WO2006077999A1 - Hydrogen producing, storing, transporting, power converting device and method - Google Patents

Hydrogen producing, storing, transporting, power converting device and method Download PDF

Info

Publication number
WO2006077999A1
WO2006077999A1 PCT/JP2006/300914 JP2006300914W WO2006077999A1 WO 2006077999 A1 WO2006077999 A1 WO 2006077999A1 JP 2006300914 W JP2006300914 W JP 2006300914W WO 2006077999 A1 WO2006077999 A1 WO 2006077999A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
storage tank
hydrogen storage
storage
transporting
Prior art date
Application number
PCT/JP2006/300914
Other languages
French (fr)
Japanese (ja)
Inventor
Masaharu Kubo
Original Assignee
Masaharu Kubo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masaharu Kubo filed Critical Masaharu Kubo
Publication of WO2006077999A1 publication Critical patent/WO2006077999A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the present invention relates to an apparatus and a method related to hydrogen production, storage, transportation, and power conversion.
  • the present invention relates to an apparatus and a method for transporting hydrogen to a place where it is consumed and converting hydrogen efficiently into mechanical energy (dynamic power) and / or electric energy at the place where it is consumed.
  • multiple wind turbines and solar panels are installed on a mega float (floating body) to convert natural energy from wind power and sunlight into electrical energy, and at the same time, the wave force that strikes around the mega float is also electrical. It is described that it is converted into energy and seawater is electrolyzed using these electric energy and stored as liquid hydrogen in a storage device attached to the megaplot.
  • the size of the mega float, the height of the windmill, the location of the liquid hydrogen storage part that stores liquid hydrogen (attached to the mega float
  • the description is related to the weight of the equipment installed on the top surface of the mega float, such as a windmill or solar panel, the volume, weight, center of gravity of the mega float, and the volume, weight of the liquid hydrogen storage unit.
  • the place attached to the megafloat as the liquid hydrogen storage unit.
  • means for economically producing liquid hydrogen by electrolysis is not described in the literature.
  • the liquid hydrogen tank system is known to store the largest amount of hydrogen per unit volume and weight of the storage tank.
  • Non-Patent Document 1 (Non-Patent Document 1).
  • Non-patent Document 1 As means for converting hydrogen into mechanical energy (power), there is a so-called hydrogen engine (reciprocating hydrogen engine) (Non-patent Document 1).
  • This hydrogen engine is a method of converting hydrogen gas into mechanical energy (power) in the process of being burned at a high temperature (for example, 1400 degrees 0), exploding and expanding, and then contracting with an engine mechanism.
  • a high temperature for example, 1400 degrees 0
  • Non-patent Document 1 There is a so-called fuel cell system as another means for converting hydrogen into mechanical energy (power) (Non-patent Document 1).
  • This method is a method in which hydrogen is chemically reacted with oxygen to convert it into electric energy, and the electric energy is used to obtain power, for example, by rotating a motor.
  • the structure of the megafloat described in the above-mentioned Patent Document 1 is such that the liquid hydrogen produced is very light (specific gravity ⁇ 1), so the weight of the structure of the hydrogen storage part and the other parts.
  • the hydrogen storage unit is placed at the bottom of the mega float, the liquid hydrogen storage unit is light and the entire liquid hydrogen production device becomes unstable (because the center of gravity is high).
  • the area for obtaining electrical energy such as windmills and solar panels, will be relatively narrow.
  • the wave that hits the mega float is blocked, and there is a problem that wave energy cannot be used.
  • Non-Patent Document 1 when liquid hydrogen is produced by a normal electrolysis method, a large amount of electric energy necessary for electrolysis is required, so that the electric energy obtained from the natural energy is obtained. For this reason, since a considerable amount was consumed, there was a big problem that liquid hydrogen could not be produced economically as a whole.
  • Non-Patent Document 1 the hydrogen engine (reciprocating type) in Non-Patent Document 1 has the advantage of being able to use the same engine as ordinary gasoline, but because it uses the reciprocating motion of Biston, the efficiency of converting hydrogen combustion into power is efficient. There was a big problem,
  • the first object of the present invention is to provide a means for economically generating hydrogen by further adding potential energy of seawater pressure in addition to natural energy of sunlight, wind power and wave power, It is.
  • the second object of the present invention is to make the hydrogen storage part and other mega float parts detachable, thereby improving the overall stability of the hydrogen supply base related to hydrogen production and storage, and at the same time storing it for a long time. To provide a means.
  • a third object of the present invention is to store hydrogen in a liquid hydrogen and / or liquid state in a space inside it via ultra-fine pores such as bamboo charcoal as a means for storing and transporting hydrogen. It is to provide means for solving the above-mentioned boil-off and sloshing problems by using a hydrogen storage tank.
  • Still another object of the present invention is to provide a second hydrogen supply base for supplying hydrogen to an on-land hydrogen consuming device such as an automobile from a first hydrogen supply base comprising the hydrogen production (generation) device and a hydrogen storage device.
  • a first hydrogen supply base comprising the hydrogen production (generation) device and a hydrogen storage device.
  • the present invention provides an economical and safe means of obtaining hydrogen by using an electrolyzer that uses natural energy using at least wind power or sunlight and the potential energy of seawater pressure in the sea. To provide. Effects of the present invention
  • FIG. 1 is a schematic cross-sectional view of a first hydrogen supply base for producing hydrogen of the present invention and storing it in a hydrogen storage tank.
  • FIG. 4 is a conceptual perspective view for explaining the structure (configuration) of bamboo charcoal that is a hydrogen storage material in FIG.
  • FIG. 3 is a block diagram showing a method and / or cycle system for hydrogen generation, filling, storage, transportation, use, and refilling (reusing a hydrogen storage tank) in the present invention.
  • FIG. 1 is a conceptual cross-sectional view of a hydrogen production / storage / transport method / equipment and a first hydrogen supply base (hereinafter simply referred to as a hydrogen supply base) according to the present invention.
  • FIG. 2 is a conceptual cross-sectional view showing the relationship between the hydrogen storage and storage unit, the mega bloat, and the transport ship, which are a part of FIG.
  • the hydrogen supply base is roughly divided into a mega float 30 and a hydrogen storage tank storage 40.
  • a hydrogen storage tank 01 described in Example 2 is stored in 40.
  • a wind turbine 3 1 and a photovoltaic power generation panel 3 2 are installed on the upper surface of the mega float 30.
  • Wind power is generated by the wind turbine 3 1 and the generator 31 1 C connected to the wind turbine 3 1 C, and the power obtained there is a power supply unit via the electrical wiring and electrical wiring 3 1 A in the column 3 1 A that supports the wind turbine. 3 Sent to 8.
  • Electricity generated by solar power is generated by wiring the solar panel 3 2 3
  • Power generation by wave power is generated by installing a wave power generation device 33 around the mega float 30 and sent to the power supply device 3 8 via the electrical wiring 35 C.
  • liquid hydrogen is produced by electrolyzing seawater with the electrolyzer 4 1 using the power stored in the power supply 1 8. Although liquid oxygen can be produced at the same time, it will not be described because it is not the subject of this application.
  • seawater is pressurized to about 2 to 200 atmospheres using the potential of seawater pressure in an electrolyzer 41 placed in the sea 10 to 200 meters below the surface of the water.
  • the seawater is electrolyzed by pouring an alkaline substance such as KOH from the mega float 30 into the vicinity of the electrode while warming the seawater with a heating heater, for example, by remote control only in the vicinity of the electrode of the electrolyzer 41.
  • the gaseous hydrogen of 2 to 200 atm generated by electrolysis is cooled to liquid hydrogen by, for example, an adiabatic expansion device (not shown) installed around the electrolysis device 4 1.
  • the liquid hydrogen passes through the hatch 42 and is filled into the hydrogen storage tank 01 described in Example 2, for example.
  • the filled liquid hydrogen is then Even if the hydrogen storage tank 01 gradually rises to a temperature approximately equal to the temperature of the seawater nearby, it remains in a liquid state and is stored in the hydrogen storage tank 0 1 as it is.
  • the electrolyzer 4 1 is moored in the sea via wires 4 3 on the pit 4 4 installed on the lower surface.
  • Megafloat 30 has a control tower 50, from which various control instructions are issued. For example, as described later, a command to disconnect the hydrogen storage tank storage 40 from the mega float 30, a control condition of the hydrogen storage tank storage 40, the condition for keeping hydrogen in 40C, and the position of 40 in the sea Directive to raise ⁇ 4 4 ⁇ when approaching carrier 5 5, directive to supply power and special parts (members that promote electrolysis, such as KOH) to pipe 4 4, hydrogen storage, Empty hydrogen storage tank between storage tank storage section 40 and mega float 30 0 0 1 A or hydrogen-filled tank 0 1 Automatic transfer, opening / closing hatch 4 2, 5 2, etc. Command by radio and / or ultrasonic means.
  • Fig. 2 is a diagram showing a state in which the hydrogen storage tank storage section 40 is separated from the megafloat 30 and moored in the sea in Example 1 and a state in which the hydrogen storage tank .01 filled in the transport ship 55 is loaded. is there.
  • Hydrogen storage tank storage part 40 is a hydrogen tank storage part containing hydrogen tank 0 1 40 A, cold insulation part 40 B, control part 40 C, hatch 4 2, 5 2, ⁇ 4 4, wire 4 3 Consists of
  • the reason for separating the hydrogen storage tank storage 40 and the mega float 30 is as follows. That is, because the volume of the hydrogen storage tank storage 40 is much larger than that of the mega float 30, a plurality of hydrogen storage tank storage 40 are placed for one mega float 30.
  • the hydrogen storage tank storage section 40 in the sea, for example, at a depth of more than 100 m, the seawater temperature is about 5 degrees and the seawater pressure is over 10 atmospheres. This is because they are in a state and their values are almost constant throughout the year, so that power and other costs required for storage can be reduced, and hydrogen can be stored economically.
  • the depth of seawater is 10 m or more is that if it is shallower than that, the effect obtained for the cost of operating the electrolyzer 41 remotely is small.
  • the main reason why it is desirable to have a length of 200 m or less is due to technical difficulties associated with installation in the deeper sea.
  • hydrogen can also be transported directly by airplane or pipe.
  • transport by carrier 5 5 is optimal considering the specific gravity of hydrogen, the size and weight of hydrogen storage device 01.
  • the pillar 31 1 A of the wind turbine may be a lower support than the ground wind power generation.
  • the height of the wind turbine support 3 1 A is the length plus 5 m. The degree, that is, 20 m or more. Therefore, prop 3
  • the strength of the wind turbine support 3 1A itself can be lowered to some extent, and costs can be reduced.
  • a net-like wire may be stretched to connect the support post 3 1 A.
  • FIG. 3 is a conceptual perspective view of the hydrogen storage tank 0 1.
  • Fig. 4 (a) and (b) are views of the hydrogen storage tank 0 1 cut along the cut planes A 1 and A 2 in Fig. 3.
  • Fig. 5 (a), (b), and (c) are hydrogen storage substances, which are conceptual cross-sectional detail views, each of which is stored immediately after filling with hydrogen (liquid hydrogen and / or liquid hydrogen). It is a conceptual perspective view explaining the structure when bamboo charcoal is used as the same function in Fig. 3, Fig. 4 (a), (b), Fig. 5 (a), (b), (c) These parts are denoted by the same reference numerals.
  • 0 1 is a hydrogen storage tank
  • 0 2 and 0 2 A are hydrogen intake and discharge valves.
  • the hydrogen storage tank 0 1 is a SUS-type container with a thickness of 3 mm, and its shape is a cylinder with a diameter of lm and a height of 50 cm. It has a shape.
  • FIG. 5 will be explained.
  • (a) is a conceptual perspective view of the entire bamboo charcoal structure (configuration).
  • (b) is a conceptual perspective view of a unit unit (a portion corresponding to bamboo cells that are raw materials of bamboo charcoal) in the bamboo charcoal structure (configuration).
  • Fig. 5 (c) is a conceptual perspective view showing the inside of Fig. 5 (b) except for the top surface.
  • Fig. 5 (b) shows an aggregate of honeycomb-shaped bamboo charcoal unit structures (Fig. 5 (a)) with a side of approximately 80 microns.
  • the inner 0 3 first hydrogen storage part
  • bamboo charcoal wall 0 3 2 is a pore that penetrates bamboo charcoal wall 0 3 2 A, and its size is about 4 angstrom diameter. 0 Filters and / or acts as a valve against hydrogen entering and exiting 3.
  • Reference numeral 0 3 1 is an air passage having a diameter of about 100 ⁇ m, which corresponds to a bamboo conduit for bamboo charcoal. This part is temporarily filled with liquid hydrogen at the time of filling, but vaporized during storage. 0 3 and 0 3 1 are connected through 0 3 2 and 0 3 4 are connected. 0 3 4 is a space in the hydrogen storage tank 0 1 that is not filled with bamboo charcoal, and mainly contains hydrogen vapor.
  • 0 3 1 and 0 3 4 constitute a second hydrogen storage unit.
  • Fig. 4 (a) shows that the vaporized hydrogen produced by the electrolysis apparatus installed in the sea explained in Example 1 was liquefied in the tank 0 1 (the pressure was greatly reduced by liquefaction).
  • Fig. 4 (b) shows the state of the tank 0 1 immediately after filling with (when it is unused and at the start of storage).
  • Fig. 4 (b) shows a gradual increase after filling the tank 0 1 with hydrogen (liquid hydrogen or liquid hydrogen). Shows the state of the tank 0 1 in the storage state after the temperature of the tank 0 1 is raised and the ambient temperature (room temperature or seawater temperature) is reached.
  • the first hydrogen storage section 0 3 includes approximately 95% hydrogen (weight ratio) of the total amount greater than the second hydrogen storage sections 0 3 1 and 0 3 4. Is filled.
  • the temperature of the tank 01 was gradually raised from the liquid hydrogen filling temperature (20 K) to room temperature (30 00 K).
  • the tank In the region 0 3 1 that was liquid hydrogen immediately after filling, the tank also vaporizes all of the liquid hydrogen from the outside and is integrated with the portion of 0 3 4 as shown in Fig. 4 (b). It became a containment of vaporized hydrogen. After about 24 hours, the temperature of the hydrogen storage tank 01 was almost in equilibrium with the ambient temperature, and the pressure of vaporized hydrogen in the second hydrogen storage part was about 13 atm.
  • the vaporized hydrogen pressure in the second hydrogen storage units 0 3 1 and 0 3 4 is gradually increased from about 1 atm at the start of storage to about 13 atm after 24 hours when the pressure reaches an equilibrium state. It was possible to set the pressure always higher than the pressure of the hydrogen to be vaporized through the filter-like structure 0 3 2 from the first hydrogen storage part 0 3.
  • This pressure: 13 atm corresponds to the pressure at the critical point of hydrogen (temperature 30 K). That is, in this embodiment, by setting the pressure of vaporized hydrogen to the above value, the pressure at which hydrogen in the first storage unit 03 is not substantially discharged to the second storage unit (0 3 1 and 0 3 4). It can be set to level.
  • the hydrogen in the first hydrogen storage unit 03 is stored in a liquid state having a density close to that of liquid hydrogen even if the surroundings are at an ordinary temperature and / or an equilibrium state equal to the seawater temperature. To do.
  • bamboo charcoal as an example of the hydrogen storage material.
  • charcoal such as coconut shell charcoal and kenaf charcoal, carbonite such as graphite and activated charcoal
  • a porous material such as zeolite, or a synthetic material in which the material is pelletized and powdered and a part of the surface thereof is coated with, for example, Teflon paste or other coating materials can be used.
  • Fig. 6 shows the hydrogen floats composed of the megafloats in the ocean described in Fig. 1 and Fig. 2, and the storage station 51 (the first hydrogen supply base).
  • At least the sea between 5 2 (second hydrogen supply base) transports the hydrogen storage tank 0 1 by means of transportation including a transport ship 5 5, and at the hydrogen station 5 2, a hydrogen consuming device (for example, an automobile) 5 3) While supplying the hydrogen storage tank 0 1 to the empty hydrogen storage tank 0 1 A, transport it again to the first hydrogen supply base 5 1 with a transport ship 5 5 and refill it with hydrogen.
  • It is drawing which shows a method.
  • Figure 7 is fit O 0 In Furochiya one bets for explaining the procedure of the FIG. 6
  • 51 is a first hydrogen supply base composed of, for example, the mega float 30 shown in FIG. 1 and FIG. 2
  • 52 is a hydrogen stand (second hydrogen supply base)
  • 5 3 is an automobile
  • 5 5 is a carrier for a hydrogen storage tank.
  • the hydrogen storage tanks 0 1 in Examples 1 and 2 have a cartridge shape, and the operability when attached to and detached from the automobile is improved (details of the cartridge shape are not shown).
  • the first hydrogen supply base 51 and the hydrogen stand 52 are installed in a place completely separated from each other on the ocean and land.
  • a hydrogen storage tank that stores hydrogen, which is not liquid hydrogen itself is characterized by transporting the ocean by transport ship 55.
  • the hydrogen consuming device is an electronic device including at least a personal computer and a mobile phone that use hydrogen as an energy source in addition to a car.
  • step S 1 0 0 of FIG. 7 the hydrogen storage tank 0 1 described in Example 2 is first filled with hydrogen at the first hydrogen supply base 51.
  • step S 1 0 the carrier 5 5 carries the hydrogen storage tank 0 1 to the land where the second hydrogen supply base is located.
  • step S 1 0 2 the hydrogen storage tank 0 1 transported to the port is unloaded and transported to the hydrogen station 5 2 (second hydrogen supply base).
  • the user of the car 5 3 purchases the hydrogen storage tank 0 1 and installs it in the car 5 3 in step S 1 0 3.
  • step S 1 0 3 the user of the automobile 5 3 uses or stores the hydrogen storage tank 0 1 in the automobile (unused state).
  • step S 1 0 4 the user of the car 5 3 takes the hydrogen storage tank 0 1 when it is almost empty, and the user gets on the car 5 3 and goes to the hydrogen stand 5 2. Replace A with a newly purchased hydrogen storage tank 0 1.
  • step S 1 0 another supplier empties the hydrogen storage tank 0 1 A from the hydrogen stand 5 2 Can the tank still be used? (Is the mechanical strength deterioration due to the temperature cycle approaching the specified value?) No: Check if the product has reached the end of its service life.
  • step S 1 0 6 If it is determined in step S 1 0 6 that the emptied hydrogen storage tank 0 1 A is not yet required to be replaced, the process proceeds to step 1 0 7.
  • Step 10 07 the emptied hydrogen storage tank 0 1 A is transported from the port to the first hydrogen supply base 51 by the transport ship 55, returns to Step 100, and is refilled with liquid hydrogen.
  • step S 1 0 7 if the hydrogen storage tank 0 1 A emptied needs to be replaced, proceed to step S 1 0 8 to replace the hydrogen storage tank 0 1 A with a new hydrogen storage tank 0 1 Then, it is transported from the port to the first hydrogen supply base 51 by the transporter 55, and returned to step 100 and refilled with hydrogen.
  • the concept of the present invention also includes embodiments that can be easily estimated by interested persons based on this technical disclosure. For example, even if the first hydrogen supply base in the ocean is close to the land where the second hydrogen supply site is located, the depth of the seawater is 10 to 200 m, When it can be transported by pipe (technical and economic), it is also included in the present invention to directly transport hydrogen pressurized by seawater pressure.
  • the hydrogen storage tank described in the present invention can be a cartridge type, it can be fitted under the seat of a car (sheet) or stored in the center of a car tire while surrounding the conventional tank.
  • a structure that serves as both a hydrogen storage tank filled with vaporized hydrogen corresponding to the tire pressure and a tire is also included in the concept of the present invention.

Abstract

A device and a method for producing hydrogen economically through utilization of natural energy of solar light, wind power, wave power or sea water pressure, transporting the hydrogen from a place for storing hydrogen stably in safety over a long term to a place for consuming hydrogen, and converting hydrogen efficiently into mechanical energy (power) and/or electric energy efficiently at the consuming place. Hydrogen is produced from sea water through electrolysis by means of an ocean megafloat (ocean floating body) installed with a wind turbine and solar cells and an electrolysis unit installed in the sea at a depth of 20m or below. A hydrogen storage tank is filled with that hydrogen and stored in a hydrogen storage section. Hydrogen is transported onto the ground under nonliquid state.

Description

水素生産 ·貯蔵 ·運搬 ·動力変換装置並びに方法 技術分野  Hydrogen production · Storage · Transport · Power conversion equipment and methods
[0001] 本発明は、 水素の生明産、 貯蔵、 運搬、 動力変換に関わる装置 並びに方法に関する。 [0001] The present invention relates to an apparatus and a method related to hydrogen production, storage, transportation, and power conversion.
即ち、 太陽光、 風力、 波力田、 海水圧などの自然エネルギーを利用 して経済的に生成された水素、水素を生成してその水素を長期間 安定且つ安全に貯蔵する場所から別の水素を消費する場所まで 運搬して消費場所において水素を効率良く機械エネルギー (動 力)、及びもしくは電気エネルギーに変換する装置並びに方法に 関する。 背景技術  That is, hydrogen generated economically using natural energy such as sunlight, wind power, wave power field, seawater pressure, and other hydrogen from a place where hydrogen is generated and stored stably and safely for a long time. The present invention relates to an apparatus and a method for transporting hydrogen to a place where it is consumed and converting hydrogen efficiently into mechanical energy (dynamic power) and / or electric energy at the place where it is consumed. Background art
[0002] 石油、 石炭、 天然ガスなどの化石燃料の消費によって炭酸ガス による地球温暖化並びに N O Xなどの有害排気物の問題が地球 規模で非常に深刻化している。 [0002] Consumption of fossil fuels such as oil, coal, and natural gas makes global warming due to carbon dioxide and harmful emissions such as NOx very serious on a global scale.
水素は事実上無尽蔵であり、 またその燃焼によって化石燃料の前 記問題がまったく発生しないことから、 その重要性が認識されて いる。  The importance of hydrogen is recognized because it is virtually inexhaustible and its combustion does not cause any of the above fossil fuel problems.
しかし、 水素はそれをどのよ う経済的に製造するか、 また製造 された水素をどのように長期間安定且つ安全に貯蔵したり運搬 するか、 またその水素を運搬した先の消費場所において、 機械工 ネルギー (動力) 及びもしくは電気エネルギーに如何に効率良く 変換するか、 ということが大きな問題である。  However, how economically it is to produce hydrogen, how to store and transport the produced hydrogen stably and safely over a long period of time, and where it was transported, The big question is how to convert efficiently into mechanic energy and / or electrical energy.
[0003] 従来、 水素を生成する方法として風力、 太陽光、 波力などの自 然エネルギーを利用して海水を電気分解して液体水素として貯 蔵することが知られている (特許文献 1 )。 [0003] Conventionally, as a method for generating hydrogen, it is known that seawater is electrolyzed and stored as liquid hydrogen using natural energy such as wind, sunlight, and wave power (Patent Document 1). .
【特許文献 1】  [Patent Document 1]
特開 2 0 0 1— 5 9 4 7 2号公報 ( 2 0 0 1 . 3 . 6 )  Japanese Patent Laid-Open No. 2 0 0 1-5 9 4 7 2 (2 0 0 1.3.6)
この文献によると、 メガフロート (海上浮揚体) 上に複数の風車、 太陽電池パネルを配備してそれぞれ風力、 太陽光による自然エネ ルギーを電気エネルギーに変換すると同時にメガフロートの周辺 に打ち寄せる波力も電気エネルギーに変換して、 これらの電気工 ネルギーを利用して海水を電気分解して液体水素と してメガプロ ートに付帯した貯蔵装置に貯蔵する、 と記載されている。  According to this document, multiple wind turbines and solar panels are installed on a mega float (floating body) to convert natural energy from wind power and sunlight into electrical energy, and at the same time, the wave force that strikes around the mega float is also electrical. It is described that it is converted into energy and seawater is electrolyzed using these electric energy and stored as liquid hydrogen in a storage device attached to the megaplot.
[0004] その文献によると、 メガフロートの大きさ、 風車の高さ、 液体 水素を貯蔵する液体水素貯蔵部の場所 (メガフロートに付帯し た場所) に関しては記載されているが、 風車、 太陽電池パネル などメガフロートの上面に配備した装置の重量、 メガフロート 自体の容積、 重量、 重心並びに液体水素貯蔵部の容積、 重量に関 する記載はない。 また、 液体水素貯蔵部としての前記、 メガフロ ートに付帯した場所の具体的な記載はない。 また、 具体的に液体 水素を経済的に電気分解して製造する手段はその文献には記載さ れていない。 [0004] According to that document, the size of the mega float, the height of the windmill, the location of the liquid hydrogen storage part that stores liquid hydrogen (attached to the mega float However, the description is related to the weight of the equipment installed on the top surface of the mega float, such as a windmill or solar panel, the volume, weight, center of gravity of the mega float, and the volume, weight of the liquid hydrogen storage unit. There is no. Further, there is no specific description of the place attached to the megafloat as the liquid hydrogen storage unit. Further, specifically, means for economically producing liquid hydrogen by electrolysis is not described in the literature.
更に製造した水素を長期的に経済的且安全に貯蔵して消費地に運 搬する具体的手段の記載はない。  Furthermore, there is no description of specific means for storing the produced hydrogen economically and safely over the long term and transporting it to the consumption area.
[0005]  [0005]
次に、 水素の貯蔵方式については、 従来、 水素貯蔵合金、 超高圧 タンク、 液体水素タンクに貯蔵する方式が知られている。  Next, with regard to hydrogen storage systems, there are conventionally known systems that store hydrogen storage alloys, ultra-high pressure tanks, and liquid hydrogen tanks.
これらの方法の中で液体水素タンク方式は、 貯蔵タンクの容積並 びに重量あたりの水素を最も多く貯蔵できることが知られている Among these methods, the liquid hydrogen tank system is known to store the largest amount of hydrogen per unit volume and weight of the storage tank.
(非特許文献 1 )。 (Non-Patent Document 1).
【非特許文献 1】  [Non-Patent Document 1]
水素エネルギー最前線、 工業調査会、 2 0 0 3 . 7発行、 p . 2 0 7 - 2 1 1  Forefront of hydrogen energy, Industrial Research Committee, 2 0 0 3 .7, p. 2 0 7-2 1 1
[0006]  [0006]
一方、 水素を利用して機械エネルギー (動力) に変換する手段とし ては、 いわゆる水素エンジン (レシプロ式の水素エンジン) がある (非特許文献 1 )。  On the other hand, as means for converting hydrogen into mechanical energy (power), there is a so-called hydrogen engine (reciprocating hydrogen engine) (Non-patent Document 1).
この水素エンジンは水素ガスを空気中の酸素と高温 (たとえば 1 4 0 0度0 で燃焼、 爆発膨張させた後、 エンジン機構で収縮さ せる過程で機械エネルギー (動力) に変換する方法である。  This hydrogen engine is a method of converting hydrogen gas into mechanical energy (power) in the process of being burned at a high temperature (for example, 1400 degrees 0), exploding and expanding, and then contracting with an engine mechanism.
【非特許文献 1】  [Non-Patent Document 1]
水素エネルギー最前線、 工業調査会、 2 0 0 3 . 7発行、 p. 78 Forefront of Hydrogen Energy, Industrial Research Committee, published 2 0 0 3.7, p. 78
[0007] [0007]
水素を機械エネルギー (動力) に変換する他の手段としては、 い わゆる燃料電池方式がある (非特許文献 1 )。  There is a so-called fuel cell system as another means for converting hydrogen into mechanical energy (power) (Non-patent Document 1).
この方式は、 水素を酸素と化学反応させて電気エネルギーに変換 してその電気エネルギーを用いて、 例えばモーターを回転させて 動力を得る方式、 である。  This method is a method in which hydrogen is chemically reacted with oxygen to convert it into electric energy, and the electric energy is used to obtain power, for example, by rotating a motor.
【非特許文献 1】  [Non-Patent Document 1]
水素エネルギー最前線、 工業調査会、 2 0 0 3 . 7発行、 p . 2 ' 6 - 4 3 発明の開示 発明が解決しよう とする課題  Forefront of Hydrogen Energy, Industrial Research Committee, 2 0 3 3.7 Issue, p. 2 '6-4 3 Disclosure of Invention Problems to be Solved by the Invention
[0008]  [0008]
水素の製造においては、 前記した特許文献 1に記載されたメガフ ロートの構造では、 製造した液体水素が非常に軽い (比重 <く 1 ) ために水素貯蔵部とそれ以外の部分の構造が持つ重量とがアンパラ ンスになることが想定される。 即ち、 水素貯蔵部をメガフロー トの下部に配備すると液体水素 貯蔵部が軽いために、 液体水素生産装置全体が不安定 (重心 が高くなるために) になり、 また、 液体水素貯蔵装置部をメガフ ロートの上部に配備すると風車、 太陽電池パネルなど電気工ネル ギーを得る部分の面積が相対的に狭くなること、 が想定される。 —方、 メガフロートの側面に配備するとメガフロートに打ち寄せ る波が遮られてしまい、 波力エネルギーを利用できない課題、 が ある。 In the production of hydrogen, the structure of the megafloat described in the above-mentioned Patent Document 1 is such that the liquid hydrogen produced is very light (specific gravity <1), so the weight of the structure of the hydrogen storage part and the other parts. Are assumed to be unbalanced. In other words, if the hydrogen storage unit is placed at the bottom of the mega float, the liquid hydrogen storage unit is light and the entire liquid hydrogen production device becomes unstable (because the center of gravity is high). If it is installed on the upper part of the funnel, it is assumed that the area for obtaining electrical energy, such as windmills and solar panels, will be relatively narrow. -On the other hand, if it is deployed on the side of the mega float, the wave that hits the mega float is blocked, and there is a problem that wave energy cannot be used.
[0009]  [0009]
また、 前記非特許文献 1に記載のように、 通常の電気分解法で液 体水素を製造する時には、 電気分解に必要な電気エネルギーを大 量に必要とするので前記自然エネルギーで得た電気エネルギーを そのために相当量を消費するために、 全体として経済的に液体 水素を製造できない大きい課題、 があった。  In addition, as described in Non-Patent Document 1, when liquid hydrogen is produced by a normal electrolysis method, a large amount of electric energy necessary for electrolysis is required, so that the electric energy obtained from the natural energy is obtained. For this reason, since a considerable amount was consumed, there was a big problem that liquid hydrogen could not be produced economically as a whole.
[0010]  [0010]
更に、 製造した水素を液体水素のままでは製造 ·貯蔵する場所から 消費する場所まで経済的且安全に運搬できない (液揺動 (スロッシ ング)) 大きな課題がある。  Furthermore, there is a big problem that the produced hydrogen cannot be transported economically and safely from the place where it is produced and stored to the place where it is consumed if it is liquid hydrogen (liquid throttling).
[0011〕  [0011]
即ち、 非特許文献 1に記载のように液体水素の形で水素を装置  That is, as described in Non-Patent Document 1, hydrogen is supplied in the form of liquid hydrogen.
(水素貯蔵タンク) に貯蔵'運搬する時の最大の課題は、 液体水素 が蒸発して装置から漏洩しやすい (ボイルオフ) ことと、 水素貯 蔵タンクを搭載した例えば水素貯蔵タンク運搬船が揺れ動く こと によって生じる液体水素の液揺動 (スロッシング) により水素 貯蔵タンクが爆発を生じ易くなり危険になること、 である。  The biggest challenges when storing and transporting to (hydrogen storage tanks) are that liquid hydrogen is likely to evaporate and leak from the equipment (boil-off) and that a hydrogen storage tank carrier equipped with a hydrogen storage tank swings. The liquid storage tank is likely to explode due to liquid sloshing (sloshing), making it dangerous.
[0012]  [0012]
次に非特許文献 1における水素エンジン (レシプロ式) では、 通常 のガソリンと同じエンジンを利用できる利点はあるが、 ビス トン の往復運動を用いているために水素の燃焼を動力に変換する利用 効率が低い大きな課題、 があった。  Next, the hydrogen engine (reciprocating type) in Non-Patent Document 1 has the advantage of being able to use the same engine as ordinary gasoline, but because it uses the reciprocating motion of Biston, the efficiency of converting hydrogen combustion into power is efficient. There was a big problem,
[0013]  [0013]
次に非特許文献 1における燃料電池においては、 変換する利用効率 が低く長期的信頼性が低く、 電極などに白金などの貴金属を使用 する為に非常に高価になる経済性の点で大きな課題、 があった。 課題を解決するための手段  Next, in the fuel cell in Non-Patent Document 1, the conversion efficiency is low, the long-term reliability is low, and the use of precious metals such as platinum for electrodes is a major issue in terms of economy, was there. Means for solving the problem
[0014]  [0014]
本発明の第一の目的は、 太陽光、 風力、 波力の自然エネルギーに 加えて、海水圧のポテンシャルエネルギーも更に付加することによ つて、 経済的に水素を生成する手段を提供すること、 である。  The first object of the present invention is to provide a means for economically generating hydrogen by further adding potential energy of seawater pressure in addition to natural energy of sunlight, wind power and wave power, It is.
[0015]  [0015]
本発明の第二の目的は、 水素貯蔵部とその他のメガフロー トの部 分を着脱可能にすることで、 水素生産貯蔵に関わる水素供給基地 の全体の安定性を高めると同時に、 長期間貯蔵できる手段を提供 すること、 である。 [0016] The second object of the present invention is to make the hydrogen storage part and other mega float parts detachable, thereby improving the overall stability of the hydrogen supply base related to hydrogen production and storage, and at the same time storing it for a long time. To provide a means. [0016]
本発明の第三の目的は、 水素の貯蔵、 運搬する手段として例えば タケ炭のように超細孔を経由してその内部の空間に水素を液体水 素およびもしくは液状の状態で貯蔵することを利用した水素貯蔵 タンクを用いることで、 前記したボイルオフとスロッシングの課 題を解決する手段を提供すること、 である。  A third object of the present invention is to store hydrogen in a liquid hydrogen and / or liquid state in a space inside it via ultra-fine pores such as bamboo charcoal as a means for storing and transporting hydrogen. It is to provide means for solving the above-mentioned boil-off and sloshing problems by using a hydrogen storage tank.
[0017]  [0017]
本発明のさらに他の目的は、 前記水素の生産 (生成) 装置と水素 の貯蔵装置からなる第一の水素供給基地から陸地にある水素消費 装置例えば自動車に水素を供給する第二の水素供給基地まで安全 且つ経済的に水素を運搬する手段を提供すること、 である。 本発 明を換言すると、 少なく とも風力おょぴもしくは太陽光を利用 した自然エネルギーと海中の海水圧のボテンシャルエネルギー を利用した電気分解装置によって、 経済的で且つ安全な水素を得 る手段を提供すること、 である。 本発明の効果  Still another object of the present invention is to provide a second hydrogen supply base for supplying hydrogen to an on-land hydrogen consuming device such as an automobile from a first hydrogen supply base comprising the hydrogen production (generation) device and a hydrogen storage device. To provide a safe and economical means of transporting hydrogen. In other words, the present invention provides an economical and safe means of obtaining hydrogen by using an electrolyzer that uses natural energy using at least wind power or sunlight and the potential energy of seawater pressure in the sea. To provide. Effects of the present invention
[0018]  [0018]
本発明を適用する とで、 水素を安価で安全に製造できる。  By applying the present invention, hydrogen can be produced inexpensively and safely.
[0019] [0019]
本発明を適用することで、 水素を長期間安定、 安全且つ経済的に 貯蔵する装置ならびに方法を実現できる。  By applying the present invention, it is possible to realize an apparatus and method for storing hydrogen stably for a long period of time, safely and economically.
[0020] [0020]
本発明を適用することで、 メガフロートおよびもしくは自動車のよう に揺れ動く装置に液体水素を貯蔵したり運搬する時の最大の課題で あるポイリングオフとスロッシングの課題を解決出来る。  By applying the present invention, it is possible to solve the problem of poling off and sloshing, which are the biggest problems when storing and transporting liquid hydrogen to a mega float and / or a device that swings like an automobile.
[0021]  [0021]
本発明を適用することで、 エネルギー利用効率が高く環境問題を 生じない動力変換装置を実現出来る。 図面の簡単な説明  By applying the present invention, it is possible to realize a power conversion device that has high energy utilization efficiency and does not cause environmental problems. Brief Description of Drawings
[0022] [0022]
第 1図  Fig. 1
本発明の水素を生産して水素貯蔵タンクに貯蔵する第一の水素供給 基地の断面概略図である。  1 is a schematic cross-sectional view of a first hydrogen supply base for producing hydrogen of the present invention and storing it in a hydrogen storage tank.
第 2図  Fig. 2
本発明の水素を生産して水素貯蔵タンクに貯蔵する第一の水素供給 基地でメガフロート水素貯蔵格納部、 運搬船との関係を説明する図 である。  It is a figure explaining the relationship with a mega float hydrogen storage storage part and a carrier ship in the 1st hydrogen supply base which produces the hydrogen of this invention and stores it in a hydrogen storage tank.
第 3図  Fig. 3
本発明の水素を貯蔵するタンクの概略斜視図である。  It is a schematic perspective view of the tank which stores hydrogen of the present invention.
第 4図  Fig. 4
本発明の液体水素を充填して液状で貯蔵出来るタケ炭を水素吸蔵物 質とした水素貯蔵タンクの概念断面図である。 Bamboo charcoal that can be stored in liquid form by filling with liquid hydrogen of the present invention It is a conceptual cross section of the hydrogen storage tank made into quality.
(a) 液体水素を充填直後の水素貯蔵タンクの概念断面図である。  (a) It is a conceptual sectional view of a hydrogen storage tank just after filling with liquid hydrogen.
¾ 4  ¾ 4
(b) 充分填 • した後で常温 (含む海水温) で貯蔵している時の水素貯蔵 タンクの概念断面図である。 第 5図  (b) It is a conceptual cross-sectional view of a hydrogen storage tank when it is fully filled and stored at room temperature (including seawater temperature). Fig. 5
第 4図において水素吸蔵物質であるタケ炭の組織 (構成) を説明 する概念斜視図である。  FIG. 4 is a conceptual perspective view for explaining the structure (configuration) of bamboo charcoal that is a hydrogen storage material in FIG.
(a) タケ炭組織 (構成) 全体の概念斜視図である。  (a) Bamboo charcoal structure (configuration) It is a conceptual perspective view of the whole.
(b) タケ炭組織 (構成) において単位ユニッ ト (タケ炭の原料である 竹の細胞に相当する部分) の概念斜視図である。  (b) It is a conceptual perspective view of a unit unit (part corresponding to bamboo cells which are raw materials of bamboo charcoal) in the bamboo charcoal structure (configuration).
(c) (b) で上面を除いて、 内部も示した概念斜視図である。 本発明で水素生成、 充填、 貯蔵、 運搬、 使用、 再充填 (水素貯蔵タ ンクを再利用) する方法およびもしくはサイクル · システムを示す ブロック図である。  (c) It is the conceptual perspective view which also showed the inside except the upper surface in (b). FIG. 3 is a block diagram showing a method and / or cycle system for hydrogen generation, filling, storage, transportation, use, and refilling (reusing a hydrogen storage tank) in the present invention.
第 7図 Fig. 7
第 6図の手順 (過程) を説明するフローチャートである。 符号の説明 023]  7 is a flowchart for explaining the procedure (process) of FIG. Explanation of Symbols 023]
0 1 · · · 水素貯蔵タンク、 0 1 A · · 水素が充填されてい い空の水素貯蔵タンク、 0 2、 0 2 A . •水素貯蔵タンクへ
Figure imgf000007_0001
素を吸入 ·排出する弁、
0 1 ... Hydrogen storage tank, 0 1 A ... Empty hydrogen storage tank not filled with hydrogen, 0 2, 0 2 A. • To hydrogen storage tank
Figure imgf000007_0001
A valve that inhales and discharges elements,
0 3 · · · タケ炭内部に水素を充填した部分 (タケ炭の原料であ る竹の細胞内に相当する部分、 0 3 1 · · ·第 4図 (a) では液体 水素、 第 4図 (b) では気化水素が充填される部分 (タケ炭の原料 である竹の組織における導水管に相当する部分)、  0 3 ···· Bamboo charcoal filled with hydrogen (corresponding to the bamboo cell that is the raw material of bamboo charcoal, 0 3 1 ··· Liquid hydrogen in Fig. 4 (a), Fig. 4 In (b), the part filled with vaporized hydrogen (the part corresponding to the water conduit in the bamboo structure, the raw material for bamboo charcoal)
0 3 2 · · · 0 3 と 0 3 1の間にあるタケ炭の超細孔部分、 0 3 •水素貯蔵タンク 0 1内部でタケ炭が充填されていない (液体水素を充填直後から気化水素となる部分)、 0 3 2 A • · · タケ炭壁 (原料である竹の細胞壁に相当した炭化物の壁)、 3 0 · · ' メガフロート (海上浮揚体)、  0 3 2 ··· 0 3 and 0 3 1 Bamboo charcoal ultra-fine pores, 0 3 • Hydrogen storage tank 0 1 Bamboo charcoal is not filled inside (Vaporized hydrogen immediately after filling with liquid hydrogen 0 3 2 A • · · Bamboo charcoal wall (carbide wall equivalent to the cell wall of bamboo, which is the raw material), 3 0 · · 'Mega float (floating body),
3 1 · · · 風車、 3 1 A · · · 風車の支柱、 3 1 B · · · 風車回 転軸、 3 1 0 · · ·発電機、 3 2 · ' ·太陽電池パネル、 3 3 · · · 波力発電機、 3 5 A, 3 5 B, 3 5 C · · · 電気配線、  3 1 · · · Windmill, 3 1 A · · · Windmill support, 3 1 B · · · Windmill rotation axis, 3 1 0 · · · Generator, 3 2 · '· Solar panel, 3 3 · · · Wave power generator, 3 5 A, 3 5 B, 3 5 C · · · Electrical wiring,
4 0 · · ·水素貯蔵タンク格納装置、 4 0 A · · · 水素貯蔵タン ク格納部、 4 0 B ···保冷部, 4 0 C · · ·制御部、 4 1 ···電気分解 装置、 4 2, 5 2 . 5 2 A · • 'ハッチ、 4 3 · · ' ワイヤー 44、 44 A · · • 碇、 5 0 • · ·指令室、 5 4 A • · ·水素貯 蔵タンク搬送部、 5 4 · · · 電力、 部材供給パイプ、 5 5 · · · 運搬船、 5 5 A · • · 運搬船のスク リ ュ 5 5 B • · , 運搬船 の煙突、 6 0 · · •太陽、 6 1 · · '風、 6 2 波、 6 3 · · ·海面、 6 4 ' · ·海底、 4 0 · · · Hydrogen storage tank storage, 40 A · · · Hydrogen storage tank storage, 4 0 B ··· Cold storage, 4 0 C · · · Control, 4 1 ··· Electrolysis device , 4 2, 5 2.5 2 A · • 'Hatch, 4 3 · ·' Wire 44, 44 A · · 碇, 5 0 • · · Command room, 5 4 A • · · Hydrogen storage tank transfer section , 5 4 · · · Electricity, material supply pipe, 5 5 · · · Carrier ship, 5 5 A · · · Carrier ship screw 5 5 B • ·, Carrier chimney, 6 0 · · · Sun, 6 1 · · 'Wind, 6 2 waves, 6 3 ... sea level, 6 4 '
5 1 · · · メガフロー ト 3 0、 太陽電池パネル 3 3他から構成さ れる第 1図に示した第一の水素供給基地、 5 2 · · · 水素スタン ド (第二の水素供給基地)、 5 3 · · · 自動車 発明を実施するための最良の形態 実施例 1  5 1 ··· Megafloat 30, Solar panel 3 3 The first hydrogen supply base shown in Fig. 1 composed of others, 5 2 · · · Hydrogen stand (second hydrogen supply base), 5 3 · · · Automotive Best Mode for Carrying Out the Invention Example 1
[0024]  [0024]
次に、 本発明の第一の実施形態を第 1図、 第 2図を用いて説明 する。  Next, a first embodiment of the present invention will be described with reference to FIG. 1 and FIG.
第 1図は、 本発明による水素生産 ·貯蔵'運搬する方法 ·装置並び に第一の水素供給基地 (以下単に水素供給基地と称する) の概念 断面図である。 第 2図は第 1図の一部である水素貯蔵格納部とメ ガブロート並びに運搬船との関係を示す概念断面図である。  FIG. 1 is a conceptual cross-sectional view of a hydrogen production / storage / transport method / equipment and a first hydrogen supply base (hereinafter simply referred to as a hydrogen supply base) according to the present invention. FIG. 2 is a conceptual cross-sectional view showing the relationship between the hydrogen storage and storage unit, the mega bloat, and the transport ship, which are a part of FIG.
第 1図において、 水素供給基地は大別してメガフロート 3 0と水 素貯蔵タンク格納部 4 0から構成される。 水素貯蔵タンク格納部 In FIG. 1, the hydrogen supply base is roughly divided into a mega float 30 and a hydrogen storage tank storage 40. Hydrogen storage tank storage
4 0には例えば実施例 2で説明する水素貯蔵タンク 0 1が収納さ れている。 第 1図においてメガフロー ト 3 0の上面には風車 3 1 及ぴ太陽光発電パネル 3 2が設置されている。 For example, a hydrogen storage tank 01 described in Example 2 is stored in 40. In FIG. 1, a wind turbine 3 1 and a photovoltaic power generation panel 3 2 are installed on the upper surface of the mega float 30.
風力による発電は風車 3 1 とそれに接続された発電機 3 1 Cでな され、 そこで得た電力は風車を支持する支柱 3 1 A内の電気配線 と電気配線 3 5 Aを経由して電源装置 3 8に送られる。  Wind power is generated by the wind turbine 3 1 and the generator 31 1 C connected to the wind turbine 3 1 C, and the power obtained there is a power supply unit via the electrical wiring and electrical wiring 3 1 A in the column 3 1 A that supports the wind turbine. 3 Sent to 8.
太陽光による発電は太陽電池パネル 3 2で発生した電力を配線 3 Electricity generated by solar power is generated by wiring the solar panel 3 2 3
5 Bによって電源装置 3 8に送られる。 5 B sent to power supply 3 8
波力による発電はメガフロート 3 0の周囲に波力発電装置 3 3を 設置して発電して、 電気配線 3 5 Cを経由して電源装置 3 8に送 られる。  Power generation by wave power is generated by installing a wave power generation device 33 around the mega float 30 and sent to the power supply device 3 8 via the electrical wiring 35 C.
[0025]  [0025]
電源装置 1 8に蓄えられた電力を利用して、 海水を電気分解装置 4 1で電気分解してまず液体水素を製造する。 液体酸素も同時に 製造できるが本願の主題でないので説明しない。 液体水素の製造 には、 水面下 1 0〜 2 0 0 0 mの海中に置かれた電気分解装置 4 1において海水圧のポテンシャルを利用して海水を約 2〜 2 0 0 気圧に加圧する。  First, liquid hydrogen is produced by electrolyzing seawater with the electrolyzer 4 1 using the power stored in the power supply 1 8. Although liquid oxygen can be produced at the same time, it will not be described because it is not the subject of this application. In the production of liquid hydrogen, seawater is pressurized to about 2 to 200 atmospheres using the potential of seawater pressure in an electrolyzer 41 placed in the sea 10 to 200 meters below the surface of the water.
電気分解装置 4 1 の電極近傍だけを、 例えば遠隔操作で加熱ヒー タで海水を温めつつ、 メガフロート 3 0から例えば K O Hのよ う なアルカリ物質を電極近傍に流し込み海水の電気分解を行う。 電 気分解によって生成した 2〜 2 0 0気圧の気体水素が電気分解装 置 4 1 の周囲に設置された例えば断熱膨張装置(図示していなレ、) によって、 冷却されて液体水素となる。  The seawater is electrolyzed by pouring an alkaline substance such as KOH from the mega float 30 into the vicinity of the electrode while warming the seawater with a heating heater, for example, by remote control only in the vicinity of the electrode of the electrolyzer 41. The gaseous hydrogen of 2 to 200 atm generated by electrolysis is cooled to liquid hydrogen by, for example, an adiabatic expansion device (not shown) installed around the electrolysis device 4 1.
液体水素はハッチ 4 2を通って、 例えば実施例 2に述べる水素貯 蔵タンク 0 1に充填される。  The liquid hydrogen passes through the hatch 42 and is filled into the hydrogen storage tank 01 described in Example 2, for example.
実施例 2で記載のように、 充填された液体水素はその後で 水素貯蔵タンク 0 1が徐徐に近傍の海水温度とほぼ等しい温度に 上がっても液状の状態を保って水素貯蔵タンク 0 1 にそのまま貯 蔵される。 As described in Example 2, the filled liquid hydrogen is then Even if the hydrogen storage tank 01 gradually rises to a temperature approximately equal to the temperature of the seawater nearby, it remains in a liquid state and is stored in the hydrogen storage tank 0 1 as it is.
[0026]  [0026]
電気分解装置 4 1はその下面に設置した碇 4 4にワイヤー 4 3を 経由して海中に係留される。  The electrolyzer 4 1 is moored in the sea via wires 4 3 on the pit 4 4 installed on the lower surface.
[0027]  [0027]
メガフロート 3 0においては司令塔 5 0があり、 ここから各種の 制御指示を出す。 例えば、 後記するように水素貯蔵タンク格納部 4 0をメガフロート 3 0から切り離す指令、水素貯蔵タンク格納 部 4 0の制御部 4 0 Cに水素を保冷する条件や 4 0の海中にお ける位置の指令、運搬船 5 5に近接する時に碇 4 4 Λを上げる指 令、 電気分解装置 4 1に電力ならびに特殊部材 (電気分解を促進 する部材例えば K O H ) をパイプ 5 4から供給する指令、 水素貯 蔵タンク格納部 4 0 とメガフロート 3 0 との間での空の水素貯 蔵タンク 0 1 Aや水素を充填したタンク 0 1の自動搬送、ハッチ 4 2 , 5 2の開閉、 などを有線、 無線及びもしくは超音波の手段 で指令する。  Megafloat 30 has a control tower 50, from which various control instructions are issued. For example, as described later, a command to disconnect the hydrogen storage tank storage 40 from the mega float 30, a control condition of the hydrogen storage tank storage 40, the condition for keeping hydrogen in 40C, and the position of 40 in the sea Directive to raise 碇 4 4 Λ when approaching carrier 5 5, directive to supply power and special parts (members that promote electrolysis, such as KOH) to pipe 4 4, hydrogen storage, Empty hydrogen storage tank between storage tank storage section 40 and mega float 30 0 0 1 A or hydrogen-filled tank 0 1 Automatic transfer, opening / closing hatch 4 2, 5 2, etc. Command by radio and / or ultrasonic means.
[0028]  [0028]
第 2図は実施例 1 において水素貯蔵タンク格納部 4 0をメガフ ロート 3 0から切り離して海中に係留した状態と運搬船 5 5に 充填した水素貯蔵タンク .0 1 を積載する状態を示した図面であ る。  Fig. 2 is a diagram showing a state in which the hydrogen storage tank storage section 40 is separated from the megafloat 30 and moored in the sea in Example 1 and a state in which the hydrogen storage tank .01 filled in the transport ship 55 is loaded. is there.
水素貯蔵タンク格納部 4 0は水素タンク 0 1 を収納した水素タ ンク格納部 4 0 A、保冷部 4 0 B、制御部 4 0 C、ハッチ 4 2、 5 2、 碇 4 4、 ワイヤー 4 3から構成される。  Hydrogen storage tank storage part 40 is a hydrogen tank storage part containing hydrogen tank 0 1 40 A, cold insulation part 40 B, control part 40 C, hatch 4 2, 5 2, 碇 4 4, wire 4 3 Consists of
[0029]  [0029]
水素貯蔵タンク格納部 4 0 とメガフロー ト 3 0を切り離す理由 は次に述べる通りである。 即ち、 水素貯蔵タンク格納部 4 0 の容積がメガフロート 3 0のそれより もはるかに大きくなるた めに、 1台のメガフロート 3 0に対して複数の水素貯蔵タンク 格納部 4 0を置いた方が経済的であることと水素貯蔵タンク格 納部 4 0を海中例えば 1 0 0 m以上深い海中に置く ことに よって海水の温度が約 5度、 海水圧が 1 0気圧以上と低温加圧 状態であり且つそれらの値が年中ほぼ一定であるので貯蔵に必 要な電力他のコス トを軽減できて経済的に水素を貯蔵できる、 からである。  The reason for separating the hydrogen storage tank storage 40 and the mega float 30 is as follows. That is, because the volume of the hydrogen storage tank storage 40 is much larger than that of the mega float 30, a plurality of hydrogen storage tank storage 40 are placed for one mega float 30. By placing the hydrogen storage tank storage section 40 in the sea, for example, at a depth of more than 100 m, the seawater temperature is about 5 degrees and the seawater pressure is over 10 atmospheres. This is because they are in a state and their values are almost constant throughout the year, so that power and other costs required for storage can be reduced, and hydrogen can be stored economically.
[0030]  [0030]
本実施例の要点をここでまとめておく と以下の通りである。 The main points of the present embodiment are summarized as follows.
( 1 ) 太陽光、 風力、 波力の自然エネルギーに加えて、 海水の深さが 1 0 m以上で望ましくは 2 0 0 0 m以下の海水圧のポテンシャル エネルギーを活用することで、 経済的な水素の製造 (生成) が 出来ること。 (1) In addition to the natural energy of sunlight, wind power, and wave power, it is economical by utilizing the potential energy of seawater pressure with a seawater depth of 10 m or more and preferably 200 m or less. Able to produce (generate) hydrogen.
( 2 ) 実施例 2で述べる例えばタケ炭を水素貯蔵材として利用した 結果、 液体水素の状態で充填した後は温度が充填時の温度より 上がっても貯蔵された水素は液状の状態をそのまま保つので長期 間貯蔵 (保持)できること。 (2) As a result of using, for example, bamboo charcoal described in Example 2 as a hydrogen storage material, after filling in the state of liquid hydrogen, the temperature is higher than the temperature at the time of filling. Even if it goes up, the stored hydrogen will remain in a liquid state, so it can be stored (held) for a long time.
すなわち、 ボイルオフの課題を大幅に低減できること。  In other words, the boil-off problem can be greatly reduced.
( 3 ) 実施例 2で述べる例えばタケ炭を水素貯蔵材として利用した結果 、 水素タンク 0 1に相当する液体水素がそのまま充填された水 素貯蔵タンク 0 1を運搬船 5 5で海上を水素生成の場所と異なる水 素消費の場所に運搬する際に、 たとえば運搬船が揺れ動くために 発生して極めて危険な液揺動(ス口ッシング)の課題を解決できる こと。  (3) As a result of using, for example, bamboo charcoal described in Example 2 as a hydrogen storage material, hydrogen storage tank 0 1 filled with liquid hydrogen corresponding to hydrogen tank 0 1 as it is is used to generate hydrogen on the sea with transport ship 5 5 When transporting to a place where hydrogen is consumed differently from the place, for example, the problem of liquid swinging (squishing) that occurs due to the swinging of the transport ship can be solved.
なお、 ( 1 ) で海水の深さが 1 0 m以上である主な理由は、 それ より も浅いと電気分解装置 4 1を遠隔操作で操作することに 要する費用に対して得られる効果が小さいこと、 2 0 0 0 m以下 が望ましいとした主な理由はそれより も深い海中に設置すること に伴う技術面の困難性による。  In (1), the main reason why the depth of seawater is 10 m or more is that if it is shallower than that, the effect obtained for the cost of operating the electrolyzer 41 remotely is small. The main reason why it is desirable to have a length of 200 m or less is due to technical difficulties associated with installation in the deeper sea.
また、 運搬手段としては上記した運搬船 5 5の他に飛行機、 パイプによる水素の直接輸送も可能である。 第一の水素供給基地 が陸地から離れている、 例えば 1 0 0 k m以上では水素の比重、 水素貯蔵装置 0 1のサイズ、 重さを勘案すると運搬船 5 5による 輸送が最適である。  As a means of transportation, in addition to the above-mentioned transport ship 55, hydrogen can also be transported directly by airplane or pipe. When the first hydrogen supply base is far from the land, for example, 100 km or more, transport by carrier 5 5 is optimal considering the specific gravity of hydrogen, the size and weight of hydrogen storage device 01.
[0031 ]  [0031]
本発明のよ うにメガフロート 3 0を利用する場合は、 風車の支 柱 3 1 Aは地上用風力発電より も低い支柱でよい。 しかし、 風を 効率よく捉え、メガフロート上の設備や作業員の安全性を考慮し、 羽根の長さを 1 5 mとすると、風車の支柱 3 1 Aの高さはその長 さプラス 5 m程度つまり 2 0 m以上である。 したがって、 支柱 3 When the mega float 30 is used as in the present invention, the pillar 31 1 A of the wind turbine may be a lower support than the ground wind power generation. However, if the wind is captured efficiently and the safety of the equipment and workers on the megafloat is taken into account, and the blade length is 15 m, the height of the wind turbine support 3 1 A is the length plus 5 m. The degree, that is, 20 m or more. Therefore, prop 3
1 Aに補強を設けることにより、風車の支柱 3 1 Aそれ自体の強 度をある程度低く し、 コス トを削減することができる。 By providing reinforcement to 1A, the strength of the wind turbine support 3 1A itself can be lowered to some extent, and costs can be reduced.
[0032]  [0032]
以上説明した第一の水素供給基地において、 風力、 太陽電池、 波 力の自然エネルギーと海水の持つ海水圧ポテンシャルエネルギー の利用を全て一緒で行う必要は必ずしもない。  In the first hydrogen supply base explained above, it is not always necessary to use wind energy, solar cells, wave natural energy and seawater pressure potential energy all together.
また図示はしていないが、 風車 3 1 を補強するためにネッ ト状 のワイヤを張って支柱 3 1 Aを結わえても良い。  Although not shown, in order to reinforce the wind turbine 3 1, a net-like wire may be stretched to connect the support post 3 1 A.
この実施例によれば、 メガフロート 3 0の上面、 下面、 周囲及び メガフロート 3 0自体の容積を有効に利用することができる効果 力 Sある。  According to this embodiment, there is an effect S that can effectively use the upper surface, the lower surface, the periphery of the mega float 30 and the volume of the mega float 30 itself.
更に、 電気分解した水素を冷却するエネルギーの相当部分はー且 液体水素まで冷やして水素を充填した該水素貯蔵タンク 0 1が徐 徐に常温 (海水温) にまで昇温する過程での冷熱を利用すること で捕うことができる。  Furthermore, a substantial part of the energy for cooling the electrolyzed hydrogen is-and the cold storage in the process of gradually raising the temperature of the hydrogen storage tank 0 1, which is cooled to liquid hydrogen and filled with hydrogen, to room temperature (seawater temperature). It can be caught by using it.
[0033]  [0033]
上記では、 海中で電気分解した水素を液体水素まで冷却して 水素貯蔵タンク 0 1に充填する水素を製造する方法並びに装置と して説明したが、 この他に海水圧で加圧された気体水素を更に加 圧して 3 5 0気圧以上にして、 該水素貯蔵タンク 0 1に相当する 水素吸蔵物質が充填されていない別の水素貯蔵タンク In the above description, the method and apparatus for producing hydrogen filled in the hydrogen storage tank 0 1 by cooling hydrogen electrolyzed in the sea to liquid hydrogen has been described, but in addition to this, gaseous hydrogen pressurized at seawater pressure is used. Is further increased to 3500 atm or more, corresponding to the hydrogen storage tank 0 1 Another hydrogen storage tank not filled with hydrogen storage material
(図示していない) に充填、 貯蔵することも可能である。 また、 上記の説明では、 水素を製造する方法並びに装置を説明 したが、 水素と同時に生成される酸素も同時に概念を適用するこ とも可能である。 実施例 2  It is also possible to fill and store (not shown). In the above description, a method and an apparatus for producing hydrogen have been described. However, it is possible to apply the concept to oxygen generated simultaneously with hydrogen. Example 2
[0034]  [0034]
次に本発明の第二の実施形態を説明する。  Next, a second embodiment of the present invention will be described.
第 3図、 第 4図 (a)、 (b)、 第 5図 a)、 (b)、 ( c) は水素貯蔵 タンク 0 1 (及びそのタンクの内部に充填された水素吸蔵物質 を示す図面である。 第 3図は水素貯蔵タンク 0 1 の概念斜視図で ある。 第 4図 (a)、 ( b) は第 3図において切断面 A 1 , A 2 で切断した水素貯蔵タンク 0 1の概念断面詳細図であり、 夫々 水素 (液体水素及びもしくは液状水素) を充填直後、 貯蔵して いる時の図である。 第 5図 (a)、 (b)、 ( c) は水素吸蔵用物質 としてタケ炭を使用した時の構造を説明する概念斜視図である。 第 3図、 第 4図 (a)、 (b)、 第 5図 (a)、 (b)、 ( c) において 同じ機能の部分は同一番号を付して表す。  Fig. 3, Fig. 4 (a), (b), Fig. 5 a), (b), (c) show the hydrogen storage tank 0 1 (and the hydrogen storage material filled in the tank) Fig. 3 is a conceptual perspective view of the hydrogen storage tank 0 1. Fig. 4 (a) and (b) are views of the hydrogen storage tank 0 1 cut along the cut planes A 1 and A 2 in Fig. 3. Fig. 5 (a), (b), and (c) are hydrogen storage substances, which are conceptual cross-sectional detail views, each of which is stored immediately after filling with hydrogen (liquid hydrogen and / or liquid hydrogen). It is a conceptual perspective view explaining the structure when bamboo charcoal is used as the same function in Fig. 3, Fig. 4 (a), (b), Fig. 5 (a), (b), (c) These parts are denoted by the same reference numerals.
第 3図、 第 4図 (a)、 ( b) において、 0 1は水素貯蔵タンク、 0 2、 0 2 Aは水素の吸入、 排出弁である。  In FIGS. 3 and 4 (a) and (b), 0 1 is a hydrogen storage tank, and 0 2 and 0 2 A are hydrogen intake and discharge valves.
第 3図、 第 4図 (a) 、 ( b) において、 水素貯蔵タンク 0 1は S U S系で厚さが 3 m mの容器であり、 その形状は直径が l m、 高 さが 5 0 c mの円筒形状をしている。  In Fig. 3, Fig. 4 (a) and (b), the hydrogen storage tank 0 1 is a SUS-type container with a thickness of 3 mm, and its shape is a cylinder with a diameter of lm and a height of 50 cm. It has a shape.
次に、 第 5図の説明をする。  Next, FIG. 5 will be explained.
( a) はタケ炭組織 (構成) 全体の概念斜視図である。  (a) is a conceptual perspective view of the entire bamboo charcoal structure (configuration).
( b) はタケ炭組織 (構成) において単位ユニッ ト (タケ炭 の原料である竹の細胞に相当する部分) の概念斜視図である。  (b) is a conceptual perspective view of a unit unit (a portion corresponding to bamboo cells that are raw materials of bamboo charcoal) in the bamboo charcoal structure (configuration).
( c) は第 5図 (b) で上面を除いて、 内部も示した概念斜視図 である。  Fig. 5 (c) is a conceptual perspective view showing the inside of Fig. 5 (b) except for the top surface.
[0035]  [0035]
第 3図、 第 4図 (a) 、 ( b) 、第 5図 (a) 、 ( b) 、 ( c) において水素貯蔵タンク 0 1の内部に充填された水素吸蔵物質 であるタケ炭は、 第 5図 (b) に示す一辺が約 8 0 ミクロンの ハニカム状のタケ炭単位組織の集合体 (第 5図 (a) ) であり、 第 5図 (b) 、 ( c) においてその内部 0 3 (第一の水素格納部) に液体おょぴもしくは液状水素が貯蔵される。 タケ炭にある超 細孔 0 3 2は竹の細胞壁が炭化した約 2 ミクロンの厚さを持つ タケ炭の壁 0 3 2 Aを貫通する細孔でその大きさは約 4オング ス トローム径で 0 3に出入りする水素に対してフィルタおよび もしくはもしくは弁的役割をする。  Bamboo charcoal, a hydrogen storage material filled in the hydrogen storage tank 0 1 in FIGS. 3 and 4 (a), (b), 5 (a), (b) and (c), Fig. 5 (b) shows an aggregate of honeycomb-shaped bamboo charcoal unit structures (Fig. 5 (a)) with a side of approximately 80 microns. In Figs. 5 (b) and 5 (c), the inner 0 3 (first hydrogen storage part) stores liquid opium or liquid hydrogen. Bamboo charcoal wall 0 3 2 is a pore that penetrates bamboo charcoal wall 0 3 2 A, and its size is about 4 angstrom diameter. 0 Filters and / or acts as a valve against hydrogen entering and exiting 3.
又、 0 3 1はタケ炭の原料である竹の導水管に相当する約 1 0 0ミクロン径の通気路である。 この部分は充填時に一時的には 液体水素がたまっているが貯蔵時には気化水素がたまっている。 超細孔 0 3 2を通じて 0 3 と 0 3 1更には 0 3 4がつながって いる。 0 3 4は水素貯蔵タンク 0 1においてタケ炭が充填され ていない空間で主に気化水素が格納されている。 Reference numeral 0 3 1 is an air passage having a diameter of about 100 μm, which corresponds to a bamboo conduit for bamboo charcoal. This part is temporarily filled with liquid hydrogen at the time of filling, but vaporized during storage. 0 3 and 0 3 1 are connected through 0 3 2 and 0 3 4 are connected. 0 3 4 is a space in the hydrogen storage tank 0 1 that is not filled with bamboo charcoal, and mainly contains hydrogen vapor.
0 3 1 と 0 3 4とは第二の水素格納部を構成する。  0 3 1 and 0 3 4 constitute a second hydrogen storage unit.
[0036]  [0036]
第 4図 (a) は当該タンク 0 1に実施例 1で説明した海中に設置 された電気分解装箧で生成した気化水素を液化した (液化によ つて大幅に圧力が下がる) 水素を 1気圧で充填した直後 (未使 用で貯蔵開始時点) の当該タンク 0 1の状態、 第 4図 (b) は当 該タンク 0 1に水素 (液体水素及ぴもしくは液状水素) を充填 した後で徐徐に当該タンク 0 1の温度を上げて周囲温度 (常温 もしくは海水温) に達した後での貯蔵状態の当該タンク 0 1の 状態、 を表す。  Fig. 4 (a) shows that the vaporized hydrogen produced by the electrolysis apparatus installed in the sea explained in Example 1 was liquefied in the tank 0 1 (the pressure was greatly reduced by liquefaction). Fig. 4 (b) shows the state of the tank 0 1 immediately after filling with (when it is unused and at the start of storage). Fig. 4 (b) shows a gradual increase after filling the tank 0 1 with hydrogen (liquid hydrogen or liquid hydrogen). Shows the state of the tank 0 1 in the storage state after the temperature of the tank 0 1 is raised and the ambient temperature (room temperature or seawater temperature) is reached.
[0037] 第 4図 (a) において、 第一の水素格納部 0 3には第二の水素格 納部 0 3 1、 0 3 4より も多い全量の約 9 5 %の水素 (重量比) が充填されている。  [0037] In FIG. 4 (a), the first hydrogen storage section 0 3 includes approximately 95% hydrogen (weight ratio) of the total amount greater than the second hydrogen storage sections 0 3 1 and 0 3 4. Is filled.
第 4図 ) において、 液体水素は 0 3 と 0 3 1に 1気圧で充填 された直後の段階で 0 3 4の部分は液体水素が直ちに気化して 気液平衡状態となった。  In Fig. 4), liquid hydrogen was immediately vaporized into 0 3 and 0 3 1 at 1 atm, and the portion of 0 3 4 immediately vaporized and became a vapor-liquid equilibrium state.
その後、 当該タンク 0 1を徐徐に液体水素充填温度 ( 2 0 K ) から常温 ( 3 0 0 K ) まで昇温した。  Thereafter, the temperature of the tank 01 was gradually raised from the liquid hydrogen filling temperature (20 K) to room temperature (30 00 K).
充填直後には液体水素であった領域 0 3 1 も外部から当該タン クはそれらの液体水素は全て気化して図 4 ( b) に示すように、 0 3 4の部分と一体化 (同じ圧力) された気化水素の格納部と なった。 その後約 2 4時間で水素貯蔵タンク 0 1の温度は周囲 温度とほぼ平衡状態になり、 第二の水素格納部分における気化 水素の圧力は約 1 3気圧であった。  In the region 0 3 1 that was liquid hydrogen immediately after filling, the tank also vaporizes all of the liquid hydrogen from the outside and is integrated with the portion of 0 3 4 as shown in Fig. 4 (b). It became a containment of vaporized hydrogen. After about 24 hours, the temperature of the hydrogen storage tank 01 was almost in equilibrium with the ambient temperature, and the pressure of vaporized hydrogen in the second hydrogen storage part was about 13 atm.
[0038 ]  [0038]
前記したように第二の水素格納部 0 3 1 と 0 3 4における気化 水素の圧力は、 貯蔵開始時点の約 1気圧から圧力が平衡状態に なった 2 4時間後の約 1 3気圧まで徐徐に高めることで第一の 水素格納部 0 3からフィルタ状構造体 0 3 2を通じて、 気化し よう とする水素の圧力より も常に高い値に設定することにでき た。 この圧力 : 1 3気圧は水素の臨界点 (温度 3 0 K ) の圧力 にほぼ相当する。 すなわち、 本実施形態では気化水素の圧力を 前記値に設定することで、 第一格納部 0 3にある水素を第二格 納部 (0 3 1 と 0 3 4 ) に実質的に排出させない圧力レベルに 設定できることが特徴である。 換言すると、 第一の水素格納部 0 3にある水素は周囲が常温およびもしくは海水温と等しい平 衡状態にあっても、 液体水素に近い密度を持つ液状状態で貯蔵 されていること、 を意味する。  As described above, the vaporized hydrogen pressure in the second hydrogen storage units 0 3 1 and 0 3 4 is gradually increased from about 1 atm at the start of storage to about 13 atm after 24 hours when the pressure reaches an equilibrium state. It was possible to set the pressure always higher than the pressure of the hydrogen to be vaporized through the filter-like structure 0 3 2 from the first hydrogen storage part 0 3. This pressure: 13 atm corresponds to the pressure at the critical point of hydrogen (temperature 30 K). That is, in this embodiment, by setting the pressure of vaporized hydrogen to the above value, the pressure at which hydrogen in the first storage unit 03 is not substantially discharged to the second storage unit (0 3 1 and 0 3 4). It can be set to level. In other words, the hydrogen in the first hydrogen storage unit 03 is stored in a liquid state having a density close to that of liquid hydrogen even if the surroundings are at an ordinary temperature and / or an equilibrium state equal to the seawater temperature. To do.
[0039] その結果、 第一の水素格納部 0 3から第二の水素格納部 (0 3 1 と 0 3 4 ) への水素の排出を防ぎ、 当該タンク 0 1内の気 化水素の圧力は 1 3気圧以内に保たれて当該タンク 0 1の機械 許容強度 2 0気圧以下が実現でき、 液体水素だけを充填したタ ンクの場合に問題となる未使用時にも気化した水素を排出 (ポ ィル ' オフ) することを防止できた。 [0039] As a result, the discharge of hydrogen from the first hydrogen storage unit 0 3 to the second hydrogen storage unit (0 3 1 and 0 3 4) is prevented, and the pressure of hydrogen vapor in the tank 0 1 is 13 atm. It is possible to achieve the allowable mechanical strength of the tank 0 1 below 20 atm, and discharge the vaporized hydrogen even when not in use, which is a problem in the case of a tank filled only with liquid hydrogen. I was able to prevent it.
充填時の平衡圧力を前記の 1気圧から充填途中で 0 . 5気圧に 下げることにより、 貯蔵時の平衡圧力を前記の 1 3気圧から約 半分に下げてもボイル · オフを抑制し得ることも確認した。  By lowering the equilibrium pressure at the time of filling from the above 1 atm to 0.5 atm in the middle of filling, it is possible to suppress boil-off even if the equilibrium pressure at the time of storage is lowered from the above 13 atm to about half. confirmed.
以上、水素吸蔵物質としてタケ炭を例に実施例を説明したが、 タケ炭以外でも例えば、 椰子殻炭、 ケナフ炭などの植物繊維を 原料とした炭、 グラフアイ ト、 活性炭のような炭化物、 ゼオラ イ トのような多孔質物質更には前記物質をペレツ ト、 粉末状に してそれらの表面の一部を例えばテフロンペース ト他のコーテ ング材料でコーテングした合成物質も使用出来る。 実施例 3  In the above, examples have been described by using bamboo charcoal as an example of the hydrogen storage material. However, other than bamboo charcoal, for example, charcoal such as coconut shell charcoal and kenaf charcoal, carbonite such as graphite and activated charcoal, A porous material such as zeolite, or a synthetic material in which the material is pelletized and powdered and a part of the surface thereof is coated with, for example, Teflon paste or other coating materials can be used. Example 3
[0040]  [0040]
次に第 6図、 第 7図を用いて本発明の第三の実施形態を説明 する。  Next, a third embodiment of the present invention will be described with reference to FIGS.
第 6図は第 1図、 第 2図で説明した海洋におけるメガフロート 3 0他から構成される水素生成、 貯蔵場所 5 1 (第一の水素供 給基地) から、 水素消費装置に関わる水素スタンド 5 2 (第二 の水素供給基地) の間を少なく とも海上は運搬船 5 5を含む運 搬手段で水素貯蔵タンク 0 1を運搬して該水素スタンド 5 2に おいて水素消費装置 (例えば、 自動車 5 3 ) へ水素貯蔵タンク 0 1を供給する一方で、 空になった水素貯蔵タンク 0 1 Aを再 ぴ第一の水素供給基地 5 1まで運搬船 5 5で運んで水素を再充 填する、 方法を示す図面である。  Fig. 6 shows the hydrogen floats composed of the megafloats in the ocean described in Fig. 1 and Fig. 2, and the storage station 51 (the first hydrogen supply base). At least the sea between 5 2 (second hydrogen supply base) transports the hydrogen storage tank 0 1 by means of transportation including a transport ship 5 5, and at the hydrogen station 5 2, a hydrogen consuming device (for example, an automobile) 5 3) While supplying the hydrogen storage tank 0 1 to the empty hydrogen storage tank 0 1 A, transport it again to the first hydrogen supply base 5 1 with a transport ship 5 5 and refill it with hydrogen. It is drawing which shows a method.
第 7図は上記第 6図の手順を説明するためのフローチヤ一トで め O 0 Figure 7 is fit O 0 In Furochiya one bets for explaining the procedure of the FIG. 6
[0041 ]  [0041]
第 6図において、 5 1は例えば第 1図、 第 2図で示したメガ フロート 3 0他から構成される第一の水素供給基地、 5 2は水 素スタンド (第二の水素供給基地) 、 5 3は自動車、 5 5は水 素貯蔵タンクの運搬船である。 前記実施例 1 、 2における水素 貯蔵タンク 0 1はカートリ ツジ形状であり 自動車への着脱時の 操作性を良く してある (カートリ ッジ形状の詳細は図示してい ない)。  In FIG. 6, 51 is a first hydrogen supply base composed of, for example, the mega float 30 shown in FIG. 1 and FIG. 2, 52 is a hydrogen stand (second hydrogen supply base), 5 3 is an automobile, and 5 5 is a carrier for a hydrogen storage tank. The hydrogen storage tanks 0 1 in Examples 1 and 2 have a cartridge shape, and the operability when attached to and detached from the automobile is improved (details of the cartridge shape are not shown).
[0042]  [0042]
第 6図から分かるように、 本発明は第一の水素供給基地 5 1 と水素スタンド 5 2 (第二の水素供給基地) とは海洋と陸上で 互いに完全に分離した場所に設置してその間の運搬手段として 液体水素そのものではない水素を貯蔵した水素貯蔵タンクを運 搬船 5 5で海洋を運搬することに特徴がある。 この結果、 安全 面、 経済面で従来よりはるかに有効な手段 (方法) で消費者に 供給できる効果がある。 ここで、 水素消費装置としては、 自動 車以外に自家発電機やモータ、 発電プラント、 水素をエネルギ 一源とした少なく ともパソコン、 携帯電話機を含む電子機器で ある。 As can be seen from FIG. 6, in the present invention, the first hydrogen supply base 51 and the hydrogen stand 52 (second hydrogen supply base) are installed in a place completely separated from each other on the ocean and land. As a means of transportation, a hydrogen storage tank that stores hydrogen, which is not liquid hydrogen itself, is characterized by transporting the ocean by transport ship 55. As a result, safety In terms of cost and economy, it can be supplied to consumers by means (methods) far more effective than before. Here, the hydrogen consuming device is an electronic device including at least a personal computer and a mobile phone that use hydrogen as an energy source in addition to a car.
[0043]  [0043]
第 7図のステップ S 1 0 0において、 第一の水素供給基地 5 1において実施例 2で説明した水素貯蔵タンク 0 1に最初に水 素を充填する。 海洋水素供給基地 5 1において貯蔵する。 要求 に応じて海中に係留していた水素貯蔵タンク格納部  In step S 1 0 0 of FIG. 7, the hydrogen storage tank 0 1 described in Example 2 is first filled with hydrogen at the first hydrogen supply base 51. Store at Ocean Hydrogen Supply Base 51. Hydrogen storage tank containment moored underwater on demand
4 0の碇を上げて水素貯蔵タンク格納部 4 0を海上近くまで浮 上させて、 運搬船 5 5に水素貯蔵タンク 0 1 を積荷する。  Raise the dredge of 40 and lift the hydrogen storage tank storage part 40 to near the sea, and load the hydrogen storage tank 0 1 on the carrier 5 5.
[0044]  [0044]
ステップ S 1 0 1において、 運搬船 5 5が水素貯蔵タンク 0 1 を第二の水素供給基地がある陸地まで運ぶ。  In step S 1 0 1, the carrier 5 5 carries the hydrogen storage tank 0 1 to the land where the second hydrogen supply base is located.
ステップ S 1 0 2において、 港に運ばれた水素貯蔵タンク 0 1 を陸揚げして水素スタンド 5 2 (第二の水素供給基地)に運ぶ。 自動車 5 3の使用者が水素貯蔵タンク 0 1を購入してステップ S 1 0 3において、 自動車 5 3に装着する。  In step S 1 0 2, the hydrogen storage tank 0 1 transported to the port is unloaded and transported to the hydrogen station 5 2 (second hydrogen supply base). The user of the car 5 3 purchases the hydrogen storage tank 0 1 and installs it in the car 5 3 in step S 1 0 3.
[0045]  [0045]
ステップ S 1 0 3において、 自動車 5 3の使用者が水素貯蔵タ ンク 0 1を自動車で使用するか貯蔵(未使用の状態)する。  In step S 1 0 3, the user of the automobile 5 3 uses or stores the hydrogen storage tank 0 1 in the automobile (unused state).
[0046]  [0046]
ステップ S 1 0 4において、 自動車 5 3の使用者は水素貯蔵タ ンク 0 1が空に近くなった時に使用者が自動車 5 3に乗って水 素スタンド 5 2に行き、 当該水素貯蔵タンク 0 1 Aを新たに購 入した水素貯蔵タンク 0 1に交換する。  In step S 1 0 4, the user of the car 5 3 takes the hydrogen storage tank 0 1 when it is almost empty, and the user gets on the car 5 3 and goes to the hydrogen stand 5 2. Replace A with a newly purchased hydrogen storage tank 0 1.
[0047]  [0047]
ステップ S 1 0 5において、 別の業者が空になった水素貯蔵タ ンク 0 1 Aを水素スタンド 5 2から引き取りタンクが未だ使え るか (温度サイクルによる機械強度の劣化が規定値に近づいた か否か : 寿命が来ていないか) をチェックする。  In step S 1 0 5, another supplier empties the hydrogen storage tank 0 1 A from the hydrogen stand 5 2 Can the tank still be used? (Is the mechanical strength deterioration due to the temperature cycle approaching the specified value?) No: Check if the product has reached the end of its service life.
[0048]  [0048]
ステップ S 1 0 6において、 空になった水素貯蔵タンク 0 1 A が未だ交換の必要性がなければステップ 1 0 7に進む。  If it is determined in step S 1 0 6 that the emptied hydrogen storage tank 0 1 A is not yet required to be replaced, the process proceeds to step 1 0 7.
[0049]  [0049]
ステップ 1 0 7において、 空になった水素貯蔵タンク 0 1 Aは 港から運搬船 5 5で第一の水素供給基地 5 1まで運搬してステ ップ 1 0 0に戻り液体水素を再充填する。  In Step 10 07, the emptied hydrogen storage tank 0 1 A is transported from the port to the first hydrogen supply base 51 by the transport ship 55, returns to Step 100, and is refilled with liquid hydrogen.
[0050]  [0050]
ステップ S 1 0 7において、 空になった水素貯蔵タンク 0 1 A が交換の必要がある場合にはステップ S 1 0 8に進み、 水素貯蔵 タンク 0 1 Aを新規の水素貯蔵タンク 0 1に交換してそれを港 から運搬船 5 5で第一の水素供給基地 5 1まで運搬してステッ プ 1 0 0に戻り水素を再充填する。 [0051] In step S 1 0 7, if the hydrogen storage tank 0 1 A emptied needs to be replaced, proceed to step S 1 0 8 to replace the hydrogen storage tank 0 1 A with a new hydrogen storage tank 0 1 Then, it is transported from the port to the first hydrogen supply base 51 by the transporter 55, and returned to step 100 and refilled with hydrogen. [0051]
以上、 本発明の実施例を説明してきたが、 本発明の概念はこの 技術開示を基にすれば、 関心のある人であれば容易に推定できる実 施例も包含する。 例えば、 海洋にある該第一の水素供給基地が 第二の水素供給地がある陸地に近いところにあっても、 1 0〜 2 0 0 0 mの海水の深さであって、 運搬船よりはパイプで輸送できる (技術面並びに経済面) ときには、 海水圧で加圧された水素を直接パ ィプで運搬することも本発明に含まれる。  Although the embodiments of the present invention have been described above, the concept of the present invention also includes embodiments that can be easily estimated by interested persons based on this technical disclosure. For example, even if the first hydrogen supply base in the ocean is close to the land where the second hydrogen supply site is located, the depth of the seawater is 10 to 200 m, When it can be transported by pipe (technical and economic), it is also included in the present invention to directly transport hydrogen pressurized by seawater pressure.
[0052] [0052]
また、本発明で説明した水素貯蔵タンクはカートリ ッジ型が可能で あるので、 自動車の座席 (シー ト) の下へはめ込む構造や、 自動車 のタイヤの中心部に貯蔵しつつ周辺には従来のタイヤの空気圧に相 当する気化水素充填した水素貯蔵タンクとタイアを兼ねた構造も本 発明の概念に含まれる。 産業上の利用の可能性  In addition, since the hydrogen storage tank described in the present invention can be a cartridge type, it can be fitted under the seat of a car (sheet) or stored in the center of a car tire while surrounding the conventional tank. A structure that serves as both a hydrogen storage tank filled with vaporized hydrogen corresponding to the tire pressure and a tire is also included in the concept of the present invention. Industrial applicability
[0053]  [0053]
石油、 石炭などの化石燃料の消費、 天然ガスなどの消費によって炭 酸ガスなどの温暖化ガス並びに N O Xなどの有害排気物の問題が地 球規模で非常に深刻化している。 また、 化石燃料資源の枯渴も深刻 化している。 本発明によって、 それらの大きな課題を克服して且つ 新しい産業を興すことが可能である。  The consumption of fossil fuels such as oil and coal, and the consumption of natural gas are causing serious problems on the global scale, such as greenhouse gases such as carbon dioxide and harmful emissions such as NOx. In addition, the fossil fuel resources are becoming increasingly depleted. With the present invention, it is possible to overcome these major problems and to create new industries.

Claims

請 求 の 範 囲 少なく とも風車およびもしくは太陽電池から構成された海上の メガフロート (海上浮揚体) 並びに少なく とも 1 O m以上の深 さの海中に設置された電気分解装置から構成された水素供給基 地において、 前記風車およびもしくは太陽電池から生成された 電気エネルギー並びに少なく とも 2気圧以上の海水圧のポテン シャルエネルギーとによって海水が前記電気分解装置で電気分 解されて生成されたこと、 を特徴とする水素。Scope of request Hydrogen supply consisting of at least a mega-float (sea floater) composed of wind turbines and / or solar cells and an electrolyzer installed in the sea at a depth of at least 1 Om In the base, seawater is generated by electrolyzing the electrolyzer with the electric energy generated from the windmill and / or solar cell and the potential energy of seawater pressure of at least 2 atm or more. And hydrogen.
. 1項において、 生成された水素は少なく とも陸地にまで海上を 運搬される間は液体水素ではないこと、 を特徴とする水素。 . 少なく とも風車およびもしくは太陽電池から構成された海上の メガフロート並びに少なく とも 1 O m以上の深さの海中に設置 された電気分解装置から構成されること、 を特徴とする水素生 産装置。 . Hydrogen as defined in paragraph 1, characterized in that the hydrogen produced is not liquid hydrogen while being transported at least to land. A hydrogen production system characterized by comprising a marine mega float composed of at least windmills and / or solar cells and an electrolyzer installed in the sea at a depth of at least 1 Om.
. 3項における該水素生産装置並びに生成された水素を貯蔵する 水素貯蔵タンクを収納する水素貯蔵格納装置とから構成される こと、 を特徴とする水素生産貯蔵装置 (水素供給装置)。 A hydrogen production and storage apparatus (hydrogen supply apparatus) comprising: the hydrogen production apparatus according to item 3; and a hydrogen storage and storage apparatus that stores a hydrogen storage tank that stores generated hydrogen.
, 3項における該水素貯蔵タンクに充填されている水素貯蔵物質 は少なく ともタケ炭を含むその原料が植物の繊維組織を炭化し て生成された多孔質炭化物およびもしくは該多孔質炭化物と 構造が類似もしくは相似の構造を持つこと、を特徴とする水素貯 蔵 置。 , The hydrogen storage material filled in the hydrogen storage tank in paragraph 3 is at least a porous carbide produced by carbonizing the fiber structure of the plant with its raw material containing bamboo charcoal and / or a structure similar to the porous carbide Or a hydrogen storage characterized by having a similar structure.
. 3項における該水素貯蔵タンクに充填された水素は気体水素で ありその圧力は 3 5 0気圧以上に加圧されていること、 を特徴 とする水素貯蔵装置。The hydrogen storage device according to claim 3, wherein the hydrogen filled in the hydrogen storage tank is gaseous hydrogen, and the pressure thereof is increased to 3500 atm or higher.
. 少なく とも風車およびもしくは太陽電池から構成された海上の メガブロートにおいて生成された電気エネルギー並びに少なく とも 2 0 m以上の深さの海中における海水圧のポテンシャルェ ネルギーを利用して海中に設置された電気分解装置で水素を生 成すること、 を特徴とする水素生成方法。 Electricity installed in the sea using the electrical energy generated in the ocean megablots composed of at least windmills and / or solar cells and the potential energy of seawater pressure in the sea at least 20 m deep. A method for producing hydrogen, characterized in that hydrogen is produced by a cracking device.
. 3項における該水素生成方法で生成した水素を 4項における該 水素貯蔵タンクに充填して該水素貯蔵タンクを収納する該水素 貯蔵格納装置に貯蔵すること、 を特徴とする水素貯蔵方法。 . 8項において該水素貯蔵タンクに水素を充填する時には液体水 素の状態で充填すること、 を特徴とする水素の貯蔵方法。 A hydrogen storage method, characterized in that the hydrogen generated by the hydrogen generation method according to item 3 is filled in the hydrogen storage tank according to item 4 and stored in the hydrogen storage and storage device that houses the hydrogen storage tank. The method for storing hydrogen according to claim 8, wherein when the hydrogen storage tank is filled with hydrogen, the hydrogen storage tank is filled with liquid hydrogen.
陸上には水素消費装置に水素を供給する第二の水素供給基地が あり、前記 4項記載の第一の水素供給基地から前記第二の水素供 給基地へ水素を運搬する時において、 海上、 海中おょぴもしくは 海底を運搬する間は液体水素ではない方法で水素を運搬するこ と、 を特徴とする水素運搬方法。 There is a second hydrogen supply base on the shore that supplies hydrogen to the hydrogen consuming device, and when transporting hydrogen from the first hydrogen supply base to the second hydrogen supply base described in 4 above, A method of transporting hydrogen characterized by transporting hydrogen using a method that is not liquid hydrogen while transporting underwater or underwater.
. 1 0項において水素を運搬する方法は運搬船で運搬すること、 を特徴とする水素運搬方法。 4項において、 該生産装置部分と該水素貯蔵タンク格納装置部 分とは脱着が可能であること、 を特徵とする水素生成貯蔵装置。 10. The method of transporting hydrogen according to paragraph 0, wherein the method of transporting hydrogen is transported by a transport ship. 5. The hydrogen generation and storage device according to claim 4, wherein the production device portion and the hydrogen storage tank storage device portion are detachable.
4項において、 該生産装置部分と該水素貯蔵タンク格納装置部 分には碇を備えていること、 を特徴とする水素生成貯蔵装置 (水素供給基地)。  4. The hydrogen generation and storage device (hydrogen supply base) according to claim 4, wherein the production device portion and the hydrogen storage tank storage device portion are provided with a basket.
PCT/JP2006/300914 2005-01-21 2006-01-17 Hydrogen producing, storing, transporting, power converting device and method WO2006077999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005041259 2005-01-21
JP2005-041259 2005-01-21

Publications (1)

Publication Number Publication Date
WO2006077999A1 true WO2006077999A1 (en) 2006-07-27

Family

ID=36692374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300914 WO2006077999A1 (en) 2005-01-21 2006-01-17 Hydrogen producing, storing, transporting, power converting device and method

Country Status (1)

Country Link
WO (1) WO2006077999A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006013344A1 (en) * 2006-03-23 2007-09-27 Roland Keppeler Production of hydrogen and oxygen, comprises positioning an electrolysis unit at a specified depth in water
DE102007029921B3 (en) * 2007-06-28 2008-11-20 Peter Nowak Apparatus for generating energy and fresh water in the sea
WO2012156460A1 (en) * 2011-05-19 2012-11-22 Tetrasan Gmbh Spezialproblemlösungen Für Asbestsanierung, Betonsanierung, Demkmalsanierung Floating carrier for generating electrical energy from exclusively regenerative energy sources
CN102935880A (en) * 2012-11-26 2013-02-20 山东大学 Removable new energy marine industry public platform
FR3022953A1 (en) * 2014-06-27 2016-01-01 Patrice Christian Philippe Charles Chevalier SELF-CONTAINED MULTI-SOURCE MULTI-SOURCE CONTINUOUS MARINE POWER PLANT AND ASSOCIATED METHODS
FR3024167A1 (en) * 2014-07-25 2016-01-29 Patrice Christian Philippe Charles Chevalier SELF-CONTAINED SELF-CONTAINED MARINOLIAN PRESS AND ASSOCIATED METHODS
GB2539700A (en) * 2015-06-25 2016-12-28 Itm Power (Trading) Ltd Renewable energy system
CN110435827A (en) * 2018-05-04 2019-11-12 沙鸣雄 Moving carrier waterborne and its operational method
WO2021205853A1 (en) * 2020-04-07 2021-10-14 株式会社辰巳菱機 Power generation system
GB2594310A (en) * 2020-04-23 2021-10-27 Hydrowing Ltd Apparatus and method
FR3113683A1 (en) * 2020-09-02 2022-03-04 Joel Kasarherou Submerged hydrogen production and storage device.
US20220228270A1 (en) * 2021-01-11 2022-07-21 Vivek Pathak Device and method for large scale harvesting of solar energy through hydrogen production
EP4056840A1 (en) * 2021-03-09 2022-09-14 Siemens Gamesa Renewable Energy A/S Wind park pressure control
US20220325697A1 (en) * 2021-04-09 2022-10-13 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Deep-sea multi-energy integrated platform for complementary power generation, production, living and exploration
WO2022221924A1 (en) * 2021-04-22 2022-10-27 Christopher Colin Stephen Gas transportation and storage system
US11866836B2 (en) * 2020-08-14 2024-01-09 Woodside Energy Technologies Pty Ltd Distributed hydrogen generation plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156241A (en) * 1990-10-19 1992-05-28 Taisei Corp Marine structure for electric power storage using hydrogen gas
JP2001059472A (en) * 1999-08-20 2001-03-06 Nth Sekkei & Kaisei Keisan:Kk Energy producing device
JP2002246038A (en) * 2001-02-20 2002-08-30 Hideaki Tanaka Hydrogen fuel and power generating hydrogen for automobile
JP2004138097A (en) * 2002-10-15 2004-05-13 Ishizuka Kenkyusho:Kk Hydrogen storage medium, and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156241A (en) * 1990-10-19 1992-05-28 Taisei Corp Marine structure for electric power storage using hydrogen gas
JP2001059472A (en) * 1999-08-20 2001-03-06 Nth Sekkei & Kaisei Keisan:Kk Energy producing device
JP2002246038A (en) * 2001-02-20 2002-08-30 Hideaki Tanaka Hydrogen fuel and power generating hydrogen for automobile
JP2004138097A (en) * 2002-10-15 2004-05-13 Ishizuka Kenkyusho:Kk Hydrogen storage medium, and method for manufacturing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006013344A1 (en) * 2006-03-23 2007-09-27 Roland Keppeler Production of hydrogen and oxygen, comprises positioning an electrolysis unit at a specified depth in water
DE102007029921B3 (en) * 2007-06-28 2008-11-20 Peter Nowak Apparatus for generating energy and fresh water in the sea
WO2012156460A1 (en) * 2011-05-19 2012-11-22 Tetrasan Gmbh Spezialproblemlösungen Für Asbestsanierung, Betonsanierung, Demkmalsanierung Floating carrier for generating electrical energy from exclusively regenerative energy sources
CN102935880A (en) * 2012-11-26 2013-02-20 山东大学 Removable new energy marine industry public platform
FR3022953A1 (en) * 2014-06-27 2016-01-01 Patrice Christian Philippe Charles Chevalier SELF-CONTAINED MULTI-SOURCE MULTI-SOURCE CONTINUOUS MARINE POWER PLANT AND ASSOCIATED METHODS
FR3024167A1 (en) * 2014-07-25 2016-01-29 Patrice Christian Philippe Charles Chevalier SELF-CONTAINED SELF-CONTAINED MARINOLIAN PRESS AND ASSOCIATED METHODS
GB2539700A (en) * 2015-06-25 2016-12-28 Itm Power (Trading) Ltd Renewable energy system
CN110435827A (en) * 2018-05-04 2019-11-12 沙鸣雄 Moving carrier waterborne and its operational method
WO2021205853A1 (en) * 2020-04-07 2021-10-14 株式会社辰巳菱機 Power generation system
JP7019159B1 (en) * 2020-04-07 2022-02-15 株式会社辰巳菱機 Power generation system
GB2594310A (en) * 2020-04-23 2021-10-27 Hydrowing Ltd Apparatus and method
GB2595959A (en) * 2020-04-23 2021-12-15 Hydrowing Ltd Apparatus and method
US11866836B2 (en) * 2020-08-14 2024-01-09 Woodside Energy Technologies Pty Ltd Distributed hydrogen generation plant
FR3113683A1 (en) * 2020-09-02 2022-03-04 Joel Kasarherou Submerged hydrogen production and storage device.
US20220228270A1 (en) * 2021-01-11 2022-07-21 Vivek Pathak Device and method for large scale harvesting of solar energy through hydrogen production
EP4056840A1 (en) * 2021-03-09 2022-09-14 Siemens Gamesa Renewable Energy A/S Wind park pressure control
US20220325697A1 (en) * 2021-04-09 2022-10-13 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Deep-sea multi-energy integrated platform for complementary power generation, production, living and exploration
US11555478B2 (en) * 2021-04-09 2023-01-17 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Deep-sea multi-energy integrated platform for complementary power generation, production, living and exploration
WO2022221924A1 (en) * 2021-04-22 2022-10-27 Christopher Colin Stephen Gas transportation and storage system

Similar Documents

Publication Publication Date Title
WO2006077999A1 (en) Hydrogen producing, storing, transporting, power converting device and method
US8866320B2 (en) Integrated generator device for producing energy from zero-emission renewable alternative sources respecting and preserving the environment
US9797366B2 (en) Pumped-storage power plant
DK3256716T3 (en) HYDROPNEUMATIC ENERGY STORAGE SYSTEM
US9045209B2 (en) Active volume energy level large scale sub-sea energy fluids storage methods and apparatus for power generation and integration of renewable energy sources
JP6108401B2 (en) Pumped storage power plant
EP2536934B1 (en) Underwater energy storage system and power station powered therewith
JP5911429B2 (en) Power generation method by changing fluid density
US10364938B2 (en) Underwater energy storage using compressed fluid
JP3238760U (en) Energy storage system for offshore wind power generation
JP2001059472A (en) Energy producing device
JP5362802B2 (en) Buoy power system
JP6977244B2 (en) Hydrogen storage facility
JP2005041253A (en) Clean cogeneration device using megafloat
CN103866347B (en) Device for carrying out hydrogen-oxygen electrolysis and collection by utilizing electric energy generated by wind power
KR102460620B1 (en) A offshore plant for producting hydrogen
US20030080245A1 (en) Self-inflated marine airship or balloon
KR101716487B1 (en) Double-tube structure of the airship and electrical energy supply and transport systems using the same
JP2005280581A (en) Aquatic power generating system and aquatic power generation method
WO2018105166A1 (en) System for producing renewable energy using deep water (deep sea water), and hydrogen and water obtained by system
JP2016175453A (en) Hydrogen generation system and hydrogen recovery system
KR101015205B1 (en) power generation system using wind force, tide, oceanic current, and wave-force
KR102517199B1 (en) Maritime floating platform for production, storage and offloading of marine green hydrogen
US20220228270A1 (en) Device and method for large scale harvesting of solar energy through hydrogen production
JPH10205700A (en) Pressure supplying facility for much electrolytic hydrogen gas by solar generated output from remote place

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712130

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712130

Country of ref document: EP