WO2006077890A1 - Process for producing monodispersed fine spherical metal oxide particles and fine metal oxide particles - Google Patents

Process for producing monodispersed fine spherical metal oxide particles and fine metal oxide particles Download PDF

Info

Publication number
WO2006077890A1
WO2006077890A1 PCT/JP2006/300656 JP2006300656W WO2006077890A1 WO 2006077890 A1 WO2006077890 A1 WO 2006077890A1 JP 2006300656 W JP2006300656 W JP 2006300656W WO 2006077890 A1 WO2006077890 A1 WO 2006077890A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
metal oxide
oxide fine
metal
compound
Prior art date
Application number
PCT/JP2006/300656
Other languages
French (fr)
Japanese (ja)
Inventor
Shinpei Yamamoto
Mikio Takano
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2006553933A priority Critical patent/JPWO2006077890A1/en
Publication of WO2006077890A1 publication Critical patent/WO2006077890A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • the present invention relates to a method for producing monodispersed spherical metal oxide fine particles and metal oxide fine particles.
  • Submicron monodisperse spherical metal oxide fine particles can be used in many technical fields such as pigments, catalysts, raw materials for advanced ceramics, and opal-based photonic crystals (photocrystals). It has been actively researched as a new material, and there have been many reports on its production method.
  • a method for producing metal oxide fine particles by hydrolysis of metal alkoxide in a homogeneous solution is one of effective methods for producing spherical metal oxide fine particles with a narrow particle size distribution. It is.
  • This hydrolysis method is generally performed by subjecting the metal alkoxide to hydrolysis (condensation) slowly (at least several hours or more) in a homogeneous solution.
  • Monodispersed spherical metal oxide fine particles can be produced by the hydrolysis method using only a relatively inert metal alkoxide, such as silicon, titanium, zirconium, tantalum, etc. l: Ogiwara, T., Ikemoto, T "See Mizutani.N., Kato.M., Mitani.Y., J.Mater.Sci. 1986, 21, 2771.) Acids and their acids A few examples have been reported for mixtures of metal, but only! / ⁇ Hydrolysis of metal alkoxides other than these metals usually forms gels or aggregates.
  • a relatively inert metal alkoxide such as silicon, titanium, zirconium, tantalum, etc.
  • tantalum is reported in Reference 1, but the tantalum oxide fine particles synthesized by hydrolysis of tantalum alkoxide are not completely spherical.
  • the particle size distribution of the tantalum oxide fine particles is large and cannot be said to be monodispersed spherical fine particles of sufficient purity.
  • documents 3 and 4 only the example of formation of VO ⁇ ⁇ xerogel has been reported in the method described for the hydrolysis of vanadium alkoxide in a homogeneous solution.
  • Document 2 reports on silver vanadate oxide fine particles having a small particle size distribution produced by laser pyrolysis of a mixture of vanadium oxide and a silver compound.
  • the particle size distribution of the obtained fine particles is reported that the particle size of 95% is larger than about 40% of the average diameter and smaller than about 160%, and the particle size distribution is sufficient. It's not narrow.
  • the laser pyrolysis production method consumes more energy than the hydrolysis method and requires a large-scale apparatus.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to hydrolyze a metal alkoxide that has heretofore been difficult to synthesize monodispersed spherical metal oxide fine particles. Accordingly, an object of the present invention is to provide a method for producing monodispersed spherical metal oxide fine particles and metal oxide fine particles.
  • the method for producing monodispersed spherical metal oxide fine particles according to the present invention comprises a group of metal forces belonging to groups 3 to 5 and 3 to 5 in the periodic table. At least one metal alkoxide selected from the following general formulas (1), (2), (3) and (4)
  • R 2 , R 3 and R 4 independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the method includes a hydrolysis step for hydrolysis.
  • the method for producing metal oxide fine particles according to the present invention at least one selected from the group consisting of the compounds represented by the general formulas (1), (2), (3) and (4).
  • the particle diameter of the monodispersed spherical metal oxide fine particles can be controlled in the range of 200 nm or more and 800 nm or less.
  • the organic solvent is at least one general formula (5).
  • R 1 and R 2 independently represent a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the metal oxide fine particles according to the present invention are at least one metal selected from the group consisting of metals belonging to Groups 3A to 5A and Groups 3B to 5B of the periodic table.
  • Oxide fine particles, wherein the metal alkoxide of the metal is represented by the following general formulas (1), (2), (3) and (4)
  • R 2 , R 3 and R 4 independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the metal oxide may be V 2 O.
  • the method for producing metal oxide fine particles useful in the present invention is at least one selected from the group consisting of metal forces belonging to groups 3A-5A and 3B-5B of the periodic table.
  • a metal metal alkoxide is converted into at least one compound selected from the group having the compound power represented by the general formulas (1), (2), (3) and (4), water, an organic solvent ( However, in the case where the metal is vanadium, a lower alcohol is excluded.), A composition including a hydrolysis step for hydrolysis is included. The effect is that the dispersed spherical metal oxide fine particles can be easily synthesized.
  • FIG. 1 Figures l (a), (b), (c) and (d) show the transmission type of V ⁇ fine particles obtained by hydrolysis of vanadium alkoxide at various pyridine concentrations (C). Observation by electron microscope
  • Figure 1 (a), (b), (c), and (d) show the VO generated under the conditions of pyridine concentration (C) of 2.5 wt%, 5 wt%, 10 wt%, and 20 wt%, respectively.
  • FIG. 25 is a diagram showing the observation results.
  • Fig. 2 shows the average particle size of monodispersed spherical V 2 O fine particles (D, unit: nm, ⁇ in Fig. 2)
  • Fig. 25 is a diagram showing an FTIR spectrum of a fine particle.
  • Fig. 4 shows monodispersed spherical V O fine particles formed under the condition of a pyridine concentration (C) of 10 wt%.
  • Figure 5 shows the average particle diameter (D, unit: nm) of monodispersed spherical V 2 O fine particles and the relative standard.
  • the present inventors have made this by hydrolyzing the metal alkoxide in an organic solvent containing a metal alkoxide, pyridine, and water. Even for powerful metals for which monodisperse spherical metal oxide fine particles could not be obtained by the hydrolysis method up to 1, monodisperse spherical particles with a relative standard deviation of the particle size of 10% or less. For the first time, it was found that metal oxide fine particles can be synthesized, and the present invention has been completed.
  • the conventional hydrolysis method is generally performed by hydrolyzing metal alkoxide in a homogeneous solution for at least several hours.
  • the method for producing metal oxide fine particles according to the present invention is a monodisperse spherical metal oxide having a monodispersion (relative standard deviation of particle size of 10% or less), which has not been conventionally synthesized.
  • This is a novel method that enables simple and extremely rapid mass synthesis of fine particles.
  • the particle size can be reduced to 200 ⁇ while maintaining a narrow particle size distribution! It was also found that it can be changed freely in the range of ⁇ 800 nm. This makes it possible to synthesize monodispersed spherical metal oxide fine particles having a desired particle size.
  • monodispersed is not particularly limited as long as the metal oxide fine particles have the same particle size in the system in which the metal oxide fine particles are dispersed.
  • the relative standard deviation of the narrow particle diameter is preferably 10% or less, more preferably 7% or less.
  • the particle size means the particle diameter of spherical metal oxide fine particles.
  • R 2, R 3 and R 4 are not particularly limited as long as they are independently a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, but among them, a hydrogen atom, a methyl group , An ethyl group, a propyl group, or a butyl group.
  • the metal oxide refers to a metal oxide belonging to groups 3A to 5A and groups 3B to 5B of the periodic table or a mixture of two or more of these metal oxides.
  • metals include Sc, Y, Ga, In, T1, Ti, Zr, Si, Ge, Sn, Pb, V, Nb, Ta, As, Sb, and Bi.
  • the metal is more preferably vanadium, niobium, tantalum or the like, and these oxides are preferably VO, Ta 2 O, Nb 2 O, or the like.
  • the method for producing monodispersed spherical metal oxide fine particles useful in the present invention comprises at least one metal metal selected from the group consisting of metals belonging to groups 3A-5A and 3B-5B of the periodic table.
  • An alkoxide is a solution containing at least one compound selected from the group consisting of compounds represented by the general formulas (1), (2), (3) and (4), water, and an organic solvent. Among them, it includes a hydrolysis step for hydrolysis.
  • the method for producing monodispersed spherical metal oxide fine particles includes a periodic table.
  • the alkoxide is hydrolyzed in an organic solvent containing at least one compound selected from the group consisting of compounds represented by formula (I) and water, and the relative standard deviation in particle size is 10% or less. It is preferable to include a hydrolysis step for obtaining a dispersion of monodispersed spherical metal oxide fine particles.
  • the metal alkoxide is not particularly limited as long as it is a metal alkoxide of at least one metal selected from the group consisting of metals belonging to Groups 3A to 5A and Groups 3B to 5B of the periodic table.
  • at least one metal selected from the group consisting of metals belonging to groups 3A to 5A and 3B to 5B in the periodic table is the same as the metal described in the description of the metal oxide.
  • R in the above general formula is not particularly limited as long as it is an organic group that is non-reactive to hydrolysis and does not interfere with monodispersion. It is preferably a linear or branched alkyl group of ⁇ 8.
  • metal alkoxide examples include, for example, VO (OCH 3) 2, VO (OC 2 H
  • Nb (OC H), Nb (0-isoC H), Nb (0—nC H), Nb (0—isoC H), N
  • Niobium alkoxides such as b (0—nC H) and Nb (OCH 3) can be mentioned. This
  • the metal alkoxide is VO (OCH), VO (OC H), VO (0-is
  • the metal alkoxide may be a part of the alkoxy group that is substituted with a part of the alkoxy group (one C1) or the like. Furthermore, as the metal alkoxide, one type of metal alkoxide may be used alone, or two or more types of metal alkoxide may be mixed and used.
  • the hydrolysis step is performed in the presence of at least one compound selected from the group consisting of compounds represented by the general formulas (1), (2), (3) and (4). Do. That is, the hydrolysis step is performed in the presence of a single compound represented by the general formula (1), (2), (3) or (4) alone or a mixture of two or more compounds.
  • equation (1), (2), (3) and (4) in, R ⁇ R 2, R 3 and R 4 are independently a hydrogen atom or a linear or branched alkyl having 1 to 4 carbon atoms Although it is not particularly limited as long as it is a group, it is preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group or a butyl group.
  • the compound of the compound and the previous organic solvent in a solution containing the compound, water, and the organic solvent is 100 wt%
  • the compound of the compound and the previous organic solvent It is preferable that the ratio to the total weight of 2.5 wt% or more is 4 wt% or more It is more preferable that The upper limit of the proportion of the compound in the solution is not particularly limited, but is preferably 35 wt%, more preferably when the total weight of the compound and the organic solvent is 100 wt%. Is 30wt%.
  • the particle size is reduced to 200 ⁇ while maintaining a narrow particle size distribution. It can be changed freely within the range of ⁇ 800nm.
  • V O vanadium pentoxide
  • the concentration of the product (pyridine) When the concentration of the product (pyridine) is higher than the concentration at which the relative standard deviation of particle size is 10% or less, the particle size gradually increases from about 200 nm to 250 nm until it reaches a certain concentration, and exceeds a certain concentration. And increases in proportion to the concentration of the compound from about 250 nm to about 800 nm.
  • the compound of the compound and the previous organic solvent when the total weight of the compound and the previous organic solvent in a solution containing the compound, water, and the organic solvent is 100 wt%, the compound of the compound and the previous organic solvent By changing the ratio to the total weight, the particle size is reduced to 200 ⁇ while maintaining a narrow particle size distribution! It can be changed freely within the range of ⁇ 800nm. For example, hydrolyzing nonadium alkoxide to synthesize vanadium pentoxide (V O) fine particles
  • the concentration of the above compound (pyridine) when the concentration of the above compound (pyridine) is higher than the concentration at which the relative standard deviation of particle size is 10% or less, Is about 200 ⁇ ! It gradually increases from ⁇ 250 nm, and increases above a certain concentration in proportion to the concentration of the compound from about 250 nm to about 800 nm.
  • the organic solvent is not particularly limited, and it is preferable to use an ether, ester, alcohol, ketone or the like which can be used.
  • a ketone when the metal is vanadium, a ketone can be particularly preferably used.
  • the ketone is not particularly limited, but among them, at least one general formula (5)
  • the ketone represented by (5) can be preferably used.
  • R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms.
  • organic solvents include acetone, 2-butanone, 3-pentanone, methyl isopropyl ketone, methyl n-propyl ketone, 3-hexanone, and methyl n-butyl ketone.
  • a strong organic solvent it is possible to synthesize monodispersed spherical metal oxide particles.
  • 1 type of a powerful ketone may be used independently, and multiple may be used in mixture.
  • the organic solvent further contains other organic solvents such as ethers, esters, alcohols and the like as long as monodispersed spherical metal oxide fine particles can be obtained. Also good.
  • the metal is vanadium, it is preferable to use a lower alcohol having 1 to 4 carbon atoms because metal oxide fine particles cannot be obtained.
  • the hydrolysis step is carried out in the presence of water necessary for hydrolysis.
  • the amount of water to be coexisted may be appropriately selected according to the type of metal oxide fine particles to be synthesized.
  • the amount of water is preferably 2 to 4 mol with respect to 1 mol of the metal alkoxide. By coexisting a strong amount of water, it is possible to synthesize monodispersed spherical metal oxide fine particles.
  • the water necessary for hydrolysis may be supplied by water contained in the reagent used, water contained in the atmosphere, or the like.
  • the metal alkoxide and at least one compound selected from the group consisting of the compound forces represented by the general formulas (1), (2), (3) and (4), Water and organic The method of mixing these substances is not particularly limited as long as the alkoxide is hydrolyzed in a solution containing a medium.
  • the organic solvent and the general formulas (1), (2) ), (3) and (4) are preferred to be a mixture of at least one compound selected from the group consisting of the compound strengths, wherein the metal alkoxide is covered in a solution containing moisture. Can be used.
  • the organic solvent and the compound power represented by the general formulas (1), (2), (3) and (4) are selected from the group consisting of
  • the reaction temperature for the hydrolysis is not particularly limited, but can be, for example, in the range of 5 to 50 ° C, preferably in the range of 15 to 40 ° C.
  • spherical metal oxide fine particles monodispersed in a short reaction time of 30 to 60 seconds can be synthesized.
  • the atmosphere for carrying out the hydrolysis is not particularly limited, and it can be carried out in the atmosphere, but of course, it may be carried out in an inert gas atmosphere such as nitrogen or argon.
  • the method for producing monodispersed spherical metal oxide fine particles according to the present invention preferably further includes a drying step of separating and drying the metal oxide fine particles from the dispersion obtained in the hydrolysis step. . Thereby, monodispersed spherical metal oxide fine particles can be obtained.
  • a method for separating the metal oxide fine particles to obtain dried monodispersed spherical metal oxide fine particles is not particularly limited, and various conventionally known methods can be used. As such a method, for example, a method in which the metal oxide fine particles are separated by vacuum separation, sedimentation separation or the like and vacuum-dried can be suitably used. In addition, a method of distilling an organic solvent can be used.
  • metal oxide fine particles in addition to obtaining dried metal oxide fine particles by a drying step, metal oxide fine particles dispersed in different solvents by solvent substitution. A dispersion of fine particles can also be obtained.
  • the metal oxide fine particles useful in the present invention are metal oxide fine particles of at least one metal selected from the group consisting of metal forces belonging to groups 3A-5A and 3B-5B of the periodic table,
  • the metal metal alkoxide comprises at least one compound selected from the group consisting of compounds represented by the general formulas (1), (2), (3) and (4), water, an organic solvent, Monodispersed spherical metal oxide fine particles having a relative standard deviation of particle size of 10% or less, obtained by hydrolysis in a solution containing.
  • the metal oxide fine particles useful in the present invention may be those composed of the metal oxide of the metal.
  • the general formula (1) It may comprise at least one compound selected from the group consisting of the compounds represented by (2), (3) and (4) and water.
  • the produced metal oxide fine particles can contain the compound and water.
  • the contained compound and water can be removed by heat treatment.
  • the temperature of the intense heat treatment is preferably 250 ° C. or higher and 600 ° C. or lower, more preferably 350 ° C. or higher and 500 ° C. or lower.
  • the heat treatment temperature is 600 ° C. or lower, the compound and water can be removed without impairing the perfect spherical shape of the metal oxide fine particles.
  • the heat treatment temperature is 250 ° C. or higher, the compound and water can be suitably removed.
  • the atmosphere in which the heat treatment is performed is not particularly limited, and can be performed in an atmosphere, but of course, it may be performed in an inert gas atmosphere such as nitrogen or argon.
  • the metal oxide has a layer structure, and the compound is a layer of the metal oxide. It is shown that there is an inter force between layers in the structure. Therefore, according to the method for producing monodispersed spherical metal oxide fine particles of the present invention, the substance that is desired to be inter-forced in the metal oxide fine particles is present during the reaction, so It is considered that the metal oxide fine particles that are force-rated can be produced by a one-step reaction.
  • the metal oxide fine particles that are useful in the present invention may be those which have been subjected to such a material force and an S force.
  • Such substances include at least one compound selected from the group consisting of compound powers represented by the above general formulas (1), (2), (3) and (4).
  • the above compounds which are not limited to these, It is thought that substances other than the above compounds can be interspersed by allowing substances other than the above compounds to exist during the reaction.
  • the composition of the substance that is inter-forced is preferably in the range of greater than 0 and less than or equal to 2 with respect to the metal oxide 1 in terms of mol ratio.
  • Monodispersed spherical V 2 O fine particles with various particle sizes are mixed with acetone.
  • V 0 isoC H (0.06 ml (2.55 X 10 _4 mol), Nichia Chemical Co., Ltd.) in a solution of acetone / pyridine mixture (total weight 8 g) with vigorous stirring in air. Industrial Co., Ltd.)
  • the amount was 01 wt% or less (pyridine, Wako Pure Chemical Industries) and 0.4 wt% or less (acetone, Nacalai Testa Co., Ltd.).
  • the hydrolysis was performed at room temperature (about 20 ° C).
  • the amount of pyridine is 2.5 wt% or more and 30 wt% or less when the total weight of the mixture with acetone is 8 g and the total weight of the acetone Z pyridine mixture is 100 wt%. (Hereinafter, when the total weight of the acetone Z pyridine mixture is 100 wt%, the ratio (wt%) of pyridine in the acetone Z pyridine mixture is expressed as “pyridine concentration (C ) ".
  • V O fine particles are collected by centrifugation for 12 hours in a vacuum.
  • one of the features of the production method of the present invention is a significantly faster monodispersed spherical shape.
  • the generation of VO fine particles are at most 30 seconds long and could be faster
  • V o fine particles The shape of the obtained V o fine particles, the presence or absence of aggregates, and the particle size were observed with a transmission electron microscope.
  • Fig. 1 shows transmission electron microscope observations of V O fine particles obtained at various pyridine concentrations.
  • Figure 1 (a), (b), (c), and (d) show VO fine particles produced under the conditions of pyridine concentration (C) of 2.5 wt%, 5 wt%, 10 wt%, and 20 wt%, respectively. Observation results
  • V O fine particles obtained as shown in Fig. 1 (a) to (d) are almost completely spherical.
  • the fine particles have a uniform particle size around 200 nm in Fig. 1 (a), around 220 nm in Fig. 1 (b), around 240 nm in Fig. 1 (c), and around 400 nm in Fig. L (d). It was confirmed that! /
  • FIG. 2 shows the average particle diameter (D, unit: nm, ⁇ in FIG. 2) of spherical VO fine particles monodispersed at each pyridine concentration, measured by observation with a transmission electron microscope. )When,
  • the relative standard deviation (c .v, unit:..%, Shown in FIG. 2 ⁇ ) and a graph plotted against pyridine concentration (C).
  • the average particle size and the relative standard deviation of the particle size were obtained by measuring 300 fine particles or more for samples at each pyridine concentration.
  • the average particle size and the relative standard deviation of the particle size were obtained from the following formula.
  • the relative standard deviation is a value that expresses the standard deviation ⁇ ⁇ as a percentage based on the average value of the observed population.
  • the relative standard deviation is less than 10%.
  • the relative standard deviation is about 7% when the pyridine concentration (C)> about 4 wt%.
  • the amount of pyridine used for 3 7 3 was about 19 mol.
  • the pyridine concentration (C) 30 wt%
  • the pyridine used for VO (0-isoC H) lmol is about 119 mol
  • the pyridine concentration (C) 30 wt%
  • the amount of pyridine used for VO (0—isoC H) lmol is about 139 mol.
  • reaction solution containing 2 5 2 5 particles was used as a sample, it is considered that the same result can be obtained for dried Vo fine particles by drying the sample under observation under high vacuum.
  • the FTIR measurement was performed using an FTS 6000 Fourier transform infrared spectrometer (BioRad) and monodispersed spherical V O of various particle sizes produced under different pyridine concentrations (C).
  • C pyridine concentration
  • Lysine is 350 at atmospheric pressure in an argon gas atmosphere containing 5% H. C-500. Heat at C for 1 hour
  • Figure 7 shows the results of observing the V 2 O fine particles with a scanning electron microscope after heat treatment.
  • VO fine particles from which water and pyridine have been completely removed are completely spheres.
  • X-ray diffraction of dried VO fine particles obtained through hydrolysis and drying processes went.
  • X-ray diffraction was performed using Rigaku RINT2500 (manufactured by Rigaku Corporation) on monodispersed spherical VO fine particles with various particle sizes produced under different pyridine concentrations (C).
  • Figure 4 shows the X-ray diffraction pattern of monodispersed spherical V 2 O particles produced under a pyridine concentration (C) of 10 wt%.
  • V ⁇ fine particles are V ⁇ ⁇ ⁇ ⁇ xerogel
  • the distance between the layers is about 1.05 nm, which is related to the particle size of monodispersed spherical V ⁇ fine particles.
  • V O ⁇ ⁇ ⁇ Xerogels are used in many organic molecules.
  • Ethanol was used in the same manner as in Example 1 except that ethanol was used instead of acetone. Hydrolysis of VO (0-isoC H) was performed with the ratio of pyridine in the ethanol Z pyridine mixture being 12.5 wt% when the total weight of the Z pyridine mixture was ioowt%.
  • VO octanol
  • Average particle size (D, unit: nm) and relative standard deviation (v., Unit:%) of the fine particles are determined based on the water concentration (the ratio of water when the total reaction solution weight is 100 wt%, Draft plotted against (unit: wt%).
  • Example 1 there are two possible sources of H 2 O in the hydrolysis of VO (0—isoC H).
  • the concentration of is preferably 0.3 wt% or less (4.3 mol or less with respect to VO (0—iso C H) lmol) when the weight of the total reaction solution is 100 wt%.
  • the method for producing metal oxide fine particles according to the present invention provides monodispersed spherical metal oxide fine particles having a relative standard deviation of the particle size of 10% or less.
  • R 2 , R 3 and R 4 independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the metal alkoxide is hydrolyzed in an organic solvent containing at least one compound selected from the group represented by It may include the following hydrolysis step for obtaining a dispersion of monodispersed spherical metal oxide fine particles.
  • the method for producing metal oxide fine particles according to the present invention includes a drying step of further separating and drying the dispersion of the metal oxide fine particles obtained in the hydrolysis step. Is preferred.
  • At least one compound selected from the group consisting of the compound forces represented by the general formulas (1), (2), (3) and (4) is based on lmol of the metal alkoxide of the metal. lOmol or more is preferable. It is more preferable to use 19 mol or more.
  • the method for producing metal oxide fine particles according to the present invention is selected from the group consisting of the compounds represented by the general formulas (1), (2), (3) and (4). It is preferable that the particle size of the monodispersed spherical metal oxide fine particles can be controlled in the range of 200 nm or more and 800 nm or less by changing the amount of at least one compound.
  • the organic solvent is at least one general formula (5)
  • R 1 and R 2 independently represent a linear or branched alkyl group having 1 to 4 carbon atoms.) Are preferred.
  • the method for producing metal oxide fine particles useful for the present invention produces monodispersed spherical metal oxide fine particles having a relative standard deviation of the particle size of 10% or less.
  • the composition includes a hydrolysis step for obtaining a dispersion of monodispersed spherical metal oxide fine particles
  • the monodispersed spherical metal oxide which was conventionally impossible to synthesize, is as follows. The effect is that the fine particles can be synthesized easily.
  • the metal oxide fine particles according to the present invention are monodispersed spherical metal oxide fine particles having a relative standard deviation of the particle size of 10% or less, and are 3A to 3A in the periodic table.
  • the metal oxide fine particles of at least one metal selected from metals belonging to Group 5A and Group 3B-5B represented by the general formulas (1), (2), (3) and (4) Compound power Since it has a composition comprising at least one selected compound and water, it can be used for pigments, catalysts, advanced ceramic materials, opal-based photonic crystals (photocrystals), etc. It can be used in many technical fields.
  • Submicron monodispersed spherical metal oxide fine particles are used in many technical fields such as pigments, catalysts, raw materials for advanced ceramics, and opal-based photonic crystals (photocrystals). Available. Monodispersed spherical VO particles are also used in automobile exhaust gas purification. It is an important material in many fields, such as catalysts for batteries, cathode materials for lithium ion batteries, electochromic devices, sensors, and actuators.
  • the present invention makes it possible to synthesize monodisperse spherical metal oxide fine particles that could not be synthesized conventionally.
  • spherical metal oxide fine particles having a uniform size can be synthesized very quickly, which is a great advantage for mass synthesis in the manufacturing industry.
  • the present invention is used not only in the chemical industry that supplies spherical metal oxide fine particles as a basic material, but also in the battery manufacturing industry, electronic component manufacturing industry, machinery / equipment manufacturing industry, electrical machinery / equipment manufacturing industry, and the like.
  • the power is also very useful.

Abstract

A metal alkoxide is hydrolyzed in an organic solvent containing the metal alkoxide, a compound selected from the group consisting of compounds respectively represented by the general formulae (1), (2), (3), and (4): [Chemical formula 1] (wherein R1, R2, R3, and R4 each independently represents hydrogen or C1-4 linear or branched alkyl), and water to thereby produce monodispersed fine spherical particles of a metal oxide whose particle diameters have a relative standard deviation of 10% or less. Thus, even with respect to a metal an oxide of which has been difficult to synthesize as monodispersed fine spherical particles, monodispersed fine spherical particles of an oxide of the metal which have a desired particle diameter can be produced.

Description

単分散した球状の金属酸化物微粒子の製造方法および金属酸化物微粒 子  Method for producing monodispersed spherical metal oxide fine particles and metal oxide fine particles
技術分野  Technical field
[0001] 本発明は、単分散した球状の金属酸化物微粒子の製造方法および金属酸化物微 粒子に関するものである。 背景技術  The present invention relates to a method for producing monodispersed spherical metal oxide fine particles and metal oxide fine particles. Background art
[0002] サブミクロンの単分散球状金属酸ィ匕物微粒子は、例えば、顔料、触媒、先端セラミ ッタスの原料、オパールベースのフォトニック結晶(光結晶)のような多くの技術分野 において利用できる重要な材料として盛んに研究されており、その製造方法につい ても多くの報告がある。かかる製造方法の中でも、均質な溶液中における金属アルコ キシドの加水分解による金属酸化物微粒子の製造方法 (加水分解法)は粒径分布の 狭 、球状金属酸化物微粒子を製造する有効な方法のひとつである。この加水分解 法は、一般に、金属アルコキシドを均一溶液中でゆっくりと (少なくとも数時間以上) 加水分解 '縮合させることにより行われる。しカゝしこの加水分解による方法により単分 散球状金属酸ィ匕物微粒子が製造できるのは、比較的不活性な金属アルコキシドに 限られ、ケィ素、チタン、ジルコニウム、タンタル等(例えば、文献 l : Ogiwara,T., Ikem oto,T" Mizutani.N., Kato.M., Mitani.Y., J.Mater.Sci.1986,21,2771参照。)の酸ィ匕 物およびこれらの酸ィ匕物の混合物にっ 、て幾つかの例が報告されて 、るにすぎな!/ヽ 。これらの金属以外の金属アルコキシドの加水分解においては、通常ゲルまたは凝 集体が形成される。  [0002] Submicron monodisperse spherical metal oxide fine particles can be used in many technical fields such as pigments, catalysts, raw materials for advanced ceramics, and opal-based photonic crystals (photocrystals). It has been actively researched as a new material, and there have been many reports on its production method. Among such production methods, a method for producing metal oxide fine particles by hydrolysis of metal alkoxide in a homogeneous solution (hydrolysis method) is one of effective methods for producing spherical metal oxide fine particles with a narrow particle size distribution. It is. This hydrolysis method is generally performed by subjecting the metal alkoxide to hydrolysis (condensation) slowly (at least several hours or more) in a homogeneous solution. Monodispersed spherical metal oxide fine particles can be produced by the hydrolysis method using only a relatively inert metal alkoxide, such as silicon, titanium, zirconium, tantalum, etc. l: Ogiwara, T., Ikemoto, T "See Mizutani.N., Kato.M., Mitani.Y., J.Mater.Sci. 1986, 21, 2771.) Acids and their acids A few examples have been reported for mixtures of metal, but only! / ヽ Hydrolysis of metal alkoxides other than these metals usually forms gels or aggregates.
[0003] ところで、 5酸化バナジウム (V O )は、触媒、リチウムイオン電池、エレクト口クロミツ  [0003] By the way, vanadium pentoxide (V O) is a catalyst, a lithium ion battery,
2 5  twenty five
クデバイス、センサー、ァクチユエ一ターのような多くの分野で重要な材料として研究 されている。力かる分野においては、単分散球状 V o微粒子の製造が強く望まれて  It has been studied as an important material in many fields such as devices, sensors, and actuators. In the field of power, the production of monodispersed spherical V o particles is strongly desired.
2 5  twenty five
おり、その製造方法についても幾つかの報告がなされている(例えば、文献 2 :特表 2 002— 536286号公報(平成 14年(2002) 10月 29曰公表)、文献 3 : Uvage,J.,Chem .Mater.1991,3,578,文献 4 : Livage,J.,Cood.Chem.Rev.l998,178- 180,999参照。;)。 [0004] し力 従来の加水分解法は、単分散球状金属酸化物微粒子を得る点において適 用できる金属が、上述したケィ素、チタン、ジルコニウム、タンタル等に限られ十分と は言えない。また、これらの金属であっても例えばタンタルについては、文献 1で報告 されて ヽるが、タンタルアルコキシドの加水分解により合成されてなるタンタル酸ィ匕物 微粒子が、完全な球状であるとはいえず、また、タンタル酸ィ匕物微粒子の粒径分布 は大きぐ十分な純度の単分散球状微粒子とは言えない。また、上記文献 3、 4には、 均質な溶液中におけるバナジウムアルコキシドの加水分解につ 、て報告されて 、る 力 記載されている方法では、 V O ·Η Οキセロゲルの生成例しか報告されていな Some reports have been made on its production method (for example, Reference 2: Special Table 2 002-536286 (published October 29, 2002), Reference 3: Uvage, J. Chem. Mater. 1991, 3, 578, Reference 4: Livage, J., Cood. Chem. Rev. l998, 178-180, 999;)). [0004] In the conventional hydrolysis method, metals that can be applied in terms of obtaining monodispersed spherical metal oxide fine particles are limited to the above-described silicon, titanium, zirconium, tantalum, and the like, and are not sufficient. Further, even for these metals, for example, tantalum is reported in Reference 1, but the tantalum oxide fine particles synthesized by hydrolysis of tantalum alkoxide are not completely spherical. In addition, the particle size distribution of the tantalum oxide fine particles is large and cannot be said to be monodispersed spherical fine particles of sufficient purity. Further, in the above-mentioned documents 3 and 4, only the example of formation of VO · ΗΗxerogel has been reported in the method described for the hydrolysis of vanadium alkoxide in a homogeneous solution.
2 5 2  2 5 2
い。  Yes.
[0005] また、文献 2には、酸化バナジウムと銀化合物との混合物をレーザ熱分解すること により製造される、小さい粒径分布を有する銀バナジウム酸ィ匕物微粒子について報 告されている。当該文献では、得られた微粒子の粒径分布は、 95%の粒子の粒径が 平均直径の約 40%よりも大きくかつ約 160%よりも小さいと報告されており、粒度分 布は十分に狭いとはいえない。また、レーザ熱分解による製造方法は、加水分解法と 比べて、エネルギーの消費量が多ぐまた、大掛かりな装置を必要とする。  [0005] In addition, Document 2 reports on silver vanadate oxide fine particles having a small particle size distribution produced by laser pyrolysis of a mixture of vanadium oxide and a silver compound. In this document, the particle size distribution of the obtained fine particles is reported that the particle size of 95% is larger than about 40% of the average diameter and smaller than about 160%, and the particle size distribution is sufficient. It's not narrow. In addition, the laser pyrolysis production method consumes more energy than the hydrolysis method and requires a large-scale apparatus.
[0006] 上述したように、従来の加水分解法は、単分散球状の金属酸化物微粒子を得る点 において適用できる金属が限られており、例えば、バナジウムアルコキシドのような反 応性の高い金属アルコキシドの加水分解により単分散球状酸化金属微粒子を合成 する方法は、これまでのところ開発されていない。また、例えば、バナジウムについて は、その他のいかなる合成方法によっても、大きさの揃った球状 V ο微粒子の合成  [0006] As described above, in the conventional hydrolysis method, metals that can be applied are limited in terms of obtaining monodispersed spherical metal oxide fine particles. For example, a highly reactive metal alkoxide such as vanadium alkoxide is used. So far, a method for synthesizing monodispersed spherical metal oxide fine particles by hydrolysis has not been developed. In addition, for example, for vanadium, spherical V o fine particles of the same size can be synthesized by any other synthesis method.
2 5  twenty five
例は報告されていない。  No examples have been reported.
[0007] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、これまで、単 分散した球状金属酸化物微粒子の合成が困難であった金属アルコキシドを加水分 解することにより、単分散した球状の金属酸化物微粒子を製造する方法および金属 酸ィ匕物微粒子を提供することにある。 [0007] The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to hydrolyze a metal alkoxide that has heretofore been difficult to synthesize monodispersed spherical metal oxide fine particles. Accordingly, an object of the present invention is to provide a method for producing monodispersed spherical metal oxide fine particles and metal oxide fine particles.
発明の開示  Disclosure of the invention
[0008] 本発明にかかる単分散した球状の金属酸化物微粒子の製造方法は、上記課題を 解決するために、周期表の 3Α〜5Α族および 3Β〜5Β族に属する金属力 なる群よ り選択される少なくとも 1つの金属の金属アルコキシドを、以下の一般式(1)、(2)、 ( 3)および (4) [0008] In order to solve the above problems, the method for producing monodispersed spherical metal oxide fine particles according to the present invention comprises a group of metal forces belonging to groups 3 to 5 and 3 to 5 in the periodic table. At least one metal alkoxide selected from the following general formulas (1), (2), (3) and (4)
[化 1]  [Chemical 1]
Figure imgf000005_0001
Figure imgf000005_0001
(式(1
Figure imgf000005_0002
R2、 R3および R4は独立して水素原子または炭 素数 1〜4の直鎖状または枝分かれ状アルキル基を示す。 )で表される化合物力ゝらな る群より選択される少なくとも 1種の化合物と、水と、有機溶媒 (但し、前記金属がバナ ジゥムの場合には低級アルコールを除く。)とを含む溶液中で、加水分解させる加水 分解工程を含むことを特徴として 、る。
(Formula (1
Figure imgf000005_0002
R 2 , R 3 and R 4 independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. ) A solution containing at least one compound selected from the group consisting of compound strengths, water, and an organic solvent (except for the lower alcohol when the metal is vanadium). Among them, the method includes a hydrolysis step for hydrolysis.
[0009] 本発明にかかる金属酸化物微粒子の製造方法では、前記溶液中における前記化 合物と前期有機溶媒との全重量を 100wt%としたときの、前記化合物の前記化合物 と前期有機溶媒との全重量に対する割合は、 2. 5wt%以上、 35wt%以下であるこ とが好ましい。 In the method for producing metal oxide fine particles according to the present invention, when the total weight of the compound and the organic solvent in the solution is 100 wt%, the compound of the compound and the organic solvent The ratio of to the total weight is preferably 2.5 wt% or more and 35 wt% or less.
[0010] 本発明にかかる金属酸化物微粒子の製造方法では、前記単分散した球状の金属 酸ィ匕物微粒子は、粒径の相対標準偏差が 10%以下であることが好ましい。  [0010] In the method for producing metal oxide fine particles according to the present invention, the monodispersed spherical metal oxide fine particles preferably have a relative standard deviation of particle size of 10% or less.
[0011] 本発明にかかる金属酸ィ匕物微粒子の製造方法は、さら〖こ、前記加水分解工程で得 られた前記金属酸ィヒ物微粒子の分散液力 前記金属酸ィヒ物微粒子を分離し乾燥す る乾燥工程を含んで 、てもよ 、。 [0011] In the method for producing metal oxide fine particles according to the present invention, further, the dispersion force of the metal oxide fine particles obtained in the hydrolysis step is separated. Including the drying process to dry.
[0012] 本発明にかかる金属酸ィ匕物微粒子の製造方法では、前記一般式(1)、 (2)、 (3) および (4)で表される化合物からなる群より選択される少なくとも 1種の化合物は、前 記金属アルコキシド lmolに対して、 lOmol以上、 139mol以下用いることが好ましい [0012] In the method for producing metal oxide fine particles according to the present invention, at least one selected from the group consisting of compounds represented by the general formulas (1), (2), (3) and (4). Seed compound It is preferable to use not less than lOmol and not more than 139mol with respect to lmol of metal alkoxide
[0013] 本発明にかかる金属酸ィ匕物微粒子の製造方法では、前記一般式(1)、 (2)、 (3) および (4)で表される化合物からなる群より選択される少なくとも 1種の化合物の量を 変化させることによって、単分散した球状の金属酸化物微粒子の粒径を、 200nm以 上、 800nm以下の範囲で制御可能である。 [0013] In the method for producing metal oxide fine particles according to the present invention, at least one selected from the group consisting of the compounds represented by the general formulas (1), (2), (3) and (4). By changing the amount of the seed compound, the particle diameter of the monodispersed spherical metal oxide fine particles can be controlled in the range of 200 nm or more and 800 nm or less.
[0014] 本発明にかかる金属酸ィ匕物微粒子の製造方法では、前記有機溶媒は少なくとも 1 種の一般式(5)  [0014] In the method for producing metal oxide fine particles according to the present invention, the organic solvent is at least one general formula (5).
[化 2]
Figure imgf000006_0001
[Chemical 2]
Figure imgf000006_0001
(5)  (Five)
(式(5)中、 R1および R2は独立して炭素数 1〜4の直鎖状または枝分かれ状アルキル 基を示す。 ) (In Formula (5), R 1 and R 2 independently represent a linear or branched alkyl group having 1 to 4 carbon atoms.)
で表されるケトンであってもよ 、。  It may be a ketone represented by
また、本発明にかかる金属酸ィ匕物微粒子は、上記課題と解決するために、周期表 の 3A〜5A族および 3B〜5B族に属する金属からなる群より選択される少なくとも 1 つの金属の金属酸化物微粒子であって、前記金属の金属アルコキシドを、以下の一 般式(1)、(2)、 (3)および (4)  Further, in order to solve the above problems, the metal oxide fine particles according to the present invention are at least one metal selected from the group consisting of metals belonging to Groups 3A to 5A and Groups 3B to 5B of the periodic table. Oxide fine particles, wherein the metal alkoxide of the metal is represented by the following general formulas (1), (2), (3) and (4)
[化 3] [Chemical 3]
Figure imgf000007_0001
Figure imgf000007_0001
(式(1)
Figure imgf000007_0002
R2、 R3および R4は独立して水素原子または炭 素数 1〜4の直鎖状または枝分かれ状アルキル基を示す。 )で表される化合物力ゝらな る群より選択される少なくとも 1種の化合物と、水と、有機溶媒 (但し、前記金属がバナ ジゥムの場合には低級アルコールを除く。)とを含む溶液中で、加水分解させて得ら れる、粒径の相対標準偏差が 10%以下である、単分散した球状の金属酸化物微粒 子であることを特徴として!/、る。
(Formula (1)
Figure imgf000007_0002
R 2 , R 3 and R 4 independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. ) A solution containing at least one compound selected from the group consisting of compound strengths, water, and an organic solvent (except for the lower alcohol when the metal is vanadium). It is characterized by monodispersed spherical metal oxide particles obtained by hydrolysis and having a relative standard deviation of particle size of 10% or less! /
[0016] 本発明に力かる金属酸ィ匕物微粒子では、前記金属酸化物は V Oであってもよい。 In the metal oxide fine particles that are useful in the present invention, the metal oxide may be V 2 O.
2 5  twenty five
[0017] 本発明に力かる金属酸ィ匕物微粒子の製造方法は、以上のように、周期表の 3A〜5 A族および 3B〜5B族に属する金属力 なる群より選択される少なくとも 1つの金属の 金属アルコキシドを、上記一般式(1)、(2)、(3)および (4)で表される化合物力もな る群より選択される少なくとも 1種の化合物と、水と、有機溶媒 (但し、前記金属がバナ ジゥムの場合には低級アルコールを除く。)とを含む溶液中で、加水分解させる加水 分解工程を含む構成を備えて ヽるので、従来は合成が不可能であった単分散した 球状の金属酸化物微粒子を簡便に合成できるという効果を奏する。  [0017] As described above, the method for producing metal oxide fine particles useful in the present invention is at least one selected from the group consisting of metal forces belonging to groups 3A-5A and 3B-5B of the periodic table. A metal metal alkoxide is converted into at least one compound selected from the group having the compound power represented by the general formulas (1), (2), (3) and (4), water, an organic solvent ( However, in the case where the metal is vanadium, a lower alcohol is excluded.), A composition including a hydrolysis step for hydrolysis is included. The effect is that the dispersed spherical metal oxide fine particles can be easily synthesized.
[0018] また、本発明にかかる金属酸ィ匕物微粒子は、上記課題と解決するために、周期表 の 3A〜5A族および 3B〜5B族に属する金属からなる群より選択される少なくとも 1 つの金属の金属酸化物微粒子であって、前記金属の金属アルコキシドを、上記一般 式(1)、(2)、(3)および (4)で表される化合物力 なる群より選択される少なくとも 1 種の化合物と、水と、有機溶媒 (但し、前記金属がバナジウムの場合には低級アルコ ールを除く。)とを含む溶液中で、加水分解させて得られる、粒径の相対標準偏差が[0018] Further, in order to solve the above problems, the metal oxide fine particles according to the present invention are at least one selected from the group consisting of metals belonging to groups 3A-5A and 3B-5B of the periodic table. A metal metal oxide fine particle, wherein the metal metal alkoxide is at least one selected from the group consisting of compound forces represented by the general formulas (1), (2), (3) and (4). Compound, water, and an organic solvent (provided that when the metal is vanadium, lower alcohol Except The relative standard deviation of the particle size obtained by hydrolysis in a solution containing
10%以下である、単分散した球状の金属酸化物微粒子である構成を備えて!/、るの で、例えば、顔料、触媒、先端セラミックスの原料、オパールベースのフォトニック結 晶(光結晶)のような多くの技術分野において利用できる。 It is composed of monodispersed spherical metal oxide fine particles of 10% or less! /, So, for example, pigments, catalysts, raw materials for advanced ceramics, opal-based photonic crystals (photocrystals) Can be used in many technical fields.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 l (a)、(b)、(c)および (d)は、種々のピリジン濃度(C)においてバナジウムァ ルコキシドの加水分解により得られた V Ο微粒子の透過型電子顕微鏡による観察  [0019] [Fig. 1] Figures l (a), (b), (c) and (d) show the transmission type of V Ο fine particles obtained by hydrolysis of vanadium alkoxide at various pyridine concentrations (C). Observation by electron microscope
2 5  twenty five
結果を示す図である。図 1 (a)、(b)、(c)、および (d)は、ピリジン濃度 (C)がそれぞ れ、 2. 5wt%、 5wt%、 10wt%および 20wt%の条件下で生成した V O微粒子の  It is a figure which shows a result. Figure 1 (a), (b), (c), and (d) show the VO generated under the conditions of pyridine concentration (C) of 2.5 wt%, 5 wt%, 10 wt%, and 20 wt%, respectively. Particulate
2 5 観察結果を示す図である。  FIG. 25 is a diagram showing the observation results.
[図 2]図 2は、単分散した球状の V O微粒子の平均粒径(D、単位: nm、図 2中△で  [Fig. 2] Fig. 2 shows the average particle size of monodispersed spherical V 2 O fine particles (D, unit: nm, Δ in Fig. 2)
2 5  twenty five
示す。)と、相対標準偏差 (c.v.、単位:%、図 2中〇で示す。)とを、ピリジン濃度 (C) に対してプロットした図である。  Show. ) And relative standard deviation (c.v., unit:%, indicated by ○ in FIG. 2) are plotted against pyridine concentration (C).
[図 3]図 3は、ピリジン濃度 (C) = 10wt%の条件下における単分散した球状の V O  [Fig. 3] Fig. 3 shows monodispersed spherical V 2 O under the conditions of pyridine concentration (C) = 10 wt%.
2 5 微粒子の FTIRスペクトルを示す図である。  Fig. 25 is a diagram showing an FTIR spectrum of a fine particle.
[図 4]図 4は、ピリジン濃度 (C)が 10wt%の条件下で生成した単分散球状の V O微  [Fig. 4] Fig. 4 shows monodispersed spherical V O fine particles formed under the condition of a pyridine concentration (C) of 10 wt%.
2 5 粒子の X線回折結果を示す図である。  FIG. 5 is a diagram showing an X-ray diffraction result of 25 particles.
[図 5]図 5は、単分散した球状の V O微粒子の平均粒径 (D、単位: nm)と、相対標  [Figure 5] Figure 5 shows the average particle diameter (D, unit: nm) of monodispersed spherical V 2 O fine particles and the relative standard.
2 5  twenty five
準偏差 (c.v.、単位:%)とを、水の濃度に対してプロットした図である。  It is the figure which plotted the semi-deviation (c.v., unit:%) with respect to the concentration of water.
[図 6]図 6は、バナジウムアルコキシドの加水分解により得られた V O微粒子の熱処  [Fig. 6] Fig. 6 shows the heat treatment of V O fine particles obtained by hydrolysis of vanadium alkoxide.
2 5  twenty five
理後の FTIRスペクトルを示す図である。  It is a figure which shows the FTIR spectrum after a process.
[図 7]図 7は、バナジウムアルコキシドの加水分解により得られた V O微粒子を、熱処  [FIG. 7] FIG. 7 shows the results of heat treatment of V O fine particles obtained by hydrolysis of vanadium alkoxide.
2 5  twenty five
理後、走査型電子顕微鏡により観察した結果を示す図である。  It is a figure which shows the result observed with the scanning electron microscope after treatment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明者らは、上記課題を解決すべく鋭意検討した結果、金属のアルコキシドと、 ピリジンと、水とを含む有機溶媒中で、金属アルコキシドを加水分解させることによつ て、これまでの加水分解法では単分散した球状金属酸ィ匕物微粒子を得ることができ な力つた金属についても、粒径の相対標準偏差が 10%以下である、単分散した球状 の金属酸ィ匕物微粒子を合成できることを初めて見出し、本発明を完成させるに至つ た。また、従来の加水分解法は、一般に、金属アルコキシドを均一溶液中で少なくと も数時間以上加水分解させることにより行われているが、本発明の方法では、驚くベ きことに、数十秒というきわめて短い時間で、単分散した球状の金属酸化物微粒子が 生成することが見出された。このように、本発明にかかる金属酸ィ匕物微粒子の製造方 法は、従来は合成が不可能であった単分散 (粒径の相対標準偏差が 10%以下)の 球状金属酸ィ匕物微粒子を簡便かつ極めて迅速に大量合成できる新規手法である。 また、用いるピリジン等の量を変化させることにより、狭い粒径分布を保ったまま、粒 径を 200ηπ!〜 800nmの範囲で、自由に変えることが可能であることも見出された。 これにより、所望の粒径を有する、単分散した球状の金属酸化物微粒子を合成する ことが可能となる。 [0020] As a result of intensive studies to solve the above-mentioned problems, the present inventors have made this by hydrolyzing the metal alkoxide in an organic solvent containing a metal alkoxide, pyridine, and water. Even for powerful metals for which monodisperse spherical metal oxide fine particles could not be obtained by the hydrolysis method up to 1, monodisperse spherical particles with a relative standard deviation of the particle size of 10% or less. For the first time, it was found that metal oxide fine particles can be synthesized, and the present invention has been completed. In addition, the conventional hydrolysis method is generally performed by hydrolyzing metal alkoxide in a homogeneous solution for at least several hours. However, in the method of the present invention, it is surprisingly several tens of seconds. It was found that monodispersed spherical metal oxide fine particles were formed in an extremely short time. As described above, the method for producing metal oxide fine particles according to the present invention is a monodisperse spherical metal oxide having a monodispersion (relative standard deviation of particle size of 10% or less), which has not been conventionally synthesized. This is a novel method that enables simple and extremely rapid mass synthesis of fine particles. In addition, by changing the amount of pyridine used, the particle size can be reduced to 200ηπ while maintaining a narrow particle size distribution! It was also found that it can be changed freely in the range of ~ 800 nm. This makes it possible to synthesize monodispersed spherical metal oxide fine particles having a desired particle size.
[0021] 以下本発明の単分散した球状の金属酸化物微粒子の製造方法および金属酸ィ匕 物微粒子について詳細に説明する。  Hereinafter, the method for producing monodispersed spherical metal oxide fine particles and the metal oxide fine particles of the present invention will be described in detail.
[0022] (1)単分散した球状の金属酸化物微粒子の製造方法  [0022] (1) Method for producing monodispersed spherical metal oxide fine particles
本発明に力かる金属酸ィ匕物微粒子の製造方法によって、単分散した球状の金属 酸ィ匕物微粒子の合成が可能となる。ここで、単分散したとは、金属酸化物微粒子が 分散した系にお 、て、金属酸ィ匕物微粒子の粒径がそろって 、れば特に限定されるも のではないが、粒径分布が狭ぐ粒径の相対標準偏差が 10%以下であることが好ま しぐ 7%以下であることがより好ましい。なお、粒径とは、球状の金属酸化物微粒子 の粒子直径のことをいう。  According to the method for producing metal oxide fine particles, which is useful in the present invention, it is possible to synthesize monodispersed spherical metal oxide fine particles. Here, monodispersed is not particularly limited as long as the metal oxide fine particles have the same particle size in the system in which the metal oxide fine particles are dispersed. The relative standard deviation of the narrow particle diameter is preferably 10% or less, more preferably 7% or less. The particle size means the particle diameter of spherical metal oxide fine particles.
[0023] また、金属酸化物微粒子とは、金属酸化物の微粒子に限られるものではなぐ金属 酸ィ匕物の微粒子中に、製造において用いられた一般式(1)、(2)、(3)および (4) [化 4] [0023] The metal oxide fine particles are not limited to metal oxide fine particles, but are represented by the general formulas (1), (2), (3) used in the production of metal oxide fine particles. ) And (4) [Chemical 4]
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000010_0002
で表される化合物力 なる群より選択される少なくとも 1種の化合物および Zまたは水 を少なくとも含んでいるものも含める趣旨である。ここで、前記一般式(1)、(2)、 (3) および (4)で表される化合物はこれらの化合物の 1種が単独で含まれて 、てもよ!/、し 、または、 2種以上含まれていてもよい。なお、式(1)、(2)、(3)および (4)中、
Figure imgf000010_0003
R 2、R3および R4は独立して水素原子または炭素数 1〜4の直鎖状または枝分かれ状 アルキル基であれば特に限定されるものではないが、これらの中でも水素原子、メチ ル基、ェチル基、プロピル基またはブチル基であることが好ましい。また、金属酸ィ匕 物とは、周期表の 3A〜5A族および 3B〜5B族に属する金属の酸ィヒ物またはこれら の金属酸化物の 2種類以上の混合物をいう。かかる金属としては、 Sc、 Y、 Ga、 In、 T 1、 Ti、 Zr、 Si、 Ge、 Sn、 Pb、 V、 Nb、 Ta、 As、 Sb、 Bi等を挙げることができる。これら の中でも、上記金属は、バナジウム、ニオブ、タンタル等であることがより好ましぐこ れらの酸化物は、 V O、 Ta O、 Nb O等であることが好ましい。
Figure imgf000010_0002
It is intended to include at least one compound selected from the group consisting of the compound powers represented by the formula (1) and those containing at least Z or water. Here, the compounds represented by the general formulas (1), (2), (3) and (4) may contain one of these compounds alone, and may be! /, Or Two or more kinds may be included. In the formulas (1), (2), (3) and (4),
Figure imgf000010_0003
R 2, R 3 and R 4 are not particularly limited as long as they are independently a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, but among them, a hydrogen atom, a methyl group , An ethyl group, a propyl group, or a butyl group. Further, the metal oxide refers to a metal oxide belonging to groups 3A to 5A and groups 3B to 5B of the periodic table or a mixture of two or more of these metal oxides. Examples of such metals include Sc, Y, Ga, In, T1, Ti, Zr, Si, Ge, Sn, Pb, V, Nb, Ta, As, Sb, and Bi. Among these, the metal is more preferably vanadium, niobium, tantalum or the like, and these oxides are preferably VO, Ta 2 O, Nb 2 O, or the like.
2 5 2 5 2 5  2 5 2 5 2 5
[0024] (1 1)加水分解工程  [0024] (1 1) Hydrolysis step
本発明に力かる単分散した球状の金属酸ィ匕物微粒子の製造方法は、周期表の 3A 〜5A族および 3B〜5B族に属する金属からなる群より選択される少なくとも 1つの金 属の金属アルコキシドを、前記一般式(1)、(2)、(3)および (4)で表される化合物か らなる群より選択される少なくとも 1種の化合物と、水と、有機溶媒とを含む溶液中で、 加水分解させる加水分解工程を含むものである。  The method for producing monodispersed spherical metal oxide fine particles useful in the present invention comprises at least one metal metal selected from the group consisting of metals belonging to groups 3A-5A and 3B-5B of the periodic table. An alkoxide is a solution containing at least one compound selected from the group consisting of compounds represented by the general formulas (1), (2), (3) and (4), water, and an organic solvent. Among them, it includes a hydrolysis step for hydrolysis.
[0025] また、本発明に力かる単分散した球状の金属酸ィ匕物微粒子の製造方法は、周期表 の 3A〜5A族および 3B〜5B族に属する金属からなる群より選択される少なくとも 1 つの金属の金属アルコキシドと、前記少なくとも 1種の一般式(1)、(2)、(3)および( 4)で表される化合物からなる群より選択される少なくとも 1種の化合物と、水とを含む 有機溶媒中で、前記アルコキシドを加水分解させ、粒径の相対標準偏差が 10%以 下である、単分散した球状の金属酸化物微粒子の分散液を得る加水分解工程を含 むことが好ましい。 [0025] In addition, the method for producing monodispersed spherical metal oxide fine particles, which is useful in the present invention, includes a periodic table. A metal alkoxide of at least one metal selected from the group consisting of metals belonging to groups 3A to 5A and 3B to 5B, and at least one of the general formulas (1), (2), (3) and (4 Wherein the alkoxide is hydrolyzed in an organic solvent containing at least one compound selected from the group consisting of compounds represented by formula (I) and water, and the relative standard deviation in particle size is 10% or less. It is preferable to include a hydrolysis step for obtaining a dispersion of monodispersed spherical metal oxide fine particles.
[0026] 前記金属アルコキシドは、周期表の 3A〜5A族および 3B〜5B族に属する金属か らなる群より選ばれる少なくとも 1つの金属の金属アルコキシドであれば、特に限定さ れるものではない。ここで、周期表の 3A〜5A族および 3B〜5B族に属する金属から なる群より選ばれる少なくとも 1つの金属とは、金属酸ィ匕物のところで説明した金属と 同様である。カゝかる金属アルコキシドとしては、例えば、 Μ Ι (OR) , M^COR) 、MV [0026] The metal alkoxide is not particularly limited as long as it is a metal alkoxide of at least one metal selected from the group consisting of metals belonging to Groups 3A to 5A and Groups 3B to 5B of the periodic table. Here, at least one metal selected from the group consisting of metals belonging to groups 3A to 5A and 3B to 5B in the periodic table is the same as the metal described in the description of the metal oxide. For example, 金属Ι (OR), M ^ COR), M V
3 4 3 4
(OR) で表される金属アルコキシド、または前記一般式中のアルコキシ基(— OR)のA metal alkoxide represented by (OR) or an alkoxy group (—OR) in the above general formula
5 Five
一部が、ォキソ基( = 0)で置換されたィ匕合物を挙げることができる。ここで、上記一般 式中の Rは、加水分解に非反応性であり、単分散を妨害しない有機基であれば特に 限定されるものではないが、具体的には、例えば、炭素数が 1〜8の、直鎖状または 枝分かれ状のアルキル基であることが好ましい。なお、 Μ Ι、 Μ1^および MVは、それ ぞれ、周期表の 3族、 4族および 5族の金属を示す。 Mention may be made of compounds partially substituted with oxo groups (= 0). Here, R in the above general formula is not particularly limited as long as it is an organic group that is non-reactive to hydrolysis and does not interfere with monodispersion. It is preferably a linear or branched alkyl group of ˜8. Incidentally, Micromax iota, Micromax 1 ^ and M V, it respectively, 3 of the periodic table, illustrating the Group 4 and 5 metals.
[0027] 前記金属アルコキシドとしては、具体的には、例えば、 VO(OCH ) 、 VO(OC H  Specific examples of the metal alkoxide include, for example, VO (OCH 3) 2, VO (OC 2 H
3 3 2 5 3 3 2 5
) 、VO(0— isoCH ) 、VO(0—nCH ) 、VO(0— isoCH ) 、VO(0— nCH), VO (0—isoCH), VO (0—nCH), VO (0—isoCH), VO (0—nCH
3 3 7 3 3 7 3 4 9 3 43 3 7 3 3 7 3 4 9 3 4
) 、VO(OCH ) 、V(OCH ) 、V(OCH ) 、V(0— isoCH ) 、V(0— nCH), VO (OCH), V (OCH), V (OCH), V (0—isoCH), V (0—nCH
9 3 5 11 3 3 5 2 5 5 3 7 5 39 3 5 11 3 3 5 2 5 5 3 7 5 3
) 、 V(0— isoC H ) 、 V(0-nC H ) 、 V(OC H ) 等のバナジウムアルコキシ), V (0—isoC H), V (0-nC H), V (OC H), etc.
7 5 4 9 5 4 9 5 5 11 5 7 5 4 9 5 4 9 5 5 11 5
ド; Ta(OCH ) 、Ta(OCH ) 、Ta(0— isoCH ) 、Ta(0— nCH ) 、Ta(0— is  Ta (OCH), Ta (OCH), Ta (0—isoCH), Ta (0—nCH), Ta (0—is
3 5 2 5 5 3 7 5 3 7 5  3 5 2 5 5 3 7 5 3 7 5
oC H ) 、 Ta(0-nC H ) 、 Ta(OC H ) 等のタンタルアルコキシド; Nb (OCH ) oC H), Ta (0-nC H), Ta (OC H) and other tantalum alkoxides; Nb (OCH)
4 9 5 4 9 5 5 11 5 34 9 5 4 9 5 5 11 5 3
、 Nb(OC H ) 、 Nb(0-isoC H ) 、 Nb(0—nC H ) 、 Nb(0—isoC H ) 、 N, Nb (OC H), Nb (0-isoC H), Nb (0—nC H), Nb (0—isoC H), N
5 2 5 5 3 7 5 3 7 5 4 9 5 b(0— nC H ) 、Nb(OCH ) 等のニオブアルコキシド等を挙げることができる。こ 5 2 5 5 3 7 5 3 7 5 4 9 5 Niobium alkoxides such as b (0—nC H) and Nb (OCH 3) can be mentioned. This
4 9 5 5 11 5  4 9 5 5 11 5
れらの中でも、前記金属アルコキシドは、 VO(OCH ) 、 VO(OC H ) 、 VO(0-is  Among these, the metal alkoxide is VO (OCH), VO (OC H), VO (0-is
3 3 2 5 3  3 3 2 5 3
oC H ) 、VO(0—nCH ) 、VO(0—isoCH ) 、VO(0—nCH ) 、VO(OC oC H), VO (0—nCH), VO (0—isoCH), VO (0—nCH), VO (OC
3 7 3 3 7 3 4 9 3 4 9 3 53 7 3 3 7 3 4 9 3 4 9 3 5
H ) であることがより好ましい。 [0028] また、前記金属アルコキシドは、アルコキシ基の一部力 クロ口基(一 C1)等で置換さ れたものであってもよい。さらに、前記金属アルコキシドは、 1種類の金属アルコキシ ドを単独で用いてもよいし、また、 2種類以上の金属アルコキシドを混合して用いても よい。 More preferably, H). [0028] The metal alkoxide may be a part of the alkoxy group that is substituted with a part of the alkoxy group (one C1) or the like. Furthermore, as the metal alkoxide, one type of metal alkoxide may be used alone, or two or more types of metal alkoxide may be mixed and used.
[0029] また、加水分解工程は、前記一般式(1)、(2)、(3)および (4)で表される化合物か らなる群より選択される少なくとも 1種の化合物の存在下で行う。すなわち、加水分解 工程は、前記一般式(1)、(2)、(3)または (4)で表される一種の化合物単独、または 、 2種以上の化合物の混合物存在下で行う。なお、式(1)、(2)、(3)および (4)中、 R \ R2、 R3および R4は独立して水素原子または炭素数 1〜4の直鎖状または枝分かれ 状アルキル基であれば特に限定されるものではないが、水素原子、メチル基、ェチル 基、プロピル基またはブチル基であることが好ましい。これらの化合物の存在下で、 金属アルコキシドの加水分解を行うことにより、単分散した球状の金属酸化物微粒子 を合成することが可能となる。 [0029] The hydrolysis step is performed in the presence of at least one compound selected from the group consisting of compounds represented by the general formulas (1), (2), (3) and (4). Do. That is, the hydrolysis step is performed in the presence of a single compound represented by the general formula (1), (2), (3) or (4) alone or a mixture of two or more compounds. Note that equation (1), (2), (3) and (4) in, R \ R 2, R 3 and R 4 are independently a hydrogen atom or a linear or branched alkyl having 1 to 4 carbon atoms Although it is not particularly limited as long as it is a group, it is preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group or a butyl group. By carrying out hydrolysis of the metal alkoxide in the presence of these compounds, monodispersed spherical metal oxide fine particles can be synthesized.
[0030] また、前記一般式(1)、(2)、(3)および (4)で表される化合物力もなる群より選択さ れる少なくとも 1種の化合物は、前記金属アルコキシド lmolに対して、 lOmol以上用 いることが好ましぐ 19mol以上用いることがより好ましい。また、用いる上記化合物の 上限は、特に限定されるものではないが、前記金属アルコキシド lmolに対して、好ま しくは 139molであり、より好ましくは 119molである。かかる量の上記化合物存在下 で加水分解を行うことにより、単分散した球状の金属酸化物微粒子を合成することが 可能となる。例えば、バナジウムアルコキシドの加水分解により 5酸ィ匕バナジウム (V [0030] In addition, at least one compound selected from the group consisting of the compound powers represented by the general formulas (1), (2), (3) and (4) is based on lmol of the metal alkoxide. It is preferable to use 10 mol or more. It is more preferable to use 19 mol or more. The upper limit of the compound used is not particularly limited, but is preferably 139 mol, more preferably 119 mol, relative to 1 mol of the metal alkoxide. By carrying out hydrolysis in the presence of such an amount of the above compound, monodispersed spherical metal oxide fine particles can be synthesized. For example, by hydrolysis of vanadium alkoxide, pentanoic acid vanadium (V
2 2
O )微粒子を合成する場合を例に挙げて説明すると、 5酸ィ匕バナジウム (V O )微粒For example, the case of synthesizing fine particles of O)
5 2 5 子の粒径の相対標準偏差(変動係数: coefficient of variation, c.v.と略記する。)と、 粒径 (D)とを、存在させたピリジンの濃度に対してプロットした図 2に示すように、上記 化合物 (ピリジン)の濃度が一定の値以上となると、粒径の相対標準偏差は 10%より 小さくなる。 5 2 5 Figure 2 plots the relative standard deviation of the particle size (abbreviated as coefficient of variation, cv) and particle size (D) against the concentration of pyridine present. Thus, when the concentration of the above compound (pyridine) exceeds a certain value, the relative standard deviation of the particle size becomes smaller than 10%.
[0031] また、前記化合物と、水と、前記有機溶媒とを含む溶液中における前記化合物と前 期有機溶媒との全重量を 100wt%としたときの、前記化合物の前記化合物と前期有 機溶媒との全重量に対する割合は、 2. 5wt%以上であることが好ましぐ 4wt%以上 であることがより好ましい。また、前記溶液中における前記化合物の割合の上限は、 特に限定されるものではないが、当該化合物と前期有機溶媒との全重量を 100wt% としたときに、好ましくは 35wt%であり、より好ましくは 30wt%である。かかる溶液中 で加水分解を行うことにより、単分散した球状の金属酸化物微粒子を合成することが 可能となる。例えば、バナジウムアルコキシドの加水分解により 5酸ィ匕バナジウム (V [0031] In addition, when the total weight of the compound and the previous organic solvent in a solution containing the compound, water, and the organic solvent is 100 wt%, the compound of the compound and the previous organic solvent It is preferable that the ratio to the total weight of 2.5 wt% or more is 4 wt% or more It is more preferable that The upper limit of the proportion of the compound in the solution is not particularly limited, but is preferably 35 wt%, more preferably when the total weight of the compound and the organic solvent is 100 wt%. Is 30wt%. By carrying out hydrolysis in such a solution, it is possible to synthesize monodispersed spherical metal oxide fine particles. For example, by hydrolysis of vanadium alkoxide, pentanoic acid vanadium (V
2 2
O )微粒子を合成する場合を例に挙げて説明すると、 5酸ィ匕バナジウム (V O )微粒For example, the case of synthesizing fine particles of O)
5 2 5 子の粒径の相対標準偏差(変動係数: coefficient of variation, c.v.と略記する。)と、 粒径 (D)とを、存在させたピリジンの濃度に対してプロットした図 2に示すように、前期 溶液中の前記化合物 (ピリジン)の割合が当該化合物と前期有機溶媒との全重量を 1 00wt%としたときに、一定の割合以上になると、粒径の相対標準偏差は 10%より小 さくなる。 5 2 5 Figure 2 plots the relative standard deviation of the particle size (abbreviated as coefficient of variation, cv) and particle size (D) against the concentration of pyridine present. Thus, when the ratio of the compound (pyridine) in the previous period solution is 100 wt% when the total weight of the compound and the previous organic solvent is 100 wt%, the relative standard deviation of the particle size is 10%. It will be smaller.
[0032] また、加水分解工程において存在させる上記化合物の量を変化させることによって 、狭い粒径分布を保ったまま、粒径を 200ηπ!〜 800nmの範囲で、自由に変えること が可能である。例えば、バナジウムアルコキシドの加水分解により 5酸ィ匕バナジウム( V O )微粒子を合成する場合を例に挙げて説明すると、図 2に示すように、上記化合 [0032] Further, by changing the amount of the compound present in the hydrolysis step, the particle size is reduced to 200ηπ while maintaining a narrow particle size distribution. It can be changed freely within the range of ~ 800nm. For example, the case of synthesizing vanadium pentoxide (V O) fine particles by hydrolysis of vanadium alkoxide will be described as an example. As shown in FIG.
2 5 twenty five
物 (ピリジン)の濃度が、粒径の相対標準偏差が 10%以下となる濃度より大きい濃度 において、一定濃度までは、粒径は約 200nm〜250nmまで少しずつ大きくなり、一 定の濃度を超えると、約 250nm〜約 800nmまで上記化合物の濃度に比例して大き くなる。  When the concentration of the product (pyridine) is higher than the concentration at which the relative standard deviation of particle size is 10% or less, the particle size gradually increases from about 200 nm to 250 nm until it reaches a certain concentration, and exceeds a certain concentration. And increases in proportion to the concentration of the compound from about 250 nm to about 800 nm.
[0033] また、前記化合物と、水と、前記有機溶媒とを含む溶液中における前記化合物と前 期有機溶媒との全重量を 100wt%としたときの、前記化合物の前記化合物と前期有 機溶媒との全重量に対する割合を変化させることによって、狭い粒径分布を保ったま ま、粒径を 200ηπ!〜 800nmの範囲で、自由に変えることが可能である。例えば、ノ ナジゥムアルコキシドの加水分解により 5酸ィ匕バナジウム (V O )微粒子を合成する  [0033] In addition, when the total weight of the compound and the previous organic solvent in a solution containing the compound, water, and the organic solvent is 100 wt%, the compound of the compound and the previous organic solvent By changing the ratio to the total weight, the particle size is reduced to 200ηπ while maintaining a narrow particle size distribution! It can be changed freely within the range of ~ 800nm. For example, hydrolyzing nonadium alkoxide to synthesize vanadium pentoxide (V O) fine particles
2 5  twenty five
場合を例に挙げて説明すると、図 2に示すように、上記化合物 (ピリジン)の濃度が、 粒径の相対標準偏差が 10%以下となる濃度より大きい濃度において、一定濃度まで は、粒径は約 200ηπ!〜 250nmまで少しずつ大きくなり、一定の濃度を超えると、約 250nm〜約 800nmまで上記化合物の濃度に比例して大きくなる。 [0034] 上記有機溶媒としては、特に限定されるものではなぐエーテル、エステル、アルコ ール、ケトン等を用いることができる力 ケトンを用いることが好ましい。また、上記金 属がバナジウムである場合には、特にケトンを好適に用いることができる。前記ケトン としては、特に、限定されるものではないが、中でも、少なくとも 1種の一般式(5) [化 5] As an example, as shown in Figure 2, when the concentration of the above compound (pyridine) is higher than the concentration at which the relative standard deviation of particle size is 10% or less, Is about 200ηπ! It gradually increases from ˜250 nm, and increases above a certain concentration in proportion to the concentration of the compound from about 250 nm to about 800 nm. [0034] The organic solvent is not particularly limited, and it is preferable to use an ether, ester, alcohol, ketone or the like which can be used. In addition, when the metal is vanadium, a ketone can be particularly preferably used. The ketone is not particularly limited, but among them, at least one general formula (5)
0 0
R'ノ 、R2 R'no, R 2
(5) で表されるケトンを好適に用いることができる。ここで、式(5)中、 R1および R2は独立 して炭素数 1〜4の直鎖状または枝分かれ状アルキル基である。かかる有機溶媒とし ては、具体的には、例えば、アセトン、 2—ブタノン、 3—ペンタノン、メチルイソプロピ ルケトン、メチル n—プロピルケトン、 3—へキサノン、メチル n—ブチルケトン等を挙げ ることができる。力かる有機溶媒を用いることにより、単分散した球状の金属酸化物微 粒子を合成することが可能となる。なお、上記有機溶媒としては、力かるケトンの 1種 を単独で用いてもよいし、複数混合して用いてもよい。また、上記有機溶媒は、単分 散した球状の金属酸ィ匕物微粒子が得られる限りにおいて、ケトンに加えてさらに、ェ 一テル、エステル、アルコール等の他の有機溶媒を含むものであってもよい。なお、 前記金属がバナジウムである場合には、炭素数が 1ないし 4の低級アルコールを用い ることは、金属酸ィ匕物微粒子を得ることができな 、ため好ましくな!/、。 The ketone represented by (5) can be preferably used. Here, in formula (5), R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms. Specific examples of such organic solvents include acetone, 2-butanone, 3-pentanone, methyl isopropyl ketone, methyl n-propyl ketone, 3-hexanone, and methyl n-butyl ketone. . By using a strong organic solvent, it is possible to synthesize monodispersed spherical metal oxide particles. In addition, as said organic solvent, 1 type of a powerful ketone may be used independently, and multiple may be used in mixture. In addition to the ketone, the organic solvent further contains other organic solvents such as ethers, esters, alcohols and the like as long as monodispersed spherical metal oxide fine particles can be obtained. Also good. In the case where the metal is vanadium, it is preferable to use a lower alcohol having 1 to 4 carbon atoms because metal oxide fine particles cannot be obtained.
[0035] また、加水分解工程は、加水分解に必要な水を共存させて行う。共存させる水の量 は、合成する金属酸化物微粒子の種類等に応じて適宜選択すればよい。かかる水 の量としては、金属アルコキシド lmolに対して、 2mol〜4mol共存させることが好ま しい。力かる量の水を共存させることにより、単分散した球状の金属酸化物微粒子を 合成することが可能となる。なお、加水分解に必要な水は、用いる試薬中に含まれる 水、大気中に含まれる水等により供給されてもよい。  [0035] The hydrolysis step is carried out in the presence of water necessary for hydrolysis. The amount of water to be coexisted may be appropriately selected according to the type of metal oxide fine particles to be synthesized. The amount of water is preferably 2 to 4 mol with respect to 1 mol of the metal alkoxide. By coexisting a strong amount of water, it is possible to synthesize monodispersed spherical metal oxide fine particles. The water necessary for hydrolysis may be supplied by water contained in the reagent used, water contained in the atmosphere, or the like.
[0036] 加水分解工程では、上記金属アルコキシドと、前記一般式(1)、 (2)、 (3)および (4 )で表される化合物力 なる群より選択される少なくとも 1種の化合物と、水と、有機溶 媒とを含む溶液中で、前記アルコキシドを加水分解させればよぐこれらの物質の混 合方法は特に限定されるものではないが、例えば、上記有機溶媒と前記一般式(1) 、(2)、(3)および (4)で表される化合物力 なる群より選択される少なくとも 1種の化 合物との混合物であって、水分を含む溶液に、金属アルコキシドをカ卩える方法を好適 に用いることができる。また、加水分解工程では攪拌を行うことが好ましぐ例えば、上 記有機溶媒と前記一般式(1)、(2)、(3)および (4)で表される化合物力もなる群より 選択される少なくとも 1種の化合物との混合物であって、水分を含む溶液に、金属ァ ルコキシドを加える方法を用いる場合にも、金属アルコキシドを加える際に反応溶液 を攪拌することが好ましい。また、加水分解の反応温度は特に限定されるものではな いが、例えば、 5〜50°Cの範囲で、好ましくは 15〜40°Cの範囲で行うことができる。 また、例えば、 30秒〜 60秒という短い反応時間で単分散した球状の金属酸ィ匕物微 粒子を合成することができる。加水分解を行う雰囲気も特に限定されるものではなぐ 大気下で行うことができるが、もちろん、窒素、アルゴン等の不活性ガス雰囲気下で 行ってもよい。 [0036] In the hydrolysis step, the metal alkoxide and at least one compound selected from the group consisting of the compound forces represented by the general formulas (1), (2), (3) and (4), Water and organic The method of mixing these substances is not particularly limited as long as the alkoxide is hydrolyzed in a solution containing a medium. For example, the organic solvent and the general formulas (1), (2) ), (3) and (4) are preferred to be a mixture of at least one compound selected from the group consisting of the compound strengths, wherein the metal alkoxide is covered in a solution containing moisture. Can be used. In addition, it is preferable to stir in the hydrolysis step. For example, the organic solvent and the compound power represented by the general formulas (1), (2), (3) and (4) are selected from the group consisting of In the case of using a method in which metal alkoxide is added to a solution containing at least one kind of compound and containing water, it is preferable to stir the reaction solution when adding metal alkoxide. The reaction temperature for the hydrolysis is not particularly limited, but can be, for example, in the range of 5 to 50 ° C, preferably in the range of 15 to 40 ° C. In addition, for example, spherical metal oxide fine particles monodispersed in a short reaction time of 30 to 60 seconds can be synthesized. The atmosphere for carrying out the hydrolysis is not particularly limited, and it can be carried out in the atmosphere, but of course, it may be carried out in an inert gas atmosphere such as nitrogen or argon.
[0037] (1 2)乾燥工程 [0037] (1 2) Drying process
本発明にかかる単分散した球状の金属酸ィ匕物微粒子の製造方法は、さらに、前記 加水分解工程で得られた分散液から前記金属酸化物微粒子を分離し乾燥する乾燥 工程を含むことが好ましい。これにより、単分散した球状の金属酸化物微粒子を得る ことができる。  The method for producing monodispersed spherical metal oxide fine particles according to the present invention preferably further includes a drying step of separating and drying the metal oxide fine particles from the dispersion obtained in the hydrolysis step. . Thereby, monodispersed spherical metal oxide fine particles can be obtained.
[0038] 前記金属酸化物微粒子を分離し、乾燥した単分散した球状の金属酸化物微粒子 を得る方法は特に限定されるものではなぐ従来公知の種々の方法を用いることがで きる。かかる方法としては、例えば、遠心分離、沈降分離等により前記金属酸化物微 粒子を分離し真空乾燥する方法を好適に用いることができる。その他にも、有機溶媒 を留出する方法等を用いることができる。  [0038] A method for separating the metal oxide fine particles to obtain dried monodispersed spherical metal oxide fine particles is not particularly limited, and various conventionally known methods can be used. As such a method, for example, a method in which the metal oxide fine particles are separated by vacuum separation, sedimentation separation or the like and vacuum-dried can be suitably used. In addition, a method of distilling an organic solvent can be used.
[0039] 本発明にかかる金属酸ィ匕物微粒子の製造方法では、乾燥工程により、乾燥した金 属酸化物微粒子を得る他に、溶媒置換により、異なる溶媒中に分散された金属酸ィ匕 物微粒子の分散体を得ることもできる。  [0039] In the method for producing metal oxide fine particles according to the present invention, in addition to obtaining dried metal oxide fine particles by a drying step, metal oxide fine particles dispersed in different solvents by solvent substitution. A dispersion of fine particles can also be obtained.
[0040] (2)金属酸化物微粒子 本発明に力かる金属酸ィ匕物微粒子は、周期表の 3A〜5A族および 3B〜5B族に 属する金属力 なる群より選択される少なくとも 1つの金属の金属酸ィ匕物微粒子であ つて、前記金属の金属アルコキシドを、上記一般式(1)、 (2)、 (3)および (4)で表さ れる化合物からなる群より選択される少なくとも 1種の化合物と、水と、有機溶媒とを 含む溶液中で、加水分解させて得られる、粒径の相対標準偏差が 10%以下である、 単分散した球状の金属酸ィ匕物微粒子である。 [0040] (2) Metal oxide fine particles The metal oxide fine particles useful in the present invention are metal oxide fine particles of at least one metal selected from the group consisting of metal forces belonging to groups 3A-5A and 3B-5B of the periodic table, The metal metal alkoxide comprises at least one compound selected from the group consisting of compounds represented by the general formulas (1), (2), (3) and (4), water, an organic solvent, Monodispersed spherical metal oxide fine particles having a relative standard deviation of particle size of 10% or less, obtained by hydrolysis in a solution containing.
[0041] 本発明に力かる金属酸ィ匕物微粒子は、前記金属の金属酸ィ匕物からなるものであれ ばよいが、金属酸ィ匕物の微粒子中に、前記一般式(1)、 (2)、 (3)および (4)で表さ れる化合物からなる群より選択される少なくとも 1種の化合物と、水とを含んでなるもの であってもよい。なお、製造された金属酸化物微粒子は、前記化合物や水を含み得 る力 含まれる前記化合物や水は、熱処理を行うことによって除去することができる。 力かる熱処理の温度は、 250°C以上 600°C以下であることが好ましぐ 350°C以上 5 00°C以下であることがより好ましい。熱処理の温度が 600°C以下であることにより、金 属酸化物微粒子の完全な球形を損なうことなく前記化合物や水を除去することがで きる。また、熱処理の温度が 250°C以上であることにより、前記化合物や水を好適に 除去することができる。また、熱処理を行う雰囲気も特に限定されるものではなぐ大 気下で行うことができるが、もちろん、窒素、アルゴン等の不活性ガス雰囲気下で行 つてもよい。 [0041] The metal oxide fine particles useful in the present invention may be those composed of the metal oxide of the metal. In the metal oxide fine particles, the general formula (1), It may comprise at least one compound selected from the group consisting of the compounds represented by (2), (3) and (4) and water. The produced metal oxide fine particles can contain the compound and water. The contained compound and water can be removed by heat treatment. The temperature of the intense heat treatment is preferably 250 ° C. or higher and 600 ° C. or lower, more preferably 350 ° C. or higher and 500 ° C. or lower. When the heat treatment temperature is 600 ° C. or lower, the compound and water can be removed without impairing the perfect spherical shape of the metal oxide fine particles. In addition, when the heat treatment temperature is 250 ° C. or higher, the compound and water can be suitably removed. In addition, the atmosphere in which the heat treatment is performed is not particularly limited, and can be performed in an atmosphere, but of course, it may be performed in an inert gas atmosphere such as nitrogen or argon.
[0042] また、後述する実施例に示すように、実施例で製造された金属酸化物微粒子の X 線回折では、金属酸化物は層構造を有し、前記化合物は、かかる金属酸化物の層 構造における層間にインター力レートしていることが示されている。このことから、本発 明の単分散した球状の金属酸化物微粒子の製造方法によれば、金属酸化物微粒子 にインター力レートさせたい物質を反応時に存在させることにより、力かる物質力 Sイン ター力レートされている金属酸ィ匕物微粒子を、 1段階の反応で製造することができると 考えられる。本発明に力かる金属酸ィ匕物微粒子はこのような物質力 Sインター力レート されているものであってもよい。なお、かかる物質としては、例えば、上記一般式(1)、 (2)、 (3)および (4)で表される化合物力 なる群より選択される少なくとも 1種の化合 物を挙げることができるが、これらに限定されるものではなぐ上記化合物とともに、上 記化合物以外の物質を反応時に存在させることにより上記化合物以外の物質をもィ ンタ一力レートすることができると考えられる。また、インター力レートされている物質の 組成は mol比で、金属酸化物 1に対して、 0より大きく 2以下の範囲であることが好まし い。 [0042] Further, as shown in the examples described later, in the X-ray diffraction of the metal oxide fine particles produced in the examples, the metal oxide has a layer structure, and the compound is a layer of the metal oxide. It is shown that there is an inter force between layers in the structure. Therefore, according to the method for producing monodispersed spherical metal oxide fine particles of the present invention, the substance that is desired to be inter-forced in the metal oxide fine particles is present during the reaction, so It is considered that the metal oxide fine particles that are force-rated can be produced by a one-step reaction. The metal oxide fine particles that are useful in the present invention may be those which have been subjected to such a material force and an S force. Examples of such substances include at least one compound selected from the group consisting of compound powers represented by the above general formulas (1), (2), (3) and (4). In addition to the above compounds, which are not limited to these, It is thought that substances other than the above compounds can be interspersed by allowing substances other than the above compounds to exist during the reaction. In addition, the composition of the substance that is inter-forced is preferably in the range of greater than 0 and less than or equal to 2 with respect to the metal oxide 1 in terms of mol ratio.
実施例 1  Example 1
[0043] 以下、本発明を実施例により具体的に説明するが、本発明は実施例によって限定 されるものではない。  Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the examples.
[0044] 〔実施例 1:単分散した球状の V O微粒子の製造〕 [Example 1: Production of monodispersed spherical V 2 O fine particles]
2 5  twenty five
<単分散した球状の V  <Monodispersed spherical V
2 o微粒子の製造 >  2 o Fine particle production>
5  Five
種々の粒径を有する単分散した球状の V O微粒子を、アセトン  Monodispersed spherical V 2 O fine particles with various particle sizes are mixed with acetone.
2 5 Zピリジン (Py)混 合物の溶液中、大気下で、バナジウムォキソイソプロポキシド (VO (0— isoC H ) )  2 Vanadium oxoisopropoxide (VO (0—isoC H)) in a solution of 5 Z pyridine (Py) in air
3 7 3 を加水分解することにより製造した。  3 7 3 was prepared by hydrolysis.
[0045] アセトン/ピリジン混合物の溶液 (全重量 8g)に、大気中で、激しく攪拌しながら、 V 0 (0— isoC H ) (0. 06ml (2. 55 X 10_4mol)、日亜化学工業株式会社製)をカロ [0045] V 0 (0—isoC H) (0.06 ml (2.55 X 10 _4 mol), Nichia Chemical Co., Ltd.) in a solution of acetone / pyridine mixture (total weight 8 g) with vigorous stirring in air. Industrial Co., Ltd.)
3 7 3  3 7 3
えた。ピリジンおよびアセトンに含まれる H Oの量は、製造元によると、それぞれ、 0.  Yeah. The amount of H 2 O in pyridine and acetone, according to the manufacturer, is 0.
2  2
01wt%以下 (ピリジン、和光純薬)および 0. 4wt%以下 (アセトン、ナカライテスタ株 式会社)であった。なお、加水分解は室温 (約 20°C)にて行った。  The amount was 01 wt% or less (pyridine, Wako Pure Chemical Industries) and 0.4 wt% or less (acetone, Nacalai Testa Co., Ltd.). The hydrolysis was performed at room temperature (about 20 ° C).
[0046] なお、ピリジンの量を、アセトンとの混合物の全重量が 8gとなるようにして、アセトン Zピリジン混合物の全重量を 100wt%としたときに、 2. 5wt%以上、 30wt%以下の 範囲で変化させた(以下、本明細書中において、この、アセトン Zピリジン混合物の 全重量を 100wt%としたときの、アセトン Zピリジン混合物中のピリジンの割合 (wt% )を「ピリジン濃度 (C)」と略称する。 )。  [0046] The amount of pyridine is 2.5 wt% or more and 30 wt% or less when the total weight of the mixture with acetone is 8 g and the total weight of the acetone Z pyridine mixture is 100 wt%. (Hereinafter, when the total weight of the acetone Z pyridine mixture is 100 wt%, the ratio (wt%) of pyridine in the acetone Z pyridine mixture is expressed as “pyridine concentration (C ) ".
[0047] アセトン Zピリジン混合物に VO (0—isoC H ) を添加すると略同時に反応液はォ  [0047] When VO (0—isoC H) is added to the acetone Z pyridine mixture, the reaction solution is almost
3 7 3  3 7 3
レンジ色に変化した。これは V 粒子 ものであると考えられる。その  Changed to range color. This is considered to be V particles. That
2 o微 の生成による  2 o by generation
5  Five
V O微粒子の生成後すぐに V O微粒子を遠心分離によって集め真空中で 12時間 Immediately after generation of V O fine particles, V O fine particles are collected by centrifugation for 12 hours in a vacuum.
2 5 2 5 2 5 2 5
乾燥した。なお、 V 応溶液中にすでに含まれている水による  Dried. Depending on the water already contained in the V solution
2 o微粒子は、反  2 o Fine particles are
5 vo(o isoC H ) の加水分解により生成したものである。  It is generated by hydrolysis of 5 vo (o isoC H).
3 7 3  3 7 3
[0048] 上述したように、本発明の製造方法の特長の 1つは、顕著に速い単分散した球状 の V O微粒子の生成にある。それらは、長くとも 30秒以内であり、もっと速い可能性[0048] As described above, one of the features of the production method of the present invention is a significantly faster monodispersed spherical shape. The generation of VO fine particles. They are at most 30 seconds long and could be faster
2 5 twenty five
が大きい。これは、 V oの存在によると考えられるオレンジ色力 アセトン  Is big. This is thought to be due to the presence of V o orange power acetone
2 5 Zピリジン 混合物への VO (0— isoC H ) の添加と略同時に現れることにより示された。このよ  It was shown by appearing almost simultaneously with the addition of VO (0—isoC H) to the 25Z pyridine mixture. This
3 7 3  3 7 3
うに顕著に速い単分散した球状の V 子の生成は、均質な溶液中における金  The remarkably fast formation of monodispersed spherical V atoms is the result of the formation of gold in a homogeneous solution.
2 o微粒  2 o fine
5  Five
属アルコキシドの加水分解による、これまでに報告された相対標準偏差く 10%の球 状酸ィ匕物微粒子の生成には通常数時間以上力かることを考慮すると非常に短時間 で可能となる。  In consideration of the fact that it usually takes more than several hours to produce 10% spherical oxide fine particles with a relative standard deviation of 10% reported by hydrolysis of the genus alkoxide, it is possible in a very short time.
[0049] <V O微粒子の透過型電子顕微鏡による観察 >  [0049] <Observation of V 2 O fine particles by transmission electron microscope>
2 5  twenty five
得られた V o微粒子の形状、凝集体の有無、粒径を、透過型電子顕微鏡により観  The shape of the obtained V o fine particles, the presence or absence of aggregates, and the particle size were observed with a transmission electron microscope.
2 5  twenty five
察した。透過型電子顕微鏡による観察は、 JEM- 1010D JEOL社製)を用い、試料とし て、オレンジ色の出現直後(30秒以内)の反応溶液を 1滴、炭素被覆された銅グリッド の表面に載置して行った。  I guessed. For observation with a transmission electron microscope, JEM-1010D manufactured by JEOL) was used, and a drop of the reaction solution immediately after the appearance of orange (within 30 seconds) as a sample was placed on the surface of a carbon-coated copper grid I went there.
[0050] 図 1に種々のピリジン濃度で得られた V O微粒子の透過型電子顕微鏡による観察 [0050] Fig. 1 shows transmission electron microscope observations of V O fine particles obtained at various pyridine concentrations.
2 5  twenty five
結果を示す。図 1 (a)、(b)、(c)、および (d)は、ピリジン濃度 (C)がそれぞれ、 2. 5w t%、 5wt%、 10wt%および 20wt%の条件下で生成した V O微粒子の観察結果を  Results are shown. Figure 1 (a), (b), (c), and (d) show VO fine particles produced under the conditions of pyridine concentration (C) of 2.5 wt%, 5 wt%, 10 wt%, and 20 wt%, respectively. Observation results
2 5  twenty five
示す。図 1 (a)〜(d)に示されるように得られた V O微粒子は、殆ど完全な球状の形  Show. The V O fine particles obtained as shown in Fig. 1 (a) to (d) are almost completely spherical.
2 5  twenty five
を有し、凝集していないことが観察された。また、得られた V O  And were not observed to aggregate. Also obtained V O
2 5微粒子は、図 1 (a)で は 200nm付近で、図 1 (b)では 220nm付近で、図 1 (c)では 240nm付近で、図 l (d )では 400nm付近で粒径が揃って!/、ることが確認された。  25 The fine particles have a uniform particle size around 200 nm in Fig. 1 (a), around 220 nm in Fig. 1 (b), around 240 nm in Fig. 1 (c), and around 400 nm in Fig. L (d). It was confirmed that! /
[0051] また、図 2は、透過型電子顕微鏡による観察で測定された、各ピリジン濃度におい て単分散した球状の V O微粒子の平均粒径 (D、単位: nm、図 2中△で示す。)と、 [0051] FIG. 2 shows the average particle diameter (D, unit: nm, Δ in FIG. 2) of spherical VO fine particles monodispersed at each pyridine concentration, measured by observation with a transmission electron microscope. )When,
2 5  twenty five
相対標準偏差 (c.v.、単位 :%、図 2中〇で示す。)とを、ピリジン濃度 (C)に対してプ ロットしたグラフである。平均粒径および粒径の相対標準偏差はそれぞれのピリジン 濃度での試料について 300微粒子以上を測定することにより求めた。なお、平均粒 径および粒径の相対標準偏差は以下の式より求めた。なお、相対標準偏差は、標準 偏差 σ ηを観測値の母集団の平均値を基準として百分率で表した値である。 The relative standard deviation (c .v, unit:..%, Shown in FIG. 2 〇) and a graph plotted against pyridine concentration (C). The average particle size and the relative standard deviation of the particle size were obtained by measuring 300 fine particles or more for samples at each pyridine concentration. The average particle size and the relative standard deviation of the particle size were obtained from the following formula. The relative standard deviation is a value that expresses the standard deviation σ η as a percentage based on the average value of the observed population.
[0052] [数 1] 平均粒径 = ^=!— 相対標準偏 [0052] [Equation 1] Average particle size = ^ =! — Relative standard deviation
但し、 σWhere σ
Figure imgf000019_0001
ここで、
Figure imgf000019_0001
here,
X :平均粒径 (観測値の平均値)  X: Average particle diameter (average of observed values)
X, : i番目の抜き取りの観測値 n :観測数  X,: i-th sampling observation n: number of observations
σ„:母集団の標準偏差 図 2に示されるように、粒径とその相対標準偏差は明らかにピリジン濃度 (C)に強く 依存している。ピリジン濃度 (C)が小さい時 (Cく 2. 5wt%、後述する比較例参照。 ) は、 V O微粒子の粒径は小さくむしろ多分散である。しかし、ピリジン濃度 (C)が大 σ „: Population standard deviation As shown in Figure 2, the particle size and its relative standard deviation are clearly strongly dependent on the pyridine concentration (C). When the pyridine concentration (C) is small (C 5wt%, see comparative example below.) VO fine particle size is rather small and polydispersed, but pyridine concentration (C) is large
2 5 twenty five
きくなると (C> 2. 5wt%)状況は大きく変化する。 V O微粒子は単分散となり、その The situation changes greatly (C> 2.5 wt%). V O fine particles become monodisperse
2 5  twenty five
相対標準偏差は 10%以下となる。また、ピリジン濃度 (C) >約 4wt%で、その相対標 準偏差は約 7%となる。また、ピリジン濃度 (C)が 2. 5wt%より大きい範囲において、 ピリジン濃度(C)が約 15wt%までは、粒径は約 200ηπ!〜 250nmまで少しずつ大き くなり、ピリジン濃度(C)が 15wt%より大きくなると、粒径は約 250nm〜約 800nmま で上記化合物の濃度に比例して大きくなることが示された。このように、ピリジン濃度( C)を変化させることによって、その粒径分布を非常に小さく維持したまま、粒径を約 2 00nm〜800nmまでコントロールすることが可能であることが明ら力となった。なお、 ピリジン濃度(C) = 2. 5wt%のとき、 VO (0— isoC H ) lmolに対して用いたピリジ The relative standard deviation is less than 10%. The relative standard deviation is about 7% when the pyridine concentration (C)> about 4 wt%. In addition, when the pyridine concentration (C) is greater than 2.5 wt%, the particle size is about 200 ηπ! It was shown that when the pyridine concentration (C) was increased from 15 wt% gradually from ˜250 nm, the particle size increased from about 250 nm to about 800 nm in proportion to the concentration of the above compound. Thus, by changing the pyridine concentration (C), it is clear that the particle size can be controlled from about 200 nm to 800 nm while keeping the particle size distribution very small. It was. When the pyridine concentration (C) = 2.5 wt%, the pyridi used for VO (0—isoC H) lmol
3 7 3  3 7 3
ンは約 lOmolであり、ピリジン濃度(C) =4wt%のとき、 VO (0— isoC H ) lmolに Is about lOmol, and when pyridine concentration (C) = 4wt%, VO (0—isoC H) lmol
3 7 3 対して用いたピリジンは約 19molであった。また、ピリジン濃度(C) = 30wt%のとき、 VO (0-isoC H ) lmolに対して用いたピリジンは約 119molであり、ピリジン濃度(  The amount of pyridine used for 3 7 3 was about 19 mol. When the pyridine concentration (C) = 30 wt%, the pyridine used for VO (0-isoC H) lmol is about 119 mol, and the pyridine concentration (
3 7 3  3 7 3
C) = 35wt%のとき、 VO (0— isoC H ) lmolに対して用いたピリジンは約 139mol  When C) = 35wt%, the amount of pyridine used for VO (0—isoC H) lmol is about 139 mol.
3 7 3  3 7 3
であった。 [0053] なお、透過型電子顕微鏡による観察では、乾燥した V O微粒子ではなぐ V O微 Met. [0053] In the observation with a transmission electron microscope, it is not possible to use dry VO fine particles.
2 5 2 5 粒子を含む反応溶液を試料として用いたが、観察中試料は高真空下で乾燥すること より、乾燥した V o微粒子においても同様の結果が得られると考えられる。  Although the reaction solution containing 2 5 2 5 particles was used as a sample, it is considered that the same result can be obtained for dried Vo fine particles by drying the sample under observation under high vacuum.
2 5  twenty five
[0054] <V O微粒子のフーリエ変換赤外スペクトル (FTIR)測定〉  [0054] <Fourier transform infrared spectrum (FTIR) measurement of V O fine particles>
2 5  twenty five
加水分解工程および乾燥工程を経て得られた乾燥した V O微粒子の FTIR測定  FTIR measurement of dried V 2 O fine particles obtained through hydrolysis and drying processes
2 5  twenty five
を行った。 FTIR測定は、 FTS 6000フーリエ変換赤外分光計 (BioRad社製)を用いて 、ピリジン濃度 (C)が異なる条件下で生成した種々の粒径の単分散した球状の V O  Went. The FTIR measurement was performed using an FTS 6000 Fourier transform infrared spectrometer (BioRad) and monodispersed spherical V O of various particle sizes produced under different pyridine concentrations (C).
2 5 微粒子について行った。すべての V の試料において、粒径に関係なく殆  2 5 For fine particles. In all V samples, almost no matter the particle size
2 o微粒子  2 o fine particles
5  Five
ど同様の FTIRスペクトルが観察された。図 3に、ピリジン濃度 (C) = 10wt%の条件 下における単分散した球状の V O微粒子の FTIRスペクトルを示す。図 3中、縦軸は  A similar FTIR spectrum was observed. Figure 3 shows the FTIR spectrum of monodispersed spherical V 2 O particles under the pyridine concentration (C) = 10 wt% condition. In Fig. 3, the vertical axis is
2 5  twenty five
吸光度、横軸は波数 (単位: cm— 1)を示す。波数 1000cm—1以下では、バナジウム 酸素間の伸縮振動に特徴的な 3本の強い吸収ピークが観察された。粒径に関係 なく殆ど同様の FTIR ^ベクトルが観察されたことから、単分散した球状の V O微粒 Absorbance, horizontal axis indicates wave number (unit: cm-1). At wave numbers below 1000 cm- 1 , three strong absorption peaks characteristic of stretching vibration between vanadium and oxygen were observed. Since almost the same FTIR ^ vector was observed regardless of particle size, monodispersed spherical VO fine particles
2 5 子は粒径に関係なく同様の組成を有することが示された。なお、〇および參で示され ているのはそれぞれ H Oおよびピリジンに対応するピークである。元素分析の結果、  2 5 children were shown to have a similar composition regardless of particle size. The circles marked with ○ and 參 are peaks corresponding to H 2 O and pyridine, respectively. As a result of elemental analysis,
2  2
それらの組成は、 V O -xPyyH O (x=0. 8、 y=0. 9)であった。なお、ここで Py  Their composition was V O -xPyyH 2 O (x = 0.8, y = 0.9). Where Py
2 5 2  2 5 2
はピリジンを表す。この生成した単分散球状の V 子中に含まれる水およびピ  Represents pyridine. The water and the pigment contained in the monodispersed spherical V molecule thus generated
2 o微粒  2 o fine
5  Five
リジンは、 5%Hを含むアルゴンガス雰囲気下、常圧、 350。C〜500。Cで 1時間、熱  Lysine is 350 at atmospheric pressure in an argon gas atmosphere containing 5% H. C-500. Heat at C for 1 hour
2  2
処理を行うことによって除去された。図 6に、 5%H  It was removed by processing. Figure 6 shows 5% H
2を含むアルゴンガス雰囲気下、常 圧、 450°Cで 1時間熱処理後の、単分散した球状の V O微粒子の FTIRスペクトル  FTIR spectrum of monodispersed spherical VO fine particles after heat treatment at 450 ° C for 1 hour under argon gas atmosphere containing 2
2 5  twenty five
を、図 7に、 V O微粒子を、熱処理後、走査型電子顕微鏡により観察した結果を示  Figure 7 shows the results of observing the V 2 O fine particles with a scanning electron microscope after heat treatment.
2 5  twenty five
す。図 6に示すように、水およびピリジンに対応するピークはなくなり、熱処理によって 、 V O微粒子に含まれていた水およびピリジンが完全に除去されたことが判る。また The As shown in FIG. 6, the peaks corresponding to water and pyridine disappear, and it can be seen that the water and pyridine contained in the VO fine particles were completely removed by the heat treatment. Also
2 5 twenty five
、図 7に示すように、水およびピリジンが完全に除去された V O微粒子が完全な球  As shown in Figure 7, VO fine particles from which water and pyridine have been completely removed are completely spheres.
2 5  twenty five
状を保っていることが判る。なお、走査型電子顕微鏡による観察は、 S— 3400N (日 立製)を用いて行った。  It can be seen that the shape is maintained. Observation with a scanning electron microscope was performed using S-3400N (manufactured by Hitachi).
[0055] <V O微粒子の X線回折 > [0055] <X-ray diffraction of V O fine particles>
2 5  twenty five
加水分解工程および乾燥工程を経て得られた乾燥した V O微粒子の X線回折を 行った。 X線回折は、 Rigaku RINT2500 (株式会社リガク製)を用いて、ピリジン濃度( C)が異なる条件下で生成した種々の粒径の単分散した球状の V O微粒子につい X-ray diffraction of dried VO fine particles obtained through hydrolysis and drying processes went. X-ray diffraction was performed using Rigaku RINT2500 (manufactured by Rigaku Corporation) on monodispersed spherical VO fine particles with various particle sizes produced under different pyridine concentrations (C).
2 5  twenty five
て行った。測定は、 CuK o;線(λ =0. 154nm)を用いて行った。すべての V O微  I went. The measurement was performed using a CuK o; line (λ = 0.154 nm). All V O fine
2 5 粒子の試料において、粒径に関係なく殆ど同様の X線回折結果が得られた。図 4に、 ピリジン濃度 (C)が 10wt%の条件下で生成した単分散球状の V O微粒子の X線回  In the sample of 25 particles, almost the same X-ray diffraction results were obtained regardless of the particle size. Figure 4 shows the X-ray diffraction pattern of monodispersed spherical V 2 O particles produced under a pyridine concentration (C) of 10 wt%.
2 5  twenty five
折結果を示す。図 4に示すように、実質的に約 2 Θ =8. 4° における単一のピークが 観察された。これは V O ·Η Οキセロゲルで観察される(001)面に由来するピークと  The results are shown. As shown in Figure 4, a single peak was observed at substantially 2 Θ = 8.4 °. This is a peak derived from the (001) plane observed in V O · Η Ο xerogel.
2 5 2  2 5 2
類似している。このことは、単分散した球状の V Ο微粒子は、 V Ο ·Η Οキセロゲル  It is similar. This means that the monodispersed spherical V Ο fine particles are V Ο · Η Ο xerogel
2 5 2 5 2  2 5 2 5 2
の構造と同様、層構造を有し、その結晶性はそれほど高くないことを強く示唆してい る。層間の間隔は単分散した球状の V Ο微粒子の粒径に関係なぐ約 1. 05nmで  It strongly suggests that it has a layer structure as well as its structure, and its crystallinity is not so high. The distance between the layers is about 1.05 nm, which is related to the particle size of monodispersed spherical V Ο fine particles.
2 5  twenty five
あった。このことは、 V ピリジンのインター力  there were. This means that the inter-force of V pyridine
2 o積層型結晶構造の層間への水および  2 o Water between layers of the stacked crystal structure and
5  Five
レーシヨンの可能性を示している。 V O ·Η Οキセロゲルは、多くの有機分子によつ  It shows the possibility of a laceon. V O · Η ΟXerogels are used in many organic molecules.
2 5 2  2 5 2
てインター力レート可能であり、そのように形成された V  V that can be inter-forced and so formed
2 ο 5 Ζ有機ノ、イブリツド分子は 種々の有用な特性を示すことが知られている。本発明の製造方法では、ピリジン含有 微粒子を、通常の 2段階の工程を経ず直接製造できることが示された。  2 ο 5 Ζ Organic and hybrid molecules are known to exhibit various useful properties. In the production method of the present invention, it was shown that pyridine-containing fine particles can be produced directly without going through the usual two-stage process.
[0056] 〔比較例 1〕 [Comparative Example 1]
ピリジン濃度 (C) =0、すなわち、アセトン Ζピリジン混合物の溶液 (全重量 8g)の代 わりに、アセトン 8gを用いた以外は、実施例 1と同様にして、 VO (0-isoC H ) の  Pyridine concentration (C) = 0, that is, VO (0-isoC H)
3 7 3 加水分解を行った。 V  3 7 3 Hydrolysis was performed. V
2 o 5微粒子の透過型電子顕微鏡による観察の結果、ピリジンの 不存在下では、凝集した、不規則な形状の微粒子しか生成しないことが示された。  Observation of 2 o 5 particles with a transmission electron microscope showed that in the absence of pyridine, only aggregated, irregularly shaped particles were produced.
[0057] 〔比較例 2〕 [Comparative Example 2]
ピリジン濃度を 0より大きぐ 2. 5wt%未満の範囲で変化させた以外は実施例 1と同 様にして VO (0—isoC H ) の加水分解を行った。 V O微粒子の透過型電子顕微  Hydrolysis of VO (0—isoC 3 H 4) was carried out in the same manner as in Example 1 except that the pyridine concentration was changed within the range of greater than 0 and less than 2.5 wt%. Transmission electron microscopy of V O fine particles
3 7 3 2 5  3 7 3 2 5
鏡による観察の結果、図 2に示すように、ピリジン濃度 (C)が C< 2. 5wt%であるとき は、 V O微粒子は球状であった力 その粒径は小さくむしろ多分散であることが示さ As shown in Fig. 2, when the pyridine concentration (C) is C <2.5 wt%, the VO fine particles had a spherical force. Shown
2 5 twenty five
れた。  It was.
[0058] 〔比較例 3〕  [Comparative Example 3]
アセトンの代わりに、エタノールを用いた以外は、実施例 1と同様にして、エタノール Zピリジン混合物の全重量を ioowt%としたときの、エタノール Zピリジン混合物中 のピリジンの割合を 12. 5wt%とし、 VO (0-isoC H ) の加水分解を行った。 V O Ethanol was used in the same manner as in Example 1 except that ethanol was used instead of acetone. Hydrolysis of VO (0-isoC H) was performed with the ratio of pyridine in the ethanol Z pyridine mixture being 12.5 wt% when the total weight of the Z pyridine mixture was ioowt%. VO
3 7 3 2 5 微粒子の透過型電子顕微鏡による観察の結果、エタノールを有機溶媒として用いた 場合は、微粒子は全く生成しないことが示された。  3 7 3 2 5 Observation of fine particles with a transmission electron microscope showed that no fine particles were formed when ethanol was used as the organic solvent.
[0059] また、エタノールの代わりに 2—プロパノールを用いて同様の実験を行った場合、お よび、エタノールの代わりに 1ーブタノールを用いて同様の実験を行った場合も、微 粒子は全く生成しないことが示された。  [0059] In addition, when the same experiment was conducted using 2-propanol instead of ethanol, and when the same experiment was conducted using 1-butanol instead of ethanol, fine particles were not produced at all. It was shown that.
[0060] 〔参考例 1〕  [0060] [Reference Example 1]
無水のアセトン 7mlZピリジン lml混合物と所定量の水とからなる混合溶液 (全重量 約 6. 5g)に、アルゴン雰囲気下で、激しく攪拌しながら、 VO (0-isoC H ) (0. 06  VO (0-isoC H) (0. 06) to a mixed solution (total weight of about 6.5 g) of anhydrous acetone 7 ml Z pyridine lml and a predetermined amount of water under vigorous stirring under argon atmosphere
3 7 3 ml (2. 55 X 10"4mol)、日亜化学工業株式会社製)を加えた。ピリジンおよびァセト ンとして、有機合成用の脱水溶媒 (和光純薬製、水分含有量 50ppm以下)を用いた 。また、すべての操作は、アルゴン雰囲気下のグローブボックス中で行った。なお、加 水分解は室温 (約 20°C)にて行った。 3 7 3 ml (2.55 X 10 " 4 mol), manufactured by Nichia Corporation) was added. Dehydrated solvent for organic synthesis (made by Wako Pure Chemical Industries, water content 50ppm or less) as pyridine and acetone. All the operations were performed in a glove box under an argon atmosphere, and the hydrolysis was performed at room temperature (about 20 ° C).
[0061] 無水のアセトン 7mlZピリジン lml混合物と水とカゝらなる混合溶液に含まれる水の 量を変化させて、得られた V O微粒子を透過型電子顕微鏡により観察した。図 5は [0061] The obtained V O fine particles were observed with a transmission electron microscope by changing the amount of water contained in a mixed solution of 7 ml Zpyridine in anhydrous acetone and 1 ml of water and a mixture of water and water. Figure 5
2 5  twenty five
、透過型電子顕微鏡による観察の結果得られた、単分散した球状の V o  Monodispersed spherical V o obtained by observation with a transmission electron microscope
2 5微粒子の 平均粒径 (D、単位: nm)と、相対標準偏差 ( v.、単位 :%)とを、水の濃度 (全反応 溶液の重量を 100wt%としたときの水の割合、単位: wt%)に対してプロットしたダラ フである。  2 5 Average particle size (D, unit: nm) and relative standard deviation (v., Unit:%) of the fine particles are determined based on the water concentration (the ratio of water when the total reaction solution weight is 100 wt%, Draft plotted against (unit: wt%).
[0062] 実施例 1では、 VO (0— isoC H ) の加水分解において 2つの可能な H O源が存  [0062] In Example 1, there are two possible sources of H 2 O in the hydrolysis of VO (0—isoC H).
3 7 3 2 在する。 1つめは用いられた試薬、すなわち、アセトンとピリジンであり、 2つめは、大 気である。実施例 1では、反応溶液中に含まれる正確な H Oの量は不明である。本  3 7 3 2 exists. The first is the reagents used, ie acetone and pyridine, and the second is atmospheric. In Example 1, the exact amount of H 2 O contained in the reaction solution is unknown. Book
2  2
参考例では、図 5に示すように、単分散した球状の V O微粒子を得るためには、水  In the reference example, as shown in FIG. 5, in order to obtain monodispersed spherical V 2 O fine particles,
2 5  twenty five
の濃度は、全反応溶液の重量を 100wt%としたときに、 0. 3wt%以下 (VO (0— iso C H ) lmolに対して 4. 3mol以下)であることが好ましいことが示された。  It was shown that the concentration of is preferably 0.3 wt% or less (4.3 mol or less with respect to VO (0—iso C H) lmol) when the weight of the total reaction solution is 100 wt%.
3 7 3  3 7 3
[0063] 本発明にカゝかる金属酸ィ匕物微粒子の製造方法は、上記課題を解決するために、 粒径の相対標準偏差が 10%以下である、単分散した球状の金属酸化物微粒子の 製造方法であって、周期表の 3A〜5A族および 3B〜5B族に属する金属力 なる群 より選択される少なくとも 1つの金属の金属アルコキシドと、上記一般式(1)、(2)、 (3 )および (4) [0063] In order to solve the above problems, the method for producing metal oxide fine particles according to the present invention provides monodispersed spherical metal oxide fine particles having a relative standard deviation of the particle size of 10% or less. of A metal alkoxide of at least one metal selected from the group consisting of metal forces belonging to groups 3A-5A and 3B-5B of the periodic table, and the above general formulas (1), (2), (3 ) And (4)
[化 6]  [Chemical 6]
Figure imgf000023_0001
Figure imgf000023_0001
(式(1)
Figure imgf000023_0002
R2、 R3および R4は独立して水素原子または炭 素数 1〜4の直鎖状または枝分かれ状アルキル基を示す。 )で表される化合物力ゝらな る群より選択される少なくとも 1種の化合物と、水とを含む有機溶媒中で、前記金属ァ ルコキシドを加水分解させ、粒径の相対標準偏差が 10%以下である、単分散した球 状の金属酸ィ匕物微粒子の分散液を得る加水分解工程を含むものであってもよい。
(Formula (1)
Figure imgf000023_0002
R 2 , R 3 and R 4 independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. The metal alkoxide is hydrolyzed in an organic solvent containing at least one compound selected from the group represented by It may include the following hydrolysis step for obtaining a dispersion of monodispersed spherical metal oxide fine particles.
[0064] 本発明にかかる金属酸ィ匕物微粒子の製造方法は、さら〖こ、前記加水分解工程で得 られた分散液力 前記金属酸ィ匕物微粒子を分離し乾燥する乾燥工程を含むことが 好ましい。 [0064] The method for producing metal oxide fine particles according to the present invention includes a drying step of further separating and drying the dispersion of the metal oxide fine particles obtained in the hydrolysis step. Is preferred.
[0065] 前記一般式(1)、(2)、(3)および (4)で表される化合物力 なる群より選択される 少なくとも 1種の化合物は、前記金属の金属アルコキシド lmolに対して、 lOmol以上 用いることが好ましぐ 19mol以上用いることがより好まし 、。  [0065] At least one compound selected from the group consisting of the compound forces represented by the general formulas (1), (2), (3) and (4) is based on lmol of the metal alkoxide of the metal. lOmol or more is preferable. It is more preferable to use 19 mol or more.
[0066] また、本発明にかかる金属酸ィ匕物微粒子の製造方法は、前記一般式(1)、(2)、( 3)および (4)で表される化合物からなる群より選択される少なくとも 1種の化合物の量 を変化させることによって、単分散した球状の金属酸化物微粒子の粒径を、 200nm 以上、 800nm以下の範囲で制御可能であることが好まし 、。 [0067] 前記有機溶媒は少なくとも 1種の一般式 (5) [0066] Further, the method for producing metal oxide fine particles according to the present invention is selected from the group consisting of the compounds represented by the general formulas (1), (2), (3) and (4). It is preferable that the particle size of the monodispersed spherical metal oxide fine particles can be controlled in the range of 200 nm or more and 800 nm or less by changing the amount of at least one compound. [0067] The organic solvent is at least one general formula (5)
[化 7]  [Chemical 7]
0 0
(5) (Five)
(式(5)中、 R1および R2は独立して炭素数 1〜4の直鎖状または枝分かれ状アルキル 基を示す。)で表されるケトンであることが好ましい。 (In formula (5), R 1 and R 2 independently represent a linear or branched alkyl group having 1 to 4 carbon atoms.) Are preferred.
[0068] 本発明に力かる金属酸ィ匕物微粒子の製造方法は、以上のように、粒径の相対標準 偏差が 10%以下である、単分散した球状の金属酸ィ匕物微粒子の製造方法であって 、周期表の 3A〜5A族および 3B〜5B族に属する金属力 なる群より選択される少な くとも 1つの金属の金属アルコキシドと、前記一般式(1)、(2)、(3)および (4)で表さ れる化合物からなる群より選択される少なくとも 1種の化合物と、水とを含む有機溶媒 中で、前記アルコキシドを加水分解させ、粒径の相対標準偏差が 10%以下である、 単分散した球状の金属酸化物微粒子の分散液を得る加水分解工程を含む構成を備 えて 、るので、従来は合成が不可能であった単分散した球状の金属酸ィヒ物微粒子 を簡便に合成できるという効果を奏する。  [0068] As described above, the method for producing metal oxide fine particles useful for the present invention produces monodispersed spherical metal oxide fine particles having a relative standard deviation of the particle size of 10% or less. A metal alkoxide of at least one metal selected from the group consisting of metal forces belonging to groups 3A-5A and 3B-5B of the periodic table, and the general formulas (1), (2), ( The alkoxide is hydrolyzed in an organic solvent containing at least one compound selected from the group consisting of the compounds represented by 3) and (4) and water, and the relative standard deviation of the particle size is 10%. Since the composition includes a hydrolysis step for obtaining a dispersion of monodispersed spherical metal oxide fine particles, the monodispersed spherical metal oxide, which was conventionally impossible to synthesize, is as follows. The effect is that the fine particles can be synthesized easily.
[0069] また、本発明にかかる金属酸ィ匕物微粒子は、粒径の相対標準偏差が 10%以下で ある、単分散した球状の金属酸ィ匕物微粒子であって、周期表の 3A〜5A族および 3 B〜5B族に属する金属から選択される少なくとも 1つの金属の金属酸化物の微粒子 中に、前記一般式(1)、(2)、(3)および (4)で表される化合物力 選択される少なく とも 1種の化合物と、水とを含んでなる構成を備えているので、例えば、顔料、触媒、 先端セラミックスの原料、オパールベースのフォトニック結晶(光結晶)のような多くの 技術分野にぉ 、て利用できる。  [0069] The metal oxide fine particles according to the present invention are monodispersed spherical metal oxide fine particles having a relative standard deviation of the particle size of 10% or less, and are 3A to 3A in the periodic table. In the metal oxide fine particles of at least one metal selected from metals belonging to Group 5A and Group 3B-5B, represented by the general formulas (1), (2), (3) and (4) Compound power Since it has a composition comprising at least one selected compound and water, it can be used for pigments, catalysts, advanced ceramic materials, opal-based photonic crystals (photocrystals), etc. It can be used in many technical fields.
産業上の利用の可能性  Industrial applicability
[0070] サブミクロンの単分散した球状金属酸ィ匕物微粒子は、例えば、顔料、触媒、先端セ ラミックスの原料、オパールベースのフォトニック結晶(光結晶)のような多くの技術分 野において利用できる。また、単分散した球状 V O微粒子は、自動車の排ガス浄ィ匕 用触媒をはじめとする触媒、リチウムイオン電池の正極材料、エレクト口クロミックデバ イス、センサー、ァクチユエ一ターのような多くの分野で重要な材料である。 [0070] Submicron monodispersed spherical metal oxide fine particles are used in many technical fields such as pigments, catalysts, raw materials for advanced ceramics, and opal-based photonic crystals (photocrystals). Available. Monodispersed spherical VO particles are also used in automobile exhaust gas purification. It is an important material in many fields, such as catalysts for batteries, cathode materials for lithium ion batteries, electochromic devices, sensors, and actuators.
[0071] 本発明は、従来は合成が不可能であった単分散球状金属酸化物微粒子を合成可 能にするものである。また、極めて迅速に大きさの揃った球状金属酸化物微粒子が 合成できる利点があり、製造工業での大量合成を図る上で大きな利点となる。  [0071] The present invention makes it possible to synthesize monodisperse spherical metal oxide fine particles that could not be synthesized conventionally. In addition, there is an advantage that spherical metal oxide fine particles having a uniform size can be synthesized very quickly, which is a great advantage for mass synthesis in the manufacturing industry.
[0072] それゆえ本発明は、球状金属酸化物微粒子を基礎素材として供給する化学工業 のみならず、電池製造業、電子部品製造業、機械器具製造業、電気機械器具製造 業等においても利用することができ、し力も非常に有用である。  [0072] Therefore, the present invention is used not only in the chemical industry that supplies spherical metal oxide fine particles as a basic material, but also in the battery manufacturing industry, electronic component manufacturing industry, machinery / equipment manufacturing industry, electrical machinery / equipment manufacturing industry, and the like. The power is also very useful.

Claims

請求の範囲 周期表の 3A〜5A族および 3B〜5B族に属する金属力 なる群より選択される少な くとも 1つの金属の金属アルコキシドを、 以下の一般式(1)、(2)、 (3)および (4) [化 1] Claims At least one metal alkoxide selected from the group consisting of metal forces belonging to groups 3A-5A and 3B-5B of the periodic table is represented by the following general formulas (1), (2), (3 ) And (4) [Chemical 1]
(式(1)
Figure imgf000026_0002
R2、R°および R4は独立して水素原子または 炭素数 1〜4の直鎖状または枝分かれ状アルキル基を示す。)
(Formula (1)
Figure imgf000026_0002
R 2 , R ° and R 4 independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. )
で表される化合物からなる群より選択される少なくとも 1種の化合物と、  At least one compound selected from the group consisting of compounds represented by:
水と、有機溶媒 (但し、前記金属がバナジウムの場合には低級アルコールを除く。 ) とを含む溶液中で、加水分解させる加水分解工程を含むことを特徴とする、単分散し た球状の金属酸化物微粒子の製造方法。  A monodispersed spherical metal characterized by comprising a hydrolysis step in which hydrolysis is carried out in a solution containing water and an organic solvent (excluding lower alcohol when the metal is vanadium). A method for producing fine oxide particles.
[2] 前記溶液中における前記化合物と前期有機溶媒との全重量を 100wt%としたとき の、前記化合物の前記化合物と前期有機溶媒との全重量に対する割合は、 2. 5wt %以上、 35wt%以下であることを特徴とする請求項 1に記載の金属酸化物微粒子 の製造方法。 [2] When the total weight of the compound and the organic solvent in the solution is 100 wt%, the ratio of the compound to the total weight of the compound and the organic solvent is 2.5 wt% or more, 35 wt% 2. The method for producing metal oxide fine particles according to claim 1, wherein:
[3] 前記単分散した球状の金属酸化物微粒子は、粒径の相対標準偏差が 10%以下 であることを特徴とする請求項 1または 2に記載の金属酸ィ匕物微粒子の製造方法。  [3] The method for producing metal oxide fine particles according to [1] or [2], wherein the monodispersed spherical metal oxide fine particles have a relative standard deviation of particle size of 10% or less.
[4] さらに、前記加水分解工程で得られた前記金属酸化物微粒子の分散液から前記 金属酸化物微粒子を分離し乾燥する乾燥工程を含むことを特徴とする請求項 1ない し 3のいずれ力 1項に記載の金属酸化物微粒子の製造方法。 [4] The method according to claim 1, further comprising a drying step of separating and drying the metal oxide fine particles from the dispersion of the metal oxide fine particles obtained in the hydrolysis step. 3. The method for producing metal oxide fine particles according to any one of items 3 above.
[5] 前記一般式(1)、(2)、(3)および (4)で表される化合物力 なる群より選択される 少なくとも 1種の化合物は、前記金属アルコキシド lmolに対して、 lOmol以上、 139 mol以下用いることを特徴とする請求項 1ないし 4のいずれか 1項に記載の金属酸ィ匕 物微粒子の製造方法。 [5] At least one compound selected from the group consisting of the compound forces represented by the general formulas (1), (2), (3) and (4) is at least 1 Omol relative to lmol of the metal alkoxide. The method for producing metal oxide fine particles according to any one of claims 1 to 4, wherein 139 mol or less is used.
[6] 前記一般式(1)、(2)、(3)および (4)で表される化合物力 なる群より選択される 少なくとも 1種の化合物の量を変化させることによって、単分散した球状の金属酸ィ匕 物微粒子の粒径を、 200nm以上、 800nm以下の範囲で制御可能であることを特徴 とする請求項 1ないし 5のいずれか 1項に記載の金属酸化物微粒子の製造方法。  [6] The monodispersed spherical shape is obtained by changing the amount of at least one compound selected from the group consisting of the compound forces represented by the general formulas (1), (2), (3) and (4). 6. The method for producing metal oxide fine particles according to claim 1, wherein the particle size of the metal oxide fine particles can be controlled in a range of 200 nm or more and 800 nm or less.
[7] 前記有機溶媒は少なくとも 1種の一般式 (5)  [7] The organic solvent is at least one general formula (5)
[化 2]
Figure imgf000027_0001
[Chemical 2]
Figure imgf000027_0001
(式(5)中、 R1および R2は独立して炭素数 1〜4の直鎖状または枝分かれ状アルキル 基を示す。 ) (In Formula (5), R 1 and R 2 independently represent a linear or branched alkyl group having 1 to 4 carbon atoms.)
で表されるケトンであることを特徴とする請求項 1ないし 6のいずれか 1項に記載の金 属酸化物微粒子の製造方法。  7. The method for producing metal oxide fine particles according to claim 1, wherein the ketone is represented by the formula:
周期表の 3A〜5A族および 3B〜5B族に属する金属力 なる群より選択される少な くとも 1つの金属の金属酸ィヒ物微粒子であって、  Metal oxide fine particles of at least one metal selected from the group of metal forces belonging to groups 3A-5A and 3B-5B of the periodic table,
前記金属の金属アルコキシドを、  A metal alkoxide of the metal,
以下の一般式(1)、(2)、 (3)および (4)  The following general formulas (1), (2), (3) and (4)
[化 3] [Chemical 3]
Figure imgf000028_0001
Figure imgf000028_0001
(式(
Figure imgf000028_0002
R2、R3および R4は独立して水素原子または 炭素数 1〜4の直鎖状または枝分かれ状アルキル基を示す。)
(formula(
Figure imgf000028_0002
R 2 , R 3 and R 4 independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. )
で表される化合物からなる群より選択される少なくとも 1種の化合物と、  At least one compound selected from the group consisting of compounds represented by:
水と、有機溶媒 (但し、前記金属がバナジウムの場合には低級アルコールを除く。 ) とを含む溶液中で、加水分解させて得られる、粒径の相対標準偏差が 10%以下で ある、単分散した球状の金属酸化物微粒子。  A relative standard deviation of the particle size obtained by hydrolysis in a solution containing water and an organic solvent (excluding lower alcohol when the metal is vanadium) is a single standard having a relative standard deviation of 10% or less. Dispersed spherical metal oxide fine particles.
前記金属酸化物は V Oであることを特徴とする請求項 8に記載の金属酸化物微粒  9. The metal oxide fine particles according to claim 8, wherein the metal oxide is V 2 O.
2 5  twenty five
子。 Child.
PCT/JP2006/300656 2005-01-19 2006-01-18 Process for producing monodispersed fine spherical metal oxide particles and fine metal oxide particles WO2006077890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006553933A JPWO2006077890A1 (en) 2005-01-19 2006-01-18 Method for producing monodispersed spherical metal oxide fine particles and metal oxide fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-012130 2005-01-19
JP2005012130 2005-01-19

Publications (1)

Publication Number Publication Date
WO2006077890A1 true WO2006077890A1 (en) 2006-07-27

Family

ID=36692279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300656 WO2006077890A1 (en) 2005-01-19 2006-01-18 Process for producing monodispersed fine spherical metal oxide particles and fine metal oxide particles

Country Status (2)

Country Link
JP (1) JPWO2006077890A1 (en)
WO (1) WO2006077890A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088505A (en) * 2006-10-02 2008-04-17 Toyota Central R&D Labs Inc Insulating film, powder for magnetic core, powder magnetic core and method for forming them or method for producing them
WO2010090274A1 (en) * 2009-02-09 2010-08-12 独立行政法人産業技術総合研究所 Fine particles, process for producing same, and coating material, film and ink each containing the fine particles
JP2017030994A (en) * 2015-07-29 2017-02-09 公立大学法人首都大学東京 Inorganic monodisperse spherical fine particle, electrode for cell, and cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169927A (en) * 1983-02-25 1984-09-26 モンテディソン・エッセ・ピ・ア Method and apparatus for manufacturing single dispersive andnon-aggregative spherical metal oxide smaller than one micron in diameter
JPS62278106A (en) * 1986-05-26 1987-12-03 Tama Kagaku Kogyo Kk Hydrolysis of metal alkoxide
JPH0222105A (en) * 1987-10-29 1990-01-25 Fraunhofer Ges Production of monodisperse ceramic powder
JP2002356327A (en) * 2001-03-28 2002-12-13 Samsung Sdi Co Ltd Method for producing vanadium oxide particles having spherical shapes and nanometer sizes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288538A (en) * 1989-04-07 1991-12-18 Nippon Shokubai Co Ltd Production of inorganic fine particle powder
JP3122688B2 (en) * 1992-04-11 2001-01-09 触媒化成工業株式会社 Inorganic oxide colloid particles
US20040071965A1 (en) * 2000-11-30 2004-04-15 Guoyi Fu Particles with opalescent effect

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169927A (en) * 1983-02-25 1984-09-26 モンテディソン・エッセ・ピ・ア Method and apparatus for manufacturing single dispersive andnon-aggregative spherical metal oxide smaller than one micron in diameter
JPS62278106A (en) * 1986-05-26 1987-12-03 Tama Kagaku Kogyo Kk Hydrolysis of metal alkoxide
JPH0222105A (en) * 1987-10-29 1990-01-25 Fraunhofer Ges Production of monodisperse ceramic powder
JP2002356327A (en) * 2001-03-28 2002-12-13 Samsung Sdi Co Ltd Method for producing vanadium oxide particles having spherical shapes and nanometer sizes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088505A (en) * 2006-10-02 2008-04-17 Toyota Central R&D Labs Inc Insulating film, powder for magnetic core, powder magnetic core and method for forming them or method for producing them
WO2010090274A1 (en) * 2009-02-09 2010-08-12 独立行政法人産業技術総合研究所 Fine particles, process for producing same, and coating material, film and ink each containing the fine particles
JP5598857B2 (en) * 2009-02-09 2014-10-01 独立行政法人産業技術総合研究所 Fine particles, process for producing the same, and paints, films and inks containing such fine particles
JP2017030994A (en) * 2015-07-29 2017-02-09 公立大学法人首都大学東京 Inorganic monodisperse spherical fine particle, electrode for cell, and cell

Also Published As

Publication number Publication date
JPWO2006077890A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
Premaratne et al. Synthesis of nanosilica from paddy husk ash and their surface functionalization
Li et al. Near monodisperse TiO2 nanoparticles and nanorods
Lewis et al. Solution processing of two-dimensional black phosphorus
US9950930B2 (en) Preparation method of graphene
Yang et al. Synthesis and characterization of single-crystalline nanorods of α-MnO2 and γ-MnOOH
US8961919B2 (en) Method of preparing silica aerogel powder
Gupta et al. Synthesis and characterization of various phases of cobalt oxide nanoparticles using inorganic precursor
Zou et al. Selected‐control solvothermal synthesis of nanoscale hollow spheres and single‐crystal tubes of PbTe
RU2552454C2 (en) METHOD FOR SYNTHESIS OF METAL-CARBON NANOCOMPOSITE FeCo/C
Zhang et al. One step synthesis and characterization of CdS nanorod/graphene nanosheet composite
Salman et al. Synthesis and characterization of MgO nanoparticle via microwave and sol-gel methods
Ahmadzadi et al. Structural and X-ray powder diffraction studies of nano-structured lead (II) coordination polymer with η2 Pb⋯ C interactions
Lagashetty et al. Synthesis of MoO 3 and its polyvinyl alcohol nanostructured film
Feng et al. Solvothermal synthesis of ZnO with different morphologies in dimethylacetamide media
JP7078038B2 (en) Fibrous carbon nanostructure dispersion liquid and its manufacturing method, and fibrous carbon nanostructure
CN105452163A (en) Graphene quantum dots, their composites and preparation of the same
WO2006077890A1 (en) Process for producing monodispersed fine spherical metal oxide particles and fine metal oxide particles
Davydova et al. Synthesis and properties of graphite nitrate cointercalation compounds with carboxylic acid esters
Asai et al. Layered perovskite nanosheets bearing fluoroalkoxy groups: Their preparation and application in epoxy-based hybrids
Hosseyni Sadr et al. Sonochemical synthesis of a cobalt (II) coordination polymer nano-structure with azo ligand: a new precursor for preparation pure phase of Co3O4 nanostructure
Zhou et al. A facile method for preparation ZnO with different morphology and their optical property
CN108855217A (en) A kind of preparation method and applications of copper base metal organic backbone nano flake
Chen et al. Tunable synthesis of various hierarchical structures of In (OH) 3 and In2O3 assembled by nanocubes
Ghahfarokhi et al. Inverse precipitation synthesis of ZrO2 nanopowder and in-situ coating on MWCNTs
CN115650232A (en) MXene-Ti with stable environment 3 C 2 T x Preparation method of (1)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006553933

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711925

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711925

Country of ref document: EP