when the number of rotating blades (moving blades) is fixed to 7 and the number of stationary blades (stationary blades) is changed.
  • FIG. 16 is a diagram showing measurement results when the number of rotating blades (moving blades) is changed and the number of stationary blades (stationary blades) is fixed to eight.
  • FIG. 1 (A) is a perspective view of an axial blower 1 as an example of an embodiment of the present invention as seen from diagonally upward on the front right side
  • FIG. FIG. 1 (C) is a perspective view of the axial blower 1 of the embodiment excluding three lead wires 10 and also seeing the diagonally upward force on the front right side
  • FIGS. 2A and 2B are a front view and a rear view of the embodiment shown in FIG. 1 with the motor 2 side seal 2 removed.
  • FIG. 3 is a plan view of the axial blower 1 with the three lead wires 10 and the seal 2 removed.
  • FIG. 4 is a right side view of the axial blower 1 shown in FIG. 2 (A).
  • 5 and 6 are diagrams used to explain the relationship between the rotating blade 5 and the stationary blade 11 described later.
  • FIGS. 7, 8 and 9 are cross-sectional views taken along the lines AA, B-B and the internal structure of the motor, respectively, with the internal structure of the motor shown in FIG. 4 omitted. .
  • an axial blower 1 is disposed in a housing 3 and the housing 3.
  • An impeller 7 having seven rotating blades 5 that rotate, a motor 9 having a rotating shaft 8 on which the impeller 7 is mounted, and eight stationary blades 11 are provided.
  • the housing 3 has an annular suction on one side in the direction in which the axis of the rotary shaft 8 extends (axial direction)!
  • the inlet side flange 13 is provided, and the annular discharge side flange 15 is provided on the other side in the axial direction.
  • the housing 3 has a cylindrical portion 17 between both flanges 13 and 15.
  • a wind tunnel 19 is formed by the internal spaces of the flange 13, the flange 15, and the cylindrical portion 17.
  • the suction side flange 13 has a substantially square outline shape, and has a substantially circular suction opening 14 inside. Further, the suction side flange 13 has flat surfaces 13a at four corners, and through holes 13b through which mounting screws pass are formed at the four corners, respectively.
  • the discharge-side flange 15 also has a substantially square outline shape, and has a substantially circular discharge opening 16 inside.
  • the discharge-side flange 15 has flat surfaces 15a at four corners, and through holes 15b through which mounting screws pass are formed at the four corners, respectively.
  • the impeller 7 includes a cup-shaped rotating blade fixing member 6 in which seven rotating blades 5 are fixed to a peripheral wall portion.
  • a plurality of permanent magnets constituting a part of the rotor of the motor 9 are fixed inside the peripheral wall portion of the rotary blade fixing member 6.
  • the eight stationary blades 11 include an outer end portion 11 A fixed to the inner wall portion of the wind tunnel 19 and the outer end portion 11 A. And an inner end portion 11B located on the opposite side of the rotary shaft 8 in the radial direction.
  • a cup-shaped stationary blade fixing member 21 having a peripheral wall portion having an outer diameter less than or equal to the outer diameter of the peripheral wall portion of the rotating blade fixing member 6 is disposed in the central portion of the wind tunnel 19 near the discharge opening 16. Has been. With such a dimensional relationship, the stationary blade fixing member 21 does not become a great resistance to the wind flow generated by the rotation of the impeller 7.
  • the inner end portions 11B of the eight stationary blades 11 are fixed to the peripheral wall portion of the stationary blade fixing member 21.
  • the stationary blade fixing member 21 is fixed to the housing 3 by the eight stationary blades 11.
  • the stationary blade fixing member 21 supports a stator 23 (not shown) of the motor 9 and a bearing 23 that rotatably supports the rotating shaft 8.
  • the seven rotary blades 5 have a cross-sectional shape when the rotary blade 5 is cut in a direction orthogonal to the axial direction of the rotary shaft 8. Clockwise direction as seen in (A): counterclockwise direction as seen in Fig. 2 (B)]. Further, as shown in FIG.
  • the curved shape of the seven rotating blades 5 is a cross-sectional shape force when the rotating blade 5 is cut in the axial direction.
  • the curved shape is convex in the direction opposite to the rotating direction of the impeller 7. It is.
  • the stationary blade 11 has a cross-sectional shape when the stationary blade 11 is cut in a direction orthogonal to the axial direction, and a curved shape in which a concave portion is opened by directing in a direction opposite to the rotation direction have.
  • the curved shape of the eight stationary blades 11 is a curved shape in which the cross-sectional shape when the stationary blade 11 is cut in the axial direction is convex in the rotational direction.
  • the length dimension L2 of the side of the outer end portion 11A of the stationary blade 11 extending along the inner wall portion of the wind tunnel 19 is along the peripheral wall portion of the stationary blade fixing member 21.
  • the shape of the eight stationary blades 11 is determined so as to be longer than the length dimension L1 of the side of the inner end portion 11B of the stationary blade 11 extending.
  • the length dimension L1 of the inner end 11B side of one stationary blade 11 adjacent to the lead wire locking portion 25 described later is the length dimension of the inner end 11B side of the other stationary blade 11. It is shorter than L1. This is to achieve the purpose of drawing the lead wire 10 from the motor 9 side.
  • a method for determining the shape of the stationary blade 11 will be described with reference to FIG.
  • a virtual plane PS 1 is assumed.
  • a second virtual plane PS2 extending in the radial direction through the end portion 12B closest to the discharge opening 16 on the side of the outer end 11A of the stationary blade 11 and the center line CL is assumed.
  • a third virtual plane PS3 extending in the radial direction through the end portion 12C and the center line CL closest to the suction opening 14 on the side of the outer end 11A of the stationary blade 11 is assumed.
  • the direction of the force force from the first virtual plane PS1 to the second virtual plane PS2 and the direction of the force direction from the second virtual plane PS2 to the third virtual plane PS3 are opposite to the rotation direction of the impeller 7, respectively.
  • the angle ⁇ 1 between the first virtual plane PS1 and the second virtual plane PS2 is set to the angle ⁇ 2 between the second virtual plane PS2 and the third virtual plane PS3. Is bigger than.
  • the angle ⁇ 1 is about 30 degrees and the angle ⁇ 2 is 20 degrees.
  • a preferable range of the angle ⁇ 1 is 25 to 30 degrees, and a range of the angle ⁇ 2 is 15 to 20 degrees. With such dimensions, it becomes easy to design an axial fan with a large air volume and high static pressure.
  • the length L2 of the side of the outer end 11A of the stationary blade is 40% to 50% of the length L3 extending in the axial direction of the rotating blade 5. It is preferable to do. With such dimensions, it becomes easy to design an axial fan with a large air volume and high static pressure.
  • the lead 3 is provided with a lead wire locking portion 25 for locking the three lead wires 10.
  • the lead wire locking portion 25 is formed in the cylindrical portion 17 of the housing 3 adjacent to the outer end portion 11B of one adjacent stationary blade 11, and communicates the inside of the wind tunnel 19 with the outside of the housing 3.
  • the through-hole 27 and the slit 29 that is formed in the flange 15 of the housing 3 and communicates with the through-hole 27 and opens toward the other side in the axial direction are also configured. In this case, the width of the slit 29 is determined so that the three lead wires 10 that are accommodated in a guide groove 31 to be described later and go out through the through hole 27 do not easily come out of the slit 29.
  • the lead wire locking portion 25 When the lead wire locking portion 25 is configured in this manner, the lead wire 10 can be easily inserted into the guide groove 31 and the housing 3 can be pulled out to the outside.
  • the lead wire locking portion 26 for locking the lead wire 10 bent along the cylindrical portion 17 is also formed on the flange 13 of the housing 3.
  • FIG. 2 (A), FIG. 3, FIG. 11 and FIG. A guide wall portion 33 is provided between the stationary blade 11 and the guide wall portion 33 for accommodating the three lead wires 10 and forming a guide groove 31 for guiding the lead wire 10 to the lead wire engaging portion 25.
  • the guide wall 33 includes a first end 35 located on the suction opening 14 side, a second end 37 located on the discharge opening 16 side, and a wind tunnel. 19 includes a third end 39 located on the inner wall side and a fourth end 41 located on the stationary blade fixing member 21 side.
  • the first end 35 of the guide wall 33 is the inner wall of the wind tunnel 19
  • the force also extends toward the stationary blade fixing member 21 and is connected to the suction opening side end portion 11C of the stationary blade 11 located on the suction opening 14 side to constitute a connecting portion.
  • a guide groove 31 is formed between the guide wall 33 and the single stationary blade 11.
  • the third end 39 of the guide wall 33 is fixed to the inner wall of the wind tunnel 19. Also, the shape of the connecting portion between the first end 35 of the guide wall 33 and the suction opening side end 11C of the single stationary blade 11 is directed to the suction opening 14 as shown in FIG.
  • the thickness is set to be thinner. As a result, it can be suppressed that this connecting portion becomes a large resistance to the wind flow generated by the rotation of the impeller 7.
  • the second end portion 37 of the guide wall portion 33 is flush with the opening surface of the discharge opening portion 16.
  • the guide wall portion 33 extends from the first end portion 35 to the second end portion 37 so as to be substantially orthogonal to the opening surface of the discharge opening portion 16, that is, to be parallel to the rotation axis 8. ing.
  • the length L4 (see FIGS. 8 and 12) extending along the stationary blade 11 of the guide wall 33 is the flow of air generated by the rotation of the impeller 7.
  • This length is set to a length that can prevent a part of the air from actively flowing out of the housing 3 through the through hole 27. As a result, the wind that flows through the through hole 27 is substantially eliminated, and the generation of noise is reduced.
  • Fig. 14 shows the measurement results of the static pressure-air volume characteristics. The measurement was performed with the motor rotating speed set at 13000 rpm. As shown in FIG. 14, when the guide wall 33 is provided and the lead wire is accommodated in the guide groove 31, the air volume can be increased and the static pressure can be increased. confirmed.
  • guide groove When the sound pressure level when the lead wire is stored in 31 is Lp [dB (A)], the sound pressure level when the guide wall 33 is removed should be increased to Lp + 3 [dB (A)]. Was confirmed. Therefore, it was found that noise can be reduced if the guide wall 33 is provided.
  • Figure 15 shows the measurement results when the number of rotating blades (represented as moving blades in the figure) is fixed to 7 and the number of stationary blades (represented as stationary blades in the figure) is changed.
  • indicates the result of 7 and 8 rotating blades and stationary blades
  • indicates the case of 7 and 7 rotating blades and stationary blades.
  • the country shows the results of 7 and 6 rotating blades and stationary blades
  • X shows the results of 7 and 9 rotating blades and stationary blades.
  • FIGS. 15 and 16 show the measurement results when the number of rotating blades (represented as moving blades in the figure) was changed and the number of stationary blades (represented as stationary blades in the figure) was fixed to 8. .
  • shows the results of 7 and 8 rotating blades and stationary blades
  • shows the results of 8 and 8 rotating blades and stationary blades.
  • the country shows the results of 9 and 8 rotating blades and stationary blades
  • X shows the results of 6 and 8 rotating blades and stationary blades.
  • FIGS. 15 and 16 when the number of rotating blades 5 and stationary blades 11 is 7 and 8, both the air volume and the static pressure increase.
  • Table 1 below shows that the number of rotating blades (moving blades) is fixed and the number of stationary blades (stationary blades) is changed. The result of measuring the sound pressure level when the number of (static blades) is fixed is shown.
  • the sound pressure level of the sound pressure level when the guide wall 33 is removed when the sound pressure level when the lead wire is stored in the guide groove 31 is Lp [dB (A)]. Shown as change. In other words, 1 ⁇ + 5 [(18 (eight)) has a sound pressure level of 5 [dB (A) when the sound pressure level when the lead wire is stored in the guide groove 31 is Lp [dB (A)]. From Table 1, when the number of rotating blades (moving blades) and stationary blades (static blades) is 7 and 8, and 7 and 6 It can be seen that the sound pressure level increases in other cases, except that the sound pressure level is the same.
  • the air volume of the blower is increased compared to the conventional case, and the compressive force is also static.
  • the advantage that can be increased is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

An axial flow blower having an increased airflow volume and higher static pressure. Rotating blades (5) are arranged at equal intervals in the circumferential direction of a rotating shaft (8). Static blades (11) are arranged near a discharge opening (16) in a wind tunnel (19) of a housing (3). The static blades (11) are arranged at equal intervals in the circumferential direction of the rotating shaft (8). The number of the rotating blades is seven, and the number of the static blades (11) is eight.

Description

明 細 書  Specification
軸流送風機  Axial blower
技術分野  Technical field
[0001] 本発明は、電気機器等の内部の冷却等に用いる軸流送風機に関するものである。  [0001] The present invention relates to an axial blower used for cooling the inside of an electric device or the like.
背景技術  Background art
[0002] 電気機器が小さくなると、電気機器のケース内において空気が流れる空間は小さく なる。そのためケースの内部を冷却するために用いられる送風機としては、風量が多 く且つ静圧が高い特性を有する送風機が求められている。またこのような特性を有す る送風機では、できるだけ騒音を低減することも求められて 、る。  [0002] As the electrical equipment becomes smaller, the space through which air flows in the case of the electrical equipment becomes smaller. Therefore, as a blower used for cooling the inside of the case, a blower having a large air volume and a high static pressure is required. In addition, a fan having such characteristics is required to reduce noise as much as possible.
[0003] 例えば、米国特許第 6244818号公報または特開 2000— 257597号公報 (特許 文献 1)には、この要求に答えるために、 9枚の回転ブレードを備えたインペラを具備 し、吐き出し開口部側に 13枚の静止ブレードを備えた軸流送風機が示されている。 特許文献 1:特開 2000— 257597号公報(図 1及び図 4)  For example, US Pat. No. 6,244,818 or Japanese Patent Laid-Open No. 2000-257597 (Patent Document 1) includes an impeller provided with nine rotating blades in order to meet this requirement, and a discharge opening. An axial blower with 13 stationary blades on the side is shown. Patent Document 1: Japanese Patent Laid-Open No. 2000-257597 (FIGS. 1 and 4)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 複数枚の静止ブレードを設けると、前述の要求に答えることができることは確認され ている。し力しながら最近、用途によっては、既存の静止ブレードを備えた軸流送風 機よりも更に性能の高い送風機が要求される場合がある。 [0004] It has been confirmed that the provision of a plurality of stationary blades can meet the above requirements. However, recently, depending on the application, a fan with higher performance than an axial fan having an existing stationary blade may be required.
[0005] 本発明の目的は、従来よりも風量が多く且つ静圧が高い軸流送風機を提供するこ とにある。 [0005] An object of the present invention is to provide an axial blower having a larger air volume and a higher static pressure than conventional ones.
[0006] 本発明の他の目的は、従来よりも騒音を低減できる軸流送風機を提供することにあ る。  [0006] Another object of the present invention is to provide an axial blower that can reduce noise as compared with the prior art.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の軸流送風機は、ハウジングと、インペラと、インペラを回転させるモータと、 複数枚の静止ブレードとを備えている。ノ、ウジングは、回転軸の軸線方向の一方側 に吸い込み開口部及び軸線方向の他方側に吐き出し開口部を有する風洞を備えて いる。インペラは、風洞内において回転する複数枚の回転ブレードを備えている。複 数枚の回転ブレードは、回転軸の周方向に等しい間隔をあけて配置されている。そ してモータは、回転軸を中心にしてインペラを一方の回転方向に回転させる。複数枚 の静止ブレードは、風洞内の吐き出し開口部近傍に配置されている。そして複数枚 の静止ブレードは、回転軸の周方向に等しい間隔をあけて配置されている。本発明 の軸流送風機では、複数枚の回転ブレードの枚数を 7枚とし、複数枚の静止ブレード の枚数を 8枚とする。 [0007] An axial blower of the present invention includes a housing, an impeller, a motor that rotates the impeller, and a plurality of stationary blades. The winging includes a wind tunnel having a suction opening on one side in the axial direction of the rotating shaft and a discharge opening on the other side in the axial direction. The impeller includes a plurality of rotating blades that rotate in the wind tunnel. Duplicate Several rotating blades are arranged at equal intervals in the circumferential direction of the rotating shaft. The motor then rotates the impeller in one direction of rotation about the rotation axis. The plurality of stationary blades are arranged near the discharge opening in the wind tunnel. The plurality of stationary blades are arranged at equal intervals in the circumferential direction of the rotating shaft. In the axial blower of the present invention, the number of the plurality of rotating blades is seven, and the number of the plurality of stationary blades is eight.
[0008] 発明者は、回転ブレードの枚数と静止ブレードの枚数と送風機の特性との関係を 研究した。その結果、前述の各ブレードの枚数の組み合わせは、他のブレードの枚 数の組み合わせと比べて、送風機の風量を多くし静圧を高くできるものであることを 見出した。またこの組み合わせを採用すると、他の組み合わせよりも、騒音の発生を 低減できることも分力つた。したがって本発明の軸流送風機によれば、回転ブレード の枚数と静止ブレードの枚数の関係を前述の特定の関係とすることによって、従来と 比べて、送風機の風量を多くして、し力も静圧を高めることができる上、騒音の発生を 低減できる。  [0008] The inventor studied the relationship between the number of rotating blades, the number of stationary blades, and the characteristics of the blower. As a result, it was found that the combination of the number of blades described above can increase the air volume of the blower and increase the static pressure, compared with the combination of the number of blades. In addition, when this combination was adopted, the generation of noise was reduced compared to other combinations. Therefore, according to the axial blower of the present invention, by making the relationship between the number of rotating blades and the number of stationary blades the above-described specific relationship, the air volume of the blower is increased compared to the conventional case, and the force is also static pressure. And noise generation can be reduced.
[0009] 複数枚の回転ブレードは、軸線方向と直交する方向に回転ブレードを切断したとき の横断面形状が、インペラの一方の回転方向に向かって凹部が開口する湾曲形状 を有しているのが好ましい。この場合の複数枚の回転ブレードの湾曲形状は、軸線 方向に回転ブレードを切断したときの横断面形状が、回転方向と逆の方向に凸なる 湾曲形状である。また静止ブレードは、軸線方向と直交する方向に静止ブレードを切 断したときの横断面形状が、回転方向とは逆の方向に向力つて凹部が開口する湾曲 形状を有しているのが好ましい。この場合の複数枚の静止ブレードの湾曲形状は、 軸線方向に静止ブレードを切断したときの横断面形状力 回転方向に向かって凸と なる湾曲形状である。具体的に、各ブレードの形状を上記のように定めると、最大風 量を大きくして最大静圧を高めて、し力も吸い込み騒音を低減できる。  [0009] The plurality of rotating blades have a cross-sectional shape when the rotating blade is cut in a direction orthogonal to the axial direction, and a curved shape in which a concave portion opens in one rotation direction of the impeller. Is preferred. The curved shape of the plurality of rotating blades in this case is a curved shape in which the cross-sectional shape when the rotating blades are cut in the axial direction is convex in the direction opposite to the rotating direction. The stationary blade preferably has a cross-sectional shape when the stationary blade is cut in a direction perpendicular to the axial direction, and has a curved shape in which the concave portion is opened in a direction opposite to the rotational direction. . The curved shape of the plurality of stationary blades in this case is a curved shape that is convex in the direction of rotation of the cross-sectional shape force when the stationary blades are cut in the axial direction. Specifically, when the shape of each blade is determined as described above, the maximum air flow can be increased to increase the maximum static pressure, and the suction force can be reduced to reduce noise.
[0010] インペラは、複数枚の回転ブレードが周壁部に固定された回転ブレード固定部材 を備えている。また複数枚の静止ブレードは、それぞれ風洞の内壁部に固定された 外側端部と、この外側端部とは回転軸の径方向反対側に位置する内側端部とを有し ている。そして風洞内の吐き出し開口部近傍の中央部には、回転ブレード固定部材 の周壁部の外径寸法以下の外径寸法を有する周壁部を備えた静止ブレード固定部 材が配置されている。これによつて静止ブレード固定部材力 インペラの回転により 発生する風の流れに対して大きな抵抗になることはな 、。また複数枚の静止ブレード のそれぞれの内側端部は、静止ブレード固定部材の周壁部に固定されている。その 結果、静止ブレード固定部材は、複数枚の静止ブレードによってハウジングに対して 固定されることになる。このような静止ブレード固定部材には、モータの固定子と回転 軸を回転自在に支持する軸受を支持することができる。 The impeller includes a rotating blade fixing member in which a plurality of rotating blades are fixed to the peripheral wall portion. Each of the plurality of stationary blades has an outer end portion fixed to the inner wall portion of the wind tunnel, and an inner end portion located on the radially opposite side of the rotating shaft. In the center of the wind tunnel near the discharge opening, there is a rotating blade fixing member A stationary blade fixing member having a peripheral wall portion having an outer diameter dimension equal to or smaller than the outer diameter dimension of the peripheral wall portion is disposed. As a result, the stationary blade fixing member force does not become a great resistance to the wind flow generated by the impeller rotation. The inner end portions of the plurality of stationary blades are fixed to the peripheral wall portion of the stationary blade fixing member. As a result, the stationary blade fixing member is fixed to the housing by a plurality of stationary blades. Such a stationary blade fixing member can support a bearing that rotatably supports the stator and rotating shaft of the motor.
[0011] 具体的には、風洞の内壁部に沿って延びる静止ブレードの外側端部の辺の長さ寸 法力 静止ブレード固定部材の周壁部に沿って延びる静止ブレードの内側端部の辺 の長さ寸法よりも長くなるように、複数枚の静止ブレードの形状を定めるのが好ま ヽ [0011] Specifically, the length of the side of the outer end of the stationary blade that extends along the inner wall of the wind tunnel is measured. The length of the side of the inner end of the stationary blade that extends along the peripheral wall of the stationary blade fixing member It is preferable to define the shape of multiple stationary blades so that they are longer than the length.
。より好ましい静止ブレードの形状は、次のように定める。まず静止ブレードの内側端 部の辺の吐き出し開口部に最も近い位置にある端部分と回転軸の中心を通る中心 線とを通って径方向に延びる第 1の仮想平面を想定する。次に、静止ブレードが有 する外側端部の辺の吐き出し開口部に最も近い位置にある端部分と中心線とを通つ て径方向に延びる第 2の仮想平面を想定する。さらに静止ブレードの外側端部の辺 の吸 、込み開口部に最も近 、位置にある端部分と中心線とを通って径方向に延びる 第 3の仮想平面を想定する。そして第 1の仮想平面力 第 2の仮想平面に向力う方向 及び第 2の仮想平面力 第 3の仮想平面に向力う方向がそれぞれ、インペラの回転 方向とは反対方向になるように静止ブレードの形状を定める。このように静止ブレード の形状を定めると、必要な特性に応じて、静止ブレードの形状を定めることが容易に なる。この場合において、第 1の仮想平面と第 2の仮想平面との間の角度 θ 1を、第 2 の仮想平面と第 3の仮想平面との間の角度 Θ 2よりも大きくすると、風量が増えるとい う効果が得られる。なお好ましい角度 θ 1の範囲は 25〜30度であり、角度 Θ 2の範囲 は 15〜20度である。このような値にすると、風量が多く且つ静圧が高い軸流送風機 を設計することが容易になる。 . A more preferable shape of the stationary blade is determined as follows. First, assume a first virtual plane extending radially through an end portion closest to the discharge opening on the inner end side of the stationary blade and a center line passing through the center of the rotating shaft. Next, a second imaginary plane extending in the radial direction through the end portion and the center line located closest to the discharge opening on the side of the outer end having the stationary blade is assumed. Further, assume a third virtual plane extending in the radial direction through the end portion located near the suction edge of the stationary blade and the center opening and the center line. Then, the first virtual plane force and the second virtual plane force and the second virtual plane force are stationary so that the direction facing the third virtual plane is opposite to the impeller rotation direction. Determine the shape of the blade. If the shape of the stationary blade is determined in this way, it becomes easy to determine the shape of the stationary blade according to the required characteristics. In this case, if the angle θ 1 between the first virtual plane and the second virtual plane is larger than the angle Θ 2 between the second virtual plane and the third virtual plane, the air volume increases. The effect is obtained. A preferable range of the angle θ 1 is 25 to 30 degrees, and a range of the angle Θ 2 is 15 to 20 degrees. With such a value, it becomes easy to design an axial fan with a large air volume and a high static pressure.
[0012] また静止ブレードの外側端部の辺の長さ寸法は、回転ブレードの軸線方向に延び る長さ寸法の 40%〜50%にするのが好ましい。このような寸法にすると、風量が多く 且つ静圧が高!ヽ軸流送風機を設計することが容易になる。 [0013] モータに電力を供給するために電気コネクタを使用することなぐ複数本のリード線 を用いる場合がある。この場合に、ハウジングの外部に複数本のリード線を引き出す ためには、複数本のリード線が風洞内を通ることになる。またハウジングには、複数本 のリード線を係止するためのリード線係止部を設けることになる。このリード線係止部 は、ハウジングの吐き出し開口部を囲む壁部に設けられてモータに接続された複数 本のリード線を係止するように構成される。複数本のリード線の存在は、風量と静圧に 影響を与えるだけでなぐ騒音の発生原因となる。そこでこのような場合には、リード 線係止部に近接する一枚の静止ブレードとの間に複数本のリード線を収納し且つリ 一ド線係止部へとガイドするガイド溝を形成するガイド壁部を設けるのが好ま ヽ。こ のようなガイド壁部を設けて、ガイド溝内に複数本のリード線を収納すると、複数本の リード線の存在が、風量と静圧に悪影響を与え且つ騒音の発生源となることを低減で きる。 [0012] In addition, the length dimension of the outer end portion of the stationary blade is preferably 40% to 50% of the length dimension extending in the axial direction of the rotating blade. With such dimensions, it becomes easy to design a fan with a large air volume and high static pressure. [0013] In some cases, a plurality of lead wires are used without using an electrical connector to supply power to the motor. In this case, in order to draw a plurality of lead wires out of the housing, the plurality of lead wires pass through the wind tunnel. Further, the housing is provided with a lead wire locking portion for locking a plurality of lead wires. The lead wire locking portion is provided on a wall portion surrounding the discharge opening of the housing and is configured to lock a plurality of lead wires connected to the motor. The presence of multiple lead wires causes noise generation that not only affects airflow and static pressure. Therefore, in such a case, a guide groove for accommodating a plurality of lead wires and guiding them to the lead wire engaging portion is formed between one stationary blade adjacent to the lead wire engaging portion. A guide wall should be provided. If such a guide wall is provided and a plurality of lead wires are accommodated in the guide groove, the presence of the plurality of lead wires will adversely affect the air flow and static pressure and may be a source of noise. Can be reduced.
[0014] 前述のように、複数枚の静止ブレードは、それぞれ風洞の内壁部に固定された外 側端部と、この外側端部とは回転軸の径方向反対側に位置する内側端部とを有して いる。そして風洞内の吐き出し開口部近傍の中央部には、複数枚の静止ブレードの それぞれの内側端部が固定される周壁部を備えた静止ブレード固定部材が配置さ れている。ガイド壁部は、吐き出し開口部側に位置する第 1の端部と吸い込み開口部 側に位置する第 2の端部と、風洞の内壁部側に位置する第 3の端部と、静止ブレード 固定部材側に位置する第 4の端部とを備えている。そこでガイド壁部の第 1の端部は 、風洞の内壁部力 静止ブレード固定部材に向かって延び且つ吸い込み開口部側 に位置する一枚の静止ブレードの吸い込み開口部側端部と連結されて、ガイド壁部 と一枚の静止ブレードとの間にガイド溝を形成する。このよう〖こすると、ガイド壁部の 存在自体が、風量に対する静圧の関係に影響を与えること、及び騒音の発生源とな ることを抑 ff¾することができる。  [0014] As described above, each of the plurality of stationary blades includes an outer end portion fixed to the inner wall portion of the wind tunnel, and an inner end portion positioned on the radially opposite side of the rotating shaft from the outer end portion. have. A stationary blade fixing member having a peripheral wall portion to which the inner end portions of the plurality of stationary blades are fixed is disposed at the central portion near the discharge opening in the wind tunnel. The guide wall has a first end located on the discharge opening side, a second end located on the suction opening side, a third end located on the inner wall side of the wind tunnel, and a stationary blade fixed And a fourth end located on the member side. Therefore, the first end portion of the guide wall portion is connected to the suction opening side end portion of one stationary blade that extends toward the stationary blade fixing member of the inner wall portion of the wind tunnel and is located on the suction opening side, A guide groove is formed between the guide wall and one stationary blade. By rubbing in this way, it is possible to suppress the presence of the guide wall portion itself from affecting the relationship between the static pressure and the air volume, and becoming a noise generation source.
[0015] なおガイド壁部の第 3の端部は風洞の内壁部に固定するのが好ましい。このような 構造にすると、ガイド壁部の機械的強度を高めることができる。  [0015] Note that the third end of the guide wall is preferably fixed to the inner wall of the wind tunnel. With such a structure, the mechanical strength of the guide wall can be increased.
[0016] またガイド壁部の第 1の端部と一枚の静止ブレードの吸 、込み開口部側端部との 連結部の形状は、吸い込み開口部に向かうに従って厚みが薄くなるように定めるの が好ましい。このようにすると連結部力 インペラの回転により発生する風の流れに対 する大きな抵抗となるのを抑制することができる。 [0016] Further, the shape of the connecting portion between the first end portion of the guide wall portion and the suction of the single stationary blade and the end portion on the suction opening side is determined so that the thickness becomes thinner toward the suction opening portion. Is preferred. In this way, it is possible to suppress a large resistance against the wind flow generated by the rotation of the connecting portion force impeller.
[0017] さらにガイド壁部の第 2の端部を、吐き出し開口部の開口面と面一にするのが好ま しい。この場合、ガイド壁部は吐き出し開口部の開口面と実質的に直交するように第 1の端部力も第 2の端部まで延びて 、るのが好ま 、。このようにガイド壁部を設ける と、風の流れに対するガイド壁部の存在により発生する抵抗をより小さなものとするこ とがでさる。  [0017] Furthermore, it is preferable that the second end of the guide wall is flush with the opening surface of the discharge opening. In this case, it is preferable that the first end force also extends to the second end so that the guide wall portion is substantially orthogonal to the opening surface of the discharge opening. When the guide wall is provided in this way, the resistance generated by the presence of the guide wall against the wind flow can be reduced.
[0018] なおリード線係止部は、一枚の静止ブレードの外側端部に隣接してハウジングに形 成され、風洞の内部とハウジングの外部とを連通する貫通孔と、ハウジングに形成さ れて貫通孔と連通し且つ軸線方向の他方側に向力つて開口するスリットとから構成す ることができる。この場合、スリットの大きさは、ガイド溝内に収納されて貫通孔カゝら外 部に出る複数本のリード線が容易にスリットから抜け出な 、ように定める。リード線係 止部をこのように構成すると、ガイド溝へのリード線の挿入とハウジング外部へのリー ド線の引き出し作業とが容易になる。なおこのようにリード線係止部を構成した場合に は、ガイド壁部の第 3の端部は風洞の内壁部に固定するのが好ましい。そしてガイド 壁部の静止ブレードに沿って延びる長さは、インペラの回転により発生した空気の流 れの一部が貫通孔を通して積極的にハウジングの外部に流れ出すのを阻止できる 長さに定めるのが好ましい。このようにすると、貫通孔を通って流れ出る風が実質的 に無くなって、騒音の発生を低減できる。  [0018] The lead wire locking portion is formed in the housing adjacent to the outer end portion of one stationary blade, and is formed in the housing and a through hole that communicates the inside of the wind tunnel and the outside of the housing. And a slit that communicates with the through-hole and opens to the other side in the axial direction. In this case, the size of the slit is determined so that a plurality of lead wires that are accommodated in the guide groove and go out to the outside through the through hole cap do not easily come out of the slit. When the lead wire engaging portion is configured in this way, the lead wire can be easily inserted into the guide groove and pulled out of the housing. When the lead wire locking portion is configured in this way, it is preferable that the third end portion of the guide wall portion is fixed to the inner wall portion of the wind tunnel. The length of the guide wall extending along the stationary blade should be set to a length that prevents a part of the air flow generated by the rotation of the impeller from actively flowing out of the housing through the through hole. preferable. In this way, the wind that flows through the through hole is substantially eliminated, and noise generation can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1] (A)は本発明の実施の形態の一例の軸流送風機を正面右側斜め上方力 見 た斜視図であり、(B)は軸流送風機の背面左側斜め上方力 見た斜視図であり、 (C )は 3本のリード線を除いた実施の形態の軸流送風機を正面右側斜め上方から見た 斜視図である。  FIG. 1A is a perspective view of an axial flow fan as an example of an embodiment of the present invention when viewed from the front right side oblique upward force, and FIG. 1B is a rear left side diagonal upward force view of the axial flow fan. (C) is a perspective view of the axial blower of the embodiment excluding three lead wires as viewed from the diagonally upper front right side.
[図 2] (A)及び (B)は、図 1の実施の形態でモータ側のシールを外した状態の正面図 及び背面図である。  FIG. 2 (A) and (B) are a front view and a rear view of the embodiment shown in FIG. 1 with the motor-side seal removed.
[図 3]3本のリード線とシールを外した状態の軸流送風機の平面図である。  FIG. 3 is a plan view of an axial blower with three lead wires and a seal removed.
[図 4]図 2 (A)に示した軸流送風機の右側面図である。 [図 5]回転ブレードと静止ブレードとの関係を説明するために用いる図である。 FIG. 4 is a right side view of the axial blower shown in FIG. 2 (A). FIG. 5 is a diagram used for explaining the relationship between a rotating blade and a stationary blade.
[図 6]回転ブレードと静止ブレードとの関係を説明するために用いる図である。  FIG. 6 is a diagram used for explaining the relationship between a rotating blade and a stationary blade.
[図 7]図 4のモータの内部構造を省略した A— A線断面図である。  FIG. 7 is a cross-sectional view taken along line AA, with the internal structure of the motor of FIG. 4 omitted.
[図 8]図 4の B - B線断端面である。  [FIG. 8] This is a cross-sectional view taken along line B-B in FIG.
[図 9]図 4のモータの内部構造を省略した C C線断面図である。  FIG. 9 is a cross-sectional view taken along line CC with the internal structure of the motor of FIG. 4 omitted.
[図 10]図 3の D— D線断面図である。  FIG. 10 is a cross-sectional view taken along the line D-D in FIG.
[図 11]図 3の E—E線断面図である。  FIG. 11 is a cross-sectional view taken along line EE of FIG.
[図 12]図 3の F—F線断面図である。  FIG. 12 is a cross-sectional view taken along line FF in FIG.
[図 13]図 3の G— G線断面図である。  FIG. 13 is a cross-sectional view taken along line GG in FIG.
[図 14]ガイド壁部を設けた場合と設けない場合について、静圧—風量の特性を測定 した結果を示す図である。  FIG. 14 is a diagram showing the results of measuring the static pressure-air volume characteristics with and without the guide wall.
[図 15]回転ブレード (動翼)の枚数を 7枚に固定して、静止ブレード (静翼)の枚数を 変えた場合の測定結果を示す図である。  FIG. 15 is a diagram showing the measurement results when the number of rotating blades (moving blades) is fixed to 7 and the number of stationary blades (stationary blades) is changed.
[図 16]回転ブレード (動翼)の枚数を変え、静止ブレード (静翼)の枚数を 8枚に固定 した場合の測定結果を示す図である。  FIG. 16 is a diagram showing measurement results when the number of rotating blades (moving blades) is changed and the number of stationary blades (stationary blades) is fixed to eight.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、図面を参照して本発明の軸流送風機の実施の形態の一例を詳細に説明す る。図 1 (A)は、本発明の実施の形態の一例の軸流送風機 1を正面右側斜め上方か ら見た斜視図であり、図 1 (B)は軸流送風機 1の背面左側斜め上方力 見た斜視図 であり、図 1 (C)は 3本のリード線 10を除いた実施の形態の軸流送風機 1を正面右側 斜め上方力も見た斜視図である。また図 2 (A)及び (B)は、図 1の実施の形態でモー タ 9側のシール 2を外した状態の正面図及び背面図である。図 3は、 3本のリード線 1 0とシール 2を外した状態の軸流送風機 1の平面図である。そして図 4は、図 2 (A)に 示した軸流送風機 1の右側面図である。また図 5及び図 6は、後述する回転ブレード 5と静止ブレード 11との関係を説明するために用いる図である。そして図 7、図 8及び 図 9は、図 4のモータの内部構造を省略した A— A線断面図、 B— B線断面図及びモ ータの内部構造を省略した C C線断面図である。  Hereinafter, an example of an embodiment of an axial blower of the present invention will be described in detail with reference to the drawings. FIG. 1 (A) is a perspective view of an axial blower 1 as an example of an embodiment of the present invention as seen from diagonally upward on the front right side, and FIG. FIG. 1 (C) is a perspective view of the axial blower 1 of the embodiment excluding three lead wires 10 and also seeing the diagonally upward force on the front right side. FIGS. 2A and 2B are a front view and a rear view of the embodiment shown in FIG. 1 with the motor 2 side seal 2 removed. FIG. 3 is a plan view of the axial blower 1 with the three lead wires 10 and the seal 2 removed. FIG. 4 is a right side view of the axial blower 1 shown in FIG. 2 (A). 5 and 6 are diagrams used to explain the relationship between the rotating blade 5 and the stationary blade 11 described later. FIGS. 7, 8 and 9 are cross-sectional views taken along the lines AA, B-B and the internal structure of the motor, respectively, with the internal structure of the motor shown in FIG. 4 omitted. .
[0021] これらの図において、軸流送風機 1は、ハウジング 3と、ハウジング 3内に配置されて 回転する 7枚の回転ブレード 5を備えたインペラ 7と、インペラ 7が装着される回転軸 8 を備えたモータ 9と、 8枚の静止ブレード 11とを有している。ハウジング 3は、図 1及び 図 2に示すように、回転軸 8の軸線が延びる方向(軸線方向)の一方側に環状の吸!、 込み側フランジ 13を有し、軸線方向の他方側に環状の吐き出し側フランジ 15を有し ている。またハウジング 3は、両フランジ 13, 15の間に筒部 17を有している。フランジ 13とフランジ 15と筒部 17のそれぞれの内部空間により、風洞 19が構成されている。 In these drawings, an axial blower 1 is disposed in a housing 3 and the housing 3. An impeller 7 having seven rotating blades 5 that rotate, a motor 9 having a rotating shaft 8 on which the impeller 7 is mounted, and eight stationary blades 11 are provided. As shown in FIGS. 1 and 2, the housing 3 has an annular suction on one side in the direction in which the axis of the rotary shaft 8 extends (axial direction)! The inlet side flange 13 is provided, and the annular discharge side flange 15 is provided on the other side in the axial direction. The housing 3 has a cylindrical portion 17 between both flanges 13 and 15. A wind tunnel 19 is formed by the internal spaces of the flange 13, the flange 15, and the cylindrical portion 17.
[0022] 吸い込み側フランジ 13は、ほぼ四角い輪郭形状を有しており、内部にほぼ円形の 吸い込み開口部 14を有している。また、吸い込み側フランジ 13は、 4つの角部に平 坦面 13aをそれぞれ有しており、この 4つの角部には、取付用螺子が貫通する貫通 孔 13bがそれぞれ形成されている。  The suction side flange 13 has a substantially square outline shape, and has a substantially circular suction opening 14 inside. Further, the suction side flange 13 has flat surfaces 13a at four corners, and through holes 13b through which mounting screws pass are formed at the four corners, respectively.
[0023] 吐き出し側フランジ 15も、ほぼ四角い輪郭形状を有しており、内部にほぼ円形の吐 き出し開口部 16を有している。また吐き出し側フランジ 15は、 4つの角部に平坦面 1 5aをそれぞれ有しており、この 4つの角部には、取付用螺子が貫通する貫通孔 15b がそれぞれ形成されている。  The discharge-side flange 15 also has a substantially square outline shape, and has a substantially circular discharge opening 16 inside. The discharge-side flange 15 has flat surfaces 15a at four corners, and through holes 15b through which mounting screws pass are formed at the four corners, respectively.
[0024] インペラ 7は、 7枚の回転ブレード 5が周壁部に固定されたカップ状の回転ブレード 固定部材 6を備えている。回転ブレード固定部材 6の周壁部の内側には、モータ 9の 回転子の一部を構成する複数の永久磁石が固定されている。  The impeller 7 includes a cup-shaped rotating blade fixing member 6 in which seven rotating blades 5 are fixed to a peripheral wall portion. A plurality of permanent magnets constituting a part of the rotor of the motor 9 are fixed inside the peripheral wall portion of the rotary blade fixing member 6.
[0025] また 8枚の静止ブレード 11は、図 2 (A)及び図 3に示すように、それぞれ風洞 19の 内壁部に固定された外側端部 11 Aと、この外側端部 11 Aとは回転軸 8の径方向反 対側に位置する内側端部 11Bとを有している。そして風洞 19内の吐き出し開口部 16 近傍の中央部には、回転ブレード固定部材 6の周壁部の外径寸法以下の外径寸法 を有する周壁部を備えたカップ状の静止ブレード固定部材 21が配置されている。こ のような寸法関係にすると、静止ブレード固定部材 21は、インペラ 7の回転により発 生する風の流れに対して大きな抵抗になることはない。また 8枚の静止ブレード 11の それぞれの内側端部 11Bは、静止ブレード固定部材 21の周壁部に固定されている 。その結果、静止ブレード固定部材 21は、 8枚の静止ブレード 11によってハウジング 3に対して固定されている。静止ブレード固定部材 21には、モータ 9の図示しない固 定子と回転軸 8を回転自在に支持する軸受 23が支持されて 、る。 [0026] 7枚の回転ブレード 5は、図 5に示すように、回転軸 8の軸線方向と直交する方向に 回転ブレード 5を切断したときの横断面形状が、インペラ 7の回転方向 [図 2 (A)で見 た時計回り方向:図 2 (B)で見た反時計回り方向]に向かって凹部が開口する湾曲形 状を有している。また図 6に示すように、 7枚の回転ブレード 5の湾曲形状は、軸線方 向に回転ブレード 5を切断したときの横断面形状力 インペラ 7の回転方向と逆の方 向に凸なる湾曲形状である。また静止ブレード 11は、図 5に示すように、軸線方向と 直交する方向に静止ブレード 11を切断したときの横断面形状が、回転方向とは逆の 方向に向力つて凹部が開口する湾曲形状を有している。また図 6に示すように、 8枚 の静止ブレード 11の湾曲形状は、軸線方向に静止ブレード 11を切断したときの横断 面形状が、回転方向に向力つて凸となる湾曲形状である。 In addition, as shown in FIGS. 2 (A) and 3, the eight stationary blades 11 include an outer end portion 11 A fixed to the inner wall portion of the wind tunnel 19 and the outer end portion 11 A. And an inner end portion 11B located on the opposite side of the rotary shaft 8 in the radial direction. A cup-shaped stationary blade fixing member 21 having a peripheral wall portion having an outer diameter less than or equal to the outer diameter of the peripheral wall portion of the rotating blade fixing member 6 is disposed in the central portion of the wind tunnel 19 near the discharge opening 16. Has been. With such a dimensional relationship, the stationary blade fixing member 21 does not become a great resistance to the wind flow generated by the rotation of the impeller 7. The inner end portions 11B of the eight stationary blades 11 are fixed to the peripheral wall portion of the stationary blade fixing member 21. As a result, the stationary blade fixing member 21 is fixed to the housing 3 by the eight stationary blades 11. The stationary blade fixing member 21 supports a stator 23 (not shown) of the motor 9 and a bearing 23 that rotatably supports the rotating shaft 8. As shown in FIG. 5, the seven rotary blades 5 have a cross-sectional shape when the rotary blade 5 is cut in a direction orthogonal to the axial direction of the rotary shaft 8. Clockwise direction as seen in (A): counterclockwise direction as seen in Fig. 2 (B)]. Further, as shown in FIG. 6, the curved shape of the seven rotating blades 5 is a cross-sectional shape force when the rotating blade 5 is cut in the axial direction. The curved shape is convex in the direction opposite to the rotating direction of the impeller 7. It is. In addition, as shown in FIG. 5, the stationary blade 11 has a cross-sectional shape when the stationary blade 11 is cut in a direction orthogonal to the axial direction, and a curved shape in which a concave portion is opened by directing in a direction opposite to the rotation direction have. Further, as shown in FIG. 6, the curved shape of the eight stationary blades 11 is a curved shape in which the cross-sectional shape when the stationary blade 11 is cut in the axial direction is convex in the rotational direction.
[0027] また図 6及び図 10に示すように、風洞 19の内壁部に沿って延びる静止ブレード 11 の外側端部 11Aの辺の長さ寸法 L2は、静止ブレード固定部材 21の周壁部に沿って 延びる静止ブレード 11の内側端部 11Bの辺の長さ寸法 L1よりも長くなるように、 8枚 の静止ブレード 11の形状が定められている。なお後に説明するリード線係止部 25に 隣接する一枚の静止ブレード 11の内側端部 11Bの辺の長さ寸法 L1は、その他の静 止ブレード 11の内側端部 11Bの辺の長さ寸法 L1よりも短くなつている。これはリード 線 10をモータ 9側から引き出す目的を達成するためである。  Further, as shown in FIGS. 6 and 10, the length dimension L2 of the side of the outer end portion 11A of the stationary blade 11 extending along the inner wall portion of the wind tunnel 19 is along the peripheral wall portion of the stationary blade fixing member 21. The shape of the eight stationary blades 11 is determined so as to be longer than the length dimension L1 of the side of the inner end portion 11B of the stationary blade 11 extending. The length dimension L1 of the inner end 11B side of one stationary blade 11 adjacent to the lead wire locking portion 25 described later is the length dimension of the inner end 11B side of the other stationary blade 11. It is shorter than L1. This is to achieve the purpose of drawing the lead wire 10 from the motor 9 side.
[0028] 図 3を参照して静止ブレード 11の形状の定め方について説明する。まず静止ブレ ード 11の内側端部 11Bの辺の吐き出し開口部 16に最も近 、位置にある端部分 12A と回転軸 8の中心を通る中心線 CLとを通って径方向に延びる第 1の仮想平面 PS 1を 想定する。次に、静止ブレード 11が有する外側端部 11Aの辺の吐き出し開口部 16 に最も近い位置にある端部分 12Bと中心線 CLとを通って径方向に延びる第 2の仮 想平面 PS2を想定する。さらに静止ブレード 11の外側端部 11Aの辺の吸い込み開 口部 14に最も近 、位置にある端部分 12Cと中心線 CLとを通って径方向に延びる第 3の仮想平面 PS3を想定する。そして第 1の仮想平面 PS1から第 2の仮想平面 PS2 に向力 方向及び第 2の仮想平面 PS2から第 3の仮想平面 PS3に向力 方向がそれ ぞれ、インペラ 7の回転方向とは反対方向になるように各静止ブレード 11の形状を定 める。このように静止ブレード 11の形状を定めると、必要な特性に応じて、静止ブレ ード 11の形状を定めることが容易になる。この実施の形態においては、第 1の仮想平 面 PS1と第 2の仮想平面 PS2との間の角度 θ 1を、第 2の仮想平面 PS2と第 3の仮想 平面 PS3との間の角度 Θ 2よりも大きくしている。具体的には、角度 θ 1が約 30度で あり、角度 Θ 2が 20度である。なお好ましい角度 θ 1の範囲は 25〜30度であり、角度 Θ 2の範囲は 15〜20度である。このような寸法にすると、風量が多く且つ静圧が高い 軸流送風機を設計することが容易になる。 A method for determining the shape of the stationary blade 11 will be described with reference to FIG. First, the first end extending in the radial direction through the end portion 12A located closest to the discharge opening 16 on the side of the inner end 11B of the stationary blade 11 and the center line CL passing through the center of the rotary shaft 8 A virtual plane PS 1 is assumed. Next, a second virtual plane PS2 extending in the radial direction through the end portion 12B closest to the discharge opening 16 on the side of the outer end 11A of the stationary blade 11 and the center line CL is assumed. . Furthermore, a third virtual plane PS3 extending in the radial direction through the end portion 12C and the center line CL closest to the suction opening 14 on the side of the outer end 11A of the stationary blade 11 is assumed. The direction of the force force from the first virtual plane PS1 to the second virtual plane PS2 and the direction of the force direction from the second virtual plane PS2 to the third virtual plane PS3 are opposite to the rotation direction of the impeller 7, respectively. Determine the shape of each stationary blade 11 so that When the shape of the stationary blade 11 is determined in this way, the stationary blade 11 is It becomes easy to define the shape of the card 11. In this embodiment, the angle θ 1 between the first virtual plane PS1 and the second virtual plane PS2 is set to the angle θ 2 between the second virtual plane PS2 and the third virtual plane PS3. Is bigger than. Specifically, the angle θ 1 is about 30 degrees and the angle Θ 2 is 20 degrees. A preferable range of the angle θ 1 is 25 to 30 degrees, and a range of the angle Θ 2 is 15 to 20 degrees. With such dimensions, it becomes easy to design an axial fan with a large air volume and high static pressure.
[0029] また図 6及び図 10に示すように、静止ブレードの外側端部 11 Aの辺の長さ寸法 L2 は、回転ブレード 5の軸線方向に延びる長さ寸法 L3の 40%〜50%にするのが好ま しい。このような寸法にすると、風量が多く且つ静圧が高い軸流送風機を設計するこ とが容易になる。 [0029] As shown in FIGS. 6 and 10, the length L2 of the side of the outer end 11A of the stationary blade is 40% to 50% of the length L3 extending in the axial direction of the rotating blade 5. It is preferable to do. With such dimensions, it becomes easy to design an axial fan with a large air volume and high static pressure.
[0030] ノ、ウジング 3には、 3本のリード線 10を係止するためのリード線係止部 25が設けら れている。このリード線係止部 25は、隣接する一枚の静止ブレード 11の外側端部 11 Bに隣接してハウジング 3の筒部 17に形成され、風洞 19の内部とハウジング 3の外部 とを連通する貫通孔 27と、ハウジング 3のフランジ 15に形成されて貫通孔 27と連通し 且つ軸線方向の他方側に向かって開口するスリット 29と力も構成されている。この場 合、スリット 29の幅寸法は、後に説明するガイド溝 31内に収納されて貫通孔 27から 外部に出る 3本のリード線 10が容易にスリット 29から抜け出な 、ように定められて 、る 。リード線係止部 25をこのように構成すると、ガイド溝 31へのリード線 10の挿入とハウ ジング 3外部へのリード線 10の引き出し作業が容易になる。なお本実施の形態では 、ハウジング 3のフランジ 13にも、筒部 17に沿って曲げられたリード線 10を係止する リード線係止部 26が形成されている。  [0030] The lead 3 is provided with a lead wire locking portion 25 for locking the three lead wires 10. The lead wire locking portion 25 is formed in the cylindrical portion 17 of the housing 3 adjacent to the outer end portion 11B of one adjacent stationary blade 11, and communicates the inside of the wind tunnel 19 with the outside of the housing 3. The through-hole 27 and the slit 29 that is formed in the flange 15 of the housing 3 and communicates with the through-hole 27 and opens toward the other side in the axial direction are also configured. In this case, the width of the slit 29 is determined so that the three lead wires 10 that are accommodated in a guide groove 31 to be described later and go out through the through hole 27 do not easily come out of the slit 29. The When the lead wire locking portion 25 is configured in this manner, the lead wire 10 can be easily inserted into the guide groove 31 and the housing 3 can be pulled out to the outside. In the present embodiment, the lead wire locking portion 26 for locking the lead wire 10 bent along the cylindrical portion 17 is also formed on the flange 13 of the housing 3.
[0031] 本実施の形態では、図 1 (A)及び (C)、図 2 (A)、図 3、図 11及び図 12に示すよう に、リード線係止部 25に近接する一枚の静止ブレード 11との間に 3本のリード線 10 を収納し且つリード線係止部 25へとガイドするガイド溝 31を形成するガイド壁部 33を 備えている。特に、図 12に示されるように、このガイド壁部 33は、吸い込み開口部 14 側に位置する第 1の端部 35と吐き出し開口部 16側に位置する第 2の端部 37と、風 洞 19の内壁部側に位置する第 3の端部 39と、静止ブレード固定部材 21側に位置す る第 4の端部 41とを備えている。ガイド壁部 33の第 1の端部 35は、風洞 19の内壁部 力も静止ブレード固定部材 21に向力つて延び且つ吸い込み開口部 14側に位置す る静止ブレード 11の吸い込み開口部側端部 11Cと連結されて、連結部が構成され ている。その結果、ガイド壁部 33と一枚の静止ブレード 11との間にガイド溝 31が形 成される。 In the present embodiment, as shown in FIGS. 1 (A) and (C), FIG. 2 (A), FIG. 3, FIG. 11 and FIG. A guide wall portion 33 is provided between the stationary blade 11 and the guide wall portion 33 for accommodating the three lead wires 10 and forming a guide groove 31 for guiding the lead wire 10 to the lead wire engaging portion 25. In particular, as shown in FIG. 12, the guide wall 33 includes a first end 35 located on the suction opening 14 side, a second end 37 located on the discharge opening 16 side, and a wind tunnel. 19 includes a third end 39 located on the inner wall side and a fourth end 41 located on the stationary blade fixing member 21 side. The first end 35 of the guide wall 33 is the inner wall of the wind tunnel 19 The force also extends toward the stationary blade fixing member 21 and is connected to the suction opening side end portion 11C of the stationary blade 11 located on the suction opening 14 side to constitute a connecting portion. As a result, a guide groove 31 is formed between the guide wall 33 and the single stationary blade 11.
[0032] ガイド壁部 33の第 3の端部 39は風洞 19の内壁部に固定されている。またガイド壁 部 33の第 1の端部 35と一枚の静止ブレード 11の吸い込み開口部側端部 11Cとの連 結部の形状は、図 13に示すように、吸い込み開口部 14に向力 に従って厚みが薄く なるように定められている。その結果、この連結部がインペラ 7の回転により発生する 風の流れに対する大きな抵抗となるのを抑制することができる。  The third end 39 of the guide wall 33 is fixed to the inner wall of the wind tunnel 19. Also, the shape of the connecting portion between the first end 35 of the guide wall 33 and the suction opening side end 11C of the single stationary blade 11 is directed to the suction opening 14 as shown in FIG. The thickness is set to be thinner. As a result, it can be suppressed that this connecting portion becomes a large resistance to the wind flow generated by the rotation of the impeller 7.
[0033] さらに本実施の形態では、ガイド壁部 33の第 2の端部 37を、吐き出し開口部 16の 開口面と面一にしている。この場合、ガイド壁部 33は吐き出し開口部 16の開口面と 実質的に直交するように、即ち回転軸 8と平行になるように、第 1の端部 35から第 2の 端部 37まで延びている。このようにガイド壁部 33を設けると、風の流れに対するガイ ド壁部 33の存在により発生する抵抗をより小さなものとすることができる。その結果、 このようなガイド壁部 33を設けて、ガイド溝内に複数本のリード線を収納すると、複数 本のリード線の存在が、風量と静圧に悪影響を与え且つ騒音の発生源となることを低 減できる。  Furthermore, in the present embodiment, the second end portion 37 of the guide wall portion 33 is flush with the opening surface of the discharge opening portion 16. In this case, the guide wall portion 33 extends from the first end portion 35 to the second end portion 37 so as to be substantially orthogonal to the opening surface of the discharge opening portion 16, that is, to be parallel to the rotation axis 8. ing. When the guide wall 33 is provided in this way, the resistance generated by the presence of the guide wall 33 against the wind flow can be made smaller. As a result, when such a guide wall 33 is provided and a plurality of lead wires are accommodated in the guide groove, the presence of the plurality of lead wires adversely affects the air flow and static pressure, and is a source of noise. Can be reduced.
[0034] なお本実施の形態にお!、ては、ガイド壁部 33の静止ブレード 11に沿って延びる長 さ L4 (図 8及び図 12参照)は、インペラ 7の回転により発生した空気の流れの一部が 貫通孔 27を通して積極的にハウジング 3の外部に流れ出すのを阻止できる長さに定 めてある。その結果、貫通孔 27を通って流れ出る風が実質的に無くなって、騒音の 発生を低減している。  Note that in this embodiment, the length L4 (see FIGS. 8 and 12) extending along the stationary blade 11 of the guide wall 33 is the flow of air generated by the rotation of the impeller 7. This length is set to a length that can prevent a part of the air from actively flowing out of the housing 3 through the through hole 27. As a result, the wind that flows through the through hole 27 is substantially eliminated, and the generation of noise is reduced.
[0035] 次に、ガイド壁部 33を設けることによる効果を確認するために、ガイド壁部 33を設 けた場合と、設けない場合とで、静圧一風量の特性を測定し、また音圧レベルを測定 した。静圧—風量の特性の測定結果を図 14に示す。なお測定は、モータの回転速 度を 13000rpm—定にして行った。図 14からわ力るように、ガイド壁部 33を設けてガ イド溝 31内にリード線を収納した場合のほうが、風量を増加させることができて、しか も静圧を高めることができることが確認された。なお音圧レベルについては、ガイド溝 31にリード線を収納したときの音圧レベルを Lp [dB (A) ]としたときに、ガイド壁部 33 を除去した場合の音圧レベルは Lp + 3 [dB (A) ]と上がることが確認された。したがつ てガイド壁部 33を設けると、騒音も低減できることが判った。 [0035] Next, in order to confirm the effect of providing the guide wall 33, the characteristics of the static pressure and the air flow rate are measured with and without the guide wall 33, and the sound pressure is measured. The level was measured. Fig. 14 shows the measurement results of the static pressure-air volume characteristics. The measurement was performed with the motor rotating speed set at 13000 rpm. As shown in FIG. 14, when the guide wall 33 is provided and the lead wire is accommodated in the guide groove 31, the air volume can be increased and the static pressure can be increased. confirmed. For sound pressure level, guide groove When the sound pressure level when the lead wire is stored in 31 is Lp [dB (A)], the sound pressure level when the guide wall 33 is removed should be increased to Lp + 3 [dB (A)]. Was confirmed. Therefore, it was found that noise can be reduced if the guide wall 33 is provided.
[0036] 次に、回転ブレード 5の枚数と静止ブレード 11の枚数を変更して、本実施の形態の 軸流送風機の特性が優れていることを確認するための試験を行った。図 15は、回転 ブレード(図では動翼と表記する)の枚数を 7枚に固定して、静止ブレード(図では静 翼と表記する)の枚数を変えた場合の測定結果を示している。図 15においては、參 は回転ブレードと静止ブレードの枚数が 7枚と 8枚の結果を示しており、▲は回転ブ レードと静止ブレードの枚数が 7枚と 7枚の場合を示しており、國は回転ブレードと静 止ブレードの枚数が 7枚と 6枚の結果を示しており、 Xは回転ブレードと静止ブレード の枚数が 7枚と 9枚の結果を示している。また図 16は、回転ブレード(図では動翼と表 記する)の枚数を変え、静止ブレード(図では静翼と表記する)の枚数を 8枚に固定し た場合の測定結果を示している。図 16においては、參は回転ブレードと静止ブレー ドの枚数が 7枚と 8枚の結果を示しており、▲は回転ブレードと静止ブレードの枚数が 8枚と 8枚の場合を示しており、國は回転ブレードと静止ブレードの枚数が 9枚と 8枚 の結果を示しており、 Xは回転ブレードと静止ブレードの枚数が 6枚と 8枚の結果を 示している。また図 15及び図 16を見ると判るように、回転ブレード 5と静止ブレード 1 1の枚数が 7枚と 8枚の場合が、風量及び静圧共に大きくなる。  Next, a test was performed to confirm that the characteristics of the axial blower of the present embodiment are excellent by changing the number of rotating blades 5 and the number of stationary blades 11. Figure 15 shows the measurement results when the number of rotating blades (represented as moving blades in the figure) is fixed to 7 and the number of stationary blades (represented as stationary blades in the figure) is changed. In Fig. 15, 參 indicates the result of 7 and 8 rotating blades and stationary blades, and ▲ indicates the case of 7 and 7 rotating blades and stationary blades. The country shows the results of 7 and 6 rotating blades and stationary blades, and X shows the results of 7 and 9 rotating blades and stationary blades. Fig. 16 shows the measurement results when the number of rotating blades (represented as moving blades in the figure) was changed and the number of stationary blades (represented as stationary blades in the figure) was fixed to 8. . In Fig. 16, 參 shows the results of 7 and 8 rotating blades and stationary blades, and ▲ shows the results of 8 and 8 rotating blades and stationary blades. The country shows the results of 9 and 8 rotating blades and stationary blades, and X shows the results of 6 and 8 rotating blades and stationary blades. As can be seen from FIGS. 15 and 16, when the number of rotating blades 5 and stationary blades 11 is 7 and 8, both the air volume and the static pressure increase.
[0037] また下記の表 1は、回転ブレード (動翼)の枚数を固定し、静止ブレード (静翼)の枚 数を変えた場合と、回転ブレード (動翼)の枚数を変え、静止ブレード (静翼)の枚数 を固定した場合にっ 、て、音圧レベルを測定した結果を示して 、る。  [0037] Table 1 below shows that the number of rotating blades (moving blades) is fixed and the number of stationary blades (stationary blades) is changed. The result of measuring the sound pressure level when the number of (static blades) is fixed is shown.
[表 1] 羽根枚数 音圧レベル [dB (A)〕 動翼 7枚 一 静翼 6枚 Lp ± 0 [table 1] Number of blades Sound pressure level [dB (A)] 7 moving blades 1 stationary blade 6 Lp ± 0
動翼 7枚 - 静翼 7枚 Lp + 5  7 blades-7 blades Lp + 5
動翼 7枚 一 静翼 8枚  7 moving blades 1 8 stationary blades
動翼 7枚一静翼 9枚 Lp + 0  7 blades and 9 blades Lp + 0
動翼 8枚 一 静翼 8枚 Lp+ 10  8 moving blades 1 stationary blade 8 Lp + 10
動翼 9枚 ― 静翼 8枚 Lp + 3  9 blades-8 blades Lp + 3
[0038] なお音圧レベルについては、ガイド溝 31にリード線を収納したときの音圧レベルを Lp [dB (A) ]としたときに、ガイド壁部 33を除去した場合の音圧レベルの変化として 示している。即ち1^ + 5 [(18 (八) ]は、ガイド溝 31にリード線を収納したときの音圧レ ベルを Lp [dB (A) ]としたときに音圧レベルが 5 [dB (A) ]上昇したことを示して 、る。 表 1から、回転ブレード (動翼)と静止ブレード (静翼)の枚数を、 7枚と 8枚とした場合 と 7枚と 6枚とにした場合が同じ音圧レベルになる以外、その他の場合には音圧レべ ルが上昇することが判る。 [0038] The sound pressure level of the sound pressure level when the guide wall 33 is removed when the sound pressure level when the lead wire is stored in the guide groove 31 is Lp [dB (A)]. Shown as change. In other words, 1 ^ + 5 [(18 (eight)) has a sound pressure level of 5 [dB (A) when the sound pressure level when the lead wire is stored in the guide groove 31 is Lp [dB (A)]. From Table 1, when the number of rotating blades (moving blades) and stationary blades (static blades) is 7 and 8, and 7 and 6 It can be seen that the sound pressure level increases in other cases, except that the sound pressure level is the same.
[0039] 以上の測定結果から、本実施の形態の軸流送風機のように回転ブレード (動翼)の 枚数を 7枚とし、静止ブレード (静翼)の枚数を 8枚とした場合に、最大風量を大きくし て最大静圧を高めて、し力も吸い込み騒音を低減できることが判る。なおこの傾向は 、回転ブレード (動翼)の形状と、静止ブレード (静翼)の形状を変えた場合であっても 同様に表れることがシミュレーションで確認された。  [0039] From the above measurement results, when the number of rotating blades (moving blades) is 7 and the number of stationary blades (stationary blades) is 8 as in the axial flow fan of this embodiment, the maximum It can be seen that the maximum static pressure can be increased by increasing the air volume, and the noise can be reduced by sucking the force. It was confirmed by simulation that this tendency appears even when the shape of the rotating blade (blade) and the shape of the stationary blade (static blade) are changed.
産業上の利用可能性  Industrial applicability
[0040] 本発明の軸流送風機によれば、回転ブレードの枚数と静止ブレードの枚数の関係 を特定の関係とすることによって、従来と比べて、送風機の風量を多くして、し力も静 圧を高めることができる利点が得られる。また騒音の発生を低減できる利点が得られ る。 [0040] According to the axial blower of the present invention, by making the relationship between the number of rotating blades and the number of stationary blades a specific relationship, the air volume of the blower is increased compared to the conventional case, and the compressive force is also static. The advantage that can be increased is obtained. In addition, there is an advantage that noise generation can be reduced.

Claims

請求の範囲 The scope of the claims
[1] 回転軸の軸線方向の一方側に吸い込み開口部及び前記軸線方向の他方側に吐き 出し開口部を有する風洞を備えたハウジングと、  [1] A housing including a wind tunnel having a suction opening on one side in the axial direction of the rotating shaft and a discharge opening on the other side in the axial direction;
前記風洞内において回転する複数枚の回転ブレードを備えたインペラと、 前記回転軸を中心にして前記インペラを一方の回転方向に回転させるモータと、 前記風洞内の前記吐き出し開口部近傍に配置された複数枚の静止ブレードとを備 え、  An impeller provided with a plurality of rotating blades rotating in the wind tunnel, a motor for rotating the impeller in one rotation direction around the rotation axis, and disposed near the discharge opening in the wind tunnel With multiple stationary blades,
前記複数枚の回転ブレードが前記回転軸の周方向に等しい間隔をあけて配置さ れており、  The plurality of rotating blades are arranged at equal intervals in the circumferential direction of the rotating shaft,
前記複数枚の静止ブレードが前記回転軸の周方向に等しい間隔をあけて配置さ れて 、る軸流送風機であって、  The plurality of stationary blades are arranged at equal intervals in the circumferential direction of the rotating shaft, and are axial flow fans,
前記複数枚の回転ブレードの枚数が 7枚であり、  The number of the plurality of rotating blades is 7,
前記複数枚の静止ブレードの枚数が 8枚であることを特徴とする軸流送風機。  An axial blower characterized in that the number of the plurality of stationary blades is eight.
[2] 前記インペラは、前記複数枚の回転ブレードが周壁部に固定された回転ブレード固 定部材を備えており、 [2] The impeller includes a rotating blade fixing member in which the plurality of rotating blades are fixed to a peripheral wall portion.
前記複数枚の静止ブレードは、それぞれ前記風洞の内壁部に固定された外側端 部と、前記外側端部とは前記回転軸の径方向反対側に位置する内側端部とを有し ており、  Each of the plurality of stationary blades has an outer end fixed to the inner wall portion of the wind tunnel, and an inner end located on the radially opposite side of the rotating shaft from the outer end.
前記風洞内の前記吐き出し開口部近傍の中央部には、前記回転ブレード固定部 材の前記周壁部の外径寸法以下の外径寸法を有する周壁部を備えた静止ブレード 固定部材が配置されており、  A stationary blade fixing member having a peripheral wall portion having an outer diameter dimension equal to or less than an outer diameter dimension of the peripheral wall portion of the rotating blade fixing member is disposed at a central portion of the wind tunnel near the discharge opening. ,
前記複数枚の静止ブレードのそれぞれの前記内側端部は、前記静止ブレード固定 部材の前記周壁部に固定されており、  The inner end portion of each of the plurality of stationary blades is fixed to the peripheral wall portion of the stationary blade fixing member,
前記複数枚の静止ブレードは、前記外側端部の前記内壁部に沿って延びる辺の 長さ寸法が、前記静止ブレード固定部材の前記周壁部に沿って延びる前記内側端 部の辺の長さ寸法よりも長くなるようにその形状が定められて 、る請求項 1に記載の 軸流送風機。  In the plurality of stationary blades, a length dimension of a side extending along the inner wall portion of the outer end portion is a length dimension of a side of the inner end portion extending along the peripheral wall portion of the stationary blade fixing member. 2. The axial blower according to claim 1, wherein the shape of the axial blower is determined so as to be longer.
[3] 前記静止ブレードが有する前記内側端部の前記辺の前記吐き出し開口部に最も近 V、位置にある端部分と前記回転軸の中心を通る中心線とを通って径方向に延びる第 1の仮想平面と、前記静止ブレードが有する前記外側端部の前記辺の前記吐き出し 開口部に最も近 、位置にある端部分と前記中心線とを通って径方向に延びる第 2の 仮想平面と、前記静止ブレードが有する前記外側端部の前記辺の前記吸!、込み開 口部に最も近 、位置にある端部分と前記中心線とを通って径方向に延びる第 3の仮 想平面とを想定したときに、前記第 1の仮想平面力 前記第 2の仮想平面に向力う方 向及び前記第 2の仮想平面から前記第 3の仮想平面に向かう方向がそれぞれ、前記 インペラの前記回転方向とは反対方向になるように前記静止ブレードの形状が定め られて ヽる請求項 2に記載の軸流送風機。 [3] Closest to the discharge opening on the side of the inner end of the stationary blade V, a first imaginary plane extending radially through an end portion at a position and a center line passing through the center of the rotation axis, and the discharge opening on the side of the outer end portion of the stationary blade The second imaginary plane that extends radially through the end portion at the position and the center line, and the suction and opening portion of the side of the outer end portion of the stationary blade are the most. The first imaginary plane force, which is directed toward the second imaginary plane, assuming a third virtual plane extending in the radial direction through the end portion at the position and the center line. The shape of the stationary blade is defined so that the direction and the direction from the second virtual plane to the third virtual plane are opposite to the rotation direction of the impeller, respectively. The axial-flow blower described.
[4] 前記第 1の仮想平面と前記第 2の仮想平面との間の角度 θ 1が、前記第 2の仮想平 面と前記第 3の仮想平面との間の角度 Θ 2より大きいことを特徴とする請求項 3に記 載の軸流送風機。 [4] An angle θ 1 between the first virtual plane and the second virtual plane is greater than an angle θ 2 between the second virtual plane and the third virtual plane. The axial-flow fan according to claim 3, wherein
[5] 前記角度 θ 1が 25〜30度であり、前記角度 Θ 2が 15〜20度である請求項 4に記載 の軸流送風機。  5. The axial flow fan according to claim 4, wherein the angle θ 1 is 25 to 30 degrees, and the angle Θ 2 is 15 to 20 degrees.
[6] 前記静止ブレードの前記外側端部の前記辺の長さ寸法は、前記回転ブレードの前 記軸線方向に延びる長さ寸法の 40%〜50%である請求項 2に軸流送風機。  6. The axial blower according to claim 2, wherein a length dimension of the side of the outer end portion of the stationary blade is 40% to 50% of a length dimension extending in the axial direction of the rotating blade.
[7] 前記静止ブレード固定部材には、前記モータの固定子と前記回転軸を回転自在に 支持する軸受が支持されている請求項 2に記載の軸流送風機。 7. The axial blower according to claim 2, wherein the stationary blade fixing member supports a bearing that rotatably supports a stator of the motor and the rotating shaft.
[8] 前記複数枚の回転ブレードは、前記軸線方向と直交する方向に前記回転ブレードを 切断したときの横断面形状が、前記一方の回転方向に向かって凹部が開口する湾 曲形状を有しており、 [8] The plurality of rotating blades have a cross-sectional shape when the rotating blade is cut in a direction orthogonal to the axial direction, and a curved shape in which a concave portion opens in the one rotating direction. And
前記静止ブレードは、前記軸線方向と直交する方向に前記静止ブレードを切断し たときの横断面形状が、前記一方の回転方向とは逆の方向に向かって凹部が開口 する湾曲形状を有して 、ることを特徴とする請求項 1に記載の軸流送風機。  The stationary blade has a curved cross-sectional shape when the stationary blade is cut in a direction orthogonal to the axial direction, and a concave portion opens in a direction opposite to the one rotational direction. The axial blower according to claim 1, wherein:
[9] 前記複数枚の回転ブレードは、前記軸線方向に前記回転ブレードを切断したときの 横断面形状が、前記一方の回転方向とは逆の方向に凸なる湾曲形状を有しており、 前記複数枚の静止ブレードは、前記軸線方向に前記静止ブレードを切断したとき の横断面形状が、前記一方の回転方向に向かって凸となる湾曲形状を有しているこ とを特徴とする請求項 1に記載の軸流送風機。 [9] The plurality of rotating blades have a curved shape in which a cross-sectional shape when the rotating blade is cut in the axial direction is convex in a direction opposite to the one rotating direction, The plurality of stationary blades have a curved shape in which the cross-sectional shape when the stationary blade is cut in the axial direction is convex toward the one rotation direction. The axial-flow fan according to claim 1, wherein:
PCT/JP2006/301737 2005-02-07 2006-02-02 Axial flow blower WO2006082876A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800042652A CN101115926B (en) 2005-02-07 2006-02-02 Axial flow blower
US11/815,620 US7866945B2 (en) 2005-02-07 2006-02-02 Axial flow fan
EP06712880.1A EP1847716B1 (en) 2005-02-07 2006-02-02 Axial flow blower
HK08107140.6A HK1112044A1 (en) 2005-02-07 2008-06-27 Axial flow blower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-031097 2005-02-07
JP2005031097A JP4469736B2 (en) 2005-02-07 2005-02-07 Axial blower

Publications (1)

Publication Number Publication Date
WO2006082876A1 true WO2006082876A1 (en) 2006-08-10

Family

ID=36777259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301737 WO2006082876A1 (en) 2005-02-07 2006-02-02 Axial flow blower

Country Status (7)

Country Link
US (1) US7866945B2 (en)
EP (1) EP1847716B1 (en)
JP (1) JP4469736B2 (en)
CN (1) CN101115926B (en)
HK (1) HK1112044A1 (en)
TW (1) TW200630546A (en)
WO (1) WO2006082876A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7595565B2 (en) * 2007-08-14 2009-09-29 Jetpro Technology Inc. Do-it-yourself wind power generation wall
WO2012134983A2 (en) * 2011-03-25 2012-10-04 Vornado Air, Llc Circular grill for an air circulator unit
US8598751B2 (en) 2011-05-09 2013-12-03 Honeywell International Inc. Generator with integrated blower
WO2020021668A1 (en) * 2018-07-25 2020-01-30 日揮グローバル株式会社 Natural gas treatment apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169297U (en) * 1986-04-07 1987-10-27
JPS6385297A (en) * 1986-09-25 1988-04-15 Matsushita Electric Works Ltd Motor fan
JPH0828491A (en) * 1994-07-22 1996-01-30 Mitsubishi Electric Corp Air blasting unit
JP2000257597A (en) * 1999-03-02 2000-09-19 Taida Electronic Ind Co Ltd Increased pressure air stream guide device for fan
JP3083969U (en) * 2001-08-08 2002-02-22 建準電機工業股▲分▼有限公司 Fan pressure increase structure
JP2003056498A (en) * 2001-08-01 2003-02-26 Taida Electronic Ind Co Ltd Unit fan and static blade fan frame structure using the unit fan
JP2004132300A (en) * 2002-10-11 2004-04-30 Minebea Co Ltd Axial flow blowing device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262712A (en) * 1975-11-20 1977-05-24 Agency Of Ind Science & Technol Axial flow blower
JPS54169808U (en) * 1978-05-19 1979-11-30
US4548548A (en) * 1984-05-23 1985-10-22 Airflow Research And Manufacturing Corp. Fan and housing
JPS6218398A (en) 1985-07-16 1987-01-27 三菱電機株式会社 Controller for artificial satellite
JPS6218398U (en) * 1985-07-17 1987-02-03
JPS6270698A (en) * 1985-09-21 1987-04-01 Matsushita Electric Works Ltd Motor fan
JPS62169298A (en) 1986-01-22 1987-07-25 郵政大臣 Printing/issuing apparatus
JPS62169297A (en) 1986-01-22 1987-07-25 株式会社東芝 Sheet paper examiner
JPS62169298U (en) * 1986-04-07 1987-10-27
FR2604990B1 (en) 1986-10-01 1991-04-05 Omnium Traitement Valorisa PROCESS FOR THE PURIFICATION, BY A BIOLOGICAL WAY, OF WASTEWATER ON A BED OF GRANULAR MATERIAL
JPH055280Y2 (en) * 1987-04-30 1993-02-10
NZ224967A (en) 1988-06-09 1992-04-28 Albert Maurice Prowse Two-directional parallel rule; two pairs of wheels at right-angles selectively operable by tilting rule
JPH02103197U (en) * 1989-02-06 1990-08-16
JPH0783191A (en) * 1993-09-14 1995-03-28 Tanashin Denki Co Axial fan
JP3572602B2 (en) * 1998-04-17 2004-10-06 東芝ホームテクノ株式会社 Cooling fan motor
JP2000303998A (en) 1999-04-23 2000-10-31 Nippon Densan Corp Fan motor
DE20115410U1 (en) * 2001-09-19 2001-12-06 Sunonwealth Electr Mach Ind Co Compressor structure for a fan
JP3092681U (en) * 2002-09-10 2003-03-20 建準電機工業股▲分▼有限公司 Improved structure of casing of heat dissipation fan
TWI281846B (en) * 2003-05-30 2007-05-21 Delta Electronics Inc Heat-dissipating device and a housing thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169297U (en) * 1986-04-07 1987-10-27
JPS6385297A (en) * 1986-09-25 1988-04-15 Matsushita Electric Works Ltd Motor fan
JPH0828491A (en) * 1994-07-22 1996-01-30 Mitsubishi Electric Corp Air blasting unit
JP2000257597A (en) * 1999-03-02 2000-09-19 Taida Electronic Ind Co Ltd Increased pressure air stream guide device for fan
JP2003056498A (en) * 2001-08-01 2003-02-26 Taida Electronic Ind Co Ltd Unit fan and static blade fan frame structure using the unit fan
JP3083969U (en) * 2001-08-08 2002-02-22 建準電機工業股▲分▼有限公司 Fan pressure increase structure
JP2004132300A (en) * 2002-10-11 2004-04-30 Minebea Co Ltd Axial flow blowing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1847716A4 *

Also Published As

Publication number Publication date
TW200630546A (en) 2006-09-01
EP1847716B1 (en) 2018-10-17
JP2006214419A (en) 2006-08-17
TWI301868B (en) 2008-10-11
CN101115926B (en) 2011-08-17
CN101115926A (en) 2008-01-30
US20090010759A1 (en) 2009-01-08
HK1112044A1 (en) 2008-08-22
EP1847716A1 (en) 2007-10-24
JP4469736B2 (en) 2010-05-26
EP1847716A4 (en) 2013-07-10
US7866945B2 (en) 2011-01-11

Similar Documents

Publication Publication Date Title
JP4664196B2 (en) Axial blower
JP4899523B2 (en) Centrifugal fan
JP5739200B2 (en) Blower
EP2400157B1 (en) Centrifugal fan
JP2007154671A5 (en)
JP2744771B2 (en) Blowers and blowers for cooling electronic components
US7762767B2 (en) Axial-flow fan
JP2007009802A (en) Fan motor
JP2011058488A (en) Centrifugal fan
JP6012034B2 (en) Axial fan
JP2019157656A (en) Centrifugal fan
JP2010285956A (en) Centrifugal fan
JP4397832B2 (en) Axial blower
JP2007303333A (en) Contra-rotating axial flow fan
JP4871189B2 (en) Axial blower
WO2006082876A1 (en) Axial flow blower
JP2007309313A5 (en)
JP5705805B2 (en) Centrifugal fan
CN109904971B (en) Motor and air supply device with same
JP4670285B2 (en) Impeller and blower fan having the same
JP2019100314A (en) Blower module
JP2008196504A (en) Axial-flow blower
JP6917347B2 (en) Impeller and fan device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11815620

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12007501691

Country of ref document: PH

Ref document number: 200680004265.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006712880

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006712880

Country of ref document: EP