WO2006077665A1 - Projection device, control method for projection device, composite projection system, control program for projection device, and recording medium having projection device control program recorded therein - Google Patents

Projection device, control method for projection device, composite projection system, control program for projection device, and recording medium having projection device control program recorded therein Download PDF

Info

Publication number
WO2006077665A1
WO2006077665A1 PCT/JP2005/011652 JP2005011652W WO2006077665A1 WO 2006077665 A1 WO2006077665 A1 WO 2006077665A1 JP 2005011652 W JP2005011652 W JP 2005011652W WO 2006077665 A1 WO2006077665 A1 WO 2006077665A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
plane
unit
information
projector
Prior art date
Application number
PCT/JP2005/011652
Other languages
French (fr)
Japanese (ja)
Inventor
Ikuhisa Mitsugami
Norimichi Ukita
Masatsugu Kidode
Original Assignee
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation NARA Institute of Science and Technology filed Critical National University Corporation NARA Institute of Science and Technology
Priority to JP2006553816A priority Critical patent/JP4002983B2/en
Publication of WO2006077665A1 publication Critical patent/WO2006077665A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/145Housing details, e.g. position adjustments thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/02Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with scanning movement of lens or cameras

Definitions

  • Projection device projection device control method, composite projection system, projection device control program, and recording medium on which projection device control program is recorded
  • the present invention records a projection device that projects a projection image on a projection surface, the projection direction can be changed, a projection device control method, a composite projection system, a projection device control program, and a projection device control program.
  • the present invention relates to a recorded medium. Background art
  • mixed reality A R: augmented reality, MR: mixed reality
  • text and images can be merged with the real world and the virtual world by adding them to the space area where the user exists, that is, the real environment.
  • the video of the virtual world is displayed on the display screen of the HMD so as to overlap the real environment.
  • the user wearing the HMD can experience an environment in which the virtual world is added to the real environment.
  • Non-Patent Document 1 Small Nagima, Kanbara, Yokoya "Outdoor type annotation display system using augmented reality technology" Journal of the Institute of Image Electronics Engineers of Japan Vol.32 No.6 pp.832-840 Nov.2003.
  • Non-Patent Document 2 M.Maeda, T.Ogawa, T.Machida, K.Kiyokawa ana ri.Takemura, 'Indoor Localization and Navigation using IR Markers for Augmented Reality, Adjunct Proc.
  • Non-Patent Document 3 Hiura, Tojo, Hamada, Moriya, Iguchi, “Construction of a 3D remote pointing interface using a projector”, Image Recognition 'Understanding Symposium (MIRU2002) Proceedings I, pp.29 -38, Jul.2002.
  • Non-Patent Document 4 Mukakawa, Nishiyama, Shakucho, “Realization of a virtual optical environment by projecting optical patterns onto screen objects”, D-II, Vol.J84, ⁇ .7, ⁇ .1448-1455, Jul.2001. reference).
  • a projector installed in a real environment can realize spatial consistency between the real environment and the virtual world if the alignment with the projection area is performed once in advance. There are also advantages.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-204495 (published July 18, 2003); Patent Document 2; Japanese Patent Laid-Open No. 10-200836 (1998) Published on July 31, 2000), Patent Document 3; JP-A-2004-177385 (June 2004) Published on the 24th), Patent Document 4; JP-A-2004-77545 (published on March 11, 2004), Patent Document 5; JP-A-2001-83949 (published on March 30, 2001).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-204495 (published July 18, 2003); Patent Document 2; Japanese Patent Laid-Open No. 10-200836 (1998) Published on July 31, 2000), Patent Document 3; JP-A-2004-177385 (June 2004) Published on the 24th), Patent Document 4; JP-A-2004-77545 (published on March 11, 2004), Patent Document 5; JP-A-2001-83949 (published on March 30, 2001).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-204495 (published July 18, 2003); Patent Document 2; Japanese Patent Lai
  • Patent Document 1 the distance to the screen is measured through the projection optical system.
  • An image projection apparatus that calculates the tilt of the screen and corrects the distortion of the projected image is disclosed.
  • Patent Document 2 an image is projected, and the projected image is captured by an imaging optical system. Then, an image projection apparatus is disclosed that compares the captured image (distorted image) with the original image to calculate the distortion amount and corrects the original image according to the calculated distortion amount. .
  • the first and second line-type passive distance measuring devices are provided, and the screen is measured by measuring distances to a plurality of positions along the horizontal and vertical directions on the screen.
  • An angle detection device for measuring the tilt angle of the above is disclosed. This angle detection device can accurately measure the inclination angle of the screen plane with respect to the plane in front of the projector in the horizontal plane and in the vertical plane. For this reason, distortion of the projected image can be corrected.
  • the projection surface is determined from the displacement angle of the reference position force in the vertical direction or horizontal direction of the video projection mechanism unit, and based on the correction setting value corresponding to the projection surface.
  • a projector in which keystone correction is performed is disclosed.
  • Patent Document 5 discloses the following video projector.
  • the projected video is shot with a camera placed at the viewpoint position. Then, the image data of the projected video is compared with the image data taken by the camera, and the amount of distortion of the projected video is calculated.
  • a video projection device that corrects image data to be projected based on the calculated distortion amount is disclosed.
  • the projection direction of the projector is set by the pan axis 90. Therefore, there is a mechanism for rotating in the horizontal direction and in the vertical direction by the tilt shaft 91 (pan and tilt rotation mechanism).
  • the horizontal direction is a direction parallel to the plane on which the projector is arranged, and the vertical direction is a direction perpendicular to this plane.
  • the projector projection image is information held in the projector, and is information for deciding which video image is arranged at which coordinate position in the projectable region in the input image.
  • the coordinate position is managed by an address corresponding to each pixel value in the input image.
  • Non-Patent Document 5 S. Borkowski, O. Riff, J ⁇ . Crowley, "Projecting Rectified Images in an Augmented Environment", ProCams Workshop. IEEE Computer Society Presess, Oct. 2003.
  • a pan / tilt projector capable of correcting distortion of the shape of a projected image that occurs in response to a change in the attitude of the projector by a pan / tilt rotation mechanism.
  • Non-Patent Document 6 (Nakamura, Hiraike, “Active Projector: Distortion Correction for Images Moving on Convex and Uneven Surfaces”, FIT (Information Science and Technology Forum) 2002 Proceedings, pp.423-424, Sep 2002.) is configured such that the reflected light from the mirror provided in front of the projector rotates 360 degrees, and a wider projection area is realized as in the pan-tilt projector described above. In addition, this projector can control the shape of the image to be projected.
  • the projection center position changes in accordance with the change in the attitude of the projector (change in the projection direction) by the rotation mechanism provided in itself. That is, when it is assumed that the projection light of the projector also emits a single point force, the position of that one point becomes a different position for every change in the attitude of the projector. For this reason, in the above-described conventional technique, it is necessary to obtain a correspondence relationship between the projection plane and the projector projection image in the actual environment for each set attitude position of the projector.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to perform an adjustment operation to be able to draw an image with no positional deviation that causes distortion on the projection plane.
  • the projection apparatus projects a projection unit that irradiates light onto a projection plane and projects an image, and a projection direction that irradiates the projection plane from the projection unit.
  • a drive unit that rotates the projection unit so that the projection center is a light source point of light irradiated by the projection unit, and the projection center and the drive unit
  • the projection unit and the drive unit are arranged so as to coincide with the rotation center that is the center point of the rotational movement of the projection unit.
  • the projection unit and the drive unit are arranged so that the position of the rotation center matches the position of the projection center. That is, the projection unit and the drive unit are arranged so that the center point of the rotational movement of the projection unit when rotated by the drive unit matches the light source point of the light of the projection unit. For this reason, in the projection apparatus according to the present invention, even if the projection direction is changed by the drive unit, the physical arrangement relationship between the projection center position and the projection plane does not change.
  • the positional relationship between the images projected on the projection plane in the projection units having different projection directions is calculated from the rotation angle between the projection direction of one projection unit and the projection direction of the other projection unit. It is out.
  • the plane coordinates for defining the position of the image to be projected on the projection plane can be converted into specific plane coordinates.
  • the projection direction differs depending on a specific plane coordinate, that is, The plane coordinates of all projection parts with different projection postures can be integrated and handled.
  • the projection apparatus irradiates the projection surface with light from the projection unit, and projects the image from the projection unit.
  • a projection unit including a driving unit that rotates the projection unit so as to change a projection direction, and the driving unit sets a rotation central force ⁇ point that is a center point of the rotational movement of the projection unit.
  • Rotation center position information acquisition means for acquiring rotation center position information that is position information of the rotation center when the projection unit is rotated and a light source point of light irradiated by the projection unit is used as a projection center;
  • Projection center position information specifying means for receiving the irradiation light information indicating the locus of the irradiated light and specifying the projection center position information which is the position information of the projection center based on the irradiation light information, and the acquired rotation center Position information and the above identified projection Position based on the location information, as the rotation center and the projection center that Itasu over, characterized in that the projection portion and provided with an adjusting means for adjusting the placement relationship between the driving portion! / Ru.
  • the projection center position specified by the projection center position information specifying means matches the rotation center position received by the rotation center position receiving means. As described above, the positional relationship between the projection unit and the drive unit can be adjusted.
  • the projection center position and the rotation center position can be made to coincide with each other. Therefore, even if the drive unit changes the projection direction with respect to the projection surface, the projection center There is no change in the physical relationship between position and projection plane
  • the positional relationship of the images projected on the projection plane is calculated as the rotational angular force between the projection direction of one projection unit and the projection direction of the other projection unit. can do.
  • each projection unit having a different projection direction that is, a different projection posture is used.
  • the plane coordinates for defining the position of the image to be projected on the projection plane can be converted into specific plane coordinates. Then, the plane coordinates of all the projection units having different projection directions can be handled in an integrated manner by a specific plane coordinate.
  • the control method of the projection apparatus irradiates light onto the projection surface and projects an image, and the projection unit projects the projection surface.
  • a control method for a projection apparatus comprising a drive unit that rotates the projection unit so as to change the projection direction to be irradiated, the rotation center being a center point of the rotational movement of the projection unit by the drive unit.
  • the projection unit is rotated such that the projection center is one point, and when the light source point of the light irradiated by the projection unit is used as the projection center, the rotation center position information that is the position information of the rotation center is obtained;
  • Receiving irradiation light information indicating a trajectory of the irradiated light, identifying projection center position information that is position information of the projection center based on the irradiation light information; the acquired rotation center position information; and
  • the specified projection center position information and -Out group Dzu so that Itasu rotation center and is over the center of projection, characterized
  • the rotation center position information acquired by the step of acquiring rotation center position information and the projection center position specified by the step of specifying projection center position information Based on the information, the arrangement relationship between the projection unit and the drive unit can be adjusted by the step of adjusting the arrangement relationship between the projection unit and the drive unit so that the projection center matches the rotation center.
  • the projection center position and the rotation center position can be made to coincide with each other, so that the projection unit force and the projection direction with respect to the projection plane are changed by the drive unit.
  • the physical arrangement relationship between the projection center position and the projection plane does not change.
  • the positional relationship between the images projected on the projection plane is calculated as the rotational angular force between the projection direction of one projection unit and the projection direction of the other projection unit. can do.
  • plane coordinates for defining the position of the image to be projected on the projection plane are specified. Can be converted to planar coordinates. Then, the plane coordinates of all the projection units having different projection directions can be handled in an integrated manner by a specific plane coordinate.
  • the projection apparatus and the control method for the projection apparatus according to the present invention can handle each of the plane coordinate points in the postures of all the projection units in an integrated manner by a specific plane. For this reason, there is an effect that it is possible to facilitate the adjustment work performed in order to be able to draw an image having no positional deviation with distortion in the projection area.
  • a complex projection system according to the present invention is characterized in that a plurality of the above-described projection devices are provided in order to solve the above-described problems.
  • the projection device described above is configured such that the projection center and the rotation center coincide. For this reason, it is possible to adjust the projection in various projection unit postures by a common coordinate system called a tangent plane. Therefore, it is possible to quickly perform projection adjustment in different postures of the projection units.
  • FIG. 1, showing an embodiment of the present invention is a diagram showing a schematic configuration of a pan / tilt projector apparatus.
  • FIG. 2 showing an embodiment of the present invention, is a diagram showing an outline of a rotation mechanism for rotating a projector, realized by a drive device for a pan / tilt projector apparatus.
  • FIG. 3 showing an embodiment of the present invention, is a diagram showing a geometric model of a projector provided in a pan / tilt projector apparatus.
  • FIG. 4 shows an embodiment of the present invention for changing the position of the projector. It is a figure which shows the direction made to slide in order.
  • FIG. 5 (a) is a perspective view showing the trajectory of the light region irradiated from the projector in the horizontal direction.
  • FIG. 5B is a diagram showing the trace of the light region irradiated with the projector force in the vertical direction.
  • FIG. 6 is a diagram showing a precise alignment method between the projection center and the rotation center according to the present embodiment.
  • FIG. 7, showing an embodiment of the present invention, is a flowchart showing a calibration process.
  • FIG. 8 showing an embodiment of the present invention, is a flow chart showing an internal calibration process.
  • FIG. 9 is a diagram showing a relationship between the image plane and the real environment projection plane in the initial posture of the projector according to the present embodiment.
  • FIG. 10 is a diagram showing a relationship between a tangent plane and a real environment projection plane according to a change in the attitude of the projector according to the embodiment.
  • FIG. 12 is a diagram showing the relationship between the tangent plane and the actual environment projection plane and the relationship between the tangent plane and the image plane in a specific posture of the projector according to the present embodiment.
  • FIG. 13 A diagram showing an embodiment of the present invention and showing a plurality of real-environment projection planes.
  • FIG. 14, showing an embodiment of the present invention, is a flowchart showing a processing flow of external calibration.
  • FIG. 15 is a perspective view for explaining processing of external calibration according to the present embodiment, wherein FIG. (A), (b), and (c) are projection planes arranged at different positions, respectively. It is a figure explaining the state which acquires the coordinate position of four corners.
  • FIG. 16, showing an embodiment of the present invention is a block diagram showing a schematic configuration of a pan / tilt projector apparatus.
  • FIG. 17 illustrates an embodiment of the present invention, and is a block diagram illustrating a schematic configuration of a pan / tilt projector apparatus related to alignment performed between a projector and a driving device such that a projection center and a rotation center coincide with each other FIG.
  • FIG. 18, showing an embodiment of the present invention is a block diagram showing a schematic configuration of a punch projector apparatus related to internal calibration.
  • FIG. 19, showing an embodiment of the present invention is a block diagram showing a schematic configuration of a punch projector device related to external calibration.
  • FIG. 20, showing an embodiment of the present invention is a diagram showing an example of a compound projection system.
  • FIG. 21, showing an embodiment of the present invention is a diagram showing an example of an arrangement of a plurality of real environment projection planes.
  • FIG. 22, showing an embodiment of the present invention is a diagram showing an example of a relationship between coordinates on each real environment projection plane and coordinates on a tangent plane corresponding to the coordinates.
  • FIG. 23 shows an embodiment of the present invention, and is a diagram showing an example when the real environment projection plane to be connected is developed on one plane.
  • FIG. 24 shows an embodiment of the present invention, in which conversion parameters obtained for a combination of concatenated real environment projection planes, an identifier (ID) for specifying a concatenation position of real environment projection planes, and It is an example of the list
  • ID an identifier
  • FIG. 25 is a flowchart showing projection processing onto a plurality of real-environment projection planes by the pan / tilt projector apparatus according to the present embodiment.
  • FIG. 26 shows an embodiment of the present invention and is a diagram showing a correspondence relationship between a graphic shape on a main plane and a graphic shape on a tangent plane.
  • FIG. 27 illustrates an embodiment of the present invention and is a diagram illustrating a correspondence relationship between a graphic shape on a connection plane and a graphic shape on a tangent plane.
  • the pan / tilt projector apparatus (projection apparatus) 1 is for projecting an image on a desired real environment projection plane R. As shown in FIG. With the rotation mechanism on the axis 90 and the tilt axis 91, the projection direction of the projector (projection unit) 2 can be moved in the horizontal and vertical directions.
  • the rotation function is added to the projector 2, the area that can be projected by the projector 2 can be enlarged.
  • This rotation function can be realized by a drive device (drive unit) 3 described later.
  • a model obtained by modeling the projector 2 according to the present embodiment is a geometric model shown in FIG.
  • the projector 2 has a projection center F. That is, the projection center F is a point when it is assumed that the projection light from the projector 2 is generated by a single point force.
  • a projector image plane P for drawing an input image to the projector can exist on the projection center F force projection direction J side. Then, the projection light from the projection center F passes through the projector image plane P and is projected onto the projection area in the real environment.
  • the projector image plane P corresponds to the image plane in the pinhole camera model, and is hereinafter referred to as an image plane P.
  • the center point on the image plane P is called the image center E.
  • the image plane P is the image coordinates with the image center E as the origin and the horizontal and vertical directions of the image as the X axis and Y axis, respectively.
  • a system can be defined.
  • the image resolution is, for example, XGA (Extended Graphics Array)
  • the above-mentioned image center E is a point of 1024Z2 pixels on the right and 768Z2 pixels on the lower side from the upper left corner.
  • the term “image center” used in the present embodiment is different from the image center defined as the foot of the perpendicular line drawn to the projection center F force image plane P in the pinhole camera model.
  • the distance between the projection center F and the image plane P is defined as a focal length L
  • a straight line passing through the projection center F and perpendicular to the image plane P is defined as a vertical axis K.
  • the direction from the projection center F through the image center E to the center point of the projection image in the projection area S (image center direction) and the vertical axis K are greatly different.
  • the projector 2 is designed so that the direction of the light radiated to the projection area S is slightly higher than the height at which the projector 2 is installed. Power is also.
  • a plane in the actual environment on which the projector force is also projected is referred to as an actual environment projection plane R.
  • the pan / tilt project apparatus includes a projector 2, a driving device 3, a projector control unit 4, an input device (a trajectory acquisition unit, a projection position information acquisition unit, an adjustment unit, a fine adjustment unit) 6, a camera (Trajectory acquisition unit, projection position information acquisition unit) 5 and information storage unit (storage device) 7 are provided.
  • the projector 2 is for projecting a desired image onto the real environment projection plane R.
  • the projector 2 projects an image based on the input image data onto the real environment projection plane R in response to an instruction from the projector control unit 4. Further, the projector 2 is arranged on the driving device 3 so that the projection direction J can be changed by the movement of the driving device 3.
  • the drive device 3 moves the projector 2 so as to move in the projection direction J force horizontal direction and vertical direction of the light irradiated by the projector 2.
  • the driving device 3 moves the projection direction J of the projector 2 in response to an instruction from the projector control unit 4.
  • the driving device 3 also includes means for adjusting the positional relationship between the driving device 3 itself and the projector 2. That is, as shown in FIG. 4, the driving device 3 can change the arrangement position of the projector 2 by sliding the projector 2 on the own device in the three axis directions a, 13, and ⁇ . ing. Then, the driving device 3 changes the arrangement position of the projector 2 in accordance with an instruction from the projector control unit 4.
  • the input device 6 is for inputting information indicating an initial position of a projection center F, which will be described later, to the projector control unit 4, and can be realized by, for example, a keyboard, a mouse, a numeric keypad, and the like.
  • the camera 5 records a state of an image projected on the projection area S, and the recorded information is input to the projector control unit 4.
  • the information storage unit 7 is a readable / writable storage medium, and can be realized by, for example, a hard disk or a flash EEPROM.
  • the information storage unit 7 includes a projection center deviation amount table 72, rotation center coordinate information 73, internal adjustment information 71, and external adjustment information 74.
  • the projection center deviation table 72 is a table generated in a projection center fixing method to be described later, and the projection center F position and the rotation center G position are more precise so that the projection center F position and the rotation center G position coincide with each other accurately. This information is used when positioning with the driving device 3.
  • This projection center deviation amount table 72 passes through a fixed point between the projector 2 and the actual environment projection plane R according to the position coordinates of the projector 2 and the attitudes of different types of projectors 2 for each position of the projector 2. Information indicating the locus of the projection point of the light to be recorded is recorded.
  • the rotation center coordinate information 73 is information indicating the center position of the rotational movement of the projector 2 to which the projection direction J is moved by the drive device 3. This information is obtained in advance at the design stage of the drive device 3 and is stored in the information storage unit 7 as rotation center position coordinate information.
  • the internal adjustment information 71 is information stored at the time of internal calibration to be described later. Specifically, the internal adjustment information 71 corresponds to the direction vector of the image center E with the projection center F as the origin, and the four corners of the projection region S. Information on the coordinates on the tangent coordinate Q, the relationship between the tangent plane Q and the actual environment projection plane R Is memorized. The tangent plane Q will be described later.
  • the external adjustment information 74 is information stored at the time of external calibration, which will be described later. Specifically, the positional information (X, y) on each real environment projection plane R and the tangent plane Q This is the transformation matrix H that shows the relationship with the position information. This external adjustment information 74 is the second
  • the projector control unit 4 performs various controls of the projector 2 and the drive device 3. For convenience of explanation, the projector control unit 4 aligns the units included in the projector control unit 4 with the projector 2 and the drive device 3. A description will be given separately for a process for matching the projection center F, which will be described later, and an internal calibration and external calibration, which will be described later.
  • Non-Patent Document 7 (Wada, Ukita, Matsuyama, “Fixed-viewpoint pan / tilt / zoom camera and its application”, IEICE Transactions, Vol.J8 1-DII, No.6, pp.1182-1193, 1998. ) Discloses a configuration of a camera having a pan / tilt rotation mechanism.
  • the position of the projection center F of the projector 2 can be made unchanged even when the attitude of the projector 2 is changed.
  • changing the attitude of the projector 2 means that the projector 2 is moved by the pan / tilt rotation mechanism so that the projection direction J of the projector 2 changes.
  • the projection center F position of the projector 2 does not change in accordance with the posture change. For this reason, for example, an arbitrary point on the image plane P and an arbitrary point on the image plane P in the projector 2 in two different postures
  • the calibration will be described later, in the pan / tilt projector device 1 according to the present embodiment, the calibration can be divided into two stages of internal calibration and external calibration. Further, the specific plane described above is referred to as a tangent plane Q in this specification.
  • the tangent plane Q is defined as follows in the pan / tilt projector device 1 according to the present embodiment. That is, this tangent plane Q is a plane parallel to a plane defined by the pan axis 90 and the tilt axis 91 in the initial posture of the projector 2, and is disposed between the projection center F and the real environment projection plane R. And a virtual plane whose distance from the projection center F (ie, the rotation center G) is 1.
  • a pan / tilt projector is realized by combining, for example, a commercially available projector and a pan / tilt head that allows the projector to be rotated 360 degrees
  • the projection center F and the rotation center G are matched. It is preferable to provide a configuration and method that can adjust the positional relationship between the projector and the pan head (drive device 3).
  • FIG. 1 In the pan / tilt projector device 1 according to the present embodiment, in order to make it possible to adjust the positional relationship between the projector 2 and the driving device 3 so that the projection center F and the rotation center G coincide with each other, FIG. Each part shown is provided.
  • the projector control unit 4 includes a position adjustment unit (adjustment unit) 41 and a fine adjustment unit (fine adjustment). Means) 42, posture adjustment unit 43, rotation center position reception unit (rotation center position information acquisition unit) 44, projection center position identification unit (projection center position information identification unit) 45, and adjustment position calculation unit (position adjustment calculation unit) It has 46.
  • the information storage unit 7 stores a projection center deviation amount table 72 and rotation center coordinate information 73.
  • the position adjusting unit 41 instructs the driving device 3 to adjust the positional relationship between the driving device 3 and the projector 2.
  • the position adjustment unit 41 slides and moves the projector 2 to the driving device 3 based on the coordinate information indicating the rotation center G position and the projection center F position received from the rotation center position receiving unit 44 and the projection center position specifying unit 45. Instruct.
  • the rotation center position receiving unit 44 acquires the rotation center coordinate information 73 from the information storage unit 7 in response to an instruction from the position adjustment unit 41.
  • the rotation center position receiving unit 44 transmits the acquired rotation center coordinate information 73 to the position adjustment unit 41.
  • the projection center position specifying unit 45 also calculates the projection center F position for the information force indicating the trajectory of the irradiated light acquired from the camera 5.
  • the projection center F position transmits the calculated projection center F position information to the position adjustment unit 41. Note that the projection center F position calculated and specified by the projection center position specifying unit 45 is defined as the initial position of the projection center F in this specification.
  • fine adjustment unit 42 instructs drive unit 3 to correct the positional relationship between projector 2 and drive unit 3 so that the initial position force of projection center F is also corrected. Is.
  • the adjustment position calculation unit 46 tracks the projection point of the light received from the camera 5 and passing through a fixed point provided between the projector 2 and the real environment projection plane scale and irradiated with a different posture. Is to be received.
  • the adjustment position calculation unit 46 stores information indicating the received light trajectory in the information storage unit 7 as the projection center deviation amount table 72 in association with the position of the projector 2.
  • the adjustment position calculation unit 46 transmits the calculated result to the fine adjustment unit 42.
  • the attitude adjustment unit 43 instructs the drive device 3 to change the projection direction J of the projector 2. For example, when the adjustment position calculation unit 46 acquires a trajectory of a projection point of light irradiated with a different posture that passes through a fixed point provided between the projector 2 and the real environment projection plane scale, In response to an instruction from the adjustment position calculation unit 46, the drive unit 3 is instructed to change the projection direction J of the projector 2.
  • the posture adjustment unit 43 can change the posture in response to an instruction from the input device 6 in internal calibration described later.
  • the projector 2 is driven in the horizontal direction with the projection direction J of the projector 2 by the driving apparatus 3 having a pan / tilt two-axis rotation mechanism (gimbal mechanism) as shown in FIG. It can be moved vertically.
  • the driving apparatus 3 having a pan / tilt two-axis rotation mechanism (gimbal mechanism) as shown in FIG. It can be moved vertically.
  • the rotation range of projector 2 can move from 60 degrees to 60 degrees in the horizontal direction (pan) and from -30 degrees to 30 degrees in the vertical direction (tilt). it can.
  • the rotation range is appropriately set according to the range of the area to be projected by the projector 2 which is not limited to this.
  • the pan represents the right rotation angle as positive, and the tilt represents the downward rotation angle as negative.
  • projector 2 has a mechanism that can slide in the three axial directions of ⁇ , ⁇ , and ⁇ with respect to drive device 3 described above.
  • the drive device 3 is based on the lower end point of the irradiation lens unit 21 included in the projector 2 as a reference from this point to amm in the ⁇ -axis direction, bmm in the ⁇ -axis direction, and cmm in the y-axis direction! It is configured to move. Note that the reference point for this movement is not limited to this, for example, the center of gravity of the housing forming the projector 2 is used as a reference.
  • the “projection center fixing method” in the pan / tilt projector device 1 according to the present embodiment first, an initial position of the projection center F, which is an approximate position of the projection center F, is obtained, and the initial position of the projection center F is obtained. And the rotation center G. Note that the spatial position (three-dimensional coordinate point) of the rotation center G can be obtained in advance from the configuration of the rotation mechanism. In the pan / tilt projector device 1 according to the present embodiment, information on the coordinate point of the rotation center G is stored in advance. Part 7 is recorded.
  • the projector 2 installed on the driving device 3 is moved so that the initial position of the projection center F coincides with the rotation center G, and precise alignment is performed.
  • the pan / tilt projector device 1 is installed so that the projector 2 is parallel to the horizontal plane. Then, as shown in FIG. 5 (a), a plane plate is installed perpendicularly to the horizontal plane in front of the irradiation lens portion 21 of the projector 2. That is, the plane of the flat plate is erected in parallel to the vertical axis K and perpendicular to the horizontal plane.
  • a plane plate is installed in front of the irradiation lens portion 21 of the projector 2 in parallel with the horizontal plane. That is, the plane of the plane plate is installed so as to be parallel to the vertical axis K and parallel to the horizontal plane.
  • the irradiation region and the non-irradiation region in the two directions described above are recorded by the camera 5.
  • This recorded information is transmitted to the projector control device.
  • the projection center position specifying unit 45 receives the recorded information to which the camera 5 force has been transmitted, and receives the initial information. Calculate the 3D coordinates of the position.
  • the projection center position specifying unit 45 is configured to calculate the initial position based on the information recorded by the camera 5. However, the user actually records the irradiation area and the non-irradiation area as described above.
  • the measurement result is input to the projector control unit 4 by operating the input device 6. And the structure which calculates the information of the three-dimensional coordinate of the said initial position based on this input measurement result may be sufficient.
  • the pan / tilt projector device 1 according to the present embodiment may not include the camera 5. In this case, a projection position information acquisition unit is realized by the input device 6.
  • the projection center position specifying unit 45 calculates the initial position information
  • the projection center position specifying unit 45 transmits the calculation result (initial position information) to the position adjusting unit 41.
  • the position adjusting unit 41 When the position adjusting unit 41 receives the initial position information from the projection center position specifying unit 45, the position adjusting unit 41 instructs the rotation center position receiving unit 44 to acquire the rotation center coordinate information 73 from the information storage unit 7. That is, when the rotation center position receiving unit 44 acquires the rotation center coordinate information 73 from the information storage unit 7 in response to an instruction from the projection center position specifying unit 45, the rotation center position information unit 73 transmits the acquired rotation center coordinate information 73 to the drive device 3. To do.
  • the position adjustment unit 41 receives the initial position information from the projection center position specifying unit 45, and receives the rotation center coordinate information 73 from the rotation center position receiving unit 44. Based on these pieces of information, the position of the projector 2 is instructed to the driving device 3.
  • the driving device 3 slides and moves the projector 2 to each of the ⁇ axis, the j8 axis, and the ⁇ axis in response to an instruction from the position adjustment unit 41.
  • the initial position of the projection center F obtained above includes an error. Therefore, we will perform precise positioning to correct this error. In the following, a method for precise alignment between the projection center F and the rotation center G will be described.
  • a partition is installed in front of the projection direction J of the projector 2 and between the actual environment projection plane R and the projector 2.
  • This partition is composed of a rectangular flat plate.
  • the screen is set so that the plane of the screen is perpendicular to the projection direction J of the projector 2.
  • This partition has a hole in one place, and only the light that has passed through this hole reaches the actual environment projection plane R.
  • the projected light is monochromatic on the entire surface.
  • a camera 5 is installed on the real environment projection plane R side, so that light projected on the real environment projection plane R can be observed.
  • the projection direction J of the projector 2 is moved in the horizontal direction or the vertical direction by an angle within a predetermined range, and the posture of the projector 2 is changed.
  • the projector 2 and the driving device 3 are aligned so that the coordinates of the initial value calculated above coincide with the coordinates of the rotation center G. From this state, the projector 2 is slid slightly in the three directions of the 13 and ⁇ axes on the driving device 3 and moved, and the attitude of the projector 2 is changed for each moved position. Then, the force lens 5 captures a trajectory of the projection point on the real environment projection plane R, and measures the trajectory from the photographing result. In this way, the positions (coordinate points) in the ⁇ , ⁇ ⁇ ⁇ 3 axes that minimize this trajectory region (that is, eventually become one point state on the real environment projection plane R) Explore.
  • the projection direction J of the projector 2 is moved in the horizontal direction or the vertical direction by an angle within a predetermined range. That is, the user operates the input device 6 in a state where the initial position is coincident with the rotation center G position, and instructs the posture adjustment unit 43 to change the projection direction J of the projector 2. In response to this instruction, the attitude adjustment unit 43 instructs the projector 2 to change the projection direction J. Then, the irradiation light power from the projector 2 whose posture has been changed in this way is recorded by the camera 5 to record the locus of the projection point on the real environment projection plane R formed by passing through the hole in the partition. Input to the control unit.
  • the adjustment position calculation unit 46 calculates the coordinate information force of the input projection point trajectory, and records the area of the region formed by the projection point trajectory in the information storage unit 7.
  • the adjustment position calculation unit 46 records the area of the region formed by the locus of the projection point together with information indicating the coordinates of the current projection center position (initial position).
  • the projector 2 is moved along the ⁇ , ⁇ , and ⁇ axes to slightly move the projection center F position.
  • the user operates the input device 6 to transmit information about the position to move the projection center F to the position adjustment unit 41.
  • the position adjustment unit 41 instructs the driving device 3 to slightly change the position of the projection center F. Further, the position adjustment unit 41 notifies the adjustment position calculation unit 46 of information on the changed position of the projection center F.
  • the posture adjustment unit 43 changes the posture to the projector 2 in response to an instruction from the user via the input device 6.
  • the camera 5 records the area of the area formed by the recorded projection points in accordance with the positional relationship between the projector 2 and the driving device 3 and transmits it to the adjustment position calculation unit 46.
  • This operation is performed for a plurality of ⁇ and ⁇ ⁇ ⁇ coordinate positions, and the projection center F position and the area of the area formed by the locus of the projection point are recorded in the information storage unit 7 in association with each position. To do.
  • the adjustment position calculation unit 46 is based on the projection center deviation amount table 72 indicating the correspondence between the positions of the plurality of projection centers F recorded in the information storage unit 7 and the area of the locus region. The coordinate information on the ⁇ ⁇ ⁇ axis where the region is the smallest is calculated. Then, the adjustment position calculation unit 46 transmits the calculated coordinate information to the fine adjustment unit 42.
  • the fine adjustment unit 42 transmits the received coordinate information to the driving device 3 and instructs the projector 2 to be arranged at the calculated coordinate position.
  • the driving device 3 slides the projector 2 in the a ;, ⁇ , and ⁇ axis directions and moves.
  • the positional relationship between the projector 2 and the driving device 3 can be adjusted so that the projection center F and the rotation center G coincide with each other. it can.
  • the adjustment position calculation unit 46 is configured to calculate coordinate information that minimizes the trajectory region based on information recorded by the camera 5, but may be configured as follows. .
  • the user actually measures the locus of the projection point on the actual environment projection plane R formed by passing through the partition hole. Then, the measurement result is input to the projector control unit 4 by operating the input device 6. And the structure which calculates the coordinate information from which the said locus
  • the pan / tilt projector apparatus 1 may not include the camera 5. In this case, the input device 6 implements a trajectory acquisition unit.
  • the projection plane In addition to the coordinate values expressed in the coordinate system (the coordinates of the real environment projection plane R), the attitude of the projector 2 and the information of the input image to be projected (the coordinate values of the projector projection image, that is, the pixel address in the input image) It is necessary to obtain the correspondence with the information shown.
  • the coordinate values expressed on the real environment projection plane scale are the coordinates (x, y; Param. 1) on the real environment projection plane R, and the projector Let the coordinate value of the projected image be the coordinates (X, Y; Param. 2) on the image plane P.
  • the attitude of the projector 2 is indicated by ( ⁇ , ⁇ ; Param. 3) as the pan angle and tilt angle that define the projection direction J of the projector 2, respectively.
  • the above-described operation for obtaining the relationship between Param. L to Param. 3 is referred to as calibration, and in particular, this calibration is referred to as internal calibration. It is set to be performed in two stages of external calibration.
  • step S 11 after matching the projection center F with the rotation center G (step S 11, hereinafter referred to as S 11), internal calibration (S 12) and external calibration are performed. I started playing Rebirth (S13)!
  • the internal calibration (S12) is to obtain parameters unique to the projector 2 that do not depend on the installation environment of the pan / tilt projector apparatus 1.
  • the parameters unique to the projector 2 are values such as the focal length L, the direction (tilt) of the projection light with respect to the vertical axis K, and the size of the image plane P defined in the projector geometric model.
  • the pixel address of the input image that is, the coordinates of the input image on the image plane P and the coordinates on the real environment projection plane R are calculated.
  • the relationship between the orientation of the projector 2 and the actual environment projection plane R is obtained. From these relationships, a transformation matrix between coordinates on the tangent plane Q and coordinates on the real environment projection plane R, which will be described later, a direction vector from the projection center F to the projection plane, and a direction vector from the image center E to the projection plane, and Find the direction vector of the projection center F point force at the four corners that define the range of image plane P.
  • This internal calibration needs to be performed only once for one projector 2 with respect to a predetermined real environment projection plane R.
  • the external calibration (S13) is to obtain a parameter for specifying the position or orientation of the projector 2 in the actual environment.
  • This external calibration is an operation that needs to be performed depending on the location where the projector 2 is installed. For this reason, it is preferable that external calibration, which is expected to be performed multiple times for one projector 2, can be performed as easily as possible.
  • the projector control unit 4 includes a generated image data receiving unit (image data receiving unit) 52, an image data correcting unit 53, an adjustment information acquiring unit (adjustment information acquiring unit). ) 54, a first relationship calculation unit (first relationship calculation unit) 55, and a second relationship calculation unit (second relationship calculation unit) 56.
  • the generated image data reception unit 52 instructs the projector 2 to project an image based on the image data received from the input device 6 or the image data correction unit 53.
  • the image data correction unit 53 refers to the internal adjustment information 71 based on the position information (coordinates) on the actual environment projection plane R input from the camera 5 or the input device 6, and causes the projector 2 to process the image data. A projection adjustment value is calculated. The image data correcting unit 53 transmits the calculated projection adjustment value of the image data to the generated image data receiving unit 52.
  • the image data correction unit 53 acquires position information of four or more points of the received projection area, and points on the image plane in the image data of the image to be projected corresponding to the position information. Then, the projection direction of the projector is calculated. Then, this calculated result is input to the generated image data receiving unit 52 and the posture adjusting unit 43.
  • the adjustment information acquisition unit 54 uses the direction vector of the image center E with the projection center F as the origin as internal adjustment information 71. Then, the coordinates on the tangent coordinate Q corresponding to the four corners of the projection area S and the information indicating the relationship between the tangent plane Q and the actual environment projection plane R are acquired. Then, the adjustment information acquisition unit 54 stores the acquired information in the information storage unit.
  • the first relation calculation unit 55 is based on the coordinates (X, Y) on the planar image P and the coordinates (X, y) on the real environment projection plane R of the plurality of projected point groups.
  • the transformation matrix H that enables transformation of these coordinates is calculated.
  • the first relationship calculating unit 55 calculates the conversion matrix H
  • the information is transmitted to the adjustment information acquisition unit 54.
  • the second relationship calculation unit 56 rotates the projection angle J in the predetermined direction (the post-position change profile). Information indicating the posture of the projector) and the predetermined direction (image center direction) after this posture change
  • the second relationship calculation unit 56 transmits the calculated result to the adjustment information acquisition unit 54.
  • the projector 2 is arranged so that it can project toward the real environment projection plane R (S21).
  • the relationship between Param. 1 and Param. 2 is obtained (S22).
  • the predetermined posture is a posture in which the vertical axis K directed from the projector 2 to the real environment projection plane R is perpendicular to the pan axis 90 and the tilt axis 90, respectively.
  • Non-Patent Document 9 R. Hartley and A. Zisserman, Multiple iew ueometry in computer Vision, and hapter.12, AM BRIDGE UNIVERSITY PRESS, 2000.
  • Non-Patent Document 10 R. Sukthankar, T. -J.Cham, G. Sukthankar, Dynamic Shadow Elimination for Multi-Projector Displays, Proceedings of Computer Vision and Pattern Recognition (CVPR '01) , Vol.2, pp.151-157, 2001.).
  • H is a 3 ⁇ 3 matrix called a homography matrix
  • the generated image data receiving unit 52 displays a suitable number of point groups of four or more points on the image plane P in a grid pattern. To be used as test image data.
  • the generated image data receiving unit 52 instructs the projector 2 to project an image based on the test image data.
  • the projector 2 projects these point groups onto the real environment projection plane R.
  • the relationship calculation unit 55 is notified.
  • the positions of these point groups on the real environment projection plane R are photographed by the camera 5, and the photographed results are input to the projector control unit 4.
  • the first relationship calculation unit 55 calculates the coordinates of these point groups on the actual environment projection plane R based on the photographed results.
  • the image taken by the camera 5 is, for example, Tsai's camera calibration, Non-Patent Document 8; RYTsai, A efficient and accurate camera calibration technique f or 3D machine vision ", CVPR, pp. 364-374, 1986.)
  • the camera is corrected by a lens distortion correction method, etc.
  • the above camera has a reference point whose coordinates on the actual environment projection plane R are known, and the above point.
  • the first relationship calculation unit 55 calculates the coordinates of the point group on the actual environment projection plane R from the positional relationship between the reference point and the point group. To do.
  • the first relationship calculation unit 55 calculates the coordinates of the point cloud on the actual environment projection plane R, the coordinates (X, Y) of each point cloud on the image plane P are calculated. And the coordinates (X, y) of each point cloud on the real environment projection plane R corresponding to this point cloud. Then, the first relationship calculation unit 55 can obtain the value of H in the above formula (1) from the acquired value.
  • the first relationship calculating unit 55 can obtain the relationship between,), and (i), that is, the relationship between Param. 1 and Param. 2, using Equation (1). [0152] Subsequently, the relationship between Param. 1 and Param. 3 in Param. L to Param. 3 is obtained (S23).
  • a tangent plane Q is provided as a virtual plane as shown in FIG.
  • the tangent plane Q is a plane parallel to a plane determined by the pan axis 90 and the tilt axis 91 in the initial projector posture.
  • the tangent plane Q is a virtual plane that is arranged between the projection center F and the real environment projection plane R and has a distance of 1 from the projection center F (that is, the rotation center G). .
  • the pan / tilt rotation mechanism included in the pan / tilt projector apparatus 1 is a gimbal mechanism in which the pan axis 90 and the tilt axis 91 intersect at right angles as described above. Then, the position of the pan axis 90 does not change with respect to the change in the attitude of the projector 2 with respect to the vertical direction, and the tilt axis 91 moves according to the change in attitude. However, as described above, the tangent plane Q is parallel to the plane defined by the pan axis 90 and the tilt axis 91. For this reason, the positional relationship between the tangent plane Q and the projection center F does not change when the orientation of the projector 2 in the horizontal direction is changed.
  • the value of Param. 2 is fixed and calculated. That is, the coordinates (X, Y) on the image plane P are determined as one fixed point, and the point is projected and observed on the projection plane with the postures of a plurality of types of projectors 2.
  • the image center E is set as the fixed point, but the fixed point is not limited thereto, and is a point on the image plane P, and is vertical. Any point that can obtain the angle from the axis K is acceptable.
  • the projection center F force in the initial posture of the projector 2 is also a three-dimensional direction vector to the image center E. , (Tan, tan, 1). This 3D
  • the projection center F is the origin.
  • this initial posture force also sets the projection direction J of the projector 2 to ⁇ degrees in the horizontal direction (pan),
  • the direction vector ( ⁇ , ⁇ ′, w ′) after moving the force by Q degrees in the vertical direction (tilt) can be expressed by the following equation (2).
  • the non-point is facing right
  • the rotation angle is positive
  • the tilt is positive with the downward rotation angle c
  • the matrix notation Rot represents a rotation matrix that rotates around the a axis. Therefore, in Equation (2) above, Rot represents the rotation matrix rotated 0 degrees around the X axis in the real environment space, and Rot represents the rotation matrix rotated 0 degrees around the y axis in the real environment space. To express.
  • the z-axis is an axis parallel to the vertical axis K in the initial posture of the projector 2, and the X-axis is parallel to the horizontal plane on which the projector 2 is installed and perpendicular to the z-axis. It is an intersecting axis.
  • the y axis is an axis perpendicular to the horizontal plane and perpendicular to the z axis.
  • Equation (3) when the three-dimensional direction vector (, v ', from the projection center F of the projector 2 to the image center E after the attitude change from the initial attitude is multiplied by a real number so that the ⁇ coordinate is 1, The relationship shown in Equation (3) is established.
  • the above (u, V) is the projection point coordinates on the tangent plane Q of the three-dimensional vector in the image center E direction after the posture change (see FIG. 10).
  • the image center E point on the tangent plane Q when the projection direction J is changed in the horizontal direction and the Z or vertical direction is calculated by the above formula (3). Therefore, in the present embodiment, the real number multiple relationship of the vectors in ( ⁇ , ⁇ ′, and (u, v, 1) described above is assumed to be the same value. , Can be expressed as Equation (3).
  • attitude of the projector 2 is changed, and (u, V) is calculated for the attitude positions of four or more projectors 2, and (x, y) corresponding to the calculated (u, V) respectively.
  • H can be determined by measuring each position coordinate.
  • Equation (4) The relationship with the coordinates (x, y) on the real environment projection plane R can be expressed as H as shown in Equation (4).
  • this H is the position of the position of four or more projectors 2 as described above.
  • (u, V) can be calculated, and the position coordinates (x, y) corresponding to the calculated (u, V) can be obtained by measuring each.
  • the projector control unit 4 is instructed to project an image that becomes the image center E from the input device 6.
  • the generated image data receiving unit 52 receives an instruction from the input device 6, and instructs the projector 2 to draw a point at coordinates on the image plane P that coincides with the projection center F position. To do.
  • the projector 2 projects a point that coincides with the image center E in the initial posture onto the projection region S.
  • the posture adjustment unit 4 is changed by the user from the input device 6 to the predetermined posture of the projector 2. Instructions are entered in 3.
  • the posture adjustment unit 43 instructs the drive device 3 to change to the predetermined posture of the projector 2.
  • the driving device 3 moves the projection direction J of the projector 2 by ⁇ degrees in the initial posture force in the horizontal direction (pan) and further by one ⁇ degree in the vertical direction (tilt).
  • the second relationship calculation unit 56 calculates the coordinate position on the tangent plane Q along the image center E after the posture change. That is, the above formula (
  • the camera 5 captures the projection point (x, y) on the actual environment projection plane R, and the captured result is input to the second relationship calculation unit 56.
  • This second relationship calculator 5
  • the projector 2 is changed to another posture, and the projection point (u, V) of the image center E on the tangent plane Q and the projection point (x , Y) is calculated for four or more posture changes in the same way.
  • the second relationship calculation unit 56 records the calculated result in the information storage unit 7 for each posture position of the projector 2. Then, H is calculated from projection points (X, y) and (u, V) corresponding to four or more posture positions recorded in the information storage unit 7.
  • the pan / tilt projector device 1 can obtain the relationship between Param. 1 and Param.
  • QR Indicates the inverse matrix.
  • the coordinate (X, Y) on the image plane P in the initial posture can be converted into the coordinate (u V) on the tangent plane Q by the above equation (5).
  • the coordinates (X, Y) (1 1,...) Of the four corners formed on the image plane P are added to the coordinates (XY) on the image plane P in this initial posture.
  • ( ⁇ 1024/2 , ⁇ 768/2 ) is substituted as coordinates (X, Y) to obtain the corresponding (u (init ), ⁇ ( ⁇ )
  • These direction vectors can all be expressed as coordinates (u, V) on the tangent plane by normalizing the values in the z-axis direction.
  • the pan / tilt projector apparatus 1 has the direction vector (tan
  • the adjustment information acquisition unit 54 performs the direction vector (tan, tan
  • step S12 The above is the internal calibration method of step S12 shown in FIG.
  • the pan / tilt projector device 1 can draw a moving object that needs to draw an image while continuously changing the projection direction J of the projector 2.
  • the attitude of the projector 2 is determined.
  • the orientation control policy of the projector 2 can be appropriately determined according to the application for drawing the rectangular image. In the present embodiment, control is performed so that the image center E direction is aligned with the center of gravity of the rectangular image to be drawn as the attitude control policy.
  • centroid (x, y) of the four end points (X, y; integers from 1 to 4) of the projection area S on the real environment projection plane R is calculated.
  • the image data correction unit 53 inputs the coordinate information of the projection area S on the actual environment projection plane R and the position where the rectangular image is to be drawn. Acquired from the user via the force device 6.
  • the camera 5 is arranged so as to capture the real environment projection plane R, and the image data correction unit 53 determines the projection plane area from the image data of the real environment projection plane R acquired by the camera 5. It may be configured to obtain the coordinates of the four end points.
  • the image data correction unit 53 determines the centroid (X, y ) Is calculated. And image data
  • the correction unit 53 calculates the center of gravity (X, y) on the tangent plane Q by the calculation shown in the following formula (6).
  • the image data correction unit 53 refers to the internal adjustment information 71 and easily determines the direction vector (u (ime) , V (ime ), 1 in the tangent plane Q based on the calculated center of gravity (X, y).
  • the image data correction unit 53 performs control so that the center of gravity and the image center E coincide with each other. And the direction vector of this image center E is (u (ime) , V (ime gg
  • the direction vector of the vertical axis K is as shown in the following formula (7).
  • the equation (7) can be derived based on the same idea as the above equations (2) and (3).
  • the projector 2 is set to the initial attitude force 0 in the pan direction (right direction), and then tilt direction (
  • the direction vector of the vertical axis K when rotated ⁇ upward It can be obtained by calculating the following formula (8). Note that “rightward” means that the projector 2 is directed toward the projection direction J of the projector 2 and is directed rightward in the horizontal direction, and “upwardly” means that in the vertical direction perpendicular to the horizontal direction, This means a direction opposite to the horizontal plane on which the pan / tilt projector device 1 according to the embodiment is installed.
  • the image data correction unit 53 adds (0, 0) to the equation (8).
  • Vi ( img) ) in the above equation (11) is a point obtained by projecting the end points of the four gaps on the image plane P onto the tangent plane Q.
  • a rectangular image is drawn in the above-described rectangular projection region S.
  • the direction vector of the four end points forming the projection region S on the tangent plane Q and the direction vector of the four end points of the rectangular image drawn in the projection region S by the equations (11) and (12) can be obtained. That is, the projection region S shape on the tangent plane Q and the shape outside the projection object can be obtained by the above formulas (11) and (12).
  • (ans) determines the four end points (X (ans) , Y; integers up to i 1 4 ) of the rectangular image to be generated on the image plane.
  • the projector control unit 4 performs the external calibration, as shown in FIG. 19, the external adjustment information acquisition unit (external adjustment information calculation means) 61 and the projection plane information acquisition unit (projection plane). (Information acquisition unit) 62 is provided.
  • the position information (X, and the information indicating the relationship between the position information on the tangent plane Q is calculated.
  • the two-dimensional coordinates of the four corners of the real environment projection plane R are, for example, developed when there are a plurality of surface forces in which the real environment projection plane scale is in different directions as shown in Fig. 13. These are the coordinates corresponding to the vertices of each surface when expressed on common two-dimensional coordinates.
  • the two-dimensional coordinates of the four corners of the real environment projection plane R can be arbitrarily determined on the real environment projection plane R.
  • the real environment projection plane R is rectangular, if the upper side of the real environment projection plane R is the X axis and the left side is the y axis, the coordinates of the four corners forming the real environment projection plane R can be easily obtained. .
  • the external adjustment information acquisition unit 61 stores the calculated information in the information storage unit 7 as the external adjustment information 74.
  • the projection plane information receiving unit 62 has the two-dimensional coordinates of the four corners of the real-environment projection plane R and the projector power for each real-environment projection plane for which image projection is desired. Information indicating the direction to the projection plane R is acquired via the camera 5.
  • the projection plane information receiving unit 62 acquires the information described above in response to an instruction from the input device.
  • This external calibration is realized by acquiring the two-dimensional coordinates at the four corners of the real environment projection plane R on which the image is drawn and information indicating the direction with respect to the real environment projection plane R from the pan / tilt projector device 1 it can.
  • each of the real environment projection planes R ′ is installed !, and the pan / tilt projector apparatus 1 is installed in this direction (S31). Then, the projection plane information receiving unit 62 in the projector control unit 4 acquires projection plane information indicating the size, shape, arrangement relationship and the like of the actual environment projection plane R (S32).
  • This projection plane information can be obtained, for example, by measurement using a design drawing of a space area (such as a room) in which the pan / tilt projector 2 according to the present embodiment is arranged, or a direct measure.
  • the obtained information is input to the projector control unit 4 by the user via the input device 6.
  • the projection plane information receiving unit 62 acquires the directions of the four corners of each real environment projection plane R from the pan / tilt projector apparatus 1 (S33).
  • the direction from the pan / tilt projector device 1 to each real environment projection plane R is acquired by projecting one point by the projector 2 and operating the posture of the projector 2 so that the point faces four corners. be able to.
  • the input device 6 projects an image corresponding to an arbitrary point on the image plane P onto the real environment projection plane R.
  • the attitude adjustment unit 43 instructs the driving device 3 to change the attitude of the projector 2 so that the projection points coincide with the four corners of the real environment projection plane.
  • the instruction to the driving device 3 by the posture adjustment unit 43 is made in accordance with an instruction from the user via the input device 6.
  • the acquired direction is specifically information on the pan angle and tilt angle indicating the attitude of the projector 2, and how much the projection direction J of the projector 2 is in the horizontal and vertical directions from the initial attitude. It is shown whether or not is moved.
  • the external adjustment information acquisition unit 61 uses each real-environment projection plane Ri (in this example, i Is a transformation matrix H (second transformation information) for (an integer from 1 to 3) (S34).
  • pan-tilt projector device 1 in pan-tilt projector device 1 according to the present embodiment, external calibration is performed by calculating respective transformation matrices H for a plurality of real-environment projection planes R.
  • the external adjustment unit information acquisition unit 61 converts the calculated transformation matrix H into each real
  • Each environment projection plane R is stored as external adjustment information 74 in the information storage unit 7.
  • image transformation is performed using the transformation matrix H for each real environment projection plane R.
  • the data correction unit 53 performs adjustment according to the projection screen R of the real environment to be projected, and transmits the adjusted image data to the generated image data receiving unit 52.
  • the generated image data reception unit 52 transmits the adjusted image data received from the image data correction unit 53 to the projector 2.
  • the generated image data receiving unit 52 instructs the posture adjusting unit 43 to move the projector 2 to a posture corresponding to the actual environment projection plane R.
  • transformation matrix H is the projection plane information and the real environment projection plane as described above.
  • the pan / tilt projector device 1 can easily perform the external calibration on a plurality of real environment projection planes R ′.
  • pan-tilt projector device 1 can perform the external calibration on each real-environment projection plane R, an image of an arbitrary shape is formed at an arbitrary position on the real-environment projection plane R ... You can draw without distortion.
  • the pan / tilt projector device 1 in the pan / tilt projector device 1 according to the present embodiment, information indicating the directions of the four corners of each real environment projection plane R and the two-dimensional of the four corners of the real environment projection plane R are described.
  • the above external calibration can be realized based on the coordinates. [0237] That is, as in the past, measurement of three-dimensional information such as the relative position and orientation of each real environment projection plane R and the projector 2 or the angular relationship between multiple real environment projection planes R is performed. do not need. That is, the conventional measurement of the three-dimensional information is complicated and difficult to improve accuracy, and unlike the pan-tilt projector device 1 according to the present embodiment, these measurements are unnecessary. A big advantage.
  • pan-tilt projector device 1 can handle the real environment projection plane R as a two-dimensional coordinate as described above, for example, two connected real environment projection planes R are displayed. There is a great advantage if it can be performed accurately even in case of straddling drawing.
  • pan-tilt projector apparatus 1 performs drawing on four planes (R to R) including planes connected to each other. In this case, this
  • the projection plane information receiving unit 62 acquires the directions of the four corners with respect to each of the real environment projection planes R to R as the prescribed position direction information. Specifically, this implementation
  • the image center E is the plane R to R.
  • the P t plane information receiving unit 62 receives it. Then, the projection plane information reception unit 62 obtains ( ⁇ 1, ⁇ 2)
  • the value of P t is transmitted to the external adjustment information acquisition unit 61.
  • the external adjustment information acquisition unit 61 converts the received value of ( ⁇ , ⁇ ) into a point (u, v) projected on the tangent plane Q using the above formulas (2) and (4). . And external adjustment information
  • the information acquisition unit 61 associates position information (X, y) on the actual environment projection plane R with position information (u, V) on the tangent plane Q, and registers the plane.
  • the information is stored in the information storage unit 7 as a table.
  • Te position information on one real environment projection plane R n tangent plane belonging to Q (u, V) forms a region located on the tangent plane Q , This area na ⁇ d na ⁇ d
  • I the back projection of each real environment projection plane R onto the tangent plane Q.
  • the boundary line between the tangent planes Q corresponds to the boundary line of the real environment projection plane R.
  • the area corresponding to the real environment projection plane R is referred to as a plane corresponding area with respect to the real environment projection plane R.
  • pan tilt projector The point ( ⁇ , y) on the surface R is the same point in the real environment. Therefore, pan tilt projector
  • Id Id 2a 2a value.
  • (U, V) and (U, V) are also the same value.
  • the external adjustment information acquisition unit 61 searches the plane registration table for the same (u, vM straight combination). External adjustment information acquisition unit 61 As a result of this search, if there are two sets of the same (u, vM straight) between two planes, it is determined that the two planes are linked. Of the two planes determined to be, the other plane connected to one plane is called a connection plane.
  • connection determination matrix connection relation information
  • connection determination matrix In the connection determination matrix shown in the mathematical formula (14), "one" indicates a negative value. The value of the element m of this matrix indicates whether or not the real environment projection plane R and the real environment projection plane R are connected.
  • connection determination matrix numbers are assigned in order of 1, 2, 3, ... as positive values to the two connected planes, and these values are the same as the real environment projection plane R to be connected. It is also used as an identifier (ID) for identifying the pair with the real environment projection plane R.
  • the external adjustment information acquisition unit 61 calculates the conversion formula between the coordinate systems for each set of the real environment projection planes R to be connected. calculate. More specifically, the external adjustment information acquisition unit 61 calculates a conversion formula between the coordinate systems as follows.
  • a set of connected real environment projection planes R is developed as one two-dimensional plane. Then, on this two-dimensional plane, a relational expression between one coordinate system and the other coordinate system is obtained.
  • the coordinates (X, y) (n; a to d) in 2 are the coordinates (X, y) in the real environment projection plane R.
  • V can be expressed as the following formula (15).
  • the external adjustment information acquisition unit 61 calculates the above equation (16) for all the combinations of the real environment projection planes R connected, and the information storage unit 7 Remember me.
  • the above conversion parameters are specifically the identifier assigned to each connection position, and the combination of the real environment projection plane R at the connection position specified by this identifier. It is memorized as a list in which the calculated conversion parameters are associated! RU
  • the pan / tilt projector apparatus 1 further stores the conversion parameter H, the plane registration table, and the connection determination matrix in addition to the conversion matrix H in the information storage unit 7 as the external adjustment information 74.
  • pan / tilt projector device 1 preparations for executing the projection processing onto the plurality of real environment projection planes R are performed.
  • the image data correction unit 53 receives the current attitude information ( ⁇ , ⁇ ′) of the projector 2 as described above. Then, the image data correcting unit 53, based on the received ( ⁇ ′, ⁇ ′), the image center in the current posture of the projector 2.
  • the figure shape D on the real environment projection plane R is calculated based on the coordinate system of the main plane R at the present time. For this reason, if the main plane R changes during drawing, the figure shape D is calculated based on the coordinate system of the changed main plane R. Another problem is that the orientation of the figure changes according to the difference in the orientation of the coordinate system in these two planes.
  • the pan / tilt projector device 1 in order to prevent such a problem, always records the immediately preceding main plane R.
  • the data correction unit 53 refers to the list shown in FIG. 24, and acquires the conversion parameter relating to the current actual environment projection plane R (S48). Then, the image data correction unit 53 stores and updates the acquired conversion parameter related to the current real environment projection plane R in the information storage unit 7 (S49). When the conversion parameter relating to the current real environment projection plane R is updated as described above, the figure to be drawn is rotated with reference to the updated conversion parameter (S50).
  • the real environment projection plane R (main plane R) for projecting the image center E changes from the main plane R to the main plane R.
  • the main plane R when changing from the main plane R to the main plane R, the main plane R
  • the main plane R that projects the image center E moves from the main plane R to the main plane R, for example.
  • the pan / tilt projector device 1 converts the conversion parameter from the main plane R to the main plane R.
  • the image center E position is obtained. For this reason, the pan / tilt projector device 1 applies the orientation parameter, that is, the rotation component ⁇ among the conversion parameters acquired from the information storage unit 7 to the figure to be drawn. Then, the pan / tilt projector device 1 rotates and draws the figure.
  • the orientation parameter that is, the rotation component ⁇ among the conversion parameters acquired from the information storage unit 7 to the figure to be drawn. Then, the pan / tilt projector device 1 rotates and draws the figure.
  • the external adjustment information acquisition unit 61 uses the equation (12) to calculate the R on the main plane R in the same manner as the process for obtaining the projection area S shape and the projection object on the tangent plane Q on the one real environment projection plane R described above.
  • the figure shape D can be obtained. in this way
  • the external adjustment information acquisition unit 61 draws the partial graphic on R on the main plane (S44).
  • the product area T with R is calculated, and only this T is projected onto the tangent plane Q (S shown in FIG. 26).
  • the image data correction unit 53 performs processing on the connection plane shown in FIG. That is, the image data correction unit 53 searches for the connection plane R connected to the main plane R with reference to the above-described connection determination matrix (S45). As described above, in the pan / tilt projector device 1 according to the present embodiment, an ID for specifying a set of connected real environment projection planes R is assigned in the connection determination matrix.
  • the image data correction unit 53 grasps the connection relationship in the real environment projection plane R based on this ID, and refers to the conversion parameter stored in the information storage unit 7 to change from R to R. Is obtained (S46). Then, the image data correction unit 53 converts the coordinates on the main plane R into the coordinates on each connection plane R using the coordinate conversion formula obtained in this way.
  • the image data correction unit 53 converts the graphic shape D described on the real environment projection plane R; (x m , y m ) to the coordinates D on each connecting plane R; (x c , y c ) can be converted. And the same as the relationship between the figure D and the principal plane R described above for the projection onto the tangent plane Q.
  • the product area T of the coordinates of the graphic shape D and the coordinates of the main plane R is calculated. Then, the calculated product area T is projected onto the tangent plane Q (S in FIG. 27) 0
  • the pan / tilt projector device 1 always records the immediately preceding main plane R. For this reason, for example, the main plane R changed during drawing
  • the change in the coordinate system can be reflected in the figure shape.
  • the pan-tilt projector apparatus 1 is as if the paper poster is smooth even when the projector 2 is freely rotated or continuously moved across the plurality of real environment projection planes R. In addition, it is possible to display as if moving along the surface of a plurality of real environment projection planes R.
  • the pan / tilt projector device 1 is configured such that the projection center F and the rotation center G coincide with each other. For this reason, the projection adjustment in various postures of the projectors 2 can be performed by the common coordinate system on the tangent plane Q, so that the projection adjustments in the postures of the respective projectors 2 can be quickly performed.
  • the following advantages can be obtained by installing a plurality of pan / tilt projector apparatuses 1 according to the present embodiment in the same space.
  • an image or the like can be projected by another projector 2 instead.
  • an image or the like can be projected onto a wall or the like of a wider spatial area.
  • a plurality of pan-tilt projector devices 1 can realize different image expression by overlapping different images or colors.
  • the compound projection system 100 is installed in a lecture room, and a large projection region S is formed by a plurality of pan-tilt projector devices 1 during a normal lecture.
  • the projection area S is divided into two according to the contents of the lecture, or can be moved to the wall or ceiling in the lecture room.
  • the pan / tilt projector device 1 is easy to adjust the projection, so that it can be easily installed in an existing lecture room, and the cost of installation is low. This can be reduced compared to the case where the projection is adjusted using the apparatus.
  • a concrete horizontal plane is first created at the place where the building is to be built, and a number of straight lines are drawn on it using black ink threads to draw the positions of the pillars and the shape of the building.
  • Inking black ink threads to draw the positions of the pillars and the shape of the building.
  • pan / tilt projector device 1 even if the projection target is not limited to a plane (real environment projection plane R).
  • the pan / tilt projector device 1 by using the pan / tilt projector device 1 according to the present embodiment, the research result on the existing projector can be easily extended to the projector 2 with the rotation mechanism.
  • the pan / tilt projector device 1 includes a projector 2, a driving device 3, a projector control unit 4, a camera 5, an input device 6, and an information storage unit 7, each separately configured. Forces These devices and members may be configured as a single casing.
  • the driving device 3 that rotates the projector 2 also has a biaxial force of a pan axis (rotating axis) 90 and a tilt axis (rotating axis) 91. It was a rotating mechanism.
  • the rotation mechanism is not limited to this, and even a rotation mechanism that does not have a rotation axis can be used as long as the rotation center exists. In other words, the rotation mechanism may be any mechanism that rotates the projector so that the rotation center becomes one point.
  • the position adjustment unit 41 matches the rotation center G and the projection center F based on the coordinate information of the rotation center G and the projection center F. So that the arrangement of the projector 2 is configured to move.
  • the rotation center G and the projection center F may be manually adjusted by the user while applying a force.
  • the coordinate information of the rotation center G and the projection center F is indicated to the user by output means (not shown) such as a display device or a printing device. Then, based on the indicated information, the user instructs the drive device 3 to move the projector 2 by operating the input device 6.
  • the adjusting means is realized by the input device 6.
  • the projector control unit 4 has a configuration in which the fine adjustment unit 42 finely adjusts the arrangement of the projector 2 based on the result calculated by the adjustment position calculation unit 42.
  • the user may manually adjust based on the result calculated by the adjustment position calculation unit 42.
  • the calculation result of the adjustment position calculation unit 42 is shown to the user by the output means (not shown). Based on the indicated information, the user operates the input device 6 to instruct the drive device 3 to adjust the arrangement of the projector 2. [0307] In the case of such a configuration, adjustment means is realized by the input device 6.
  • the image data correction unit 53 acquires position information of four or more points of the accepted projection area, and the image to be projected corresponding to the position information. The point on the image plane in the image data and the projection direction of the projector were calculated.
  • the projection plane information acquisition unit 62 is configured to acquire the two-dimensional coordinates of the four corners of the real environment projection plane R as the relationship between the projector 2 and each real environment projection plane R. .
  • the number of points to be acquired is not limited to this.
  • each unit and each processing step of the projector control unit 4 included in the pan / tilt projector device 1 of the above-described embodiment is performed by a calculation unit such as a CPU (not shown) such as a ROM (Read Only Memory) or a RAM.
  • a CPU such as a ROM (Read Only Memory) or a RAM.
  • This can be realized by executing a program stored in the storage means and controlling input means such as a keyboard, output means such as a display, or communication means such as an interface circuit.
  • various functions and various processes of the pan / tilt projector device 1 of the present embodiment can be realized by a computer having these means simply by reading the recording medium storing the program and executing the program. Further, by recording the above program on a removable recording medium, it is possible to realize the above various functions and various processes on an arbitrary computer.
  • a memory such as a ROM may be used as a program medium for processing by a microcomputer, and V not shown is an external storage device. It may be a program medium provided with a program reader and readable by inserting a recording medium into the program reader.
  • the recording medium is a recording medium that fluidly carries the program so as to download the program.
  • the download program is stored in the main unit in advance or installed with another recording medium strength.
  • the projection device changes the projection unit that irradiates light onto the projection surface and projects an image, and the projection direction that irradiates the projection surface from the projection unit.
  • a driving unit that rotates the projection unit, wherein when the light source point of the light irradiated by the projection unit is a projection center, the projection center and the projection unit by the drive unit
  • the projection unit and the drive unit are arranged so as to coincide with the center of rotation that is the center point of the rotational motion of the lens.
  • the plane coordinates for defining the position of the image to be projected on the projection plane can be converted into specific plane coordinates. . And it is possible to handle the plane coordinates of all the projection parts with different projection directions, that is, different projection postures, by integrating them with a certain plane coordinate. [0319] As described above, since each of the plane coordinate points in the projection postures of all the projection units can be integrated and handled by a specific plane, the image does not have a positional displacement without distortion with respect to the projection plane. If the adjustment work performed to enable drawing can be facilitated, there is an effect.
  • the projection apparatus projects a projection surface that irradiates light onto the projection surface and projects an image, and a projection direction that irradiates the projection surface from the projection unit.
  • a drive unit that rotates the projection unit so that the rotation center that is the center point of the rotational movement of the projection unit is set to one point by the drive unit.
  • rotation center position information acquisition means for acquiring rotation center position information, which is position information of the rotation center
  • Projection center position information specifying means for receiving irradiation light information indicating a locus of the emitted light and specifying projection center position information which is position information of the projection center based on the irradiation light information, and the rotation center acquired above
  • the position information and the specified projection center position information Hazuki, as the rotation center and the projection center that Itasu over characterized in that the projection portion and and an adjusting means for adjusting the positional relationship between the drive unit! / Ru.
  • the control method of the projection apparatus irradiates the projection surface with light from the projection unit that projects light by projecting light onto the projection surface.
  • a control method of a projection apparatus comprising a drive unit that rotates the projection unit so as to change the projection direction, wherein the drive unit causes a rotation center force ⁇ point that is a center point of the rotational movement of the projection unit.
  • the projection apparatus and the control method for the projection apparatus according to the present invention can handle each of the plane coordinate points in the postures of all the projection units in an integrated manner by a specific plane. wear. For this reason, there is an effect that it is possible to facilitate the adjustment work performed in order to be able to draw an image having no positional deviation with distortion in the projection area.
  • the projection apparatus described above is configured such that the projection center and the rotation center coincide. For this reason, it is possible to adjust the projection in various projection unit postures by a common coordinate system called a tangent plane. Therefore, it is possible to quickly perform projection adjustment in different postures of the projection units. In addition, since it is possible to easily adjust each of the different projection planes, it is possible to easily and quickly make adjustments by appropriately installing multiple units in the three-dimensional space. That is, the composite projection system has the effect of being able to build a system quickly and easily!
  • the projection unit expands the range of the light region at a predetermined angle from the projection center with respect to the projection surface.
  • a trajectory acquisition that obtains trajectory information indicating a trajectory of light emitted between the projection center and the projection plane, and a storage device that stores the rotation center information indicating the position information of the rotation center.
  • the rotation center position information acquisition means acquires rotation center position information from the storage device, and the projection center position information specification means uses the trajectory acquisition section as the irradiation light information. It may be configured to receive information and specify projection center position information based on the trajectory information.
  • the projection position information acquisition unit since the projection position information acquisition unit is provided, the projection position of the light emitted from the projection unit to the projection plane can be confirmed in different projection directions.
  • the position adjusting means since the position adjusting means is provided, the positions of the projection unit and the drive unit can be adjusted so as to converge to the projected point force on the projection plane.
  • the projection apparatus can arrange the projection unit and the drive unit by accurately and precisely matching the projection center and the rotation center.
  • the drive unit includes a plurality of rotation shafts for rotating the projection unit, and the rotation center includes the plurality of rotation axes. It is configured to be the intersection of the rotation axes.
  • the projection apparatus shows an image data receiving unit that receives image data to be projected and a plurality of predetermined positions received by the image data receiving unit in the configuration described above. Based on the image data, the relationship between the position information of the predetermined position in the image data and the projection position information is calculated from the projection position information of the projection point on the projection plane projected by the projection unit set to the initial posture. Based on the projection position information of the projection point on the projection plane projected by the projection unit rotated by a predetermined angle based on the first relation calculating means and the image data indicating the predetermined position received by the image data receiving means.
  • a second relationship calculating means for calculating a relationship between the projection direction of the projection unit and a projection point corresponding to each projection direction, the first relationship calculating means and the second relationship calculating means.
  • the adjustment information of the image to be projected on the projection plane based on the image data It is preferable to have an adjustment information acquisition means to acquire.
  • the image data indicating the plurality of predetermined positions is preferably four or more points in order to obtain the positional relationship between the projection plane and the plane on which the input image data is generated.
  • the predetermined position of the image data can be expressed by coordinates in a plane coordinate system that defines the position of the image data of the image to be projected, for example, by a pixel value corresponding to the image data.
  • the projection position information can be expressed as coordinates in a plane coordinate system that expresses the projection plane.
  • the adjustment information acquisition means from the calculation results of the first relationship calculation means and the second relationship calculation means, the adjustment information acquisition means, from the predetermined projection position on the projection plane, image data indicating an appropriate predetermined position, It is possible to know the projection direction of the projection unit.
  • the control method of the projection apparatus based on the step of receiving image data to be projected and the received image data indicating a plurality of predetermined positions based on the method described above, Calculating the relationship between the position information of the predetermined position in the image data and the projection position information from the projection position information of the projection point on the projection plane projected by the projection unit set to the initial posture; From the projection position information of the projection point on the projection plane, which is projected by the projection unit whose initial posture force is rotated by a predetermined angle based on the image data indicating the predetermined position, the projection direction of the projection unit and the projection direction according to each projection direction.
  • a scan for calculating the relationship between the projection direction of the projection unit and the projection point corresponding to each projection direction Since the steps are included, the relationship between the projection direction of the projection unit and the projection point defined in the predetermined projection direction can be calculated.
  • the image data indicating the appropriate predetermined position from the predetermined projection position on the projection surface and the projection of the projection unit are obtained by the step of acquiring the adjustment information. Adjustment information that allows the user to know the direction can be acquired.
  • the projection device and the control method for the projection device according to the present invention can know the predetermined position and the projection direction of the image data corresponding to the projection point desired to be drawn on the projection plane.
  • the projection surface and the image data projected onto the projection surface can be adjusted in advance.
  • the adjustment information acquisition unit commonly handles image data in the projection units having different projection directions as the adjustment information.
  • the first transformation information indicating the relationship between the positional information on the tangent plane, which is a plane capable of performing imaging, and the positional information on the projection plane, and the direction from the projection center to the projection point of the predetermined position projected on the projection plane.
  • it is configured to acquire direction information indicating, and direction information indicating a direction from the projection center with respect to at least four or more points in the image data that define a projectable range on the projection plane.
  • the tangent plane is a plane coordinate for defining the position of image data to be projected on the projection plane for each of the projection units having different orientations in an arbitrary projection direction.
  • the specific plane coordinates, that is, the projection directions are different, in other words, the projection postures are different, and the plane coordinates of all the projection parts can be handled in an integrated manner.
  • the projection apparatus has four or more positions that define the projection plane in the above-described configuration, when projecting an image onto a plurality of different projection planes.
  • Information and a projection unit force a projection plane information acquisition unit that acquires a specified position direction information indicating directions with respect to four or more points of the projection plane, and the position information and the specified position direction information acquired by the projection plane information acquisition unit
  • external adjustment information calculating means for calculating second conversion information for converting the position information on each projection plane into the position information on the tangent plane.
  • the projection plane information acquisition unit since the projection plane information acquisition unit is provided, it is possible to define the relationship between the projection plane and the projection unit according to each projection plane to be projected.
  • the external adjustment information acquisition unit since the external adjustment information acquisition unit is provided, it is possible to calculate second conversion information that can convert the above-mentioned relationship defined for each projection plane as position information on the tangent plane.
  • the projection apparatus acquires the second conversion information that can convert the relationship with respect to each projection plane into position information (coordinates) on the tangent plane. For this reason, position information (coordinates) for each projection plane can be integrated and handled as position information (coordinates) on the tangent plane.
  • the second conversion information calculated by the external adjustment information calculation means includes position information and specified positions of four or more points that define the projection plane.
  • Linkage relationship information calculated based on the direction information and indicating the link relationship with other adjacent projection planes, and the projection surfaces to be linked calculated based on the link relationship information are expanded into a two-dimensional plane. It is preferable to include a coordinate conversion parameter that specifies the coordinate relationship between the two.
  • connection relationship information is information indicating a combination of projection planes to be connected.
  • connection relations on a plurality of projection planes can be specified by referring to the connection relation information.
  • the connected projection planes can be represented on a two-dimensional plane.
  • position information (coordinates) for each projection plane to be connected can be integrated and handled as position information (coordinates) on the tangent plane.
  • the positions of four or more points that define the projection planes can be used.
  • Information, a projection unit force, a step of acquiring information indicating a direction with respect to the projection plane, position information on four or more points defining the acquired projection plane, and a projection unit force indicating a direction with respect to the projection plane And calculating second conversion information for converting position information on each projection plane into position information on the tangent plane based on the information.
  • position information on four or more points that define the projection plane, and the projection unit projects the projection Since it includes the step of acquiring information indicating the direction with respect to the shadow plane, it is possible to define the relationship between the projection plane and the projection unit according to each projection plane to be projected. Further, the second conversion information for converting the position information on each projection plane into the position information on the tangent plane can be calculated by the step of calculating the second conversion information.
  • each means of the projection apparatus may be realized by a computer.
  • a computer-readable recording medium in which the program is recorded also falls within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Projection Apparatus (AREA)

Abstract

A pan-tilt projector device (1) comprises a projector (2) for irradiating a real environment projection face (R) with a light to project an image, and a drive device (3) for turning the projector (2) so as to change a direction (J) of projection from the projector (2) to the real environment projection face (R). The turning motion of the projector (3) to be turned by that drive device (3) has a turning center (G). The projector (2) and the drive device (3) are so arranged, if the light source point of the light irradiated by the projector (2) is a projection center (F), that the turning center (G) and the projection center (F) may become identical to each other. Therefore, the pan-tilt projector device (1) facilitates the adjustment to be made for drawing the image on the projection face without any distortion or misregistration.

Description

明 細 書  Specification
投影装置、投影装置の制御方法、複合投影システム、投影装置の制御プ ログラム、投影装置の制御プログラムが記録された記録媒体  Projection device, projection device control method, composite projection system, projection device control program, and recording medium on which projection device control program is recorded
技術分野  Technical field
[0001] 本発明は、投影面に投影画像を投影する、投影方向が変更可能な投影装置、投 影装置の制御方法、複合投影システム、投影装置の制御プログラム、投影装置の制 御プログラムが記録された記録媒体に関するものである。 背景技術  The present invention records a projection device that projects a projection image on a projection surface, the projection direction can be changed, a projection device control method, a composite projection system, a projection device control program, and a projection device control program. The present invention relates to a recorded medium. Background art
[0002] 近年、現実世界と仮想世界とをリアルタイムに融合する技術として、複合現実感 (A R; augmented reality, MR; mixed reality)の研究が盛んになりつつある。この複合現 実感では、テキストあるいは画像などを、ユーザが存在する空間領域、すなわち実環 境に付加させることによって、現実世界と仮想世界とを融合させることができる。  [0002] In recent years, research on mixed reality (A R: augmented reality, MR: mixed reality) has been actively conducted as a technology for fusing the real world and the virtual world in real time. In this mixed reality, text and images can be merged with the real world and the virtual world by adding them to the space area where the user exists, that is, the real environment.
[0003] ところで、上記テキストあるいは画像などの情報を実環境に付加させるための手段と して、次の 2つの方法が考えられる。すなわち、 HMD (head mounted display)などの ユーザ着用型装置を用いる方法と、ユーザが存在する空間領域の壁面などに、直接 、映像などを投影するプロジェクタを用いる方法である。  [0003] By the way, the following two methods are conceivable as means for adding information such as text or images to the real environment. That is, a method using a user-wearable device such as an HMD (head mounted display) and a method using a projector that directly projects an image or the like onto a wall surface of a space area where the user exists.
[0004] 上記 HMDを用いる方法では、この HMDの表示画面にお!、て、実環境に仮想世 界の映像を重ねて表示させる。このように、実環境に仮想世界の映像を重ねて表示 することにより、 HMDを装着したユーザは、実環境に仮想世界が付加された環境を 体感することができる。  [0004] In the method using the HMD, the video of the virtual world is displayed on the display screen of the HMD so as to overlap the real environment. In this way, by displaying the virtual world image superimposed on the real environment, the user wearing the HMD can experience an environment in which the virtual world is added to the real environment.
[0005] し力しながら、テキストあるいは画像などの情報を実環境に付加させるために HMD を利用する場合、上記ユーザに対して HMDの常時着用という負担を強いることとな る。また、複合現実感では、ユーザの視点の動きに合わせた、実環境と仮想世界との 空間的整合性が求められる。このため、 HMDを装着しているユーザの頭部の、実環 境における 3次元的な配置、または姿勢などの情報を高速且つ高精度に得る必要が あるといった問題がある。  [0005] However, when using an HMD to add information such as text or images to the real environment, the user is forced to wear the HMD all the time. Mixed reality also requires spatial consistency between the real environment and the virtual world in accordance with the movement of the user's viewpoint. For this reason, there is a problem that it is necessary to obtain information such as the three-dimensional arrangement or posture of the head of the user wearing the HMD in a real environment at high speed and with high accuracy.
[0006] このような問題に対して、 HMDに位置センサを取り付ける方法 (非特許文献 1 ;小 田島、神原、横矢著 「拡張現実感技術を用いた屋外型ゥ アラブル注釈提示シス テム」 画像電子学会誌 Vol.32 No.6 pp.832-840 Nov.2003.参照)、あるいは、実 環境側にマーカを取り付ける方法(非特許文献 2 ; M.Maeda, T.Ogawa, T.Machida, K.Kiyokawa ana ri.Takemura, 'Indoor Localization and Navigation using IR Markers for Augmented Reality , Adjunct Proc. of 10th International Conference on Human -Computer Interaction, pp.283- 284, Jun.2003.参照)などが提案されている。しかし ながら、これらの方法では、 HMDの装置構成あるいは、複合現実感を体感するため に準備すべき環境における設備構成が煩雑となる。さらには、これら提案された方法 では、リアルタイムで、実環境と仮想世界との空間的整合性を実現するための十分な 精度あるいは処理速度を得ることができな 、と 、つた問題がある。 [0006] To solve such a problem, a method of attaching a position sensor to the HMD (Non-Patent Document 1; Small Tajima, Kanbara, Yokoya "Outdoor type annotation display system using augmented reality technology" Journal of the Institute of Image Electronics Engineers of Japan Vol.32 No.6 pp.832-840 Nov.2003.) Or the actual environment side (Non-Patent Document 2; M.Maeda, T.Ogawa, T.Machida, K.Kiyokawa ana ri.Takemura, 'Indoor Localization and Navigation using IR Markers for Augmented Reality, Adjunct Proc. Of 10th International Conference on Human -Computer Interaction, pp.283-284, Jun.2003.). However, these methods complicate the HMD device configuration or the equipment configuration in the environment to be prepared to experience mixed reality. Furthermore, these proposed methods have another problem in that it is not possible to obtain sufficient accuracy or processing speed to realize the spatial consistency between the real environment and the virtual world in real time.
[0007] 一方、上記プロジェクタを用いる方法では、プロジェクタによりユーザが存在する空 間領域の壁面などに、直接、映像などによって表現される情報などを描画する (非特 許文献 3 ;日浦、東城、稗田、森谷、井口、 「プロジェクタを用いた 3次元遠隔指示ィ ンタフェースの構築」、画像の認識'理解シンポジウム(MIRU2002)論文集 I、 pp.29 -38, Jul.2002.,非特許文献 4 ;向川、西山、尺長、 「スクリーン物体への光学パター ン投影による仮想光学環境の実現」、 信学論 D— II、 Vol.J84, Νο.7,ρρ.1448-1455, Jul.2001.参照)。 [0007] On the other hand, in the method using the projector described above, information expressed by video or the like is directly drawn on the wall surface of a spatial area where the user exists by the projector (Non-Patent Document 3; Hiura, Tojo, Hamada, Moriya, Iguchi, “Construction of a 3D remote pointing interface using a projector”, Image Recognition 'Understanding Symposium (MIRU2002) Proceedings I, pp.29 -38, Jul.2002., Non-Patent Document 4; Mukakawa, Nishiyama, Shakucho, “Realization of a virtual optical environment by projecting optical patterns onto screen objects”, D-II, Vol.J84, Νο.7, ρρ.1448-1455, Jul.2001. reference).
[0008] このように、プロジェクタによって実環境に直接、情報などを描画する場合、ユーザ は上記 HMDなどのような装置を装着する必要がない。また、ユーザが実際眺めてい る実環境に対して、プロジェクタにより上記情報が付加されているため、ユーザの観 察における負担を低減させることができる。また、複数ユーザによって、実環境に付 カロされた情報を同時に共有することも可能となるという利点を有する。  [0008] As described above, when drawing information or the like directly in the real environment by the projector, the user does not need to wear a device such as the HMD. Further, since the above information is added by the projector to the actual environment that the user is actually viewing, the burden on the user's observation can be reduced. In addition, there is an advantage that information attached to the real environment can be shared simultaneously by a plurality of users.
[0009] さらにはまた、実環境中に据え付けられるプロジェクタでは、事前に投影領域に対 する位置合わせを一度行っておけば、実環境と仮想世界との空間的整合性を実現 することができるという利点も有する。  [0009] Furthermore, a projector installed in a real environment can realize spatial consistency between the real environment and the virtual world if the alignment with the projection area is performed once in advance. There are also advantages.
[0010] なお、上記位置あわせの可能なプロジェクタとして例えば、特許文献 1;特開 2003 — 204495号公報(2003年 7月 18日公開)、特許文献 2 ;特開平 10— 200836号公 報( 1998年 7月 31日公開)、特許文献 3;特開 2004 - 177385号公報(2004年 6月 24日公開)、特許文献 4 ;特開 2004— 77545号公報(2004年 3月 11日公開)、特 許文献 5;特開 2001— 83949号公報(2001年 3月 30日公開)が提案されて!、る。 [0010] It should be noted that as the projector capable of alignment, for example, Patent Document 1; Japanese Patent Laid-Open No. 2003-204495 (published July 18, 2003); Patent Document 2; Japanese Patent Laid-Open No. 10-200836 (1998) Published on July 31, 2000), Patent Document 3; JP-A-2004-177385 (June 2004) Published on the 24th), Patent Document 4; JP-A-2004-77545 (published on March 11, 2004), Patent Document 5; JP-A-2001-83949 (published on March 30, 2001). ! RU
[0011] すなわち、特許文献 1では、投影光学系を通してスクリーンまでの距離を測定する。 That is, in Patent Document 1, the distance to the screen is measured through the projection optical system.
そして、スクリーンの傾きを算出し投影画像の歪みを補正する画像投影装置が開示 されている。  An image projection apparatus that calculates the tilt of the screen and corrects the distortion of the projected image is disclosed.
[0012] また、特許文献 2では、画像を投影し、投影された画像を撮像光学系によって撮像 する。そして、撮像した結果 (ゆがんだ画像)と、もとの画像とを比較し歪み量を計算し 、この算出された歪み量に応じてもとの画像を補正する画像投影装置が開示されて いる。  [0012] Also, in Patent Document 2, an image is projected, and the projected image is captured by an imaging optical system. Then, an image projection apparatus is disclosed that compares the captured image (distorted image) with the original image to calculate the distortion amount and corrects the original image according to the calculated distortion amount. .
[0013] また、特許文献 3では、第 1および第 2ライン型パッシブン型パッシブ測距装置を備 え、スクリーン上の水平および垂直方向に沿った複数の位置までの距離を測定する ことにより、スクリーンの傾斜角度を測定する角度検出装置が開示されている。この角 度検出装置は、プロジェクタ正面における平面に対するスクリーン平面の傾斜角度を 水平面内および垂直面内において正確に測定することができる。このため、投影画 像の歪みを補正することができる。  [0013] Further, in Patent Document 3, the first and second line-type passive distance measuring devices are provided, and the screen is measured by measuring distances to a plurality of positions along the horizontal and vertical directions on the screen. An angle detection device for measuring the tilt angle of the above is disclosed. This angle detection device can accurately measure the inclination angle of the screen plane with respect to the plane in front of the projector in the horizontal plane and in the vertical plane. For this reason, distortion of the projected image can be corrected.
[0014] また、特許文献 4では、映像投射機構部の垂直方向または水平方向に関する基準 位置力ゝらの変位角度から、投射面を判断し、その投射面に対応した補正設定値にも とづ 、て台形補正が行われるプロジェクタが開示されて 、る。  [0014] Also, in Patent Document 4, the projection surface is determined from the displacement angle of the reference position force in the vertical direction or horizontal direction of the video projection mechanism unit, and based on the correction setting value corresponding to the projection surface. A projector in which keystone correction is performed is disclosed.
[0015] また、特許文献 5では、次の映像投影装置が開示されている。すなわち、投影され た映像を、視点位置に配置されたカメラで撮影する。そして、投影している映像の画 像データとカメラによって撮影された画像データとを比較し、投影されて ヽる映像の 歪み量を算出する。そして、算出した歪み量に基づき、投影する画像データを補正 する映像投影装置が開示されている。  [0015] Further, Patent Document 5 discloses the following video projector. In other words, the projected video is shot with a camera placed at the viewpoint position. Then, the image data of the projected video is compared with the image data taken by the camera, and the amount of distortion of the projected video is calculated. A video projection device that corrects image data to be projected based on the calculated distortion amount is disclosed.
[0016] しかしながら、プロジェクタを利用する場合、このプロジェクタによって描画可能なェ リアが限定されるという問題がある。そこで、この問題に対して、上記プロジェクタに、 投影面の方向を変更可能とさせる回転機構を備え、ユーザの視聴領域の移動に対 して対応可能とし、上記描画エリアの制限を克服する方法がある。  However, when a projector is used, there is a problem that the area that can be drawn by this projector is limited. To solve this problem, there is a method for overcoming the limitation of the drawing area by providing the projector with a rotation mechanism that allows the direction of the projection plane to be changed so that the projector can respond to the movement of the viewing area. is there.
[0017] また、この回転機構としては、例えば上記プロジェクタの投影方向を、パン軸 90によ つて水平方向に、また、チルト軸 91によって垂直方向に回転させる機構 (パン'チルト 回転機構)がある。なお、水平方向とは、プロジェクタが配置されている面と平行する 方向であり、垂直方向とは、この面に垂直となる方向である。 [0017] Further, as this rotation mechanism, for example, the projection direction of the projector is set by the pan axis 90. Therefore, there is a mechanism for rotating in the horizontal direction and in the vertical direction by the tilt shaft 91 (pan and tilt rotation mechanism). The horizontal direction is a direction parallel to the plane on which the projector is arranged, and the vertical direction is a direction perpendicular to this plane.
[0018] ところで、このような回転機構を有するプロジェクタを用いて実環境に映像を投影す る場合、実環境と投影された映像との空間的整合性を満たすためには、実環境投影 面の座標と、プロジェクタの姿勢およびプロジェクタ投影画像の座標との対応関係を 求める必要がある。なお、このプロジェクタ投影画像とは、プロジェクタにおいて保持 されている情報であり、入力画像において、投影可能な領域中のどの座標位置にど の映像を配置するかを決めるための情報である。上記座標位置は、入力画像におけ る各画素値と対応するアドレスによって管理される。  [0018] By the way, when projecting an image to the real environment using a projector having such a rotation mechanism, in order to satisfy the spatial consistency between the real environment and the projected image, It is necessary to obtain the correspondence between the coordinates and the attitude of the projector and the coordinates of the projector projection image. The projector projection image is information held in the projector, and is information for deciding which video image is arranged at which coordinate position in the projectable region in the input image. The coordinate position is managed by an address corresponding to each pixel value in the input image.
[0019] 例えば非特許文献 5 (S.Borkowski, O.Riff, J丄. Crowley, "Projecting Rectified Imag es in an Augmented Environment", ProCams Workshop. IEEE Computer Society Pr ess, Oct.2003.)には、パン'チルト回転機構によるプロジェクタの姿勢変化に応じて 生じる、投影画像の形状の歪み補正を行うことが可能なパンチルトプロジェクタが提 案されている。  [0019] For example, Non-Patent Document 5 (S. Borkowski, O. Riff, J 丄. Crowley, "Projecting Rectified Images in an Augmented Environment", ProCams Workshop. IEEE Computer Society Presess, Oct. 2003.) There has been proposed a pan / tilt projector capable of correcting distortion of the shape of a projected image that occurs in response to a change in the attitude of the projector by a pan / tilt rotation mechanism.
[0020] また、非特許文献 6 (中村、平池、「アクティブプロジェクタ:凹凸面上を移動する映 像の歪み補正」, FIT (情報科学技術フォーラム) 2002講演論文集、 pp.423-424, Sep. 2002.)では、プロジェクタの前に設けられたミラーによる反射光が 360度回転するよう に構成され、上述したパンチルトプロジェクタと同様により広い投影領域を実現してい る。また、このプロジェクタでは、投影する画像形状などの制御を行うことができるよう になっている。  [0020] Also, Non-Patent Document 6 (Nakamura, Hiraike, “Active Projector: Distortion Correction for Images Moving on Convex and Uneven Surfaces”, FIT (Information Science and Technology Forum) 2002 Proceedings, pp.423-424, Sep 2002.) is configured such that the reflected light from the mirror provided in front of the projector rotates 360 degrees, and a wider projection area is realized as in the pan-tilt projector described above. In addition, this projector can control the shape of the image to be projected.
[0021] し力しながら、上記従来の技術では、自身が備える回転機構による、プロジェクタの 姿勢変化 (投影方向の変化)に伴い、投影中心位置が変化する。すなわち、プロジェ クタの投影光がある一点力も発せられていると仮定した場合におけるその一点の位 置が、プロジェクタの姿勢変更ごとに異なる位置となる。このため、上記従来の技術で は、設定されたプロジェクタの姿勢位置ごとに実環境における投影面とプロジェクタ 投影画像との対応関係を求める必要がある。  However, in the above conventional technique, the projection center position changes in accordance with the change in the attitude of the projector (change in the projection direction) by the rotation mechanism provided in itself. That is, when it is assumed that the projection light of the projector also emits a single point force, the position of that one point becomes a different position for every change in the attitude of the projector. For this reason, in the above-described conventional technique, it is necessary to obtain a correspondence relationship between the projection plane and the projector projection image in the actual environment for each set attitude position of the projector.
[0022] したがって、回転機構によりプロジェクタの姿勢 (投影方向)を変化させる度に、実 環境における投影面 (実環境投影面 R)とプロジェクタ投影画像との対応関係を求め 、画像の補正処理を行う必要があり、投影作業が非常に煩雑になるという問題が生じ る。また、上記従来の技術では、プロジェクタの姿勢を変化させ連続して画像を投影 させることができな!/ヽと ヽつた問題も生じる。 [0022] Therefore, every time the orientation (projection direction) of the projector is changed by the rotation mechanism, The correspondence between the projection plane in the environment (real-environment projection plane R) and the projection image of the projector needs to be obtained, and the image correction processing must be performed, which causes a problem that the projection work becomes very complicated. In addition, the conventional technique described above also has a problem that it is impossible to continuously project images by changing the attitude of the projector!
発明の開示  Disclosure of the invention
[0023] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、投影面に対し て、歪みがなぐ位置ずれのない画像を描画できるようにするために行う調整作業を 容易とする、投影装置、投影装置の制御方法、複合投影システム、投影装置の制御 プログラム、投影装置の制御プログラムが記録された記録媒体を実現することにある  [0023] The present invention has been made in view of the above-described problems, and an object of the present invention is to perform an adjustment operation to be able to draw an image with no positional deviation that causes distortion on the projection plane. To facilitate a projection apparatus, a control method for the projection apparatus, a composite projection system, a control program for the projection apparatus, and a recording medium on which the control program for the projection apparatus is recorded
[0024] 本発明に係る投影装置は、上記した課題を解決するために、投影面に対して光を 照射し画像を投影する投影部と、この投影部から投影面に対して照射する投影方向 を変更するように、該投影部を回転させる駆動部とを備えた投影装置であって、上記 投影部が照射する光の光源点を投影中心としたとき、上記投影中心と、上記駆動部 による投影部の回転運動の中心点である回転中心とがー致するように上記投影部と 駆動部とが配置されて!ヽることを特徴とする。 In order to solve the above-described problem, the projection apparatus according to the present invention projects a projection unit that irradiates light onto a projection plane and projects an image, and a projection direction that irradiates the projection plane from the projection unit. And a drive unit that rotates the projection unit so that the projection center is a light source point of light irradiated by the projection unit, and the projection center and the drive unit The projection unit and the drive unit are arranged so as to coincide with the rotation center that is the center point of the rotational movement of the projection unit.
[0025] 上記構成によると、上記回転中心の位置と上記投影中心の位置とがー致するように 投影部と駆動部とが配置されている。つまり、駆動部によって回転されるときの投影 部の回転運動の中心点と、該投影部の光の光源点とがー致するように投影部と駆動 部とが配置されている。このため、本発明に係る投影装置では、駆動部によって上記 投影方向が変更させられても、投影中心位置と投影面との物理的な配置関係に変 動が生じない。  [0025] According to the above configuration, the projection unit and the drive unit are arranged so that the position of the rotation center matches the position of the projection center. That is, the projection unit and the drive unit are arranged so that the center point of the rotational movement of the projection unit when rotated by the drive unit matches the light source point of the light of the projection unit. For this reason, in the projection apparatus according to the present invention, even if the projection direction is changed by the drive unit, the physical arrangement relationship between the projection center position and the projection plane does not change.
[0026] したがって、投影方向が異なる投影部同士において投影面に対して投影する画像 の位置関係を、一方投影部の投影方向と他方投影部の投影方向との間の回転角か ら算出することがでさる。  [0026] Therefore, the positional relationship between the images projected on the projection plane in the projection units having different projection directions is calculated from the rotation angle between the projection direction of one projection unit and the projection direction of the other projection unit. It is out.
[0027] よって、任意の投影方向となる、異なる姿勢の投影部それぞれについて、投影面に ぉ 、て投影する画像の位置を規定するための平面座標を、特定の平面座標に変換 することができる。そして、ある特定の平面座標により、投影方向が異なる、すなわち 投影姿勢が異なるすべての投影部それぞれの平面座標を統合して扱うことができる Accordingly, for each of the projection units having different orientations in an arbitrary projection direction, the plane coordinates for defining the position of the image to be projected on the projection plane can be converted into specific plane coordinates. . And the projection direction differs depending on a specific plane coordinate, that is, The plane coordinates of all projection parts with different projection postures can be integrated and handled.
[0028] このように、特定の平面により、全ての投影部の投影姿勢における上記平面座標点 それぞれを統合して扱うことができるため、投影面に対して、歪みがなぐ位置ずれの な 、画像を描画できるようにするために行う調整作業を容易とすることができると 、う 効果を奏する。 [0028] As described above, since each of the plane coordinate points in the projection postures of all the projection units can be handled in an integrated manner by a specific plane, the image is free from a positional deviation that is not distorted with respect to the projection plane. If the adjustment work performed to enable drawing can be facilitated, there is an effect.
[0029] また、本発明に係る投影装置は、上記した課題を解決するために、投影面に対して 光を照射し画像を投影する投影部と、この投影部から投影面に対して照射する投影 方向を変更するように、該投影部を回転させる駆動部とを備えた投影装置であって、 上記駆動部によって上記投影部の回転運動の中心点である回転中心力 ^点となるよ うに、該投影部が回転され、上記投影部が照射する光の光源点を投影中心としたと き、上記回転中心の位置情報である回転中心位置情報を取得する回転中心位置情 報取得手段と、照射された光の軌跡を示す照射光情報を受付け、該照射光情報に 基づき、投影中心の位置情報である投影中心位置情報を特定する投影中心位置情 報特定手段と、上記取得された回転中心位置情報と、上記特定された投影中心位 置情報とに基づき、投影中心と回転中心とがー致するように、投影部と駆動部との配 置関係を調整する調整手段とを備えて!/ヽることを特徴とする。  [0029] Further, in order to solve the above-described problem, the projection apparatus according to the present invention irradiates the projection surface with light from the projection unit, and projects the image from the projection unit. A projection unit including a driving unit that rotates the projection unit so as to change a projection direction, and the driving unit sets a rotation central force ^ point that is a center point of the rotational movement of the projection unit. Rotation center position information acquisition means for acquiring rotation center position information that is position information of the rotation center when the projection unit is rotated and a light source point of light irradiated by the projection unit is used as a projection center; Projection center position information specifying means for receiving the irradiation light information indicating the locus of the irradiated light and specifying the projection center position information which is the position information of the projection center based on the irradiation light information, and the acquired rotation center Position information and the above identified projection Position based on the location information, as the rotation center and the projection center that Itasu over, characterized in that the projection portion and provided with an adjusting means for adjusting the placement relationship between the driving portion! / Ru.
[0030] 上記構成によると、調整手段を備えているため、投影中心位置情報特定手段によ つて特定された投影中心位置と、回転中心位置受付手段によって受付けた回転中 心位置とがー致するように、投影部と駆動部との配置関係を調整することができる。  [0030] According to the above configuration, since the adjusting means is provided, the projection center position specified by the projection center position information specifying means matches the rotation center position received by the rotation center position receiving means. As described above, the positional relationship between the projection unit and the drive unit can be adjusted.
[0031] したがって、本発明に係る投影装置では、上記投影中心位置と回転中心位置とを 一致させることがでるため、駆動部によって投影部力 投影面に対する投影方向が 変更させられても、投影中心位置と投影面との物理的な配置関係に変動が生じない  [0031] Therefore, in the projection apparatus according to the present invention, the projection center position and the rotation center position can be made to coincide with each other. Therefore, even if the drive unit changes the projection direction with respect to the projection surface, the projection center There is no change in the physical relationship between position and projection plane
[0032] このため、投影方向が異なる投影部同士において、投影面に対して投影する画像 の位置関係を、一方の投影部の投影方向と他方の投影部の投影方向との間の回転 角力 算出することができる。 [0032] For this reason, in the projection units with different projection directions, the positional relationship of the images projected on the projection plane is calculated as the rotational angular force between the projection direction of one projection unit and the projection direction of the other projection unit. can do.
[0033] よって、上記投影方向が異なる、すなわち投影姿勢の異なる投影部それぞれにつ いて、投影面において投影する画像の位置を規定するための平面座標を、特定の 平面座標に変換することができる。そして、ある特定の平面座標により、投影方向が 異なるすべての投影部それぞれの平面座標を、統合して扱うことができる。 [0033] Therefore, each projection unit having a different projection direction, that is, a different projection posture is used. The plane coordinates for defining the position of the image to be projected on the projection plane can be converted into specific plane coordinates. Then, the plane coordinates of all the projection units having different projection directions can be handled in an integrated manner by a specific plane coordinate.
[0034] また、本発明に係る投影装置の制御方法は、上記した課題を解決するために、投 影面に対して光を照射し画像を投影する投影部と、この投影部から投影面に対して 照射する投影方向を変更するように、該投影部を回転させる駆動部とを備えた投影 装置の制御方法であって、上記駆動部によって上記投影部の回転運動の中心点で ある回転中心が 1点となるように、該投影部が回転され、上記投影部が照射する光の 光源点を投影中心としたとき、上記回転中心の位置情報である回転中心位置情報を 取得するステップと、照射された光の軌跡を示す照射光情報を受付け、該照射光情 報に基づき、投影中心の位置情報である投影中心位置情報を特定するステップと、 上記取得された回転中心位置情報と、上記特定された投影中心位置情報とに基づ き、投影中心と回転中心とがー致するように、投影部と駆動部との配置関係を調整す るステップとを含むことを特徴とする。  [0034] Further, in order to solve the above-described problem, the control method of the projection apparatus according to the present invention irradiates light onto the projection surface and projects an image, and the projection unit projects the projection surface. A control method for a projection apparatus comprising a drive unit that rotates the projection unit so as to change the projection direction to be irradiated, the rotation center being a center point of the rotational movement of the projection unit by the drive unit The projection unit is rotated such that the projection center is one point, and when the light source point of the light irradiated by the projection unit is used as the projection center, the rotation center position information that is the position information of the rotation center is obtained; Receiving irradiation light information indicating a trajectory of the irradiated light, identifying projection center position information that is position information of the projection center based on the irradiation light information; the acquired rotation center position information; and The specified projection center position information and -Out group Dzu, so that Itasu rotation center and is over the center of projection, characterized in that it comprises the steps that adjust the positional relationship between the driving portion and the projection portion.
[0035] すなわち、本発明に係る投影装置の制御方法では、回転中心位置情報を取得す るステップによって取得された回転中心位置情報と、投影中心位置情報を特定する ステップによって特定された投影中心位置情報とに基づき、投影中心と回転中心と がー致するように、投影部と駆動部との配置関係を調整するステップによって投影部 と駆動部との配置関係を調整することができる。  That is, in the method for controlling a projection apparatus according to the present invention, the rotation center position information acquired by the step of acquiring rotation center position information and the projection center position specified by the step of specifying projection center position information. Based on the information, the arrangement relationship between the projection unit and the drive unit can be adjusted by the step of adjusting the arrangement relationship between the projection unit and the drive unit so that the projection center matches the rotation center.
[0036] したがって、本発明に係る投影装置の制御方法では、上記投影中心位置と回転中 心位置とを一致させることがでるため、駆動部によって投影部力 投影面に対する投 影方向が変更させられても、投影中心位置と投影面との物理的な配置関係に変動が 生じない。  [0036] Therefore, in the control method of the projection apparatus according to the present invention, the projection center position and the rotation center position can be made to coincide with each other, so that the projection unit force and the projection direction with respect to the projection plane are changed by the drive unit. However, the physical arrangement relationship between the projection center position and the projection plane does not change.
[0037] このため、投影方向が異なる投影部同士において、投影面に対して投影する画像 の位置関係を、一方の投影部の投影方向と他方の投影部の投影方向との間の回転 角力 算出することができる。  [0037] For this reason, between the projection units having different projection directions, the positional relationship between the images projected on the projection plane is calculated as the rotational angular force between the projection direction of one projection unit and the projection direction of the other projection unit. can do.
[0038] よって、上記投影方向が異なる、すなわち投影姿勢の異なる投影部それぞれにつ いて、投影面において投影する画像の位置を規定するための平面座標を、特定の 平面座標に変換することができる。そして、ある特定の平面座標により、投影方向が 異なるすべての投影部それぞれの平面座標を、統合して扱うことができる。 Therefore, for each of the projection units having different projection directions, that is, different projection postures, plane coordinates for defining the position of the image to be projected on the projection plane are specified. Can be converted to planar coordinates. Then, the plane coordinates of all the projection units having different projection directions can be handled in an integrated manner by a specific plane coordinate.
[0039] このように、本発明に係る投影装置および投影装置の制御方法は、特定の平面に より、全ての投影部の姿勢における上記平面座標点それぞれを統合して扱うことがで きる。このため、投影領域に対して、歪みがなぐ位置ずれのない画像を描画できるよ うにするために行う調整作業を容易とすることができるという効果を奏する。  As described above, the projection apparatus and the control method for the projection apparatus according to the present invention can handle each of the plane coordinate points in the postures of all the projection units in an integrated manner by a specific plane. For this reason, there is an effect that it is possible to facilitate the adjustment work performed in order to be able to draw an image having no positional deviation with distortion in the projection area.
[0040] 本発明にカゝかる複合投影システムは、上記した課題を解決するために、上記した投 影装置を複数備えたことを特徴とする。  [0040] A complex projection system according to the present invention is characterized in that a plurality of the above-described projection devices are provided in order to solve the above-described problems.
[0041] 上記した投影装置は、投影中心と回転中心とがー致するように構成されている。こ のため、正接平面という共通する座標系によって様々な投影部の姿勢における投影 の調整を行うことができる。したがって、各投影部の異なる姿勢での投影調整を迅速 に行うことができる。  [0041] The projection device described above is configured such that the projection center and the rotation center coincide. For this reason, it is possible to adjust the projection in various projection unit postures by a common coordinate system called a tangent plane. Therefore, it is possible to quickly perform projection adjustment in different postures of the projection units.
[0042] また、異なる投影面それぞれに対する調整も容易に行うことができるため、 3次元空 間内に適切に複数台を設置し、容易に、迅速に調整を行うことができる。すなわち、 上記複合投影システムは、迅速にかつ容易にシステムを構築することができると 、う 効果を奏する。  [0042] Further, since adjustments for different projection planes can be easily performed, a plurality of units can be appropriately installed in the three-dimensional space, and the adjustment can be performed easily and quickly. That is, the composite projection system has an effect when the system can be constructed quickly and easily.
[0043] さらにまた、本発明に係る複合投影システムは、ある投影部力ゝらの投影方向先に、 例えば人やテーブルなどの遮蔽物が存在する場合、他の投影部によって代わりに画 像などを投影することができる。また、投影部が複数台設置されているため、より広い 空間領域の壁などに画像などを投影することができるという効果を奏する。  [0043] Furthermore, in the compound projection system according to the present invention, when a shielding object such as a person or a table is present ahead of the projection direction of a certain projection unit force, an image or the like is substituted by another projection unit. Can be projected. In addition, since a plurality of projection units are installed, it is possible to project an image or the like on a wall or the like in a wider space area.
図面の簡単な説明  Brief Description of Drawings
[0044] [図 1]本発明の実施形態を示すものであり、パンチルトプロジェクタ装置の概略構成を 示す図である。  FIG. 1, showing an embodiment of the present invention, is a diagram showing a schematic configuration of a pan / tilt projector apparatus.
[図 2]本発明の実施形態を示すものであり、パンチルトプロジェクタ装置の駆動装置 によって実現される、プロジェクタを回転させる回転機構の概略を示す図である。  FIG. 2, showing an embodiment of the present invention, is a diagram showing an outline of a rotation mechanism for rotating a projector, realized by a drive device for a pan / tilt projector apparatus.
[図 3]本発明の実施形態を示すものであり、パンチルトプロジェクタ装置が備えるプロ ジェクタの幾何学的モデルを示す図である。  FIG. 3, showing an embodiment of the present invention, is a diagram showing a geometric model of a projector provided in a pan / tilt projector apparatus.
[図 4]本発明の実施形態を示すものであり、プロジェクタの配置位置を変更させるた めにスライドさせる方向を示す図である。 FIG. 4 shows an embodiment of the present invention for changing the position of the projector. It is a figure which shows the direction made to slide in order.
圆 5]本実施の形態に係る投影中心の初期位置を算出する方法を示すものであり、 同図(a)は、水平方向における、プロジェクタから照射された光領域の軌跡を示す斜 視図であり、同図 (b)は、鉛直方向における、プロジェクタ力 照射された光領域の軌 跡を示す図である。 [5] A method for calculating the initial position of the projection center according to the present embodiment is shown. FIG. 5 (a) is a perspective view showing the trajectory of the light region irradiated from the projector in the horizontal direction. FIG. 5B is a diagram showing the trace of the light region irradiated with the projector force in the vertical direction.
圆 6]本実施の形態に係る投影中心と回転中心との精密な位置合わせの方法を示す 図である。 [6] FIG. 6 is a diagram showing a precise alignment method between the projection center and the rotation center according to the present embodiment.
[図 7]本発明の実施形態を示すものであり、キャリブレーション処理を示すフローチヤ ートである。  FIG. 7, showing an embodiment of the present invention, is a flowchart showing a calibration process.
[図 8]本発明の実施形態を示すものであり、内部キャリブレーション処理を示すフロー チャートである。  FIG. 8, showing an embodiment of the present invention, is a flow chart showing an internal calibration process.
圆 9]本実施の形態に係るプロジェクタの初期姿勢における画像平面と実環境投影 面との関係を示す図である。 [9] FIG. 9 is a diagram showing a relationship between the image plane and the real environment projection plane in the initial posture of the projector according to the present embodiment.
圆 10]本実施の形態に係るプロジェクタの姿勢変更に伴う正接平面と実環境投影面 との関係を示す図である。 [10] FIG. 10 is a diagram showing a relationship between a tangent plane and a real environment projection plane according to a change in the attitude of the projector according to the embodiment.
圆 11]本実施の形態に係るプロジェクタの初期姿勢における入力された画像平面上 の座標に対応する 4隅の正接平面上の座標と、この各座標点に対応する実環境投 影面 R上の座標とを示す図である。 圆 11] Coordinates on the tangent plane at the four corners corresponding to the coordinates on the input image plane in the initial attitude of the projector according to the present embodiment, and on the actual environment projection plane R corresponding to each of these coordinate points It is a figure which shows a coordinate.
[図 12]本実施の形態に係るプロジェクタの特定の姿勢における、正接平面と実環境 投影面との関係および、正接平面と画像平面との関係を示す図である。  FIG. 12 is a diagram showing the relationship between the tangent plane and the actual environment projection plane and the relationship between the tangent plane and the image plane in a specific posture of the projector according to the present embodiment.
圆 13]本発明の実施形態を示すものであり、複数の実環境投影面を示す図である。 13] A diagram showing an embodiment of the present invention and showing a plurality of real-environment projection planes.
[図 14]本発明の実施形態を示すものであり、外部キャリブレーションの処理フローを 示すフローチャートである。 FIG. 14, showing an embodiment of the present invention, is a flowchart showing a processing flow of external calibration.
圆 15]本実施の形態に係る外部キャリブレーションの処理を説明する斜視図であり、 同図 (a)、同図 (b)、同図 (c)はそれぞれ異なる位置に配置された投影面の 4隅の座 標位置を取得する状態を説明する図である。 15] FIG. 15 is a perspective view for explaining processing of external calibration according to the present embodiment, wherein FIG. (A), (b), and (c) are projection planes arranged at different positions, respectively. It is a figure explaining the state which acquires the coordinate position of four corners.
[図 16]本発明の実施形態を示すものであり、パンチルトプロジェクタ装置の概略構成 を示すブロック図である。 [図 17]本発明の実施形態を示すものであり、投影中心と回転中心とがー致するように プロジェクタと駆動装置との間で行われる位置合わせに関するパンチルトプロジェク タ装置の概略構成を示すブロック図である。 FIG. 16, showing an embodiment of the present invention, is a block diagram showing a schematic configuration of a pan / tilt projector apparatus. FIG. 17 illustrates an embodiment of the present invention, and is a block diagram illustrating a schematic configuration of a pan / tilt projector apparatus related to alignment performed between a projector and a driving device such that a projection center and a rotation center coincide with each other FIG.
[図 18]本発明の実施形態を示すものであり、内部キャリブレーションに関するパンチ ルトプロジェクタ装置の概略構成を示すブロック図である。  FIG. 18, showing an embodiment of the present invention, is a block diagram showing a schematic configuration of a punch projector apparatus related to internal calibration.
[図 19]本発明の実施形態を示すものであり、外部キャリブレーションに関するパンチ ルトプロジェクタ装置の概略構成を示すブロック図である。  FIG. 19, showing an embodiment of the present invention, is a block diagram showing a schematic configuration of a punch projector device related to external calibration.
[図 20]本発明の実施形態を示すものであり、複合投影システムの一例を示す図であ る。  FIG. 20, showing an embodiment of the present invention, is a diagram showing an example of a compound projection system.
[図 21]本発明の実施形態を示すものであり、複数の実環境投影面の配置の一例を 示す図である。  FIG. 21, showing an embodiment of the present invention, is a diagram showing an example of an arrangement of a plurality of real environment projection planes.
[図 22]本発明の実施形態を示すものであり、各実環境投影面における座標と該座標 に対応する正接平面上の座標との関係の一例を示す図である。  FIG. 22, showing an embodiment of the present invention, is a diagram showing an example of a relationship between coordinates on each real environment projection plane and coordinates on a tangent plane corresponding to the coordinates.
[図 23]本発明の実施形態を示すものであり、連結する実環境投影面を 1平面に展開 した場合の一例を示す図である。 FIG. 23 shows an embodiment of the present invention, and is a diagram showing an example when the real environment projection plane to be connected is developed on one plane.
[図 24]本発明の実施形態を示すものであり、連結した実環境投影面の組み合わせに つ!ヽて得られた変換パラメータと、実環境投影面の連結位置を特定する識別子 (ID) との対応関係を示すリストの一例である。  FIG. 24 shows an embodiment of the present invention, in which conversion parameters obtained for a combination of concatenated real environment projection planes, an identifier (ID) for specifying a concatenation position of real environment projection planes, and It is an example of the list | wrist which shows the corresponding | compatible relationship.
[図 25]本実施の形態に係るパンチルトプロジェクタ装置による複数の実環境投影面 への投影処理を示すフローチャートである。  FIG. 25 is a flowchart showing projection processing onto a plurality of real-environment projection planes by the pan / tilt projector apparatus according to the present embodiment.
[図 26]本発明の実施形態を示すものであり、主平面上の図形形状と正接平面上の図 形形状との対応関係を示す図である。  FIG. 26 shows an embodiment of the present invention and is a diagram showing a correspondence relationship between a graphic shape on a main plane and a graphic shape on a tangent plane.
[図 27]本発明の実施形態を示すものであり、連結平面上の図形形状と正接平面上の 図形形状との対応関係を示す図である。  FIG. 27 illustrates an embodiment of the present invention and is a diagram illustrating a correspondence relationship between a graphic shape on a connection plane and a graphic shape on a tangent plane.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一実施形態について図 1ないし図 20に基づいて説明すると以下の通りで ある。すなわち本実施の形態に係るパンチルトプロジェクタ装置 (投影装置) 1は、所 望される実環境投影面 Rに映像を投影するためのものであり、図 2に示すようにパン 軸 90およびチルト軸 91での回転機構によってプロジェクタ (投影部) 2の投影方向を 、水平方向および垂直方向に移動させることができるようになって!/、る。 One embodiment of the present invention will be described with reference to FIGS. 1 to 20 as follows. That is, the pan / tilt projector apparatus (projection apparatus) 1 according to the present embodiment is for projecting an image on a desired real environment projection plane R. As shown in FIG. With the rotation mechanism on the axis 90 and the tilt axis 91, the projection direction of the projector (projection unit) 2 can be moved in the horizontal and vertical directions.
[0046] このように、本実施の形態に係るパンチルトプロジェクタ装置 1では、プロジェクタ 2 に回転機能を付加して 、るため、このプロジェクタ 2によって投影可能な領域を拡大 することができる。なお、この回転機能は、後述する駆動装置 (駆動部) 3によって実 現できる。 As described above, in the pan / tilt projector device 1 according to the present embodiment, since the rotation function is added to the projector 2, the area that can be projected by the projector 2 can be enlarged. This rotation function can be realized by a drive device (drive unit) 3 described later.
[0047] (プロジェクタの幾何学モデル)  [0047] (Geometric model of projector)
ところで、本実施の形態に係るパンチルトプロジェクタ装置 1が備えるプロジェクタ 2 の幾何学モデルは、図 3に示すようになる。なお、この幾何学モデルは、いわゆるピン ホールカメラモデルと呼ばれる幾何学モデルに基づいて数学的に体系づけられたも のである。  Incidentally, a geometric model of the projector 2 provided in the pan / tilt projector device 1 according to the present embodiment is as shown in FIG. This geometric model is a mathematical system based on a so-called pinhole camera model.
[0048] すなわち、実環境に対して情報を入力する力、あるいは出力するかという観点にお いて、カメラとプロジェクタとは相反するものである。しかしながらその一方で、両者の 光学的構造は非常に類似している。そこで、上記カメラと上記プロジェクタとの類似性 を考慮し、このプロジェクタについてもモデルィ匕を行うことができる。そして、上記した 考えの下、本実施の形態に係るプロジェクタ 2をモデルィ匕したものが図 3に示す幾何 モデルである。  [0048] That is, the camera and the projector are contradictory in terms of the force to input information to the real environment or the output. However, on the other hand, the optical structures of both are very similar. Therefore, considering the similarity between the camera and the projector, it is possible to model the projector. Based on the above-described idea, a model obtained by modeling the projector 2 according to the present embodiment is a geometric model shown in FIG.
[0049] 図 3に示すように、プロジェクタ 2は投影中心 Fを有しているものと仮定することがで きる。すなわち、この投影中心 Fとは、プロジェクタ 2からの投影光がある一点力 発 せられていると仮定した場合における点である。そして、この幾何モデルでは、この投 影中心 F力 投影方向 J側にぉ 、て、プロジェクタへの入力画像を描画するためのプ ロジェクタ画像平面 Pが存在するものとすることができる。そして、この投影中心 Fから の投影光は、このプロジェクタ画像平面 Pを通過して実環境における投影領域に投 影されて!ヽるちのとすることがでさる。  As shown in FIG. 3, it can be assumed that the projector 2 has a projection center F. That is, the projection center F is a point when it is assumed that the projection light from the projector 2 is generated by a single point force. In this geometric model, a projector image plane P for drawing an input image to the projector can exist on the projection center F force projection direction J side. Then, the projection light from the projection center F passes through the projector image plane P and is projected onto the projection area in the real environment.
[0050] なお、上記プロジェクタ画像平面 Pは、ピンホールカメラモデルにおける画像平面に 相当するものであり、これ以降では画像平面 Pと称する。また、この画像平面 P上にお ける中央の点を画像中心 Eと称し、この画像平面 Pは、画像中心 Eを原点として画像 の横方向、縦方向をそれぞれ X軸、 Y軸とする画像座標系を定義することができる。 [0051] なお、上記した画像中心 Eは、画像の解像度が例えば XGA (Extended Graphics A rray)の場合では、その左上端から右に 1024Z2ピクセル、下に 768Z2ピクセルの 点となる。ただし、本実施の形態において用いる画像中心という用語は、ピンホール カメラモデルにおいて投影中心 F力 画像平面 Pに下ろした垂線の足と定義される画 像中心とは異なることに注意すべきである。 Note that the projector image plane P corresponds to the image plane in the pinhole camera model, and is hereinafter referred to as an image plane P. The center point on the image plane P is called the image center E. The image plane P is the image coordinates with the image center E as the origin and the horizontal and vertical directions of the image as the X axis and Y axis, respectively. A system can be defined. [0051] Note that, when the image resolution is, for example, XGA (Extended Graphics Array), the above-mentioned image center E is a point of 1024Z2 pixels on the right and 768Z2 pixels on the lower side from the upper left corner. However, it should be noted that the term “image center” used in the present embodiment is different from the image center defined as the foot of the perpendicular line drawn to the projection center F force image plane P in the pinhole camera model.
[0052] また、上記した幾何モデルにおいて、投影中心 Fと画像平面 Pとの距離を焦点距離 Lと定義し、投影中心 Fを通り画像平面 Pに対して垂直な直線を垂直軸 Kとする。なお 、投影中心 Fから画像中心 Eを通り投影領域 Sにおける投影画像の中心点に向かう 方向(画像中心方向)と、上記垂直軸 Kとは大きく異なる。これはつまり、プロジェクタ 2は、その設置の都合上、投影領域 Sに向力つて照射する光の向きが、当該プロジェ クタ 2が設置されている高さよりもやや上向きとなるように設計されている力もである。  In the above geometric model, the distance between the projection center F and the image plane P is defined as a focal length L, and a straight line passing through the projection center F and perpendicular to the image plane P is defined as a vertical axis K. The direction from the projection center F through the image center E to the center point of the projection image in the projection area S (image center direction) and the vertical axis K are greatly different. This means that, for the convenience of installation, the projector 2 is designed so that the direction of the light radiated to the projection area S is slightly higher than the height at which the projector 2 is installed. Power is also.
[0053] また、プロジェクタ力も投影される実環境中の平面を実環境投影面 Rと称する。  A plane in the actual environment on which the projector force is also projected is referred to as an actual environment projection plane R.
[0054] (パンチルトプロジェクタ装置の構成)  [Configuration of Pan / Tilt Projector Apparatus]
次に、本実施の形態に係るパンチルトプロジェクタ装置 1の概略構成について図 1 および図 16を参照して説明する。  Next, a schematic configuration of the pan / tilt projector device 1 according to the present embodiment will be described with reference to FIG. 1 and FIG.
[0055] 上記パンチルトプロジェクト装置は、図 16に示すようにプロジェクタ 2、駆動装置 3、 プロジェクタ制御部 4、入力装置 (軌跡取得部、投影位置情報取得部、調整手段、微 調整手段) 6、カメラ (軌跡取得部、投影位置情報取得部) 5、および情報格納部 (記 憶装置) 7を備えている。  As shown in FIG. 16, the pan / tilt project apparatus includes a projector 2, a driving device 3, a projector control unit 4, an input device (a trajectory acquisition unit, a projection position information acquisition unit, an adjustment unit, a fine adjustment unit) 6, a camera (Trajectory acquisition unit, projection position information acquisition unit) 5 and information storage unit (storage device) 7 are provided.
[0056] 上記プロジェクタ 2は、実環境投影面 Rに対して所望される画像を投影するための ものである。このプロジェクタ 2は、プロジェクタ制御部 4からの指示に応じて、入力さ れた画像データに基づく画像を実環境投影面 Rに投影する。また、上記プロジェクタ 2は、駆動装置 3上に配置されており、駆動装置 3の動きによって投影方向 Jを変更す ることができるようになって!/、る。  The projector 2 is for projecting a desired image onto the real environment projection plane R. The projector 2 projects an image based on the input image data onto the real environment projection plane R in response to an instruction from the projector control unit 4. Further, the projector 2 is arranged on the driving device 3 so that the projection direction J can be changed by the movement of the driving device 3.
[0057] 上記駆動装置 3は、上記プロジェクタ 2によって照射される光の投影方向 J力 水平 方向および垂直方向に移動するように、該プロジェクタ 2を移動させるものである。上 記駆動装置 3は、プロジェクタ制御部 4からの指示に応じて、プロジェクタ 2の投影方 向 Jを移動させる。 [0058] また、上記駆動装置 3は、駆動装置 3自体とプロジェクタ 2との配置関係を調節する 手段も備えている。すなわち、図 4に示すように駆動装置 3は、自装置上において上 記プロジェクタ 2を a;、 13、 γの 3軸方向にスライドさせプロジェクタ 2の配置位置を変 更することができるようになつている。そして、上記駆動装置 3は、プロジェクタ制御部 4からの指示に応じてプロジェクタ 2の配置位置を変更させる。 The drive device 3 moves the projector 2 so as to move in the projection direction J force horizontal direction and vertical direction of the light irradiated by the projector 2. The driving device 3 moves the projection direction J of the projector 2 in response to an instruction from the projector control unit 4. [0058] The driving device 3 also includes means for adjusting the positional relationship between the driving device 3 itself and the projector 2. That is, as shown in FIG. 4, the driving device 3 can change the arrangement position of the projector 2 by sliding the projector 2 on the own device in the three axis directions a, 13, and γ. ing. Then, the driving device 3 changes the arrangement position of the projector 2 in accordance with an instruction from the projector control unit 4.
[0059] 入力装置 6は、例えば、後述する投影中心 Fの初期位置を示す情報などをプロジェ クタ制御部 4に入力するためのものであり、例えば、キーボード、マウス、テンキーなど によって実現できる。  [0059] The input device 6 is for inputting information indicating an initial position of a projection center F, which will be described later, to the projector control unit 4, and can be realized by, for example, a keyboard, a mouse, a numeric keypad, and the like.
[0060] カメラ 5は、投影領域 Sにお 、て投影されて 、る画像などの状態を記録するもので あり、記録した情報はプロジェクタ制御部 4に入力する。  The camera 5 records a state of an image projected on the projection area S, and the recorded information is input to the projector control unit 4.
[0061] 情報格納部 7は、読み書き可能な記憶媒体であり、例えば、ハードディスクやフラッ シュ EEPROMなどによって実現することができる。 The information storage unit 7 is a readable / writable storage medium, and can be realized by, for example, a hard disk or a flash EEPROM.
[0062] この情報格納部 7は、投影中心ずれ量テーブル 72、回転中心座標情報 73、内部 調整情報 71、および外部調整情報 74を有している。 The information storage unit 7 includes a projection center deviation amount table 72, rotation center coordinate information 73, internal adjustment information 71, and external adjustment information 74.
[0063] 上記投影中心ずれ量テーブル 72は、後述する投影中心固定法において生成され るテーブルであって、投影中心 F位置と回転中心 G位置とが確度よく一致するように より精密なプロジェクタ 2と駆動装置 3との位置合わせを行う際に用いられる情報であ る。 [0063] The projection center deviation table 72 is a table generated in a projection center fixing method to be described later, and the projection center F position and the rotation center G position are more precise so that the projection center F position and the rotation center G position coincide with each other accurately. This information is used when positioning with the driving device 3.
[0064] この投影中心ずれ量テーブル 72は、プロジェクタ 2の位置座標と、プロジェクタ 2の 位置ごとの異なる種類のプロジェクタ 2の姿勢による、プロジェクタ 2と実環境投影面 R との間における固定点を通過する光の投影点の軌跡を示す情報が記録されている。  This projection center deviation amount table 72 passes through a fixed point between the projector 2 and the actual environment projection plane R according to the position coordinates of the projector 2 and the attitudes of different types of projectors 2 for each position of the projector 2. Information indicating the locus of the projection point of the light to be recorded is recorded.
[0065] 回転中心座標情報 73は、駆動装置 3によって投影方向 Jが移動させられるプロジェ クタ 2の回転運動の中心位置を示す情報である。この情報は予め、駆動装置 3の設 計段階で求められており、情報格納部 7に回転中心位置座標情報として記憶されて いる。  The rotation center coordinate information 73 is information indicating the center position of the rotational movement of the projector 2 to which the projection direction J is moved by the drive device 3. This information is obtained in advance at the design stage of the drive device 3 and is stored in the information storage unit 7 as rotation center position coordinate information.
[0066] 内部調整情報 71は、後述する内部キャリブレーション時に記憶される情報であり、 具体的には、投影中心 Fを原点とする画像中心 Eの方向ベクトル、投影領域 Sの 4隅 に対応する正接座標 Q上の座標、正接平面 Qと実環境投影面 Rとの関係を示す情報 とが記憶される。なお、この正接平面 Qについての説明は後述する。 [0066] The internal adjustment information 71 is information stored at the time of internal calibration to be described later. Specifically, the internal adjustment information 71 corresponds to the direction vector of the image center E with the projection center F as the origin, and the four corners of the projection region S. Information on the coordinates on the tangent coordinate Q, the relationship between the tangent plane Q and the actual environment projection plane R Is memorized. The tangent plane Q will be described later.
[0067] 外部調整情報 74は、後述する外部キャリブレーション時に記憶される情報であり、 具体的には、各実環境投影面 R上の位置情報 (X , y )と、これらの正接平面 Q上の 位置情報との関係を示す変換行列 H である。なお、この外部調整情報 74は、第 2 [0067] The external adjustment information 74 is information stored at the time of external calibration, which will be described later. Specifically, the positional information (X, y) on each real environment projection plane R and the tangent plane Q This is the transformation matrix H that shows the relationship with the position information. This external adjustment information 74 is the second
QR  QR
変換情報と一致する。  Matches conversion information.
[0068] プロジェクタ制御部 4は、プロジェクタ 2および駆動装置 3の各種制御を行うものであ り、説明の便宜上、プロジェクタ制御部 4が備える各部を、プロジェクタ 2と駆動装置 3 との位置合わせを行い、後述する投影中心 Fを一致させる処理と、後述する内部キヤ リブレーシヨンと外部キャリブレーションとに分けて説明する。  [0068] The projector control unit 4 performs various controls of the projector 2 and the drive device 3. For convenience of explanation, the projector control unit 4 aligns the units included in the projector control unit 4 with the projector 2 and the drive device 3. A description will be given separately for a process for matching the projection center F, which will be described later, and an internal calibration and external calibration, which will be described later.
[0069] すなわち、本実施の形態に係るパンチルトプロジェクタ装置 1では、上記した投影 中心 Fを、パン'チルト回転機構の回転軸の交点(回軸中心)と一致するように、プロ ジェクタ 2と駆動装置 3とが配置されている。なお、非特許文献 7 (和田、浮田、松山、 「視点固定型パンチルトズームカメラとその応用」 電子情報通信学会論文誌、 Vol.J8 1-DII, No.6, pp.1182-1193, 1998.)にはパン'チルト回転機構を有するカメラの構成 が開示されている。  That is, in the pan / tilt projector device 1 according to the present embodiment, the projector 2 and the projector 2 are driven so that the projection center F described above coincides with the intersection (rotation axis center) of the rotation axis of the pan / tilt rotation mechanism. Device 3 is arranged. Non-Patent Document 7 (Wada, Ukita, Matsuyama, “Fixed-viewpoint pan / tilt / zoom camera and its application”, IEICE Transactions, Vol.J8 1-DII, No.6, pp.1182-1193, 1998. ) Discloses a configuration of a camera having a pan / tilt rotation mechanism.
[0070] このように、上記投影中心 Fと回転中心 Gとを一致させることにより、プロジェクタ 2の 姿勢を変化させた場合であっても、プロジェクタ 2の投影中心 F位置を不変とすること ができる。なお、上記プロジェクタ 2の姿勢を変化させるとは、上記パン'チルト回転機 構により、プロジェクタ 2の投影方向 Jが変化するように該プロジェクタ 2を移動させるこ とである。  As described above, by matching the projection center F with the rotation center G, the position of the projection center F of the projector 2 can be made unchanged even when the attitude of the projector 2 is changed. . Note that changing the attitude of the projector 2 means that the projector 2 is moved by the pan / tilt rotation mechanism so that the projection direction J of the projector 2 changes.
[0071] すなわち、本実施の形態に係るパンチルトプロジェクタ装置 1では、姿勢変化に応 じてプロジェクタ 2の投影中心 F位置が変化しない。このため、例えば、 2つの異なる 姿勢のプロジェクタ 2における画像平面 Pの任意の点と、画像平面 Pの任意の点と  That is, in the pan / tilt projector device 1 according to the present embodiment, the projection center F position of the projector 2 does not change in accordance with the posture change. For this reason, for example, an arbitrary point on the image plane P and an arbitrary point on the image plane P in the projector 2 in two different postures
1 2  1 2
の間における関係を、一方の姿勢力 他方の姿勢に変化させた回転角(θ , Θ )か  The rotation angle (θ, Θ) that changes the relationship between
P t ら算出することがでさる。  P t can be calculated.
[0072] よって、任意のプロジェクタ 2の姿勢における画像平面 P座標を、特定の平面座標 に変換することが可能となる。このため、このような特定の平面によってすベての姿勢 における画像平面 Pの座標点を統合して扱うことができる。 [0073] そして、このように特定の平面によって全ての姿勢における画像平面 Pの座標点を 統合して扱うことができるため、実環境投影面 Rに対して、歪みがなぐ位置ずれのな V、画像を描画できるようにするために行うキャリブレーションを容易に行うことができる Therefore, it is possible to convert the image plane P coordinate in an arbitrary projector 2 posture into a specific plane coordinate. For this reason, the coordinate points of the image plane P in all postures can be integrated and handled by such a specific plane. [0073] Since the coordinate points of the image plane P in all postures can be integrated and handled by a specific plane in this way, the displacement V with no distortion relative to the real environment projection plane R can be obtained. Easy calibration to make it possible to draw images
[0074] なお、上記キャリブレーションは、後述するが、本実施の形態に係るパンチルトプロ ジェクタ装置 1において、内部キャリブレーションと外部キャリブレーションとの 2段階 に分けることができる。また、上記した特定の平面を本明細書において正接平面 Qと 称する。 [0074] Although the calibration will be described later, in the pan / tilt projector device 1 according to the present embodiment, the calibration can be divided into two stages of internal calibration and external calibration. Further, the specific plane described above is referred to as a tangent plane Q in this specification.
[0075] なお、この正接平面 Qは、本実施の形態に係るパンチルトプロジェクタ装置 1では、 以下のように定義する。すなわち、この正接平面 Qは、プロジェクタ 2の初期姿勢にお けるパン軸 90とチルト軸 91とによって定まる平面に平行となる平面であり、投影中心 Fと実環境投影面 Rとの間に配置され、かつ投影中心 F (すなわち、回転中心 G)から の距離が 1となる仮想平面である。  Note that the tangent plane Q is defined as follows in the pan / tilt projector device 1 according to the present embodiment. That is, this tangent plane Q is a plane parallel to a plane defined by the pan axis 90 and the tilt axis 91 in the initial posture of the projector 2, and is disposed between the projection center F and the real environment projection plane R. And a virtual plane whose distance from the projection center F (ie, the rotation center G) is 1.
[0076] 以上のようにパンチルトプロジェクタ装置 1において投影中心 Fと回転中心 Gとが一 致するようにプロジェクタ 2と駆動装置 3とが配置されて 、る場合、上記したような利点 が得られるため非常に有効である。  [0076] As described above, in the pan / tilt projector device 1, the projector 2 and the driving device 3 are arranged so that the projection center F and the rotation center G coincide with each other. It is very effective.
[0077] し力しながら、例えば市販のプロジェクタと、該プロジェクタを 360度回転可能とさせ る雲台とを組み合わせてパンチルトプロジェクタを実現する場合、投影中心 Fと回転 中心 Gとが一致するように上記プロジェクタと雲台(駆動装置 3)との配置関係を調整 可能とする構成および方法を備えて 、ることが好ま 、。  However, when a pan / tilt projector is realized by combining, for example, a commercially available projector and a pan / tilt head that allows the projector to be rotated 360 degrees, the projection center F and the rotation center G are matched. It is preferable to provide a configuration and method that can adjust the positional relationship between the projector and the pan head (drive device 3).
[0078] ここで以下において、本実施の形態に係るプロジェクタ 2の投影中心 Fと回転中心 Gとを一致させるようにプロジェクタ 2と駆動装置 3とを配置するプロジェクタ制御部 4 が備える各部の構成および方法 (投影中心固定法)について説明する。  Here, in the following, the configuration of each unit included in the projector control unit 4 in which the projector 2 and the driving device 3 are arranged so that the projection center F and the rotation center G of the projector 2 according to the present embodiment coincide with each other. The method (projection center fixing method) will be described.
[0079] (投影中心固定法に関するプロジェクタ制御部 4の構成)  [0079] (Configuration of projector control unit 4 regarding the projection center fixing method)
本実施の形態に係るパンチルトプロジェクタ装置 1では、上記した投影中心 Fと回転 中心 Gとが一致するように、プロジェクタ 2と駆動装置 3との配置関係を調整可能とす るために、図 17に示す各部を備えている。  In the pan / tilt projector device 1 according to the present embodiment, in order to make it possible to adjust the positional relationship between the projector 2 and the driving device 3 so that the projection center F and the rotation center G coincide with each other, FIG. Each part shown is provided.
[0080] すなわち、プロジェクタ制御部 4は、位置調整部 (調整手段) 41、微調整部 (微調整 手段) 42、姿勢調整部 43、回転中心位置受信部(回転中心位置情報取得手段) 44 、投影中心位置特定部 (投影中心位置情報特定手段) 45、および調整位置算出部( 位置調整算出手段) 46を備えている。また、情報格納部 7には、投影中心ずれ量テ 一ブル 72および回転中心座標情報 73が記憶されている。 That is, the projector control unit 4 includes a position adjustment unit (adjustment unit) 41 and a fine adjustment unit (fine adjustment). Means) 42, posture adjustment unit 43, rotation center position reception unit (rotation center position information acquisition unit) 44, projection center position identification unit (projection center position information identification unit) 45, and adjustment position calculation unit (position adjustment calculation unit) It has 46. The information storage unit 7 stores a projection center deviation amount table 72 and rotation center coordinate information 73.
[0081] 位置調整部 41は、駆動装置 3とプロジェクタ 2との配置関係を調整するように上記 駆動装置 3に指示するものである。この位置調整部 41は、回転中心位置受信部 44 および投影中心位置特定部 45から受信した回転中心 G位置および投影中心 F位置 を示す座標情報に基づき、駆動装置 3にプロジェクタ 2をスライドさせ移動させるよう に指示する。 The position adjusting unit 41 instructs the driving device 3 to adjust the positional relationship between the driving device 3 and the projector 2. The position adjustment unit 41 slides and moves the projector 2 to the driving device 3 based on the coordinate information indicating the rotation center G position and the projection center F position received from the rotation center position receiving unit 44 and the projection center position specifying unit 45. Instruct.
[0082] 回転中心位置受信部 44は、位置調整部 41からの指示に応じて、情報格納部 7か ら回転中心座標情報 73を取得するものである。回転中心位置受信部 44は、取得し た回転中心座標情報 73を位置調整部 41に送信する。  The rotation center position receiving unit 44 acquires the rotation center coordinate information 73 from the information storage unit 7 in response to an instruction from the position adjustment unit 41. The rotation center position receiving unit 44 transmits the acquired rotation center coordinate information 73 to the position adjustment unit 41.
[0083] 投影中心位置特定部 45は、カメラ 5から取得した照射された光の軌跡を示す情報 力も投影中心 F位置を算出するものである。投影中心 F位置は算出した投影中心 F 位置の情報を位置調整部 41に送信する。なお、この投影中心位置特定部 45によつ て算出され特定された投影中心 F位置は、本明細書では投影中心 Fの初期位置と定 義する。  The projection center position specifying unit 45 also calculates the projection center F position for the information force indicating the trajectory of the irradiated light acquired from the camera 5. The projection center F position transmits the calculated projection center F position information to the position adjustment unit 41. Note that the projection center F position calculated and specified by the projection center position specifying unit 45 is defined as the initial position of the projection center F in this specification.
[0084] 微調整部 42は、調整位置算出部 46からの指示に応じて、駆動装置 3にプロジェク タ 2と駆動装置 3との配置関係を投影中心 Fの初期位置力も修正するように指示する ものである。  In response to an instruction from adjustment position calculation unit 46, fine adjustment unit 42 instructs drive unit 3 to correct the positional relationship between projector 2 and drive unit 3 so that the initial position force of projection center F is also corrected. Is.
[0085] 調整位置算出部 46は、カメラ 5から受信した、プロジェクタ 2と実環境投影面尺との 間に設けられた固定点を通過する、異なる姿勢によって照射された光の投影点の軌 跡を受信するものである。調整位置算出部 46は、受信した光の軌跡を示す情報をプ ロジェクタ 2の位置と対応付けて投影中心ずれ量テーブル 72として情報格納部 7に 記憶させている。  The adjustment position calculation unit 46 tracks the projection point of the light received from the camera 5 and passing through a fixed point provided between the projector 2 and the real environment projection plane scale and irradiated with a different posture. Is to be received. The adjustment position calculation unit 46 stores information indicating the received light trajectory in the information storage unit 7 as the projection center deviation amount table 72 in association with the position of the projector 2.
[0086] そして、この投影中心ずれ量テーブル 72に基づき、該光の軌跡が一点に収束する 場合におけるプロジェクタ 2の位置を算出するものである。調整位置算出部 46は算 出した結果を微調整部 42に送信する。 [0087] 姿勢調整部 43は、プロジェクタ 2の投影方向 Jを変更させるように駆動装置 3に指示 するものである。例えば、調整位置算出部 46が、プロジェクタ 2と実環境投影面尺との 間に設けられた固定点を通過する、異なる姿勢によって照射された光の投影点の軌 跡を取得する場合は、この調整位置算出部 46からの指示に応じて駆動装置 3にプロ ジェクタ 2の投影方向 Jを変更させるように指示して 、る。 Then, based on the projection center deviation amount table 72, the position of the projector 2 when the light locus converges to one point is calculated. The adjustment position calculation unit 46 transmits the calculated result to the fine adjustment unit 42. The attitude adjustment unit 43 instructs the drive device 3 to change the projection direction J of the projector 2. For example, when the adjustment position calculation unit 46 acquires a trajectory of a projection point of light irradiated with a different posture that passes through a fixed point provided between the projector 2 and the real environment projection plane scale, In response to an instruction from the adjustment position calculation unit 46, the drive unit 3 is instructed to change the projection direction J of the projector 2.
[0088] また、この姿勢調整部 43は、後述する内部キャリブレーションでは、入力装置 6から の指示に応じて姿勢を変更させることもできる。  In addition, the posture adjustment unit 43 can change the posture in response to an instruction from the input device 6 in internal calibration described later.
[0089] (投影中心固定法)  [0089] (Projection center fixed method)
本実施の形態に係るパンチルトプロジェクタ装置 1では、プロジェクタ 2を図 2に示す ようなパン'チルト 2軸の回転機構 (ジンバル機構)を有する駆動装置 3によって、プロ ジェクタ 2の投影方向 Jを水平方向および垂直方向に移動させることができるようにな つている。  In the pan / tilt projector apparatus 1 according to the present embodiment, the projector 2 is driven in the horizontal direction with the projection direction J of the projector 2 by the driving apparatus 3 having a pan / tilt two-axis rotation mechanism (gimbal mechanism) as shown in FIG. It can be moved vertically.
[0090] なお、本実施の形態に係るプロジェクタ 2の回転範囲は、水平方向(パン)に 60 度から 60度までの範囲、垂直方向(チルト)に— 30度から 30度まで移動することがで きる。ただし、この回転範囲はこれに限定されるものではなぐプロジェクタ 2によって 投影する領域の範囲に応じて適切に設定される。なお、上記パンは右向きの回転角 を正、上記チルトは下向きの回転角を負として表すものとする。  [0090] It should be noted that the rotation range of projector 2 according to the present embodiment can move from 60 degrees to 60 degrees in the horizontal direction (pan) and from -30 degrees to 30 degrees in the vertical direction (tilt). it can. However, the rotation range is appropriately set according to the range of the area to be projected by the projector 2 which is not limited to this. It should be noted that the pan represents the right rotation angle as positive, and the tilt represents the downward rotation angle as negative.
[0091] また、本実施の形態に係るプロジェクタ 2は、上述したように上記駆動装置 3に対し て、 α、 β、 γの 3軸方向にスライド可能な機構となっている。なお、上記駆動装置 3 は、プロジェクタ 2が備える照射レンズ部 21の下端点を基準として、この点から α軸方 向に amm、 β軸方向に bmm、 y軸方向に cmmと!、うように移動させるように構成さ れている。なお、この移動の基準点はこれに限定されるものではなぐ例えばプロジ クタ 2を形成する筐体の重心を基準としてもょ 、。  Further, as described above, projector 2 according to the present embodiment has a mechanism that can slide in the three axial directions of α, β, and γ with respect to drive device 3 described above. The drive device 3 is based on the lower end point of the irradiation lens unit 21 included in the projector 2 as a reference from this point to amm in the α-axis direction, bmm in the β-axis direction, and cmm in the y-axis direction! It is configured to move. Note that the reference point for this movement is not limited to this, for example, the center of gravity of the housing forming the projector 2 is used as a reference.
[0092] 本実施の形態に係るパンチルトプロジェクタ装置 1における「投影中心固定法」では 、まず、投影中心 Fのおよその位置である投影中心 Fの初期位置を求め、この投影中 心 Fの初期位置と回転中心 Gとを一致させる。なお、回転中心 Gの空間的位置(3次 元の座標点)は、回転機構の構成から予め求めることができる。本実施の形態に係る パンチルトプロジェクタ装置 1では、この回転中心 Gの座標点の情報を予め情報格納 部 7が記録している。 In the “projection center fixing method” in the pan / tilt projector device 1 according to the present embodiment, first, an initial position of the projection center F, which is an approximate position of the projection center F, is obtained, and the initial position of the projection center F is obtained. And the rotation center G. Note that the spatial position (three-dimensional coordinate point) of the rotation center G can be obtained in advance from the configuration of the rotation mechanism. In the pan / tilt projector device 1 according to the present embodiment, information on the coordinate point of the rotation center G is stored in advance. Part 7 is recorded.
[0093] そして次に、投影中心 Fの初期位置が回転中心 Gと一致するように、駆動装置 3上 に設置したプロジェクタ 2を移動させ、精密な位置合わせを行う。  [0093] Next, the projector 2 installed on the driving device 3 is moved so that the initial position of the projection center F coincides with the rotation center G, and precise alignment is performed.
[0094] (投影中心初期位置の求め方)  [0094] (How to find the initial position of the projection center)
そこでまず、投影中心 Fの初期位置の求め方について説明する。  First, how to obtain the initial position of the projection center F will be described.
[0095] まず、本実施の形態に係るパンチルトプロジェクタ装置 1を、プロジェクタ 2が水平面 上と平行になるように設置する。そして、図 5 (a)に示すように、プロジェクタ 2の照射レ ンズ部 21の正面に平面板を上記水平面に対して鉛直に設置する。すなわち、上記 平面板の平面を上記垂直軸 Kに平行であり、かつ水平面に対して垂直に立設する。  First, the pan / tilt projector device 1 according to the present embodiment is installed so that the projector 2 is parallel to the horizontal plane. Then, as shown in FIG. 5 (a), a plane plate is installed perpendicularly to the horizontal plane in front of the irradiation lens portion 21 of the projector 2. That is, the plane of the flat plate is erected in parallel to the vertical axis K and perpendicular to the horizontal plane.
[0096] このような状態においてプロジェクタ 2から投影を行うと、上記平面板の平面上に投 影された垂直方向における光の軌跡を観察することができる。そこで、上記平面上に おけるこの光の軌跡にぉ 、て、照射領域と非照射領域との上下の境界線を記録する  If projection is performed from the projector 2 in such a state, the trajectory of light in the vertical direction projected on the plane of the plane plate can be observed. Therefore, the upper and lower boundary lines between the irradiated area and the non-irradiated area are recorded on the trajectory of the light on the plane.
[0097] また、続いて図 5 (b)に示すように、プロジェクタ 2の照射レンズ部 21の正面に平面 板を上記水平面と平行に設置する。すなわち、上記平面板の平面を上記垂直軸 Kに 平行であり、かつ水平面に対して平行となるように設置する。 Next, as shown in FIG. 5B, a plane plate is installed in front of the irradiation lens portion 21 of the projector 2 in parallel with the horizontal plane. That is, the plane of the plane plate is installed so as to be parallel to the vertical axis K and parallel to the horizontal plane.
[0098] そして、このように平面板を設置しプロジェクタ 2から投影を行うと、図 5 (b)に示すよ うに、プロジェクタ 2の水平方向に光の軌跡を観察することができる。そして、上記平 面上におけるこの光の軌跡において、照射領域と非照射領域との上下の境界線を記 録する。  Then, when a flat plate is installed and projection is performed from the projector 2 as described above, the locus of light can be observed in the horizontal direction of the projector 2 as shown in FIG. Then, the upper and lower boundary lines between the irradiated area and the non-irradiated area are recorded in the light trajectory on the plane.
[0099] 上記記録した水平方向と垂直方向とにおける光の境界線をそれぞれ延長して得ら れる交点 A, Bがー致する位置を投影中心の初期位置とする。そして、この求められ た初期位置と回転中心 Gとが一致するようにプロジェクタ 2をひ軸、 |8軸、 γ軸それぞ れにスライドさせて駆動装置 3上を移動させる。  [0099] The position where the intersections A and B obtained by extending the boundary lines of the light in the recorded horizontal and vertical directions respectively coincide with each other as the initial position of the projection center. Then, the projector 2 is slid on the long axis, the | 8 axis, and the γ axis so as to move on the driving device 3 so that the obtained initial position and the rotation center G coincide with each other.
[0100] すなわち、本実施の形態に係るパンチルトプロジェクタ装置 1では、上記した 2方向 における照射領域と非照射領域とをカメラ 5によって記録する。そして、この記録され た情報は、プロジェクタ制御装置に送信される。プロジェクタ制御装置では、カメラ 5 力も送信された上記記録された情報を投影中心位置特定部 45が受信し、上記初期 位置の 3次元座標の情報を算出する。 That is, in the pan / tilt projector device 1 according to the present embodiment, the irradiation region and the non-irradiation region in the two directions described above are recorded by the camera 5. This recorded information is transmitted to the projector control device. In the projector control device, the projection center position specifying unit 45 receives the recorded information to which the camera 5 force has been transmitted, and receives the initial information. Calculate the 3D coordinates of the position.
[0101] なお、上記投影中心位置特定部 45は、カメラ 5によって記録された情報に基づき初 期位置を算出する構成であるが、上記した照射領域と非照射領域との記録をユーザ が実際に測定し、この測定した結果を、入力装置 6を操作してプロジェクタ制御部 4に 入力する。そして、この入力された測定結果に基づいて上記初期位置の 3次元座標 の情報を算出する構成であってもよい。このように構成されている場合は、本実施の 形態に係るパンチルトプロジェクタ装置 1は、上記カメラ 5を備えていなくてもよい。な お、この場合、上記入力装置 6によって投影位置情報取得部を実現する。  [0101] The projection center position specifying unit 45 is configured to calculate the initial position based on the information recorded by the camera 5. However, the user actually records the irradiation area and the non-irradiation area as described above. The measurement result is input to the projector control unit 4 by operating the input device 6. And the structure which calculates the information of the three-dimensional coordinate of the said initial position based on this input measurement result may be sufficient. When configured in this manner, the pan / tilt projector device 1 according to the present embodiment may not include the camera 5. In this case, a projection position information acquisition unit is realized by the input device 6.
[0102] 上記投影中心位置特定部 45は、上記初期位置の情報を算出すると、この算出結 果 (初期位置情報)を位置調整部 41に送信する。  When the projection center position specifying unit 45 calculates the initial position information, the projection center position specifying unit 45 transmits the calculation result (initial position information) to the position adjusting unit 41.
[0103] 位置調整部 41は、投影中心位置特定部 45から初期位置情報を受信すると、回転 中心位置受信部 44に指示して情報格納部 7から回転中心座標情報 73を取得する。 すなわち、回転中心位置受信部 44は、投影中心位置特定部 45からの指示に応じて 、情報格納部 7から回転中心座標情報 73を取得すると取得した回転中心座標情報 7 3を駆動装置 3に送信する。  When the position adjusting unit 41 receives the initial position information from the projection center position specifying unit 45, the position adjusting unit 41 instructs the rotation center position receiving unit 44 to acquire the rotation center coordinate information 73 from the information storage unit 7. That is, when the rotation center position receiving unit 44 acquires the rotation center coordinate information 73 from the information storage unit 7 in response to an instruction from the projection center position specifying unit 45, the rotation center position information unit 73 transmits the acquired rotation center coordinate information 73 to the drive device 3. To do.
[0104] 位置調整部 41は、投影中心位置特定部 45から初期位置の情報を、一方、回転中 心位置受信部 44から回転中心座標情報 73を受信すると。これらの情報に基づき、 プロジェクタ 2の配置位置を駆動装置 3に指示する。  The position adjustment unit 41 receives the initial position information from the projection center position specifying unit 45, and receives the rotation center coordinate information 73 from the rotation center position receiving unit 44. Based on these pieces of information, the position of the projector 2 is instructed to the driving device 3.
[0105] そして、駆動装置 3は、位置調整部 41からの指示に応じてプロジェクタ 2を α軸、 j8 軸、 γ軸それぞれにスライドさせて移動させる。  Then, the driving device 3 slides and moves the projector 2 to each of the α axis, the j8 axis, and the γ axis in response to an instruction from the position adjustment unit 41.
[0106] ただし、上記において記録した水平方向および垂直方向における境界線を誤差な く記録することは困難である。したがって、上記して得られた投影中心 Fの初期位置 は誤差を含むものとなっている。そこで、この誤差を修正するための精密な位置あわ せ行う。以下において、投影中心 Fと回転中心 Gとの精密な位置合わせの方法につ いて説明する。  However, it is difficult to record the boundary lines recorded in the above in the horizontal and vertical directions without error. Therefore, the initial position of the projection center F obtained above includes an error. Therefore, we will perform precise positioning to correct this error. In the following, a method for precise alignment between the projection center F and the rotation center G will be described.
[0107] (投影中心の精密な位置合わせ)  [0107] (Precise alignment of projection center)
図 6に示すように、プロジェクタ 2の投影方向 Jの前方かつ、実環境投影面 Rと該プロ ジヱクタ 2との間に衝立を設置する。この衝立は、矩形形状の平板によって構成され ており、この衝立の平面がプロジェクタ 2の投影方向 Jに対して垂直となるように設置さ れている。なお、この衝立には一箇所穴が開けられており、この穴を通過した光のみ が実環境投影面 Rに届くようになつている。そして、この投影される光は全面単色で ある。 As shown in FIG. 6, a partition is installed in front of the projection direction J of the projector 2 and between the actual environment projection plane R and the projector 2. This partition is composed of a rectangular flat plate. The screen is set so that the plane of the screen is perpendicular to the projection direction J of the projector 2. This partition has a hole in one place, and only the light that has passed through this hole reaches the actual environment projection plane R. The projected light is monochromatic on the entire surface.
[0108] 一方、実環境投影面 R側にはカメラ 5が設置されており、実環境投影面 R上に投影 された光を観察することができるようになって 、る。  On the other hand, a camera 5 is installed on the real environment projection plane R side, so that light projected on the real environment projection plane R can be observed.
[0109] このような状態において、プロジェクタ 2の投影方向 Jを所定範囲の角度で水平方向 あるいは垂直方向に移動させ、プロジェクタ 2の姿勢を変化させる。  [0109] In such a state, the projection direction J of the projector 2 is moved in the horizontal direction or the vertical direction by an angle within a predetermined range, and the posture of the projector 2 is changed.
[0110] ここで、投影中心 Fと回転中心 Gとが完全に一致するようにプロジェクタ 2と駆動装 置 3とが配置されている場合、このプロジェクタ 2の姿勢が変化したとしても、上記衝 立に設けられた穴を通過して投影された光は、実環境投影面 R上の一点に静止した ままとなる。ところが、上記投影中心 Fと回転中心 Gとがずれている場合、そのずれの 大きさに応じて投影された光の点 (投影点)は、実環境投影面 R上を移動することとな る。  [0110] Here, when the projector 2 and the driving device 3 are arranged so that the projection center F and the rotation center G completely coincide with each other, even if the attitude of the projector 2 is changed, the above-mentioned screen The light projected through the hole provided at the point remains stationary at one point on the real environment projection plane R. However, when the projection center F and the rotation center G are deviated from each other, the projected light point (projection point) moves on the real environment projection plane R according to the magnitude of the deviation. .
[0111] そこで、まず、上記で算出した初期値の座標が回転中心 Gの座標と一致するように プロジェクタ 2と駆動装置 3との位置合わせをする。この状態から上記プロジェクタ 2を 駆動装置 3上でひ、 13、 γ軸の 3軸方向それぞれに微小にスライドさせて移動させつ つ、移動させたそれぞれの位置ごとにプロジェクタ 2の姿勢を変化させる。そして、力 メラ5が、上記投影点の実環境投影面 R上における軌跡を撮影し、この撮影結果から 上記軌跡を計測する。このようにして、この軌跡領域が最小になるような、(すなわち、 最終的には実環境投影面 R上の一点状態となるような) α、 βヽ γ 3軸における位置( 座標点)を探索する。 Therefore, first, the projector 2 and the driving device 3 are aligned so that the coordinates of the initial value calculated above coincide with the coordinates of the rotation center G. From this state, the projector 2 is slid slightly in the three directions of the 13 and γ axes on the driving device 3 and moved, and the attitude of the projector 2 is changed for each moved position. Then, the force lens 5 captures a trajectory of the projection point on the real environment projection plane R, and measures the trajectory from the photographing result. In this way, the positions (coordinate points) in the α, β ヽ γ 3 axes that minimize this trajectory region (that is, eventually become one point state on the real environment projection plane R) Explore.
[0112] つまり、上記初期位置と回転中心 G位置とがー致している状態において、プロジェ クタ 2の投影方向 Jを、所定範囲の角度で水平方向あるいは垂直方向に移動させる。 すなわち、ユーザが上記初期位置と回転中心 G位置とがー致している状態において 、入力装置 6を操作して、プロジェクタ 2の投影方向 Jを変更するように姿勢調整部 43 に指示する。この指示を受けて姿勢調整部 43はプロジェクタ 2の投影方向 Jを変更す るように指示する。 [0113] そして、このように姿勢変更したプロジェクタ 2からの照射光力 上記衝立の穴を通 過することによって形成される、実環境投影面 R上における投影点の軌跡をカメラ 5 で記録しプロジェクタ制御装置に入力する。 That is, in a state where the initial position and the rotation center G position are coincident with each other, the projection direction J of the projector 2 is moved in the horizontal direction or the vertical direction by an angle within a predetermined range. That is, the user operates the input device 6 in a state where the initial position is coincident with the rotation center G position, and instructs the posture adjustment unit 43 to change the projection direction J of the projector 2. In response to this instruction, the attitude adjustment unit 43 instructs the projector 2 to change the projection direction J. Then, the irradiation light power from the projector 2 whose posture has been changed in this way is recorded by the camera 5 to record the locus of the projection point on the real environment projection plane R formed by passing through the hole in the partition. Input to the control unit.
[0114] プロジェクタ制御装置では、調整位置算出部 46が、入力された投影点の軌跡の座 標情報力 投影点の軌跡によって形成される領域の面積を計算し情報格納部 7に記 録する。なお、調整位置算出部 46は、上記投影点の軌跡によって形成される領域の 面積を、現在の投影中心位置 (初期位置)の座標を示す情報とともに記録する。  In the projector control apparatus, the adjustment position calculation unit 46 calculates the coordinate information force of the input projection point trajectory, and records the area of the region formed by the projection point trajectory in the information storage unit 7. The adjustment position calculation unit 46 records the area of the region formed by the locus of the projection point together with information indicating the coordinates of the current projection center position (initial position).
[0115] 続いて、上記初期位置と回転中心 G位置とを一致させている状態から、 α、 β、 γ 軸それぞれにプロジェクタ 2を移動させ投影中心 F位置を微小に移動させる。すなわ ち、ユーザが入力装置 6を操作して投影中心 Fを移動させる位置についての情報を 位置調整部 41に送信する。このユーザ力 入力された情報に基づき位置調整部 41 は駆動装置 3に指示して投影中心 Fの位置を微小に変更させる。また、位置調整部 4 1はこの変更した投影中心 Fの位置についての情報を調整位置算出部 46に通知す る。  [0115] Next, from the state where the initial position and the rotation center G position coincide with each other, the projector 2 is moved along the α, β, and γ axes to slightly move the projection center F position. In other words, the user operates the input device 6 to transmit information about the position to move the projection center F to the position adjustment unit 41. Based on the information input by the user force, the position adjustment unit 41 instructs the driving device 3 to slightly change the position of the projection center F. Further, the position adjustment unit 41 notifies the adjustment position calculation unit 46 of information on the changed position of the projection center F.
[0116] このように、投影中心 Fの位置が初期位置力 微小に移動させられた位置において 、入力装置 6を介してユーザ力もの指示に応じて、姿勢調整部 43はプロジェクタ 2に 姿勢を変更するように指示する。そして、このプロジェクタ 2と駆動装置 3との配置関 係にぉ 、て記録した投影点によって形成される領域の面積をカメラ 5が記録し、調整 位置算出部 46に送信する。この作業を複数の α、 βヽ γ座標位置について行い、そ れぞれの位置ごとに情報格納部 7に投影中心 F位置と投影点の軌跡によって形成さ れる領域の面積とを対応付けて記録する。 [0116] In this way, at the position where the position of the projection center F is moved slightly by the initial position force, the posture adjustment unit 43 changes the posture to the projector 2 in response to an instruction from the user via the input device 6. To instruct. Then, the camera 5 records the area of the area formed by the recorded projection points in accordance with the positional relationship between the projector 2 and the driving device 3 and transmits it to the adjustment position calculation unit 46. This operation is performed for a plurality of α and β ヽ γ coordinate positions, and the projection center F position and the area of the area formed by the locus of the projection point are recorded in the information storage unit 7 in association with each position. To do.
[0117] そして、調整位置算出部 46は、情報格納部 7に記録された複数の投影中心 Fの位 置と軌跡領域の面積との対応関係を示す投影中心ずれ量テーブル 72に基づき、軌 跡領域が最小となるひ、 βヽ γ軸における座標情報を算出する。そして、調整位置算 出部 46は、この算出した座標情報を微調整部 42に送信する。  [0117] Then, the adjustment position calculation unit 46 is based on the projection center deviation amount table 72 indicating the correspondence between the positions of the plurality of projection centers F recorded in the information storage unit 7 and the area of the locus region. The coordinate information on the β ヽ γ axis where the region is the smallest is calculated. Then, the adjustment position calculation unit 46 transmits the calculated coordinate information to the fine adjustment unit 42.
[0118] 微調整部 42は、この受信した座標情報を駆動装置 3に送信し、算出された座標位 置にプロジェクタ 2が配置されるように指示する。この微調整部 42からの指示に応じ て、駆動装置 3は、プロジェクタ 2を a;、 β、 γ軸方向それぞれにスライドさせて移動さ る。 The fine adjustment unit 42 transmits the received coordinate information to the driving device 3 and instructs the projector 2 to be arranged at the calculated coordinate position. In response to the instruction from the fine adjustment unit 42, the driving device 3 slides the projector 2 in the a ;, β, and γ axis directions and moves. The
[0119] 以上のようにして、本実施の形態に係るパンチルトプロジェクタ装置 1では、投影中 心 Fと回転中心 Gとが一致するようにプロジェクタ 2と駆動装置 3との配置関係を調整 することができる。  As described above, in the pan / tilt projector device 1 according to the present embodiment, the positional relationship between the projector 2 and the driving device 3 can be adjusted so that the projection center F and the rotation center G coincide with each other. it can.
[0120] なお、上記調整位置算出部 46は、カメラ 5によって記録された情報に基づき、上記 軌跡領域が最小となる座標情報を算出する構成であるが、以下のように構成されて いてもよい。  [0120] The adjustment position calculation unit 46 is configured to calculate coordinate information that minimizes the trajectory region based on information recorded by the camera 5, but may be configured as follows. .
[0121] すなわち、上記衝立の穴を通過することによって形成される、実環境投影面 R上に おける投影点の軌跡をユーザが実際に測定する。そして、この測定した結果を、入力 装置 6を操作してプロジェクタ制御部 4に入力する。そして、この入力された測定結果 に基づいて上記軌跡領域が最小となる座標情報を算出する構成であってもよい。こ のように構成されている場合は、本実施の形態に係るパンチルトプロジェクタ装置 1は 、上記カメラ 5を備えていなくてもよい。なお、この場合、入力装置 6によって軌跡取得 部を実現する。  That is, the user actually measures the locus of the projection point on the actual environment projection plane R formed by passing through the partition hole. Then, the measurement result is input to the projector control unit 4 by operating the input device 6. And the structure which calculates the coordinate information from which the said locus | trajectory area becomes the minimum based on this input measurement result may be sufficient. When configured in this way, the pan / tilt projector apparatus 1 according to the present embodiment may not include the camera 5. In this case, the input device 6 implements a trajectory acquisition unit.
[0122] ところで、実環境投影面 R座標表現による描画を実現する、すなわち、実環境投影 面 Rにお ヽて所望される画像の投影領域 Sを座標表現により規定するためには、投 影面座標系(実環境投影面 Rの座標)で表現される座標値カゝら上記プロジェクタ 2の 姿勢と、投影すべき入力画像の情報 (プロジェクタ投影画像の座標値、すなわち入力 画像中における画素アドレスを示す情報)との対応関係を求める必要がある。  [0122] By the way, in order to realize drawing by the real environment projection plane R coordinate representation, that is, to define the projection area S of the desired image on the real environment projection plane R by the coordinate representation, the projection plane In addition to the coordinate values expressed in the coordinate system (the coordinates of the real environment projection plane R), the attitude of the projector 2 and the information of the input image to be projected (the coordinate values of the projector projection image, that is, the pixel address in the input image) It is necessary to obtain the correspondence with the information shown.
[0123] なお、本実施の形態に係るパンチルトプロジェクタ装置 1では、実環境投影面尺で 表現される座標値を、実環境投影面 R上の座標 (x、 y;Param. 1)とし、プロジェクタ 投影画像の座標値を画像平面 P上の座標 (X、 Y;Param. 2)とする。また、プロジェ クタ 2の姿勢は、プロジェクタ 2の投影方向 Jを規定するパン角、チルト角それぞれを( θ , Θ ; Param. 3)として示すこととする。  Note that in the pan / tilt projector device 1 according to the present embodiment, the coordinate values expressed on the real environment projection plane scale are the coordinates (x, y; Param. 1) on the real environment projection plane R, and the projector Let the coordinate value of the projected image be the coordinates (X, Y; Param. 2) on the image plane P. In addition, the attitude of the projector 2 is indicated by (θ, Θ; Param. 3) as the pan angle and tilt angle that define the projection direction J of the projector 2, respectively.
P t  P t
[0124] すなわち、 Param. l〜Param. 3それぞれでの関係が求められれば、投影面座標 系(実環境投影面 Rの座標)で表現される座標値 (x、 y)力 上記プロジェクタ 2の姿 勢(θ , Θ )と、投影する入力画像の情報 (画像平面 P上の座標値)(X、Y)との対応 [0124] That is, if the relationship between Param. L to Param. 3 is obtained, the coordinate value (x, y) force expressed in the projection plane coordinate system (the coordinates of the real environment projection plane R) Correspondence between appearance (θ, Θ) and projected input image information (coordinate values on image plane P) (X, Y)
P t P t
関係を求めることが可能となる。 [0125] そこで、本実施の形態に係るパンチルトプロジェクタ装置 1では、上記した Param. l〜Param. 3それぞれの関係を求める作業をキャリブレーションと称し、特にこのキ ヤリブレーシヨンは、内部キャリブレーションと外部キャリブレーションの 2段階によって 行うように設定されている。 It is possible to seek a relationship. Therefore, in the pan / tilt projector device 1 according to the present embodiment, the above-described operation for obtaining the relationship between Param. L to Param. 3 is referred to as calibration, and in particular, this calibration is referred to as internal calibration. It is set to be performed in two stages of external calibration.
[0126] すなわち、図 7に示すように、投影中心 Fと回転中心 Gとを一致させた後 (ステップ S 11、これ以降 S11のように称する)、内部キャリブレーション (S12)、そして、外部キヤ リブレーシヨン(S13)を行うようになって!/、る。  That is, as shown in FIG. 7, after matching the projection center F with the rotation center G (step S 11, hereinafter referred to as S 11), internal calibration (S 12) and external calibration are performed. I started playing Rebirth (S13)!
[0127] 上記内部キャリブレーション(S12)とは、パンチルトプロジェクタ装置 1の設置環境 に依存しないプロジェクタ 2固有のパラメータを求めることである。なお、このプロジェ クタ 2固有のパラメータとは、上記プロジェクタ幾何モデルにおいて定義した、焦点距 離 L、垂直軸 Kに対する投影光の方向(傾き)、画像平面 Pの大きさなどの値である。  [0127] The internal calibration (S12) is to obtain parameters unique to the projector 2 that do not depend on the installation environment of the pan / tilt projector apparatus 1. The parameters unique to the projector 2 are values such as the focal length L, the direction (tilt) of the projection light with respect to the vertical axis K, and the size of the image plane P defined in the projector geometric model.
[0128] 本実施の形態に係るパンチルトプロジェクタ装置 1では、内部キャリブレーションに おいて、入力画像の画素アドレス、すなわち画像平面 P上の入力画像の座標と、実 環境投影面 R上の座標との関係と、プロジェクタ 2の姿勢と実環境投影面 Rとの関係 を求める。そして、これら求めた関係から後述する正接平面 Q上の座標と実環境投影 面 R上の座標との変換行列、投影中心 Fから投影面に向カゝぅ画像中心 Eの方向べタト ル、および画像平面 Pの範囲を規定する 4隅の投影中心 F点力 の方向ベクトルを求 める。なお、この内部キャリブレーションは、所定の実環境投影面 Rに対して 1台のプ ロジェクタ 2にっき 1度だけ行えばよい。  In the pan / tilt projector device 1 according to the present embodiment, in the internal calibration, the pixel address of the input image, that is, the coordinates of the input image on the image plane P and the coordinates on the real environment projection plane R are calculated. The relationship between the orientation of the projector 2 and the actual environment projection plane R is obtained. From these relationships, a transformation matrix between coordinates on the tangent plane Q and coordinates on the real environment projection plane R, which will be described later, a direction vector from the projection center F to the projection plane, and a direction vector from the image center E to the projection plane, and Find the direction vector of the projection center F point force at the four corners that define the range of image plane P. This internal calibration needs to be performed only once for one projector 2 with respect to a predetermined real environment projection plane R.
[0129] 一方、上記外部キャリブレーション(S13)とは、実環境中におけるプロジェクタ 2の 位置または姿勢を特定するパラメータを求めることである。この外部キヤリブレーショ ンは、プロジェクタ 2を設置した場所ごとに応じて行う必要がある作業である。このため 、 1台のプロジェクタ 2に対して複数回行う必要があると予想される外部キヤリブレーシ ヨンはできる限り容易に行うことができることが好ま 、。  On the other hand, the external calibration (S13) is to obtain a parameter for specifying the position or orientation of the projector 2 in the actual environment. This external calibration is an operation that needs to be performed depending on the location where the projector 2 is installed. For this reason, it is preferable that external calibration, which is expected to be performed multiple times for one projector 2, can be performed as easily as possible.
[0130] (内部キャリブレーション)  [0130] (Internal calibration)
以下において図 8〜図 12、および図 18を参照して内部キャリブレーションの処理に 関するプロジェクタ制御部 4の各部の構成および、内部キャリブレーションの手法に ついての詳細を説明する。 [0131] (内部キャリブレーション処理に関する構成) Hereinafter, with reference to FIGS. 8 to 12 and FIG. 18, the configuration of each part of the projector control unit 4 related to the internal calibration process and the details of the internal calibration method will be described. [0131] (Configuration related to internal calibration processing)
まず、図 18を参照して、内部キャリブレーション処理に関するプロジェクタ制御部 4 の各部の構成について説明する。  First, the configuration of each part of the projector control unit 4 related to the internal calibration process will be described with reference to FIG.
[0132] 図 18に示すように、本実施の形態に係るプロジェクタ制御部 4は、生成画像データ 受信部 (画像データ受付け手段) 52、画像データ補正部 53、調整情報取得部 (調整 情報取得手段) 54、第 1関係算出部 (第 1関係算出手段) 55、および第 2関係算出部 (第 2関係算出手段) 56を備えている。  As shown in FIG. 18, the projector control unit 4 according to the present embodiment includes a generated image data receiving unit (image data receiving unit) 52, an image data correcting unit 53, an adjustment information acquiring unit (adjustment information acquiring unit). ) 54, a first relationship calculation unit (first relationship calculation unit) 55, and a second relationship calculation unit (second relationship calculation unit) 56.
[0133] 上記生成画像データ受信部 52は、入力装置 6または画像データ補正部 53から受 信した画像データに基づき、プロジェクタ 2に対して画像の投影を指示するものであ る。  The generated image data reception unit 52 instructs the projector 2 to project an image based on the image data received from the input device 6 or the image data correction unit 53.
[0134] 画像データ補正部 53は、カメラ 5または入力装置 6から入力された実環境投影面 R における位置情報 (座標)に基づき、内部調整情報 71を参照してプロジェクタ 2によ つて画像データの投影調整値を算出するものである。画像データ補正部 53は、算出 した画像データの投影調整値を生成画像データ受信部 52に送信する。  [0134] The image data correction unit 53 refers to the internal adjustment information 71 based on the position information (coordinates) on the actual environment projection plane R input from the camera 5 or the input device 6, and causes the projector 2 to process the image data. A projection adjustment value is calculated. The image data correcting unit 53 transmits the calculated projection adjustment value of the image data to the generated image data receiving unit 52.
[0135] すなわち、上記画像データ補正部 53は、受付けた投影領域の 4点以上の位置情 報を取得し、この位置情報に対応する、投影する画像の画像データにおける画像平 面上の点と、プロジェクタの投影方向を算出する。そして、この算出した結果を生成 画像データ受信部 52および姿勢調整部 43に入力する。  That is, the image data correction unit 53 acquires position information of four or more points of the received projection area, and points on the image plane in the image data of the image to be projected corresponding to the position information. Then, the projection direction of the projector is calculated. Then, this calculated result is input to the generated image data receiving unit 52 and the posture adjusting unit 43.
[0136] 調整情報取得部 54は、第 1関係算出部 55および第 2関係算出部 56によって算出 された結果に基づき、内部調整情報 71として、投影中心 Fを原点とする画像中心 E の方向ベクトル、投影領域 Sの 4隅に対応する正接座標 Q上の座標、および正接平 面 Qと実環境投影面 Rとの関係を示す情報を取得する。そして、調整情報取得部 54 は、取得したこれらの情報を情報格納部に記憶させる。  Based on the results calculated by the first relationship calculation unit 55 and the second relationship calculation unit 56, the adjustment information acquisition unit 54 uses the direction vector of the image center E with the projection center F as the origin as internal adjustment information 71. Then, the coordinates on the tangent coordinate Q corresponding to the four corners of the projection area S and the information indicating the relationship between the tangent plane Q and the actual environment projection plane R are acquired. Then, the adjustment information acquisition unit 54 stores the acquired information in the information storage unit.
[0137] 第 1関係算出部 55は、投影された複数の点群の、平面画像 P上の座標 (X, Y)と、 実環境投影面 R上での座標 (X, y)とに基づき、これら座標の変換を可能とする変換 行列 H を算出するものである。第 1関係算出部 55は、算出したこの変換行列 H の [0137] The first relation calculation unit 55 is based on the coordinates (X, Y) on the planar image P and the coordinates (X, y) on the real environment projection plane R of the plurality of projected point groups. The transformation matrix H that enables transformation of these coordinates is calculated. The first relationship calculating unit 55 calculates the conversion matrix H
PR PR PR PR
情報を調整情報取得部 54に送信する。  The information is transmitted to the adjustment information acquisition unit 54.
[0138] 第 2関係算出部 56は、所定方向に投影方向 Jを変更した回転角(姿勢変更後のプ ロジェクタの姿勢を示す情報)と、この姿勢変更後における所定方向(画像中心方向[0138] The second relationship calculation unit 56 rotates the projection angle J in the predetermined direction (the post-position change profile). Information indicating the posture of the projector) and the predetermined direction (image center direction) after this posture change
)における投影点座標から、実環境投影面 R上の投影点 (X, y)と、正接平面 Q上の 座標 (u, V)との関係を示す変換行列 H を算出するものである。 ) Is used to calculate a transformation matrix H indicating the relationship between the projection point (X, y) on the actual environment projection plane R and the coordinate (u, V) on the tangent plane Q.
QR  QR
[0139] 第 2関係算出部 56は、算出した結果を調整情報取得部 54に送信する。  The second relationship calculation unit 56 transmits the calculated result to the adjustment information acquisition unit 54.
[0140] (内部キャリブレーションの方法)  [0140] (Internal calibration method)
次に内部キャリブレーションの方法について具体的に説明する。  Next, the internal calibration method will be specifically described.
[0141] 先ず、本実施の形態に係るパンチルトプロジェクタ装置 1では、図 8に示すように、 実環境投影面 Rに向けて投影できるように、プロジェクタ 2を配置する(S21)。そして 次に、上記した Param. 1〜3のうち、 Param. 1と Param. 2との関係を求める(S22) 。なお、この Param. 1と Param. 2との関係を求める際、プロジェクタ 2は所定の姿勢 に固定させ、この姿勢をプロジェクタ 2の初期姿勢とする。そして、この初期姿勢を Pa ram. 3 ; ( θ , θ ) = (0, 0)とする。  First, in the pan / tilt projector apparatus 1 according to the present embodiment, as shown in FIG. 8, the projector 2 is arranged so that it can project toward the real environment projection plane R (S21). Next, among Param. 1 to 3 described above, the relationship between Param. 1 and Param. 2 is obtained (S22). When obtaining the relationship between Param. 1 and Param. 2, the projector 2 is fixed to a predetermined posture, and this posture is set as the initial posture of the projector 2. And let this initial posture be Param. 3; (θ, θ) = (0, 0).
Ρ t  Ρ t
[0142] なお、この所定の姿勢とは、本実施例では、プロジェクタ 2から実環境投影面 Rに向 力う垂直軸 Kが、パン軸 90、チルト軸 90それぞれと垂直となる姿勢である。  In this embodiment, the predetermined posture is a posture in which the vertical axis K directed from the projector 2 to the real environment projection plane R is perpendicular to the pan axis 90 and the tilt axis 90, respectively.
[0143] この初期姿勢においてプロジェクタ 2が投影を行った場合、画像平面 P上の 1点 (X , Y)と、この点に対応する実環境投影面 R上の点 (x、 y)とにおいて、同次座標系で は以下数式(1)に示す関係が成り立つことが知られている(非特許文献 9 ; R.Hartley and A.Zisserman, Multiple iew ueometry in computer Vision , し hapter.12, し AM BRIDGE UNIVERSITY PRESS, 2000.、非特許文献 10 ; R. Sukthankar, T. -J. Cham, G. Sukthankar, Dynamic Shadow Elimination for Multi-Projector Displays , Procee dings of Computer Vision and Pattern Recognition (CVPR' 01), Vol.2, pp.151- 157, 2001.参照)。  [0143] When the projector 2 performs projection in this initial posture, at a point (X, Y) on the image plane P and a point (x, y) on the real environment projection plane R corresponding to this point In the homogeneous coordinate system, it is known that the relationship shown in the following formula (1) holds (Non-Patent Document 9; R. Hartley and A. Zisserman, Multiple iew ueometry in computer Vision, and hapter.12, AM BRIDGE UNIVERSITY PRESS, 2000., Non-Patent Document 10; R. Sukthankar, T. -J.Cham, G. Sukthankar, Dynamic Shadow Elimination for Multi-Projector Displays, Proceedings of Computer Vision and Pattern Recognition (CVPR '01) , Vol.2, pp.151-157, 2001.).
[0144] [数 1]  [0144] [Equation 1]
Figure imgf000027_0001
なお、上記数式(1)にお 、て、 H は、ホモグラフィ行列と呼ばれる 3 X 3行列である
Figure imgf000027_0001
In the above equation (1), H is a 3 × 3 matrix called a homography matrix
PR  PR
が、同次座標系においてはこのすべての要素を定数倍しても同一の行列となるため 、その自由度は 8である。 3次元ベクトルも、その定数倍のベクトルは同次座標系で同 値なため、自由度は 2である。したがって、 H は、(X、 Y)と (x、 y)との対応関係が 4 However, in the homogeneous coordinate system, even if all these elements are multiplied by a constant, the same matrix is obtained. The degree of freedom is 8. The three-dimensional vector also has a degree of freedom of 2 because its constant multiple vector is equivalent in the homogeneous coordinate system. Therefore, H has a correspondence between (X, Y) and (x, y) 4
PR  PR
点以上得られれば算出することが可能である。  It is possible to calculate if more points are obtained.
[0146] そこで、図 9に示すように、入力装置 6からの入力された情報に基づき、生成画像デ ータ受信部 52が 4点以上の適当な個数の点群を画像平面 Pに格子状に配置させ、 テスト画像データとする。  Therefore, as shown in FIG. 9, based on the information input from the input device 6, the generated image data receiving unit 52 displays a suitable number of point groups of four or more points on the image plane P in a grid pattern. To be used as test image data.
[0147] そして、生成画像データ受信部 52は、このテスト画像データに基づき画像を投影 するようにプロジェクタ 2に指示する。この生成画像データ受信部 52からの指示に応 じて、プロジェクタ 2はこれらの点群を実環境投影面 Rに投影する。なお、生成画像デ ータ受信部 52は、生成した画像データの画像平面 P上における点群それぞれの座 標 (X , Y ;i= l, 2, 3, 4, · · ·)を第 1関係算出部 55に通知する。  [0147] Then, the generated image data receiving unit 52 instructs the projector 2 to project an image based on the test image data. In response to an instruction from the generated image data receiving unit 52, the projector 2 projects these point groups onto the real environment projection plane R. The generated image data receiving unit 52 first sets the coordinates (X, Y; i = l, 2, 3, 4,...) Of each point cloud on the image plane P of the generated image data. The relationship calculation unit 55 is notified.
[0148] また、実環境投影面 Rでのこれら点群の位置は、カメラ 5によって撮影され、撮影さ れた結果は、プロジェクタ制御部 4に入力される。プロジェクタ制御部 4では、第 1関 係算出部 55が、撮影された結果に基づき、これら点群の実環境投影面 Rにおける座 標をそれぞれ割り出す。  In addition, the positions of these point groups on the real environment projection plane R are photographed by the camera 5, and the photographed results are input to the projector control unit 4. In the projector control unit 4, the first relationship calculation unit 55 calculates the coordinates of these point groups on the actual environment projection plane R based on the photographed results.
[0149] なお、上記カメラ 5によって撮影された画像は、例えば Tsaiのカメラキヤリブレーショ ン、非特許文献 8 ; R.Y.Tsai, A efficient and accurate camera calibration technique f or 3D machine vision", CVPR, pp.364- 374, 1986.参照)などのレンズ歪みネ甫正手法 によって歪み補正されている。そして、上記カメラは、実環境投影面 R上の座標が既 知となっている参照点と、上記点群とを同一画像中に含むように撮影する。そして、こ の参照点とこれら点群との位置関係から、上記第 1関係算出部 55は該点群の実環境 投影面 Rにおける座標を算出する。  [0149] The image taken by the camera 5 is, for example, Tsai's camera calibration, Non-Patent Document 8; RYTsai, A efficient and accurate camera calibration technique f or 3D machine vision ", CVPR, pp. 364-374, 1986.) The camera is corrected by a lens distortion correction method, etc. The above camera has a reference point whose coordinates on the actual environment projection plane R are known, and the above point. The first relationship calculation unit 55 calculates the coordinates of the point group on the actual environment projection plane R from the positional relationship between the reference point and the point group. To do.
[0150] このようにして、第 1関係算出部 55が、点群の実環境投影面 R上における座標をそ れぞれ割り出すと、画像平面 P上の各点群の座標 (X, Y)と、この点群に対応する実 環境投影面 R上の各点群の座標 (X, y)との値を取得する。そして、第 1関係算出部 5 5は、取得した値から上記数式(1)において、 H の値を求めることができる。  [0150] In this way, when the first relationship calculation unit 55 calculates the coordinates of the point cloud on the actual environment projection plane R, the coordinates (X, Y) of each point cloud on the image plane P are calculated. And the coordinates (X, y) of each point cloud on the real environment projection plane R corresponding to this point cloud. Then, the first relationship calculation unit 55 can obtain the value of H in the above formula (1) from the acquired value.
PR  PR
[0151] 以上のようにして第 1関係算出部 55は、数式(1)により、 、 )と( 丫)との関係、 すなわち Param. 1と Param. 2との関係を求めることができる。 [0152] 続いて、 Param. l〜Param. 3における Param. 1と Param. 3との関係を求める( S23)。ここで、これら Param. 1と Param. 3との関係の算出を容易とするために図 1 0に示すような仮想平面として正接平面 Qを設ける。 [0151] As described above, the first relationship calculating unit 55 can obtain the relationship between,), and (i), that is, the relationship between Param. 1 and Param. 2, using Equation (1). [0152] Subsequently, the relationship between Param. 1 and Param. 3 in Param. L to Param. 3 is obtained (S23). Here, in order to facilitate the calculation of the relationship between Param. 1 and Param. 3, a tangent plane Q is provided as a virtual plane as shown in FIG.
[0153] すなわち、この正接平面 Qは、プロジェクタ初期姿勢におけるパン軸 90とチルト軸 9 1とによって定まる平面に平行となる平面である。そして、この正接平面 Qは、投影中 心 Fと実環境投影面 Rとの間に配置され、かつ投影中心 F (すなわち、回転中心 G)か らの距離が 1となるような仮想平面である。  That is, the tangent plane Q is a plane parallel to a plane determined by the pan axis 90 and the tilt axis 91 in the initial projector posture. The tangent plane Q is a virtual plane that is arranged between the projection center F and the real environment projection plane R and has a distance of 1 from the projection center F (that is, the rotation center G). .
[0154] なお、本実施の形態に係るパンチルトプロジェクタ装置 1が有するパン'チルト回転 機構は、上記したようにパン軸 90とチルト軸 91とが直角に交差するジンバル機構で ある。そして、垂直方向に対するプロジェクタ 2の姿勢変更に対して、上記パン軸 90 の位置は不変であり、チルト軸 91は、姿勢変更に応じて移動することとなる。しかしな がら、上記したように正接平面 Qは、パン軸 90とチルト軸 91とによって規定される平 面に平行である。このため、正接平面 Qは、プロジェクタ 2の水平方向に対する姿勢 変更に対して、投影中心 Fとの位置関係が変化するものではない。  Note that the pan / tilt rotation mechanism included in the pan / tilt projector apparatus 1 according to the present embodiment is a gimbal mechanism in which the pan axis 90 and the tilt axis 91 intersect at right angles as described above. Then, the position of the pan axis 90 does not change with respect to the change in the attitude of the projector 2 with respect to the vertical direction, and the tilt axis 91 moves according to the change in attitude. However, as described above, the tangent plane Q is parallel to the plane defined by the pan axis 90 and the tilt axis 91. For this reason, the positional relationship between the tangent plane Q and the projection center F does not change when the orientation of the projector 2 in the horizontal direction is changed.
[0155] ここで、 Param. 1と Param. 3との関係を求めるために、 Param. 2の値を固定して 算出する。すなわち、画像平面 P上の座標 (X、 Y)を 1固定点として定め、その点に ついて複数種類のプロジェクタ 2の姿勢で投影面に投影し観察する。  [0155] Here, in order to obtain the relationship between Param. 1 and Param. 3, the value of Param. 2 is fixed and calculated. That is, the coordinates (X, Y) on the image plane P are determined as one fixed point, and the point is projected and observed on the projection plane with the postures of a plurality of types of projectors 2.
[0156] 本実施の形態に係るパンチルトプロジェクタ装置 1では、画像中心 Eをこの固定点と するが、これに限定されるものではなぐこの固定点は画像平面 P上にある点であり、 かつ垂直軸 Kからの角度が取得可能な点であればよい。  [0156] In the pan / tilt projector device 1 according to the present embodiment, the image center E is set as the fixed point, but the fixed point is not limited thereto, and is a point on the image plane P, and is vertical. Any point that can obtain the angle from the axis K is acceptable.
[0157] ここで、垂直軸 Kと投影中心 F力 画像中心 Eに向力う方向軸との間の角度を(Φ、  [0157] Here, the angle between the vertical axis K and the projection center F force and the direction axis facing the image center E (Φ,
P  P
Φ )とし、プロジェクタ 2の初期姿勢において、画像平面 Pと正接平面 Qとが一致する ものと仮定した場合、プロジェクタ 2の初期姿勢における、投影中心 F力も画像中心 E への 3次元の方向ベクトルは、(tan , tan , 1)で与えられる。なお、この 3次元  Φ), and assuming that the image plane P and the tangent plane Q coincide with each other in the initial posture of the projector 2, the projection center F force in the initial posture of the projector 2 is also a three-dimensional direction vector to the image center E. , (Tan, tan, 1). This 3D
P t  P t
方向ベクトルでは、投影中心 Fを原点としている。  In the direction vector, the projection center F is the origin.
[0158] そして、この初期姿勢力もプロジェクタ 2の投影方向 Jを、水平方向(パン)に Θ 度、 [0158] Then, this initial posture force also sets the projection direction J of the projector 2 to Θ degrees in the horizontal direction (pan),
P  P
さらにそこ力 垂直方向 (チルト)に Q度移動させた後の方向ベクトル (ιΤ , ν' , w') は、下記の数式(2)によって表すことができる。なお、上述するように、ノ ンは右向き の回転角を正、チルトは下向きの回転角を正とする c Furthermore, the direction vector (ιΤ, ν ′, w ′) after moving the force by Q degrees in the vertical direction (tilt) can be expressed by the following equation (2). As mentioned above, the non-point is facing right The rotation angle is positive, and the tilt is positive with the downward rotation angle c
[0159] [数 2] 、 tantp [0159] [Equation 2] tantp
,e ,-et) tan0 ( 2 ) , e, -e t ) tan0 (2)
、wノ 1  , W no 1
[0160] またここで、 Rot という行列表記は、 a軸の回りにひ回転させる回転行列を表す こととする。したがって、上記数式(2)において Rot は、実環境空間における X軸 の回りに 0 度回転させた回転行列を表し、 Rot は、実環境空間における y軸 の回りに 0 度回転させた回転行列を表す。 [0160] Here, the matrix notation Rot represents a rotation matrix that rotates around the a axis. Therefore, in Equation (2) above, Rot represents the rotation matrix rotated 0 degrees around the X axis in the real environment space, and Rot represents the rotation matrix rotated 0 degrees around the y axis in the real environment space. To express.
[0161] なお、上記 z軸は、プロジェクタ 2の初期姿勢における垂直軸 Kに平行な軸であり、 X 軸は、プロジェクタ 2が設置されている水平面と平行でありかつ、上記 z軸と垂直に交 わる軸である。また、上記 y軸は、上記水平面と垂直でありかつ、上記 z軸と垂直に交 わる軸である。  [0161] The z-axis is an axis parallel to the vertical axis K in the initial posture of the projector 2, and the X-axis is parallel to the horizontal plane on which the projector 2 is installed and perpendicular to the z-axis. It is an intersecting axis. The y axis is an axis perpendicular to the horizontal plane and perpendicular to the z axis.
[0162] このように、初期姿勢から姿勢変更後におけるパン角とチルト角との関係(Param.  [0162] As described above, the relationship between the pan angle and the tilt angle after the posture change from the initial posture (Param.
3)は上記数式(2)によって表すことができる。  3) can be expressed by Equation (2) above.
[0163] ここで、初期姿勢から姿勢変更後におけるプロジェクタ 2の投影中心 Fから画像中 心 Eへの 3次元方向ベクトル ( , v', を ζ座標が 1となるように実数倍すると、下 記数式(3)に示すような関係が成り立つ。  [0163] Here, when the three-dimensional direction vector (, v ', from the projection center F of the projector 2 to the image center E after the attitude change from the initial attitude is multiplied by a real number so that the ζ coordinate is 1, The relationship shown in Equation (3) is established.
[0164] [数 3]
Figure imgf000030_0001
[0164] [Equation 3]
Figure imgf000030_0001
( 3 ) (3)
Figure imgf000030_0002
Figure imgf000030_0002
[0165] なお、上記 (u, V)は、姿勢変更後の画像中心 E方向への 3次元ベクトルの、正接平 面 Q上における投影点座標となる(図 10参照)。すなわち、上記数式 (3)により、姿勢 変更後における初期姿勢力 水平方向および Zまたは垂直方向に投影方向 Jを変 更させた際の正接平面 Q上の画像中心 E点を算出する。したがって、本実施の形態 では、上述した (ιΤ, ν', と (u, v, 1)とにおけるベクトルの実数倍関係を同値とし 、数式(3)のように表すことができる。 [0165] The above (u, V) is the projection point coordinates on the tangent plane Q of the three-dimensional vector in the image center E direction after the posture change (see FIG. 10). In other words, the image center E point on the tangent plane Q when the projection direction J is changed in the horizontal direction and the Z or vertical direction is calculated by the above formula (3). Therefore, in the present embodiment, the real number multiple relationship of the vectors in (ιΤ, ν ′, and (u, v, 1) described above is assumed to be the same value. , Can be expressed as Equation (3).
[0166] また、正接平面 Qにおける、姿勢変更後の画像中心 Eへのベクトルの投影点 (u, V) と、この画像中心 Eを通って実環境投影面 Rに投影された点 (X, y)との間においても 数式(1)に示す関係と同じ関係が成立する。すなわち、これら (u, V)と (X, y)とは下 記に示す数式 (4)に示す関係が成り立つ。 [0166] In addition, the projected point (u, V) of the vector onto the image center E after the pose change on the tangent plane Q, and the point (X, The same relationship as shown in Equation (1) holds true with y). That is, these (u, V) and (X, y) hold the relationship shown in Equation (4) below.
[0167] [数 4] [0167] [Equation 4]
Figure imgf000031_0001
Figure imgf000031_0001
[0168] したがって、プロジェクタ 2の姿勢を変更し、 4つ以上のプロジェクタ 2の姿勢位置に ついて、(u, V)を算出し、算出された (u, V)それぞれに対応する (x、 y)の位置座標 それぞれを計測することによって H を決定することができる。 Accordingly, the attitude of the projector 2 is changed, and (u, V) is calculated for the attitude positions of four or more projectors 2, and (x, y) corresponding to the calculated (u, V) respectively. ) H can be determined by measuring each position coordinate.
QR  QR
[0169] すなわち、上記数式(2)と数式(3)とに示すように Param. 3 ; (パン角,チルト角) =  [0169] That is, as shown in Equation (2) and Equation (3) above, Param. 3; (pan angle, tilt angle) =
( θ , Θ )は正接平面 Q上の座標 (u, V)と表すことができ、またこの(u, V)と Param (θ, Θ) can be expressed as coordinates (u, V) on tangent plane Q, and this (u, V) and Param
P t P t
. 1 ;実環境投影面 R上の座標 (x、y)との関係は、数式 (4)に示すように H と表すこ  1; The relationship with the coordinates (x, y) on the real environment projection plane R can be expressed as H as shown in Equation (4).
QR  QR
とができる。また、この H は、上記したように 4つ以上のプロジェクタ 2の姿勢位置に  You can. Also, this H is the position of the position of four or more projectors 2 as described above.
QR  QR
ついて、(u, V)を算出し、算出された (u, V)それぞれに対応する (x、 y)の位置座標 それぞれを計測することによって求めることができる。  Then, (u, V) can be calculated, and the position coordinates (x, y) corresponding to the calculated (u, V) can be obtained by measuring each.
[0170] なお、この(x、 y)の観察は、 Param. 1と Param. 2との関係を求める場合と同様に 、カメラ 5によって行われる。  [0170] Note that this (x, y) observation is performed by the camera 5 as in the case of obtaining the relationship between Param. 1 and Param.
[0171] すなわち、まず、初期姿勢におけるプロジェクタ 2において、入力装置 6から画像中 心 Eとなる画像を投影するようにプロジェクタ制御部 4に指示する。プロジェクタ制御 部 4では、生成画像データ受信部 52が、この入力装置 6からに指示を受信し、投影 中心 F位置と一致する画像平面 P上の座標に点を描画するようにプロジェクタ 2に指 示する。この指示に応じてプロジェクタ 2は、初期姿勢において画像中心 Eと一致す る点を投影領域 Sに投影する。  That is, first, in the projector 2 in the initial posture, the projector control unit 4 is instructed to project an image that becomes the image center E from the input device 6. In the projector control unit 4, the generated image data receiving unit 52 receives an instruction from the input device 6, and instructs the projector 2 to draw a point at coordinates on the image plane P that coincides with the projection center F position. To do. In response to this instruction, the projector 2 projects a point that coincides with the image center E in the initial posture onto the projection region S.
[0172] このように、画像中心 Eに沿った位置に画像点を投影している状態において、入力 装置 6からユーザによって所定のプロジェクタ 2の姿勢に変更するように姿勢調整部 4 3に指示が入力される。 In this way, in a state where the image point is projected at a position along the image center E, the posture adjustment unit 4 is changed by the user from the input device 6 to the predetermined posture of the projector 2. Instructions are entered in 3.
[0173] この入力装置 6からの入力指示に応じて、姿勢調整部 43は、駆動装置 3に上記所 定のプロジェクタ 2の姿勢に変更するように指示を与える。姿勢調整部 43からの指示 に応じて、駆動装置 3は、プロジェクタ 2の投影方向 Jを初期姿勢力も水平方向(パン) に Θ 度、さらにそこ力も垂直方向 (チルト)に一 Θ度移動させるものとする。なお、入 In response to the input instruction from the input device 6, the posture adjustment unit 43 instructs the drive device 3 to change to the predetermined posture of the projector 2. In response to an instruction from the posture adjustment unit 43, the driving device 3 moves the projection direction J of the projector 2 by Θ degrees in the initial posture force in the horizontal direction (pan) and further by one Θ degree in the vertical direction (tilt). And In addition
P t P t
力装置 6からの上記した指示 (水平方向および垂直方向の移動量を示す 0 , - Θ  The above-mentioned instruction from the force device 6 (0, -Θ indicating the amount of movement in the horizontal and vertical directions)
P t の情報)は、第 2関係算出部 56にも通知されている。  (P t information) is also notified to the second relation calculation unit 56.
[0174] 第 2関係算出部 56は、入力装置 6からの通知に応じて、姿勢変更後における画像 中心 Eに沿った正接平面 Qにおける座標位置を算出する。すなわち、上記した数式(In response to the notification from the input device 6, the second relationship calculation unit 56 calculates the coordinate position on the tangent plane Q along the image center E after the posture change. That is, the above formula (
2)および数式(3)につ 、て演算を行う。 Perform the calculations for 2) and Equation (3).
[0175] また、このプロジェクタ 2の姿勢変更後に実環境投影面 Rにおける投影点 (x、 y)を カメラ 5が撮影し、撮影結果を第 2関係算出部 56に入力する。この第 2関係算出部 5[0175] After the orientation of the projector 2 is changed, the camera 5 captures the projection point (x, y) on the actual environment projection plane R, and the captured result is input to the second relationship calculation unit 56. This second relationship calculator 5
6は、カメラ 5によって入力されたデータに基づき姿勢変更後における画像中心 Eの、 実環境投影面 Rにおける座標を算出する。 6 calculates the coordinates on the real environment projection plane R of the image center E after the posture change based on the data input by the camera 5.
[0176] また次に、プロジェクタ 2をさらに別の姿勢に変更し、この変更後の正接平面 Qへの 画像中心 Eの投影点 (u, V)と実環境投影面 Rへの投影点 (x、 y)とを同様に 4つ以上 の姿勢変更について算出していく。 [0176] Next, the projector 2 is changed to another posture, and the projection point (u, V) of the image center E on the tangent plane Q and the projection point (x , Y) is calculated for four or more posture changes in the same way.
[0177] なお、第 2関係算出部 56は、算出した結果をプロジェクタ 2の姿勢位置ごとに情報 格納部 7に記録する。そして、情報格納部 7に記録された 4つ以上の姿勢位置に対 応する投影点 (X, y)と (u, V)とから H を算出する。 Note that the second relationship calculation unit 56 records the calculated result in the information storage unit 7 for each posture position of the projector 2. Then, H is calculated from projection points (X, y) and (u, V) corresponding to four or more posture positions recorded in the information storage unit 7.
QR  QR
[0178] 以上のようにして、本実施の形態に係るパンチルトプロジェクタ装置 1は Param. 1と Param. 3との関係を求めることができる。  [0178] As described above, the pan / tilt projector device 1 according to the present embodiment can obtain the relationship between Param. 1 and Param.
[0179] 次に、初期姿勢における画像平面 P上の座標 (X, Y)を正接平面 Q上の座標 (u、 V )に変換可能とするために、数式(1)と数式 (4)とにより以下に示す数式 (5)を求める 。すなわち、初期姿勢における画像平面 P上の座標 (X, Y)と、正接平面 Q上の座標 (u、 V)との関係を示す H を導出する(S24)。なお、数式(5)において H _1は、 H [0179] Next, in order to be able to convert the coordinates (X, Y) on the image plane P in the initial posture into the coordinates (u, V) on the tangent plane Q, the equations (1), (4), The following formula (5) is obtained by That is, H indicating the relationship between the coordinates (X, Y) on the image plane P in the initial posture and the coordinates (u, V) on the tangent plane Q is derived (S24). In Equation (5), H _1 is H
PQ QR  PQ QR
 of
QR 逆行列を示す。  QR Indicates the inverse matrix.
[0180] [数 5] V 一 -1 H Y Y[0180] [Equation 5] V one - 1 HYY
1ノ 1 1  1 1 1 1
[0181] このように、上記数式(5)によって、初期姿勢における画像平面 P上の座標 (X, Y) を正接平面 Q上の座標(u V)に変換できる。このため、図 11に示すように、この初期 姿勢における画像平面 P上の座標 (X Y)に、画像平面 P上に形成されている 4隅の 座標 (X, Y) (1=1, ···, 4)をそれぞれ代入して、各座標点に対応する (u(init), ν (ωϋ ) (i=l, ···, 4)を取得する(S25)。例えば、画像の解像度が XGAの場合では、座標 (X, Y)として、(±1024/2, ±768/2)を代入して、対応する(u(init), ν(ωϋ)を得る [0181] As described above, the coordinate (X, Y) on the image plane P in the initial posture can be converted into the coordinate (u V) on the tangent plane Q by the above equation (5). For this reason, as shown in FIG. 11, the coordinates (X, Y) (1 = 1,...) Of the four corners formed on the image plane P are added to the coordinates (XY) on the image plane P in this initial posture. ·, 4) are substituted, and (u (init) , ν (ωϋ ) (i = l, ···, 4) corresponding to each coordinate point is obtained (S25). In the case of XGA, (± 1024/2 , ± 768/2 ) is substituted as coordinates (X, Y) to obtain the corresponding (u (init ), ν ( ωϋ )
[0182] また、垂直軸 Κに対する画像中心 Εの方向と画像の 4隅の方向との間の相対位置 は不変である。このため、プロジェクタ 2の投影方向 Jの回転時には、画像中心 Eおよ び画像の 4隅それぞれに対して同じ回転行列を与えることにより、この回転後のそれ ぞれの方向ベクトルを得ることができる。 [0182] The relative position between the direction of the image center Κ and the direction of the four corners of the image with respect to the vertical axis Κ is invariant. For this reason, when the projection direction J of the projector 2 is rotated, the same rotation matrix is given to the image center E and each of the four corners of the image, whereby each direction vector after this rotation can be obtained. .
[0183] そして、これらの方向ベクトルは全て z軸方向の値を正規ィ匕することにより正接平面 上の座標 (u, V)として表現することができる。  [0183] These direction vectors can all be expressed as coordinates (u, V) on the tangent plane by normalizing the values in the z-axis direction.
[0184] したがって、上記パンチルトプロジェクタ装置 1が、画像中心 Eの方向ベクトル (tan  Therefore, the pan / tilt projector apparatus 1 has the direction vector (tan
Φ , tan , 1)と、画像の 4隅の方向ベクトル (u^), v( , 1)と、正接平面 QにおΦ, tan, 1), directional vectors (u ^), v ( , 1) at the four corners of the image, and tangent plane Q
P t i i P t i i
ける投影点座標と実環境投影面 Rにおける投影点座標との関係 H (第 1変換情報)  Between the projected point coordinates and the projected point coordinates on the real environment projection plane R (first conversion information)
QR  QR
を保持して!/ヽれば、与えられる実環境投影面 Rの座標軸への投影のためのプロジェ クタ 2の姿勢およびプロジェクタ 2への入力画像を算出することができる。  If! Is held, it is possible to calculate the attitude of the projector 2 and the input image to the projector 2 for projection onto the coordinate axis of the given real environment projection plane R.
[0185] すなわち、第 1関係算出部 55の算出結果と第 2関係算出部 56の算出結果とに基 づき、調整情報取得部 54は、数式 (5)の演算を行い、初期姿勢における画像平面 P 上の座標 (X, Y)と正接平面 Q上の座標 (u V)との関係を算出する。そして、画像平 面 P上に形成されている 4隅の座標 (X, Y)(i=l, ···, 4)から、各座標点に対応す る (u 0nit), y Onit)) (i=1, ···, 4)を算出する。 In other words, based on the calculation result of the first relationship calculation unit 55 and the calculation result of the second relationship calculation unit 56, the adjustment information acquisition unit 54 performs the calculation of Equation (5) to obtain the image plane in the initial posture. Calculate the relationship between coordinates (X, Y) on P and coordinates (u V) on tangent plane Q. Then, from the coordinates (X, Y) (i = l, ..., 4) of the four corners formed on the image plane P, (u 0ni t ), y Onit) corresponding to each coordinate point ) Calculate (i = 1 , ..., 4) .
[0186] このようにして、調整情報取得部 54は、画像中心 Eの方向ベクトル(tan , tan [0186] In this way, the adjustment information acquisition unit 54 performs the direction vector (tan, tan
P t P t
, 1)と、画像の 4隅の方向べ外ル 1)と、正接平面 Qにおける投影点
Figure imgf000033_0001
座標と実環境投影面 Rにおける投影点座標との関係 H を取得し、情報格納部 7〖こ
, 1), the projections at the four corners of the image 1), and the projected points on the tangent plane Q
Figure imgf000033_0001
The relationship between the coordinates and the projection point coordinates on the real environment projection plane R is obtained, and the information storage unit 7
QR  QR
内部調整情報 71として記憶させておく。  Store as internal adjustment information 71.
[0187] 以上が図 7に示すステップ S12の内部キャリブレーションの方法である。そして、こ のように内部キャリブレーションが完了すると、プロジェクタ 2の任意の姿勢位置にお ける画像平面 P上の座標と実環境投影面 R上の座標との関係を算出することができる 。したがって、本実施の形態に係るパンチルトプロジェクタ装置 1は、プロジェクタ 2の 投影方向 Jを連続的に変更させながら画像を描画する必要がある移動物の描画が可 能となる。  [0187] The above is the internal calibration method of step S12 shown in FIG. When the internal calibration is completed in this way, the relationship between the coordinates on the image plane P and the coordinates on the real environment projection plane R at an arbitrary posture position of the projector 2 can be calculated. Therefore, the pan / tilt projector device 1 according to the present embodiment can draw a moving object that needs to draw an image while continuously changing the projection direction J of the projector 2.
[0188] (投影制御処理)  [0188] (Projection control processing)
ここで、この内部キャリブレーションを完了させることによって、具体的に本実施の形 態に係るプロジェクタ 2による画像の投影制御処理をどのようにして行うかについて説 明する。  Here, how to perform the image projection control process by the projector 2 according to the present embodiment by completing this internal calibration will be described.
[0189] まず、上記パンチルトプロジェクタ装置 1は、実環境投影面 Rにおける座標系にお いて表される 4点 (X , y ) (i= l , · · · , 4)を頂点とする矩形画像を実環境投影面 R上 に描画するものとする。つまり、上記パンチルトプロジェクタ装置 1が実環境投影面 R の領域に投影する投影領域 Sが上記矩形形状となる場合について説明する。  [0189] First, the pan-tilt projector device 1 is a rectangular image having four points (X, y) (i = l, ···, 4) expressed in the coordinate system on the real environment projection plane R as vertices. Is drawn on the real environment projection plane R. That is, the case where the projection area S projected by the pan / tilt projector device 1 onto the area of the real environment projection plane R has the rectangular shape will be described.
[0190] 上記した矩形画像を描画するためには、例えば図 12に示す、プロジェクタ 2の姿勢  [0190] To draw the rectangular image described above, for example, the orientation of the projector 2 shown in FIG.
( (パン角,チルト角) = ( ø (ans), θ (ans))と、プロジェクタ 2による投影画像、すなわち ((Pan angle, tilt angle) = (ø (ans) , θ ( ans) ) and the projected image by projector 2, that is,
P t  P t
上記矩形画像を描画するために画像平面 P上に形成する 4端点 (X (ans), Y (ans))を求 めることができればよい。 It is sufficient if the four end points (X (ans) , Y (ans) ) formed on the image plane P in order to draw the rectangular image can be obtained.
[0191] そこでまず、上記プロジェクタ 2の姿勢を決定する。上記矩形画像を描画するため のアプリケーションなどに応じて、上記プロジェクタ 2の姿勢制御の方針を適切に決め てやることができる。本実施形態では、上記姿勢制御の方針として描画する矩形画 像の重心に画像中心 E方向を合わせるように制御する。 [0191] Therefore, first, the attitude of the projector 2 is determined. The orientation control policy of the projector 2 can be appropriately determined according to the application for drawing the rectangular image. In the present embodiment, control is performed so that the image center E direction is aligned with the center of gravity of the rectangular image to be drawn as the attitude control policy.
[0192] すなわち、実環境投影面 Rにおける投影領域 Sの 4端点 (X , y ;i= 1〜4までの整 数)の重心 (x , y )を算出する。 That is, the centroid (x, y) of the four end points (X, y; integers from 1 to 4) of the projection area S on the real environment projection plane R is calculated.
g g  g g
[0193] つまり、パンチルトプロジェクタ装置 1では、画像データ補正部 53が、実環境投影 面 Rにおける投影領域 Sおよび上記矩形画像を描画すべき位置の座標情報を、入 力装置 6を介してユーザから取得する。あるいは、カメラ 5が実環境投影面 Rを撮影す るように配置されており、そして、このカメラ 5が取得した実環境投影面 Rの画像デー タから、画像データ補正部 53が投影面領域の 4端点の座標を求めるように構成され ていてもよい。 In other words, in the pan / tilt projector device 1, the image data correction unit 53 inputs the coordinate information of the projection area S on the actual environment projection plane R and the position where the rectangular image is to be drawn. Acquired from the user via the force device 6. Alternatively, the camera 5 is arranged so as to capture the real environment projection plane R, and the image data correction unit 53 determines the projection plane area from the image data of the real environment projection plane R acquired by the camera 5. It may be configured to obtain the coordinates of the four end points.
[0194] このようにして、得られた実環境投影面 Rの 4端点 (X , y ; i = 1〜4までの整数)の座 標情報から、画像データ補正部 53が重心 (X , y )を算出する。そして、画像データ  [0194] From the coordinate information of the four end points (X, y; integers from i = 1 to 4) of the real environment projection plane R thus obtained, the image data correction unit 53 determines the centroid (X, y ) Is calculated. And image data
g g  g g
補正部 53は、算出した重心 (X , y )を正接平面 Qに下記数式 (6)に示す演算により  The correction unit 53 calculates the center of gravity (X, y) on the tangent plane Q by the calculation shown in the following formula (6).
g g  g g
逆投影する。なお、この図 4は上記した数式 (4)を変形することで得られるものである  Backproject. In addition, this FIG. 4 is obtained by modifying the above-described equation (4).
[0195] [数 6] [0195] [Equation 6]
, )、
Figure imgf000035_0001
,),
Figure imgf000035_0001
[0196] また、上記した内部キャリブレーションにおいて既に、 H の関係については求めら れている。このため、画像データ補正部 53は、内部調整情報 71を参照して、算出し た重心 (X , y )に基づき容易に正接平面 Qにおける方向ベクトル (u (ime) , V (ime) , 1 [0196] Further, in the above-described internal calibration, the relationship of H has already been obtained. For this reason, the image data correction unit 53 refers to the internal adjustment information 71 and easily determines the direction vector (u (ime) , V (ime ), 1 in the tangent plane Q based on the calculated center of gravity (X, y).
g g g g  g g g g
)を算出することができる。そして、上記画像データ補正部 53は、重心と画像中心 Eと を一致させるように制御する。そして、この画像中心 Eの方向ベクトルを (u (ime) , V (ime g g) Can be calculated. Then, the image data correction unit 53 performs control so that the center of gravity and the image center E coincide with each other. And the direction vector of this image center E is (u (ime) , V (ime gg
) , 1)に一致させた場合における垂直軸 Kの方向ベクトルは、下記数式(7)に示すよ うになる。なお、この数式(7)は、上記した数式(2)および数式(3)と同様の考えによ つて導出できるものである。 ), 1), the direction vector of the vertical axis K is as shown in the following formula (7). The equation (7) can be derived based on the same idea as the above equations (2) and (3).
[0197] [数 7]  [0197] [Equation 7]
, Λ  , Λ
Ro — p、Rot ( 7 )Ro — p , Rot (7)
Figure imgf000035_0002
Figure imgf000035_0002
[0198] 一方、プロジェクタ 2を初期姿勢力 パン方向(右向き)に 0 、そこからチルト方向( [0198] On the other hand, the projector 2 is set to the initial attitude force 0 in the pan direction (right direction), and then tilt direction (
P  P
上向き)に Θ 回転させたときの垂直軸 Kの方向ベクトルは、画像データ補正部 53が 下記数式 (8)を演算することによって取得することができる。なお、上記「右向き」とは 、プロジェクタ 2の投影方向 Jに向力つて、水平方向に右向きであるという意味であり、 上記「上向き」とは、この水平方向と垂直となる垂直方向において、本実施の形態に 係るパンチルトプロジェクタ装置 1が設置されている水平面とは逆向きとなる方向を意 味する。 The direction vector of the vertical axis K when rotated Θ upward) It can be obtained by calculating the following formula (8). Note that “rightward” means that the projector 2 is directed toward the projection direction J of the projector 2 and is directed rightward in the horizontal direction, and “upwardly” means that in the vertical direction perpendicular to the horizontal direction, This means a direction opposite to the horizontal plane on which the pan / tilt projector device 1 according to the embodiment is installed.
[0199] [数 8] 、 1 ,
Figure imgf000036_0001
[0199] [Equation 8], 1,
Figure imgf000036_0001
[0200] すなわち、上記画像データ補正部 53が、上記数式(8)において、(0 , 0 )につい That is, the image data correction unit 53 adds (0, 0) to the equation (8).
P t て解くことにより、垂直軸 Kの方向、すなわち姿勢変更後におけるプロジェクタ 2の姿 勢(Θ (ans), Θ (ans))を得ることができる。なお、上記数式 (8)において、 Θ Θ につBy solving for P t, the direction of the vertical axis K, that is, the attitude (Θ (ans) , Θ (ans) ) of the projector 2 after the attitude change can be obtained. In Equation (8) above, Θ Θ is
V、てそれぞれ解くと下記数式(9)および数式( 10)に示すようになる。 When V is solved, the following equations (9) and (10) are obtained.
[0201] [数 9] [0201] [Equation 9]
^ (。'") = tan— ) ( 9 ) ^ (. '") = Tan—) (9)
Θ. : tan— 1 。) cos6> ( 1 0 ) Θ .: tan— 1 . ) cos6> (1 0)
[0202] このようにして、 θ , Θ についてそれぞれ値が得られれば、この姿勢におけるプロ [0202] In this way, if values are obtained for θ and Θ, respectively,
P t  P t
ジェクタ 2の画像平面 Pにおける 4隅の方向ベクトルを容易に求めることができる(下 記数式(11)参照)。  The direction vectors at the four corners in the image plane P of the injector 2 can be easily obtained (see the following formula (11)).
[0203] [数 10] [0203] [Equation 10]
Figure imgf000036_0002
Figure imgf000036_0002
[0204] また、上記数式(11)における Vi(img))は、画像平面 Pにおける 4隙の端点を 正接平面 Q上に投影した点となる。 [0205] ここで、上記した矩形形状の投影領域 S内において矩形画像を描画するものとする 。この場合、実環境投影面 R上に描画されるこの矩形画像の 4端点 ( ;1=1 4 までの整数)についても数式 (6)と同様にして正接平面 Q上に投影することができる。 そしてこのとき、正接平面 Q上に投影された 4端点 (u(°bj), v(°bj);i=l 4までの整数 )は、以下数式(12)として得られる。 [0204] Further, Vi ( img) ) in the above equation (11) is a point obtained by projecting the end points of the four gaps on the image plane P onto the tangent plane Q. [0205] Here, it is assumed that a rectangular image is drawn in the above-described rectangular projection region S. In this case, the four end points (an integer up to; 1 = 1 4) of this rectangular image drawn on the real environment projection plane R can also be projected onto the tangent plane Q in the same manner as in Equation (6). At this time, the four end points (u ( ° bj) , v ( ° bj) ; integers up to i = l 4 ) projected onto the tangent plane Q are obtained as the following equation (12).
[0206] [数 11]  [0206] [Equation 11]
Figure imgf000037_0002
Figure imgf000037_0002
[0207] 以上、数式(11)および数式(12)により正接平面 Q上における投影領域 Sを形成 する 4端点の方向ベクトルと、該投影領域 S内に描画される矩形画像の 4端点の方向 ベクトルを得ることができる。すなわち、上記数式(11)および数式(12)によって、正 接平面 Q上での投影領域 S形状および投影オブジェ外形状を得ることができる。 [0207] As described above, the direction vector of the four end points forming the projection region S on the tangent plane Q and the direction vector of the four end points of the rectangular image drawn in the projection region S by the equations (11) and (12) Can be obtained. That is, the projection region S shape on the tangent plane Q and the shape outside the projection object can be obtained by the above formulas (11) and (12).
[0208] 次に、プロジェクタ 2の姿勢(Θ (ans), Θ (ans))における画像平面 を考える。数式( Next, consider the image plane in the orientation of projector 2 (Θ (ans) , Θ (ans) ). Formula (
P t  P t
11)によって得られた 4点 (u(img), v(img);i=l 4までの整数)が、画像平面 の 4隅 (例えば、 XGAの場合では ±1024/2, ±768/2)に対応する。このことから正接平 面 Qから画像平面 P の変換行列 H 'が求められる。この H を上記数式(12)で 得られた (u(°bj), v(°bj);i 4までの整数)に対しても下記数式(13)のように適用 4 points (u (img) , v (img) ; integers up to i = l 4 ) obtained by 11) are the four corners of the image plane (for example, ± 1024/2, ± 768/2 in the case of XGA) ). From this, the transformation matrix H ′ of the image plane P is obtained from the tangent plane Q. This H is also applied to (u (° bj ), v (° bj ); integer up to i 4) obtained by the above equation (12) as in the following equation (13).
(ans) することによって、画像平面 上に生成すべき矩形画像の 4端点 (X (ans), Y ; i 1 4までの整数)が決定する。 (ans) determines the four end points (X (ans) , Y; integers up to i 1 4 ) of the rectangular image to be generated on the image plane.
[0209] [数 12] f
Figure imgf000037_0001
そして、上記数式(13)によって算出した 4端点による矩形画像を、プロジェクタ 2の 姿勢(Θ (ans), Θ (ans))で実環境投影面 Rに投影すると、ユーザによって要求された 矩形画像を投影させることができる。 [0211] 以上では、実環境投影面 Rがー面である場合について説明してきた力 例えば、図 13に示すように複数の実環境投影面 R' · ·が異なる方向に面して!/ヽる場合もある。こ の場合、一定の場所に設置されたパンチルトプロジェクタ装置 1は、様々な方向に面 して 、る実環境投影面 R' "それぞれに応じて適切に描画を行えるように調整する、す なわち外部キャリブレーションを行う必要がある。
[0209] [Equation 12] f
Figure imgf000037_0001
Then, when the rectangular image calculated by the above formula (13) is projected onto the real environment projection plane R with the attitude of the projector 2 (Θ (ans) , Θ (ans) ), the rectangular image requested by the user is obtained. Can be projected. [0211] The above has described the case where the real environment projection plane R is a plane. For example, as shown in Fig. 13, a plurality of real environment projection planes R '... face in different directions! / ヽThere is also a case. In this case, the pan / tilt projector device 1 installed in a certain place is adjusted so as to be able to perform drawing appropriately in accordance with each of the real environment projection planes R '"facing in various directions. Requires external calibration.
[0212] 以下において、図 14、図 15 (a)〜図 15 (c)、および図 19を参照してこの外部キヤリ ブレーシヨンにつ 、て説明する。  [0212] Hereinafter, the external calibration will be described with reference to FIG. 14, FIG. 15 (a) to FIG. 15 (c), and FIG.
[0213] (外部キャリブレーション)  [0213] (External calibration)
(外部キャリブレーションに関する構成)  (Configuration related to external calibration)
まず、外部キャリブレーションに関するプロジェクタ制御部 4が備える各部の説明を する。  First, each unit included in the projector control unit 4 relating to external calibration will be described.
[0214] すなわち、プロジェクタ制御部 4は、上記外部キャリブレーションを実行するために、 図 19に示すように、外部調整情報取得部 (外部調整情報算出手段) 61および投影 面情報取得部 (投影面情報取得部) 62を備えて 、る。  That is, as shown in FIG. 19, the projector control unit 4 performs the external calibration, as shown in FIG. 19, the external adjustment information acquisition unit (external adjustment information calculation means) 61 and the projection plane information acquisition unit (projection plane). (Information acquisition unit) 62 is provided.
[0215] 外部調整情報取得部 61は、投影面情報取得部 62から取得した実環境投影面 R の 4隅の 2次元座標と、プロジェクタ力 該実環境投影面 Rへの方向を示す情報を取 得し、実環境投影面 R y)  [0215] The external adjustment information acquisition unit 61 acquires the two-dimensional coordinates of the four corners of the real environment projection plane R acquired from the projection plane information acquisition unit 62 and information indicating the projector force and the direction to the real environment projection plane R. And real environment projection plane R y)
上の位置情報 (X, と、正接平面 Q上の位置情報の関係を示 す情報を算出するものである。  The position information (X, and the information indicating the relationship between the position information on the tangent plane Q is calculated.
[0216] なお、上記実環境投影面 Rの 4隅の 2次元座標とは、例えば、実環境投影面尺が 図 13のように異なる方向となる複数の面力もなる場合、これら複数面を展開し共通の 2次元座標上に表現した場合における各面の頂点に対応する各座標である。  [0216] Note that the two-dimensional coordinates of the four corners of the real environment projection plane R are, for example, developed when there are a plurality of surface forces in which the real environment projection plane scale is in different directions as shown in Fig. 13. These are the coordinates corresponding to the vertices of each surface when expressed on common two-dimensional coordinates.
[0217] すなわち、上記実環境投影面 Rの 4隅の 2次元座標は、該実環境投影面 R上に任 意に定めることができる。例えば、実環境投影面 Rが矩形である場合、実環境投影面 Rの上辺を X軸、左辺を y軸とすると、実環境投影面 Rを形成する 4隅の座標を容易に 得ることができる。  That is, the two-dimensional coordinates of the four corners of the real environment projection plane R can be arbitrarily determined on the real environment projection plane R. For example, when the real environment projection plane R is rectangular, if the upper side of the real environment projection plane R is the X axis and the left side is the y axis, the coordinates of the four corners forming the real environment projection plane R can be easily obtained. .
[0218] また、上記図 13のように、複数の実環境投影面 Rから実環境投影面 Rが構成され ている場合、この実環境投影面 Rを、もともと 1つの平面であったものを折り曲げて構 成したものと捉えれば、この実環境投影面 Rを 2次元座標で表すことができる。 [0219] 外部調整情報取得部 61は、上記算出した情報を外部調整情報 74として情報格納 部 7に記憶させる。 [0218] Also, as shown in Fig. 13 above, when the real environment projection plane R is composed of a plurality of real environment projection planes R, this real environment projection plane R is bent from what was originally a single plane. This real environment projection plane R can be expressed in two-dimensional coordinates. [0219] The external adjustment information acquisition unit 61 stores the calculated information in the information storage unit 7 as the external adjustment information 74.
[0220] また、上記投影面情報受信部 62は、画像の投影が所望される実環境投影面 そ れぞれについて、実環境投影面 Rの 4隅の 2次元座標と、プロジェクタ力も該実環境 投影面 Rへの方向を示す情報とをカメラ 5を介して取得するものである。  [0220] In addition, the projection plane information receiving unit 62 has the two-dimensional coordinates of the four corners of the real-environment projection plane R and the projector power for each real-environment projection plane for which image projection is desired. Information indicating the direction to the projection plane R is acquired via the camera 5.
[0221] 投影面情報受信部 62は入力装置力もの指示に応じて、上記した情報を取得する。  [0221] The projection plane information receiving unit 62 acquires the information described above in response to an instruction from the input device.
[0222] (外部キャリブレーションの方法)  [0222] (External calibration method)
この外部キャリブレーションは、画像を描画した!/ヽ実環境投影面 Rの 4隅の 2次元座 標と、パンチルトプロジェクタ装置 1から該実環境投影面 Rに対する方向を示す情報 を取得することによって実現できる。  This external calibration is realized by acquiring the two-dimensional coordinates at the four corners of the real environment projection plane R on which the image is drawn and information indicating the direction with respect to the real environment projection plane R from the pan / tilt projector device 1 it can.
[0223] 具体的には図 15(a)に示すように実環境投影面 R' ··それぞれが設置されて!、る方 向にパンチルトプロジェクタ装置 1を設置する(S31)。そして、次に、プロジェクタ制 御部 4における投影面情報受信部 62が、実環境投影面 R…それぞれの寸法、形状 および配置関係などを示す投影面情報を取得する (S32)。  Specifically, as shown in FIG. 15 (a), each of the real environment projection planes R ′ is installed !, and the pan / tilt projector apparatus 1 is installed in this direction (S31). Then, the projection plane information receiving unit 62 in the projector control unit 4 acquires projection plane information indicating the size, shape, arrangement relationship and the like of the actual environment projection plane R (S32).
[0224] この投影面情報は、例えば、本実施の形態に係るパンチルトプロジェクタ 2が配置さ れる空間領域 (部屋など)の設計図面、あるいは直接メジャーなどを使って測定する ことにより得ることができる。そして、この得られた情報は、入力装置 6を介してユーザ によってプロジェクタ制御部 4に入力される。  [0224] This projection plane information can be obtained, for example, by measurement using a design drawing of a space area (such as a room) in which the pan / tilt projector 2 according to the present embodiment is arranged, or a direct measure. The obtained information is input to the projector control unit 4 by the user via the input device 6.
[0225] また、投影面情報受信部 62は、パンチルトプロジェクタ装置 1から各実環境投影面 Rに対するそれぞれの 4隅の方向を取得する(S33)。  [0225] Further, the projection plane information receiving unit 62 acquires the directions of the four corners of each real environment projection plane R from the pan / tilt projector apparatus 1 (S33).
[0226] このパンチルトプロジェクタ装置 1から各実環境投影面 Rに対する方向の取得は、 プロジェクタ 2によって 1点を投影し、その点が 4隅を向くようにプロジェクタ 2の姿勢を 操作することで取得することができる。  [0226] The direction from the pan / tilt projector device 1 to each real environment projection plane R is acquired by projecting one point by the projector 2 and operating the posture of the projector 2 so that the point faces four corners. be able to.
[0227] すなわち、入力装置 6によって画像平面 P上の任意の一点に対応する画像を実環 境投影面 Rに対して投影する。そして、この投影点が実環境投影面の 4隅と一致する ように、プロジェクタ 2の姿勢を変更させるように、姿勢調整部 43が駆動装置 3に対し て指示する。なお、この姿勢調整部 43の駆動装置 3への指示は、入力装置 6を介し てユーザからの指示に応じて行われる。 [0228] なお、上記取得される方向は、具体的には、プロジェクタ 2の姿勢を示すパン角、チ ルト角の情報であり、初期姿勢からどれだけ水平および垂直方向にプロジェクタ 2の 投影方向 Jを移動させたかについて示すものである。 That is, the input device 6 projects an image corresponding to an arbitrary point on the image plane P onto the real environment projection plane R. Then, the attitude adjustment unit 43 instructs the driving device 3 to change the attitude of the projector 2 so that the projection points coincide with the four corners of the real environment projection plane. Note that the instruction to the driving device 3 by the posture adjustment unit 43 is made in accordance with an instruction from the user via the input device 6. [0228] Note that the acquired direction is specifically information on the pan angle and tilt angle indicating the attitude of the projector 2, and how much the projection direction J of the projector 2 is in the horizontal and vertical directions from the initial attitude. It is shown whether or not is moved.
[0229] そして、ステップ S32およびステップ S33によって取得された投影面情報と 4隅の方 向を示す情報とに基づき、外部調整情報取得部 61が、各実環境投影面 Ri (本実施 例では iは 1〜3の整数)に対する変換行列 H (第 2変換情報)を算出する(S34)。  [0229] Then, based on the projection plane information acquired in step S32 and step S33 and the information indicating the directions of the four corners, the external adjustment information acquisition unit 61 uses each real-environment projection plane Ri (in this example, i Is a transformation matrix H (second transformation information) for (an integer from 1 to 3) (S34).
QRi  QRi
[0230] すなわち、本実施の形態に係るパンチルトプロジェクタ装置 1では、複数の実環境 投影面 Rに対して、それぞれの変換行列 H を算出することで外部キヤリブレーショ  That is, in pan-tilt projector device 1 according to the present embodiment, external calibration is performed by calculating respective transformation matrices H for a plurality of real-environment projection planes R.
n QR  n QR
ンを行う。そして、外部調整部情報取得部 61は、この算出した変換行列 H を、各実  Perform. Then, the external adjustment unit information acquisition unit 61 converts the calculated transformation matrix H into each real
QR  QR
環境投影面 Rごとに外部調整情報 74として情報格納部 7に記憶させている。  Each environment projection plane R is stored as external adjustment information 74 in the information storage unit 7.
[0231] また、投影時には、各実環境投影面 Rごとの上記変換行列 H を利用して、画像デ [0231] Also, at the time of projection, image transformation is performed using the transformation matrix H for each real environment projection plane R.
QR  QR
ータ補正部 53が、投影する実環境投影面 Rに応じた調整を行い、調整した結果の画 像データを生成画像データ受信部 52に送信する。  The data correction unit 53 performs adjustment according to the projection screen R of the real environment to be projected, and transmits the adjusted image data to the generated image data receiving unit 52.
[0232] 上記生成画像データ受信部 52は、画像データ補正部 53から受信した調整された 画像データをプロジェクタ 2に送信する。また、この生成画像データ受信部 52は、姿 勢調整部 43に実環境投影面 Rに応じた姿勢にプロジェクタ 2を移動させるように指示 する。 The generated image data reception unit 52 transmits the adjusted image data received from the image data correction unit 53 to the projector 2. In addition, the generated image data receiving unit 52 instructs the posture adjusting unit 43 to move the projector 2 to a posture corresponding to the actual environment projection plane R.
[0233] なお、この変換行列 H は、上記したように、上記投影面情報および実環境投影面  [0233] Note that the transformation matrix H is the projection plane information and the real environment projection plane as described above.
QR  QR
Rの 4隅に対する方向を示す情報のみを取得するだけで容易に算出することができ る。  It can be easily calculated by obtaining only the information indicating the direction to the four corners of R.
[0234] よって、本実施の形態に係るパンチルトプロジェクタ装置 1は、上記外部キヤリブレ ーシヨンを、複数の実環境投影面 R' · ·に対して容易に行うことができる。  Therefore, the pan / tilt projector device 1 according to the present embodiment can easily perform the external calibration on a plurality of real environment projection planes R ′.
[0235] また、上記パンチルトプロジェクタ装置 1は、上記外部キャリブレーションを各実環境 投影面 Rに対して行うことができるため、該実環境投影面 R…の任意の位置に任意の 形状の画像を歪みなく描画することができる。 [0235] Further, since the pan-tilt projector device 1 can perform the external calibration on each real-environment projection plane R, an image of an arbitrary shape is formed at an arbitrary position on the real-environment projection plane R ... You can draw without distortion.
[0236] また以上のように、本実施の形態に係るパンチルトプロジェクタ装置 1では、各実環 境投影面 Rの 4隅の方向を示す情報と、上記実環境投影面 Rの 4隅の 2次元座標と に基づき上記外部キャリブレーションを実現することができる。 [0237] すなわち、従来のように、各実環境投影面 Rとプロジェクタ 2の相対的な位置および 姿勢関係、あるいは、複数の実環境投影面 R間の角度関係といった 3次元的な情報 の計測を必要としない。つまり、従来のような上記 3次元的な情報の計測は、煩雑か つ精度向上が困難であり、本実施の形態に係るパンチルトプロジェクタ装置 1のよう に、これらの計測が不要であるという点は大きな利点となる。 Further, as described above, in the pan / tilt projector device 1 according to the present embodiment, information indicating the directions of the four corners of each real environment projection plane R and the two-dimensional of the four corners of the real environment projection plane R are described. The above external calibration can be realized based on the coordinates. [0237] That is, as in the past, measurement of three-dimensional information such as the relative position and orientation of each real environment projection plane R and the projector 2 or the angular relationship between multiple real environment projection planes R is performed. do not need. That is, the conventional measurement of the three-dimensional information is complicated and difficult to improve accuracy, and unlike the pan-tilt projector device 1 according to the present embodiment, these measurements are unnecessary. A big advantage.
[0238] さらにまた、本実施の形態に係るパンチルトプロジェクタ装置 1は、上記したように実 環境投影面 Rを 2次元座標として扱うことができるため、例えば連結した 2つの実環 境投影面 Rをまたぐ描画の場合であっても正確に行うことができると ヽぅ利点を有す る。  [0238] Furthermore, since the pan-tilt projector device 1 according to the present embodiment can handle the real environment projection plane R as a two-dimensional coordinate as described above, for example, two connected real environment projection planes R are displayed. There is a great advantage if it can be performed accurately even in case of straddling drawing.
[0239] 上記にて異なる方向に面している、複数の実環境投影面 Rに対して適切に描画す るための調整方法 (外部キャリブレーション)について説明した。そこで、下記におい てこの調整方法をさらに詳しく説明する。  [0239] The adjustment method (external calibration) for appropriately drawing on a plurality of real environment projection planes R facing in different directions has been described above. This adjustment method will be described in more detail below.
[0240] まず、本実施の形態に係るパンチルトプロジェクタ装置 1が図 21に示すように、互い に連結した平面を含む 4平面 (R〜R )に対して描画を行うものとする。この場合、こ  First, as shown in FIG. 21, pan-tilt projector apparatus 1 according to the present embodiment performs drawing on four planes (R to R) including planes connected to each other. In this case, this
1 4  14
れら 4平面 (R〜R )それぞれは、独立した任意の 2次元座標系を有している。例え  Each of these four planes (R to R) has an independent arbitrary two-dimensional coordinate system. Illustration
1 4  14
ば、平面 R上の座標系(X、 y )は、他の平面 R〜R上の座標系(X、 y ) (r= 2、 3、  For example, the coordinate system (X, y) on the plane R is the coordinate system (X, y) (r = 2, 3,
1 1 1 2 4 r r  1 1 1 2 4 r r
4)それぞれと互いに独立した関係となる。  4) They are independent of each other.
[0241] そこで、上記したように投影面情報受信部 62が、規定位置方向情報として、各実環 境投影面 R〜Rに対するそれぞれの 4隅の方向を取得する。具体的には、本実施 [0241] Therefore, as described above, the projection plane information receiving unit 62 acquires the directions of the four corners with respect to each of the real environment projection planes R to R as the prescribed position direction information. Specifically, this implementation
1 4  14
の形態に係るパンチルトプロジェクタ装置 1では、画像中心 Eが平面 R〜R  In the pan / tilt projector apparatus 1 according to the embodiment, the image center E is the plane R to R.
1 4それぞれ の各頂点に向くように調整し、このときのプロジェクタ 2の姿勢情報(θ , Θ )を投影  1 4 Adjust so that it faces each vertex, and project the attitude information (θ, Θ) of projector 2 at this time
P t 面情報受信部 62が受信する。そして、投影面情報受信部 62は、得られた(θ , Θ )  The P t plane information receiving unit 62 receives it. Then, the projection plane information reception unit 62 obtains (θ 1, Θ 2)
P t の値を外部調整情報取得部 61に送信する。  The value of P t is transmitted to the external adjustment information acquisition unit 61.
[0242] 外部調整情報取得部 61は、上記した数式(2)および数式 (4)によって、受信した( θ , Θ )の値を正接平面 Q上に投影した点 (u, v)に変換する。そして、外部調整情[0242] The external adjustment information acquisition unit 61 converts the received value of (θ, Θ) into a point (u, v) projected on the tangent plane Q using the above formulas (2) and (4). . And external adjustment information
P t P t
報取得部 61は、例えば図 22に示すような、実環境投影面 R上の位置情報 (X, y)と 、正接平面 Q上の位置情報 (u, V)とを対応付けて、平面登録テーブルとして情報格 納部 7に記憶する。 [0243] なお、この平面登録テーブルにお 、て、ある実環境投影面 Rnに属する正接平面 Q 上の位置情報 (u , V )は、正接平面 Q上に在る領域を形成しており、この領域 na〜d na〜d For example, as shown in FIG. 22, the information acquisition unit 61 associates position information (X, y) on the actual environment projection plane R with position information (u, V) on the tangent plane Q, and registers the plane. The information is stored in the information storage unit 7 as a table. [0243] In addition, apply in this plane registration table, Te, position information on one real environment projection plane R n tangent plane belonging to Q (u, V) forms a region located on the tangent plane Q , This area na ~ d na ~ d
は、各実環境投影面 R全体を正接平面 Qに逆投影したものとなる。そして、正接平面 Q同士の境界線は、実環境投影面 Rの境界線と対応する。なお本実施の形態では、 このように実環境投影面 Rと対応する領域を、該実環境投影面 Rに対する平面対応 領域と称する。  Is the back projection of each real environment projection plane R onto the tangent plane Q. The boundary line between the tangent planes Q corresponds to the boundary line of the real environment projection plane R. In the present embodiment, the area corresponding to the real environment projection plane R is referred to as a plane corresponding area with respect to the real environment projection plane R.
[0244] ところで、図 21において、例えば実環境投影面 R上の点 (X , y )と、実環境投影  Incidentally, in FIG. 21, for example, the point (X, y) on the real environment projection plane R and the real environment projection
1 Id Id  1 Id Id
面 R上の点(χ , y )は実環境中では同一点となる。したがって、パンチルトプロジェ The point (χ, y) on the surface R is the same point in the real environment. Therefore, pan tilt projector
2 2a 2a 2 2a 2a
クタ装置 1からこれらの点に向力 方向は同一となり、(u , V )と (u , V )は同一の  The direction of the direction of force from the device 1 to these points is the same, and (u, V) and (u, V) are the same.
Id Id 2a 2a 値となる。また、同様に (U , V )と (U , V )ともまた同一の値となる。  Id Id 2a 2a value. Similarly, (U, V) and (U, V) are also the same value.
lc lc 2b 2b  lc lc 2b 2b
[0245] したがって、これら 2組の対応関係から、実環境投影面 Rと実環境投影面 Rとにお  [0245] Therefore, from these two sets of correspondence, the real environment projection plane R and the real environment projection plane R are
1 2 いて各組の 2頂点が実環境中で一致しており、実環境投影面 Rと実環境投影面 Rと  1 2 and the two vertices of each set match in the real environment, and the real environment projection plane R and the real environment projection plane R
1 2 が連結して 、ることを把握することができる。  It can be understood that 1 and 2 are connected.
[0246] そこで、本実施の形態に係るパンチルトプロジェクト装置 1では、外部調整情報取 得部 61が上記平面登録テーブルの中から、同一の (u, vM直となる組み合わせを探 索する。そして、外部調整情報取得部 61この探索の結果、 2平面間において同一の (u, vM直となる組が 2組存在する場合、該 2平面が連結していると判定する。なお、こ の連結して 、ると判定された 2平面のうち、一方の平面に対して連結して!/、る他方の 平面を連結平面と称する。  [0246] Therefore, in the pan / tilt project apparatus 1 according to the present embodiment, the external adjustment information acquisition unit 61 searches the plane registration table for the same (u, vM straight combination). External adjustment information acquisition unit 61 As a result of this search, if there are two sets of the same (u, vM straight) between two planes, it is determined that the two planes are linked. Of the two planes determined to be, the other plane connected to one plane is called a connection plane.
[0247] この判定をすベての 2平面間において行い、その結果として下記の数式(14)に示 す行列を生成する。そして、外部調整情報取得部 61は、この生成した行列を情報格 納部 7に記憶する。なお、本実施形態では、数式(14)に示す行列を連結判定行列( 連結関係情報)と称する。  [0247] This determination is performed between all two planes, and as a result, the matrix shown in the following equation (14) is generated. Then, the external adjustment information acquisition unit 61 stores the generated matrix in the information storage unit 7. In the present embodiment, the matrix shown in Equation (14) is referred to as a connection determination matrix (connection relation information).
[0248] [数 13]  [0248] [Equation 13]
0 1 2 -、 0 1 2-,
3 0 4 - 3 0 4-
M = (m ) ( 1 4 ) M = (m) (1 4)
5 6 0 - 5 6 0-
V 0ノ [0249] なお、上記数式(14)に示す連結判定行列おいて、「一」は、負値を示す。また、こ の行列の要素 mの値は、実環境投影面 Rと実環境投影面 Rとの連結の有無を示すV 0 [0249] In the connection determination matrix shown in the mathematical formula (14), "one" indicates a negative value. The value of the element m of this matrix indicates whether or not the real environment projection plane R and the real environment projection plane R are connected.
。そして、この m力^の場合、実環境投影面 Rと実環境投影面 Rとは同一平面である ことを示す。 . In the case of this m force ^, it is shown that the real environment projection plane R and the real environment projection plane R are the same plane.
[0250] また、この mが負値の場合、実環境投影面 Rと実環境投影面 Rとは連結していな い平面であることを示す。この mが正値の場合、環境投影面 Rと実環境投影面尺と は互いに連結する平面であることを示す。  [0250] Further, when m is a negative value, this indicates that the real environment projection plane R and the real environment projection plane R are not connected planes. When m is a positive value, it indicates that the environment projection plane R and the real environment projection plane scale are planes connected to each other.
[0251] なお、この連結判定行列では、各連結した 2平面に対して、正値として 1、 2、 3、… と順に番号を割り当てており、この値は、連結する実環境投影面 Rと実環境投影面 R との組を特定するための識別子 (ID;identification)としても利用する。  [0251] In this connection determination matrix, numbers are assigned in order of 1, 2, 3, ... as positive values to the two connected planes, and these values are the same as the real environment projection plane R to be connected. It is also used as an identifier (ID) for identifying the pair with the real environment projection plane R.
[0252] 以上のようにして、連結する実環境投影面 R同士の組み合わせを特定すると、外部 調整情報取得部 61は連結する実環境投影面 Rの組ごとに、その座標系間の変換式 を算出する。より具体的には、外部調整情報取得部 61はこの座標系間の変換式を 下記のようにして算出する。  [0252] When the combination of the real environment projection planes R to be connected is specified as described above, the external adjustment information acquisition unit 61 calculates the conversion formula between the coordinate systems for each set of the real environment projection planes R to be connected. calculate. More specifically, the external adjustment information acquisition unit 61 calculates a conversion formula between the coordinate systems as follows.
[0253] まず、図 23に示すように、連結する実環境投影面 Rの組を、 1つの 2次元平面として 展開する。そして、この 2次元平面上において一方の座標系と、他方の座標系との関 係式を求める。  [0253] First, as shown in Fig. 23, a set of connected real environment projection planes R is developed as one two-dimensional plane. Then, on this two-dimensional plane, a relational expression between one coordinate system and the other coordinate system is obtained.
[0254] 例えば、実環境投影面 R  [0254] For example, real environment projection plane R
1と実環境投影面 R 1 and real environment projection plane R
2とに注目した場合、実環境投影面 R  Real environment projection plane R
2 における座標 (X , y ) (n;a〜d)は、実環境投影面 Rにおける座標 (X , y )を用  The coordinates (X, y) (n; a to d) in 2 are the coordinates (X, y) in the real environment projection plane R.
2n 2n 1 In In 2n 2n 1 In In
V、て下記の数式( 15)のように表すことができる。 V can be expressed as the following formula (15).
[0255] [数 14] cosa sm oc [0255] [Equation 14] cosa sm oc
Figure imgf000043_0001
Figure imgf000043_0002
また、実環境投影面 R , y
Figure imgf000043_0001
Figure imgf000043_0002
The real environment projection plane R, y
1と実環境投影面 R 1 and real environment projection plane R
2とでは、 2組の同一点、すなわち、(X  2 and 2 sets of identical points, ie (X
Id Id
) · (χ , y )と、(χ , y ) · (χ , y )とを有する。このため、両者の座標系の間に) · (Χ, y) and (χ, y) · (χ, y). Because of this, between both coordinate systems
Id 2a 2a lc lc 2b 2b Id 2a 2a lc lc 2b 2b
おける変換パラメータ( a , t , t )は、以下の数式(16)に示すように線形に計算する ことができる。 [0257] [数 15] fx2 Λ fX 一 ァ。 The conversion parameters (a, t, t) in this case can be calculated linearly as shown in the following equation (16). [0257] [Equation 15] fx 2 Λ f X
Figure imgf000044_0001
No
Figure imgf000044_0001
[0258] 外部調整情報取得部 61は、すべての連結した実環境投影面 Rの組み合わせにつ いて上記数式(16)を演算し、得られた変換パラメータを、上記した IDとともに、情報 格納部 7に記憶させる。 [0258] The external adjustment information acquisition unit 61 calculates the above equation (16) for all the combinations of the real environment projection planes R connected, and the information storage unit 7 Remember me.
[0259] なお、上記変換パラメータは、具体的には、図 24に示すように、各連結位置に割り 当てられた識別子と、この識別子により特定される連結位置の実環境投影面 Rの組 力も求めた変換パラメータとが対応付けられた、リストとして記憶されて!、る。  [0259] Note that, as shown in Fig. 24, the above conversion parameters are specifically the identifier assigned to each connection position, and the combination of the real environment projection plane R at the connection position specified by this identifier. It is memorized as a list in which the calculated conversion parameters are associated! RU
[0260] すなわち、上記パンチルトプロジェクタ装置 1は、外部調整情報 74として情報格納 部 7に、変換行列 H の他、上記した変換パラメータ、平面登録テーブル、および連 結判定行列もさらに記憶する。  That is, the pan / tilt projector apparatus 1 further stores the conversion parameter H, the plane registration table, and the connection determination matrix in addition to the conversion matrix H in the information storage unit 7 as the external adjustment information 74.
[0261] 以上のようにして、本実施の形態に係るパンチルトプロジェクタ装置 1では、複数の 実環境投影面 Rへの投影処理を実行するための前準備を行う。 As described above, in the pan / tilt projector device 1 according to the present embodiment, preparations for executing the projection processing onto the plurality of real environment projection planes R are performed.
[0262] 次に、以下において、図 25を参照して、上記パンチルトプロジェクタ装置 1による複 数の実環境投影面 Rへの投影処理についての詳細を説明する。 [0262] Next, with reference to FIG. 25, the details of the projection processing onto a plurality of real environment projection planes R by the pan / tilt projector apparatus 1 will be described.
[0263] まず、パンチルトプロジェクタ装置 1は、上記したように現在のプロジェクタ 2の姿勢 情報( Θ , θ ' )を画像データ補正部 53が受信する。そして、画像データ補正部 53 は、受信した( θ ' , θ ' )に基づき、現在のプロジェクタ 2の姿勢における、画像中心First, in the pan / tilt projector device 1, the image data correction unit 53 receives the current attitude information (Θ, θ ′) of the projector 2 as described above. Then, the image data correcting unit 53, based on the received (θ ′, θ ′), the image center in the current posture of the projector 2.
Eと正接平面 Qとの交点 (u , V )を算出する。そして、画像データ補正部 53は、情報 格納部 7に記憶している平面登録テーブルを参照して、この算出した (u , V )がどの 実環境投影面 Rの平面対応領域に属するか調べ、この (u , V )が含まれる領域に対 応する実環境投影面 Rを現在の「主平面」と位置づける。なお、本実施形態では、 プロジェクタ 2の画像中心 Eが投影されている実環境投影面 R力 現時点における主 平面であると定義する。 [0264] ところで、本実施の形態に係るパンチルトプロジェクタ装置 1にお 、て、プロジェクタ 2が連続的に姿勢を変化させる場合、このような姿勢変化に応じて主平面 Rが途中 で変化する可能性がある。 Calculate the intersection (u, V) between E and the tangent plane Q. Then, the image data correction unit 53 refers to the plane registration table stored in the information storage unit 7 to check which real environment projection plane R belongs to the plane corresponding region of the calculated (u, V), The real environment projection plane R corresponding to the region including (u, V) is positioned as the current “main plane”. In the present embodiment, the real environment projection plane R force on which the image center E of the projector 2 is projected is defined as the current main plane. By the way, in the pan / tilt projector device 1 according to the present embodiment, when the projector 2 continuously changes the posture, the main plane R may change in the middle according to such a posture change. There is.
[0265] また、実環境投影面 Rにおける図形形状 Dは、現時点における主平面 Rの座標系 に基づき算出されている。このため、描画中に主平面 Rが変化すると、この変化した 主平面 R の座標系に基づき図形形状 Dの算出が行われてしまう。また、この 2平面 における座標系の向きの違いに応じて図形の向きも変化してしまうという問題が生じ る。  [0265] Further, the figure shape D on the real environment projection plane R is calculated based on the coordinate system of the main plane R at the present time. For this reason, if the main plane R changes during drawing, the figure shape D is calculated based on the coordinate system of the changed main plane R. Another problem is that the orientation of the figure changes according to the difference in the orientation of the coordinate system in these two planes.
[0266] そこで、このような問題を防ぐために、本実施形態に係るパンチルトプロジェクタ装 置 1は、直前の主平面 Rを常に記録するようになっている。  [0266] Therefore, in order to prevent such a problem, the pan / tilt projector device 1 according to the present embodiment always records the immediately preceding main plane R.
[0267] すなわち、上記パンチルトプロジェクタ装置 1では、画像データ補正部 53がまず、 算出した (u , V )がどの実環境投影面 Rの平面対応領域に属するか上記した平面登 録テーブルを参照して調べ、この (u , V )が含まれる領域に対応する主平面 Rの存 c c m 在を確認する(S41)。  That is, in the pan / tilt projector device 1, the image data correction unit 53 first refers to the plane registration table to which plane (R) of the real environment projection plane R the calculated (u, V) belongs to. Then, the existence ccm of the main plane R corresponding to the region including (u, V) is confirmed (S41).
[0268] ここで、現在の主平面 Rが存在する場合、記憶している直前の主平面 Rと、この m m 現在の主平面 Rとを比較する(S42)。ここで現在の Rと直前の Rとが同じである場 m m m  [0268] Here, if the current main plane R exists, the stored main plane R immediately before this m m current main plane R is compared (S42). Where the current R and the previous R are the same m m m
合(S42において「現在の R =直前の R」)、画像データ補正部 53は、現在の主平 m m  (“Current R = R immediately before” in S42), the image data correction unit 53
BRを識別する情報を情報格納部 7に記憶させておく(S43)。  Information for identifying the BR is stored in the information storage unit 7 (S43).
[0269] 一方、上記ステップ S42において、現在の Rと直前の Rとが異なる場合、画像デ m m [0269] On the other hand, if the current R and the previous R are different in step S42, the image de m m
ータ補正部 53は、図 24に示すリストを参照して、現在の実環境投影面 R に関する 変換パラメータを取得する(S48)。そして、画像データ補正部 53は、取得した現在 の実環境投影面 R に関する変換パラメータを情報格納部 7に記憶させ更新する(S4 9)。このように現在の実環境投影面 R に関する変換パラメータに更新すると、この更 新された変換パラメータを参照して描画する図形を回転させる(S50)。  The data correction unit 53 refers to the list shown in FIG. 24, and acquires the conversion parameter relating to the current actual environment projection plane R (S48). Then, the image data correction unit 53 stores and updates the acquired conversion parameter related to the current real environment projection plane R in the information storage unit 7 (S49). When the conversion parameter relating to the current real environment projection plane R is updated as described above, the figure to be drawn is rotated with reference to the updated conversion parameter (S50).
[0270] 例えば、画像中心 Eを投影する実環境投影面 R (主平面 R)が主平面 Rから主平面 Rに変化したとする。このように主平面 Rから主平面 Rに変化する場合、主平面 R[0270] For example, assume that the real environment projection plane R (main plane R) for projecting the image center E changes from the main plane R to the main plane R. Thus, when changing from the main plane R to the main plane R, the main plane R
2 1 2 1 と主平面 Rとの座標系の違いを考慮せず描画をおこなうと、この両者における座標 2 1 2 1 and the main plane R
2  2
系の向きの違いにより、主平面 Rと主平面 Rとの境界において、描画される図形の 向きが変更してしまうことになる。 Due to the difference in the orientation of the system, the figure drawn at the boundary between the principal plane R and the principal plane R The orientation will change.
[0271] そこで、画像中心 Eを投影する主平面 Rが例えば主平面 Rから主平面 Rに移動す [0271] Therefore, the main plane R that projects the image center E moves from the main plane R to the main plane R, for example.
1 2  1 2
る場合、パンチルトプロジェクタ装置 1は、主平面 Rから主平面 Rへの変換パラメ  In this case, the pan / tilt projector device 1 converts the conversion parameter from the main plane R to the main plane R.
1 2 一 タを取得する。ただし、主平面 Rと主平面 Rとの境界を横切った直後の主平面 R2に  1 2 Get the data. However, the main plane R2 immediately after crossing the boundary between the main plane R and the main plane R
1 2  1 2
おける画像中心 E位置は得られている。このため、パンチルトプロジェクタ装置 1は、 情報格納部 7から取得した変換パラメータのうち、向きに関するパラメータ、すなわち 回転成分 αを、描画する図形に適用する。そして、パンチルトプロジェクタ装置 1は、 図形を回転して描画する。  The image center E position is obtained. For this reason, the pan / tilt projector device 1 applies the orientation parameter, that is, the rotation component α among the conversion parameters acquired from the information storage unit 7 to the figure to be drawn. Then, the pan / tilt projector device 1 rotates and draws the figure.
[0272] 次に、画像データ補正部 53は、図 26に示すように主平面上 R の図形形状 D ; (χ [0272] Next, the image data correction unit 53, as shown in FIG.
m m l m, ym)を求める。なお、外部調整情報取得部 61は、上述した 1つの実環境投影面 R における正接平面 Q上での投影領域 S形状および投影オブジェクトを得る処理と同 様に数式(12)によって主平面上 Rの図形形状 Dを求めることができる。このように mmlm, y m ). Note that the external adjustment information acquisition unit 61 uses the equation (12) to calculate the R on the main plane R in the same manner as the process for obtaining the projection area S shape and the projection object on the tangent plane Q on the one real environment projection plane R described above. The figure shape D can be obtained. in this way
m m  m m
して、外部調整情報取得部 61は、主平面上 R 上の部分図形を描画する(S44)。  Then, the external adjustment information acquisition unit 61 draws the partial graphic on R on the main plane (S44).
[0273] し力しながら、ここでは、上記した 1つの実環境投影面 Rに対する処理の場合とは異 なり、 Dをそのまま正接平面 Qに投影してはならない。これは、本実施形態のように 複数の実環境投影面 Rへの投影処理を行う場合、各実環境投影面 Rが有限の領域 を持つことを考慮しなければならないためである。 [0273] However, here, unlike the case of the above processing for one real environment projection plane R, D should not be projected onto the tangent plane Q as it is. This is because, when performing projection processing on a plurality of real environment projection planes R as in this embodiment, it is necessary to consider that each real environment projection plane R has a finite area.
[0274] したがって、ここでは、正接平面 Q上の図形形状 Dと、主平面となる実環境投影面[0274] Therefore, here, the figure D on the tangent plane Q and the real environment projection plane that is the main plane
R との積領域 Tを算出し、この T のみを正接平面 Qに投影する(図 26に示す S )。 The product area T with R is calculated, and only this T is projected onto the tangent plane Q (S shown in FIG. 26).
m m m m  m m m m
[0275] 次に、上記画像データ補正部 53が、図 27に示す連結平面についての処理を行う 。すなわち、画像データ補正部 53は、上記した連結判定行列を参照して、主平面 R に連結している連結平面 Rを探索する(S45)。上記したように、本実施の形態に係 るパンチルトプロジェクタ装置 1では、連結判定行列において、連結した実環境投影 面 R同士の組を特定するための IDを割り当てて 、る。  [0275] Next, the image data correction unit 53 performs processing on the connection plane shown in FIG. That is, the image data correction unit 53 searches for the connection plane R connected to the main plane R with reference to the above-described connection determination matrix (S45). As described above, in the pan / tilt projector device 1 according to the present embodiment, an ID for specifying a set of connected real environment projection planes R is assigned in the connection determination matrix.
[0276] そこで、画像データ補正部 53は、この IDに基づき、実環境投影面 Rにおける連結 関係を把握し、情報格納部 7に記憶している変換パラメータを参照することにより、 R から Rへの座標変換式を得る(S46)。そして、画像データ補正部 53は、このようにし て得た座標変換式を使って、主平面 R上の座標を、各連結平面 R上の座標に変換  [0276] Therefore, the image data correction unit 53 grasps the connection relationship in the real environment projection plane R based on this ID, and refers to the conversion parameter stored in the information storage unit 7 to change from R to R. Is obtained (S46). Then, the image data correction unit 53 converts the coordinates on the main plane R into the coordinates on each connection plane R using the coordinate conversion formula obtained in this way.
m c することができる。 mc can do.
[0277] したがって、画像データ補正部 53は、実環境投影面 R上に記述されている図形形 状 D ; (xm, ym)を各連結平面 R上の座標 D; (xc, yc)に変換することができる。そ して、正接平面 Qへの投影について上記した図形形状 D と主平面 Rとの関係と同 Accordingly, the image data correction unit 53 converts the graphic shape D described on the real environment projection plane R; (x m , y m ) to the coordinates D on each connecting plane R; (x c , y c ) can be converted. And the same as the relationship between the figure D and the principal plane R described above for the projection onto the tangent plane Q.
m m  m m
様に、上記図形形状 Dの座標と主平面 Rの座標との積領域 Tを算出する。そして 算出した積領域 Tを正接平面 Qに投影する(図 27に示す S ) 0 Similarly, the product area T of the coordinates of the graphic shape D and the coordinates of the main plane R is calculated. Then, the calculated product area T is projected onto the tangent plane Q (S in FIG. 27) 0
[0278] 以上の処理によって、正接平面 Q上には、これらの領域、すなわち、図 26に示す S と図 27に示す Sが組み合わされた形で図形領域 S が生成される。この姿勢( Θ ' m c all p[0278] Through the above processing, on the tangent plane Q, these regions, that is, the graphic region S is generated in a combination of S shown in FIG. 26 and S shown in FIG. This posture (Θ 'm c all p
, はすでに求めているので、この s を画像平面 ΡΊこ投影することも可能である t all , Has already been found, so this s can be projected onto the image plane t all
[0279] 以上の処理によって、各実環境投影面 Rの連結関係を考慮して、各連結平面上の 部分図形をそれぞれ描画し所望の描画結果を得ることができる(S47)。 [0279] With the above processing, considering the connection relationship of each real environment projection plane R, it is possible to draw a partial figure on each connection plane and obtain a desired drawing result (S47).
[0280] また、本実施の形態に係るパンチルトプロジェクタ装置 1は、上記したように、直前 の主平面 Rを常に記録している。このため、例えば描画中に主平面 Rが変化した  [0280] In addition, as described above, the pan / tilt projector device 1 according to the present embodiment always records the immediately preceding main plane R. For this reason, for example, the main plane R changed during drawing
m m  m m
場合、それによる座標系の変化を図形形状に反映させることができる。  In this case, the change in the coordinate system can be reflected in the figure shape.
[0281] したがって、上記パンチルトプロジェクタ装置 1は、プロジェクタ 2を自由に回転させ たり、複数の実環境投影面 Rにまたがって連続的に移動させたりした場合であっても 、まるで紙のポスターが滑らかに複数の実環境投影面 Rの表面に沿って移動して ヽ るかのような表示を行うことができる。  [0281] Therefore, the pan-tilt projector apparatus 1 is as if the paper poster is smooth even when the projector 2 is freely rotated or continuously moved across the plurality of real environment projection planes R. In addition, it is possible to display as if moving along the surface of a plurality of real environment projection planes R.
[0282] (複合投影システム)  [0282] (Composite projection system)
なお、図 20において示すように、本実施の形態に係るパンチルトプロジェクタ装置 1 を同一空間領域内に複数備え、複合投影システム 100を構成してもよい。  As shown in FIG. 20, a compound projection system 100 may be configured by providing a plurality of pan / tilt projector apparatuses 1 according to the present embodiment in the same space region.
[0283] 本実施の形態に係るパンチルトプロジェクタ装置 1は、上記したように、投影中心 F と回転中心 Gとが一致するように構成されている。このため、正接平面 Q上という共通 する座標系によって様々なプロジェクタ 2の姿勢における投影の調整を行うことができ るため、各プロジェクタ 2の姿勢での投影調整を迅速に行うことができる。  [0283] As described above, the pan / tilt projector device 1 according to the present embodiment is configured such that the projection center F and the rotation center G coincide with each other. For this reason, the projection adjustment in various postures of the projectors 2 can be performed by the common coordinate system on the tangent plane Q, so that the projection adjustments in the postures of the respective projectors 2 can be quickly performed.
[0284] また、異なる壁面それぞれに対する調整も容易に行うことができるため、 3次元空間 内に適切に複数台を設置し、容易に、迅速に調整を行うことができる。すなわち、上 記複合投影システム 100を迅速にかつ容易に構築することができる。 [0284] In addition, since adjustments for different wall surfaces can be easily performed, a plurality of units can be appropriately installed in the three-dimensional space, and adjustment can be performed easily and quickly. Ie, on The complex projection system 100 can be constructed quickly and easily.
[0285] また、図 20に示すように、本実施の形態に係るパンチルトプロジェクタ装置 1を複数 台同一空間内に設置することによって、下記に示す利点を得ることができる。  Also, as shown in FIG. 20, the following advantages can be obtained by installing a plurality of pan / tilt projector apparatuses 1 according to the present embodiment in the same space.
[0286] すなわち、あるプロジェクタ 2からの投影方向 J先に、例えば人やテーブルなどの遮 蔽物が存在する場合、他のプロジェクタ 2によって代わりに画像などを投影することが できる。また、パンチルトプロジェクタ装置 1が複数台設置されているため、より広い空 間領域の壁などに画像などを投影することができる。  That is, when there is an obstruction such as a person or a table in the projection direction J from a certain projector 2, an image or the like can be projected by another projector 2 instead. In addition, since a plurality of pan / tilt projector devices 1 are installed, an image or the like can be projected onto a wall or the like of a wider spatial area.
[0287] また、複数台のパンチルトプロジェクタ装置 1によって異なる画像または色などを重 ね合わせより複雑な画像表現を実現することができる。  [0287] Further, a plurality of pan-tilt projector devices 1 can realize different image expression by overlapping different images or colors.
[0288] また、上記した複合投影システム 100は、下記の技術に応用することができる。  [0288] The above-described composite projection system 100 can be applied to the following technique.
[0289] 例えば、施設などの館内の廊下などに、上記複合投影システム 100を設置し、該複 合投影システム 100全体による投影領域 S力 この廊下の壁面などをカバーできるよ うに設定する。そして、来訪者があった場合、カメラシステムなどによりこの来訪者の 位置を把握する。そして、この来訪者に対して、この来訪者が進むべき方向を示す矢 印、その他の視覚情報を壁面などに表示する。このように、複合投影システム 100は 、来訪者に対する館内案内の補助を実現することができる。  [0289] For example, the composite projection system 100 is installed in a hallway in a facility or the like, and the projection area S force of the entire composite projection system 100 is set so as to cover the wall surface of the hallway. When there is a visitor, the position of the visitor is grasped by a camera system or the like. Then, for this visitor, an arrow indicating the direction in which the visitor should proceed and other visual information are displayed on the wall surface. In this way, the composite projection system 100 can realize assistance for in-house guidance for visitors.
[0290] あるいは、例えば講義室に本実施の形態に係る複合投影システム 100を設置し、 通常の講義時には、複数台のパンチルトプロジェクタ装置 1によって大きな投影領域 Sを形成するようにしておく。このように設置された複合投影システム 100にお ヽて、 講義内容に応じて投影領域 Sを 2分割する、もしくは講義室内の壁面もしくは天井な どに移動できるようにする。  [0290] Alternatively, for example, the compound projection system 100 according to the present embodiment is installed in a lecture room, and a large projection region S is formed by a plurality of pan-tilt projector devices 1 during a normal lecture. In the compound projection system 100 installed in this way, the projection area S is divided into two according to the contents of the lecture, or can be moved to the wall or ceiling in the lecture room.
[0291] 特に本実施の形態に係るパンチルトプロジェクタ装置 1は、投影の調整が容易であ るため、既存の講義室への設置が容易であり、また設置に力かるコストを、従来のプ ロジェクタ装置を使ってそれぞれ投影の調整を行う場合と比べて低減させることがで きる。  [0291] In particular, the pan / tilt projector device 1 according to the present embodiment is easy to adjust the projection, so that it can be easily installed in an existing lecture room, and the cost of installation is low. This can be reduced compared to the case where the projection is adjusted using the apparatus.
[0292] また、百貨店などのエレベータ乗り場または出入り口付近などにおいて、宣伝広告 などの情報を掲示して 、る。この掲示を上記複合投影システム 100を用いて行うこと ができる。このように複合投影システム 100によって上記した宣伝広告を行う場合、任 意の場所に投影位置を移動させることができるため、人の多く居るエリアに宣伝広告 を表示させたりすることができ宣伝効果を向上させることができる。また、ポスターなど のようにとりはずしたりする必要がないため、人的コストを抑制することができる。 [0292] In addition, information such as advertisements will be posted at the elevator halls of department stores or near doorways. This posting can be made using the compound projection system 100 described above. In this way, when the above-mentioned advertising advertisement is performed by the compound projection system 100, Since the projection position can be moved to the desired location, it is possible to display an advertising advertisement in an area where there are many people, thereby improving the advertising effect. Also, since it is not necessary to remove it like a poster, human costs can be reduced.
[0293] また、建設現場では,建物を立てる場所にまずコンクリートによる水平面を作り,そ の上に柱の位置や建物の形状を描画するために墨のついた糸を使って多くの直線 を描いておく(「墨出し」)が行われる。この墨出しでは,直線以外の図形を描くことは 困難なため、建物の形状に関する非常に抽象的な情報しか描くことができない。そこ で、上記した複合投影システム 100を建設現場に設置すれば、水平面上に数値や 外観画像などと 、つた直線以外の情報を正確な位置に歪み無く描くことができる。し 力も、これらは投影光による仮想情報なので、建築現場における水平面を汚すことが 無い。  [0293] In addition, at the construction site, a concrete horizontal plane is first created at the place where the building is to be built, and a number of straight lines are drawn on it using black ink threads to draw the positions of the pillars and the shape of the building. ("Inking") is performed. With this ink drawing, it is difficult to draw figures other than straight lines, so only very abstract information about the shape of the building can be drawn. Therefore, if the above-described compound projection system 100 is installed at a construction site, information other than a straight line, such as numerical values and appearance images, can be drawn on a horizontal plane without distortion. However, since these are virtual information by projection light, the horizontal plane in the construction site is not soiled.
[0294] なお、投影対象を平面 (実環境投影面 R)に限定しなくても、本実施の形態に係る パンチルトプロジェクタ装置 1の利用用途は多く存在する。  Note that there are many uses of the pan / tilt projector device 1 according to the present embodiment even if the projection target is not limited to a plane (real environment projection plane R).
[0295] 特に、コンピュータビジョン'ユーザインタフェースなどの研究分野では、プロジェク タを利用した研究が多くなされている。この研究では,プロジェクタ 2の画像平面 Pと 投影領域である 3次元空間との対応関係を求めることを基本として成り立つている。こ れは本実施の形態に係るプロジェクタ 2を用いて正接平面 Q上の座標と 3次元空間と の対応関係を求めることに対応して 、る。 [0295] In particular, in research fields such as computer vision 'user interface, much research using projectors has been conducted. This research is based on finding the correspondence between the image plane P of projector 2 and the 3D space that is the projection area. This corresponds to obtaining the correspondence between the coordinates on the tangent plane Q and the three-dimensional space using the projector 2 according to the present embodiment.
[0296] つまり、本実施の形態に係るパンチルトプロジェクタ装置 1を用いることによって、既 存のプロジェクタに関する研究成果を容易に回転機構付きプロジェクタ 2へと拡張す ることがでさる。 That is, by using the pan / tilt projector device 1 according to the present embodiment, the research result on the existing projector can be easily extended to the projector 2 with the rotation mechanism.
[0297] なお、本実施の形態に係るパンチルトプロジェクタ装置 1は、プロジェクタ 2と駆動装 置 3とプロジェクタ制御部 4と、カメラ 5と、入力装置 6と情報格納部 7とがそれぞれ別 々に構成されている力 これらの各装置および部材が 1つの筐体として構成されてい てもよい。  Note that the pan / tilt projector device 1 according to the present embodiment includes a projector 2, a driving device 3, a projector control unit 4, a camera 5, an input device 6, and an information storage unit 7, each separately configured. Forces These devices and members may be configured as a single casing.
[0298] また、上記カメラ 5は、投影中心と回転中心との位置合わせ、精密な位置合わせ、 内部キャリブレーションにおいて使用されていた力 このカメラは同一のものであって もよ 、し、測定対象に応じて異なるカメラ 5が設けられて 、てもよ 、。 [0299] また、上記情報格納部に記憶されている、内部調整情報 (調整情報) 71、投影中 心ずれ量テーブル 72、回転中心座標情報(回転中心位置情報) 73、および外部調 整情報 74は、 1つの情報格納部 7に記憶される構成であった。し力しながら、これら の情報ごとにメモリなどが設けられ、それぞれ別々に記憶されていてもよいし、いくつ かに分散して記憶されて 、てもよ 、。 [0298] In addition, the above camera 5 is the force used in the alignment between the projection center and the rotation center, the precise alignment, and the internal calibration. Depending on the, different cameras 5 are provided. [0299] Also, internal adjustment information (adjustment information) 71, projection center deviation amount table 72, rotation center coordinate information (rotation center position information) 73, and external adjustment information 74 stored in the information storage unit. Is configured to be stored in one information storage unit 7. However, a memory or the like may be provided for each piece of information and stored separately, or may be stored in a distributed manner.
[0300] また、本実施の形態に係るパンチルトプロジェクタ装置 1にお 、て、プロジェクタ 2を 回転させる駆動装置 3は、パン軸(回転軸) 90とチルト軸(回転軸) 91との 2軸力も構 成される回転機構であった。しかし、回転機構はこれに限定されるものではなぐ回転 軸が存在しない回転機構であっても、回転中心が存在するものであれば力まわない 。すなわち、上記回転機構は、回転中心が 1点となるようにプロジェクタを回転させる ものであればよい。  [0300] In the pan-tilt projector device 1 according to the present embodiment, the driving device 3 that rotates the projector 2 also has a biaxial force of a pan axis (rotating axis) 90 and a tilt axis (rotating axis) 91. It was a rotating mechanism. However, the rotation mechanism is not limited to this, and even a rotation mechanism that does not have a rotation axis can be used as long as the rotation center exists. In other words, the rotation mechanism may be any mechanism that rotates the projector so that the rotation center becomes one point.
[0301] また、プロジェクタ制御部 4では、上記した投影中心固定法に関して、回転中心 G および投影中心 Fそれぞれの座標情報に基づき、位置調整部 41が回転中心 Gと投 影中心 Fとが一致するようにプロジェクタ 2の配置を移動させるように構成されて 、た。  [0301] In addition, in the projector control unit 4, with respect to the above-described projection center fixing method, the position adjustment unit 41 matches the rotation center G and the projection center F based on the coordinate information of the rotation center G and the projection center F. So that the arrangement of the projector 2 is configured to move.
[0302] し力しながら、この回転中心 Gと投影中心 Fとをユーザが手動で調整する構成であ つてもよい。  [0302] The rotation center G and the projection center F may be manually adjusted by the user while applying a force.
[0303] この場合、例えば表示装置または印刷装置等の出力手段 (不図示)によって、回転 中心 Gおよび投影中心 Fそれぞれの座標情報をユーザに示す。そして、ユーザがこ の示された情報に基づき、入力装置 6を操作して駆動装置 3にプロジェクタ 2を移動さ せるように指示する。  [0303] In this case, the coordinate information of the rotation center G and the projection center F is indicated to the user by output means (not shown) such as a display device or a printing device. Then, based on the indicated information, the user instructs the drive device 3 to move the projector 2 by operating the input device 6.
[0304] このように構成されている場合、入力装置 6によって調整手段を実現する。  [0304] In the case of such a configuration, the adjusting means is realized by the input device 6.
[0305] また、プロジェクタ制御部 4では、調整位置算出部 42が算出した結果に基づき、微 調整部 42がプロジェクタ 2の配置を微調整する構成であった。し力しながら、調整位 置算出部 42が算出した結果に基づき、ユーザが手動で調整する構成であってもよい [0305] Further, the projector control unit 4 has a configuration in which the fine adjustment unit 42 finely adjusts the arrangement of the projector 2 based on the result calculated by the adjustment position calculation unit 42. However, the user may manually adjust based on the result calculated by the adjustment position calculation unit 42.
[0306] この場合、例えば、調整位置算出部 42の算出結果を不図示の上記出力手段によ つてユーザに示す。そして、ユーザがこの示された情報に基づき、プロジェクタ 2の配 置を、入力装置 6を操作して駆動装置 3に指示して調整する。 [0307] このように構成されている場合、入力装置 6によって調整手段を実現する。 [0306] In this case, for example, the calculation result of the adjustment position calculation unit 42 is shown to the user by the output means (not shown). Based on the indicated information, the user operates the input device 6 to instruct the drive device 3 to adjust the arrangement of the projector 2. [0307] In the case of such a configuration, adjustment means is realized by the input device 6.
[0308] また、本実施の形態において説明した内部キャリブレーションにおいて、上記画像 データ補正部 53は、受付けた投影領域の 4点以上の位置情報を取得し、この位置 情報に対応する、投影する画像の画像データにおける画像平面上の点と、プロジェ クタの投影方向とを算出するように構成されていた。  [0308] In the internal calibration described in the present embodiment, the image data correction unit 53 acquires position information of four or more points of the accepted projection area, and the image to be projected corresponding to the position information. The point on the image plane in the image data and the projection direction of the projector were calculated.
[0309] また、外部キャリブレーションにおいて、投影面情報取得部 62は、プロジェクタ 2と 各実環境投影面 Rとの関係として実環境投影面 Rの 4隅の 2次元座標を取得する 構成であった。し力しながら、上記取得する点の数はこれに限定されるものではなぐ 少なくとも 4点以上であればょ 、。  [0309] Further, in the external calibration, the projection plane information acquisition unit 62 is configured to acquire the two-dimensional coordinates of the four corners of the real environment projection plane R as the relationship between the projector 2 and each real environment projection plane R. . However, the number of points to be acquired is not limited to this.
[0310] なお、上記実施形態のパンチルトプロジェクタ装置 1が備える、上記プロジェクタ制 御部 4の各部や各処理ステップは、不図示の CPUなどの演算手段が、 ROM (Read Only Memory)や RAMなどの記憶手段に記憶されたプログラムを実行し、キーボー ドなどの入力手段、ディスプレイなどの出力手段、あるいは、インタフェース回路など の通信手段を制御することにより実現することができる。したがって、これらの手段を 有するコンピュータが、上記プログラムを記録した記録媒体を読取り、当該プログラム を実行するだけで、本実施形態のパンチルトプロジェクタ装置 1の各種機能および各 種処理を実現することができる。また、上記プログラムをリムーバブルな記録媒体に記 録することにより、任意のコンピュータ上で上記の各種機能および各種処理を実現す ることがでさる。  [0310] Note that each unit and each processing step of the projector control unit 4 included in the pan / tilt projector device 1 of the above-described embodiment is performed by a calculation unit such as a CPU (not shown) such as a ROM (Read Only Memory) or a RAM. This can be realized by executing a program stored in the storage means and controlling input means such as a keyboard, output means such as a display, or communication means such as an interface circuit. Accordingly, various functions and various processes of the pan / tilt projector device 1 of the present embodiment can be realized by a computer having these means simply by reading the recording medium storing the program and executing the program. Further, by recording the above program on a removable recording medium, it is possible to realize the above various functions and various processes on an arbitrary computer.
[0311] この記録媒体としては、マイクロコンピュータで処理を行うために図示しないメモリ、 例えば ROMのようなものがプログラムメディアであっても良いし、また、図示していな V、が外部記憶装置としてプログラム読取り装置が設けられ、そこに記録媒体を挿入す ることにより読取り可能なプログラムメディアであっても良い。  [0311] As the recording medium, a memory (not shown) such as a ROM may be used as a program medium for processing by a microcomputer, and V not shown is an external storage device. It may be a program medium provided with a program reader and readable by inserting a recording medium into the program reader.
[0312] また、何れの場合でも、格納されているプログラムは、マイクロプロセッサがアクセス して実行される構成であることが好ましい。さらに、プログラムを読み出し、読み出され たプログラムは、マイクロコンピュータのプログラム記憶エリアにダウンロードされて、そ のプログラムが実行される方式であることが好ましい。なお、このダウンロード用のプロ グラムは予め本体装置に格納されて 、るものとする。 [0313] また、上記プログラムメディアとしては、本体と分離可能に構成される記録媒体であ り、磁気テープやカセットテープ等のテープ系、フレキシブルディスクやハードデイス ク等の磁気ディスクや CDZMOZMDZDVD等のディスクのディスク系、 icカード( メモリカードを含む)等のカード系、あるいはマスク ROM、 EPROM (Erasable Progra mmable Read Only Memory)、 EEPROM (Electrically Erasable Programmable Read[0312] In any case, the stored program is preferably configured to be accessed and executed by a microprocessor. Further, it is preferable that the program is read out, and the read program is downloaded to the program storage area of the microcomputer and the program is executed. Note that this download program is stored in advance in the main unit. [0313] The program medium is a recording medium configured to be separable from the main body, such as a tape system such as a magnetic tape or a cassette tape, a magnetic disk such as a flexible disk or a hard disk, or a disk such as a CDZMOZMDZDVD. Disk system, card system such as ic card (including memory card), mask ROM, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read)
Only Memory)、フラッシュ ROM等による半導体メモリを含めた固定的にプログラムを 担持する記録媒体等がある。 Only memory) and recording media that carry a fixed program including semiconductor memory such as flash ROM.
[0314] また、インターネットを含む通信ネットワークを接続可能な装置構成であれば、通信 ネットワーク力 プログラムをダウンロードするように流動的にプログラムを担持する記 録媒体であることが好まし 、。 [0314] In addition, if the device configuration is capable of connecting to a communication network including the Internet, it is preferable that the recording medium is a recording medium that fluidly carries the program so as to download the program.
[0315] さらに、このように通信ネットワーク力もプログラムをダウンロードする場合には、その ダウンロード用のプログラムは予め本体装置に格納しておくか、あるいは別な記録媒 体力 インストールされるものであることが好ましい。 [0315] Further, in the case where the communication network capability is downloaded as described above, it is preferable that the download program is stored in the main unit in advance or installed with another recording medium strength. .
[0316] また、本発明は上述した実施形態に限定されるものではなぐ請求項に示した範囲 で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的 手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる [0316] The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
[0317] 本発明に係る投影装置は、以上のように、投影面に対して光を照射し画像を投影 する投影部と、この投影部カゝら投影面に対して照射する投影方向を変更するように、 該投影部を回転させる駆動部とを備えた投影装置であって、上記投影部が照射する 光の光源点を投影中心としたとき、上記投影中心と、上記駆動部による投影部の回 転運動の中心点である回転中心とがー致するように上記投影部と駆動部とが配置さ れていることを特徴とする。 [0317] As described above, the projection device according to the present invention changes the projection unit that irradiates light onto the projection surface and projects an image, and the projection direction that irradiates the projection surface from the projection unit. And a driving unit that rotates the projection unit, wherein when the light source point of the light irradiated by the projection unit is a projection center, the projection center and the projection unit by the drive unit The projection unit and the drive unit are arranged so as to coincide with the center of rotation that is the center point of the rotational motion of the lens.
[0318] よって、任意の投影方向となる、異なる姿勢の投影部それぞれについて、投影面に ぉ 、て投影する画像の位置を規定するための平面座標を、特定の平面座標に変換 することができる。そして、ある特定の平面座標により、投影方向が異なる、すなわち 投影姿勢が異なるすべての投影部それぞれの平面座標を統合して扱うことができる [0319] このように、特定の平面により、全ての投影部の投影姿勢における上記平面座標点 それぞれを統合して扱うことができるため、投影面に対して、歪みがなぐ位置ずれの な 、画像を描画できるようにするために行う調整作業を容易とすることができると 、う 効果を奏する。 [0318] Therefore, for each of the projection units having different orientations in an arbitrary projection direction, the plane coordinates for defining the position of the image to be projected on the projection plane can be converted into specific plane coordinates. . And it is possible to handle the plane coordinates of all the projection parts with different projection directions, that is, different projection postures, by integrating them with a certain plane coordinate. [0319] As described above, since each of the plane coordinate points in the projection postures of all the projection units can be integrated and handled by a specific plane, the image does not have a positional displacement without distortion with respect to the projection plane. If the adjustment work performed to enable drawing can be facilitated, there is an effect.
[0320] また、本発明に係る投影装置は、以上のように、投影面に対して光を照射し画像を 投影する投影部と、この投影部カゝら投影面に対して照射する投影方向を変更するよ うに、該投影部を回転させる駆動部とを備えた投影装置であって、上記駆動部によつ て上記投影部の回転運動の中心点である回転中心が 1点となるように、該投影部が 回転され、上記投影部が照射する光の光源点を投影中心としたとき、上記回転中心 の位置情報である回転中心位置情報を取得する回転中心位置情報取得手段と、照 射された光の軌跡を示す照射光情報を受付け、該照射光情報に基づき、投影中心 の位置情報である投影中心位置情報を特定する投影中心位置情報特定手段と、上 記取得された回転中心位置情報と、上記特定された投影中心位置情報とに基づき、 投影中心と回転中心とがー致するように、投影部と駆動部との配置関係を調整する 調整手段とを備えて!/ヽることを特徴とする。  [0320] Further, as described above, the projection apparatus according to the present invention projects a projection surface that irradiates light onto the projection surface and projects an image, and a projection direction that irradiates the projection surface from the projection unit. And a drive unit that rotates the projection unit so that the rotation center that is the center point of the rotational movement of the projection unit is set to one point by the drive unit. In addition, when the projection unit is rotated and the light source point of the light irradiated by the projection unit is used as the projection center, rotation center position information acquisition means for acquiring rotation center position information, which is position information of the rotation center, Projection center position information specifying means for receiving irradiation light information indicating a locus of the emitted light and specifying projection center position information which is position information of the projection center based on the irradiation light information, and the rotation center acquired above The position information and the specified projection center position information Hazuki, as the rotation center and the projection center that Itasu over, characterized in that the projection portion and and an adjusting means for adjusting the positional relationship between the drive unit! / Ru.
[0321] また、本発明に係る投影装置の制御方法は、以上のように、投影面に対して光を照 射し画像を投影する投影部と、この投影部から投影面に対して照射する投影方向を 変更するように、該投影部を回転させる駆動部とを備えた投影装置の制御方法であ つて、上記駆動部によって上記投影部の回転運動の中心点である回転中心力 ^点と なるように、該投影部が回転され、上記投影部が照射する光の光源点を投影中心と したとき、上記回転中心の位置情報である回転中心位置情報を取得するステップと、 照射された光の軌跡を示す照射光情報を受付け、該照射光情報に基づき、投影中 心の位置情報である投影中心位置情報を特定するステップと、上記取得された回転 中心位置情報と、上記特定された投影中心位置情報とに基づき、投影中心と回転中 心とがー致するように、投影部と駆動部との配置関係を調整するステップとを含むこと を特徴とする。  [0321] Further, as described above, the control method of the projection apparatus according to the present invention irradiates the projection surface with light from the projection unit that projects light by projecting light onto the projection surface. A control method of a projection apparatus comprising a drive unit that rotates the projection unit so as to change the projection direction, wherein the drive unit causes a rotation center force ^ point that is a center point of the rotational movement of the projection unit As described above, when the projection unit is rotated and the light source point of the light irradiated by the projection unit is used as the projection center, the rotation center position information that is the position information of the rotation center is obtained, and the irradiated light Receiving irradiation light information indicating the trajectory of the image, and specifying based on the irradiation light information, projection center position information that is position information of the projection center, the acquired rotation center position information, and the specified projection Projecting based on center position information And so that the rotation of the heart that Itasu over, characterized in that it comprises a step of adjusting the positional relationship between the driving portion and the projection portion.
[0322] このように、本発明に係る投影装置および投影装置の制御方法は、特定の平面に より、全ての投影部の姿勢における上記平面座標点それぞれを統合して扱うことがで きる。このため、投影領域に対して、歪みがなぐ位置ずれのない画像を描画できるよ うにするために行う調整作業を容易とすることができるという効果を奏する。 [0322] As described above, the projection apparatus and the control method for the projection apparatus according to the present invention can handle each of the plane coordinate points in the postures of all the projection units in an integrated manner by a specific plane. wear. For this reason, there is an effect that it is possible to facilitate the adjustment work performed in order to be able to draw an image having no positional deviation with distortion in the projection area.
[0323] 本発明にカゝかる複合投影システムは、以上のように、上記した投影装置を複数備え たことを特徴とする。  [0323] As described above, the composite projection system according to the present invention includes a plurality of the above-described projection devices.
[0324] 上記した投影装置は、投影中心と回転中心とがー致するように構成されている。こ のため、正接平面という共通する座標系によって様々な投影部の姿勢における投影 の調整を行うことができる。したがって、各投影部の異なる姿勢での投影調整を迅速 に行うことができる。また、異なる投影面それぞれに対する調整も容易に行うことがで きるため、 3次元空間内に適切に複数台を設置し、容易に、迅速に調整を行うことが できる。すなわち、上記複合投影システムは、迅速にかつ容易にシステムを構築する ことができると!/、う効果を奏する。  [0324] The projection apparatus described above is configured such that the projection center and the rotation center coincide. For this reason, it is possible to adjust the projection in various projection unit postures by a common coordinate system called a tangent plane. Therefore, it is possible to quickly perform projection adjustment in different postures of the projection units. In addition, since it is possible to easily adjust each of the different projection planes, it is possible to easily and quickly make adjustments by appropriately installing multiple units in the three-dimensional space. That is, the composite projection system has the effect of being able to build a system quickly and easily!
[0325] さらにまた、本発明に係る複合投影システムは、ある投影部力ゝらの投影方向先に、 例えば人やテーブルなどの遮蔽物が存在する場合、他の投影部によって代わりに画 像などを投影することができる。また、投影部が複数台設置されているため、より広い 空間領域の壁などに画像などを投影することができるという効果を奏する。  [0325] Furthermore, in the compound projection system according to the present invention, when a shielding object such as a person or a table is present ahead of the projection direction of a certain projection unit force, an image or the like is substituted by another projection unit. Can be projected. In addition, since a plurality of projection units are installed, it is possible to project an image or the like on a wall or the like in a wider space area.
[0326] また、本発明に係る投影装置は、上記した構成にぉ 、て、上記投影部は、上記投 影面に対して、上記投影中心から所定の角度で光領域の範囲が広がるように照射し ており、上記回転中心の位置情報を示す回転中心情報を記憶する記憶装置と、上 記投影中心と投影面との間において照射された光の軌跡を示す軌跡情報を取得す る軌跡取得部とをさらに備え、上記回転中心位置情報取得手段は、上記記憶装置か ら回転中心位置情報を取得し、上記投影中心位置情報特定手段は、上記照射光情 報として、上記軌跡取得部より軌跡情報を受付け、該軌跡情報に基づき投影中心位 置情報を特定するように構成されて ヽてもよ ヽ。  [0326] Further, in the projection device according to the present invention, with the above-described configuration, the projection unit expands the range of the light region at a predetermined angle from the projection center with respect to the projection surface. A trajectory acquisition that obtains trajectory information indicating a trajectory of light emitted between the projection center and the projection plane, and a storage device that stores the rotation center information indicating the position information of the rotation center. The rotation center position information acquisition means acquires rotation center position information from the storage device, and the projection center position information specification means uses the trajectory acquisition section as the irradiation light information. It may be configured to receive information and specify projection center position information based on the trajectory information.
[0327] また、本発明に係る投影装置は、上記した構成にぉ ヽて、上記投影部と上記投影 面との間の任意の固定点を通過する光の、該投影面における投影位置情報を、異な る投影方向それぞれにつ ヽて取得する投影位置情報取得部と、上記投影位置情報 取得部によって取得された上記投影位置情報を受付け、該投影位置情報が上記投 影面において 1点となる投影中心位置情報を算出する位置調整算出手段と、上記位 置調整算出手段によって算出された結果に基づき、上記特定された投影中心位置 情報を変更し、この変更した投影中心位置情報に基づき、上記調整手段により調整 された投影部と駆動部との配置関係を微調整する微調整手段とをさらに備えるように 構成されて ヽることが好ま ヽ。 [0327] In addition, the projection apparatus according to the present invention, based on the above-described configuration, obtains projection position information on the projection plane of light passing through an arbitrary fixed point between the projection section and the projection plane. The projection position information acquisition unit acquired for each of the different projection directions and the projection position information acquired by the projection position information acquisition unit are received, and the projection position information becomes one point on the projection plane. Position adjustment calculating means for calculating projection center position information; Based on the result calculated by the position adjustment calculation means, the specified projection center position information is changed, and the arrangement relationship between the projection unit and the drive unit adjusted by the adjustment means is changed based on the changed projection center position information. It is preferable that the apparatus is further provided with a fine adjustment means for fine adjustment.
[0328] ところで、上記投影中心と回転中心とがー致していない場合、投影部から投影面に 対して照射される投影方向が異なるたびに、投影部と投影面との間にある固定点を 通過する光が投影面に投影される位置がずれる。すなわち、上記投影方向が変更さ れても上記固定点を通過する光の投影面における投影位置が一点に収束する場合 、上記回転中心と投影中心とがー致しているといえる。  [0328] By the way, when the projection center and the rotation center do not match, a fixed point between the projection unit and the projection surface is obtained every time the projection direction irradiated from the projection unit to the projection surface is different. The position where the passing light is projected on the projection plane is shifted. That is, if the projection position on the projection plane of the light passing through the fixed point converges to one point even if the projection direction is changed, it can be said that the rotation center and the projection center coincide.
[0329] 上記した構成によると、投影位置情報取得部を備えて 、るため、異なる投影方向に ぉ ヽて、投影部から投影面に対して照射された光の投影位置を確認することができ る。また、位置調整手段を備えているため、投影部と駆動部との位置を上記投影面に おける投影点力 ^点に収束するように調整することができる。  [0329] According to the above configuration, since the projection position information acquisition unit is provided, the projection position of the light emitted from the projection unit to the projection plane can be confirmed in different projection directions. The Further, since the position adjusting means is provided, the positions of the projection unit and the drive unit can be adjusted so as to converge to the projected point force on the projection plane.
[0330] したがって、本発明に係る投影装置は、確度よく精密に投影中心と回転中心とを一 致させて、投影部と駆動部とを配置させることができる。  Therefore, the projection apparatus according to the present invention can arrange the projection unit and the drive unit by accurately and precisely matching the projection center and the rotation center.
[0331] また、本発明に係る投影装置は、上記した構成にぉ 、て、上記駆動部は、上記投 影部を回転させるために複数の回転軸を備え、上記回転中心は、上記複数の回転 軸の交点となるように構成されて 、る。  [0331] Further, in the projection device according to the present invention, in the above configuration, the drive unit includes a plurality of rotation shafts for rotating the projection unit, and the rotation center includes the plurality of rotation axes. It is configured to be the intersection of the rotation axes.
[0332] また、本発明に係る投影装置は、上記した構成にお!ヽて、投影すべき画像データ を受付ける画像データ受付け手段と、上記画像データ受付け手段によって受付けた 、複数の所定位置を示す画像データに基づき、初期姿勢に設定された投影部により 投影された、投影面における投影点の投影位置情報から、画像データにおける上記 所定位置の位置情報と、該投影位置情報との関係を算出する第 1関係算出手段と、 上記画像データ受付け手段によって受付けた所定位置を示す画像データに基づき 、初期姿勢力 所定角度回転させた投影部によって投影された、投影面における投 影点の投影位置情報から、投影部の投影方向と、該投影方向ごとに応じた投影点と の関係を算出する第 2関係算出手段と、上記第 1関係算出手段と第 2関係算出手段 との算出結果に応じて、画像データに基づき投影面に投影する画像の調整情報を 取得する調整情報取得手段とを備えて 、ることが好ま 、。 [0332] In addition, the projection apparatus according to the present invention shows an image data receiving unit that receives image data to be projected and a plurality of predetermined positions received by the image data receiving unit in the configuration described above. Based on the image data, the relationship between the position information of the predetermined position in the image data and the projection position information is calculated from the projection position information of the projection point on the projection plane projected by the projection unit set to the initial posture. Based on the projection position information of the projection point on the projection plane projected by the projection unit rotated by a predetermined angle based on the first relation calculating means and the image data indicating the predetermined position received by the image data receiving means. A second relationship calculating means for calculating a relationship between the projection direction of the projection unit and a projection point corresponding to each projection direction, the first relationship calculating means and the second relationship calculating means. Depending on the calculation result, the adjustment information of the image to be projected on the projection plane based on the image data It is preferable to have an adjustment information acquisition means to acquire.
[0333] なお、上記複数の所定位置を示す画像データは、投影面と入力画像データ生成す る面との位置関係を得るためには、 4点以上あることが好ましい。また、上記画像デー タの所定位置は、投影すべき画像の画像データの位置を規定する平面座標系にお ける座標によって表現でき、例えば画像データに対応する画素値などによって表現 することができる。 [0333] The image data indicating the plurality of predetermined positions is preferably four or more points in order to obtain the positional relationship between the projection plane and the plane on which the input image data is generated. The predetermined position of the image data can be expressed by coordinates in a plane coordinate system that defines the position of the image data of the image to be projected, for example, by a pixel value corresponding to the image data.
[0334] 一方、投影位置情報とは、投影面を表現する平面座標系における座標として表現 できるものである。  On the other hand, the projection position information can be expressed as coordinates in a plane coordinate system that expresses the projection plane.
[0335] 上記構成によると、第 1関係算出手段を備えているため、画像データにおける所定 位置と、投影位置情報との関係を算出することができる。  [0335] According to the above configuration, since the first relationship calculating means is provided, the relationship between the predetermined position in the image data and the projection position information can be calculated.
[0336] また、第 2算出手段を備えているため、投影部の投影方向と、所定の投影方向にお いて規定される投影点との関係を算出することができる。  [0336] Further, since the second calculation means is provided, the relationship between the projection direction of the projection unit and the projection point defined in the predetermined projection direction can be calculated.
[0337] したがって、上記第 1関係算出手段と、第 2関係算出手段の算出結果から、上記調 整情報取得手段は、投影面における所定の投影位置から、適切な所定位置を示す 画像データと、投影部の投影方向とを知ることができる。  [0337] Therefore, from the calculation results of the first relationship calculation means and the second relationship calculation means, the adjustment information acquisition means, from the predetermined projection position on the projection plane, image data indicating an appropriate predetermined position, It is possible to know the projection direction of the projection unit.
[0338] また、本発明に係る投影装置の制御方法は、上記した方法にぉ 、て、投影すべき 画像データを受付けるステップと、上記受付けた、複数の所定位置を示す画像デー タに基づき、初期姿勢に設定された投影部により投影された、投影面における投影 点の投影位置情報から、画像データにおける上記所定位置の位置情報と、該投影 位置情報との関係を算出するステップと、上記受付けた所定位置を示す画像データ に基づき、初期姿勢力も所定角度回転させた投影部によって投影された、投影面に おける投影点の投影位置情報から、投影部の投影方向と、該投影方向ごとに応じた 投影点との関係を算出するステップと、上記した算出結果に応じて、画像データに基 づき投影面に投影する画像の調整情報を取得するステップとを含んで 、てもよ 、。  [0338] Further, according to the control method of the projection apparatus according to the present invention, based on the step of receiving image data to be projected and the received image data indicating a plurality of predetermined positions based on the method described above, Calculating the relationship between the position information of the predetermined position in the image data and the projection position information from the projection position information of the projection point on the projection plane projected by the projection unit set to the initial posture; From the projection position information of the projection point on the projection plane, which is projected by the projection unit whose initial posture force is rotated by a predetermined angle based on the image data indicating the predetermined position, the projection direction of the projection unit and the projection direction according to each projection direction. A step of calculating a relationship with the projection point, and a step of acquiring adjustment information of an image to be projected on the projection surface based on the image data according to the calculation result described above. Also,.
[0339] 本発明に係る投影装置の制御方法によると、画像データにおける上記所定位置の 位置情報と、該投影位置情報との関係を算出するステップを含むため、画像データ における所定位置と、投影位置情報との関係を算出することができる。  [0339] According to the control method of the projection device of the present invention, the method includes the step of calculating the positional information of the predetermined position in the image data and the relationship between the projection position information, and the predetermined position in the image data and the projected position. The relationship with the information can be calculated.
[0340] また、投影部の投影方向と、該投影方向ごとに応じた投影点との関係を算出するス テツプを含むため、投影部の投影方向と、所定の投影方向において規定される投影 点との関係を算出することができる。 [0340] Also, a scan for calculating the relationship between the projection direction of the projection unit and the projection point corresponding to each projection direction. Since the steps are included, the relationship between the projection direction of the projection unit and the projection point defined in the predetermined projection direction can be calculated.
[0341] したがって、これらのステップによる算出結果に応じて、上記調整情報を取得するス テツプにより、投影面における所定の投影位置から、適切な所定位置を示す画像デ ータと、投影部の投影方向とを知ることができる調整情報を取得することができる。  [0341] Therefore, according to the calculation results in these steps, the image data indicating the appropriate predetermined position from the predetermined projection position on the projection surface and the projection of the projection unit are obtained by the step of acquiring the adjustment information. Adjustment information that allows the user to know the direction can be acquired.
[0342] よって、本発明に係る投影装置および投影装置の制御方法は、投影面において描 画が所望される投影点に対応した画像データの所定位置および、投影方向を知るこ とができるため、予め、投影面と該投影面に対して投影する画像データとの調整を行 つておくことができる。  Therefore, the projection device and the control method for the projection device according to the present invention can know the predetermined position and the projection direction of the image data corresponding to the projection point desired to be drawn on the projection plane. The projection surface and the image data projected onto the projection surface can be adjusted in advance.
[0343] また、本発明に係る投影装置は、上記した構成にお!ヽて、上記調整情報取得手段 は、上記調整情報として、投影方向が異なる投影部それぞれにおける画像データを 共通して扱うことができる平面である正接平面上の位置情報と、投影面上の位置情 報との関係を示す第 1変換情報と、上記投影中心から上記投影面において投影され た所定位置の投影点に対する方向を示す方向情報と、投影面に対する投影可能な 範囲を規定する、画像データ中の少なくとも 4点以上に対する投影中心からの方向を 示す方向情報とを取得するように構成されることが好まし 、。  [0343] In addition, in the projection apparatus according to the present invention, the adjustment information acquisition unit commonly handles image data in the projection units having different projection directions as the adjustment information. The first transformation information indicating the relationship between the positional information on the tangent plane, which is a plane capable of performing imaging, and the positional information on the projection plane, and the direction from the projection center to the projection point of the predetermined position projected on the projection plane. Preferably, it is configured to acquire direction information indicating, and direction information indicating a direction from the projection center with respect to at least four or more points in the image data that define a projectable range on the projection plane.
[0344] なお、上記正接平面とは、任意の投影方向となる、異なる姿勢の投影部それぞれ につ 、て、投影面にぉ 、て投影する画像データの位置を規定するための平面座標 を変換した特定の平面座標である、すなわち、投影方向が異なる、言いかえれば投 影姿勢が異なる、すべての投影部それぞれの平面座標を統合して扱うことができるも のである。  [0344] Note that the tangent plane is a plane coordinate for defining the position of image data to be projected on the projection plane for each of the projection units having different orientations in an arbitrary projection direction. The specific plane coordinates, that is, the projection directions are different, in other words, the projection postures are different, and the plane coordinates of all the projection parts can be handled in an integrated manner.
[0345] また、本発明に係る投影装置は、上記した構成にぉ 、て、異なる複数の投影面に 対して画像を投影する場合にぉ ヽて、上記投影面を規定する 4点以上の位置情報と 、投影部力 該投影面の 4点以上に対する方向を示す規定位置方向情報とを取得 する投影面情報取得手段と、上記投影面情報取得手段によって取得された位置情 報と規定位置方向情報とに基づいて、各投影面上の位置情報を上記正接平面上の 位置情報に変換するための第 2変換情報を算出する外部調整情報算出手段とを備 えるように構成されて 、てもよ 、。 [0346] 上記構成によると、上記投影面情報取得手段を備えているため、投影対象となる投 影面ごとに応じた、該投影面と投影部との関係を規定することができる。また、外部調 整情報取得部手段を備えているため、投影面ごとに規定した上記関係を、正接平面 上の位置情報として変換することができる第 2変換情報を算出することができる。 [0345] Further, the projection apparatus according to the present invention has four or more positions that define the projection plane in the above-described configuration, when projecting an image onto a plurality of different projection planes. Information and a projection unit force, a projection plane information acquisition unit that acquires a specified position direction information indicating directions with respect to four or more points of the projection plane, and the position information and the specified position direction information acquired by the projection plane information acquisition unit And external adjustment information calculating means for calculating second conversion information for converting the position information on each projection plane into the position information on the tangent plane. ,. [0346] According to the above configuration, since the projection plane information acquisition unit is provided, it is possible to define the relationship between the projection plane and the projection unit according to each projection plane to be projected. In addition, since the external adjustment information acquisition unit is provided, it is possible to calculate second conversion information that can convert the above-mentioned relationship defined for each projection plane as position information on the tangent plane.
[0347] このように、本発明に係る投影装置は、各投影面に対する関係を上記正接平面上 の位置情報 (座標)に変換することができる第 2変換情報を取得している。このため、 投影面ごとの位置情報 (座標)を統合して上記正接平面上の位置情報 (座標)として 扱うことができる。  As described above, the projection apparatus according to the present invention acquires the second conversion information that can convert the relationship with respect to each projection plane into position information (coordinates) on the tangent plane. For this reason, position information (coordinates) for each projection plane can be integrated and handled as position information (coordinates) on the tangent plane.
[0348] また、本発明に係る投影装置は、上記した構成において、上記外部調整情報算出 手段によって算出された第 2変換情報には、上記投影面を規定する 4点以上の位置 情報および規定位置方向情報に基づき算出された、隣接する他の投影面との連結 関係を示す連結関係情報と、上記連結関係情報に基づき算出された、連結する投 影面同士を 2次元平面に展開した際における両者の座標関係を特定する座標変換 パラメータと、を含んでいることが好ましい。  [0348] Further, in the projection device according to the present invention, in the configuration described above, the second conversion information calculated by the external adjustment information calculation means includes position information and specified positions of four or more points that define the projection plane. Linkage relationship information calculated based on the direction information and indicating the link relationship with other adjacent projection planes, and the projection surfaces to be linked calculated based on the link relationship information are expanded into a two-dimensional plane. It is preferable to include a coordinate conversion parameter that specifies the coordinate relationship between the two.
[0349] なお、上記連結関係情報とは、連結する投影面の組み合わせを示す情報である。  [0349] The connection relationship information is information indicating a combination of projection planes to be connected.
[0350] 上記構成によると、第 2変換情報には、連結関係情報を含んでいるため、該連結関 係情報を参照することにより、複数の投影面における連結関係を特定することができ る。また、上記座標変換パラメータを含んでいるため、連結する投影面同士を 2次元 平面に表わすことができる。  [0350] According to the above configuration, since the second conversion information includes connection relation information, the connection relations on a plurality of projection planes can be specified by referring to the connection relation information. In addition, since the coordinate transformation parameters are included, the connected projection planes can be represented on a two-dimensional plane.
[0351] このため、連結する投影面ごとの位置情報 (座標)を統合して上記正接平面上の位 置情報 (座標)として扱うことができる。  [0351] For this reason, position information (coordinates) for each projection plane to be connected can be integrated and handled as position information (coordinates) on the tangent plane.
[0352] また、本発明に係る投影装置の制御方法は、上記した方法にぉ 、て、異なる複数 の投影面に対して画像を投影する場合において、上記投影面を規定する 4点以上の 位置情報と、投影部力 該投影面に対する方向を示す情報とを取得するステップと、 上記取得された投影面を規定する 4点以上の位置情報と、投影部力 該投影面に対 する方向を示す情報とに基づいて、各投影面上の位置情報を上記正接平面上の位 置情報に変換するための第 2変換情報を算出するステップとを含んでいてもよい。  [0352] In addition, according to the method for controlling a projection apparatus according to the present invention, in the case where an image is projected onto a plurality of different projection planes, the positions of four or more points that define the projection planes can be used. Information, a projection unit force, a step of acquiring information indicating a direction with respect to the projection plane, position information on four or more points defining the acquired projection plane, and a projection unit force indicating a direction with respect to the projection plane And calculating second conversion information for converting position information on each projection plane into position information on the tangent plane based on the information.
[0353] 上記方法によると、上記投影面を規定する 4点以上の位置情報と、投影部から該投 影面に対する方向を示す情報とを取得するステップを含んでいるため、投影対象と なる投影面ごとに応じた、該投影面と投影部との関係を規定することができる。また、 上記第 2変換情報を算出するステップにより、各投影面上の位置情報を上記正接平 面上の位置情報に変換するための第 2変換情報を算出することができる。 [0353] According to the above method, position information on four or more points that define the projection plane, and the projection unit projects the projection. Since it includes the step of acquiring information indicating the direction with respect to the shadow plane, it is possible to define the relationship between the projection plane and the projection unit according to each projection plane to be projected. Further, the second conversion information for converting the position information on each projection plane into the position information on the tangent plane can be calculated by the step of calculating the second conversion information.
[0354] このように、本発明に係る投影装置の制御方法では、各投影面に対する関係を上 記正接平面上の位置情報 (座標)に変換することができる第 2変換情報を取得して ヽ る。このため、投影面ごとの実環境投影面 Rにおける位置情報 (座標)を統合して上 記正接平面上の位置情報 (座標)として扱うことができる。  [0354] As described above, in the method for controlling a projection apparatus according to the present invention, the second conversion information that can convert the relationship with respect to each projection plane into position information (coordinates) on the tangent plane is acquired. The For this reason, position information (coordinates) on the actual environment projection plane R for each projection plane can be integrated and handled as position information (coordinates) on the tangent plane.
[0355] したがって、本発明に係る投影装置および投影装置の制御方法は、異なる投影面 に対して画像を投影するための調整を容易に行うことができる。  Therefore, the projection device and the control method for the projection device according to the present invention can easily perform adjustment for projecting an image on different projection surfaces.
[0356] なお、上記投影装置の各手段は、コンピュータによって実現してもよぐこの場合に は、コンピュータを上記各手段として動作させることにより上記投影装置をコンビユー タにて実現させる投影装置の制御プログラムを記録したコンピュータ読取り可能な記 録媒体も、本発明の範疇に入る。  [0356] Note that each means of the projection apparatus may be realized by a computer. In this case, the control of the projection apparatus that realizes the projection apparatus by a computer by operating the computer as each means. A computer-readable recording medium in which the program is recorded also falls within the scope of the present invention.
産業上の利用の可能性  Industrial applicability
[0357] 本発明に係る投影装置は、回転機構を備えたプロジェクタの投影面に対する調整 を容易に行うことができる。このことによって、プロジェクタによって情報を表示する幅 広い技術に適用できる。 [0357] The projection apparatus according to the present invention can easily adjust the projection plane of the projector having the rotation mechanism. This can be applied to a wide range of technologies for displaying information with a projector.

Claims

請求の範囲 The scope of the claims
[1] 投影面に対して光を照射し画像を投影する投影部と、この投影部から投影面に対 して照射する投影方向を変更するように、該投影部を回転させる駆動部とを備えた投 影装置であって、  [1] A projection unit that irradiates light onto the projection surface to project an image, and a drive unit that rotates the projection unit so as to change the projection direction in which the projection unit irradiates the projection surface. A projection device provided,
上記投影部が照射する光の光源点を投影中心としたとき、  When the projection point is the light source point of the light irradiated by the projection unit,
上記投影中心と、上記駆動部による投影部の回転運動の中心点である回転中心と がー致するように上記投影部と駆動部とが配置されて 、ることを特徴とする投影装置  The projection device, wherein the projection unit and the drive unit are arranged so that the projection center and a rotation center that is a center point of the rotational movement of the projection unit by the drive unit coincide.
[2] 投影面に対して光を照射し画像を投影する投影部と、この投影部から投影面に対 して照射する投影方向を変更するように、該投影部を回転させる駆動部とを備えた投 影装置であって、 [2] A projection unit that irradiates light onto the projection surface and projects an image, and a drive unit that rotates the projection unit so as to change the projection direction in which the projection unit irradiates the projection surface. A projection device provided,
上記駆動部によって上記投影部の回転運動の中心点である回転中心が 1点となる ように、該投影部が回転され、  The projection unit is rotated by the drive unit so that the center of rotation, which is the center point of the rotational movement of the projection unit, becomes one point.
上記投影部が照射する光の光源点を投影中心としたとき、  When the projection point is the light source point of the light irradiated by the projection unit,
上記回転中心の位置情報である回転中心位置情報を取得する回転中心位置情報 取得手段と、  Rotation center position information acquisition means for acquiring rotation center position information that is position information of the rotation center;
照射された光の軌跡を示す照射光情報を受付け、該照射光情報に基づき、投影中 心の位置情報である投影中心位置情報を特定する投影中心位置情報特定手段と、 上記取得された回転中心位置情報と、上記特定された投影中心位置情報とに基 づき、投影中心と回転中心とがー致するように、投影部と駆動部との配置関係を調整 する調整手段とを備えて!/ヽることを特徴とする投影装置。  Projection center position information specifying means for receiving the irradiation light information indicating the locus of the irradiated light and specifying the projection center position information that is the position information of the projection center based on the irradiation light information, and the acquired rotation center Based on the position information and the above-identified projection center position information, adjustment means for adjusting the positional relationship between the projection unit and the drive unit is provided so that the projection center and the rotation center match! / A projection device characterized by squeezing.
[3] 上記投影部は、上記投影面に対して、上記投影中心から所定の角度で光領域の 範囲が広がるように照射しており、 [3] The projection unit irradiates the projection plane so that the range of the light region is widened at a predetermined angle from the projection center,
上記回転中心の位置情報を示す回転中心情報を記憶する記憶装置と、 上記投影中心と投影面との間において照射された光の軌跡を示す軌跡情報を取 得する軌跡取得部とをさらに備え、  A storage device that stores rotation center information indicating the position information of the rotation center; and a locus acquisition unit that acquires locus information indicating a locus of light emitted between the projection center and the projection plane,
上記回転中心位置情報取得手段は、上記記憶装置から回転中心位置情報を取得 し、 上記投影中心位置情報特定手段は、上記照射光情報として、上記軌跡取得部より 軌跡情報を受付け、該軌跡情報に基づき投影中心位置情報を特定することを特徴と する請求項 2に記載の投影装置。 The rotation center position information acquisition means acquires rotation center position information from the storage device, 3. The projection apparatus according to claim 2, wherein the projection center position information specifying unit receives the locus information from the locus acquisition unit as the irradiation light information, and specifies the projection center position information based on the locus information. .
[4] 上記投影部と上記投影面との間の任意の固定点を通過する光の、該投影面にお ける投影位置情報を、異なる投影方向それぞれにつ 、て取得する投影位置情報取 得部と、 [4] Projection position information acquisition for acquiring projection position information on the projection plane of light passing through an arbitrary fixed point between the projection unit and the projection plane in each of different projection directions. And
上記投影位置情報取得部によって取得された上記投影位置情報を受付け、該投 影位置情報が上記投影面において 1点となる投影中心位置情報を算出する位置調 整算出手段と、  Position adjustment calculation means for receiving the projection position information acquired by the projection position information acquisition unit and calculating projection center position information in which the projection position information is one point on the projection plane;
上記位置調整算出手段によって算出された結果に基づき、上記特定された投影中 心位置情報を変更し、この変更した投影中心位置情報に基づき、上記調整手段によ り調整された投影部と駆動部との配置関係を微調整する微調整手段とをさらに備え ていることを特徴とする請求項 3に記載の投影装置。  Based on the result calculated by the position adjustment calculation unit, the specified projection center position information is changed, and the projection unit and the drive unit adjusted by the adjustment unit based on the changed projection center position information. 4. The projection apparatus according to claim 3, further comprising fine adjustment means for finely adjusting an arrangement relationship between the projection apparatus and the projector.
[5] 上記駆動部は、上記投影部を回転させるために複数の回転軸を備え、 [5] The drive unit includes a plurality of rotation shafts for rotating the projection unit,
上記回転中心は、上記複数の回転軸の交点となることを特徴とする請求項 1〜4の いずれか 1項に記載の投影装置。  The projection apparatus according to claim 1, wherein the rotation center is an intersection of the plurality of rotation axes.
[6] 投影すべき画像データを受付ける画像データ受付け手段と、 [6] Image data receiving means for receiving image data to be projected;
上記画像データ受付け手段によって受付けた、複数の所定位置を示す画像データ に基づき、初期姿勢に設定された投影部により投影された、投影面における投影点 の投影位置情報から、画像データにおける上記所定位置の位置情報と、該投影位 置情報との関係を算出する第 1関係算出手段と、  Based on the image data indicating a plurality of predetermined positions received by the image data receiving means, the predetermined position in the image data is obtained from the projection position information of the projection point on the projection plane projected by the projection unit set to the initial posture. First relationship calculating means for calculating a relationship between the position information of the projected position information and the projected position information;
上記画像データ受付け手段によって受付けた所定位置を示す画像データに基づ き、初期姿勢力も所定角度回転させた投影部によって投影された、投影面における 投影点の投影位置情報から、投影部の投影方向と、該投影方向ごとに応じた投影点 との関係を算出する第 2関係算出手段と、  Based on the image data indicating the predetermined position received by the image data receiving means, the projection direction of the projection unit is calculated from the projection position information of the projection point on the projection plane projected by the projection unit whose initial posture force is also rotated by a predetermined angle. And a second relationship calculating means for calculating a relationship between the projection point corresponding to each projection direction,
上記第 1関係算出手段と第 2関係算出手段との算出結果に応じて、画像データに 基づき投影面に投影する画像の調整情報を取得する調整情報取得手段とを備えて いること特徴とする請求項 1または 4に記載の投影装置。 An adjustment information acquisition unit that acquires adjustment information of an image projected on a projection plane based on image data according to the calculation results of the first relationship calculation unit and the second relationship calculation unit. Item 5. The projection device according to item 1 or 4.
[7] 上記調整情報取得手段は、上記調整情報として、投影方向が異なる投影部それぞ れにおける画像データを共通して扱うことができる平面である正接平面上の位置情 報と、投影面上の位置情報との関係を示す第 1変換情報と、 [7] The adjustment information acquisition means includes, as the adjustment information, position information on a tangent plane, which is a plane that can commonly handle image data in the projection units having different projection directions, and on the projection plane. First conversion information indicating a relationship with the position information of
上記投影中心から上記投影面において投影された所定位置の投影点に対する方 向を示す方向情報と、  Direction information indicating a direction from a projection center to a projection point at a predetermined position projected on the projection plane;
投影面に対する投影可能な範囲を規定する、画像データ中の少なくとも 4点以上に 対する投影中心からの方向を示す方向情報とを取得することを特徴とする請求項 6 に記載の投影装置。  7. The projection apparatus according to claim 6, wherein direction information indicating a direction from the projection center for at least four or more points in the image data that defines a projectable range with respect to the projection plane is acquired.
[8] 異なる複数の投影面に対して画像を投影する場合にぉ 、て、 [8] When projecting images onto multiple different projection planes,
上記投影面を規定する 4点以上の位置情報と、投影部力 該投影面の 4点以上に 対する方向を示す規定位置方向情報とを取得する投影面情報取得手段と、 上記投影面情報取得手段によって取得された位置情報と規定位置方向情報とに 基づ 、て、各投影面上の位置情報を上記正接平面上の位置情報に変換するための 第 2変換情報を算出する外部調整情報算出手段とを備えていることを特徴とする請 求項 6または 7に記載の投影装置。  Projection surface information acquisition means for acquiring position information of four or more points that define the projection plane and projection unit force, and specified position and direction information that indicates directions with respect to four or more points of the projection plane; and the projection plane information acquisition means The external adjustment information calculating means for calculating the second conversion information for converting the position information on each projection plane into the position information on the tangent plane based on the position information and the specified position direction information acquired by The projection apparatus according to claim 6 or 7, characterized by comprising:
[9] 上記外部調整情報算出手段によって算出された第 2変換情報には、上記投影面を 規定する 4点以上の位置情報および規定位置方向情報に基づき算出された、隣接 する他の投影面との連結関係を示す連結関係情報と、 [9] The second conversion information calculated by the external adjustment information calculating means includes the other adjacent projection planes calculated based on the positional information and the specified positional direction information of four or more points that define the projection plane. Connection relationship information indicating the connection relationship of
上記連結関係情報に基づき算出された、連結する投影面同士を 2次元平面に展開 した際における両者の座標関係を特定する座標変換パラメータと、を含むことを特徴 とする請求項 8に記載の投影装置。  9. The projection according to claim 8, further comprising: a coordinate conversion parameter that is calculated based on the connection relationship information and that specifies a coordinate relationship between the projection planes to be connected when they are expanded on a two-dimensional plane. apparatus.
[10] 投影面に対して光を照射し画像を投影する投影部と、この投影部から投影面に対 して照射する投影方向を変更するように、該投影部を回転させる駆動部とを備えた投 影装置の制御方法であって、 [10] A projection unit that irradiates light onto the projection surface and projects an image, and a drive unit that rotates the projection unit so as to change a projection direction in which the projection unit irradiates the projection surface. A control method for a projection device provided,
上記駆動部によって上記投影部の回転運動の中心点である回転中心が 1点となる ように、該投影部が回転され、  The projection unit is rotated by the drive unit so that the center of rotation, which is the center point of the rotational movement of the projection unit, becomes one point.
上記投影部が照射する光の光源点を投影中心としたとき、  When the projection point is the light source point of the light irradiated by the projection unit,
上記回転中心の位置情報である回転中心位置情報を取得するステップと、 照射された光の軌跡を示す照射光情報を受付け、該照射光情報に基づき、投影中 心の位置情報である投影中心位置情報を特定するステップと、 Obtaining rotation center position information which is position information of the rotation center; Receiving irradiation light information indicating a trajectory of the irradiated light, and identifying projection center position information that is position information of the projection center based on the irradiation light information;
上記取得された回転中心位置情報と、上記特定された投影中心位置情報とに基 づき、投影中心と回転中心とがー致するように、投影部と駆動部との配置関係を調整 するステップとを含むことを特徴とする投影装置の制御方法。  Adjusting the arrangement relationship between the projection unit and the drive unit based on the acquired rotation center position information and the specified projection center position information so that the projection center and the rotation center match; and A control method for a projection apparatus.
[11] 投影すべき画像データを受付けるステップと、  [11] receiving image data to be projected;
上記受付けた、複数の所定位置を示す画像データに基づき、初期姿勢に設定され た投影部により投影された、投影面における投影点の投影位置情報から、画像デー タにおける上記所定位置の位置情報と、該投影位置情報との関係を算出するステツ プと、  Based on the received image data indicating a plurality of predetermined positions, the position information of the predetermined positions in the image data is obtained from the projection position information of the projection points on the projection plane projected by the projection unit set to the initial posture. A step of calculating a relationship with the projection position information;
上記受付けた所定位置を示す画像データに基づき、初期姿勢から所定角度回転 させた投影部によって投影された、投影面における投影点の投影位置情報から、投 影部の投影方向と、該投影方向ごとに応じた投影点との関係を算出するステップと、 上記した算出結果に応じて、画像データに基づき投影面に投影する画像の調整情 報を取得するステップとを含むこと特徴とする請求項 10に記載の投影装置の制御方 法。  From the projection position information of the projection point on the projection plane projected by the projection unit rotated by a predetermined angle from the initial posture based on the received image data indicating the predetermined position, the projection direction of the projection unit and each projection direction 11. A step of calculating a relationship with a projection point according to the method and a step of acquiring adjustment information of an image to be projected on a projection plane based on image data according to the calculation result. A method of controlling the projection apparatus described in 1.
[12] 異なる複数の投影面に対して画像を投影する場合において、  [12] When projecting images on different projection planes,
上記投影面を規定する 4点以上の位置情報と、投影部から該投影面に対する方向 を示す情報とを取得するステップと、  Obtaining position information of four or more points defining the projection plane and information indicating a direction with respect to the projection plane from the projection unit;
上記取得された投影面を規定する 4点以上の位置情報と、投影部から該投影面に 対する方向を示す情報とに基づいて、各投影面上の位置情報を上記正接平面上の 位置情報に変換するための第 2変換情報を算出するステップとを含むことを特徴とす る請求項 11に記載の投影装置の制御方法。  Based on the positional information of four or more points that define the acquired projection plane and information indicating the direction from the projection unit to the projection plane, the positional information on each projection plane is converted into the positional information on the tangent plane. 12. The method for controlling a projection apparatus according to claim 11, further comprising a step of calculating second conversion information for conversion.
[13] 請求項 1〜9いずれか 1項に記載の投影装置を複数備えたことを特徴とする複合投 影システム。 [13] A composite projection system comprising a plurality of the projection apparatuses according to any one of claims 1 to 9.
[14] 請求項 1〜9の何れか 1項に記載の投影装置を動作させるための制御プログラムで あって、コンピュータを上記各手段として機能させるための制御プログラム。  14. A control program for operating the projection apparatus according to any one of claims 1 to 9, wherein the control program causes a computer to function as each of the means.
[15] 請求項 14に記載の投影装置の制御プログラムが記録されたコンピュータの読取り 可能な記録媒体。 [15] A computer-readable recording of a control program for a projection apparatus according to claim 14. Possible recording media.
PCT/JP2005/011652 2005-01-20 2005-06-24 Projection device, control method for projection device, composite projection system, control program for projection device, and recording medium having projection device control program recorded therein WO2006077665A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006553816A JP4002983B2 (en) 2005-01-20 2005-06-24 Projection apparatus, projection apparatus control method, composite projection system, projection apparatus control program, and recording medium on which projection apparatus control program is recorded

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-013288 2005-01-20
JP2005013288 2005-01-20

Publications (1)

Publication Number Publication Date
WO2006077665A1 true WO2006077665A1 (en) 2006-07-27

Family

ID=36692061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011652 WO2006077665A1 (en) 2005-01-20 2005-06-24 Projection device, control method for projection device, composite projection system, control program for projection device, and recording medium having projection device control program recorded therein

Country Status (2)

Country Link
JP (1) JP4002983B2 (en)
WO (1) WO2006077665A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103106665A (en) * 2011-11-11 2013-05-15 周建龙 Method capable of automatically tracking moving object in space-augmented reality system
JP2014171030A (en) * 2013-03-01 2014-09-18 Seiko Epson Corp Image processing apparatus, projector, and image processing method
CN104079816A (en) * 2013-11-11 2014-10-01 国网山东省电力公司 Automatic control method for surveillance cameras based on virtual reality technology
JP2015043571A (en) * 2013-08-26 2015-03-05 シゼイ シジブイ カンパニー リミテッド Device and method for managing screening theater parameter
JP2016122182A (en) * 2014-12-25 2016-07-07 パナソニックIpマネジメント株式会社 Projection device
WO2016129489A1 (en) * 2015-02-10 2016-08-18 シャープ株式会社 Display apparatus, method of controlling display apparatus, control program, and recording medium
JP2016188903A (en) * 2015-03-30 2016-11-04 セイコーエプソン株式会社 Projector and method for controlling projector
CN107924272A (en) * 2015-09-08 2018-04-17 索尼公司 Information processor, information processing method and program
US10122976B2 (en) 2014-12-25 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Projection device for controlling a position of an image projected on a projection surface
CN111241681A (en) * 2020-01-13 2020-06-05 陕西心像信息科技有限公司 Display range simulation method and device of signal machine
US10821668B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by- layer
US10821669B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by-layer
WO2021131827A1 (en) * 2019-12-27 2021-07-01 ソニーグループ株式会社 Information processing device and information processing method
US11179891B2 (en) 2019-03-15 2021-11-23 General Electric Company Method and apparatus for additive manufacturing with shared components
US11254052B2 (en) 2017-11-02 2022-02-22 General Electric Company Vatless additive manufacturing apparatus and method
US11498283B2 (en) 2019-02-20 2022-11-15 General Electric Company Method and apparatus for build thickness control in additive manufacturing
US11590691B2 (en) 2017-11-02 2023-02-28 General Electric Company Plate-based additive manufacturing apparatus and method
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11794412B2 (en) 2019-02-20 2023-10-24 General Electric Company Method and apparatus for layer thickness control in additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
CN117570853A (en) * 2024-01-16 2024-02-20 深圳新智联软件有限公司 Method, device, equipment and storage medium for calculating four-point coordinates in projection interface
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007866A (en) 2013-06-25 2015-01-15 ローランドディー.ジー.株式会社 Projection image correction system, projection image correction method, projection image correction program, and computer-readable recording medium
JP2015016610A (en) 2013-07-10 2015-01-29 ローランドディー.ジー.株式会社 Image projection system and image projection method
JP6377392B2 (en) 2014-04-08 2018-08-22 ローランドディー.ジー.株式会社 Image projection system and image projection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144341U (en) * 1979-03-31 1980-10-16
JPS6143781A (en) * 1984-08-08 1986-03-03 三菱電機株式会社 Planetarium apparatus
JPS61203954U (en) * 1985-06-12 1986-12-22
JPH0384686U (en) * 1989-12-18 1991-08-28
JPH10301202A (en) * 1997-02-28 1998-11-13 R D S Kk Multiprojection system
JP2003241303A (en) * 2002-02-18 2003-08-27 Takayuki Ohira Planetarium and wide-angle video projection device
JP2004077545A (en) * 2002-08-09 2004-03-11 Seiko Epson Corp Projector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594051B2 (en) * 1995-11-22 2004-11-24 東芝ライテック株式会社 Moving projector system
JPH09197341A (en) * 1996-01-11 1997-07-31 Nikon Corp Projection display device
JP3687833B2 (en) * 1998-06-26 2005-08-24 松下電器産業株式会社 projector
JP2001174915A (en) * 1999-12-21 2001-06-29 Hitachi Ltd Projector
JP3790079B2 (en) * 1999-12-22 2006-06-28 株式会社東芝 Projector device
JP2004328321A (en) * 2003-04-24 2004-11-18 Oki Electric Ind Co Ltd Home theater system, seat with projector, and screen
JP3834818B2 (en) * 2003-06-18 2006-10-18 船井電機株式会社 Image display projector
JP2005148556A (en) * 2003-11-18 2005-06-09 Nikon Corp Projector
JP4371016B2 (en) * 2004-09-09 2009-11-25 株式会社ニコン Electronics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144341U (en) * 1979-03-31 1980-10-16
JPS6143781A (en) * 1984-08-08 1986-03-03 三菱電機株式会社 Planetarium apparatus
JPS61203954U (en) * 1985-06-12 1986-12-22
JPH0384686U (en) * 1989-12-18 1991-08-28
JPH10301202A (en) * 1997-02-28 1998-11-13 R D S Kk Multiprojection system
JP2003241303A (en) * 2002-02-18 2003-08-27 Takayuki Ohira Planetarium and wide-angle video projection device
JP2004077545A (en) * 2002-08-09 2004-03-11 Seiko Epson Corp Projector

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103106665A (en) * 2011-11-11 2013-05-15 周建龙 Method capable of automatically tracking moving object in space-augmented reality system
JP2014171030A (en) * 2013-03-01 2014-09-18 Seiko Epson Corp Image processing apparatus, projector, and image processing method
US9632405B2 (en) 2013-08-26 2017-04-25 Cj Cgv Co., Ltd. Theater parameter management apparatus and method
JP2015043571A (en) * 2013-08-26 2015-03-05 シゼイ シジブイ カンパニー リミテッド Device and method for managing screening theater parameter
US9671684B2 (en) 2013-08-26 2017-06-06 Cj Cgv Co., Ltd. Theater parameter management apparatus and method
JP2016195460A (en) * 2013-08-26 2016-11-17 シゼイ シジブイ カンパニー リミテッド Device for managing screening theater parameter
CN104079816A (en) * 2013-11-11 2014-10-01 国网山东省电力公司 Automatic control method for surveillance cameras based on virtual reality technology
CN104079816B (en) * 2013-11-11 2018-02-27 国网山东省电力公司 A kind of CCTV camera autocontrol method based on virtual reality technology
JP2016122182A (en) * 2014-12-25 2016-07-07 パナソニックIpマネジメント株式会社 Projection device
US10122976B2 (en) 2014-12-25 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Projection device for controlling a position of an image projected on a projection surface
JPWO2016129489A1 (en) * 2015-02-10 2018-01-18 シャープ株式会社 Display device, display device control method, control program, and recording medium
WO2016129489A1 (en) * 2015-02-10 2016-08-18 シャープ株式会社 Display apparatus, method of controlling display apparatus, control program, and recording medium
JP2016188903A (en) * 2015-03-30 2016-11-04 セイコーエプソン株式会社 Projector and method for controlling projector
CN107924272A (en) * 2015-09-08 2018-04-17 索尼公司 Information processor, information processing method and program
DE112016004057T5 (en) 2015-09-08 2018-06-07 Sony Corporation DATA PROCESSING DEVICE, DATA PROCESSING PROCESS AND PROGRAM
US10545644B2 (en) 2015-09-08 2020-01-28 Sony Corporation Information processing apparatus and information processing method for display control
US11833755B2 (en) 2017-11-02 2023-12-05 General Electric Company Vatless additive manufacturing apparatus and method
US11590691B2 (en) 2017-11-02 2023-02-28 General Electric Company Plate-based additive manufacturing apparatus and method
US11254052B2 (en) 2017-11-02 2022-02-22 General Electric Company Vatless additive manufacturing apparatus and method
US10821669B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by-layer
US10821668B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by- layer
US11623398B2 (en) 2018-01-26 2023-04-11 General Electric Company Multi-level vat for additive manufacturing
US11794412B2 (en) 2019-02-20 2023-10-24 General Electric Company Method and apparatus for layer thickness control in additive manufacturing
US11498283B2 (en) 2019-02-20 2022-11-15 General Electric Company Method and apparatus for build thickness control in additive manufacturing
US11179891B2 (en) 2019-03-15 2021-11-23 General Electric Company Method and apparatus for additive manufacturing with shared components
US11707888B2 (en) 2019-03-15 2023-07-25 General Electric Company Method and apparatus for additive manufacturing with shared components
WO2021131827A1 (en) * 2019-12-27 2021-07-01 ソニーグループ株式会社 Information processing device and information processing method
CN111241681B (en) * 2020-01-13 2023-03-24 陕西心像信息科技有限公司 Display range simulation method and device of signal machine
CN111241681A (en) * 2020-01-13 2020-06-05 陕西心像信息科技有限公司 Display range simulation method and device of signal machine
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
CN117570853A (en) * 2024-01-16 2024-02-20 深圳新智联软件有限公司 Method, device, equipment and storage medium for calculating four-point coordinates in projection interface
CN117570853B (en) * 2024-01-16 2024-04-09 深圳新智联软件有限公司 Method, device, equipment and storage medium for calculating four-point coordinates in projection interface

Also Published As

Publication number Publication date
JPWO2006077665A1 (en) 2008-06-19
JP4002983B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP4002983B2 (en) Projection apparatus, projection apparatus control method, composite projection system, projection apparatus control program, and recording medium on which projection apparatus control program is recorded
Raskar et al. Multi-projector displays using camera-based registration
Szeliski et al. Direct methods for visual scene reconstruction
US6755537B1 (en) Method for globally aligning multiple projected images
US6709116B1 (en) Shape-adaptive projector system
US6811264B2 (en) Geometrically aware projector
US6729733B1 (en) Method for determining a largest inscribed rectangular image within a union of projected quadrilateral images
US11050983B2 (en) System and method for recalibrating a projector system
Hsu et al. Automated mosaics via topology inference
US10063792B1 (en) Formatting stitched panoramic frames for transmission
US6715888B1 (en) Method and system for displaying images on curved surfaces
JP2008002980A (en) Information processing method and device
JP2013171523A (en) Ar image processing device and method
JP2009042162A (en) Calibration device and method therefor
Sun et al. Review of calibration methods for Scheimpflug camera
US20140086494A1 (en) Method for registering at least one part of a first and second image using a collineation warping function
WO2021138940A1 (en) Remote virtual-real high-precision matching and positioning method oriented to augmented reality and mixed reality
CN107950019A (en) Information processor, information processing method and program
WO2020040277A1 (en) Mixed reality system, program, mobile terminal device, and method
Resch et al. On-site semi-automatic calibration and registration of a projector-camera system using arbitrary objects with known geometry
Borkowski et al. Projecting rectified images in an augmented environment
JPH11136575A (en) Image pickup device and photographed image synthesizing method
Zhu et al. Wii remote–based low-cost motion capture for automated assembly simulation
JP6109213B2 (en) Information processing apparatus and method, program
JP2010230925A (en) Projection system, projection method, projection program, and projection vector operation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553816

Country of ref document: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05753075

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5753075

Country of ref document: EP