WO2006080290A1 - Cooling treatment device - Google Patents

Cooling treatment device Download PDF

Info

Publication number
WO2006080290A1
WO2006080290A1 PCT/JP2006/301015 JP2006301015W WO2006080290A1 WO 2006080290 A1 WO2006080290 A1 WO 2006080290A1 JP 2006301015 W JP2006301015 W JP 2006301015W WO 2006080290 A1 WO2006080290 A1 WO 2006080290A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cooling
cooling plate
wafer
suction
Prior art date
Application number
PCT/JP2006/301015
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Hashima
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2006080290A1 publication Critical patent/WO2006080290A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a substrate cooling processing apparatus.
  • an interlayer insulating film such as a SOD (Spin on Dielectric) film in a semiconductor device manufacturing process
  • a heat treatment for evaporating a solvent in a coating solution applied on a wafer or on a wafer After the heat treatment for curing the coating film formed on the substrate, a cooling treatment for cooling the wafer to a predetermined temperature is performed.
  • the cooling process is usually performed by a cooling processing apparatus, and is performed by placing a wafer on a cooling plate maintained at a predetermined cooling temperature.
  • the above-mentioned cooling process rapidly cools the wafer heated to a high temperature of about 300 ° C, for example, which causes warping of the wafer during cooling.
  • the temperature in the wafer surface is uneven, and a uniform insulating film is not formed in the wafer surface.
  • stress is applied to the wafer and the coating film, which may cause cracks in the coating film and lead to deterioration of the coating film quality.
  • warping of the wafer narrows the distance between the wafer and the movable area of the transfer arm, which may cause transfer troubles such as interference.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-329922
  • the present invention has been made in view of the points to be applied, and an object of the present invention is to eliminate wafer warpage and maintain the wafer flat during cooling of a substrate such as a wafer.
  • the present invention that achieves the above object is a cooling apparatus for cooling a substrate, which measures a warping of a cooling plate on which the substrate is placed and cooled, and a substrate placed on the cooling plate. Measurement results of the warpage measurement unit, the blowout suction port that is formed at a plurality of locations on the surface of the cooling plate and can selectively blow out and suck the substrate on the cooling plate, and the measurement result of the warp measurement unit. And a control unit that blows out or sucks the gas through the suction ports so that the substrate cooled on the cooling plate becomes flat.
  • the warpage of the substrate placed on the cooling plate is measured in advance, and on the basis of the measurement result, each blowout and suction loci of the cooling plate are also blown to the substrate.
  • the substrate may be forced to suppress warping during cooling. For example, a portion of the substrate that is warped in a convex shape is sucked and the substrate can be kept flat by the suction force.
  • gas can be blown out to the concave part of the substrate, and the substrate can be kept flat by the pressing force generated by the blowing.
  • the control unit may adjust the blowing flow rate or the suction flow rate of the gas at each blowing port according to the degree of warpage of the substrate measured by the warp measurement unit. In such a case, for example, if a large amount of warping occurs, the blowing flow rate or suction flow rate is increased, and if the warping is small, the blowing flow rate or suction flow rate can be reduced. Can be kept flat more strictly.
  • the blow-out suction port may be formed at a position corresponding to the central portion of the substrate on the cooling plate and a position corresponding to the outer peripheral portion of the substrate.
  • the blowout suction ports may be evenly arranged in a plane corresponding to the substrate on the cooling plate.
  • any one of the plurality of blowout 'suction ports is provided with a pressing member that can protrude on the surface of the cooling plate by blowing and suction and can press the back surface of the substrate on the cooling plate. May be.
  • the present invention according to another aspect is a substrate cooling processing apparatus, comprising a cooling plate for mounting and cooling the substrate, the cooling plate having a surface larger than the substrate, On the surface of the cooling plate Is provided with a support that supports the substrate and forms a gap between the substrate and the cooling plate, and the surface of the cooling plate has an outer side of the substrate placed on the cooling plate as viewed from above. A groove is formed from the position to the vicinity of the center of the substrate.
  • the present invention warping of the substrate during cooling is eliminated. This is because the gas guide is formed in the gap between the substrate and the cooling plate by the groove on the surface of the cooling plate, so that the gas in the gap expanded by the heat of the substrate efficiently escapes to the outside. This is presumably because the substrate is not stressed by the expanding gas. Furthermore, since the gas in the gap tends to flow, the temperature difference between the front and back surfaces of the substrate is reduced, and the amount of shrinkage due to heat on the top and bottom surfaces of the substrate is assumed to be the same.
  • the groove may be formed so as to reach from the one end of the surface of the cooling plate to the other end through the vicinity of the center.
  • an air supply port or an exhaust port may be formed in the groove.
  • a cooling processing apparatus for cooling a substrate, the cooling plate on which the substrate is placed and cooled, and the cooling plate formed at a plurality of locations on the surface of the cooling plate.
  • the pressing member that protrudes on the surface of the cooling plate and can press the back surface of the substrate on the cooling plate, and the warp of the substrate placed on the cooling plate
  • a controller for controlling the pressing by the pressing member and the suction by the suction port so that the substrate cooled on the cooling plate becomes flat.
  • the portion warped upward is sucked by the suction port, and the portion warped downward is pressed.
  • the portion warped downward is pressed.
  • FIG. 1 is a plan view showing an outline of a configuration of an SOD film forming system in which a cooling processing apparatus according to the present embodiment is incorporated.
  • FIG. 2 is a front view of the SOD film forming system of FIG.
  • FIG. 3 is a rear view of the SOD film forming system of FIG. 1.
  • FIG. 5 is a plan view of a cooling plate of the cooling processing apparatus.
  • FIG. 6 This is a vertical cross-sectional view of the cooling plate showing the direction of blow-out and suction when the roof is warped upward.
  • FIG. 7 A vertical cross-sectional view of the cooling plate showing the blowing and suction directions when the wafer is warped downward.
  • FIG. 8 is a plan view of a cooling plate when a large number of blowout suction ports are arranged uniformly.
  • 9 A longitudinal sectional view of a cooling plate having a pressing member.
  • FIG. 10 is a longitudinal sectional view of a cooling plate for illustrating the operation of the pressing member when the wafer is warped downward.
  • FIG. 11 is a longitudinal sectional view of a cooling plate for illustrating the operation of the pressing member when the wafer is warped upward.
  • FIG. 12 is a plan view of a cooling plate having grooves.
  • FIG. 14 is a plan view of a cooling plate having grooves of other configurations.
  • FIG. 15 is a plan view of a cooling plate having radially formed grooves.
  • FIG. 16 is a plan view of a cooling plate in which grooves are formed radially only on the outer periphery.
  • FIG. 17 is a plan view of a cooling plate in which narrow grooves are formed over the entire surface.
  • FIG. 18 is an explanatory view of a longitudinal section of a cooling plate provided with an air supply port in a groove.
  • Fig. 1 is a plan view showing the outline of the configuration of the SOD film forming system 1 on which the cooling processing apparatus according to the present embodiment is mounted
  • Fig. 2 is a front view of the SOD film forming system 1.
  • Figure 3 is a rear view of SOD film formation system 1.
  • the SOD film formation system 1 has, for example, 25 wafers W loaded in and out of the SOD film formation system 1 in cassette units, and the wafer W is loaded into the cassette C.
  • the cassette station 2 to be taken out and the processing station 3 in which various processing devices that perform predetermined processing in a single-wafer type in the SOD film forming process are arranged in multiple stages are connected together.
  • a plurality of cassettes C can be placed in a single row in a predetermined position on the cassette mounting table 10 in the X direction (vertical direction in FIG. 1).
  • the cassette station 2 is provided with a wafer transfer body 12 that can move in the X direction on the transfer path 11.
  • the wafer carrier 12 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafer W accommodated in the cassette C, and is selective to the wafer W in each cassette C arranged in the X direction. Can be accessed.
  • the wafer carrier 12 has a alignment function for aligning the wafer W. As will be described later, the wafer transfer body 12 can also access the extension device 31 belonging to the third processing device group G3 on the processing station 3 side to transfer the wafer W.
  • a main transfer device 13 is provided at the center thereof, and a plurality of processing device groups in which various processing devices are arranged in multiple stages are provided around the main transfer device 13. It has been.
  • this SOD film forming system 1 four processing device groups Gl, G2, G3, and G4 are arranged, and the first and second processing device groups Gl and G2 are arranged on the front side of the SOD film forming system 1.
  • the third processing unit group G3 is arranged adjacent to the cassette station 2, and the fourth processing unit group G4 is opposite to the third processing unit group G3 with the main transfer unit 13 in between. Arranged on the side.
  • the main transfer device 13 can transfer the wafer W to various processing devices (to be described later) arranged in these processing device groups G1 to G4.
  • first processing unit group Gl for example, as shown in Fig. 2, coating processing units 17 and 18 for applying a coating liquid mainly composed of an insulating film material to the wafer W are arranged in two stages in order of the lower force. Have been.
  • second processing device group G2 for example, a coating solution used in the coating processing device 17 or the like is stored, and the processing solution cabinet 19 serving as a supply source of the coating solution and the coating processing device 20 have a lower force. They are arranged in two stages in order.
  • a cooling processing unit 30 that cools the wafer W 30, an extension unit 31 that transfers the wafer W, and heats the wafer W at a low temperature.
  • the low-temperature heat treatment device 32 and the low-oxygen heat treatment devices 33 and 34 for heating the wafer W in a low-oxygen atmosphere are stacked in order, for example, in five stages.
  • the cooling processing units 40 and 41 and the low oxygen heating / cooling processing units 42 and 43 for heating and cooling the wafer W in a low oxygen atmosphere are arranged in the order of, for example, four stages. Are stacked.
  • FIG. 4 is an explanatory view of a longitudinal section showing an outline of the configuration of the cooling processing apparatus 40.
  • the cooling processing apparatus 40 includes a cooling plate 60 for mounting and cooling the wafer W at the center of the casing 40a, for example, as shown in FIG.
  • the cooling plate 60 has, for example, a substantially disk shape. Inside the cooling plate 60, for example, a flow path 6 Oa through which a fluid adjusted to a predetermined temperature flows is formed, and the temperature of the cooling plate 60 can be adjusted to a predetermined cooling temperature by the fluid in the flow path 60a.
  • the cooling plate 60 may be temperature-controlled using a Peltier element.
  • a support that supports the wafer W for example, support pins 61
  • the support pin 61 is made of, for example, a heat-insulating resin.
  • the support pins 61 have, for example, a height of 0.1 mm or more, preferably 0.2 mm or more, and a slight gap is formed between the cooling plate 60 and the wafer W by the support pins 61.
  • the cooling plate 60 is formed with a plurality of through holes 62 penetrating in the vertical direction, for example.
  • Lift pins 63 are inserted into the through holes 62.
  • the elevating pin 63 can be moved up and down by an elevating drive unit 64 equipped with a cylinder or the like, for example, and can protrude on the cooling plate 60.
  • the elevating pins 63 can be moved up and down on the cooling plate 60 while supporting the wafer W.
  • a first blow-out suction port 70 is formed at the center of the surface of the cooling plate 60, that is, at the position facing the center of the wafer W placed on the cooling plate 60. ing.
  • a plurality of second blow-out suction ports 71 are formed at a position facing the outer peripheral portion of the surface of the cooling plate 60, that is, the outer peripheral portion of the wafer W placed on the cooling plate 60.
  • the second outlet / suction ports 71 are formed at equal intervals on the same circumference along the outer periphery of the cooling plate 60, for example.
  • the first blowout 'suction port 70 is connected to an air supply device 73 and a suction device 74 such as a pump by a first pipe 72.
  • the first pipe 72 passes through the inside of the cooling plate 60 in the vertical direction, and the bottom surface force of the cooling plate 60 also protrudes, and then branches to be connected to the air supply device 73 and the suction device 74 outside the casing 40a.
  • a three-way valve 75 is provided at the branch point in the first pipe 72, and the first blow-out suction port 70 can selectively communicate with the air supply device 73 or the suction device 74.
  • the first blow-out suction port 70 can selectively blow out and suck a gas such as an inert gas or nitrogen gas.
  • the second blowout 'suction port 71 is connected to the air supply device 73 and the suction device 74 through the second pipe 76 in the same manner as the first blowout' suction port 70.
  • a three-way valve 77 is provided at the branch point between the air supply device 73 and the suction device 74 of the second pipe 76, and the second outlet 'suction port 71 is selected as the air supply device 73 or the suction device 74. Can communicate. Therefore, the second blowout suction port 71 can selectively perform the blowout and suction.
  • the operation of the three-way valves 75 and 77 is controlled by the device controller 90 described later.
  • a laser displacement meter 80 is provided as a warpage measuring unit that measures the amount of warpage of the wafer W placed on the cooling plate 60.
  • the laser displacement meter 80 is attached to, for example, an XY stage 81 attached to the upper surface of the casing 40a, and can move in a two-dimensional direction in the horizontal plane above the wafer W placed on the cooling plate 60. .
  • the measurement result obtained by the laser displacement meter 80 can be output to the apparatus control unit 90, for example.
  • the device control unit 90 controls the operation of the three-way valves 75 and 77 based on the measurement result of the laser displacement meter 90, switches between gas blowing and suction at the first blow-out suction port 70, and the second It is possible to switch between gas blowout and suction at the blowout 'suction port 71.
  • the apparatus control unit 90 warps the wafer W cooled on the cooling plate 60 by the pressing force by the blowing and the suction force by the sucking at the first blowing 'suction port 70 and the second blowing' suction port 71.
  • the first blowout 'suction port 70 blowout or suction and the second blowout' suction port 71 blowout or suction are selected.
  • cooling processing device 41 has the same configuration as the cooling processing device 40, and a description thereof will be omitted.
  • one wafer W that has not yet been processed by the cassette C force is taken out by the wafer transfer body 11 and transferred to the extension device 31 belonging to the third processing unit group G3.
  • the wafer W is transferred to the cooling processing unit 30 by the main transfer unit 13 and cooled to a predetermined temperature.
  • Ueno and W cooled to a predetermined temperature are transported to the coating treatment device 17 by the main transport device 13.
  • a coating liquid mainly composed of an insulating film material is coated on the wafer W, and a coating film is formed on the wafer W.
  • the wafer W on which the coating film is formed in the coating processing apparatus 17 is transported to the low-temperature heat processing apparatus 32 by the main transport apparatus 13, and is subjected to heat treatment for evaporating the solvent in the coating film.
  • the wafer W after the heat treatment is transferred to the low oxygen heat treatment device 33 by the main transfer device 13.
  • woofer W is placed on a hot plate and heated to a temperature of, for example, about 320 ° C in a low oxygen atmosphere. As a result, the base of the insulating film is formed on the wafer W.
  • the wafer W is transferred to the cooling processing apparatus 40 or 41, and the temperature is lowered to, for example, 23 ° C at room temperature. Thereafter, the wafer W is transferred to the extension device 31 and returned to the cassette C by the wafer transfer body 12.
  • This series of steps forms the basis for a single layer of insulating film.
  • the above series of steps are repeated.
  • the wafer W is transferred to the low oxygen heating / cooling processing device 42 and heated at 400 ° C., for example. By this heating, the insulating film on the wafer W is baked and hardened (curing process).
  • the wafer W after heating is the same It is cooled in the station. Thereafter, the wafer W is cooled to room temperature in the cooling processing unit 40. Thus, a multilayer insulating film is formed on the wafer W, and a series of SOD film forming processes is completed.
  • the curing process may be performed by irradiating the wafer W with an electron beam.
  • the warpage of the wafer W that occurs during cooling in the cooling processing apparatus 40 is measured.
  • a measurement wafer W is processed according to the above-described SOD film forming process in the same recipe as a normal product wafer W, and after the heat treatment of the low oxygen heat treatment apparatus 33 is completed, the cooling treatment apparatus 40 is processed. It is carried in.
  • the wafer W carried into the cooling processing unit 40 is placed on the cooling plate 60, cooled for the same period of time as the normal product wafer W, and cooled to 23 ° C at room temperature.
  • the laser displacement meter 80 scans the surface of the wafer W and measures the amount of warpage of the wafer W within the wafer surface.
  • the device control unit 90 sets the “blowing” or “suction” of the gas through the first blow-out suction port 70 during the actual cooling process and the second blow-out suction port.
  • the first blowout 'suction port 70 facing the center of the wafer W is set to “suction” and the second blowout' Suction port 71 is set to “speech”.
  • the first blowout 'suction port 70 is set to "blowing” and the second blowout' suction port 71 is set to "suction”. Is set.
  • the wafer W is placed on the cooling plate 60, and at the same time as the cooling is started, Pre-set “blowing” or “suction” is started from the second blowout suction port 71.
  • Pre-set “blowing” or “suction” is started from the second blowout suction port 71.
  • suction from the first blowing 'suction port 70 and blowing of gas from the second blowing' suction port 71 are started.
  • the center of the wafer W is sucked downward, the outer periphery of the wafer W is pressed upward by blowing, and the warpage of the wafer W during cooling is forcibly suppressed.
  • the blowout and suction of the first blowout 'suction port 70 and the second blowout' suction port 71 formed on the surface of the cooling plate 60 are switched to change the wafer during cooling.
  • the warping of W can be forcibly suppressed.
  • warpage of the wafer W during cooling is prevented, the in-plane temperature of the wafer W is kept uniform, and the coating film is formed uniformly.
  • no stress is applied to the wafer W and the coating film, and damage and deterioration of the wafer W and the coating film are prevented.
  • the wafer W is properly transferred.
  • one of the first blowout 'suction port 70 and the second blowout' suction port 71 is set as blowout and the other is set as suction.
  • both the first blowout 'suction port 70 and the second blowout' suction port 71 may be set to blowout, or both may be set to suction.
  • the blowout and suction of the first blowout 'suction port 70 and the second blowout' suction port 71 are switched according to the warpage of the wafer W.
  • the blowout flow rate and suction flow rate from the first blowout 'suction port 70 and the second blowout' suction port 71 may be adjusted according to the amount.
  • the apparatus control unit 90 sets the gas blowing flow rate and the suction flow rate based on the warpage amount of the wafer W for measurement by the laser displacement meter 80. For example, when the measurement wafer W has a large amount of warpage, the blowout flow rate and suction flow rate are increased.
  • blowout flow rate and suction flow rate are reduced.
  • the opening / closing degree of the three-way valves 75 and 77 is changed by the device control unit 90, and the first blow-out suction port 70 and the second blow-out suction are performed.
  • a predetermined set flow rate is blown out or sucked from the port 71.
  • the plurality of second blowout 'suction ports 71 corresponding to the outer peripheral portion of the wafer W are blown out and sucked together. Every time, Germany You may make it stand up and perform blowing or suction.
  • the above-described second pipe 76 and three-way valve 77 communicating with the air supply device 73 and the suction device 74 are provided for each second blow-out suction port 71. In this way, even when the outer periphery of the wafer W is unevenly warped, the wafer W can be kept flat by blowing or sucking gas from each second blow-out suction port 71.
  • the number of the second outlets' suction ports 71 is preferably four or more.
  • the blowout suction ports 70 and 71 are formed at a position on the cooling plate 60 facing the central portion of the wafer W and at a position corresponding to the outer peripheral portion of the wafer W.
  • the arrangement of the suction ports 70 and 71 is not limited to this example.
  • a large number of blowout suction ports 110 may be aligned and arranged uniformly on the wafer surface. In such a case, it is possible to properly cope with the more complicated warpage of the wafer W and keep the wafer W flat during cooling.
  • the warpage during cooling is measured in advance with the measurement wafer W, and the first blowout suction port 70 during processing of the product wafer and W based on the measurement result 70 is measured.
  • the second blowout 'suction port 71 and blowout were controlled, but the first blowout' suction port 70 and the second blowout 'suction were measured while measuring the warpage of the actual product wafer W. It may be reflected in the blowout and suction of the mouth 71. In such a case, it is possible to appropriately cope with fluctuations in the warpage of the wafer W.
  • FIG. 9 shows such an example, and a pressing member 115 that moves up and down by blowing and sucking is provided at the first blow-out suction port 70 of the cooling plate 60.
  • the pressing member 115 is formed by, for example, a disk-like piston 115a that moves in the first blow-out suction port 70 and a pin 115b that stands on the piston 115a.
  • the configuration of the other parts is the same as that of the above embodiment, and the description thereof is omitted.
  • the device controller 90 controls the three-way valves 75 and 77 to control the first blowout. 'Gas is supplied to the suction port 70, the pressing member 115 protrudes on the cooling plate 60, and the back surface of the wafer W is pressed upward.
  • suction from the second blow-out suction port 71 is performed, and the outer peripheral portion of the wafer W is sucked. By doing so, the warpage of the wafer W is forcibly eliminated.
  • the pressing member 115 may be provided in the second blowout 'suction port 71. In such a case, as shown in FIG.
  • a plurality of blowout 'suction ports are formed in the central portion and the outer peripheral portion of the cooling plate 60, respectively, and any one of the blowout' suction ports in the central portion of the cooling plate 60 and the cooling plate
  • the pressing member 115 may be provided in any of the blowout suction ports that are not all of the outer peripheral portion of the 60. In such a case, this can be handled when the wafer W is warped upward and the wafer W is warped downward.
  • the laser displacement meter 80 for measuring the amount of warpage of the wafer W is not necessarily required.
  • the pressing by the pressing member 115 and the suction by the suction port may be performed based on the information on the warpage of the wafer W acquired in advance.
  • the blowout suction port not provided with the pressing member 115 may have a function of suction only.
  • the warpage of the wafer W is suppressed by the pressure by the blowing to the wafer W being cooled and the suction, but the surface of the cooling plate 60 is viewed on the surface of the cooling plate 60 from the plane. Warpage of the wafer W during cooling may be prevented by forming a groove in which the central force also reaches the outer position of the wafer W. For example, as shown in FIGS. 12 and 13, two parallel grooves 120 may be formed on the surface of the cooling plate 60 so as to pass from one end of the cooling plate 60 to the vicinity of the center and reach the other end.
  • the wafer is expanded by the expanded gas in the gap between the cooling plate 60 and the wafer W.
  • W can be prevented from being distorted.
  • the temperature difference between the upper surface side and the lower surface side of the wafer W decreases, and the amount of shrinkage between the upper surface side and the lower surface side of the wafer W becomes approximately the same. Therefore, warpage of the wafer W is prevented.
  • the groove 120 is formed in the cooling plate 60.
  • the number of grooves 120 is not limited to two, but may be one or three or more.
  • two sets of two parallel grooves 120 may be formed so as to be orthogonal to each other.
  • the shape of the groove 120 may be other shapes.
  • a plurality of grooves 120 may be formed such that the central force of the cooling plate 60 is also radial.
  • the grooves 120 may be formed radially at equal intervals only on the outer peripheral portion of the cooling plate 60.
  • a plurality of extremely thin grooves 120 of 5 mm or less may be formed in parallel over the entire surface of the cooling plate 60.
  • an air supply port 121 as a vent may be formed in the groove 120 of the cooling plate 60, for example.
  • the air inlet 121 is formed at the bottom of the groove 120 near the center of the cooling plate 60, for example.
  • the air supply port 121 is connected to an air supply device 123, for example, by a pipe 122, for example.
  • a gas adjusted to the same cooling temperature as that of the cooling plate 60, for example is supplied from the air supply port 121 to the groove 120, and the cooling plate along the groove 120 is inserted into the gap between the cooling plate 60 and the wafer W.
  • An airflow that flows outward from the center of 60 is formed. In this way, the expanded gas in the gap between the cooling plate 60 and the wafer W is surely discharged, so that the warpage of the wafer W due to the expanded gas is prevented.
  • Form an exhaust port instead of the air supply port 121 instead of the air supply port 121.
  • the first blowout 'suction port 70 and the second blowout' suction port 71 are formed in the same manner as in the above-described embodiment, and the blowout with respect to the wafer W is formed. And suction.
  • the relationship between the temperature difference T and the gap D that does not cause Ueno and W warpage may be obtained in advance, and the gap D may be set based on the temperature difference T during the cooling process.
  • the support pin 61 that defines the gap D can be replaced or raised and lowered.
  • the cooling temperature force at the time of cooling is also obtained by calculating the temperature difference T, and the height of the support pin 61 is adjusted to change to the predetermined gap D in which the wafer W does not warp. This also prevents the wafer W from warping.
  • a predetermined gap D is provided between the cooling plate 60 and the wafer W, gas is supplied to the wafer W on the cooling plate 60 from the first blowing 'suction port 70 and the second blowing' suction port 71.
  • the gap D may be secured by blowing out the wafer W and buoyant the surface force of the cooling plate 60. In this way, warpage of the wafer W can be prevented.
  • the support pins 61 and the back surface of the wafer W do not contact the support pins 61, the back surface of the wafer can be prevented from being damaged.
  • the present invention is not limited to this example and can take various forms.
  • the present embodiment is an example of preventing the wafer W from warping in the cooling processing apparatus 40, but the present invention can also be applied to other cooling processing apparatuses in the SOD film forming system 1.
  • the present invention can also be applied to a heating and cooling processing apparatus that performs both heat processing and cooling processing.
  • the above embodiment has been applied to the cooling processing apparatus 40 that performs the cooling process in the SOD film forming process, for example, pre-baking, post-baking, and post-exposure in the photolithography process.
  • the present invention can also be applied to a cooling processing apparatus that performs a cooling process after one king.
  • the present invention can be applied to other substrate cooling processing apparatuses such as a mask reticle for an FPD (flat panel display) and a photomask other than the wafer.
  • the present invention is useful for preventing the substrate from warping during the cooling process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A cooling treatment device, comprising a warpage measuring part measuring the warpage of a wafer. A plurality of suction and discharge ports capable of selectively sucking and discharging a gas are formed in the front surface of a cooling plate. The first suction and discharge port is formed in the surface of the cooling plate at a position corresponding to the center part of the wafer, and the second suction and discharge port is formed at a position corresponding to the outer peripheral part of the wafer. Based on the results of measurements of the warpage of the wafer by the warpage measuring part, a device control part selects the suctions or discharges of the first suction and discharge port and the second suction and discharge port, and maintains flat the water cooled by the cooling plate by a pressing force by blowing or a sucking force.

Description

明 細 書  Specification
冷却処理装置  Cooling processing device
技術分野  Technical field
[0001] 本発明は,基板の冷却処理装置に関する。  The present invention relates to a substrate cooling processing apparatus.
背景技術  Background art
[0002] 半導体デバイスの製造プロセスにおける例えば SOD (Spin on Dielectric)膜などの 層間絶縁膜の形成工程では,例えばウェハ上に塗布された塗布液中の溶剤を蒸発 させる加熱処理の後や,ウェハ上に形成された塗布膜を硬化させる加熱処理の後に ,ウェハを所定温度まで冷却する冷却処理が行われて!/、る。  In the process of forming an interlayer insulating film such as a SOD (Spin on Dielectric) film in a semiconductor device manufacturing process, for example, after a heat treatment for evaporating a solvent in a coating solution applied on a wafer or on a wafer After the heat treatment for curing the coating film formed on the substrate, a cooling treatment for cooling the wafer to a predetermined temperature is performed.
[0003] 上記冷却処理は,通常,冷却処理装置で行われ,所定の冷却温度に維持された 冷却板上にウェハを載置することによって行われている。しかしながら,上述の冷却 処理は,例えば 300°C程度の高温に加熱されたウェハを急激に冷やすため,冷却時 に,ウェハに反りが発生する。  [0003] The cooling process is usually performed by a cooling processing apparatus, and is performed by placing a wafer on a cooling plate maintained at a predetermined cooling temperature. However, the above-mentioned cooling process rapidly cools the wafer heated to a high temperature of about 300 ° C, for example, which causes warping of the wafer during cooling.
[0004] ウェハに反りが発生すると,例えばゥ ハ面内の温度に斑が生じ,ゥ ハ面内に均 質な絶縁膜が形成されない。また,ウェハや塗布膜にストレスが掛かり,塗布膜にひ び割れが生じたり,塗布膜の膜質の低下を招く恐れがある。さらに,ウェハが反ること によって,ウェハと搬送アームの可動領域との間隔が狭くなり,干渉するなどの搬送ト ラブルが生じる恐れがある。  When the wafer is warped, for example, the temperature in the wafer surface is uneven, and a uniform insulating film is not formed in the wafer surface. In addition, stress is applied to the wafer and the coating film, which may cause cracks in the coating film and lead to deterioration of the coating film quality. In addition, warping of the wafer narrows the distance between the wafer and the movable area of the transfer arm, which may cause transfer troubles such as interference.
[0005] そこで,従来は,冷却時のウェハの反りを抑制するために,基板の上面側に冷却気 体を供給する方法が提案されている (特許文献 1参照。 ) oしかしながら,実際には基 板の上面側に冷却気体を供給しただけでは,ウェハの反りを十分に解消することが できなかった。ウェハが大口径ィ匕し,回路パターンの微細化が進んでいる近年にお いては,ウェハの僅かな反りが,最終的なデバイスの品質に大きな影響を与えること になる。  [0005] Therefore, conventionally, a method of supplying a cooling gas to the upper surface side of the substrate has been proposed in order to suppress the warpage of the wafer during cooling (see Patent Document 1). Simply supplying cooling gas to the top side of the substrate could not sufficiently eliminate the warpage of the wafer. In recent years, when wafers have become larger in diameter and circuit patterns are becoming finer, slight warpage of the wafer has a major impact on the quality of the final device.
特許文献 1:特開平 11― 329922号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-329922
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0006] 本発明は,力かる点に鑑みてなされたものであり,ウェハなどの基板の冷却時にお いてウェハの反りを解消して,ウェハ平坦に維持することを目的としている。 Problems to be solved by the invention [0006] The present invention has been made in view of the points to be applied, and an object of the present invention is to eliminate wafer warpage and maintain the wafer flat during cooling of a substrate such as a wafer.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成する本発明は,基板を冷却する冷却処理装置であって,基板を載 置して冷却する冷却板と,前記冷却板上に載置された基板の反りを測定する反り測 定部と,前記冷却板の表面の複数個所に形成され,冷却板上の基板に対する吹き 出しと吸引を選択的に行うことができる吹き出し '吸引口と,前記反り測定部の測定結 果に基づいて,冷却板上で冷却される基板が平坦になるように,前記各吹き出し '吸 引口による気体の吹き出し又は吸引を行う制御部と,を有している。  [0007] The present invention that achieves the above object is a cooling apparatus for cooling a substrate, which measures a warping of a cooling plate on which the substrate is placed and cooled, and a substrate placed on the cooling plate. Measurement results of the warpage measurement unit, the blowout suction port that is formed at a plurality of locations on the surface of the cooling plate and can selectively blow out and suck the substrate on the cooling plate, and the measurement result of the warp measurement unit. And a control unit that blows out or sucks the gas through the suction ports so that the substrate cooled on the cooling plate becomes flat.
[0008] 本発明によれば,冷却板上に載置される基板の反りを予め測定しておき,当該測 定結果に基づいて,冷却板の各吹き出し,吸引ロカも基板に対して吹き出し又は吸 引を行って,冷却時の基板の反りを強制的に押さえるようにしてもよい。例えば,基板 の凸状に反る部分に対しては吸引し,その吸引力により基板を平坦に維持できる。ま た,基板の凹状に反る部分に対しては気体を吹き出し,その吹き出しによる押圧力に よって基板を平坦に維持できる。  [0008] According to the present invention, the warpage of the substrate placed on the cooling plate is measured in advance, and on the basis of the measurement result, each blowout and suction loci of the cooling plate are also blown to the substrate. The substrate may be forced to suppress warping during cooling. For example, a portion of the substrate that is warped in a convex shape is sucked and the substrate can be kept flat by the suction force. In addition, gas can be blown out to the concave part of the substrate, and the substrate can be kept flat by the pressing force generated by the blowing.
[0009] 前記制御部は,前記反り測定部により測定された基板の反りの程度に応じて,前記 各吹き出し '吸引口の気体の吹き出し流量又は吸引流量を調整してもよい。かかる場 合,例えば大きな反りが生じる場合には,吹き出し流量や吸引流量を増大し反りが小 さい場合には,吹き出し流量や吸引流量を低減できるので,基板に付与される力を 調整して基板をより厳密に平坦に維持できる。  [0009] The control unit may adjust the blowing flow rate or the suction flow rate of the gas at each blowing port according to the degree of warpage of the substrate measured by the warp measurement unit. In such a case, for example, if a large amount of warping occurs, the blowing flow rate or suction flow rate is increased, and if the warping is small, the blowing flow rate or suction flow rate can be reduced. Can be kept flat more strictly.
[0010] 前記吹き出し '吸引口は,前記冷却板上の基板の中央部に対応する位置と,前記 基板の外周部に対応する位置に形成されていてもよい。また,前記吹き出し '吸引口 は,前記冷却板上の基板に対応する面内に均等に配置されていてもよい。  [0010] The blow-out suction port may be formed at a position corresponding to the central portion of the substrate on the cooling plate and a position corresponding to the outer peripheral portion of the substrate. In addition, the blowout suction ports may be evenly arranged in a plane corresponding to the substrate on the cooling plate.
[0011] 前記複数の吹出し'吸引口のうちのいずれかには,吹出しと吸引により前記冷却板 の表面上に突出自在で,冷却板上の基板の裏面を押圧可能な押圧部材が設けられ ていてもよい。  [0011] Any one of the plurality of blowout 'suction ports is provided with a pressing member that can protrude on the surface of the cooling plate by blowing and suction and can press the back surface of the substrate on the cooling plate. May be.
[0012] 別の観点による本発明は,基板の冷却処理装置であって,基板を載置して冷却す る冷却板を有し,前記冷却板は,基板よりも大きな表面を有し,前記冷却板の表面に は,基板を支持し,基板と冷却板との間に隙間を形成する支持体が設けられ,前記 冷却板の表面には,平面から見て,冷却板上に載置される基板の外方の位置から当 該基板の中心部付近にまで通じる溝が形成されて 、る。 [0012] The present invention according to another aspect is a substrate cooling processing apparatus, comprising a cooling plate for mounting and cooling the substrate, the cooling plate having a surface larger than the substrate, On the surface of the cooling plate Is provided with a support that supports the substrate and forms a gap between the substrate and the cooling plate, and the surface of the cooling plate has an outer side of the substrate placed on the cooling plate as viewed from above. A groove is formed from the position to the vicinity of the center of the substrate.
[0013] 本発明によれば,冷却時の基板の反りが解消される。これは,冷却板の表面の溝に より,基板と冷却板との間の隙間に気体のガイドが形成されるので,基板の熱により 膨張した当該隙間内の気体が効率的に外側に逃がされ,基板に膨張気体による応 力が掛カもないためであると推測される。さらに,隙間内の気体が流動し易いので, 基板の表面と裏面との温度差が低減され,基板の上下面の熱による収縮量が同じに なるためであると推測される。  [0013] According to the present invention, warping of the substrate during cooling is eliminated. This is because the gas guide is formed in the gap between the substrate and the cooling plate by the groove on the surface of the cooling plate, so that the gas in the gap expanded by the heat of the substrate efficiently escapes to the outside. This is presumably because the substrate is not stressed by the expanding gas. Furthermore, since the gas in the gap tends to flow, the temperature difference between the front and back surfaces of the substrate is reduced, and the amount of shrinkage due to heat on the top and bottom surfaces of the substrate is assumed to be the same.
[0014] 前記溝は,前記冷却板の表面の一端部から中心部付近を通って他端部まで到達 するように形成されていてもよい。また,前記溝には,給気口又は排気口が形成され ていてもよい。  [0014] The groove may be formed so as to reach from the one end of the surface of the cooling plate to the other end through the vicinity of the center. In addition, an air supply port or an exhaust port may be formed in the groove.
[0015] 別の観点による本発明によれば,基板を冷却する冷却処理装置であって,基板を 載置して冷却する冷却板と,前記冷却板の表面の複数個所に形成され,冷却板上 の基板を吸引可能な吸引口と,前記冷却板の表面上に突出して,冷却板上の基板 の裏面を押圧可能な押圧部材と,前記冷却板上に載置された基板の反りに応じて, 冷却板上で冷却される基板が平坦になるように,前記押圧部材による押圧と前記吸 引口による吸引を制御する制御部と,を有することを特徴とする。  [0015] According to another aspect of the present invention, there is provided a cooling processing apparatus for cooling a substrate, the cooling plate on which the substrate is placed and cooled, and the cooling plate formed at a plurality of locations on the surface of the cooling plate. Depending on the suction port that can suck the upper substrate, the pressing member that protrudes on the surface of the cooling plate and can press the back surface of the substrate on the cooling plate, and the warp of the substrate placed on the cooling plate And a controller for controlling the pressing by the pressing member and the suction by the suction port so that the substrate cooled on the cooling plate becomes flat.
[0016] 本発明によれば,例えば冷却板上に載置される基板に対して,上方に反る部分に 対しては,吸引口により吸引し,下方に反る部分に対しては,押圧部材により押し上 げることにより,基板の反りを強制的に抑えることができる。  [0016] According to the present invention, for example, with respect to the substrate placed on the cooling plate, the portion warped upward is sucked by the suction port, and the portion warped downward is pressed. By pushing up with a member, it is possible to forcibly suppress the warpage of the substrate.
発明の効果  The invention's effect
[0017] 本発明によれば,冷却時の基板の反りが解消されるので,最終的に基板に形成さ れるデバイスの品質が向上する。  [0017] According to the present invention, since the warpage of the substrate during cooling is eliminated, the quality of the device finally formed on the substrate is improved.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本実施の形態の冷却処理装置が組み込まれた SOD膜形成システムの構成の 概略を示す平面図である。  FIG. 1 is a plan view showing an outline of a configuration of an SOD film forming system in which a cooling processing apparatus according to the present embodiment is incorporated.
[図 2]図 1の SOD膜形成システムの正面図である。 [図 3]図 1の SOD膜形成システムの背面図である。 FIG. 2 is a front view of the SOD film forming system of FIG. FIG. 3 is a rear view of the SOD film forming system of FIG. 1.
圆 4]冷却処理装置の構成の概略を示す縦断面の説明図である。 圆 4] It is explanatory drawing of the longitudinal cross-section which shows the outline of a structure of a cooling processing apparatus.
[図 5]冷却処理装置の冷却板の平面図である。  FIG. 5 is a plan view of a cooling plate of the cooling processing apparatus.
[図 6]ゥ ハが上に凸に反る場合の吹出し,吸引方向を示す冷却板の縦断面図であ る。  [Fig. 6] This is a vertical cross-sectional view of the cooling plate showing the direction of blow-out and suction when the roof is warped upward.
[図 7]ウェハが下に凸に反る場合の吹出し,吸引方向を示す冷却板の縦断面図であ る。  [Fig. 7] A vertical cross-sectional view of the cooling plate showing the blowing and suction directions when the wafer is warped downward.
[図 8]多数の吹出し'吸引口を均等に配置した場合の冷却板の平面図である。 圆 9]押圧部材を有する冷却板の縦断面図である。  FIG. 8 is a plan view of a cooling plate when a large number of blowout suction ports are arranged uniformly. 9] A longitudinal sectional view of a cooling plate having a pressing member.
圆 10]ウェハが下に凸に反る場合の押圧部材の動作を示すための冷却板の縦断面 図である。 [10] FIG. 10 is a longitudinal sectional view of a cooling plate for illustrating the operation of the pressing member when the wafer is warped downward.
圆 11]ウェハが上に凸に反る場合の押圧部材の動作を示すための冷却板の縦断面 図である。 [11] FIG. 11 is a longitudinal sectional view of a cooling plate for illustrating the operation of the pressing member when the wafer is warped upward.
圆 12]溝を形成した冷却板の平面図である。 [12] FIG. 12 is a plan view of a cooling plate having grooves.
圆 13]溝を形成した冷却板の側面図である。 13] A side view of a cooling plate in which grooves are formed.
[図 14]他の構成の溝を有する冷却板の平面図である。  FIG. 14 is a plan view of a cooling plate having grooves of other configurations.
[図 15]放射状に形成された溝を有する冷却板の平面図である。  FIG. 15 is a plan view of a cooling plate having radially formed grooves.
[図 16]溝が外周部にのみ放射状に形成されている冷却板の平面図である。  FIG. 16 is a plan view of a cooling plate in which grooves are formed radially only on the outer periphery.
[図 17]細い溝が全面に亘つて形成されている冷却板の平面図である。  FIG. 17 is a plan view of a cooling plate in which narrow grooves are formed over the entire surface.
圆 18]溝内に給気口を設けた冷却板の縦断面の説明図である。 [18] FIG. 18 is an explanatory view of a longitudinal section of a cooling plate provided with an air supply port in a groove.
符号の説明 Explanation of symbols
1 SOD膜処理システム  1 SOD membrane treatment system
40 冷却処理装置  40 Cooling equipment
60 冷却板  60 cold plate
80 レーザ変位計  80 Laser displacement meter
70 第 1の吹出し'吸引口  70 1st outlet 'suction port
71 第 2の吹出し'吸引口  71 Second outlet 'suction port
90 装置制御部 w ウェハ 90 Device controller w Wafer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下,本発明の好ましい実施の形態について説明する。図 1は,本実施の形態に 力かる冷却処理装置が搭載された SOD膜形成システム 1の構成の概略を示す平面 図であり,図 2は, SOD膜形成システム 1の正面図であり,図 3は, SOD膜形成シス テム 1の背面図である。  [0020] Hereinafter, preferred embodiments of the present invention will be described. Fig. 1 is a plan view showing the outline of the configuration of the SOD film forming system 1 on which the cooling processing apparatus according to the present embodiment is mounted, and Fig. 2 is a front view of the SOD film forming system 1. Figure 3 is a rear view of SOD film formation system 1.
[0021] SOD膜形成システム 1は,図 1に示すように,例えば 25枚のウェハ Wをカセット単位 で外部力も SOD膜形成システム 1に対して搬入出したり,カセット Cに対してウェハ W を搬入出したりするカセットステーション 2と, SOD膜形成工程の中で枚葉式に所定 の処理を施す各種処理装置を多段配置してなる処理ステーション 3とを一体に接続 した構成を有している。  [0021] As shown in Fig. 1, the SOD film formation system 1 has, for example, 25 wafers W loaded in and out of the SOD film formation system 1 in cassette units, and the wafer W is loaded into the cassette C. The cassette station 2 to be taken out and the processing station 3 in which various processing devices that perform predetermined processing in a single-wafer type in the SOD film forming process are arranged in multiple stages are connected together.
[0022] カセットステーション 2では,カセット載置台 10上の所定の位置に,複数のカセット C を X方向(図 1中の上下方向)に一列に載置自在となっている。カセットステーション 2 には,搬送路 11上を X方向に向かって移動可能なウェハ搬送体 12が設けられて 、 る。ウェハ搬送体 12は,カセット Cに収容されたウェハ Wのウェハ配列方向(Z方向; 鉛直方向)にも移動自在であり, X方向に配列された各カセット C内のウェハ Wに対し て選択的にアクセスできる。  In the cassette station 2, a plurality of cassettes C can be placed in a single row in a predetermined position on the cassette mounting table 10 in the X direction (vertical direction in FIG. 1). The cassette station 2 is provided with a wafer transfer body 12 that can move in the X direction on the transfer path 11. The wafer carrier 12 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafer W accommodated in the cassette C, and is selective to the wafer W in each cassette C arranged in the X direction. Can be accessed.
[0023] ウェハ搬送体 12は,ウェハ Wの位置合わせを行うァライメント機能を備えている。ゥ ェハ搬送体 12は,後述するように処理ステーション 3側の第 3の処理装置群 G3に属 するエクステンション装置 31に対してもアクセスしてウェハ Wを搬送できる。  The wafer carrier 12 has a alignment function for aligning the wafer W. As will be described later, the wafer transfer body 12 can also access the extension device 31 belonging to the third processing device group G3 on the processing station 3 side to transfer the wafer W.
[0024] 処理ステーション 3では,その中心部に主搬送装置 13が設けられており,この主搬 送装置 13の周辺には,各種処理装置が多段に配置された複数の処理装置群が設 けられている。この SOD膜形成システム 1においては, 4つの処理装置群 Gl, G2, G3, G4が配置されており,第 1及び第 2の処理装置群 Gl, G2は, SOD膜形成シス テム 1の正面側に配置され,第 3の処理装置群 G3は,カセットステーション 2に隣接し て配置され,第 4の処理装置群 G4は,主搬送装置 13を挟んで,第 3の処理装置群 G 3の反対側に配置されている。主搬送装置 13は,これらの処理装置群 G1〜G4内に 配置されている後述する各種処理装置に対してウェハ Wを搬送できる。 [0025] 第 1の処理装置群 Glでは,例えば図 2に示すように絶縁膜材料を主成分とする塗 布液をウェハ Wに塗布する塗布処理装置 17, 18が下力 順に 2段に配置されている 。第 2の処理装置群 G2には,例えば塗布処理装置 17等で用いられる塗布液等が貯 留され,当該塗布液等の供給源となる処理液キャビネット 19と,塗布処理装置 20と が下力も順に 2段に配置されている。 [0024] In the processing station 3, a main transfer device 13 is provided at the center thereof, and a plurality of processing device groups in which various processing devices are arranged in multiple stages are provided around the main transfer device 13. It has been. In this SOD film forming system 1, four processing device groups Gl, G2, G3, and G4 are arranged, and the first and second processing device groups Gl and G2 are arranged on the front side of the SOD film forming system 1. The third processing unit group G3 is arranged adjacent to the cassette station 2, and the fourth processing unit group G4 is opposite to the third processing unit group G3 with the main transfer unit 13 in between. Arranged on the side. The main transfer device 13 can transfer the wafer W to various processing devices (to be described later) arranged in these processing device groups G1 to G4. [0025] In the first processing unit group Gl, for example, as shown in Fig. 2, coating processing units 17 and 18 for applying a coating liquid mainly composed of an insulating film material to the wafer W are arranged in two stages in order of the lower force. Have been. In the second processing device group G2, for example, a coating solution used in the coating processing device 17 or the like is stored, and the processing solution cabinet 19 serving as a supply source of the coating solution and the coating processing device 20 have a lower force. They are arranged in two stages in order.
[0026] 第 3の処理装置群 G3では,例えば図 3に示すように,ウェハ Wを冷却処理する冷却 処理装置 30,ウェハ Wの受け渡しを行うためのエクステンション装置 31,ウェハ Wを 低温で加熱処理する低温加熱処理装置 32,ウェハ Wを低酸素雰囲気で加熱する低 酸素加熱処理装置 33, 34が下力も順に例えば 5段に積み重ねられている。  In the third processing unit group G3, for example, as shown in FIG. 3, a cooling processing unit 30 that cools the wafer W 30, an extension unit 31 that transfers the wafer W, and heats the wafer W at a low temperature. The low-temperature heat treatment device 32 and the low-oxygen heat treatment devices 33 and 34 for heating the wafer W in a low-oxygen atmosphere are stacked in order, for example, in five stages.
[0027] 第 4の処理装置群 G4では,例えば冷却処理装置 40, 41,ウェハ Wを低酸素雰囲 気で加熱し冷却する低酸素加熱 ·冷却処理装置 42, 43が下力 順に例えば 4段に 積み重ねられている。  [0027] In the fourth processing unit group G4, for example, the cooling processing units 40 and 41 and the low oxygen heating / cooling processing units 42 and 43 for heating and cooling the wafer W in a low oxygen atmosphere are arranged in the order of, for example, four stages. Are stacked.
[0028] 次に,上述の冷却処理装置 40の構成について詳しく説明する。図 4は,冷却処理 装置 40の構成の概略を示す縦断面の説明図である。  [0028] Next, the configuration of the above-described cooling processing apparatus 40 will be described in detail. FIG. 4 is an explanatory view of a longitudinal section showing an outline of the configuration of the cooling processing apparatus 40.
[0029] 冷却処理装置 40は,例えば図 4に示すようにケーシング 40aの中央部に,ウェハ W を載置して冷却する冷却板 60を備えている。冷却板 60は,例えば略円盤形状を有 している。冷却板 60の内部には,例えば所定温度に調整された流体が流れる流路 6 Oaが形成されており,当該流路 60aの流体によって冷却板 60を所定の冷却温度に 温度調節できる。なお,冷却板 60は,ペルチェ素子を用いて温度調節されるもので あってもよい。  The cooling processing apparatus 40 includes a cooling plate 60 for mounting and cooling the wafer W at the center of the casing 40a, for example, as shown in FIG. The cooling plate 60 has, for example, a substantially disk shape. Inside the cooling plate 60, for example, a flow path 6 Oa through which a fluid adjusted to a predetermined temperature flows is formed, and the temperature of the cooling plate 60 can be adjusted to a predetermined cooling temperature by the fluid in the flow path 60a. The cooling plate 60 may be temperature-controlled using a Peltier element.
[0030] 冷却板 60の表面には,ウェハ Wを支持する支持体,例えば支持ピン 61が複数個 所に設けられている。支持ピン 61は,例えば断熱性を有する榭脂によって形成され ている。支持ピン 61は,例えば 0. 1mm以上,好ましくは 0. 2mm以上の高さを有し ,支持ピン 61によって冷却板 60とウェハ Wとの間に僅かな隙間が形成される。  [0030] On the surface of the cooling plate 60, a support that supports the wafer W, for example, support pins 61, is provided at a plurality of locations. The support pin 61 is made of, for example, a heat-insulating resin. The support pins 61 have, for example, a height of 0.1 mm or more, preferably 0.2 mm or more, and a slight gap is formed between the cooling plate 60 and the wafer W by the support pins 61.
[0031] 冷却板 60には,例えば上下方向に貫通する複数の貫通孔 62が形成されている。  [0031] The cooling plate 60 is formed with a plurality of through holes 62 penetrating in the vertical direction, for example.
貫通孔 62には,昇降ピン 63が挿入されている。昇降ピン 63は,例えばシリンダ等を 備えた昇降駆動部 64により上下動し,冷却板 60上に突出できる。昇降ピン 63は,冷 却板 60上にぉ 、てウェハ Wを支持して昇降できる。 [0032] 図 5に示すように冷却板 60の表面の中央部,つまり冷却板 60に載置されたウェハ Wの中央部に対向する位置には,第 1の吹出し'吸引口 70が形成されている。また, 冷却板 60の表面の外周部,つまり冷却板 60上に載置されたウェハ Wの外周部に対 向する位置には,複数の第 2の吹出し'吸引口 71が形成されている。第 2の吹出し · 吸引口 71は,例えば冷却板 60の外周部に沿って同一円周上に等間隔で形成され ている。 Lift pins 63 are inserted into the through holes 62. The elevating pin 63 can be moved up and down by an elevating drive unit 64 equipped with a cylinder or the like, for example, and can protrude on the cooling plate 60. The elevating pins 63 can be moved up and down on the cooling plate 60 while supporting the wafer W. As shown in FIG. 5, a first blow-out suction port 70 is formed at the center of the surface of the cooling plate 60, that is, at the position facing the center of the wafer W placed on the cooling plate 60. ing. In addition, a plurality of second blow-out suction ports 71 are formed at a position facing the outer peripheral portion of the surface of the cooling plate 60, that is, the outer peripheral portion of the wafer W placed on the cooling plate 60. The second outlet / suction ports 71 are formed at equal intervals on the same circumference along the outer periphery of the cooling plate 60, for example.
[0033] 第 1の吹出し'吸引口 70は,例えば図 4に示すように第 1の配管 72によって給気装 置 73とポンプなどの吸引装置 74に接続されている。第 1の配管 72は,例えば冷却板 60の内部を垂直方向に通って,冷却板 60の下面力も突出し,その後分岐してケー シング 40aの外部にある給気装置 73と吸引装置 74に接続されている。第 1の配管 7 2における分岐点には,例えば三方弁 75が設けられており,第 1の吹出し'吸引口 70 は,給気装置 73又は吸引装置 74に選択的に連通できる。これにより,第 1の吹出し' 吸引口 70は,例えば不活性ガス,窒素ガスなどの気体の吹き出しと吸引を選択的に 行うことができる。  For example, as shown in FIG. 4, the first blowout 'suction port 70 is connected to an air supply device 73 and a suction device 74 such as a pump by a first pipe 72. For example, the first pipe 72 passes through the inside of the cooling plate 60 in the vertical direction, and the bottom surface force of the cooling plate 60 also protrudes, and then branches to be connected to the air supply device 73 and the suction device 74 outside the casing 40a. ing. For example, a three-way valve 75 is provided at the branch point in the first pipe 72, and the first blow-out suction port 70 can selectively communicate with the air supply device 73 or the suction device 74. As a result, the first blow-out suction port 70 can selectively blow out and suck a gas such as an inert gas or nitrogen gas.
[0034] 第 2の吹出し'吸引口 71は,第 1の吹出し'吸引口 70と同様に,第 2の配管 76によ つて給気装置 73と吸引装置 74に接続されている。第 2の配管 76の給気装置 73と吸 引装置 74との分岐点には,三方弁 77が設けられ,第 2の吹出し'吸引口 71は,給気 装置 73と吸引装置 74とに選択的に連通できる。したがって,第 2の吹出し'吸引口 7 1は,吹き出しと吸引を選択的に行うことができる。なお,三方弁 75, 77の動作は,後 述する装置制御部 90によって制御される。  The second blowout 'suction port 71 is connected to the air supply device 73 and the suction device 74 through the second pipe 76 in the same manner as the first blowout' suction port 70. A three-way valve 77 is provided at the branch point between the air supply device 73 and the suction device 74 of the second pipe 76, and the second outlet 'suction port 71 is selected as the air supply device 73 or the suction device 74. Can communicate. Therefore, the second blowout suction port 71 can selectively perform the blowout and suction. The operation of the three-way valves 75 and 77 is controlled by the device controller 90 described later.
[0035] 冷却板 60の上方には,冷却板 60に載置されたウェハ Wの反り量を測定する反り測 定部としてのレーザ変位計 80が設けられている。レーザ変位計 80は,例えばケーシ ング 40aの上面に取付けられた X— Yステージ 81に取付けられており,冷却板 60に 載置されたゥ ハ Wの上方を水平面内に 2次元方向に移動できる。  Above the cooling plate 60, a laser displacement meter 80 is provided as a warpage measuring unit that measures the amount of warpage of the wafer W placed on the cooling plate 60. The laser displacement meter 80 is attached to, for example, an XY stage 81 attached to the upper surface of the casing 40a, and can move in a two-dimensional direction in the horizontal plane above the wafer W placed on the cooling plate 60. .
[0036] レーザ変位計 80による測定結果は,例えば装置制御部 90に出力できる。装置制 御部 90は,レーザ変位計 90による測定結果に基づいて,三方弁 75, 77の動作を制 御し,第 1の吹出し'吸引口 70における気体の吹き出しと吸引の切り替え,第 2の吹 出し'吸引口 71における気体の吹き出しと吸引の切り替えを行うことができる。例えば ,装置制御部 90は,第 1の吹出し'吸引口 70,第 2の吹出し'吸引口 71における吹き 出しによる押圧力,吸引による吸引力により,冷却板 60上で冷却されるウェハ Wの反 りを押さえるように,第 1の吹出し'吸引口 70の吹き出しか吸引かの選択と,第 2の吹 出し'吸引口 71の吹き出しか吸引かの選択を行う。 The measurement result obtained by the laser displacement meter 80 can be output to the apparatus control unit 90, for example. The device control unit 90 controls the operation of the three-way valves 75 and 77 based on the measurement result of the laser displacement meter 90, switches between gas blowing and suction at the first blow-out suction port 70, and the second It is possible to switch between gas blowout and suction at the blowout 'suction port 71. For example Therefore, the apparatus control unit 90 warps the wafer W cooled on the cooling plate 60 by the pressing force by the blowing and the suction force by the sucking at the first blowing 'suction port 70 and the second blowing' suction port 71. The first blowout 'suction port 70 blowout or suction and the second blowout' suction port 71 blowout or suction are selected.
[0037] なお,冷却処理装置 41は,冷却処理装置 40と同様の構成を有するものであり,説 明を省略する。 [0037] Note that the cooling processing device 41 has the same configuration as the cooling processing device 40, and a description thereof will be omitted.
[0038] 次に,以上のように構成された SOD膜形成システム 1における SOD膜形成プロセ スについて説明する。  [0038] Next, the SOD film forming process in the SOD film forming system 1 configured as described above will be described.
[0039] 先ず,ウェハ搬送体 11によりカセット C力 未処理のウェハ Wが 1枚取り出され,第 3 の処理装置群 G3に属するエクステンション装置 31に搬送される。次いで,ウェハ W は,主搬送装置 13によって冷却処理装置 30に搬送され,所定の温度に冷却される 。所定温度に冷却されたウエノ、 Wは,主搬送装置 13によって,塗布処理装置 17に 搬送される。この塗布処理装置 17では,絶縁膜材料を主成分とする塗布液がウェハ W上に塗布され,ウェハ W上に塗布膜が形成される。  First, one wafer W that has not yet been processed by the cassette C force is taken out by the wafer transfer body 11 and transferred to the extension device 31 belonging to the third processing unit group G3. Next, the wafer W is transferred to the cooling processing unit 30 by the main transfer unit 13 and cooled to a predetermined temperature. Ueno and W cooled to a predetermined temperature are transported to the coating treatment device 17 by the main transport device 13. In the coating processing apparatus 17, a coating liquid mainly composed of an insulating film material is coated on the wafer W, and a coating film is formed on the wafer W.
[0040] 塗布処理装置 17において塗布膜が形成されたウェハ Wは,主搬送装置 13によつ て低温加熱処理装置 32に搬送され,塗布膜内の溶剤を蒸発させる加熱処理が施さ れる。この加熱処理が終了したウェハ Wは,主搬送装置 13によって低酸素加熱処理 装置 33に搬送される。  [0040] The wafer W on which the coating film is formed in the coating processing apparatus 17 is transported to the low-temperature heat processing apparatus 32 by the main transport apparatus 13, and is subjected to heat treatment for evaporating the solvent in the coating film. The wafer W after the heat treatment is transferred to the low oxygen heat treatment device 33 by the main transfer device 13.
[0041] 低酸素加熱処理装置 33では,例えばゥ ハ Wが熱板上に載置され低酸素雰囲気 で例えば 320°C程度の温度に加熱される。これにより,ウェハ W上に絶縁膜の基礎 が形成される。  [0041] In the low oxygen heat treatment apparatus 33, for example, woofer W is placed on a hot plate and heated to a temperature of, for example, about 320 ° C in a low oxygen atmosphere. As a result, the base of the insulating film is formed on the wafer W.
[0042] その後,ウェハ Wは,冷却処理装置 40又は 41に搬送され,例えば常温の 23°Cに 降温される。その後,ウェハ Wは,エクステンション装置 31に搬送され,ウェハ搬送体 12によってカセット Cに戻される。この一連の工程により一層の絶縁膜の基礎が形成 される。ウェハ W上に多層の絶縁膜を形成する場合には,上記一連の工程が繰り返 される。ウェハ W上に多層の絶縁膜の基礎が形成されると,例えばウェハ Wは,低酸 素加熱'冷却処理装置 42に搬送され,例えば 400°Cで加熱される。この加熱によつ て,ウェハ W上の絶縁膜が焼き固められる(キュア処理)。加熱後ウェハ Wは,同じ装 置内で冷却される。その後ウェハ Wは,冷却処理装置 40において常温まで冷却され る。こうしてウェハ W上に多層の絶縁膜が形成され,一連の SOD膜形成工程が終了 する。なお,キュア処理は,ウェハ W上に電子線を照射することによって行ってもよい [0042] After that, the wafer W is transferred to the cooling processing apparatus 40 or 41, and the temperature is lowered to, for example, 23 ° C at room temperature. Thereafter, the wafer W is transferred to the extension device 31 and returned to the cassette C by the wafer transfer body 12. This series of steps forms the basis for a single layer of insulating film. When a multilayer insulating film is formed on the wafer W, the above series of steps are repeated. When the base of the multilayer insulating film is formed on the wafer W, for example, the wafer W is transferred to the low oxygen heating / cooling processing device 42 and heated at 400 ° C., for example. By this heating, the insulating film on the wafer W is baked and hardened (curing process). The wafer W after heating is the same It is cooled in the station. Thereafter, the wafer W is cooled to room temperature in the cooling processing unit 40. Thus, a multilayer insulating film is formed on the wafer W, and a series of SOD film forming processes is completed. The curing process may be performed by irradiating the wafer W with an electron beam.
[0043] 次に,上述した冷却処理装置 40における冷却プロセスについて詳しく説明する。 Next, the cooling process in the cooling processing apparatus 40 described above will be described in detail.
先ず,冷却処理装置 40における冷却時に生じるウェハ Wの反りが測定される。例え ば,測定用のウェハ Wが,通常の製品用ウェハ Wと同様のレシピで上述の SOD膜形 成工程に従って処理され,低酸素加熱処理装置 33の加熱処理が終了した後,冷却 処理装置 40に搬入される。冷却処理装置 40に搬入されたウェハ Wは,冷却板 60上 に載置され,通常の製品用ウェハ Wと同じ所定時間冷却され,常温の 23°Cまで降温 される。例えばその冷却中に,レーザ変位計 80がウェハ Wの表面上を走査し,ウェハ 面内のウェハ Wの反り量を測定する。装置制御部 90は,この反り量に基づいて,実 際の冷却処理時における第 1の吹出し'吸引口 70による気体の「吹き出し」又は「吸 引」の設定と,第 2の吹出し'吸引口 71による気体の「吹き出し」又は「吸引」の設定を 行う。例えば図 6に示すようにウェハ Wが上に凸に反っている場合には,ウェハ Wの 中央部に対向する第 1の吹出し'吸引口 70が「吸引」に設定され,第 2の吹出し'吸 引口 71が「吹き出し」に設定される。例えば図 7に示すようにウェハ Wが下に凸に反 つている場合には,第 1の吹出し'吸引口 70が「吹き出し」に設定され,第 2の吹出し' 吸引口 71が「吸引」に設定される。  First, the warpage of the wafer W that occurs during cooling in the cooling processing apparatus 40 is measured. For example, a measurement wafer W is processed according to the above-described SOD film forming process in the same recipe as a normal product wafer W, and after the heat treatment of the low oxygen heat treatment apparatus 33 is completed, the cooling treatment apparatus 40 is processed. It is carried in. The wafer W carried into the cooling processing unit 40 is placed on the cooling plate 60, cooled for the same period of time as the normal product wafer W, and cooled to 23 ° C at room temperature. For example, during the cooling, the laser displacement meter 80 scans the surface of the wafer W and measures the amount of warpage of the wafer W within the wafer surface. Based on this amount of warpage, the device control unit 90 sets the “blowing” or “suction” of the gas through the first blow-out suction port 70 during the actual cooling process and the second blow-out suction port. Set gas “out” or “suction” by 71. For example, as shown in FIG. 6, when the wafer W is warped upward, the first blowout 'suction port 70 facing the center of the wafer W is set to “suction” and the second blowout' Suction port 71 is set to “speech”. For example, as shown in FIG. 7, when the wafer W is convex downward, the first blowout 'suction port 70 is set to "blowing" and the second blowout' suction port 71 is set to "suction". Is set.
[0044] そして,実際の製品用のウェハ Wが冷却処理される際には,ウェハ Wが冷却板 60 上に載置され,冷却が開始されると同時に,第 1の吹出し'吸引口 70と第 2の吹出し' 吸引口 71から,予め設定されている「吹き出し」又は「吸引」が開始される。例えば, ウェハ Wが上に凸に反る場合には,第 1の吹出し'吸引口 70からの吸引と,第 2の吹 出し'吸引口 71からの気体の吹き出しが開始される。こうすることにより,ウェハ Wの 中央部が下方に吸引され,ウェハ Wの外周部が吹き出しにより上方に押圧され,冷 却時のウェハ Wの反りが強制的に押さえられる。一方,例えば,ウェハ Wが下に凸に 反る場合には,第 1の吹出し'吸引口 70からの吹き出しと,第 2の吹出し'吸引口 71 力もの吸引が開始され,ウェハ Wの中央部が吹き出しによって上方に押圧され,ゥェ ハ Wの外周部が吸引されて,冷却時のウェハ Wの反りが押さえられる。 [0044] When the actual product wafer W is cooled, the wafer W is placed on the cooling plate 60, and at the same time as the cooling is started, Pre-set “blowing” or “suction” is started from the second blowout suction port 71. For example, when the wafer W is warped upward, suction from the first blowing 'suction port 70 and blowing of gas from the second blowing' suction port 71 are started. By doing so, the center of the wafer W is sucked downward, the outer periphery of the wafer W is pressed upward by blowing, and the warpage of the wafer W during cooling is forcibly suppressed. On the other hand, for example, when the wafer W is warped downward, the first blowout from the first suction 'suction port 70 and the second blowout' suction port 71 are started. Is pushed upward by a balloon, C The outer periphery of W is sucked and the warpage of the wafer W during cooling is suppressed.
[0045] 所定時間の冷却が終了すると,第 1の吹出し'吸引口 70と第 2の吹出し'吸引口 71 力もの吹き出しと吸引が停止される。その後,ウェハ Wは,冷却板 60上力も昇降ピン 63を介して主搬送装置 13に受け渡され,冷却処理装置 40から搬出される。  [0045] When the cooling for a predetermined time is completed, the first blowing 'suction port 70 and the second blowing' suction port 71 are stopped and the suction is stopped. Thereafter, the wafer W is also transferred to the main transfer device 13 via the lift pins 63 and the unloading force from the cooling plate 60 is carried out from the cooling processing device 40.
[0046] 以上の実施の形態によれば,冷却板 60の表面に形成された第 1の吹出し'吸引口 70と第 2の吹出し'吸引口 71の吹き出しと吸引を切り替えて,冷却時のウェハ Wの反 りを強制的に押さえることができる。この結果,冷却時のウェハ Wの反りが防止され, ウェハ Wの面内温度の均一に維持され,塗布膜が均質に形成される。また,ウェハ W や塗布膜にストレスが掛カゝることがなく,ウェハ Wや塗布膜の破損,劣化が防止される 。さらに,ウェハ Wの外形が変形しないので,ウェハ Wの搬送が適正に行われる。な お,以上の実施の形態では,第 1の吹出し'吸引口 70と第 2の吹出し'吸引口 71の 一方を吹出しに設定し,他方を吸引に設定していたが,ウェハ Wの反りの形状によつ ては,第 1の吹出し'吸引口 70と第 2の吹出し'吸引口 71の両方を吹出しに設定した り,両方を吸引に設定してもよい。  [0046] According to the above embodiment, the blowout and suction of the first blowout 'suction port 70 and the second blowout' suction port 71 formed on the surface of the cooling plate 60 are switched to change the wafer during cooling. The warping of W can be forcibly suppressed. As a result, warpage of the wafer W during cooling is prevented, the in-plane temperature of the wafer W is kept uniform, and the coating film is formed uniformly. In addition, no stress is applied to the wafer W and the coating film, and damage and deterioration of the wafer W and the coating film are prevented. Furthermore, since the outer shape of the wafer W is not deformed, the wafer W is properly transferred. In the above embodiment, one of the first blowout 'suction port 70 and the second blowout' suction port 71 is set as blowout and the other is set as suction. Depending on the shape, both the first blowout 'suction port 70 and the second blowout' suction port 71 may be set to blowout, or both may be set to suction.
[0047] 以上の実施の形態では,ウェハ Wの反りに応じて第 1の吹出し'吸引口 70と第 2の 吹出し'吸引口 71の吹き出しと吸引を切り替えていたが,さらに,ウェハ Wの反り量に 応じて第 1の吹出し'吸引口 70と第 2の吹出し'吸引口 71からの吹き出し流量と吸引 流量を調整してもよい。かかる場合,例えば装置制御部 90において,レーザ変位計 80による測定用のウェハ Wの反り量に基づいて,気体の吹き出し流量と吸引流量が 設定される。例えば,測定用のウェハ Wの反り量が大きい場合には,吹き出し流量と 吸引流量が増大される。また,ウエノ、 Wの反り量が小さい場合には,吹き出し流量と 吸引流量が減少される。そして,製品用のウェハ Wが冷却処理される際には,例えば 装置制御部 90によって,三方弁 75, 77の開閉度が変更され,第 1の吹出し'吸引口 70と第 2の吹出し'吸引口 71から所定の設定流量の吹き出し又は吸引が行われる。 こうすることによって,ウエノ、 Wの反りの程度に応じた適正な流量で吹き出し又は吸引 が行われ,ウェハ Wの反りをより厳格に防止できる。  In the above embodiment, the blowout and suction of the first blowout 'suction port 70 and the second blowout' suction port 71 are switched according to the warpage of the wafer W. The blowout flow rate and suction flow rate from the first blowout 'suction port 70 and the second blowout' suction port 71 may be adjusted according to the amount. In such a case, for example, the apparatus control unit 90 sets the gas blowing flow rate and the suction flow rate based on the warpage amount of the wafer W for measurement by the laser displacement meter 80. For example, when the measurement wafer W has a large amount of warpage, the blowout flow rate and suction flow rate are increased. In addition, when the amount of warpage of Ueno and W is small, the blowout flow rate and suction flow rate are reduced. Then, when the product wafer W is cooled, for example, the opening / closing degree of the three-way valves 75 and 77 is changed by the device control unit 90, and the first blow-out suction port 70 and the second blow-out suction are performed. A predetermined set flow rate is blown out or sucked from the port 71. By doing this, blowout or suction is performed at an appropriate flow rate according to the degree of warpage of Ueno and W, and warpage of the wafer W can be more strictly prevented.
[0048] 以上の実施の形態では,ウェハ Wの外周部に対応する複数の第 2の吹出し'吸引 口 71の吹き出しと吸引を一括して行っていたが,各第 2の吹出し'吸引口 71毎に,独 立して吹き出し又は吸引を行うようにしてもよい。かかる場合,例えば各第 2の吹出し '吸引口 71毎に,給気装置 73と吸引装置 74に通じる上述した第 2の配管 76と三方 弁 77が設けられる。こうすることによって,ウェハ Wの外周部が不均一に反る場合に も,各第 2の吹出し'吸引口 71による気体の吹き出し又は吸引により,ウェハ Wを平 坦に維持できる。なお,第 2の吹出し'吸引口 71の数は, 4つ以上が好ましい。 In the above embodiment, the plurality of second blowout 'suction ports 71 corresponding to the outer peripheral portion of the wafer W are blown out and sucked together. Every time, Germany You may make it stand up and perform blowing or suction. In such a case, for example, the above-described second pipe 76 and three-way valve 77 communicating with the air supply device 73 and the suction device 74 are provided for each second blow-out suction port 71. In this way, even when the outer periphery of the wafer W is unevenly warped, the wafer W can be kept flat by blowing or sucking gas from each second blow-out suction port 71. In addition, the number of the second outlets' suction ports 71 is preferably four or more.
[0049] 以上の実施の形態では,冷却板 60におけるウェハ Wの中央部に対向する位置と, ウェハ Wの外周部に対応する位置に吹出し'吸引口 70, 71を形成していたが,吹出 し'吸引口 70, 71の配置は,この例に限られない。例えば図 8に示すように,多数の 吹出し'吸引口 110を整列させてウェハ面内において均等に配置してもよい。かかる 場合,ウェハ Wのより複雑な反りにも適正に対応し,冷却時のウェハ Wを平坦に維持 できる。 In the above embodiment, the blowout suction ports 70 and 71 are formed at a position on the cooling plate 60 facing the central portion of the wafer W and at a position corresponding to the outer peripheral portion of the wafer W. However, the arrangement of the suction ports 70 and 71 is not limited to this example. For example, as shown in FIG. 8, a large number of blowout suction ports 110 may be aligned and arranged uniformly on the wafer surface. In such a case, it is possible to properly cope with the more complicated warpage of the wafer W and keep the wafer W flat during cooling.
[0050] 以上の実施の形態では,予め測定用のウェハ Wで冷却時の反りを測定し,その測 結果に基づいて,製品用のウエノ、 Wの処理時の第 1の吹出し'吸引口 70と第 2の吹 出し'吸引口 71の吹き出しと吸引を制御していたが,実際の製品用のウェハ Wの反り を測定しながら,第 1の吹出し'吸引口 70と第 2の吹出し'吸引口 71の吹き出しと吸 引に反映させてもよい。かかる場合,ウェハ Wの反りの変動に適正に対応できる。  [0050] In the above embodiment, the warpage during cooling is measured in advance with the measurement wafer W, and the first blowout suction port 70 during processing of the product wafer and W based on the measurement result 70 is measured. The second blowout 'suction port 71 and blowout were controlled, but the first blowout' suction port 70 and the second blowout 'suction were measured while measuring the warpage of the actual product wafer W. It may be reflected in the blowout and suction of the mouth 71. In such a case, it is possible to appropriately cope with fluctuations in the warpage of the wafer W.
[0051] 以上の実施の形態では,吹出し'吸引口からの吹出しによりウェハ Wの裏面を押圧 していたが,冷却板 60に押圧部材を設けて,ウェハ Wの裏面を押圧してもよい。図 9 は,かかる一例を示すものであり,冷却板 60の第 1の吹出し'吸引口 70に,吹出しと 吸引により昇降する押圧部材 115が設けられている。押圧部材 115は,例えば第 1の 吹出し'吸引口 70内を移動する円盤状のピストン 115aとピストン 115a上に立設した ピン 115bによって形成されている。なお,他の部分の構成は,上記実施の形態と同 様であるので,その説明を省略する。  [0051] In the above embodiment, the back surface of the wafer W is pressed by the blow-out from the suction port, but a pressing member may be provided on the cooling plate 60 to press the back surface of the wafer W. FIG. 9 shows such an example, and a pressing member 115 that moves up and down by blowing and sucking is provided at the first blow-out suction port 70 of the cooling plate 60. The pressing member 115 is formed by, for example, a disk-like piston 115a that moves in the first blow-out suction port 70 and a pin 115b that stands on the piston 115a. The configuration of the other parts is the same as that of the above embodiment, and the description thereof is omitted.
[0052] そして,図 10に示すように冷却時に,ウェハ Wが下に凸に反るような場合には,装 置制御部 90が三方弁 75, 77を制御することにより,第 1の吹出し'吸引口 70に対し 気体が供給され,押圧部材 115が冷却板 60上に突出しウェハ Wの裏面が上方に押 圧される。その一方で,第 2の吹出し'吸引口 71からの吸引が行われ,ウェハ Wの外 周部が吸引される。こうすることにより,ウェハ Wの反りが強制的に解消される。 [0053] 上記例において,第 2の吹出し'吸引口 71内に押圧部材 115を設けてもよい。かか る場合,図 11に示すように冷却時にウェハ Wが上に凸に反る場合に,第 1の吹出し' 吸引口 70からの吸引によりウェハ Wの中心部が吸引される。その一方で,第 2の吹 出し'吸引口 71に気体が供給され,第 2の吹出し'吸引口 71の押圧部材 115によりゥ ェハ Wの中心部が上方に押圧される。こうすることにより,ウェハ Wの反りが強制的に 解消される。 [0052] Then, as shown in FIG. 10, when the wafer W is warped downward during cooling, the device controller 90 controls the three-way valves 75 and 77 to control the first blowout. 'Gas is supplied to the suction port 70, the pressing member 115 protrudes on the cooling plate 60, and the back surface of the wafer W is pressed upward. On the other hand, suction from the second blow-out suction port 71 is performed, and the outer peripheral portion of the wafer W is sucked. By doing so, the warpage of the wafer W is forcibly eliminated. In the above example, the pressing member 115 may be provided in the second blowout 'suction port 71. In such a case, as shown in FIG. 11, when the wafer W warps upwards during cooling, the central portion of the wafer W is sucked by suction from the first blow-out suction port 70. On the other hand, the gas is supplied to the second blowout 'suction port 71, and the central portion of the wafer W is pressed upward by the pressing member 115 of the second blowout' suction port 71. By doing this, the warpage of the wafer W is forcibly eliminated.
[0054] さらに上記例において,冷却板 60の中央部と外周部にそれぞれ複数の吹出し'吸 引口を形成し,冷却板 60の中央部の全部でないいずれかの吹出し'吸引口と,冷却 板 60の外周部の全部でないいずれかの吹出し'吸引口に押圧部材 115を設けても よい。かかる場合,ウェハ Wが上に凸に反った場合とウェハ Wが下に凸に反った場合 に対応できる。  [0054] Further, in the above example, a plurality of blowout 'suction ports are formed in the central portion and the outer peripheral portion of the cooling plate 60, respectively, and any one of the blowout' suction ports in the central portion of the cooling plate 60 and the cooling plate The pressing member 115 may be provided in any of the blowout suction ports that are not all of the outer peripheral portion of the 60. In such a case, this can be handled when the wafer W is warped upward and the wafer W is warped downward.
[0055] なお,押圧部材 115が設けられる上記例において,ウェハ Wの反り量を測定するレ 一ザ変位計 80は,必ずしも必要なものではない。例えばレーザ変位計 80がない場 合には,予め取得しておいたウェハ Wの反りに関する情報に基づいて,押圧部材 11 5による押圧と吹出し'吸引口による吸引を行うようにしてもよい。また,押圧部材 115 が設けられていない吹出し'吸引口は,吸引のみの機能を有するものであってもよい  [0055] In the above example in which the pressing member 115 is provided, the laser displacement meter 80 for measuring the amount of warpage of the wafer W is not necessarily required. For example, when the laser displacement meter 80 is not provided, the pressing by the pressing member 115 and the suction by the suction port may be performed based on the information on the warpage of the wafer W acquired in advance. Further, the blowout suction port not provided with the pressing member 115 may have a function of suction only.
[0056] 以上の実施の形態では,冷却中のウェハ Wに対する吹き出しによる押圧と,吸引に よりウェハ Wの反りを押さえていたが,冷却板 60の表面に,平面から見て,冷却板 60 の中央部力もウェハ Wの外方の位置まで到達する溝を形成することによって,冷却中 のウェハ Wの反りを防止してもよい。例えば図 12, 13に示すように冷却板 60の表面 には,冷却板 60の一端部から中央部付近を通過し他端部まで到達する 2本の平行 な溝 120が形成されてもよい。かかる場合,ウェハ Wの熱によって膨張した気体が冷 却板 60とウェハ Wとの隙間から溝 120に沿って排出されやすいので,冷却板 60とゥ ェハ Wとの隙間の膨張した気体によりウエノ、 Wが歪められることが防止できる。また, 冷却板 60とウェハ Wとの隙間の熱気が排出されると,ウェハ Wの上面側と下面側の 温度差が減少し,ウェハ Wの上面側と下面側の収縮量が同程度になるので,ウェハ Wの反りが防止される。なお,発明者による実験によれば,冷却板 60に溝 120を形 成した場合が溝を形成しない場合に比べて,ウエノ、 Wの反りが生じ始める冷却前の 臨界温度が 10°C以上上昇したことが確認されている。これにより,冷却板 60に溝 12 0を形成した場合,形成しない場合に比べてウェハ Wの反りが発生しないことが分か る。 [0056] In the above embodiment, the warpage of the wafer W is suppressed by the pressure by the blowing to the wafer W being cooled and the suction, but the surface of the cooling plate 60 is viewed on the surface of the cooling plate 60 from the plane. Warpage of the wafer W during cooling may be prevented by forming a groove in which the central force also reaches the outer position of the wafer W. For example, as shown in FIGS. 12 and 13, two parallel grooves 120 may be formed on the surface of the cooling plate 60 so as to pass from one end of the cooling plate 60 to the vicinity of the center and reach the other end. In such a case, since the gas expanded by the heat of the wafer W is easily discharged along the groove 120 from the gap between the cooling plate 60 and the wafer W, the wafer is expanded by the expanded gas in the gap between the cooling plate 60 and the wafer W. , W can be prevented from being distorted. In addition, when hot air in the gap between the cooling plate 60 and the wafer W is discharged, the temperature difference between the upper surface side and the lower surface side of the wafer W decreases, and the amount of shrinkage between the upper surface side and the lower surface side of the wafer W becomes approximately the same. Therefore, warpage of the wafer W is prevented. According to the experiment by the inventors, the groove 120 is formed in the cooling plate 60. It has been confirmed that the critical temperature before cooling, which begins to cause warpage of Weno and W, has risen by 10 ° C or more compared with the case where the groove is not formed. As a result, it can be seen that when the groove 120 is formed in the cooling plate 60, the wafer W is not warped as compared with the case where the groove 120 is not formed.
[0057] なお,溝 120の数は 2本に限られず, 1本であってもよいし, 3本以上であってもよい 。例えば図 14に示すように 2本の平行な溝 120が二組形成され,互いに直交するよう に形成されていてもよい。また,溝 120の形状も他の形状であってもよく,例えば図 1 5に示すように複数本の溝 120が冷却板 60の中心力も放射状に形成されていてもよ い。また,図 16に示すように溝 120が冷却板 60の外周部にのみ等間隔で放射状に 形成されていてもよい。さらに,図 17に示すように 5mm以下の極めて細い溝 120が 冷却板 60の全面に亘つて平行に複数本形成されてもよい。  [0057] The number of grooves 120 is not limited to two, but may be one or three or more. For example, as shown in FIG. 14, two sets of two parallel grooves 120 may be formed so as to be orthogonal to each other. Also, the shape of the groove 120 may be other shapes. For example, as shown in FIG. 15, a plurality of grooves 120 may be formed such that the central force of the cooling plate 60 is also radial. Further, as shown in FIG. 16, the grooves 120 may be formed radially at equal intervals only on the outer peripheral portion of the cooling plate 60. Furthermore, as shown in FIG. 17, a plurality of extremely thin grooves 120 of 5 mm or less may be formed in parallel over the entire surface of the cooling plate 60.
[0058] また,図 18に示すように冷却板 60の溝 120に,例えば通気口としての給気口 121 を形成してもよい。給気口 121は,例えば冷却板 60の中央部付近の溝 120の底部 に形成されている。給気口 121は,例えば配管 122によって例えば給気装置 123に 接続されている。そして,冷却時には,給気口 121から溝 120に,例えば冷却板 60と 同じ冷却温度に調整された気体が供給され,冷却板 60とウェハ Wとの隙間に,溝 12 0に沿って冷却板 60の中央部から外側に流れる気流が形成される。こうすることによ り,冷却板 60とウェハ Wの隙間の膨張した気体が確実に排出されるので,膨張気体 によるウェハ Wの反りが防止される。なお,給気口 121の代わりに排気口を形成して ちょい。  Further, as shown in FIG. 18, an air supply port 121 as a vent may be formed in the groove 120 of the cooling plate 60, for example. The air inlet 121 is formed at the bottom of the groove 120 near the center of the cooling plate 60, for example. The air supply port 121 is connected to an air supply device 123, for example, by a pipe 122, for example. During cooling, a gas adjusted to the same cooling temperature as that of the cooling plate 60, for example, is supplied from the air supply port 121 to the groove 120, and the cooling plate along the groove 120 is inserted into the gap between the cooling plate 60 and the wafer W. An airflow that flows outward from the center of 60 is formed. In this way, the expanded gas in the gap between the cooling plate 60 and the wafer W is surely discharged, so that the warpage of the wafer W due to the expanded gas is prevented. Form an exhaust port instead of the air supply port 121.
[0059] この例の溝 120を有する冷却板 60には,上述した実施の形態と同様に第 1の吹出 し'吸引口 70と第 2の吹出し'吸引口 71を形成し,ウェハ Wに対する吹き出しと吸引 を行ってもよい。  In the cooling plate 60 having the groove 120 in this example, the first blowout 'suction port 70 and the second blowout' suction port 71 are formed in the same manner as in the above-described embodiment, and the blowout with respect to the wafer W is formed. And suction.
[0060] 発明者によって,冷却処理前の加熱温度と冷却温度との温度差丁と,冷却処理時 の冷却板 60とウェハ Wとの隙間 Dと,ウェハ Wの反り量との間に,相関関係があること が確認された。そこで,予め,ウエノ、 Wの反りが生じないような,温度差 Tと隙間 Dの 関係を求めておき,冷却処理時の温度差 Tに基づいて,隙間 Dを設定するようにして もよい。例えば,隙間 Dを規定する支持ピン 61を交換可能,或いは昇降自在する。そ して,冷却時の冷却温度力も温度差 Tを求めて,支持ピン 61の高さを調整して,ゥェ ハ Wの反りが生じない所定の隙間 Dに変更する。こうすることによつてもウェハ Wの反 りを防止することが可能である。なお,冷却板 60とウェハ Wとの間に所定の隙間 Dを 設ける際に,冷却板 60上のウェハ Wに対し第 1の吹出し'吸引口 70と第 2の吹出し' 吸引口 71から気体を吹出して,ウェハ Wを冷却板 60の表面力も浮力せて,隙間 Dを 確保してもよい。こうすることにより,ウェハ Wの反りを防止できる。また,支持ピン 61と ウェハ Wの裏面が支持ピン 61に接触しないので,ウェハ裏面が傷つくことを防止でき る。 [0060] By the inventor, there is a correlation between the temperature difference between the heating temperature and the cooling temperature before the cooling process, the gap D between the cooling plate 60 and the wafer W during the cooling process, and the warpage amount of the wafer W. It was confirmed that there was a relationship. Therefore, the relationship between the temperature difference T and the gap D that does not cause Ueno and W warpage may be obtained in advance, and the gap D may be set based on the temperature difference T during the cooling process. For example, the support pin 61 that defines the gap D can be replaced or raised and lowered. So Then, the cooling temperature force at the time of cooling is also obtained by calculating the temperature difference T, and the height of the support pin 61 is adjusted to change to the predetermined gap D in which the wafer W does not warp. This also prevents the wafer W from warping. When a predetermined gap D is provided between the cooling plate 60 and the wafer W, gas is supplied to the wafer W on the cooling plate 60 from the first blowing 'suction port 70 and the second blowing' suction port 71. The gap D may be secured by blowing out the wafer W and buoyant the surface force of the cooling plate 60. In this way, warpage of the wafer W can be prevented. In addition, since the support pins 61 and the back surface of the wafer W do not contact the support pins 61, the back surface of the wafer can be prevented from being damaged.
[0061] 以上,本発明の実施の形態の一例について説明したが,本発明はこの例に限らず 種々の態様を採りうるものである。例えば本実施の形態は,冷却処理装置 40におけ るウェハ Wの反りを防止する例であつたが,本発明は, SOD膜形成システム 1におけ る他の冷却処理装置にも適用できる。また,本発明は,加熱処理と冷却処理の両方 を行う加熱'冷却処理装置にも適用できる。さらに,以上の実施の形態は, SOD膜形 成工程において冷却処理を行う冷却処理装置 40に適用していたが,例えばフォトリ ソグラフィー工程におけるプリべ一キング,ポストべ一キング及びポストェクスポージャ 一べ一キング後の冷却処理を行う冷却処理装置にも適用できる。さらに,本発明は, ウェハ以外の例えば FPD (フラットパネルディスプレイ),フォトマスク用のマスクレチタ ルなどの他の基板の冷却処理装置にも適用できる。  [0061] While an example of an embodiment of the present invention has been described above, the present invention is not limited to this example and can take various forms. For example, the present embodiment is an example of preventing the wafer W from warping in the cooling processing apparatus 40, but the present invention can also be applied to other cooling processing apparatuses in the SOD film forming system 1. The present invention can also be applied to a heating and cooling processing apparatus that performs both heat processing and cooling processing. Furthermore, although the above embodiment has been applied to the cooling processing apparatus 40 that performs the cooling process in the SOD film forming process, for example, pre-baking, post-baking, and post-exposure in the photolithography process. The present invention can also be applied to a cooling processing apparatus that performs a cooling process after one king. Furthermore, the present invention can be applied to other substrate cooling processing apparatuses such as a mask reticle for an FPD (flat panel display) and a photomask other than the wafer.
産業上の利用可能性  Industrial applicability
[0062] 本発明は,冷却処理時の基板の反りを防止する際に有用である。 The present invention is useful for preventing the substrate from warping during the cooling process.

Claims

請求の範囲 The scope of the claims
[1] 基板を冷却する冷却処理装置であって,  [1] A cooling device for cooling a substrate,
基板を載置して冷却する冷却板と,  A cooling plate for mounting and cooling the substrate;
前記冷却板上に載置された基板の反りを測定する反り測定部と,  A warpage measuring section for measuring the warpage of a substrate placed on the cooling plate;
前記冷却板の表面の複数個所に形成され,冷却板上の基板に対する気体の吹き出 しと吸引を選択的に行うことができる吹出し'吸引口と,  A blow-out suction port formed at a plurality of locations on the surface of the cooling plate and capable of selectively blowing and sucking gas to and from the substrate on the cooling plate;
前記反り測定部の測定結果に基づ!/、て,冷却板上で冷却される基板が平坦になるよ うに,前記各吹出し'吸引口による吹き出し又は吸引を行う制御部とを有する。  Based on the measurement result of the warp measuring unit, the control unit performs blowing or sucking by the respective blowing outlets so that the substrate cooled on the cooling plate becomes flat.
[2] 請求項 1に記載の基板の冷却処理装置にぉ 、て,  [2] In the substrate cooling processing apparatus according to claim 1,
前記制御部は,前記反り測定部により測定された基板の反りの程度に応じて,前記 各吹き出し '吸引口の気体の吹き出し流量又は吸引流量を調整する。  The control unit adjusts the blow-out flow rate or the suction flow rate of the gas at each blow-out port according to the degree of warpage of the substrate measured by the warp measurement unit.
[3] 請求項 1に記載の基板の冷却処理装置にぉ 、て, [3] The substrate cooling processing apparatus according to claim 1, wherein
前記吹き出し '吸引口は,前記冷却板上の基板の中央部に対応する位置と,前記基 板の外周部に対応する位置に形成されている。  The blow-out suction port is formed at a position corresponding to the central portion of the substrate on the cooling plate and a position corresponding to the outer peripheral portion of the base plate.
[4] 請求項 1に記載の基板の冷却処理装置にぉ 、て, [4] The substrate cooling processing apparatus according to claim 1, wherein
前記吹き出し '吸引口は,前記冷却板上の基板に対応する面内に均等に配置されて いる。  The blowout suction ports are evenly arranged in a plane corresponding to the substrate on the cooling plate.
[5] 請求項 1に記載の基板の冷却処理装置にぉ 、て,  [5] The substrate cooling apparatus according to claim 1, wherein
前記複数の吹出し'吸引口のうちのいずれかには,吹出しと吸引によって前記冷却 板の表面上に突出自在で,冷却板上の基板の裏面を押圧可能な押圧部材が設けら れている。  Any one of the plurality of outlets' suction ports is provided with a pressing member that can protrude on the surface of the cooling plate by blowing and suction and can press the back surface of the substrate on the cooling plate.
[6] 基板の冷却処理装置であって,  [6] A substrate cooling apparatus,
基板を載置して冷却する冷却板を有し,  A cooling plate for mounting and cooling the substrate;
前記冷却板は,基板よりも大きな表面を有し,  The cooling plate has a larger surface than the substrate;
前記冷却板には,基板を支持し,前記基板と冷却板との間に隙間を形成する支持体 が設けられ,  The cooling plate is provided with a support that supports the substrate and forms a gap between the substrate and the cooling plate.
前記冷却板の表面には,平面から見て,冷却板上に載置された基板の外方の位置 力 当該基板の中心部付近にまで通じる溝が形成されている。 On the surface of the cooling plate, there is formed a groove that leads to the position near the center of the substrate as viewed from above, as viewed from above.
[7] 請求項 6に記載の基板の冷却処理装置において, [7] The substrate cooling processing apparatus according to claim 6,
前記溝は,前記冷却板の表面の一端部力 中心部付近を通って他端部まで到達す るように形成されている。  The groove is formed so as to reach the other end portion through the vicinity of the force center portion of the one end portion of the surface of the cooling plate.
[8] 請求項 7に記載の基板の冷却処理装置にぉ 、て, [8] The substrate cooling processing apparatus according to claim 7, wherein
前記溝には,給気口又は排気口が形成されて 、る。  An air supply port or an exhaust port is formed in the groove.
[9] 基板を冷却する冷却処理装置であって, [9] A cooling processing device for cooling a substrate,
基板を載置して冷却する冷却板と,  A cooling plate for mounting and cooling the substrate;
前記冷却板の表面の複数個所に形成され,冷却板上の基板を吸引可能な吸引口と 前記冷却板の表面上に突出して,冷却板上の基板の裏面を押圧可能な押圧部材と 前記冷却板上に載置された基板の反りに応じて,冷却板上で冷却される基板が平坦 になるように,前記押圧部材による押圧と前記吸引口による吸引を制御する制御部と ,を有する。  A suction port formed at a plurality of locations on the surface of the cooling plate and capable of sucking the substrate on the cooling plate; a pressing member protruding on the surface of the cooling plate and capable of pressing the back surface of the substrate on the cooling plate; And a controller for controlling the pressing by the pressing member and the suction by the suction port so that the substrate cooled on the cooling plate becomes flat according to the warp of the substrate placed on the plate.
PCT/JP2006/301015 2005-01-25 2006-01-24 Cooling treatment device WO2006080290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005016825A JP4485374B2 (en) 2005-01-25 2005-01-25 Cooling processing device
JP2005-016825 2005-01-25

Publications (1)

Publication Number Publication Date
WO2006080290A1 true WO2006080290A1 (en) 2006-08-03

Family

ID=36740321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301015 WO2006080290A1 (en) 2005-01-25 2006-01-24 Cooling treatment device

Country Status (3)

Country Link
JP (1) JP4485374B2 (en)
KR (1) KR100870692B1 (en)
WO (1) WO2006080290A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035186A (en) * 2009-08-03 2011-02-17 Tokyo Electron Ltd Coating processing device, coating processing method, program, and computer storage medium
WO2012051289A1 (en) * 2010-10-12 2012-04-19 Varian Semiconductor Equipment Associates, Inc. Platen control
CN103364984A (en) * 2012-03-28 2013-10-23 全球标准技术有限公司 Device for keeping panel to be flat
JP2017506002A (en) * 2014-02-11 2017-02-23 ズス・マイクロテック・リソグラフィ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングSuss MicroTec Lithography GmbH Method and apparatus for preventing deformation of a substrate supported in an edge region

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4781901B2 (en) * 2006-05-08 2011-09-28 東京エレクトロン株式会社 Heat treatment method, program and heat treatment apparatus
JP4814731B2 (en) * 2006-08-30 2011-11-16 株式会社日立ハイテクノロジーズ Substrate holding apparatus, inspection or processing apparatus, substrate holding method, inspection or processing method, and inspection apparatus
JP4859229B2 (en) 2006-12-08 2012-01-25 東京エレクトロン株式会社 Heat treatment equipment
JP4899879B2 (en) * 2007-01-17 2012-03-21 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and storage medium
JP5109376B2 (en) 2007-01-22 2012-12-26 東京エレクトロン株式会社 Heating device, heating method and storage medium
JP4884296B2 (en) * 2007-05-17 2012-02-29 株式会社日立ハイテクノロジーズ Substrate support apparatus and substrate support method
JP4926932B2 (en) * 2007-12-14 2012-05-09 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
JP4926931B2 (en) * 2007-12-14 2012-05-09 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
JP5194040B2 (en) * 2010-03-05 2013-05-08 株式会社日立ハイテクノロジーズ Display device and inspection device
US20120309115A1 (en) * 2011-06-02 2012-12-06 Applied Materials, Inc. Apparatus and methods for supporting and controlling a substrate
US20140042152A1 (en) * 2012-08-08 2014-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Variable frequency microwave device and method for rectifying wafer warpage
KR101543690B1 (en) * 2014-01-29 2015-08-21 세메스 주식회사 Apparatus and Method treating substrate
KR102398673B1 (en) * 2015-06-12 2022-05-16 세메스 주식회사 Apparatus for treating substrate
KR101787500B1 (en) * 2016-02-04 2017-10-19 에이피티씨 주식회사 Apparatus for manufacturing a semiconductor device and method of processing a semiconductor wafer using the same
KR102046869B1 (en) * 2017-05-10 2019-11-21 세메스 주식회사 Member for suppliyng a substrate, Buffer unit, and Apparatus for treating a substrate
JP6837929B2 (en) * 2017-06-23 2021-03-03 東京エレクトロン株式会社 Board processing equipment
JP2021093479A (en) * 2019-12-12 2021-06-17 株式会社Screenホールディングス Cooling device, cooling method and manufacturing method of semiconductor package
EP3916482A1 (en) * 2020-05-27 2021-12-01 ASML Netherlands B.V. Conditioning device and corresponding object handler, stage apparatus and lithographic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196245A (en) * 1990-11-27 1992-07-16 Mitsubishi Electric Corp Manufacturing and evaluation apparatus of semiconductor
JPH06177118A (en) * 1992-12-10 1994-06-24 Tokyo Ohka Kogyo Co Ltd Film baking system for object to be processed
JPH07238380A (en) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp Wafer chuck, semiconductor producing device and production of semiconductor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249400A (en) * 1987-04-06 1988-10-17 株式会社日立製作所 X-y table for electronic circuit board
JP2991110B2 (en) * 1996-05-01 1999-12-20 日本電気株式会社 Substrate suction holding device
KR19990034052U (en) * 1998-01-13 1999-08-16 구본준 Wafer Uniform Cooling Structure of Semiconductor Manufacturing Equipment
JPH11329922A (en) 1998-05-08 1999-11-30 Dainippon Screen Mfg Co Ltd Device and method for cooling substrate
JP3803487B2 (en) * 1998-05-08 2006-08-02 大日本スクリーン製造株式会社 Substrate cooling device and substrate cooling method
JP2000323487A (en) * 1999-05-14 2000-11-24 Tokyo Electron Ltd Sheet-by-sheet type heat treatment device
US6426790B1 (en) * 2000-02-28 2002-07-30 Nikon Corporation Stage apparatus and holder, and scanning exposure apparatus and exposure apparatus
JP4454243B2 (en) * 2003-03-31 2010-04-21 キヤノンアネルバ株式会社 Substrate temperature adjusting device and substrate temperature adjusting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196245A (en) * 1990-11-27 1992-07-16 Mitsubishi Electric Corp Manufacturing and evaluation apparatus of semiconductor
JPH06177118A (en) * 1992-12-10 1994-06-24 Tokyo Ohka Kogyo Co Ltd Film baking system for object to be processed
JPH07238380A (en) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp Wafer chuck, semiconductor producing device and production of semiconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035186A (en) * 2009-08-03 2011-02-17 Tokyo Electron Ltd Coating processing device, coating processing method, program, and computer storage medium
WO2012051289A1 (en) * 2010-10-12 2012-04-19 Varian Semiconductor Equipment Associates, Inc. Platen control
US9012337B2 (en) 2010-10-12 2015-04-21 Varian Semiconductor Equipment Associates, Inc. Platen control
CN103364984A (en) * 2012-03-28 2013-10-23 全球标准技术有限公司 Device for keeping panel to be flat
JP2017506002A (en) * 2014-02-11 2017-02-23 ズス・マイクロテック・リソグラフィ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングSuss MicroTec Lithography GmbH Method and apparatus for preventing deformation of a substrate supported in an edge region

Also Published As

Publication number Publication date
KR20070084527A (en) 2007-08-24
JP2006210400A (en) 2006-08-10
KR100870692B1 (en) 2008-11-27
JP4485374B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
WO2006080290A1 (en) Cooling treatment device
KR100798659B1 (en) Substrate processing unit
JP4372182B2 (en) Substrate support mechanism, reduced-pressure drying apparatus, and substrate processing apparatus
US8115142B2 (en) Plate, apparatus for adjusting temperature of substrate having the plate and apparatus for processing substrate having the plate
KR100628584B1 (en) Substrate processing apparatus and substrate processing method
JP6407803B2 (en) Joining apparatus, joining system, joining method, program, and computer storage medium
US7050710B2 (en) Thermal treatment equipment and thermal treatment method
JP2003017402A (en) Method and system for processing substrate
JP4531661B2 (en) Substrate processing method and substrate processing apparatus
US6786974B2 (en) Insulating film forming method and insulating film forming apparatus
US20200272055A1 (en) Substrate treating method and apparatus used therefor
US20050268849A1 (en) Film forming apparatus and film forming method
JP2004336076A (en) Heating apparatus
US6799910B2 (en) Processing method and processing apparatus
JP2013089633A (en) Vacuum dryer
JP2005064242A (en) Processing system of substrate and heat-treatment method of substrate
CN108428615B (en) Substrate processing method and apparatus
JP4447536B2 (en) Substrate processing method and substrate processing apparatus
JP2011058656A (en) Reduced-pressure drying device and reduced-pressure drying method
JP2002343708A (en) Substrate processing system and heat treating method
CN108428624B (en) Substrate processing method
JP4066255B2 (en) Substrate processing apparatus and substrate processing method
JP3177614U (en) Vacuum dryer
WO2020209067A1 (en) Film forming apparatus, film forming method, and film forming system
JP3170799U (en) Vacuum dryer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077011755

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06712231

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712231

Country of ref document: EP