WO2006073171A1 - Thermal spraying nozzle device and thermal spraying equipment - Google Patents

Thermal spraying nozzle device and thermal spraying equipment Download PDF

Info

Publication number
WO2006073171A1
WO2006073171A1 PCT/JP2006/300065 JP2006300065W WO2006073171A1 WO 2006073171 A1 WO2006073171 A1 WO 2006073171A1 JP 2006300065 W JP2006300065 W JP 2006300065W WO 2006073171 A1 WO2006073171 A1 WO 2006073171A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
gas
particle
thermal spray
diameter
Prior art date
Application number
PCT/JP2006/300065
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Oda
Toshiya Miyake
Hideo Hata
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to EP06702045A priority Critical patent/EP1834699A4/en
Publication of WO2006073171A1 publication Critical patent/WO2006073171A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/168Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed with means for heating or cooling after mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1463Arrangements for supplying particulate material the means for supplying particulate material comprising a gas inlet for pressurising or avoiding depressurisation of a powder container
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal

Definitions

  • the present invention relates to a thermal spray nozzle apparatus and a thermal spray apparatus that form a coating film or a deposited layer by using a gas to atomize a thermal spray material and causing it to collide with a base material.
  • thermal spraying has been known as a technique for forming a coating by heating a coating material and causing fine particles in a molten and semi-molten state to collide with a substrate surface at a high speed.
  • cold spray is different from other thermal spraying methods because it forms a coating by impinging on a substrate in a solid state in supersonic flow with an inert gas without melting or gasifying the thermal spray material.
  • inert gas without melting or gasifying the thermal spray material.
  • FIG. 32 shows a schematic configuration of the cold spray apparatus.
  • the high-pressure gas supplied from the gas source 30 is branched into two pipe lines 31, 32.
  • the mainstream gas flowing in the pipe line 31 is heated by the gas heater 33, and the remaining gas flowing in the pipe line 32 is introduced into the powder feeder 34.
  • the gas heated by the gas heater 33 is introduced into the chamber 36 through the pipe 35, and the powder supplier 34 supplies the powder particles to the chamber 36 through the pipe 37.
  • the mixture of gas and powder particles mixed in the chamber 36 is a converging part 3 of the supersonic nozzle 38.
  • a molten metal is used as a thermal spray material, and a thin film state is formed from a container having a slit-like outlet
  • a method of atomizing and spraying with a sonic gas flow passing through a nozzle having a slit-like orifice provided in the vicinity of the nozzle outlet in a laminar state is also proposed! (For example, see Patent Document 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-76157
  • Patent Document 2 Japanese Translation of Special Publication 2002-508441
  • the powder particles at room temperature collide, and the heat generated during plastic deformation causes the heat generated locally to be heated above the melting point and adhere to the substrate.
  • a gas pressure of 1.0 to 3. OMPa is necessary, and it is difficult to handle because the gas needs to be preheated to 600 ° C. Moreover, it is not easy to supply the powder particles uniformly.
  • the latter thermal spraying apparatus atomizes at supersonic speed, but does not design a nozzle to accelerate particles, so that HIP (Hot Isostatic Pressing) can be omitted. It is impossible to obtain a high-density coating or high-density deposition.
  • the present invention has been made in consideration of the problems in the conventional thermal spraying apparatus as described above.
  • the thermal spraying nozzle can supply the thermal spraying material at a constant level and can control the coating or the deposition state.
  • An apparatus and a thermal spraying apparatus are provided.
  • the thermal spray nozzle device of the present invention is a thermal spray nozzle device that introduces a carrier gas from the inlet side of the nozzle to form an ultra-high-speed gas flow, atomizes the thermal spray material by the gas flow, and discharges it.
  • a reservoir for storing molten metal, which is the spray material is connected to the inlet side end of the nozzle via a communication path, and the nozzle includes a throat portion for forming a supersonic gas flow, and a throat portion thereof.
  • a diameter-enlarged flow path formed on the downstream side in the direction of the outlet. The diameter-enlarged flow path cools the metal particles atomized by the supersonic gas flow to a solidified or semi-solidified state.
  • the gist is that the outlet side force of the nozzle is configured to discharge in a predetermined direction.
  • a molten metal lead-out pipe extends from the storage portion toward the center of the throat or the downstream side of the throat portion.
  • the accelerated carrier gas flows through the outer part of the metal lead-out tube It is preferable to configure the flow path.
  • the gist of the nozzle of the present invention is that the opening angle force half apex angle of the diameter-enlarged flow path portion on the downstream side of the throat portion is 15 ° or less.
  • the length of the diameter-enlarged flow path portion is a flight distance until the atomized metal particles become solidified or semi-solidified, and the flight distance of the atomized metal particles, the metal particle temperature, Specifically, the flight distance until the atomized metal particles become solidified or semi-solidified is determined by the solidification or semi-solid state of the atomized metal particles. The flight time until it changes to the solidified state is obtained, and the flight time is calculated by substituting the flight time into the following formula. The length of the above-mentioned expanded flow path section is set to be longer than the flight distance. This is the gist.
  • u is the gas flow velocity
  • gas density is the particle density
  • d is the particle diameter
  • a is the sound velocity of the gas g g s s g.
  • the carrier gas is introduced into the nozzle in a state where the pressure P satisfies the following formula.
  • is the specific heat ratio of the compressed gas
  • is the number of Matsuhs at the nozzle expansion part downstream of the throat part.
  • the thermal spraying apparatus of the present invention collides the thermal spray nozzle apparatus having the above configuration, a carrier gas supply apparatus that is connected to the nozzle via a conduit and introduces carrier gas under pressure, and the nozzle and the discharged particles.
  • a sealed container for storing the base material to be removed, and the pressure in the sealed container is reduced.
  • the gist of the present invention is that it comprises a decompression means.
  • the thermal spraying device of the present invention is connected to the thermal spray nozzle device having the above-described configuration via a connecting pipe and continuously pressurizes and supplies the molten metal to the molten metal in the reservoir.
  • the gist of the invention is that it comprises a metal supply device and a substrate supply device that continuously supplies the substrate.
  • the sprayed material can be supplied constantly, and the coating or the deposition state can be controlled.
  • FIG. 1 is a perspective view showing a configuration of a thermal spray nozzle device according to the present invention.
  • FIG. 2 (a) and (b) are explanatory diagrams showing the definition of the nozzle enlarged portion.
  • FIG. 3 is a graph for explaining the relationship between the Mach number and the resistance coefficient.
  • FIG. 4 is a graph showing the nozzle length according to the particle diameter.
  • FIG. 5 is an explanatory view showing a conventional nozzle opening angle.
  • FIG. 6 is an explanatory diagram showing a case where a shock wave is generated in the nozzle.
  • FIG. 7 is an explanatory diagram showing a case where the entire nozzle area has a supersonic flow.
  • FIG. 8 is a graph showing a typical example of a nozzle shape.
  • FIG. 9 is a graph showing the nozzle outlet diameter that achieves appropriate expansion.
  • FIG. 10 is a graph showing the relationship between the nozzle length and the Mach number when the particle diameter is 20 ⁇ m and the throat diameter is 25 mm.
  • FIG. 11 is a graph showing the nozzle length and gas temperature Z velocity distribution when the particle diameter is 20 m and the throat diameter is 25 mm.
  • FIG. 12 is a graph showing the nozzle length and particle temperature Z velocity distribution at a particle diameter of 20 m and a throat diameter of 25 mm.
  • FIG. 13 is a graph showing the relationship between the nozzle length and the Mach number when the particle diameter is 20 ⁇ m and the throat diameter is 35 mm.
  • FIG. 14 is a graph showing the nozzle length and gas temperature Z velocity distribution when the particle diameter is 20 m and the throat diameter is 35 mm.
  • FIG. 16 is a graph showing the relationship between the nozzle length and the Mach number when the particle diameter is 50 ⁇ m and the throat diameter is 25 mm.
  • FIG. 17 is a graph showing the nozzle length and gas temperature Z velocity distribution when the particle diameter is 50 m and the throat diameter is 25 mm.
  • FIG. 18 is a graph showing the nozzle length and particle temperature Z velocity distribution at a particle diameter of 50 m and a throat diameter of 25 mm.
  • FIG. 19 is a graph showing the relationship between the nozzle length and the Mach number when the particle diameter is 50 ⁇ m and the throat diameter is 35 mm.
  • FIG. 20 is a graph showing the nozzle length and gas temperature Z velocity distribution when the particle diameter is 50 m and the throat diameter is 35 mm.
  • FIG. 21 is a graph showing the nozzle length and particle temperature Z velocity distribution when the particle diameter is 50 m and the throat diameter is 35 mm.
  • FIG. 22 is a graph showing the relationship between nozzle length and Mach number when the particle diameter is 100 ⁇ m.
  • FIG. 23 is a graph showing the nozzle length, gas temperature and velocity distribution at a particle size of 100 ⁇ m.
  • FIG. 24 is a graph showing the nozzle length, particle temperature and velocity distribution when the particle diameter is 100 ⁇ m.
  • FIG. 25 is an explanatory view showing a configuration of a thermal spraying apparatus applied to batch processing.
  • FIG. 26 is an explanatory view showing a configuration of a thermal spraying apparatus applied to a continuous molding process.
  • FIG. 27 is a view corresponding to FIG. 1, showing a second embodiment of the nozzle according to the present invention.
  • FIG. 28 is a view corresponding to FIG. 1, showing a third embodiment of the nozzle according to the present invention.
  • FIG. 29 is a view corresponding to FIG. 1, showing a fourth embodiment of the nozzle according to the present invention.
  • FIG. 30 is a view corresponding to FIG. 1, showing a fifth embodiment of the nozzle according to the present invention.
  • FIG. 31 is a view corresponding to FIG. 1, showing a sixth embodiment of the nozzle according to the present invention.
  • FIG. 32 is an explanatory view showing a configuration of a conventional cold spray apparatus.
  • FIG. 1 shows a basic configuration of a thermal spray nozzle device according to the present invention.
  • a spray nozzle apparatus 1 shown in FIG. 1 directly supplies a molten metal M into a supersonic nozzle (hereinafter abbreviated as a nozzle) 2.
  • the atomized metal particles (hereinafter abbreviated as particles) are accelerated in the nozzle 2 and rapidly cooled and solidified. That is, the thermal spray nozzle device 1 of the present invention is integrally provided with a throat portion 2a where the atomizing process is performed and a diameter-enlarged flow path portion 2b where the flight cooling process is performed continuously with the atomizing process.
  • reference numeral 4 denotes a storage portion for storing the molten metal M, and has a communication path 4 a communicating with the nozzle 2.
  • the leading end of the communication passage 4a extends as a molten metal outlet tube 4b toward the center of the cylindrical hole of the throat portion 2a. Is starting to flow.
  • the principle that the solidified particles collide with the base material 3 is the same as that of the conventional cold spray.
  • the collided particles are remarkably plastically deformed and dented into a crater, and a dense structure without voids is formed in the skin (or (Deposited layer) It can be obtained inside. Therefore, it is not necessary to perform HIP (Hot isostatic pressing) treatment as a post-treatment, that is, to remove residual voids by applying pressure to the molding material on which the film is formed.
  • HIP Hot isostatic pressing
  • the Mach number is low (for example, about Mach number 2) compared to cold spray. Even in the case of collision, the surface temperature of the base material 3 becomes higher than the melting point, so that the particles can reliably adhere to the base material 3.
  • the above Mach number means the gas velocity Z sound velocity.
  • the nozzle 2 is configured such that the nozzle length of the enlarged portion is set to 100 mm or more, and operates in a state where the carrier gas total pressure p satisfies the following formula (1).
  • p total carrier gas pressure (inlet pressure upstream of throat)
  • p nozzle outlet back pressure
  • M nozzle outlet back pressure
  • the Mach number M is related to the cross-sectional area A * of the throat portion 6 and the enlarged cross-sectional area A in the nozzle by the equation (2).
  • the enlarged cross-sectional area is a conical enlarged portion whose diameter gradually increases from the narrowest portion A * as the throat portion toward the downstream side, and FIG. As shown in b), it includes an enlarged part whose diameter suddenly expands from the narrowest part A * toward the downstream side and then becomes substantially constant.
  • V is the gas velocity at the inlet of the nozzle
  • V is the liquid velocity
  • D is the droplet after the break.
  • Diameter, ⁇ Liquid surface tension.
  • the diameter of the aluminum alloy particle after atomization obtained from equation (3) is about 20 m.
  • the acceleration and cooling during this period can be estimated by numerical analysis. Specifically, the mass conservation, momentum conservation, and energy conservation equations of the quasi-one-dimensional compressible fluid conservation type display are solved by simultaneous equations (4) and particle motion equations (6).
  • A Nozzle cross-sectional area
  • Second phase (droplet, particle, powder)
  • the velocity of the particle can be obtained by solving the particle equation of motion (6).
  • the resistance coefficient is calculated using Kurten's formula (8)!
  • the particle temperature can be obtained by solving the particle energy equation (9), c h, u t ,,
  • the nozzle outlet force is set to a very short distance to the deposit. It has become. Therefore, it can be approximated that the particle velocity and enthalpy at the nozzle outlet are almost maintained.
  • the state of the deposit is greatly affected by the state of the particles at the time of deposition, but in the case of colliding and depositing the particles at a subsonic speed like a conventional thermal spray nozzle device, the particles are in a solidified state. And the substrate cannot be attached to the deposit.
  • the thermal spray nozzle device of the present invention has the operating condition of colliding and depositing semi-solid or solidified particles at a supersonic speed, which has a higher solid phase ratio, which has not been used conventionally. It is what. Therefore, assuming that the molten metal is atomized and changes to a semi-solid state during the flight, the minimum flight distance required so far is obtained, and this flight distance is required for the device. It is specified as the minimum nozzle length.
  • equation of motion representing particle acceleration is as shown in equation (6), 3 du sf -p g u
  • u is the gas flow velocity, is the gas density, is the particle density, and d is the particle diameter g g s S
  • Equation (19) is obtained.
  • the gas temperature ⁇ and the nozzle wall m s m s surface temperature ⁇ are also approximately constant.
  • Obtaining the minimum nozzle length means obtaining the shortest flight time t until the particles reach semi-solidification. In this case, the equality is established in equation (21). .
  • Equation (22) finds the minimum force flight time t and substitutes it into Equation (18) to obtain f
  • the shortest flight distance, ie, the minimum nozzle length 1 is obtained.
  • the thermal spray nozzle device of the present invention is a device using a nozzle having a nozzle length of 1 or more.
  • Fig. 4 is a graph in which the minimum nozzle length is specifically determined using aluminum and copper.
  • the particles with various particle sizes are in a semi-solid state exceeding a solid phase ratio of 0.5. This shows the nozzle length required in this case.
  • the horizontal axis indicates the particle diameter
  • the vertical axis indicates the nozzle length.
  • the carrier gas conditions are the same as in Table 1 below. Like.
  • the nozzle opening angle (on the downstream side of the throat portion).
  • a large nozzle with a half apex angle (open angle of the expanded flow path) of 0> 15 ° is used.
  • the half apex angle means an angle formed by the nozzle central axis and the nozzle inner wall.
  • the nozzle of the present invention has a nozzle opening angle of 15 ° or less, prevents flow separation, and allows the particles to adhere to the substrate even in a semi-solidified state. The latter particles are accelerated to supersonic speed.
  • the nozzle of the present invention has a configuration in which the distance from the narrowest part of the nozzle to the site where the shock wave front is generated is extended until the particles reach a solidified or semi-solid state.
  • the conditions of the supersonic nozzle of the present invention can be defined by the following (a) to (c).
  • the nozzle opening angle is 0 ⁇ 15 ° at the half apex angle.
  • Nozzle opening angle is half-vertical angle 0 ⁇ 15 °, carrier gas total pressure p, nozzle outlet
  • the nozzle cross-sectional area A is calculated, and the nozzle length 1 force equation (18) up to the position where the nozzle cross-sectional area A is reached and the relational equation that defines the shortest flight time until the particles reach semi-solidification (22 ) And the minimum nozzle length is 1 or more.
  • FIG. 6 shows a case where a shock wave is generated in the nozzle.
  • the nozzle opening angle is a half apex angle and ⁇ ⁇ 15 °, the nozzle length 1 is equal to equation (18), and the particles are half f
  • the shortest nozzle length obtained from the relational expression (22) that defines the shortest flight time until solidification is reached is 1 or more, and is obtained from expression (25) based on the carrier gas total pressure p and nozzle outlet back pressure p.
  • Nozzle cross-sectional area A 1S Nozzle outlet cross-sectional area A obtained by substituting the total shock wave upstream Mach number M into equation (26).
  • Table 1 shows the material properties and constraint conditions used in the actual nozzle calculation.
  • the maximum half apex angle in the table means the maximum angle between the nozzle center axis and the nozzle inner wall.
  • gas mass flow rates correspond to 0.9 [kg / s] (throat diameter ⁇ 25) and 1.8 [kg / s] (throat diameter ⁇ 35), respectively.
  • the maximum half apex angle of the nozzle is set to 5 ° (see Table 1).
  • This nozzle (a) quickly expands to the maximum diameter so that dispersed droplets after atomization do not adhere to the nozzle wall, and (b) maximizes the speed to accelerate the particles. It is configured to increase the length of the straight pipe at the maximum diameter.
  • the nozzle of the present embodiment is generally used in cold spray! /, Compared to a conical nozzle, the pressure ratio is lower than the design value, and many cold particles were supplied. In this case, there is a disadvantage that the straight pipe occupying most of the nozzles becomes subsonic. For this reason, it is unsuitable for operation outside the design value, and is suitable for production equipment that repeats operation under the same conditions. Therefore, the graph of Fig. 9 shows the nozzle outlet diameter that achieves appropriate expansion when it is assumed that the engine is operated under the same conditions.
  • the nozzle outlet diameter increases as the molten metal flow rate increases.
  • the gas receives the heat brought in by the molten metal. This is because it can be expanded.
  • Table 2 shows the relationship between the nozzle throat diameter and the gas mass flow rate obtained as a result of the design calculation with the actual nozzles, without heating.
  • Figures 10 to 12 show the Mach number distribution in the nozzle, the gas temperature Z velocity distribution, and the particle temperature Z velocity distribution when the particle diameter after atomization is ⁇ m and the nozzle throat diameter is 25 mm, respectively.
  • Distance on the horizontal axis indicates the nozzle length
  • Mach number on the vertical axis indicates the Mach number
  • Gas temp indicates the gas temperature
  • Gas Velc indicates the gas flow rate
  • Solid temp Indicates the particle temperature and Solid Velc indicates the particle velocity.
  • Figures 13 to 15 show the Mach number distribution in the nozzle, the gas temperature Z velocity distribution, and the particle temperature Z velocity distribution when the particle diameter after atomization is 20 m and the nozzle throat diameter is 35 mm, respectively. .
  • the nozzle outlet diameter is determined so as to achieve proper expansion after heating, so that the gas velocity at which the gas static pressure is almost equal to atmospheric pressure is about 5 lOmZs.
  • the force particle speed is only about 400 mZs when solidification is completed with a nozzle length of about 160 mm. In this case, if the nozzle length is extended to 500 mm, the force that can accelerate the particle velocity to 480 mZs, the particle temperature at this time will be cooled to 400K.
  • Figures 16 to 18 show the Mach number distribution in the nozzle, the gas temperature Z velocity distribution, and the particle temperature Z velocity distribution when the particle diameter after atomization is ⁇ m and the nozzle throat diameter is 25 mm, respectively.
  • FIGS. 19 to 21 show the Mach number distribution in the nozzle, the gas temperature Z velocity distribution, and the particle temperature Z velocity distribution when the particle diameter after atomization is ⁇ 50 m and the nozzle throat diameter is ⁇ 35 mm, respectively. .
  • the particle diameter is 50 m, it takes about 1.2 m in the nozzle to complete solidification.
  • the nozzle length is extended by 1.2 m, it will conveniently approach the asymptotic line of particle acceleration.
  • the particle temperature is 750K
  • the particle speed is 470mZs
  • the particles are released by the nozzle force.
  • Figures 22 to 24 show the Mach number distribution in the nozzle, the gas temperature Z velocity distribution, and the particle temperature Z velocity distribution when the particle size after atomization is ⁇ 100 ⁇ m.
  • Fig. 25 shows a configuration when the thermal spraying apparatus according to the present invention is applied to batch processing.
  • helium gas is preferably used instead of nitrogen gas because it has a low molecular weight because the speed of sound increases when particles are accelerated.
  • the carrier gas supplied from the helium gas cylinder 10 is branched into two pipelines 11 and 12, and the carrier gas flowing through the pipeline 11 applies a head pressure to the molten metal stored in the reservoir 4.
  • the carrier gas flowing through the conduit 12 is introduced into the nozzle 2 and is accelerated to supersonic speed by passing through the throat portion 2a.
  • the helium cylinder 10 and the pipelines 11 and 12 function as a carrier gas supply device that introduces carrier gas under pressure.
  • the molten metal flowing down from the reservoir 4 is atomized by the supersonic gas flow in the nozzle 2, and is further cooled in the nozzle 2 and discharged from the tip of the nozzle 2.
  • the discharged particles collide with and adhere to the surface of the substrate 3.
  • the nozzle 2 and the base material 3 are accommodated in a chamber 13 as an airtight container, and this chamber 13 is connected to an air storage tank 16 via a cyclone device 14 as an exhaust device and an exhaust vacuum pump (decompression means) 15. It has been done.
  • the cyclone device 14 collects particles floating in the exhaust and supplies only the gas to the exhaust vacuum pump 15.
  • the exhaust device is provided to increase the Mach number of the carrier gas and increase the particle velocity, and the helium gas collected in the storage tank 16 is compressed by the compressor 17 and reused. It has become so.
  • Fig. 26 shows a basic configuration when the thermal spraying apparatus according to the present invention is applied to a continuous molding process.
  • a continuous melting furnace 20 is connected to the storage section 4, and the storage section 4 and the continuous melting furnace 20 are communicated with each other via a connecting pipe 21.
  • the continuous melting furnace 20 The height of the reservoir 4 is set so that the internal pressure of the reservoir 4 becomes 0.8 MPa due to the pad pressure.
  • the continuous melting furnace 20 arranged at the predetermined height functions as a molten metal supply device that continuously supplies pressurized molten metal with pressure.
  • the molten metal can be continuously supplied from the reservoir 4 to the nozzle 2.
  • the base material 22 rotates in the direction of arrow A, and is pulled out in the direction of arrow B by the rotation of take-up rollers (base material supply devices) 23a and 23b. Thereby, the particles can be continuously sprayed and formed on the base material 22.
  • FIGS. 27 to 31 show another embodiment of the nozzle 2 of the present invention.
  • the nozzle itself is made of a non-metal such as ceramic or carbon, thereby reducing the surface affinity.
  • the metal particles adhering to the inner wall of the nozzle can be easily blown off by the supersonic gas flow.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • a nozzle 41 is manufactured by using zirconia to spray an aluminum alloy, and the outside is covered with a ceramic cylinder 42.
  • Nozzle heater 43 that can be heated up to 900 ° C is wound several times.
  • the nozzle 41 for example, high strength added with yttria (Y O) as a stabilizer,
  • partially stable zirconia with high wear resistance and high corrosion resistance.
  • the nozzle 44 shown in Fig. 28 is composed of a ceramic fiber heater 45, and more specifically, heat is generated in a high-temperature insulating ceramic fiber that is made of a material mainly composed of alumina and silica. It is configured by embedding the body and integrally molding it.
  • 46a and 46b indicate heater electrode connections!
  • the nozzle 47 shown in Fig. 29 is configured such that a carbon heater 49 is provided around the outer wall of the body of the ceramic nozzle 48 and heated by radiation.
  • the carbon heater 49 is divided into a plurality of portions by slits 5 Id, 5 le alternately formed with a fixed length from the upper and lower sides of the cylindrical nozzle 48, and 49a and 49b are This is an electrode connection portion of the carbon heater 49. 50 has a mirror-finished inner wall. This is a cylindrical reflection case provided to increase radiation efficiency.
  • the carbon heater 49 when electric power is supplied to the carbon heater 49 from a power source (not shown) through the electrode connection portions 49a and 49b, the carbon heater 49 also generates internal force due to Joule heat generation due to energization, thereby The ceramic nozzle 48 is heated by the radiant heat transfer from the carbon heater 49, and the metal adhering to the inner wall of the nozzle 37 is melted.
  • the nozzle 51 shown in FIG. 30 is manufactured by using the carbon heater 52, and 52a and 52b indicate the electrode connection portions. If the ceramic nozzle is replaced with a carbon or carbon composite nozzle, the emissivity of the nozzle surface is further increased and the heating efficiency of the nozzle 51 can be further increased.
  • the entire apparatus is covered with a chamber, and a gas such as argon or nitrogen is used as a high-pressure gas to replace the inside of the chamber with an inert atmosphere.
  • a gas such as argon or nitrogen is used as a high-pressure gas to replace the inside of the chamber with an inert atmosphere.
  • the nozzle may be made of a metal material such as copper having a good thermal conductivity, and the ceramic coating may be formed by applying ceramic spray to the inner wall of the nozzle. As with each nozzle, the affinity can be degraded.
  • a copper nozzle 54 is formed on the inner surface with a zirconia coating 55 (the portion indicated by the thick broken line in the figure), and the nozzle heater 43 is wound around the outer peripheral surface several times. It is.
  • the thermal spray nozzle device and the thermal spray apparatus of the present invention are used in a field where it is required to supply a constant amount of the thermal spray material on the base material and control the coating film or the deposition state formed on the base material. Is preferred.

Abstract

To provide a thermal spraying nozzle device and thermal spraying equipment on which a thermal spraying material can be supplied constantly and filming or deposition state can be controlled. In a thermal spraying nozzle device for forming an ultrahigh speed gas stream by introducing carrier gas to the inlet side of a nozzle and then atomizing a thermal spraying material by that gas stream and discharging the atomized thermal spraying material, a storage section (4) for storing molten metal as the thermal spraying material is connected to the inlet side end of the nozzle (2) through a communication passage, the nozzle has a throat portion (2a) for accelerating the introduced carrier gas to supersonic velocity, and a diameter-expanded channel portion (2b) formed on the downstream side of the throat portion toward the outlet direction. The thermal spraying nozzle is characterized in that the metal particles atomized by the supersonic gas stream are cooled down to solidification or semi-solidification state at the diameter-expanded channel portion.

Description

溶射ノズル装置および溶射装置  Thermal spray nozzle device and thermal spray device
技術分野  Technical field
[0001] 本発明は、ガスを用いて溶射材を微粒ィ匕し基材に衝突させることにより被膜または 堆積層を形成する溶射ノズル装置および溶射装置に関するものである。  The present invention relates to a thermal spray nozzle apparatus and a thermal spray apparatus that form a coating film or a deposited layer by using a gas to atomize a thermal spray material and causing it to collide with a base material.
背景技術  Background art
[0002] 従来、コーティング材料を加熱し、溶融な!/ヽし半溶融状態の微粒子を基材表面に 高速度で衝突させることにより、被膜を形成する技術として溶射処理が知られている  [0002] Conventionally, thermal spraying has been known as a technique for forming a coating by heating a coating material and causing fine particles in a molten and semi-molten state to collide with a substrate surface at a high speed.
[0003] この溶射処理は、基材と被膜とが物理的な接合であるため、溶融する材料であれ ばあらゆる材料に被膜を形成することができ、形成された被膜は耐摩耗性、耐腐食 性、断熱性等、表面処理に必要とされる各種条件をクリアすることができることから様 々な分野で広く利用されて 、る。 [0003] In this thermal spraying process, since the base material and the film are physically bonded, it is possible to form a film on any material that melts, and the formed film is resistant to wear and corrosion. It is widely used in various fields because it can satisfy various conditions required for surface treatment such as heat resistance and heat insulation.
[0004] 中でもコールドスプレーは、溶射材料を溶融またはガス化させることなく不活性ガス とともに超音速流で固相状態のまま基材に衝突させて被膜を形成するため、他の溶 射方法と違い、熱による材料の特性変化がなぐしかも被膜中の酸ィ匕を抑制すること ができるという利点がある。 [0004] Above all, cold spray is different from other thermal spraying methods because it forms a coating by impinging on a substrate in a solid state in supersonic flow with an inert gas without melting or gasifying the thermal spray material. In addition, there is an advantage that the property change of the material due to heat can be suppressed and the oxidation in the film can be suppressed.
[0005] 図 32は、コールドスプレー装置の概略構成を示したものである。 FIG. 32 shows a schematic configuration of the cold spray apparatus.
[0006] 同図において、ガス源 30から供給された高圧ガスは 2つの管路 31, 32に分岐され[0006] In the figure, the high-pressure gas supplied from the gas source 30 is branched into two pipe lines 31, 32.
、管路 31を流れる主流のガスはガス加熱器 33で加熱され、管路 32を流れる残りのガ スは粉末供給器 34に導入される。 The mainstream gas flowing in the pipe line 31 is heated by the gas heater 33, and the remaining gas flowing in the pipe line 32 is introduced into the powder feeder 34.
[0007] ガス加熱器 33で加熱されたガスは管路 35を通じてチャンバ 36に導入され、粉末供 給器 34は管路 37を経由して粉末粒子をチャンバ 36に供給する。 [0007] The gas heated by the gas heater 33 is introduced into the chamber 36 through the pipe 35, and the powder supplier 34 supplies the powder particles to the chamber 36 through the pipe 37.
[0008] チャンバ 36内で混合されたガスと粉末粒子の混合物は超音速ノズル 38の収束部 3The mixture of gas and powder particles mixed in the chamber 36 is a converging part 3 of the supersonic nozzle 38.
8aと拡散部 38bを通過することにより加速され、超音ジェット流として基材 39上に衝 突するようになっている(例えば、特許文献 1参照)。 It is accelerated by passing through 8a and the diffusing portion 38b, and collides with the base material 39 as a supersonic jet stream (see, for example, Patent Document 1).
[0009] 一方、溶射材料として溶融金属を用い、スリット状出口を有する容器から薄膜状態 で流し、そのノズル出口近傍に設けられたスリット状オリフィスを有するノズルを層流 状態で通過する音速ガス流によって微粒化し噴霧する方法も提案されて!ヽる(例え ば、特許文献 2参照)。 [0009] On the other hand, a molten metal is used as a thermal spray material, and a thin film state is formed from a container having a slit-like outlet A method of atomizing and spraying with a sonic gas flow passing through a nozzle having a slit-like orifice provided in the vicinity of the nozzle outlet in a laminar state is also proposed! (For example, see Patent Document 2).
特許文献 1:特開 2004 - 76157号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-76157
特許文献 2:特表 2002— 508441号公報  Patent Document 2: Japanese Translation of Special Publication 2002-508441
発明の開示  Disclosure of the invention
[0010] し力しながら、前者のコールドスプレー装置では、常温の粉末粒子を衝突させて塑 性変形時に生じる発熱で局所的に融点以上に加熱させ基材上に付着させるため、 例えば 600mZs以上の粒子速度を得るために 1. 0〜3. OMPaのガス圧力が必要 であり、また、ガスを 600°Cまで予熱する必要があることから取り扱いが難しいという問 題がある。また、粉体粒子を一定に供給することも容易でない。  [0010] However, in the former cold spray device, the powder particles at room temperature collide, and the heat generated during plastic deformation causes the heat generated locally to be heated above the melting point and adhere to the substrate. In order to obtain the particle velocity, a gas pressure of 1.0 to 3. OMPa is necessary, and it is difficult to handle because the gas needs to be preheated to 600 ° C. Moreover, it is not easy to supply the powder particles uniformly.
[0011] また、後者の溶射装置は超音速でアトマイズを行っているが、粒子の加速を行うた めにノズルの設計をしておらず、そのため、 HIP (Hot Isostatic Pressing)を省略でき るほどの高密度皮膜や高密度堆積を得ることが不可能である。  [0011] In addition, the latter thermal spraying apparatus atomizes at supersonic speed, but does not design a nozzle to accelerate particles, so that HIP (Hot Isostatic Pressing) can be omitted. It is impossible to obtain a high-density coating or high-density deposition.
[0012] 本発明は以上のような従来の溶射装置における課題を考慮してなされたものであり 、溶射材を一定に供給することができ、且つ皮膜または堆積状態をコントロールする ことができる溶射ノズル装置および溶射装置を提供するものである。  [0012] The present invention has been made in consideration of the problems in the conventional thermal spraying apparatus as described above. The thermal spraying nozzle can supply the thermal spraying material at a constant level and can control the coating or the deposition state. An apparatus and a thermal spraying apparatus are provided.
[0013] 本発明の溶射ノズル装置は、ノズルの入口側からキャリアガスを導入して超高速の ガス流を形成し、そのガス流によって溶射材をアトマイズし放出する溶射ノズル装置 にお 、て、上記ノズルの入口側端部に上記溶射材である溶融金属を貯留する貯留 部が連通路を介して接続されるとともに、上記ノズルは、超音速ガス流を形成するた めのスロート部と、その下流側に出口方向に向けて形成される拡径流路部とを有して おり、この拡径流路部で、超音速ガス流によってアトマイズされた金属粒子を凝固ま たは半凝固状態まで冷却し、上記ノズルの出口側力 所定方向に放出するように構 成されていることを要旨とする。  [0013] The thermal spray nozzle device of the present invention is a thermal spray nozzle device that introduces a carrier gas from the inlet side of the nozzle to form an ultra-high-speed gas flow, atomizes the thermal spray material by the gas flow, and discharges it. A reservoir for storing molten metal, which is the spray material, is connected to the inlet side end of the nozzle via a communication path, and the nozzle includes a throat portion for forming a supersonic gas flow, and a throat portion thereof. And a diameter-enlarged flow path formed on the downstream side in the direction of the outlet. The diameter-enlarged flow path cools the metal particles atomized by the supersonic gas flow to a solidified or semi-solidified state. The gist is that the outlet side force of the nozzle is configured to discharge in a predetermined direction.
[0014] 上記溶射ノズル装置において、上記連通路内では、上記スロート内又はスロート部 下流側の中心に向けて上記貯留部から溶融金属導出管が延設されており、上記連 通路内でこの溶融金属導出管の外側部分が、加速された上記キャリアガスが流れる 流路を構成することが好ま 、。 [0014] In the spray nozzle device, in the communication passage, a molten metal lead-out pipe extends from the storage portion toward the center of the throat or the downstream side of the throat portion. The accelerated carrier gas flows through the outer part of the metal lead-out tube It is preferable to configure the flow path.
[0015] また、本発明のノズルは、スロート部下流側における拡径流路部の開き角力 半頂 角で 15° 以下であることを要旨とする。  [0015] In addition, the gist of the nozzle of the present invention is that the opening angle force half apex angle of the diameter-enlarged flow path portion on the downstream side of the throat portion is 15 ° or less.
[0016] また、上記拡径流路部の長さは、アトマイズされた金属粒子が凝固または半凝固状 態となるまでの飛行距離であって、アトマイズされた金属粒子の飛行距離と金属粒子 温度とをモデルィ匕することにより求められる飛行距離に基づいて定められ、具体的に は、上記アトマイズされた金属粒子が凝固または半凝固状態となるまでの飛行距離 は、アトマイズされた金属粒子が凝固または半凝固状態に変化するまでの飛行時間 を求めるとともに、下記式にその飛行時間を代入することによって求められ、上記拡 径流路部の長さは、その飛行距離以上の長さに設定されて 、ることを要旨とする。  [0016] The length of the diameter-enlarged flow path portion is a flight distance until the atomized metal particles become solidified or semi-solidified, and the flight distance of the atomized metal particles, the metal particle temperature, Specifically, the flight distance until the atomized metal particles become solidified or semi-solidified is determined by the solidification or semi-solid state of the atomized metal particles. The flight time until it changes to the solidified state is obtained, and the flight time is calculated by substituting the flight time into the following formula.The length of the above-mentioned expanded flow path section is set to be longer than the flight distance. This is the gist.
[0017] t Psdsas (18)
Figure imgf000005_0001
ただし、 1は粒子の飛行距離、 tは粒子が凝固または半凝固に達するまでの飛行時 f f
[0017] t P s d s a s (18)
Figure imgf000005_0001
Where 1 is the flight distance of the particle, t is the flight time until the particle reaches solidification or semi-solidification ff
間、 uはガスの流速、 はガスの密度、 は粒子の密度、 dは粒子直径、 aはガス g g s s g の音速である。  Where u is the gas flow velocity, is the gas density, is the particle density, d is the particle diameter, and a is the sound velocity of the gas g g s s g.
[0018] また、上記キャリアガスの入口圧力を pとし、ノズル出口圧力を Pとするとき、入口  [0018] When the carrier gas inlet pressure is p and the nozzle outlet pressure is P, the inlet
o B  o B
圧力 Pが下記式を満足する状態で上記キャリアガスは上記ノズルに導入されるように 構成することが好ましい。  It is preferable that the carrier gas is introduced into the nozzle in a state where the pressure P satisfies the following formula.
[0019]  [0019]
ΛΓ-1 ヽ- r-1 ΛΓ-1 ヽ-r-1
ρύ≥ρΒ \+— Μ2 ^ …… (1) ここで、 κ:圧縮ガスの比熱比、 Μ :スロート部下流側のノズル拡大部におけるマツ ハ数である。 ρ ≥ρ Β \ + — Μ 2 ^ …… (1) where κ is the specific heat ratio of the compressed gas, and Μ is the number of Matsuhs at the nozzle expansion part downstream of the throat part.
[0020] 本発明の溶射装置は、上記構成を有する溶射ノズル装置と、ノズルに対し管路を 介して接続されキャリアガスを加圧導入するキャリアガス供給装置と、ノズルおよび放 出される粒子を衝突させる基材を収納する密閉容器と、この密閉容器内を減圧する 減圧手段とを備えてなることを要旨とする。 [0020] The thermal spraying apparatus of the present invention collides the thermal spray nozzle apparatus having the above configuration, a carrier gas supply apparatus that is connected to the nozzle via a conduit and introduces carrier gas under pressure, and the nozzle and the discharged particles. A sealed container for storing the base material to be removed, and the pressure in the sealed container is reduced The gist of the present invention is that it comprises a decompression means.
[0021] 本発明の溶射装置は、上記構成を有する溶射ノズル装置と、貯留部に接続管を介 して接続されその貯留部内の溶融金属に対して溶融金属を連続的に加圧供給する 溶融金属供給装置と、基材を連続的に供給する基材供給装置とを備えてなることを 要旨とする。  [0021] The thermal spraying device of the present invention is connected to the thermal spray nozzle device having the above-described configuration via a connecting pipe and continuously pressurizes and supplies the molten metal to the molten metal in the reservoir. The gist of the invention is that it comprises a metal supply device and a substrate supply device that continuously supplies the substrate.
[0022] 本発明によれば、溶射材を一定に供給することができ、且つ皮膜または堆積状態 をコントロールすることができると 、う長所を有する。  [0022] According to the present invention, the sprayed material can be supplied constantly, and the coating or the deposition state can be controlled.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明に係る溶射ノズル装置の構成を示す斜視図である。 FIG. 1 is a perspective view showing a configuration of a thermal spray nozzle device according to the present invention.
[図 2](a)および (b)はノズル拡大部の定義を示す説明図である。  [FIG. 2] (a) and (b) are explanatory diagrams showing the definition of the nozzle enlarged portion.
[図 3]マッハ数と抗カ係数の関係を説明するグラフである。  FIG. 3 is a graph for explaining the relationship between the Mach number and the resistance coefficient.
[図 4]粒径に応じたノズル長さを示すグラフである。  FIG. 4 is a graph showing the nozzle length according to the particle diameter.
[図 5]従来のノズル開き角を示す説明図である。  FIG. 5 is an explanatory view showing a conventional nozzle opening angle.
[図 6]ノズル内に衝撃波が発生する場合を示す説明図である。  FIG. 6 is an explanatory diagram showing a case where a shock wave is generated in the nozzle.
[図 7]ノズル全域が超音速流れになる場合を示す説明図である。  FIG. 7 is an explanatory diagram showing a case where the entire nozzle area has a supersonic flow.
[図 8]ノズル形状の典型例を示すグラフである。  FIG. 8 is a graph showing a typical example of a nozzle shape.
[図 9]適性膨張になるノズル出口径を示すグラフである。  FIG. 9 is a graph showing the nozzle outlet diameter that achieves appropriate expansion.
[図 10]粒子径 20 μ m、スロート径 25mmにおけるノズル長さとマッハ数との関係を示 すグラフである。  FIG. 10 is a graph showing the relationship between the nozzle length and the Mach number when the particle diameter is 20 μm and the throat diameter is 25 mm.
[図 11]粒子径 20 m、スロート径 25mmにおけるノズル長さとガス温度 Z速度分布を 示すグラフである。  FIG. 11 is a graph showing the nozzle length and gas temperature Z velocity distribution when the particle diameter is 20 m and the throat diameter is 25 mm.
[図 12]粒子径 20 m、スロート径 25mmにおけるノズル長さと粒子温度 Z速度分布 を示すグラフである。  FIG. 12 is a graph showing the nozzle length and particle temperature Z velocity distribution at a particle diameter of 20 m and a throat diameter of 25 mm.
[図 13]粒子径 20 μ m、スロート径 35mmにおけるノズル長さとマッハ数との関係を示 すグラフである。  FIG. 13 is a graph showing the relationship between the nozzle length and the Mach number when the particle diameter is 20 μm and the throat diameter is 35 mm.
[図 14]粒子径 20 m、スロート径 35mmにおけるノズル長さとガス温度 Z速度分布を 示すグラフである。  FIG. 14 is a graph showing the nozzle length and gas temperature Z velocity distribution when the particle diameter is 20 m and the throat diameter is 35 mm.
[図 15]粒子径 20 m、スロート径 35mmにおけるノズル長さと粒子温度 Z速度分布 を示すグラフである。 [Figure 15] Nozzle length and particle temperature Z velocity distribution at a particle diameter of 20 m and a throat diameter of 35 mm It is a graph which shows.
[図 16]粒子径 50 μ m、スロート径 25mmにおけるノズル長さとマッハ数との関係を示 すグラフである。  FIG. 16 is a graph showing the relationship between the nozzle length and the Mach number when the particle diameter is 50 μm and the throat diameter is 25 mm.
[図 17]粒子径 50 m、スロート径 25mmにおけるノズル長さとガス温度 Z速度分布を 示すグラフである。  FIG. 17 is a graph showing the nozzle length and gas temperature Z velocity distribution when the particle diameter is 50 m and the throat diameter is 25 mm.
[図 18]粒子径 50 m、スロート径 25mmにおけるノズル長さと粒子温度 Z速度分布 を示すグラフである。  FIG. 18 is a graph showing the nozzle length and particle temperature Z velocity distribution at a particle diameter of 50 m and a throat diameter of 25 mm.
[図 19]粒子径 50 μ m、スロート径 35mmにおけるノズル長さとマッハ数との関係を示 すグラフである。  FIG. 19 is a graph showing the relationship between the nozzle length and the Mach number when the particle diameter is 50 μm and the throat diameter is 35 mm.
[図 20]粒子径 50 m、スロート径 35mmにおけるノズル長さとガス温度 Z速度分布を 示すグラフである。  FIG. 20 is a graph showing the nozzle length and gas temperature Z velocity distribution when the particle diameter is 50 m and the throat diameter is 35 mm.
[図 21]粒子径 50 m、スロート径 35mmにおけるノズル長さと粒子温度 Z速度分布 を示すグラフである。  FIG. 21 is a graph showing the nozzle length and particle temperature Z velocity distribution when the particle diameter is 50 m and the throat diameter is 35 mm.
[図 22]粒子径 100 μ mにおけるノズル長さとマッハ数との関係を示すグラフである。  FIG. 22 is a graph showing the relationship between nozzle length and Mach number when the particle diameter is 100 μm.
[図 23]粒子径 100 μ mにおけるノズル長さとガス温度 Ζ速度分布を示すグラフである FIG. 23 is a graph showing the nozzle length, gas temperature and velocity distribution at a particle size of 100 μm.
[図 24]粒子径 100 μ mにおけるノズル長さと粒子温度 Ζ速度分布を示すグラフであ る。 FIG. 24 is a graph showing the nozzle length, particle temperature and velocity distribution when the particle diameter is 100 μm.
[図 25]バッチ処理に適用する溶射装置の構成を示す説明図である。  FIG. 25 is an explanatory view showing a configuration of a thermal spraying apparatus applied to batch processing.
[図 26]連続成形処理に適用する溶射装置の構成を示す説明図である。 FIG. 26 is an explanatory view showing a configuration of a thermal spraying apparatus applied to a continuous molding process.
[図 27]本発明に係るノズルの第二の形態を示した図 1相当図である。 FIG. 27 is a view corresponding to FIG. 1, showing a second embodiment of the nozzle according to the present invention.
[図 28]本発明に係るノズルの第三の形態を示した図 1相当図である。 FIG. 28 is a view corresponding to FIG. 1, showing a third embodiment of the nozzle according to the present invention.
[図 29]本発明に係るノズルの第四の形態を示した図 1相当図である。 FIG. 29 is a view corresponding to FIG. 1, showing a fourth embodiment of the nozzle according to the present invention.
[図 30]本発明に係るノズルの第五の形態を示した図 1相当図である。 FIG. 30 is a view corresponding to FIG. 1, showing a fifth embodiment of the nozzle according to the present invention.
[図 31]本発明に係るノズルの第六の形態を示した図 1相当図である。 FIG. 31 is a view corresponding to FIG. 1, showing a sixth embodiment of the nozzle according to the present invention.
[図 32]従来のコールドスプレー装置の構成を示す説明図である。 FIG. 32 is an explanatory view showing a configuration of a conventional cold spray apparatus.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、図面に示した実施の形態に基づいて本発明を詳細に説明する。 [0025] 図 1は、本発明に係る溶射ノズル装置の基本構成を示したものである。 Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings. FIG. 1 shows a basic configuration of a thermal spray nozzle device according to the present invention.
1.溶射ノズル装置の原理  1. Principle of thermal spray nozzle device
同図に示す溶射ノズル装置 1は、超音速ノズル (以下、ノズルと略称する) 2内に溶 融金属 Mを直接供給するようになって 、る。  A spray nozzle apparatus 1 shown in FIG. 1 directly supplies a molten metal M into a supersonic nozzle (hereinafter abbreviated as a nozzle) 2.
[0026] ノズル 2内には超音速気流が流れる一方でノズル 2内に供給される溶融金属は低 速流となっており、両者の間で剪断力が作用するとともに溶融金属の表面張力が働[0026] While a supersonic airflow flows in the nozzle 2, the molten metal supplied into the nozzle 2 is a low-speed flow, and a shearing force acts between them, and the surface tension of the molten metal acts.
V、てノズル 2のスロート部 2a下流で溶融金属のアトマイズ (微粒化)が行われるように なっている。 V, atomization of the molten metal is performed downstream of the throat portion 2a of the nozzle 2.
[0027] アトマイズされた金属粒子(以下、粒子と略称する)はノズル 2内で加速されるととも に急速冷却され凝固する。すなわち、本発明の溶射ノズル装置 1には、アトマイズェ 程が行われるスロート部 2aとアトマイズ工程と連続して飛行冷却工程が行われる拡径 流路部 2bとが一体に設けられて 、る。  The atomized metal particles (hereinafter abbreviated as particles) are accelerated in the nozzle 2 and rapidly cooled and solidified. That is, the thermal spray nozzle device 1 of the present invention is integrally provided with a throat portion 2a where the atomizing process is performed and a diameter-enlarged flow path portion 2b where the flight cooling process is performed continuously with the atomizing process.
[0028] 凝固直後にノズル 2から放出された粒子は、約 450mZsの速度で基材 3に衝突す る。その衝突時の変形によって粒子は発熱し、一部が融点以上まで上昇することによ り基材 3に粒子が付着する(図中、衝撃付着工程参照)。  [0028] The particles discharged from the nozzle 2 immediately after solidification collide with the base material 3 at a speed of about 450 mZs. Due to the deformation at the time of the collision, the particles generate heat, and a part of the particles rises to the melting point or higher, so that the particles adhere to the base material 3 (see the impact attachment process in the figure).
[0029] なお、図中 4は溶融金属 Mを貯留するための貯留部であり、ノズル 2と連通する連 通路 4aを有している。  In the figure, reference numeral 4 denotes a storage portion for storing the molten metal M, and has a communication path 4 a communicating with the nozzle 2.
[0030] 上記連通路 4aの先端部は、スロート部 2aの筒孔中心に向けて溶融金属導出管 4b として延設されており、その溶融金属導出管 4bの外周を、カロ速されたキャリアガスが 流れるようになつている。  [0030] The leading end of the communication passage 4a extends as a molten metal outlet tube 4b toward the center of the cylindrical hole of the throat portion 2a. Is starting to flow.
[0031] 凝固した粒子が基材 3に衝突する原理は従来のコールドスプレーと同様であり、衝 突した粒子は著しく塑性変形してクレータ状にくぼみ、空隙のない緻密な組織が皮 膜 (または堆積層)内〖こ得られること〖こなる。したがって、皮膜が形成された成形材に ついては後処理としての HIP (Hot isostatic pressing)処理、すなわち、圧力を加えて 残留空孔の除去を施す必要がな 、。  [0031] The principle that the solidified particles collide with the base material 3 is the same as that of the conventional cold spray. The collided particles are remarkably plastically deformed and dented into a crater, and a dense structure without voids is formed in the skin (or (Deposited layer) It can be obtained inside. Therefore, it is not necessary to perform HIP (Hot isostatic pressing) treatment as a post-treatment, that is, to remove residual voids by applying pressure to the molding material on which the film is formed.
[0032] また、超音速気流を発生させるためのキャリアガス(以下、ガスと略称する)として窒 素ガスを用いた場合、粒子衝突後に酸ィ匕が進行しな ヽため低酸素含有の成形材を 得ることができる。さらに、粒子がノズル 2内を飛行するわず力 lms以内に凝固に至る ため、窒化の進行を防止することができる。 [0032] In addition, when nitrogen gas is used as a carrier gas (hereinafter abbreviated as gas) for generating a supersonic airflow, since oxygen does not advance after particle collision, a low oxygen content molding material Can be obtained. In addition, the particles will solidify within lms, which is the force of flying in nozzle 2. Therefore, the progress of nitriding can be prevented.
[0033] また、溶射材として溶融金属を使用し凝固点をわずかに下回る温度の下に粒子を 基材 3に衝突させているため、コールドスプレーに比較すると、低いマッハ数 (例えば マッハ数 2程度)での衝突であっても基材 3の表面温度は融点以上になり、基材 3に 対して粒子を確実に付着させることができるようになつている。なお、上記マッハ数と はガスの速度 Z音速を意味して 、る。  [0033] Further, since a molten metal is used as a spraying material and particles are collided with the base material 3 at a temperature slightly below the freezing point, the Mach number is low (for example, about Mach number 2) compared to cold spray. Even in the case of collision, the surface temperature of the base material 3 becomes higher than the melting point, so that the particles can reliably adhere to the base material 3. The above Mach number means the gas velocity Z sound velocity.
[0034] 上記ノズル 2は、拡大部のノズル長さが 100mm以上に設定されており、キャリアガ ス全圧 pが下記式 (1)を満足する状態で動作するように構成されている。
Figure imgf000009_0001
ここで、 p:キャリアガス全圧 (スロート上流側の入口圧力), p :ノズル出口背圧, M
The nozzle 2 is configured such that the nozzle length of the enlarged portion is set to 100 mm or more, and operates in a state where the carrier gas total pressure p satisfies the following formula (1).
Figure imgf000009_0001
Where p: total carrier gas pressure (inlet pressure upstream of throat), p: nozzle outlet back pressure, M
0 B  0 B
:溶射材溶解部におけるマッハ数, κ:キャリアガスの比熱比である。  : Mach number at the sprayed material melting part, κ: Specific heat ratio of carrier gas.
[0036] また、マッハ数 Mは式 (2)により、スロート部 6の断面積 A*およびノズル内拡大断面 積 Aと関係づけられる。  [0036] Further, the Mach number M is related to the cross-sectional area A * of the throat portion 6 and the enlarged cross-sectional area A in the nozzle by the equation (2).
[0037] 拡大断面積とは図 2(a)に示すように、スロート部としての最狭部 A*から下流側に向 けて徐々に径が拡大する円錐状の拡大部、および同図 (b)に示すように、最狭部 A* から下流側に向けて急に径が拡大しその後略一定するような拡大部を含む。  [0037] As shown in Fig. 2 (a), the enlarged cross-sectional area is a conical enlarged portion whose diameter gradually increases from the narrowest portion A * as the throat portion toward the downstream side, and FIG. As shown in b), it includes an enlarged part whose diameter suddenly expands from the narrowest part A * toward the downstream side and then becomes substantially constant.
[0038] 1  [0038] 1
A 1 (ΑΓ _ 1)Λί2十 2— ¾ 一 ι) A 1 (ΑΓ _ 1) Λί 2 dozen 2- ¾ one ι)
A' M κ + l  A 'M κ + l
…"- (2)  … "-(2)
[0039] また、先細末広 (ラバル)ノズルに、式 (1)と式 (2)で表される圧力を持つ圧縮ガスを供 給すると、ノズルの拡大部までは超音速流れになることが知られている。最狭部にお いてその高速気流はマッハ 1 (約 340mZs)となる。この高速気流に曝された溶融金 属は、微粒子へとアトマイズされる。実験的には Hinze (Honze, J.0., Fundamentals o f the Hydrodynamic Mechanism of splitting in Dispersion Processes, AIChEJ .,Vol,No.3,1955,pp.289- 295)によって式 (3)で表されることが明かにされている。  [0039] It is also known that when a compressed gas having a pressure expressed by Equations (1) and (2) is supplied to a tapered nozzle (Laval) nozzle, a supersonic flow is obtained up to the enlarged portion of the nozzle. It has been. In the narrowest part, the high-speed airflow is Mach 1 (about 340 mZs). Molten metal exposed to this high-speed air stream is atomized into fine particles. Experimentally, it is expressed by Equation (3) by Hinze (Honze, J.0., Fundamentals of the Hydrodynamic Mechanism of splitting in Dispersion Processes, AIChEJ., Vol, No.3, 1955, pp.289-295). It has been revealed.
[0040] ここで、 p :ガス密度、 V :ノズル入口のガス速度、 V:液速度、 D:***後液滴直[0040] Where p is the gas density, V is the gas velocity at the inlet of the nozzle, V is the liquid velocity, and D is the droplet after the break.
G G L L G G L L
径、 σ:液表面張力である。  Diameter, σ: Liquid surface tension.
[0041] 溶融金属としてアルミ合金を例に取り、窒素ガスを 0. 8MPaの圧力でノズルに供給 すると、式 (3)から求まるアトマイズ後のアルミ合金粒子直径は約 20 mになる。 [0041] Taking an aluminum alloy as an example of the molten metal and supplying nitrogen gas to the nozzle at a pressure of 0.8 MPa, the diameter of the aluminum alloy particle after atomization obtained from equation (3) is about 20 m.
[0042] アトマイズ後の粒子は超音速気流によって加速と冷却の各作用を受け、最終的に 超音速の速度を持ってノズル 2から噴出される。 [0042] The particles after atomization are accelerated and cooled by the supersonic airflow, and finally ejected from the nozzle 2 at a supersonic speed.
[0043] この間の加速と冷却は数値解析により見積ることができる。具体的には、準一次元 圧縮性流体保存形表示の質量保存、運動量保存、エネルギ保存式を式 (4)と、粒子 の運動方程式 (6)とを連立させて解く。 [0043] The acceleration and cooling during this period can be estimated by numerical analysis. Specifically, the mass conservation, momentum conservation, and energy conservation equations of the quasi-one-dimensional compressible fluid conservation type display are solved by simultaneous equations (4) and particle motion equations (6).
[0044] 2.数値解析手法 [0044] 2. Numerical analysis method
(1) まず、後述する数値解析手法に使用する記号を示す。 (1) First, the symbols used in the numerical analysis method described later are shown.
[0045] A;ノズル断面積 [0045] A : Nozzle cross-sectional area
CD :粒子の抗カ係数 C D : Particle resistance coefficient
C p:比熱  C p: Specific heat
D: ノズル直径  D: Nozzle diameter
d:粒子直径  d: Particle diameter
:壁面摩擦係数  : Wall friction coefficient
g:重力加速度  g: Gravity acceleration
h:比ェン夕ルビ  h: Hien evening ruby
m :質量流量  m: Mass flow rate
N u :ヌセルト数  N u: Nusselt number
P :ガス圧力  P: Gas pressure
P r :プラントル数  P r: Prandtl number
Q : ノズル加熱に必要な単位時間あたりのエネルギ  Q: Energy per unit time required for nozzle heating
R:ガス定数  R: Gas constant
R e: レイノルズ数  Re: Reynolds number
T:温度  T: Temperature
u:流速  u: Flow velocity
X: ノズル流れ方向の距離  X: Distance in the nozzle flow direction
:ステファン ·ボルツマン定数  : Stefan-Boltzmann constant
ε :放射率  ε: Emissivity
κ :比熱比  κ: Specific heat ratio
λ :熱伝導率  λ: thermal conductivity
{1 :粘性係数  {1: Viscosity coefficient
β :密度  β: Density
[0046] また、添字の意味は下記の通りである。 [0046] The meanings of the subscripts are as follows.
g:ガス  g: Gas
s :第二相 (液滴、 粒子、 粉体)  s: Second phase (droplet, particle, powder)
X:ノズルスロート部からの距離  X: Distance from nozzle throat
W :ノズル壁面  W: Nozzle wall
[0047] (2) ガス相の支配方程式 [0047] (2) Governing equation of gas phase
準一次元圧縮性流体保存形表示の質量保存、運動量保存、エネルギ保存式を下 記 (4)に示す。 ただし、ノズル壁の乱流熱伝達には Johnson-Rubeshinの式 (5)を用いる。 The mass conservation, momentum conservation, and energy conservation equations of the quasi-one-dimensional compressible fluid conservation type display are shown in (4) below. However, Johnson-Rubeshin equation (5) is used for turbulent heat transfer on the nozzle wall.
u =
Figure imgf000012_0004
u =
Figure imgf000012_0004
Figure imgf000012_0001
Figure imgf000012_0001
P  P
H =E +丄  H = E + 丄
K-l p  K-l p
9 Pr? e 5 また、 sと eはガス相と第二相間の相互作用を表す運動量生成項とエネルギ生成項 をそれぞれ表す。 9 Pr ? E 5 Also, s and e represent the momentum generation term and energy generation term representing the interaction between the gas phase and the second phase, respectively.
[0048] 実際の式 (1)の解法には、 MUSCL(Monotone Upstream-centred Schemes for Conservation laws)化された Roeの Flux difference Splitting法を用いて移流項を離 散化し、 4段階ルンゲ ·タッタ法を用いて時間積分を行って 、る。  [0048] The actual equation (1) is solved by separating the advection term using Roe's Flux difference Splitting method, which has been converted to the MUSCL (Monotone Upstream-centred Schemes for Conservation laws), and the four-stage Runge-Tatta method. Perform time integration using.
[0049] (3) 第二相 (液滴、粒子、粉体)の支配方程式  [0049] (3) Governing equation of the second phase (droplet, particle, powder)
粒子の速度は、粒子の運動方程式 (6)を解くことにより得ることができる。
Figure imgf000012_0002
The velocity of the particle can be obtained by solving the particle equation of motion (6).
Figure imgf000012_0002
ただし、  However,
3 m,CD 11 , 、 , 3 m, C D 11,,,
2 dspiui 2 ……ひ) 2 d s p i u i 2 ...... hi)
[0050] ここで抗カ係数には Kurtenの式 (8)を用いて!/、る。 [0050] Here, the resistance coefficient is calculated using Kurten's formula (8)!
CD =0.28 + 6Re^ + 21Re-' ""'.(8) C D = 0.28 + 6Re ^ + 21Re- '""'. (8)
Re:
Figure imgf000012_0003
粒子の温度は、粒子のエネルギ方程式 (9)を解くことにより得ることができる c h, ut , 、
Re:
Figure imgf000012_0003
The particle temperature can be obtained by solving the particle energy equation (9), c h, u t ,,
Π =+e) …… (9) ただし、ノズル壁温度がガス温度と等しくなる断熱壁の場合、
Figure imgf000013_0001
また、ノズル壁 lbを加熱した等温壁の場合、
Figure imgf000013_0002
Π =+ e) …… (9) However, in the case of a heat insulating wall where the nozzle wall temperature is equal to the gas temperature,
Figure imgf000013_0001
In the case of an isothermal wall heated nozzle wall lb,
Figure imgf000013_0002
[0052] ここでヌセルト数には Ranz- Marshallの式 (12)を用いて!/、る
Figure imgf000013_0003
[0052] Here, the Nusselt number is calculated using Ranz-Marshall's equation (12)!
Figure imgf000013_0003
[0053] 実際の式 (6)と式 (9)の解法にっ 、ては、移流項の離散化には QUICK法を用いて 、 る。そして 4段階ルンゲ ·タッタ法を用いて時間積分を行って!/、る。 [0053] According to the actual solution of equations (6) and (9), the QUICK method is used to discretize the advection term. Then perform time integration using the 4-stage Runge-Tatta method! /
[0054] (4) ノズル加熱に要する熱量 [0054] (4) Amount of heat required for nozzle heating
等温条件を維持するために必要な熱量を式 (13)により見積ることができる。
Figure imgf000013_0004
The amount of heat required to maintain the isothermal condition can be estimated by equation (13).
Figure imgf000013_0004
[0055] (5) ノズノレ長さ [0055] (5) Nozunore length
本発明の溶射ノズル装置を用いた運転では、アトマイズされた粒子の速度が減速し ないうちに堆積物に衝突させるように構成しているため、ノズル出口力も堆積物まで の距離は極めて短い設定となっている。したがって、ノズル出口での粒子の速度とェ ンタルビがほぼ維持されて堆積するものと近似的に考えられる。  In the operation using the thermal spray nozzle device of the present invention, since the atomized particle velocity is made to collide with the deposit before decelerating, the nozzle outlet force is set to a very short distance to the deposit. It has become. Therefore, it can be approximated that the particle velocity and enthalpy at the nozzle outlet are almost maintained.
[0056] また、堆積時の粒子の状態により堆積物の状態も大きく左右されるが、従来の溶射 ノズル装置のように亜音速で粒子を衝突 ·堆積させるものでは、粒子が凝固状態であ ると基材ゃ堆積物に付着させることができない。  [0056] In addition, the state of the deposit is greatly affected by the state of the particles at the time of deposition, but in the case of colliding and depositing the particles at a subsonic speed like a conventional thermal spray nozzle device, the particles are in a solidified state. And the substrate cannot be attached to the deposit.
[0057] これに対し本発明の溶射ノズル装置は、従来、活用されていな力つた固相率の方 が多い半凝固状態または凝固状態の粒子を超音速で衝突 ·堆積させることを運転条 件とするものである。そこで、溶解状態にある金属が微粒化されて飛行する間に半凝 固状態に変化すると想定し、それまでに必要とされる最小限の飛行距離を求め、この 飛行距離を、装置に必要とされる最小限のノズル長さとして規定している。 [0057] On the other hand, the thermal spray nozzle device of the present invention has the operating condition of colliding and depositing semi-solid or solidified particles at a supersonic speed, which has a higher solid phase ratio, which has not been used conventionally. It is what. Therefore, assuming that the molten metal is atomized and changes to a semi-solid state during the flight, the minimum flight distance required so far is obtained, and this flight distance is required for the device. It is specified as the minimum nozzle length.
[0058] まず、粒子の加速を表す運動方程式は先に式 (6)に示した通り、 3 dus f - pg u [0058] First, the equation of motion representing particle acceleration is as shown in equation (6), 3 du sf -p g u
us g s (6) u s gs (6)
dt dx p3 ms である。 dt dx p 3 m s .
[0059] この式 (6)はノズルと一緒に静止して 、るオイラー座標系力も見て記述されて 、るの で、固定した計算格子を用いる数値計算に都合がょ 、。  [0059] This equation (6) is described with reference to the Euler coordinate system force, which is stationary together with the nozzle, so it is convenient for numerical calculation using a fixed calculation grid.
[0060] しかし、一粒一粒の粒子の状態を追跡して粒子速度と粒子ェンタルビとを確認する には不都合であるため、飛行する粒子と一緒に移動するラグランジュ座標系力 見て 記述した方程式で表すと、下記式 (14)のようになる。ただし、簡略化のために、ほとん ど影響のない重力項を無視している。また、飛行距離力 Sまだ短い区間では、粒子が ガス流れにより後ろ力も追い風のように押される加速過程にあるとして、常に、ガスの 流速 u >粒子の速度 uが成り立つと仮定している。  [0060] However, since it is inconvenient to follow the state of each particle and confirm the particle velocity and particle enthalbi, the equation described by looking at the Lagrange coordinate system force that moves with the flying particles Is represented by the following formula (14). However, for the sake of simplicity, the gravity term, which has almost no effect, is ignored. Also, it is assumed that in the section where the flight distance force S is still short, the gas flow velocity u> the particle velocity u always holds, assuming that the particles are in the acceleration process where the back force is pushed like a tailwind by the gas flow.
g s  g s
[0061] dus 3 CD 1 I \2 , 、 [0061] du s 3 C D 1 I \ 2 ,,
~ - = "一 pAu e - us ) (14) di 2 dsps 2 g g s ここで、ガスの流速 uと粒子の速度 uとの相対速度をとつて、 U=u -uとして、近 g s g s 似的に超音速であるガス流速はノズル内で一定であると仮定すると、式 (14)を式 (15) のように変形できる。 ~-= "One pAu e -u s ) (14) di 2 d s p s 2 ggs where the relative velocity between the gas flow velocity u and the particle velocity u is taken as U = u -u Assuming that the gas flow velocity, which is supersonic like gsgs, is constant in the nozzle, equation (14) can be transformed into equation (15).
[0062] =— (15) di 2 dsps 2 g 式 (15)中、抗カ係数 C は式 (12)で示したように、相対速度 Uが亜音速の場合にはレ [0062] = — (15) di 2 d s p s 2 g In equation (15), the anti-coefficient C is shown in equation (12), when the relative velocity U is subsonic.
D  D
イノルズ数の関数で表現できる力 アトマイズ直後の場合は相対速度 Uも超音速であ る比率が高いので、ここでは図 3 (弾丸経路計測力 得られた球体、および円錐一円 柱体の抗カ係数、マッハ数依存の説明図)に示すグラフにおいて、マッハ数と球形物 体との抗カ係数の実験結果から式 (16)で近似する(図中、近似直線 E参照)。  The force that can be expressed as a function of the Innols number In the case immediately after atomization, the relative velocity U is also supersonic, so the ratio of the supersonic velocity is high. In the graph shown in Fig. 2 for the coefficient and Mach number dependence, approximation is performed using Equation (16) based on the experimental results of the anti-coefficient of the Mach number and the spherical object (see approximate line E in the figure).
[0063] なお、図 ま 2nd edition McGrae— Hill benes in Aeronautical and Aerospace Engineering, Modern Compressible Flow with nistorical Perspectiveより引用。 [0063] The figure is quoted from 2nd edition McGrae—Hill benes in Aeronautical and Aerospace Engineering, Modern Compressible Flow with nistorical Perspective.
CD =一 M (16) ただし、 aはガスの音速、 Mはマッハ数である。 [0064] 式 (16)と式 (15)から粒子の飛行時間 tと相対速度 Uの関係を表現する式 (17)が得ら れる。
Figure imgf000015_0001
ここで、 t= 0では粒子速度 u = 0としている。
C D = 1 M (16) where a is the speed of sound of gas and M is the Mach number. [0064] From Expression (16) and Expression (15), Expression (17) expressing the relationship between the particle flight time t and the relative velocity U is obtained.
Figure imgf000015_0001
Here, at t = 0, the particle velocity u = 0.
s  s
[0065] また、飛行時間 tと飛行距離 1との関係は式 (18)力 求められる。 + W
Figure imgf000015_0002
"A
[0065] Further, the relationship between the flight time t and the flight distance 1 is obtained by the equation (18). + W
Figure imgf000015_0002
"A
ただし、 uはガスの流速、 はガスの密度、 は粒子の密度、 dは粒子直径であ g g s S  Where u is the gas flow velocity, is the gas density, is the particle density, and d is the particle diameter g g s S
る。  The
[0066] 粒子が半凝固に達するまでの飛行時間 tが分かれば、それまでの粒子の飛行距離 f  [0066] If the flight time t until the particle reaches semi-solidification is known, the flight distance f of the particle until then f
1  1
fが計算され、この飛行距離 1  f is calculated and this flight distance 1
fは必要とされる最小限のノズル長さに一致する。そこで f corresponds to the minimum nozzle length required. Therefore
、粒子が半凝固に達するまでの飛行時間 tを求める。粒子の冷却は先に示した式 (9) f Find the flight time t until the particles reach semi-solidification. The particle cooling is given by the equation (9) f shown above.
で与えられる。  Given in.
, u_ ( t , U_ (t
H- w. - ~二—; ^ [q ^ e) (9)  H- w.-~ 2—; ^ [q ^ e) (9)
卞" Ί m  卞 "Ί m
[0067] 式 (14)と同様に、ラグランジュ座標系で記述すると、式 (19)のようになる。
Figure imgf000015_0003
[0067] Similar to Equation (14), when described in the Lagrangian coordinate system, Equation (19) is obtained.
Figure imgf000015_0003
ここで、近似的に初期の溶湯温度、液相線温度、固相線温度ともほぼ等しぐその 値を材料の融点 Τで代表させると、 Τ =Τとおける。また、ガスの温度 Τとノズル壁 m s m s 面温度 τも近似的に一定とする。  Here, if the values of the melting point 材料 of the material, which is approximately equal to the initial melt temperature, liquidus temperature, and solidus temperature, are represented by 融 点, then Τ = Τ. The gas temperature Τ and the nozzle wall m s m s surface temperature τ are also approximately constant.
W  W
[0068] 熱伝達の度合 、を表すヌセルト数 Nuは式 (12)で表される力 相対速度 Uを用いて 書き換えると式 (20)のようになる。
Figure imgf000015_0004
[0068] The Nusselt number Nu, which represents the degree of heat transfer, is rewritten using the force relative velocity U expressed by the equation (12) as shown in the equation (20).
Figure imgf000015_0004
[0069] また、溶射金属の凝固潜熱を Lとすると、固相率の方が大きい半凝固状態になるた めには、式 (21)が成り立つ。
Figure imgf000016_0001
[0069] In addition, when the solidification latent heat of the sprayed metal is L, the solid phase ratio becomes a semi-solidified state with a larger solid state. For this purpose, equation (21) holds.
Figure imgf000016_0001
なお、式において、液相から固相に変化する略中間が半凝固状態となるため、 L/ 2として!/、る。  In the formula, the halfway between the liquid phase and the solid phase is semi-solidified, so L / 2 is! /.
[0070] 最小限のノズル長さを求めるということは、粒子が半凝固に達するまでの最短の飛 行時間 tを求めることになるから、この場合には式 (21)において等号が成立する。  [0070] Obtaining the minimum nozzle length means obtaining the shortest flight time t until the particles reach semi-solidification. In this case, the equality is established in equation (21). .
f  f
[0071] 式 (19)と式 (20)力 ヌセルト数 Nuを消去し、さらに式 (17)を用いて相対速度 Uも消去 して、さらに式 (21)の等号式を用いると、粒子が半凝固状態に達するまでの最短の飛 行時間 関係式 (22)が得られる。 4psdsa£ [0071] When the equation (19) and the equation (20) force Nusselt number Nu is eliminated, the relative velocity U is also eliminated using equation (17), and the equation of equation (21) is further used, the particle The shortest flight time until it reaches a semi-solidified state (22) is obtained. 4p s d s a £
3"
Figure imgf000016_0002
3 "
Figure imgf000016_0002
(22) ただし、 Prはガスのプラントル数、 λはガスの熱伝導率、 Τは材料の融点、 Τはガ m g スの温度、 μ はガスの粘性係数である。  (22) where Pr is the Prandtl number of the gas, λ is the thermal conductivity of the gas, Τ is the melting point of the material, Τ is the temperature in gas, and μ is the viscosity coefficient of the gas.
g  g
[0072] 上記式 (22)を tについて解くことはできないが、ニュートン法などを用いて数値的に f  [0072] The above equation (22) cannot be solved for t, but numerically using Newton's method etc.
解くことができる。  Can be solved.
[0073] 以上のことから、式 (22)力 最短の飛行時間 tを求め、式 (18)に代入することにより、 f  [0073] From the above, Equation (22) finds the minimum force flight time t and substitutes it into Equation (18) to obtain f
最短の飛行距離、すなわち最小限のノズル長さ 1が求まる。  The shortest flight distance, ie, the minimum nozzle length 1 is obtained.
f  f
[0074] 本発明の溶射ノズル装置は上記ノズル長さ 1以上の長さを有するノズルを用いた装 f  [0074] The thermal spray nozzle device of the present invention is a device using a nozzle having a nozzle length of 1 or more.
置であることを特徴とし、粒子を超音速まで加速することにより凝固状態でも基材ゃ 堆積物に付着するため、理論上はノズル長さに上限はない。  There is no upper limit on the nozzle length in theory because the substrate adheres to the deposit even in the solidified state by accelerating the particles to supersonic speed.
[0075] 図 4は、アルミニウムと銅を用いて具体的に最小限のノズル長さを求めたグラフであ り、様々な粒子径カ なる粒子が固相率 0. 5を超える半凝固状態となる場合に必要 とされるノズル長さを示したものである。なお、同グラフにおいて横軸は粒子の直径を 示し、縦軸はノズル長さを示している。なお、キャリアガスの条件は後述する表 1と同 様にしている。 [0075] Fig. 4 is a graph in which the minimum nozzle length is specifically determined using aluminum and copper. The particles with various particle sizes are in a semi-solid state exceeding a solid phase ratio of 0.5. This shows the nozzle length required in this case. In the graph, the horizontal axis indicates the particle diameter, and the vertical axis indicates the nozzle length. The carrier gas conditions are the same as in Table 1 below. Like.
[0076] アトマイズの結果、例えば体積占有率で見た平均径が 50 μ mの場合、アルミニウム では 0. 17m、銅では 0. 12mのノズル長さが必要となる。  [0076] As a result of atomization, for example, when the average diameter in terms of volume occupancy is 50 μm, a nozzle length of 0.17 m for aluminum and 0.12 m for copper is required.
[0077] ところで、従来、アトマイズを目的として超音速ノズルに溶湯を流す場合には、粒子 がノズル内壁面に付着することを避けるため、図 5に示すようにノズル開き角(スロート 部下流側における拡径流路部の開き角)が半頂角で 0 > 15° の大きなノズノレを使 用している。上記半頂角とはノズル中心軸とノズル内壁がなす角度を意味する。  [0077] By the way, conventionally, when the molten metal is flowed to the supersonic nozzle for the purpose of atomization, in order to avoid particles adhering to the inner wall surface of the nozzle, as shown in Fig. 5, the nozzle opening angle (on the downstream side of the throat portion). A large nozzle with a half apex angle (open angle of the expanded flow path) of 0> 15 ° is used. The half apex angle means an angle formed by the nozzle central axis and the nozzle inner wall.
[0078] この場合には断面積比 AZA*が急激に拡大してマッハ数 Mも急激に大きくなる( 式 (2)参照)が、等エントロピ変化の式 (23)と垂直衝撃波の関係式 (24)力も求まるマツ ハ数 Mになったところで衝撃波面が現れ、これを境としてその下流側は亜音速となり 、ノズル内壁の開き角が大きいことにより、内壁面付近のガスの流れはその内壁面か ら剥離してしまう。  [0078] In this case, the cross-sectional area ratio AZA * suddenly expands, and the Mach number M also increases rapidly (see Equation (2)), but the isentropic change equation (23) and the vertical shock wave relation ( 24) A shock wavefront appears when the force reaches the matsuh number M, and the downstream side becomes subsonic at this boundary, and the opening angle of the nozzle inner wall is large, so that the gas flow near the inner wall It will peel off.
[0079] このときのマッハ数 Mは式 (25)力 求まり、衝撃波面が現れる部位での断面積比 A ZA*は式 (26)力 求まる。  [0079] The Mach number M at this time is obtained by the equation (25), and the cross-sectional area ratio A ZA * at the portion where the shock wave front appears is obtained by the equation (26).
[0080] このようなノズルは従来からアトマイズに向いている力 ノズル内でのガス流れが直 ちに亜音速になるものであり、粒子を加速させるという概念は存在しない。これに対し [0080] Conventionally, such a nozzle is a force suitable for atomization. The gas flow in the nozzle immediately becomes subsonic, and there is no concept of accelerating particles. On the other hand
、本発明のノズルは、ノズル開き角を 15° 以下として流れの剥離を防止しつつ、なお 且つ、半凝固状態であっても粒子を基材ゃ堆積物に付着させることができるようにァ トマイズ後の粒子を超音速まで加速させる構成にしている。換言すれば、本発明のノ ズルは、粒子が凝固または半凝固状態に達するまでノズル最狭部カゝら衝撃波面が生 じる部位までの距離を長く延ばした構成となって 、る。 The nozzle of the present invention has a nozzle opening angle of 15 ° or less, prevents flow separation, and allows the particles to adhere to the substrate even in a semi-solidified state. The latter particles are accelerated to supersonic speed. In other words, the nozzle of the present invention has a configuration in which the distance from the narrowest part of the nozzle to the site where the shock wave front is generated is extended until the particles reach a solidified or semi-solid state.
[0081]
Figure imgf000017_0001
[0081]
Figure imgf000017_0001
Ρι_ - (κ - l) (24) Ρι_-(κ-l) (24)
ΡΒ Κ Ρ Β Κ
(25)
Figure imgf000017_0002
Figure imgf000018_0001
以上説明したことから、本発明の超音速ノズルの条件は、下記 (a)〜(c)によって規 定することができる。
(twenty five)
Figure imgf000017_0002
Figure imgf000018_0001
From the above description, the conditions of the supersonic nozzle of the present invention can be defined by the following (a) to (c).
[0082] (a)ノズル開き角が半頂角で 0≤ 15° であること。 [0082] (a) The nozzle opening angle is 0≤15 ° at the half apex angle.
[0083] (b)ノズル開き角が半頂角で 0≤ 15° であって、キャリアガス全圧 p、ノズル出口  [0083] (b) Nozzle opening angle is half-vertical angle 0≤15 °, carrier gas total pressure p, nozzle outlet
0  0
背圧 p に基づき式 (25)によって求まる衝撃波上流マッハ数 Mを、さらに式 (26)に代 The shock wave upstream Mach number M obtained by Eq. (25) based on the back pressure p is further replaced by Eq. (26).
B 1 B 1
入してノズル断面積 Aを求め、このノズル断面積 Aとなる位置までのノズル長さ 1力 式 (18)と、粒子が半凝固に達するまでの最短の飛行時間を規定した関係式 (22)とから 求まる最小限のノズル長さ 1以上であること。  The nozzle cross-sectional area A is calculated, and the nozzle length 1 force equation (18) up to the position where the nozzle cross-sectional area A is reached and the relational equation that defines the shortest flight time until the particles reach semi-solidification (22 ) And the minimum nozzle length is 1 or more.
f  f
[0084] 図 6はノズル内に衝撃波が発生する場合を示している。  FIG. 6 shows a case where a shock wave is generated in the nozzle.
[0085] (c)ノズル開き角が半頂角で Θ≤ 15° であって、ノズル長さ 1が式 (18)と、粒子が半 f  [0085] (c) The nozzle opening angle is a half apex angle and Θ ≤ 15 °, the nozzle length 1 is equal to equation (18), and the particles are half f
凝固に達するまでの最短の飛行時間を規定した関係式 (22)とから求まる最短ノズル 長さ 1以上であり、キャリアガス全圧 p、ノズル出口背圧 p に基づき式 (25)によって求 f 0 B  The shortest nozzle length obtained from the relational expression (22) that defines the shortest flight time until solidification is reached is 1 or more, and is obtained from expression (25) based on the carrier gas total pressure p and nozzle outlet back pressure p. B
まる衝撃波上流マッハ数 Mを、さらに式 (26)に代入して求めたノズル断面積 A 1S ノ ズル出口断面積 Aよりも大きいノズルである。  Nozzle cross-sectional area A 1S Nozzle outlet cross-sectional area A obtained by substituting the total shock wave upstream Mach number M into equation (26).
e  e
[0086] この場合、図 7に示すようにノズル全域が超音速流れになるため、衝撃波面はノズ ル出口下流側に発生することになる。  In this case, as shown in FIG. 7, since the entire nozzle area is supersonic, the shock wave front is generated downstream of the nozzle outlet.
[0087] 3.実機ノズルの設計 [0087] 3. Actual nozzle design
3-1) 材料物性値と拘束条件  3-1) Material properties and constraints
実機ノズルの計算に用いた材料物性値と拘束条件を表 1に示す。  Table 1 shows the material properties and constraint conditions used in the actual nozzle calculation.
[0088] [表 1] 舗ノズルの計算に用いた材 性値と拘赖件 [0088] [Table 1] Material values used in the calculation of pavement nozzles
Figure imgf000019_0001
Figure imgf000019_0001
ただし、表中の最大半頂角とはノズル中心軸とノズル内壁がなす角度の最大を意 味する。  However, the maximum half apex angle in the table means the maximum angle between the nozzle center axis and the nozzle inner wall.
[0089] 3-2) 検討条件  [0089] 3-2) Study conditions
溶融金属(粒子)質量流量 [kg/s] 4条件: 0.025, 0.050, 0.075, 0.100 粒子径 [ /z m] 3条件: 20, 50, 100  Molten metal (particle) mass flow rate [kg / s] 4 conditions: 0.025, 0.050, 0.075, 0.100 Particle size [/ z m] 3 conditions: 20, 50, 100
ノズルスロート部の径 [mm] 2条件: φ 25, φ 35  Nozzle throat diameter [mm] 2 conditions: φ 25, φ 35
ただし、それぞれガス質量流量 0.9 [kg/s] (スロート径 φ 25) , 1.8 [kg/s] (スロート径 φ 35)に相当する。  However, the gas mass flow rates correspond to 0.9 [kg / s] (throat diameter φ 25) and 1.8 [kg / s] (throat diameter φ 35), respectively.
[0090] 上記の条件において、適性膨張 (ノズル出口静圧 =背圧 =大気圧)が得られる場 合のノズル形状を求め、粒子温度と粒子速度との関係を調べた。また、超音速流で は下流側力 上流側に影響の及ぶことがないため、例えば、長さ 500mmのノズルに おける 300mm位置での計算結果はそのまま長さ 300mmのノズルの出口における 状態とみなすことができる。これは亜音速ノズルと異なる点である。  [0090] Under the above conditions, the nozzle shape was obtained when appropriate expansion (nozzle outlet static pressure = back pressure = atmospheric pressure) was obtained, and the relationship between particle temperature and particle velocity was examined. Also, because the supersonic flow does not affect the downstream force upstream side, for example, the calculation result at the 300 mm position in a 500 mm long nozzle is regarded as the state at the outlet of the 300 mm long nozzle as it is. Can do. This is different from the subsonic nozzle.
[0091] 3-3) 実機ノズルの構成  [0091] 3-3) Configuration of actual nozzle
3-3-1) 全般  3-3-1) General
スプレー加速用に考案したノズル形状の典型例を図 8のグラフに示す。  A typical example of the nozzle shape devised for spray acceleration is shown in the graph of FIG.
[0092] ここではノズル最大半頂角を 5° (表 1参照)にしている。 [0093] 本ノズルは、(a)アトマイズ後の分散した液滴はノズル壁に付着しな ヽように速やか に最大直径まで拡大させること、および (b)粒子を加速すべく速度が最大になる最大 直径での直管部分を長くとること、を目的に構成されている。 Here, the maximum half apex angle of the nozzle is set to 5 ° (see Table 1). [0093] This nozzle (a) quickly expands to the maximum diameter so that dispersed droplets after atomization do not adhere to the nozzle wall, and (b) maximizes the speed to accelerate the particles. It is configured to increase the length of the straight pipe at the maximum diameter.
[0094] ただし、本実施形態のノズルは、一般にコールドスプレーで用いられて!/、るコニカ ルノズルと比較して、設計値よりも圧力比が低 、場合や多くのコールド粒子が供給さ れた場合にノズルのほとんどを占める直管部がすべて亜音速になってしまう不都合 がある。そのため、設計値を外れた状態での運転には不向きであり、同一条件での 運転を繰り返すような生産設備に適している。そこで上記同一条件で運転されること を前提とした場合の適性膨張になるノズル出口径を図 9のグラフに示す。  [0094] However, the nozzle of the present embodiment is generally used in cold spray! /, Compared to a conical nozzle, the pressure ratio is lower than the design value, and many cold particles were supplied. In this case, there is a disadvantage that the straight pipe occupying most of the nozzles becomes subsonic. For this reason, it is unsuitable for operation outside the design value, and is suitable for production equipment that repeats operation under the same conditions. Therefore, the graph of Fig. 9 shows the nozzle outlet diameter that achieves appropriate expansion when it is assumed that the engine is operated under the same conditions.
[0095] 同グラフにおいて、ノズルスロート径が φ 25mmであれ、 φ 35mmであれ、溶融金 属流量が増加するのにつれてノズル出口径が大きくなる理由は、溶融金属が持ち込 む熱をガスが受け取り、膨張できる状態になるからである。  [0095] In the graph, whether the nozzle throat diameter is 25 mm or 35 mm, the nozzle outlet diameter increases as the molten metal flow rate increases. The gas receives the heat brought in by the molten metal. This is because it can be expanded.
[0096] 興味深!/、点は、溶融金属質量流量が少な!、条件でノズルの設計を行っておけば、 設計を超えた流量をノズルに供給しても不足膨張となって加速効率は低下するもの の、粒子に受け渡す運動量による制限までは運転可能になることである。また、その 逆に、設計値よりも少ない溶融金属質量流量では超音速まで加速できないことがわ かる。  [0096] Interesting! /, The point is that the molten metal mass flow rate is small! If the nozzle design is performed under the conditions, even if a flow rate exceeding the design is supplied to the nozzle, the expansion efficiency becomes insufficient and the acceleration efficiency is reduced. Although it decreases, it is possible to drive to the limit due to the momentum delivered to the particles. On the other hand, it can be seen that acceleration to supersonic speed is not possible with a molten metal mass flow rate smaller than the design value.
[0097] 次に、表 2に加熱なしの場合にぉ 、て、実機ノズルでの設計計算の結果、得られた ノズルスロート径とガス質量流量との関係を示す。  [0097] Next, Table 2 shows the relationship between the nozzle throat diameter and the gas mass flow rate obtained as a result of the design calculation with the actual nozzles, without heating.
[0098] [表 2] [0098] [Table 2]
今回のノズル設計計算の結果とガス質量流量 Results of this nozzle design calculation and gas mass flow rate
Figure imgf000021_0001
Figure imgf000021_0001
[0099] 3-3-2) アトマイズ後粒子径 φ 20 mの場合  [0099] 3-3-2) In case of atomized particle size φ 20 m
図 10〜12に、それぞれアトマイズ後粒子径 φ m,ノズルスロート径 φ 25mmと した場合のノズル内マッハ数分布、ガス温度 Z速度分布、粒子温度 Z速度分布を示 す。なお、以下に説明する各グラフにおいて、横軸の Distanceはノズル長さを示し、ま た、縦軸の Mach numberはマッハ数を、 Gas tempはガス温度を、 Gas Velcはガス流速 を、 Solid tempは粒子温度を、 Solid Velcは粒子速度をそれぞれ示している。  Figures 10 to 12 show the Mach number distribution in the nozzle, the gas temperature Z velocity distribution, and the particle temperature Z velocity distribution when the particle diameter after atomization is φ m and the nozzle throat diameter is 25 mm, respectively. In each graph described below, Distance on the horizontal axis indicates the nozzle length, Mach number on the vertical axis indicates the Mach number, Gas temp indicates the gas temperature, Gas Velc indicates the gas flow rate, and Solid temp. Indicates the particle temperature and Solid Velc indicates the particle velocity.
[0100] また、図 13〜15に、それぞれアトマイズ後粒子径 φ 20 m,ノズルスロート径 φ 35 mmとした場合のノズル内マッハ数分布、ガス温度 Z速度分布、粒子温度 Z速度分 布を示す。  [0100] Figures 13 to 15 show the Mach number distribution in the nozzle, the gas temperature Z velocity distribution, and the particle temperature Z velocity distribution when the particle diameter after atomization is 20 m and the nozzle throat diameter is 35 mm, respectively. .
[0101] 溶融金属力 熱をもらう加熱レイリー流れであるため、マッハ数は減少し、ガス温度 は上昇し、ガス速度は減少する。  [0101] Molten metal force Because it is a heated Rayleigh flow that receives heat, the Mach number decreases, the gas temperature increases, and the gas velocity decreases.
[0102] 本実施形態では加熱後、適性膨張になるようにノズル出口径を決めているため、ガ ス静圧はほぼ大気圧に等しぐガス速度はいずれも 5 lOmZs程度になっている。  [0102] In this embodiment, the nozzle outlet diameter is determined so as to achieve proper expansion after heating, so that the gas velocity at which the gas static pressure is almost equal to atmospheric pressure is about 5 lOmZs.
[0103] 興味深い点は、このような各条件について個別に加熱後適性膨張になるようにノズ ル出口径を決めると、もはや粒子側の状態は、粒子速度'粒子温度ともにほぼ同一 の結果になることである。 [0103] The interesting point is that if the nozzle outlet diameter is determined so that the appropriate expansion is achieved after heating for each of these conditions, the particle-side state is almost the same as the particle velocity (particle temperature). That is.
[0104] これは、ノズル内のガス速度分布がほぼ等しぐガス温度差は溶融金属との温度差 と比べて小さいからである。 [0104] This is because the gas temperature difference in which the gas velocity distribution in the nozzle is almost equal is smaller than the temperature difference from the molten metal.
[0105] また、スロート径 φ 25mmと φ 35mmの差異は、図 11および図 14に示されるように ガス温度に現れている力 ガス速度にはほとんど現れない。したがってガス温度の影 響を受ける粒子は粒子温度に差異が現れるが、粒子速度には現れな!/、。 [0105] The difference between the throat diameter of φ25mm and φ35mm is as shown in Fig. 11 and Fig. 14. Force appearing at gas temperature Almost no effect on gas velocity. Therefore, particles affected by gas temperature will show a difference in particle temperature but not in particle velocity! /.
[0106] また、粒子径 φ 20 μ mの場合、ノズル長さ 160mm程度で凝固は完了する力 粒 子速度は 400mZs程度しかない。この場合、ノズル長さを 500mmまで延長すれば 粒子速度を 480mZsまで加速することができる力 このときの粒子温度は 400Kまで 冷却されてしまうことになる。  [0106] When the particle diameter is 20 µm, the force particle speed is only about 400 mZs when solidification is completed with a nozzle length of about 160 mm. In this case, if the nozzle length is extended to 500 mm, the force that can accelerate the particle velocity to 480 mZs, the particle temperature at this time will be cooled to 400K.
[0107] このように粒子径が φ 20 μ mの場合は、粒子は加速と比較して冷却されすぎる傾 向があるため、ノズルの長さは慎重に決定する必要がある。  [0107] As described above, when the particle diameter is φ 20 μm, the particle tends to be cooled too much compared to the acceleration, so the length of the nozzle needs to be determined carefully.
[0108] 3-3-3) アトマイズ後粒子径 φ 50 mの場合  [0108] 3-3-3) When the particle size after atomization is φ 50 m
図 16〜18に、それぞれアトマイズ後粒子径 φ m,ノズルスロート径 φ 25mmと した場合のノズル内マッハ数分布、ガス温度 Z速度分布、粒子温度 Z速度分布を示 す。  Figures 16 to 18 show the Mach number distribution in the nozzle, the gas temperature Z velocity distribution, and the particle temperature Z velocity distribution when the particle diameter after atomization is φ m and the nozzle throat diameter is 25 mm, respectively.
[0109] また、図 19〜21に、それぞれアトマイズ後粒子径 φ 50 m,ノズルスロート径 φ 35 mmとした場合のノズル内マッハ数分布、ガス温度 Z速度分布、粒子温度 Z速度分 布を示す。  FIGS. 19 to 21 show the Mach number distribution in the nozzle, the gas temperature Z velocity distribution, and the particle temperature Z velocity distribution when the particle diameter after atomization is φ50 m and the nozzle throat diameter is φ35 mm, respectively. .
[0110] マッハ数、ガス温度、粒子速度の傾向は、粒子径 φ 20 μ mの場合と大きく変わらな いが、決定的に異なる点は図 18および図 21に見られる粒子温度の冷却速度である  [0110] The trend of Mach number, gas temperature, and particle velocity is not much different from the case of particle diameter φ 20 μm, but the difference is the particle temperature cooling rate seen in Fig. 18 and Fig. 21. is there
[0111] 粒子径 φ 50 mでは凝固が完了するまでにノズル内で約 1. 2mの飛行距離を要 している。それに応じてノズル長さも 1. 2m延設すれば、都合よく粒子加速の漸近線 にかなり近づくことになる。 [0111] When the particle diameter is 50 m, it takes about 1.2 m in the nozzle to complete solidification. Correspondingly, if the nozzle length is extended by 1.2 m, it will conveniently approach the asymptotic line of particle acceleration.
[0112] この条件において粒子温度 750K、粒子速度 470mZsで粒子はノズル力 放出さ れるため、基材に対する衝突付着条件としては最も好ま ヽ。 [0112] Under these conditions, the particle temperature is 750K, the particle speed is 470mZs, and the particles are released by the nozzle force.
[0113] 3-3-4) アトマイズ後粒子径 φ 100 mの場合 [0113] 3-3-4) After atomization particle diameter φ 100 m
図 22〜24にアトマイズ後粒子径 φ 100 μ mの場合のノズル内マッハ数分布、ガス 温度 Z速度分布、粒子温度 Z速度分布を示す。  Figures 22 to 24 show the Mach number distribution in the nozzle, the gas temperature Z velocity distribution, and the particle temperature Z velocity distribution when the particle size after atomization is φ100 μm.
[0114] この計算結果から、粒子径 φ 100 mの場合はさらに冷却速度が低下して凝固に 至るまでにノズル長さが 5m必要になる。粒子の加速はすでにノズル長さ 3mの時点 で終了しており、約 450mZsの速度に達しているため、冷却の方が遅れることになる 。アトマイズが不良で十分な微粒ィ匕ができな 、場合にこのような状況が起こる。 [0114] From this calculation result, in the case of a particle diameter of φ100 m, the nozzle length is required to be 5 m until the cooling rate further decreases and solidification occurs. Particle acceleration is already at 3m nozzle length Since it has been completed and has reached the speed of about 450mZs, the cooling will be delayed. This happens when the atomization is bad and there aren't enough fine particles.
[0115] 図 25は本発明に係る溶射装置をバッチ処理に適用する場合の構成を示したもの である。 [0115] Fig. 25 shows a configuration when the thermal spraying apparatus according to the present invention is applied to batch processing.
[0116] なお、同図において図 1と同じ構成要素については同一符号を付してその説明を 省略する。  In the figure, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
[0117] また、キャリアガスとして、粒子を加速する際に音速が速くなる点で好ましい分子量 の小さ 、ヘリウムガスを窒素ガスに代えて使用して 、る。  [0117] Further, as the carrier gas, helium gas is preferably used instead of nitrogen gas because it has a low molecular weight because the speed of sound increases when particles are accelerated.
[0118] ヘリウムガスボンベ 10から供給されるキャリアガスは 2つの管路 11, 12に分岐され、 管路 11を流れるキャリアガスは貯留部 4内に貯留されている溶融金属に対してヘッド 圧を加え、管路 12を流れるキャリアガスはノズル 2内に導入され、スロート部 2aを通過 することにより超音速に加速されるようになっている。なお、上記ヘリウムボンべ 10お よび管路 11, 12はキャリアガスを加圧導入するキャリアガス供給装置として機能する  [0118] The carrier gas supplied from the helium gas cylinder 10 is branched into two pipelines 11 and 12, and the carrier gas flowing through the pipeline 11 applies a head pressure to the molten metal stored in the reservoir 4. The carrier gas flowing through the conduit 12 is introduced into the nozzle 2 and is accelerated to supersonic speed by passing through the throat portion 2a. The helium cylinder 10 and the pipelines 11 and 12 function as a carrier gas supply device that introduces carrier gas under pressure.
[0119] 貯留部 4から流下する溶融金属は、ノズル 2内の超音速ガス流によってアトマイズさ れ、さらにノズル 2内で冷却されノズル 2先端から吐出される。 [0119] The molten metal flowing down from the reservoir 4 is atomized by the supersonic gas flow in the nozzle 2, and is further cooled in the nozzle 2 and discharged from the tip of the nozzle 2.
[0120] 吐出された粒子は基材 3表面に衝突し付着する。ノズル 2および基材 3は密閉容器 としてのチャンバ 13内に収納されており、このチャンバ 13は排気装置としてのサイク ロン装置 14および排気真空ポンプ (減圧手段) 15を介して貯気槽 16に接続されて いる。なお、上記サイクロン装置 14は排気中に浮遊する粒子を回収しガスのみを排 気真空ポンプ 15に供給する。 [0120] The discharged particles collide with and adhere to the surface of the substrate 3. The nozzle 2 and the base material 3 are accommodated in a chamber 13 as an airtight container, and this chamber 13 is connected to an air storage tank 16 via a cyclone device 14 as an exhaust device and an exhaust vacuum pump (decompression means) 15. It has been done. The cyclone device 14 collects particles floating in the exhaust and supplies only the gas to the exhaust vacuum pump 15.
[0121] 上記排気装置は、キャリアガスのマッハ数を高めて粒子速度を上げるために設けら れており、貯気槽 16に回収されたヘリウムガスは圧縮機 17によって圧縮され、再利 用されるようになっている。 [0121] The exhaust device is provided to increase the Mach number of the carrier gas and increase the particle velocity, and the helium gas collected in the storage tank 16 is compressed by the compressor 17 and reused. It has become so.
[0122] 図 26は本発明に係る溶射装置を連続成形処理に適用する場合の基本構成を示し たものである。 [0122] Fig. 26 shows a basic configuration when the thermal spraying apparatus according to the present invention is applied to a continuous molding process.
[0123] 同図に示す連続成形処理では、貯留部 4に連続溶解炉 20が接続されており、貯留 部 4と連続溶解炉 20とは接続管 21を介して連通している。また、連続溶解炉 20はへ ッド圧によって貯留部 4の内圧が 0. 8MPaとなるようにその高さが設定されている。上 記所定高さに配置された連続溶解炉 20は溶融金属を連続的に加圧供給する溶融 金属供給装置として機能するようになって!/、る。 [0123] In the continuous molding process shown in the figure, a continuous melting furnace 20 is connected to the storage section 4, and the storage section 4 and the continuous melting furnace 20 are communicated with each other via a connecting pipe 21. The continuous melting furnace 20 The height of the reservoir 4 is set so that the internal pressure of the reservoir 4 becomes 0.8 MPa due to the pad pressure. The continuous melting furnace 20 arranged at the predetermined height functions as a molten metal supply device that continuously supplies pressurized molten metal with pressure.
[0124] このようにして貯留部 4からノズル 2に対して溶融金属を連続的に供給することがで きるようになつている。 In this way, the molten metal can be continuously supplied from the reservoir 4 to the nozzle 2.
[0125] また、基材 22は矢印 A方向にも回転しながら、引き取りローラ (基材供給装置) 23a , 23bの回転によって矢印 B方向に引き抜かれるようになつている。それにより、基材 22上に連続的に粒子を溶射し成形することができる。  [0125] Further, the base material 22 rotates in the direction of arrow A, and is pulled out in the direction of arrow B by the rotation of take-up rollers (base material supply devices) 23a and 23b. Thereby, the particles can be continuously sprayed and formed on the base material 22.
[0126] また、図 27〜図 31は本発明のノズル 2の他の実施形態を示したものであり、ノズル 自体をセラミックまたはカーボンなどの非金属で製作することにより表面の親和性を 悪くし、ノズル内壁に付着した金属粒子を超音速ガス流れによって容易に吹き飛ば すことができるようにしたものである。なお、これらの図において図 1と同じ構成要素に ついては同一符号を付してその説明を省略する。  FIGS. 27 to 31 show another embodiment of the nozzle 2 of the present invention. The nozzle itself is made of a non-metal such as ceramic or carbon, thereby reducing the surface affinity. The metal particles adhering to the inner wall of the nozzle can be easily blown off by the supersonic gas flow. In these drawings, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
[0127] 図 27に示すノズル 40は、アルミニウム合金を溶射するためにジルコユアを用いてノ ズル 41を製作し、その外側をセラミック製の筒体 42でカバーし、その筒体 42の周囲 に最大 900°Cまで昇温可能なノズルヒータ 43を複数回巻き付けたものである。なお、 上記ノズル 41としては、例えばイットリア (Y O )を安定化剤として添加した高強度、  [0127] In the nozzle 40 shown in Fig. 27, a nozzle 41 is manufactured by using zirconia to spray an aluminum alloy, and the outside is covered with a ceramic cylinder 42. Nozzle heater 43 that can be heated up to 900 ° C is wound several times. As the nozzle 41, for example, high strength added with yttria (Y O) as a stabilizer,
2 3  twenty three
高耐摩耗性、高耐腐食性を備えた部分安定ィ匕ジルコユアと呼ばれる材料を使用する ことが好ましい。  It is preferable to use a material called partially stable zirconia with high wear resistance and high corrosion resistance.
[0128] 図 28に示すノズル 44は、ノズル自体をセラミックファイバーヒータ 45で構成したもの であり、詳しくは、アルミナとシリカを主成分とする素材を繊維化した高温絶縁性のセ ラミックファイバーに発熱体を埋設して一体成形することにより構成されている。なお、 図中 46aおよび 46bはヒータの電極接続部を示して!/、る。  [0128] The nozzle 44 shown in Fig. 28 is composed of a ceramic fiber heater 45, and more specifically, heat is generated in a high-temperature insulating ceramic fiber that is made of a material mainly composed of alumina and silica. It is configured by embedding the body and integrally molding it. In the figure, 46a and 46b indicate heater electrode connections!
[0129] 図 29に示すノズル 47は、セラミック製ノズル 48の胴部外壁にカーボンヒータ 49を 周設し放射によって加熱するように構成したものである。  [0129] The nozzle 47 shown in Fig. 29 is configured such that a carbon heater 49 is provided around the outer wall of the body of the ceramic nozzle 48 and heated by radiation.
[0130] 上記カーボンヒータ 49は、円筒状のノズル 48の上下両側から交互に一定の長さ形 成されたスリット 5 Id, 5 leによって複数部分に分割されたものからなり、 49aおよび 4 9bはそのカーボンヒータ 49の電極接続部である。また、 50は内壁が鏡面に仕上げら れた筒状の反射ケースであり、放射効率を高めるために設けられて 、る。 [0130] The carbon heater 49 is divided into a plurality of portions by slits 5 Id, 5 le alternately formed with a fixed length from the upper and lower sides of the cylindrical nozzle 48, and 49a and 49b are This is an electrode connection portion of the carbon heater 49. 50 has a mirror-finished inner wall. This is a cylindrical reflection case provided to increase radiation efficiency.
[0131] 上記構成を有するノズル 47において、図示しない電源から電極接続部 49a, 49b を通じてカーボンヒータ 49に電力が供給されると、カーボンヒータ 49は、通電による ジュール発熱によって内部力も発熱し、それにより、セラミックス製ノズル 48はカーボ ンヒータ 49からの輻射伝熱によって加熱され、ノズル 37内壁に付着した金属が溶融 される。  [0131] In the nozzle 47 having the above-described configuration, when electric power is supplied to the carbon heater 49 from a power source (not shown) through the electrode connection portions 49a and 49b, the carbon heater 49 also generates internal force due to Joule heat generation due to energization, thereby The ceramic nozzle 48 is heated by the radiant heat transfer from the carbon heater 49, and the metal adhering to the inner wall of the nozzle 37 is melted.
[0132] 図 30に示すノズル 51は、ノズル自体をカーボンヒータ 52で製作したものであり、 52 aおよび 52bはその電極接続部を示して ヽる。セラミックス製ノズルをカーボンまたは カーボンコンポジット製のノズルに代えると、ノズル表面の輻射率がさらに高まり、ノズ ル 51の加熱効率をさらに高めることができる。  [0132] The nozzle 51 shown in FIG. 30 is manufactured by using the carbon heater 52, and 52a and 52b indicate the electrode connection portions. If the ceramic nozzle is replaced with a carbon or carbon composite nozzle, the emissivity of the nozzle surface is further increased and the heating efficiency of the nozzle 51 can be further increased.
[0133] なお、図 29および図 30では、酸素が存在するとカーボン自体が酸化反応するためIn FIGS. 29 and 30, carbon itself undergoes an oxidation reaction in the presence of oxygen.
、これを防止するため装置全体をチャンバ一で覆い、アルゴンや窒素等のガスを高 圧ガスとして用い、チャンバ一内を不活性雰囲気に置換するようにして 、る。 In order to prevent this, the entire apparatus is covered with a chamber, and a gas such as argon or nitrogen is used as a high-pressure gas to replace the inside of the chamber with an inert atmosphere.
[0134] また、ノズルを熱伝導率の良!ヽ例えば銅等の金属製材料で製作し、製作されたノズ ル内壁にセラミック溶射を施すことによってセラミック被膜を形成することによつても、 上記した各ノズルと同様に、親和性を悪くすることもできる。 [0134] Alternatively, the nozzle may be made of a metal material such as copper having a good thermal conductivity, and the ceramic coating may be formed by applying ceramic spray to the inner wall of the nozzle. As with each nozzle, the affinity can be degraded.
[0135] 図 31〖こ示すノズル 53では、銅ノズル 54の内面にジルコ-ァ被膜(図中、太い破線 で示した部分) 55を形成し、その外周面にノズルヒータ 43を複数回巻き付けたもので ある。 [0135] In the nozzle 53 shown in Fig. 31, a copper nozzle 54 is formed on the inner surface with a zirconia coating 55 (the portion indicated by the thick broken line in the figure), and the nozzle heater 43 is wound around the outer peripheral surface several times. It is.
産業上の利用可能性  Industrial applicability
[0136] 本発明の溶射ノズル装置及び溶射装置は、基材上に溶射材を一定に供給するとと もに、基材上に形成される皮膜または堆積状態をコントロールすることが要求される 分野において好適である。 [0136] The thermal spray nozzle device and the thermal spray apparatus of the present invention are used in a field where it is required to supply a constant amount of the thermal spray material on the base material and control the coating film or the deposition state formed on the base material. Is preferred.

Claims

請求の範囲  The scope of the claims
[1] ノズルの入口側カゝらキャリアガスを導入して超高速のガス流を形成し、そのガス流に よって溶射材をアトマイズし放出する溶射ノズル装置において、  [1] In a thermal spray nozzle device that introduces a carrier gas from the inlet side of the nozzle to form an ultra-high-speed gas flow, atomizes the thermal spray material by the gas flow, and releases it.
上記ノズルの入口側端部に上記溶射材である溶融金属を貯留する貯留部が連通 路を介して接続されるとともに、上記ノズルは、超音速ガス流を形成するためのスロー ト部と、その下流側に出口方向に向けて形成される拡径流路部とを有しており、この 拡径流路部で、超音速ガス流によってアトマイズされた金属粒子を凝固または半凝 固状態まで冷却し、上記ノズルの出口側から所定方向に放出するように構成されて A reservoir for storing molten metal, which is the thermal spray material, is connected to the inlet side end of the nozzle via a communication path, and the nozzle includes a throat portion for forming a supersonic gas flow, And a diameter-enlarged flow path portion formed toward the outlet on the downstream side, and in this diameter-enlarged flow path portion, the metal particles atomized by the supersonic gas flow are cooled to a solidified or semi-solidified state, It is configured to discharge in a predetermined direction from the outlet side of the nozzle
V、ることを特徴とする溶射ノズル装置。 V, a thermal spray nozzle device.
[2] 上記連通路内では、上記スロート内又はスロート部下流側の中心に向けて上記貯 留部から溶融金属導出管が延設されており、上記連通路内でこの溶融金属導出管 の外側部分が、加速された上記キャリアガスが流れる流路を構成して 、る請求項 1記 載の溶射ノズル装置。 [2] In the communication path, a molten metal lead-out pipe extends from the storage part toward the center of the throat or the downstream side of the throat, and the outside of the molten metal lead-out pipe is outside the communication path. The thermal spray nozzle device according to claim 1, wherein the portion constitutes a flow path through which the accelerated carrier gas flows.
[3] 上記スロート部下流側における上記拡径流路部の開き角が半頂角で 15° 以下で ある請求項 1または 2記載の溶射ノズル装置。  [3] The thermal spray nozzle device according to claim 1 or 2, wherein an opening angle of the diameter-enlarged flow path portion on the downstream side of the throat portion is a half apex angle of 15 ° or less.
[4] 上記拡径流路部の長さは、アトマイズされた金属粒子が凝固または半凝固状態と なるまでの飛行距離であって、アトマイズされた金属粒子の飛行距離と金属粒子温 度とをモデルィ匕することにより求められる飛行距離に基づいて定められる請求項 3記 載の溶射ノズル装置。 [4] The length of the diameter-enlarged flow path portion is a flight distance until the atomized metal particles are solidified or semi-solidified, and the flight distance of the atomized metal particles and the metal particle temperature are modeled. The thermal spray nozzle device according to claim 3, wherein the thermal spray nozzle device is determined based on a flight distance obtained by rubbing.
[5] 上記アトマイズされた金属粒子が凝固または半凝固状態となるまでの飛行距離は、 アトマイズされた金属粒子が凝固または半凝固状態に変化するまでの飛行時間を求 めるとともに、下記式にその飛行時間を代入することによって求められ、上記拡径流 路部の長さは、その飛行距離以上の長さに設定されて ヽる請求項 4記載の溶射ノズ ル装置。  [5] The flight distance until the atomized metal particles are solidified or semi-solidified is obtained by calculating the flight time until the atomized metal particles are solidified or semi-solidified, as 5. The thermal spray nozzle device according to claim 4, which is obtained by substituting the time of flight, and the length of the diameter-enlarged flow path portion is set to be equal to or longer than the flight distance.
, „ , , „,
= « / = «/
Figure imgf000026_0001
ただし、 1は粒子の飛行距離、 tは粒子が凝固または半凝固に達するまでの飛行時 間、 uはガスの流速、 はガスの密度、 は粒子の密度、 dは粒子直径、 aはガス g g s s g の音速である。
Figure imgf000026_0001
Where 1 is the flight distance of the particle, t is the flight time until the particle reaches solidification or semi-solidification Where u is the gas flow velocity, is the gas density, is the particle density, d is the particle diameter, and a is the sound velocity of the gas ggssg.
上記キャリアガスの入口圧力を Pとし、ノズル出口圧力を Pとするとき、入口圧力 p o B o が下記式を満足する状態で上記キャリアガスは上記ノズルに導入される請求項 1また は 2記載の溶射ノズル装置。
Figure imgf000027_0001
ここで、 κ:圧縮ガスの比熱比、 M :スロート部下流側のノズル拡大部におけるマツ ハ数である。
3. The carrier gas according to claim 1, wherein the carrier gas is introduced into the nozzle in a state where the inlet pressure po B o satisfies the following expression, where P is the inlet pressure of the carrier gas and P is the nozzle outlet pressure. Thermal spray nozzle device.
Figure imgf000027_0001
Where κ is the specific heat ratio of the compressed gas, and M is the Matsuh number at the nozzle enlarged portion downstream of the throat portion.
[7] 上記請求項 1〜6のいずれか 1項に記載の溶射ノズル装置と、  [7] The thermal spray nozzle device according to any one of claims 1 to 6,
上記ノズルに対し管路を介して接続されキャリアガスを加圧導入するキャリアガス供 給装置と、  A carrier gas supply device that is connected to the nozzle via a pipeline and introduces carrier gas under pressure;
上記ノズルおよび放出される粒子を衝突させる基材を収納する密閉容器と、 この密閉容器内を減圧する減圧手段とを備えてなることを特徴とする溶射装置。  A thermal spraying apparatus, comprising: a sealed container that houses the nozzle and a base material that collides the emitted particles; and a decompression unit that decompresses the inside of the sealed container.
[8] 上記請求項 1〜6のいずれか 1項に記載の溶射ノズル装置と、 [8] The thermal spray nozzle device according to any one of claims 1 to 6,
上記貯留部に接続管を介して接続されその貯留部内の溶融金属に対して溶融金 属を連続的に加圧供給する溶融金属供給装置と、  A molten metal supply device that is connected to the reservoir through a connecting pipe and continuously pressurizes molten metal to the molten metal in the reservoir;
上記基材を連続的に供給する基材供給装置とを備えてなることを特徴とする溶射 装置。  A thermal spraying apparatus, comprising: a base material supply device that continuously supplies the base material.
PCT/JP2006/300065 2005-01-07 2006-01-06 Thermal spraying nozzle device and thermal spraying equipment WO2006073171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06702045A EP1834699A4 (en) 2005-01-07 2006-01-06 Thermal spraying nozzle device and thermal spraying equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-002535 2005-01-07
JP2005002535 2005-01-07

Publications (1)

Publication Number Publication Date
WO2006073171A1 true WO2006073171A1 (en) 2006-07-13

Family

ID=36647647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300065 WO2006073171A1 (en) 2005-01-07 2006-01-06 Thermal spraying nozzle device and thermal spraying equipment

Country Status (4)

Country Link
US (1) US20070295833A1 (en)
EP (1) EP1834699A4 (en)
CN (1) CN101098759A (en)
WO (1) WO2006073171A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925360A1 (en) * 2006-11-23 2008-05-28 Lachenmeier, Walter Procédé et réacteur de production de particules fines
CN100404142C (en) * 2006-07-24 2008-07-23 南开大学 Thermal decomposing nozzle for ultrasonic spraying
TWI693107B (en) * 2019-04-10 2020-05-11 大陸商業成科技(成都)有限公司 Spraying device capable of improving uniformity of surface spray coating

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006023483A1 (en) * 2006-05-18 2007-11-22 Linde Ag Apparatus for cold gas spraying
US8744251B2 (en) 2010-11-17 2014-06-03 3M Innovative Properties Company Apparatus and methods for delivering a heated fluid
US8544408B2 (en) * 2011-03-23 2013-10-01 Kevin Wayne Ewers System for applying metal particulate with hot pressurized air using a venturi chamber and a helical channel
JP6472139B2 (en) * 2015-06-15 2019-02-20 富士フイルム株式会社 Orifice, liquid feeding device using the same, coating device, and optical film manufacturing method
JP2017043791A (en) * 2015-08-24 2017-03-02 トヨタ自動車株式会社 Spray coating film formation apparatus
SE541122C2 (en) 2017-08-25 2019-04-16 Saab Ab Method of combusting aluminium and system therefor
JP6879878B2 (en) * 2017-09-28 2021-06-02 三菱重工業株式会社 Thermal spray nozzle and plasma spraying device
CN108745677B (en) * 2018-07-25 2023-06-20 上海莘临科技发展有限公司 Supersonic oxyacetylene explosion combustion nozzle and sand melting method
CN109647240B (en) * 2018-12-28 2020-08-28 西安交通大学 Organization method for mixing spray type jet flow and main flow gas
DE102019109195A1 (en) * 2019-04-08 2020-10-08 Norma Germany Gmbh Jet pump
CN110848065B (en) * 2019-11-13 2021-07-02 北京工业大学 Method for automatically recognizing diesel oil spray crushing process and automatically realizing spray continuous calculation
CN112049993A (en) * 2020-07-24 2020-12-08 中国航天空气动力技术研究院 High-pressure airflow measuring and controlling device capable of being replaced quickly and replacing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748609A (en) * 1993-04-13 1995-02-21 Univ Iowa Res Found Forming method for particle by gas spray synthesis of heat-resistant compound or intermetallic compound and supersaturated solid solution
JP2002508441A (en) 1997-12-17 2002-03-19 シュルツ、ギュンター Method and apparatus for producing fine powder by melt atomization using gas
JP2004076157A (en) 2002-08-13 2004-03-11 Howmet Research Corp THERMAL SPRAYING METHOD FOR MCrAlX COATING

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2639490A (en) * 1948-08-12 1953-05-26 Joseph B Brennan Formation of metal strip under controlled pressures
US2978189A (en) * 1958-05-14 1961-04-04 A R B E D Acieries Reunies De Nozzle
US4111150A (en) * 1977-03-28 1978-09-05 Ppg Industries, Inc. Apparatus for coating an advancing substrate
US4619845A (en) * 1985-02-22 1986-10-28 The United States Of America As Represented By The Secretary Of The Navy Method for generating fine sprays of molten metal for spray coating and powder making
US4919853A (en) * 1988-01-21 1990-04-24 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for spraying liquid materials
GB9004214D0 (en) * 1990-02-24 1990-04-18 Rolls Royce Plc An apparatus and method for atomising a liquid
WO1992005902A1 (en) * 1990-10-09 1992-04-16 Iowa State University Research Foundation, Inc. Environmentally stable reactive alloy powders and method of making same
WO1992006797A1 (en) * 1990-10-18 1992-04-30 United States Department Of Energy A low temperature process of applying high strength metal coatings to a substrate and article produced thereby
US5529809A (en) * 1994-02-07 1996-06-25 Mse, Inc. Method and apparatus for spraying molten materials
US6296043B1 (en) * 1996-12-10 2001-10-02 Howmet Research Corporation Spraycast method and article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748609A (en) * 1993-04-13 1995-02-21 Univ Iowa Res Found Forming method for particle by gas spray synthesis of heat-resistant compound or intermetallic compound and supersaturated solid solution
JP2002508441A (en) 1997-12-17 2002-03-19 シュルツ、ギュンター Method and apparatus for producing fine powder by melt atomization using gas
JP2004076157A (en) 2002-08-13 2004-03-11 Howmet Research Corp THERMAL SPRAYING METHOD FOR MCrAlX COATING

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1834699A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100404142C (en) * 2006-07-24 2008-07-23 南开大学 Thermal decomposing nozzle for ultrasonic spraying
EP1925360A1 (en) * 2006-11-23 2008-05-28 Lachenmeier, Walter Procédé et réacteur de production de particules fines
TWI693107B (en) * 2019-04-10 2020-05-11 大陸商業成科技(成都)有限公司 Spraying device capable of improving uniformity of surface spray coating

Also Published As

Publication number Publication date
EP1834699A1 (en) 2007-09-19
CN101098759A (en) 2008-01-02
US20070295833A1 (en) 2007-12-27
EP1834699A4 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
WO2006073171A1 (en) Thermal spraying nozzle device and thermal spraying equipment
JP2006212624A (en) Thermal spraying nozzle device and thermal spraying equipment
US6139913A (en) Kinetic spray coating method and apparatus
US6811812B2 (en) Low pressure powder injection method and system for a kinetic spray process
KR101298162B1 (en) Cold-gas spray gun
Li et al. Optimal design of a cold spray nozzle by numerical analysis of particle velocity and experimental validation with 316L stainless steel powder
Stoltenhoff et al. An analysis of the cold spray process and its coatings
JP3225293B2 (en) Thermal spraying method using the temperature of powder particles in the conveying process below the melting point
Li et al. Optimal design of a convergent-barrel cold spray nozzle by numerical method
JP3784404B1 (en) Thermal spray nozzle device and thermal spray device using the same
US20100143700A1 (en) Cold spray impact deposition system and coating process
JP2004503385A (en) Rapid agglomeration processing system for producing molds, dies and related tools
US20050214474A1 (en) Kinetic spray nozzle system design
EP1775026B1 (en) Improved non-clogging powder injector for a kinetic spray nozzle system
US8651394B2 (en) Laval nozzle for thermal spraying and kinetic spraying
JPS6219273A (en) Flame coating device
JP2006247639A (en) Nozzle for cold spraying, cold spray device and cold spray method using it
JP2005095886A (en) Cold spray nozzle, cold spray film, and production method therefor
US20050161532A1 (en) Modified high efficiency kinetic spray nozzle
EP2110178A1 (en) Cold gas-dynamic spray nozzle
KR101361729B1 (en) Methods and apparatuses for material deposition
JP2007505218A (en) Atomization technology to produce fine particles
US7244466B2 (en) Kinetic spray nozzle design for small spot coatings and narrow width structures
WO2007091102A1 (en) Kinetic spraying apparatus and method
JP2004502037A (en) Method and apparatus for atomizing molten metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006702045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11791333

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680001879.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006702045

Country of ref document: EP