WO2006073048A1 - Refrigerating cycle device and rotary hermetic compressor - Google Patents

Refrigerating cycle device and rotary hermetic compressor Download PDF

Info

Publication number
WO2006073048A1
WO2006073048A1 PCT/JP2005/023031 JP2005023031W WO2006073048A1 WO 2006073048 A1 WO2006073048 A1 WO 2006073048A1 JP 2005023031 W JP2005023031 W JP 2005023031W WO 2006073048 A1 WO2006073048 A1 WO 2006073048A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction pipe
accumulator
pipe
refrigerant
compression mechanism
Prior art date
Application number
PCT/JP2005/023031
Other languages
French (fr)
Japanese (ja)
Inventor
Shoichiro Kitaichi
Toshimasa Aoki
Takeshi Tominaga
Koji Satodate
Original Assignee
Toshiba Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corporation filed Critical Toshiba Carrier Corporation
Priority to JP2006550669A priority Critical patent/JP4700624B2/en
Publication of WO2006073048A1 publication Critical patent/WO2006073048A1/en
Priority to US11/772,885 priority patent/US20080092586A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C14/26Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/10Welded housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor

Definitions

  • the present invention relates to a refrigeration cycle having a rotary hermetic compressor that can switch one compression mechanism portion of a plurality of sets to be operated or stopped depending on the magnitude of a load.
  • the present invention relates to a kul device and a rotary type hermetic compressor.
  • a general rotary hermetic compressor has a configuration in which a motor unit and a rotary compression mechanism connected to the motor unit are accommodated in a hermetic case and compressed by the compression mechanism. It is a high-pressure type in the case that discharges gas into the sealed case.
  • an eccentric roller is accommodated in a cylinder chamber formed in the cylinder, and the tip edge of the vane always elastically contacts the peripheral surface of the eccentric roller.
  • the cylinder chamber is divided into two chambers by vanes, and the suction part is connected to one chamber side, and the discharge part is connected to the other chamber side.
  • a suction pipe is connected to the suction part, and the discharge part is opened in the sealed case.
  • Patent Document 1 discloses a compressor having two cylinder chambers in which a vane in one of the cylinder chambers is forced from a roller as needed. There is disclosed a technique characterized in that it is provided with a high-pressure introducing means for holding the cylinder chamber apart and increasing the pressure of the cylinder chamber to interrupt the compression action.
  • Patent Document 2 discloses a compressor in which a bypass passage as a high-pressure introducing means is provided from the inside of a sealed container to a suction pipe, and one cylinder chamber has a compression action.
  • a technique is disclosed in which the vane is in contact with the roller by the action of an elastic member even during the idle cylinder operation, and the compression chamber is always partitioned by the vane.
  • a high-pressure introduction hole that communicates one cylinder chamber and the inside of the sealed case is provided in order to constitute a high-pressure introduction means.
  • the refrigeration cycle is provided with a two-stage throttle mechanism, is branched from an intermediate portion of the throttle mechanism, communicates with one of the vane chambers, and is provided with a bypass refrigerant pipe having an electromagnetic on-off valve in the middle.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a pressure switching means for one of the compression mechanism parts constituting the rotary type hermetic compressor, and to reduce the size of the load. Refrigeration that can be switched between compression operation and operation stop according to the flow rate, prevents reverse flow of refrigerant to the accumulator, and prevents thermal adverse effects when installing the pressure switching means to maintain reliability. It intends to provide a cycle device and a rotary hermetic compressor.
  • the present invention includes an electric motor section and a plurality of sets of rotary compression mechanism sections housed in a sealed case, and sucks refrigerant into each compression mechanism section from an accumulator through a suction pipe.
  • a refrigerating cycle circuit comprising a rotary hermetic compressor that compresses and discharges through a space inside the hermetic case, and a refrigeration cycle component that communicates with the rotary hermetic compressor through a refrigerant pipe;
  • Pressure switching means for guiding the low-pressure gas to the compression mechanism according to the magnitude of the load to perform normal compression operation or guiding the high-pressure gas to stop the compression operation.
  • the means includes a branch pipe having one end connected to the high-pressure side of the refrigeration cycle via an electromagnetic on-off valve and the other end connected to a suction pipe communicating the accumulator and one compression mechanism, and the accumulator of the suction pipe.
  • An auxiliary suction pipe connected to the end projecting inward, a check valve attached to either the auxiliary suction pipe or the suction pipe to prevent the reverse flow of the refrigerant into the accumulator, and the suction pipe or the auxiliary suction pipe And a guide pipe for attaching and holding to the accumulator.
  • the motor case and a plurality of sets of rotary compression mechanisms connected to the motor unit are accommodated in the sealed case, and suction pipes are respectively provided from the accumulators provided outside the sealed case.
  • suction pipes are respectively provided from the accumulators provided outside the sealed case.
  • auxiliary suction pipe Connected to the high-pressure side of the refrigeration cycle, the other end connected to a suction pipe communicating with the accumulator and one compression mechanism, and to the end of the suction pipe protruding into the accumulator
  • An auxiliary suction pipe, a check valve that is attached to either the auxiliary suction pipe or the suction pipe and prevents the refrigerant from flowing back into the accumulator, and the suction pipe Ku is provided with a pressure switching hands stage having a guide pipe for mounting holding the auxiliary suction pipe to the accumulator.
  • FIG. 1 is a longitudinal sectional view of a rotary hermetic compressor according to an embodiment of the present invention and a configuration diagram of a refrigeration cycle.
  • FIG. 2 is an exploded perspective view of a first cylinder and a second cylinder according to the same embodiment.
  • FIG. 3A is a front view of a section of a second suction pipe according to the embodiment.
  • FIG. 3B is a side view of the second suction pipe.
  • Fig. 4A is a partially cutaway view of the second suction pipe and the disassembled check valve and auxiliary suction pipe. It is a front view shown.
  • FIG. 4B is a partially cutaway front view showing the assembled state of the second suction pipe, check valve and auxiliary suction pipe according to the embodiment.
  • FIG. 4C is a front view of a part of the branch pipe according to the embodiment.
  • FIG. 5 is a front view of the sub-assembly according to the same embodiment.
  • FIG. 6A is an exploded view of the accumulator according to the embodiment.
  • FIG. 6B is an assembly view of the accumulator according to the embodiment.
  • FIG. 1 is a cross-sectional view of a rotary hermetic compressor C constituting a refrigeration cycle apparatus and a configuration diagram of a refrigeration cycle circuit R.
  • 1 is a hermetic case, and a compression mechanism 2 is provided in the lower part of the hermetic case 1 and an electric motor part 3 is provided in the upper part. .
  • the electric motor unit 3 and the compression mechanism unit 2 are connected via a rotating shaft 4.
  • a brushless DC synchronous motor (which may be an AC motor or a commercial motor) is used as the motor unit 3, and a stator 5 fixed to the inner surface of the hermetic case 1 and the stator 5
  • the rotor 6 is arranged with a predetermined gap on the inner side, and the rotating shaft 4 is interposed therebetween.
  • the electric motor unit 3 is electrically connected to an inverter that changes the operating frequency and a control unit that controls the inverter (not shown).
  • the compression mechanism section 2 includes a first cylinder 8A and a second cylinder 8B which are disposed below the rotary shaft 4 with an intermediate partition plate 7 interposed therebetween.
  • the first and second cylinders 8A and 8B are set to have different outer shape dimensions and the same inner diameter dimension.
  • the outer diameter of the first cylinder 8A is slightly larger than the inner diameter of the sealed case 1, and after being press-fitted into the inner peripheral surface of the sealed case 1, the sealed case 1 can be welded from the outside. Therefore, the positioning is fixed.
  • a main bearing 9 is superimposed on the upper surface of the first cylinder 8A, and is fixed to the cylinder 8A through a mounting bolt together with the valve cover a.
  • a secondary bearing 11 is superimposed on the lower surface of the second cylinder 8B and attached together with the valve cover b. It is fixed to the first cylinder 8A via bolts.
  • the outer diameter of the intermediate partition plate 7 and the auxiliary bearing 11 is somewhat larger than the inner diameter of the second cylinder 8B, and the inner diameter position of the cylinder 8B is also deviated from the center of the cylinder. Therefore, a part of the outer periphery of the second cylinder 8B protrudes in the radial direction from the outer diameters of the intermediate partition plate 7 and the auxiliary bearing 11.
  • the rotating shaft 4 is pivotally supported by the main bearing 9 and the sub bearing 11 at its midpoint and lower end. Further, the rotary shaft 4 penetrates through the cylinders 8A and 8B, and integrally includes two eccentric portions 4a and 4b formed with a phase difference of about 180 °.
  • Each eccentric part 4a, 4b has the same diameter as each other, and is assembled so as to be located in the inner diameter part of each cylinder 8A, 8B.
  • Eccentric rollers 13a and 13b having the same diameter are fitted on the peripheral surfaces of the eccentric parts 4a and 4b.
  • the first cylinder 8A and the second cylinder 8B are divided into upper and lower surfaces by an intermediate partition plate 7, a main bearing 9, and a sub-bearing 11, and the first cylinder chamber 14a and the second cylinder are inside.
  • Chamber 14b is formed.
  • the cylinder chambers 14a and 14b are formed to have the same diameter and height, and the eccentric rollers 13a and 13b are accommodated so as to be eccentrically rotatable.
  • each eccentric roller 13a, 13b is formed to be the same as the height of each cylinder chamber 14a, 14b. Accordingly, the eccentric rollers 13a and 13b are set to the same excluded volume by rotating eccentrically in the force cylinder chambers 14a and 14b having a phase difference of 180 ° from each other.
  • FIG. 2 is an exploded perspective view showing the first cylinder 8A and the second cylinder 8B.
  • Each cylinder 8A, 8B is provided with vane chambers 22a, 22b force S communicating with the cylinder chambers 14a, 14b.
  • a vane 15a, 15b force S is accommodated so as to protrude and retract with respect to the cylinder chamber 14a, 14b.
  • the vane chambers 22a and 22b are integrally connected to vane storage grooves 23a and 23b in which both side surfaces of the vanes 15a and 15b can be slidably moved, and the end portions of the vane storage grooves 23a and 23b. It consists of vertical holes 24a and 24b in which the rear ends of the vanes 15a and 15b are accommodated.
  • the first cylinder 8A is provided with a lateral hole 25 for communicating the outer peripheral surface with the vane chamber 22a, and the spring member 26 is accommodated therein.
  • the spring member 26 is interposed between the rear side end surface of the vane 15a and the inner peripheral surface of the sealing case 1, and applies an elastic force (back pressure) to the vane 15a, and this tip edge Is a compression spring that contacts the eccentric roller 13a.
  • the vane chamber 22b on the second cylinder 8B side does not contain any members other than the vane 15b. However, as will be described later, the setting environment for the vane chamber 22b and the pressure switch described later will be described. According to the action of the change mechanism (means) K, the tip edge of the vane 15b is brought into contact with and separated from the eccentric roller 13b.
  • the leading edges of the vanes 15a and 15b are formed in a semicircular shape in plan view, and can make line contact with the circumferential walls of the circular eccentric rollers 13a and 13b in plan view regardless of the rotation angle of the eccentric roller 13a. .
  • the exposed portion of the sealed case 1 is designed to correspond to the vane chamber 22b, so that the rear end portion of the vane chamber 22b and the vane 15b directly receives the pressure in the case. .
  • the second cylinder 8B and the vane chamber 22b are fixed structures themselves, there is no influence even if they are subjected to the pressure in the case, but the vane 15b is replaced with the vane chamber 22b. Since it is slidably housed and its rear end is located in the vertical hole 24b of the vane chamber 22b, it receives the pressure in the case directly.
  • the tip of the vane 15b faces the second cylinder chamber 14b, and the vane tip receives the pressure in the cylinder chamber 14b.
  • the vane 15b is constructed so that the direction of a higher pressure also moves in the direction of a lower pressure in accordance with the magnitude of the pressure applied to the front end portion and the rear end portion.
  • Each cylinder 8A, 8B is provided with a mounting hole or screw hole through which the mounting bolt is threaded or screwed, and only the first cylinder 8A has an arc-shaped gas passage hole 27. Is provided.
  • the vane 15b is eccentrically placed in the vane chamber 22b on the second cylinder 8B side with a force smaller than the differential pressure between the suction pressure guided to the cylinder chamber 14b and the internal pressure of the sealed case 1 guided to the vane chamber 22b.
  • a holding mechanism 10 is provided that urges the roller 13b away from the roller 13b.
  • the holding mechanism 10 may be a permanent magnet, an electromagnet, or an elastic body.
  • the holding mechanism 10 is configured to remove the vane 15b from the eccentric roller 13b with a force smaller than the differential pressure between the suction pressure applied to the second cylinder chamber 14b and the pressure inside the sealed case 1 applied to the vane chamber 22b. Energize and hold in the pulling direction.
  • the vane 15b is always magnetically attracted with a predetermined force.
  • an electromagnet may be provided instead of the permanent magnet, and magnetic attraction may be performed as necessary.
  • the holding mechanism 10 is a tension spring that is an elastic body. One end of the tension spring may be hooked on the rear end of the vane 15b so that the tension spring is always pulled with a predetermined elastic force.
  • a refrigerant pipe 18 serving as a compressed gas discharge section is connected to the upper end of the hermetic case 1 constituting the rotary type hermetic compressor C.
  • the refrigerant pipe 18 is connected to an outdoor heat exchanger 20 through an four-way switching valve 19, an electronic expansion valve 21 as an expansion mechanism, and an accumulator 17 through an indoor heat exchanger 22, and these are connected to the refrigeration cycle circuit R. Is configured.
  • a first suction pipe 16a and a second suction pipe 16b communicating with the rotary hermetic compressor C are connected.
  • the first suction pipe 16a penetrates the sealed case 1 and the side of the first cylinder 8A, and communicates directly with the first cylinder chamber 14a.
  • the second suction pipe 16b passes through the side of the second cylinder 8B via the hermetic case 1, and communicates directly with the second cylinder chamber 14b.
  • a pressure switching mechanism (means) K for switching the operation of the rotary type hermetic compressor C is provided.
  • the pressure switching mechanism K will be described in detail below.
  • This pressure switching mechanism K includes a branch pipe 30, and an electromagnetic on-off valve 31 is provided in the middle.
  • the branch pipe 30 has one end connected to the middle part of the refrigerant pipe 18 communicating with the compressor C and the four-way switching valve 19, and the other end connected to the first branch pipe 3OA connected to the electromagnetic on-off valve 31.
  • One end is connected to the electromagnetic on-off valve 31 and the other end is connected to the second branch pipe 30B connected to the middle portion of the second suction pipe 16b communicating with the second cylinder chamber 14b and the accumulator 17. Power.
  • the middle part of the second branch pipe 30B is connected to the accumulator 1 through the support 32. 7 is mounted and supported.
  • the electromagnetic on-off valve 31 is controlled to open and close in response to an electrical signal from the control unit. That is, the refrigerant is conducted from the refrigerant pipe 18 to the second suction pipe 16b via the branch pipe 30, or the refrigerant flow is blocked.
  • connection port 33 provided in the middle of the second suction pipe 16b.
  • the second suction pipe 16b itself is inserted into the guide pipe 34 attached to the accumulator 17, and a connection force such as brazing is applied to the lower end c of the guide pipe 34.
  • auxiliary suction pipe 35, the second suction pipe 16b and the guide pipe 34 in the accumulator 17 penetrating portion are formed perpendicular to each other, and the auxiliary suction pipe 35 is formed in the accumulator 17 with the first suction pipe. It is aligned with 16a and aligned so that the top positions (heights) of each other match.
  • a check valve 36 is inserted into the second suction pipe 16b. As will be described later, the check valve 36 allows the refrigerant to flow from the auxiliary suction pipe 35 to the connection port body 33 portion of the second suction pipe 16b and the branch pipe 30, and conversely, the second suction pipe 36 It has a function of blocking the flow of the refrigerant from the pipe 16b into the accumulator 17 through the auxiliary suction pipe 35.
  • Switching mechanism K is configured. As will be described later, in accordance with the switching operation of the pressure switching mechanism K, a suction pressure that is a low pressure or a discharge pressure that is a high pressure is guided to the second cylinder chamber 14b provided in the second cylinder 8B. .
  • the rotating shaft 4 is continuously rotated, the compression chamber capacity of the first cylinder chamber 14a is further reduced, the gas is compressed, and when the pressure rises to a predetermined pressure, a discharge valve (not shown) is opened.
  • the high-pressure gas is discharged into the sealed case 1 through the valve cover a and is filled.
  • the refrigerant is discharged from the refrigerant pipe 18 at the upper part of the sealed case and guided to, for example, the outdoor heat exchanger 20 through the four-way switching valve 19.
  • the second cylinder chamber 14b is in a suction pressure (low pressure) atmosphere, while the vane chamber 22b is exposed in the sealed case 1 and is under a discharge pressure (high pressure).
  • the front end portion is under a low pressure condition and the rear end portion is under a high pressure condition, and there is a differential pressure at the front and rear ends.
  • the electromagnetic switching valve 31 of the pressure switching mechanism K is opened.
  • the motor unit 3 is energized and the rotating shaft 4 is driven to rotate, the first cylinder chamber 14a is compressed as described above, and the high-pressure gas discharged into the sealed case 1 is filled. And high pressure inside the case.
  • a part of the high-pressure gas discharged from the refrigerant pipe 18 is diverted to the branch pipe 30, and directly into the second cylinder chamber 14b via the opened electromagnetic on-off valve 31 and the second suction pipe 16b. ,be introduced.
  • a part of the high-pressure refrigerant tries to flow backward from the second suction pipe 16b toward the accumulator 17, but the check valve 36 prevents the reverse flow into the accumulator 17.
  • the vane chamber 22b While the second cylinder chamber 14b is in a discharge pressure (high pressure) atmosphere, the vane chamber 22b is in the same situation as the high pressure in the case. Therefore, the vane 15b provided in the second cylinder chamber 14b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends. The vane 15b does not move at a position away from the outer peripheral surface of the roller 13b and maintains the stopped state, and the compression action in the second cylinder chamber 14b is not performed. Eventually, only the compression action in the first cylinder chamber 14a is effective, and the operation is reduced by half.
  • the minimum capacity based on the minimum rotational speed determined by the lubricity in the compression mechanism section 2 can be lowered by changing the displacement volume by half, and the minimum capacity can be expanded to finely control the temperature and humidity.
  • a possible refrigeration cycle apparatus can be provided.
  • the capacity can be varied with a simple structure that simply omits the spring member that biases the base 15b, which is advantageous in terms of cost, is excellent in manufacturability, and provides high efficiency.
  • a predetermined capacity can be secured by operating two cylinders, and a wide capacity can be secured with one compressor. That is, the required capacity can be easily obtained by controlling the opening / closing of the electromagnetic switching valve 31 in accordance with the operation mode.
  • FIG. 3 is a partial cross-sectional view and bottom view of the second suction pipe 16b
  • FIG. 4 is a diagram illustrating the configuration and assembly of the second suction pipe 16b, the auxiliary suction pipe 35, and the check valve 36.
  • FIG. 5 is an enlarged view of the assembled second suction pipe 16b, auxiliary suction pipe 35 and check valve 36
  • FIG. 6 is an assembly explanatory view of the accumulator 17 and a partial sectional view of the assembled accumulator 17. is there.
  • the second suction pipe 16b includes a portion connected to the accumulator 17 through the guide pipe 34, and a second casing formed in the second cylinder 8B through the sealing case 1. It consists of a part communicating with the Linda chamber 14b. The part connected to the accumulator 17 is oriented vertically, the part communicating with the second cylinder chamber 14b is oriented horizontally, and the middle part is bent approximately 90 °.
  • a bent portion 37 is formed at the 90 ° bent portion of the second suction pipe 16b.
  • the bent portion 37 protrudes downward (distance: H) from the horizontally extending portion and is formed in an R shape, and the connecting port body 33 is provided in the bent portion 37.
  • the position of the connection port 33 is set within a range of 45 ° up and down with respect to the line L drawn in the horizontal direction from the bending center point 0 of the bending portion 37.
  • the second suction pipe 16b is in a straight state as a processing order, and the connection port body 33 is first formed by, for example, bulging or burring using hydraulic pressure. .
  • the stepped portion 33d formed at the base end of the connection port body 33 is formed as post-processing after the connection port body 33 is provided.
  • the bending portion 37 is formed by applying a bending force to the second suction pipe 16b. At this time, if the connection port body 33 is provided in the above-described position, there is no deformation that does not affect the connection port body 33 when the bent portion 37 is caulked.
  • the portion extending in the vertical direction of the second suction pipe 16b is formed as an expanded pipe, and the expanded section 38 is separated from the upper end of the connection port body 33 by at least a distance of (2 mm). It is provided at the position.
  • the pipe expansion part 38 can be formed by bulge caking at the same time as the connection port body 33. If the pipe expansion process is performed in a state of being spaced apart from the above dimensions, the deformation of the pipe expansion process does not reach the connection port body 33. There is no occurrence.
  • Such a second suction pipe 16b is provided with the bent portion 37 and attached to the accumulator 17, whereby the attachment position of the accumulator 17 can be lowered by the protrusion H.
  • the mounting height of the accumulator 17 combined with the compressor C can be lowered to achieve compactness.
  • the check valve 36 includes a ball-shaped valve body 40, a valve holder 41 that accommodates the valve body 40, and the valve holder 41, and a lower end portion of the front seat portion. and a valve casing 42 constituting k.
  • the valve holder 41 is formed by bending a thin plate material, and a valve hole (not shown) is provided at the lower end.
  • the valve body 40 is accommodated in the valve holder 41 so as to be displaceable only in the vertical direction, and the valve hole is opened and closed according to the position.
  • valve holder 41 The upper end of the valve holder 41 is opened and provided with a piece f bent inward. This piece f is hooked on a latching portion g provided on the side surface of the valve casing 42, and the valve holder 41 is suspended from the valve casing 42.
  • the check valve 36 configured in this way is set so that its outer diameter can be inserted into the expanded portion 38 formed in the second suction pipe 16b in a tight state.
  • valve housing 42 An upper end portion of the valve housing 42 is provided with a positioning step portion h into which the lower end m of the auxiliary suction pipe 35 that has been expanded is inserted, and a hole portion i is further provided continuously. Accordingly, the valve casing 42 is provided with a hole i passing through the central axis extending from the positioning step h at the upper end to the lower end surface. It is.
  • the horizontal portion of the second suction pipe 16b is illustrated in a straight shape, and the above-described bent portion 37 is omitted.
  • a preassembled check valve 36 is accommodated in the expanded pipe portion 38 of the second suction pipe 16b, and the lower end m of the auxiliary suction pipe 35 is connected to the upper end of the expanded pipe section 38.
  • the valve body 40 is inserted into the valve holder 41, the valve holder 41 is hooked on the valve housing 42, the check valve 36 is assembled, and the auxiliary suction is inserted into the positioning step h of the valve housing 42. Insert the lower end m of the pipe 35 that has been expanded.
  • the check valve 36 is also inserted into the upper end of the expanded portion 38 of the second suction pipe 16b. As described above, since the outer diameter of the check valve 36 and the inner diameter of the expanded portion 38 are tightly set, the check valve 36 does not fall straight down to the lower end of the expanded portion 38. When the upper end of the check valve 36 and the upper end of the second suction pipe 16b coincide with each other, the insertion of the check valve 36 into the expanded portion 38 is stopped.
  • cooling is performed by cooling means such as submerging the lower part of the brazing part (connecting part d).
  • a cooling means water or an inert gas may be flowed inside, other than submerging.
  • a second branch pipe 30B is prepared. Most of the second branch pipe 30B is in a vertical state, is inclined obliquely at the lower part, and is bent in the horizontal direction at the lower end part. The horizontal end portion is inserted into a connection port body 33 provided in the second suction pipe 16B and connected by high-frequency brazing.
  • connection port body 33 since the step portion 33d is formed in the connection port body 33, the end of the second branch pipe 30B is inserted into the connection port body 33 and abuts against the step portion 33d. There is no misalignment during positioning and brazing of the branch pipe 30B.
  • connection port 33 in the second suction pipe 16b is far away from the valve seat portion k of the check valve 36 that is already incorporated in the expanded pipe portion 38.
  • Branch pipe 30B and connection port The heat effect during brazing with the body 33 is not affected. If there is a thermal effect, it is desirable to perform brazing while flowing an inert gas such as nitrogen gas.
  • the check valve 36 is accommodated in the second suction pipe 16b, and the auxiliary suction pipe 35 and the second branch pipe 30B are connected and integrated as described above. Subassembly 43 is obtained.
  • the accumulator 17 has an upper cup 17A and a lower cup which are integrally connected after the filter assembly 45 is fitted in a substantially middle portion in the axial direction. It consists of 17B.
  • the upper cup 17A is connected to a refrigerant pipe 18 extending from the compressor C through each refrigeration cycle component device such as an outdoor heat exchanger 20.
  • a first suction pipe 16a and a guide pipe 34 are attached to the lower cup 17B in a state where the first part is inserted into the accumulator 17.
  • the first suction pipe 16a is formed in a substantially L shape with a vertical portion and a horizontal portion.
  • the straight portion passes through the lower cup 17B, and the upper end extends to the filter assembly 45 in the accumulator 17.
  • the portion protruding downward from the lower cup 17B extends in the horizontal direction toward the compressor C.
  • a part of the guide pipe 34 is inserted into the accumulator 17, and the other part projects downward from the accumulator 17.
  • the upper end opening n in the accumulator 17 is bent inward in advance to reduce the opening amount.
  • the refrigerant pipe 18, the first suction pipe 16a, and the guide pipe 34 are all brazed along the peripheral surface of the accumulator 17, and the accumulator 17 is sealed. It will not be damaged. This completes the assembly of the accumulator 17.
  • the sub-assembly 43 consisting of the second suction pipe 16b and the like is opposed to the lower part of the guide pipe 34 in the assembled accumulator 17, and the upper end of the auxiliary suction pipe 35 is directed to the lower end of the guide pipe 34. Insert the auxiliary suction pipe 35 into the guide pipe 34.
  • the auxiliary suction pipe 35 stands vertically, and is parallel to the first suction pipe 16a, and the upper end positions thereof substantially coincide with each other. Further, the expanded portion 38 of the second suction pipe 16b is fitted into the guide pipe 34, so that the lower end of the guide pipe 34 and the lower end position of the expanded portion 38 are substantially aligned.
  • the position of the sub-assembly 43 is temporarily held, and brazing is performed along the peripheral surface (the portion c in FIG. 1) between the lower end of the guide pipe 34 and the lower end of the expanded portion 38.
  • the second suction pipe 16b (subassembly 43) is attached to the accumulator 17 through the guide pipe 34, and the second suction pipe 16b having the check valve 36 is completely attached to the accumulator 17. .
  • the check valve 36 Since the check valve 36 is manufactured separately from the accumulator 17, it is not necessary to be directly affected by heat when the accumulator 17 is assembled.
  • the check valve 36 is connected to the brazed position d between the second suction pipe 16b and the auxiliary suction pipe 35, and to the connection port body 33 provided in the second branch pipe 30B and the second suction pipe 16b. Since it is also away from the brazing position, the thermal effect is small, and it is possible to perform brazing while cooling with a cooling means. Therefore, the assembly accuracy of the check valve 36 is kept high, and it works extremely smoothly.
  • the expanded portion 38 is formed in the second suction pipe 16b to accommodate the check valve 36.
  • the auxiliary suction pipe 35 is not limited to this. A configuration in which the check valve is accommodated may be employed. Also, one end of the first branch pipe 30A can be connected to a sealed case.
  • the present invention is not limited to the above-described embodiments as they are, but can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. So Various inventions can be formed by appropriately combining a plurality of components disclosed in the above-described embodiments.
  • the range of use can be expanded by switching the operation according to the magnitude of the load, the reverse flow of the refrigerant to the accumulator can be reliably prevented, the refrigeration cycle efficiency can be improved, and the heat can be increased. Effects such as maintaining reliability by preventing adverse effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A refrigerating cycle device has a pressure switching mechanism (K) for performing, depending on the magnitude of load, switching between a normal compression operation and an operation stop of one compression mechanism section (2) of a rotary hermetic compressor (C). The pressure switching mechanism (K) has a bifurcation tube (30) provided with an on-off valve (31) in its intermediate section and communicating the high pressure side of a refrigerating cycle and a suction tube (16b); an auxiliary suction tube (35) connected within an accumulator (17) to an end section of the suction tube; a check valve (36) installed on either the auxiliary suction tube (35) or the suction tube (16b) and preventing a reverse flow of a refrigerant into the accumulator (17); and a guide pipe (34) for fixing and holding either the suction tube (16b) or the auxiliary suction tube (35) at the accumulator (17).

Description

明 細 書  Specification
冷凍サイクル装置及びロータリ式密閉型圧縮機  Refrigeration cycle apparatus and rotary hermetic compressor
技術分野  Technical field
[0001] 本発明は、複数組あるうちの一方の圧縮機構部を、負荷の大小に応じて、運転もし くは運転中止をなすよう切換え可能とするロータリ式密閉型圧縮機を備えた冷凍サイ クル装置及びロータリ式密閉型圧縮機に関する。  [0001] The present invention relates to a refrigeration cycle having a rotary hermetic compressor that can switch one compression mechanism portion of a plurality of sets to be operated or stopped depending on the magnitude of a load. The present invention relates to a kul device and a rotary type hermetic compressor.
背景技術  Background art
[0002] 一般的なロータリ式密閉型圧縮機の構成は、密閉ケース内に電動機部及び、この 電動機部と連結されるロータリ式の圧縮機構部を収容しており、圧縮機構部で圧縮し たガスを一旦密閉ケース内に吐出する、ケース内高圧形となっている。  A general rotary hermetic compressor has a configuration in which a motor unit and a rotary compression mechanism connected to the motor unit are accommodated in a hermetic case and compressed by the compression mechanism. It is a high-pressure type in the case that discharges gas into the sealed case.
[0003] 上記圧縮機構部は、シリンダに形成されるシリンダ室に偏心ローラが収容され、ベ ーンの先端縁が常に偏心ローラの周面に弾性的に当接する。シリンダ室はべーンに よって二室に区分され、一室側に吸込み部が連通され、他室側に吐出部が連通され る。吸込み部には吸込み管が接続され、吐出部は密閉ケース内に開口される。  [0003] In the compression mechanism section, an eccentric roller is accommodated in a cylinder chamber formed in the cylinder, and the tip edge of the vane always elastically contacts the peripheral surface of the eccentric roller. The cylinder chamber is divided into two chambers by vanes, and the suction part is connected to one chamber side, and the discharge part is connected to the other chamber side. A suction pipe is connected to the suction part, and the discharge part is opened in the sealed case.
[0004] 近年、上記圧縮機構部を上下に 2組備えた、 2シリンダタイプのロータリ式密閉型圧 縮機が標準化されつつある。このような圧縮機において、常時圧縮運転をなす圧縮 機構部と、負荷の大小に応じて圧縮運転と運転停止との切換えを可能とする圧縮機 構部を備えることができれば、仕様が拡大されて有利となる。 [0004] In recent years, a two-cylinder type rotary hermetic compressor having two sets of the compression mechanism portions above and below is being standardized. If such a compressor can be equipped with a compression mechanism that always performs compression operation and a compressor mechanism that enables switching between compression operation and operation stop according to the load, the specifications can be expanded. It will be advantageous.
[0005] 例えば、特開平 1一 247786号公報(特許文献 1)には、シリンダ室を 2室備えた圧 縮機であって、必要に応じていずれか一方のシリンダ室のベーンをローラから強制的 に離間保持するとともに、そのシリンダ室を高圧化して圧縮作用を中断させる高圧導 入手段を備えたことを特徴とする技術が開示されている。 [0005] For example, Japanese Patent Application Laid-Open No. 11-247786 (Patent Document 1) discloses a compressor having two cylinder chambers in which a vane in one of the cylinder chambers is forced from a roller as needed. There is disclosed a technique characterized in that it is provided with a high-pressure introducing means for holding the cylinder chamber apart and increasing the pressure of the cylinder chamber to interrupt the compression action.
[0006] また、特許第 2803456号公報(特許文献 2)には、密閉容器内から吸込み管へ、 高圧導入手段としてのバイパス通路を設けた圧縮機であって、一方のシリンダ室では 圧縮作用をなさない休筒運転時も、ベーンがローラに弾性部材の作用で接触してお り、常時、圧縮室はべーンによって仕切られた技術が開示されている。 [0006] Also, Japanese Patent No. 2803456 (Patent Document 2) discloses a compressor in which a bypass passage as a high-pressure introducing means is provided from the inside of a sealed container to a suction pipe, and one cylinder chamber has a compression action. A technique is disclosed in which the vane is in contact with the roller by the action of an elastic member even during the idle cylinder operation, and the compression chamber is always partitioned by the vane.
発明の開示 [0007] ところで、上述した特許文献 1の圧縮機は機能的には優れているが、高圧導入手 段を構成するために、一方のシリンダ室と密閉ケース内とを連通する高圧導入孔を 設け、冷凍サイクルに二段絞り機構を設け、この絞り機構の中間部から分岐して一方 側のベーン室に連通し、中途部に電磁開閉弁を備えたバイパス冷媒管を設けてなる Disclosure of the invention [0007] By the way, although the compressor of Patent Document 1 described above is excellent in terms of function, a high-pressure introduction hole that communicates one cylinder chamber and the inside of the sealed case is provided in order to constitute a high-pressure introduction means. The refrigeration cycle is provided with a two-stage throttle mechanism, is branched from an intermediate portion of the throttle mechanism, communicates with one of the vane chambers, and is provided with a bypass refrigerant pipe having an electromagnetic on-off valve in the middle.
[0008] すなわち、圧縮機に対して高圧導入手段をなすための孔明け加工が必要であると ともに、冷凍サイクル上の絞り装置を二段絞り機構としなければならない。さらに、この 二段絞り機構とシリンダ室との間にバイパス冷媒管を接続するなど、構成が複雑化し てコストに悪影響がある。 [0008] That is, it is necessary to form a hole for providing a high-pressure introduction means for the compressor, and the expansion device on the refrigeration cycle must be a two-stage expansion mechanism. In addition, a bypass refrigerant pipe is connected between the two-stage throttle mechanism and the cylinder chamber, which complicates the configuration and adversely affects costs.
[0009] また、特許文献 2の圧縮機では、密閉容器に吐出側と吸込み側をバイパスするバイ パス管の接続工程が必要となってコストに悪影響があり、かつ休筒運転時においても 常時べーンがローラに弾性的に接触していることにより、多少の圧縮仕事の存在や、 摺動ロスにより効率が低下してしまう不具合がある。  [0009] Further, in the compressor of Patent Document 2, a bypass pipe connecting process for bypassing the discharge side and the suction side is required for the sealed container, which has an adverse effect on the cost and is always constant even during the cylinder-clamping operation. Due to the elastic contact of the roller with the roller, there is a problem that the efficiency decreases due to the presence of some compression work and sliding loss.
[0010] そして、いずれの技術においても、高圧導入手段を作用させて所定の圧縮機構部 に高圧を導入したとき、圧縮機に接続する吸込み管からアキュームレータへ高圧冷 媒が逆流する虞れがあるが、いずれの特許文献においても具体的な逆流防止の構 造についての記載がない。  [0010] In any technique, when high pressure is introduced into a predetermined compression mechanism by operating high pressure introduction means, the high pressure refrigerant may flow backward from the suction pipe connected to the compressor to the accumulator. However, none of the patent documents describes a specific structure for preventing backflow.
[0011] 本発明は上記事情にもとづきなされたものであり、その目的とするところは、ロータリ 式密閉型圧縮機を構成する一方の圧縮機構部に対し、圧力切換え手段を備えて負 荷の大小に応じて圧縮運転と運転停止とに切換え可能とするとともに、アキユームレ ータへの冷媒の逆流を阻止し、かつ圧力切換え手段の取付けにあたって熱的悪影 響を防止して信頼性を保持する冷凍サイクル装置及びロータリ式密閉型圧縮機を提 供しょうとするものである。  [0011] The present invention has been made based on the above circumstances, and an object of the present invention is to provide a pressure switching means for one of the compression mechanism parts constituting the rotary type hermetic compressor, and to reduce the size of the load. Refrigeration that can be switched between compression operation and operation stop according to the flow rate, prevents reverse flow of refrigerant to the accumulator, and prevents thermal adverse effects when installing the pressure switching means to maintain reliability. It intends to provide a cycle device and a rotary hermetic compressor.
[0012] 上記目的を満足するため本発明は、密閉ケース内に、電動機部と複数組のロータリ 式圧縮機構部を収容してなり、アキュームレータから吸込み管を介して冷媒を各圧縮 機構部に吸込み圧縮したあと密閉ケース内空間を介して吐出するロータリ式密閉型 圧縮機と、このロータリ式密閉型圧縮機と冷媒管を介して連通される冷凍サイクル構 成部品とから構成される冷凍サイクル回路と、ロータリ式密閉型圧縮機における一方 の圧縮機構部に対し負荷の大小に応じて低圧ガスを導いて通常の圧縮運転を行わ せもしくは高圧ガスを導レ、て圧縮運転を停止させるよう切換える圧力切換え手段とを 具備し、上記圧力切換え手段は、一端部が電磁開閉弁を介して冷凍サイクルの高圧 側に接続され他端部がアキュームレータと一方の圧縮機構部とを連通する吸込み管 に接続される分岐管と、吸込み管の上記アキュームレータ内に突出する端部に接続 される補助吸込み管と、補助吸込み管もしくは吸込み管のいずれか一方に装着され アキュームレータ内への冷媒の逆流を阻止する逆止弁と、吸込み管もしくは補助吸 込み管をアキュームレータに取付け保持するガイドパイプとを具備する。 [0012] In order to satisfy the above object, the present invention includes an electric motor section and a plurality of sets of rotary compression mechanism sections housed in a sealed case, and sucks refrigerant into each compression mechanism section from an accumulator through a suction pipe. A refrigerating cycle circuit comprising a rotary hermetic compressor that compresses and discharges through a space inside the hermetic case, and a refrigeration cycle component that communicates with the rotary hermetic compressor through a refrigerant pipe; In rotary type hermetic compressors Pressure switching means for guiding the low-pressure gas to the compression mechanism according to the magnitude of the load to perform normal compression operation or guiding the high-pressure gas to stop the compression operation. The means includes a branch pipe having one end connected to the high-pressure side of the refrigeration cycle via an electromagnetic on-off valve and the other end connected to a suction pipe communicating the accumulator and one compression mechanism, and the accumulator of the suction pipe. An auxiliary suction pipe connected to the end projecting inward, a check valve attached to either the auxiliary suction pipe or the suction pipe to prevent the reverse flow of the refrigerant into the accumulator, and the suction pipe or the auxiliary suction pipe And a guide pipe for attaching and holding to the accumulator.
[0013] また、密閉ケース内に、電動機部及び、この電動機部と連結される複数組のロータ リ式圧縮機構部を収容してなり、上記密閉ケース外に設けられたアキュームレータか らそれぞれ吸込み管を介して冷媒を上記各圧縮機構部に吸込み、各圧縮機構部に おいて圧縮したあと密閉ケース内空間を介して吐出するロータリ式密閉型圧縮機に おいて、一端部が電磁開閉弁を介して冷凍サイクルの高圧側に接続され、他端部が 上記アキュームレータと一方の圧縮機構部とを連通する吸込み管に接続される分岐 管と、上記吸込み管の上記アキュームレータ内に突出する端部に接続される補助吸 込み管と、この補助吸込み管もしくは上記吸込み管のいずれか一方に装着され、ァ キュームレータ内への冷媒の逆流を阻止する逆止弁と、上記吸込み管もしくは補助 吸込み管をアキュームレータに取付け保持するガイドパイプとを有する圧力切換え手 段を具備する。  [0013] In addition, the motor case and a plurality of sets of rotary compression mechanisms connected to the motor unit are accommodated in the sealed case, and suction pipes are respectively provided from the accumulators provided outside the sealed case. In a rotary type hermetic compressor, the refrigerant is sucked into each compression mechanism through the compression mechanism, compressed in each compression mechanism, and then discharged through the space in the sealed case. Connected to the high-pressure side of the refrigeration cycle, the other end connected to a suction pipe communicating with the accumulator and one compression mechanism, and to the end of the suction pipe protruding into the accumulator An auxiliary suction pipe, a check valve that is attached to either the auxiliary suction pipe or the suction pipe and prevents the refrigerant from flowing back into the accumulator, and the suction pipe Ku is provided with a pressure switching hands stage having a guide pipe for mounting holding the auxiliary suction pipe to the accumulator.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]図 1は、本発明の一実施の形態に係るロータリ式密閉型圧縮機の縦断面図と、 冷凍サイクル構成図である。  FIG. 1 is a longitudinal sectional view of a rotary hermetic compressor according to an embodiment of the present invention and a configuration diagram of a refrigeration cycle.
[図 2]図 2は、同実施の形態に係る第 1のシリンダと第 2のシリンダを分解した斜視図 である。  FIG. 2 is an exploded perspective view of a first cylinder and a second cylinder according to the same embodiment.
[図 3A]図 3Aは、同実施の形態に係る第 2の吸込み管の一部を断面にした正面図で ある。  [FIG. 3A] FIG. 3A is a front view of a section of a second suction pipe according to the embodiment.
[図 3B]図 3Bは、同第 2の吸込み管の側面図である。  FIG. 3B is a side view of the second suction pipe.
[図 4A]図 4Aは、同第 2の吸込み管と分解した逆止弁及び補助吸込み管を一部切欠 して示す正面図である。 [Fig. 4A] Fig. 4A is a partially cutaway view of the second suction pipe and the disassembled check valve and auxiliary suction pipe. It is a front view shown.
[図 4B]図 4Bは、同実施の形態に係る第 2の吸込み管、逆止弁及び補助吸込み管を 組み立てた状態を一部切欠して示す正面図である。  [FIG. 4B] FIG. 4B is a partially cutaway front view showing the assembled state of the second suction pipe, check valve and auxiliary suction pipe according to the embodiment.
[図 4C]図 4Cは、同実施の形態に係る分岐管の一部の正面図である。  FIG. 4C is a front view of a part of the branch pipe according to the embodiment.
[図 5]図 5は、同実施の形態に係るサブ組立て体の正面図である。  FIG. 5 is a front view of the sub-assembly according to the same embodiment.
[図 6A]図 6Aは、同実施の形態に係るアキュームレータの分解図である。  FIG. 6A is an exploded view of the accumulator according to the embodiment.
[図 6B]図 6Bは、同実施の形態に係るアキュームレータの組立て図である。  FIG. 6B is an assembly view of the accumulator according to the embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明の実施の形態を図面にもとづいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016] 図 1は、冷凍サイクル装置を構成するロータリ式密閉型圧縮機 Cの断面図及び冷凍 サイクル回路 Rの構成図である。  FIG. 1 is a cross-sectional view of a rotary hermetic compressor C constituting a refrigeration cycle apparatus and a configuration diagram of a refrigeration cycle circuit R.
[0017] はじめにロータリ式密閉型圧縮機 Cから説明すると、 1は密閉ケースであって、この 密閉ケース 1内の下部には圧縮機構部 2が設けられ、上部には電動機部 3が設けら れる。これら電動機部 3と圧縮機構部 2とは回転軸 4を介して連結される。  First, the rotary hermetic compressor C will be described. 1 is a hermetic case, and a compression mechanism 2 is provided in the lower part of the hermetic case 1 and an electric motor part 3 is provided in the upper part. . The electric motor unit 3 and the compression mechanism unit 2 are connected via a rotating shaft 4.
[0018] 上記電動機部 3は、例えばブラシレス DC同期モータ (ACモータもしくは商用モー タでもよレ、)が用いられていて、密閉ケース 1の内面に固定されるステータ 5と、このス テータ 5の内側に所定の間隙を存して配置され、かつ上記回転軸 4が介揷されるロー タ 6とから構成される。そして、電動機部 3は運転周波数を可変するインバータと、こ のインバータを制御する制御部(レ、ずれも図示しなレ、)に電気的に接続される。  [0018] For example, a brushless DC synchronous motor (which may be an AC motor or a commercial motor) is used as the motor unit 3, and a stator 5 fixed to the inner surface of the hermetic case 1 and the stator 5 The rotor 6 is arranged with a predetermined gap on the inner side, and the rotating shaft 4 is interposed therebetween. The electric motor unit 3 is electrically connected to an inverter that changes the operating frequency and a control unit that controls the inverter (not shown).
[0019] 上記圧縮機構部 2は、回転軸 4の下部に、中間仕切り板 7を介して上下に配設され る第 1のシリンダ 8Aと、第 2のシリンダ 8Bを備えている。これら第 1、第 2のシリンダ 8A , 8Bは、互いに外形形状寸法が相違し、かつ内径寸法が同一となるよう設定されて いる。  [0019] The compression mechanism section 2 includes a first cylinder 8A and a second cylinder 8B which are disposed below the rotary shaft 4 with an intermediate partition plate 7 interposed therebetween. The first and second cylinders 8A and 8B are set to have different outer shape dimensions and the same inner diameter dimension.
[0020] 第 1のシリンダ 8Aの外径寸法は密閉ケース 1の内径寸法よりも僅かに大に形成され 、密閉ケース 1内周面に圧入されたうえに、密閉ケース 1外部からの溶接加工によつ て位置決め固定される。第 1のシリンダ 8Aの上面部には主軸受 9が重ね合わされ、 バルブカバー aとともに取付けボルトを介してシリンダ 8Aに取付け固定される。第 2の シリンダ 8Bの下面部には副軸受 11が重ね合わされ、バルブカバー bとともに取付け ボルトを介して第 1のシリンダ 8Aに取付け固定される。 [0020] The outer diameter of the first cylinder 8A is slightly larger than the inner diameter of the sealed case 1, and after being press-fitted into the inner peripheral surface of the sealed case 1, the sealed case 1 can be welded from the outside. Therefore, the positioning is fixed. A main bearing 9 is superimposed on the upper surface of the first cylinder 8A, and is fixed to the cylinder 8A through a mounting bolt together with the valve cover a. A secondary bearing 11 is superimposed on the lower surface of the second cylinder 8B and attached together with the valve cover b. It is fixed to the first cylinder 8A via bolts.
[0021] 上記中間仕切板 7及び副軸受 11の外径寸法は第 2のシリンダ 8Bの内径寸法よりも ある程度大であり、し力もこのシリンダ 8Bの内径位置がシリンダ中心からずれている。 そのため、第 2のシリンダ 8Bの外周一部は中間仕切板 7及び副軸受 11の外径よりも 径方向に突出している。  [0021] The outer diameter of the intermediate partition plate 7 and the auxiliary bearing 11 is somewhat larger than the inner diameter of the second cylinder 8B, and the inner diameter position of the cylinder 8B is also deviated from the center of the cylinder. Therefore, a part of the outer periphery of the second cylinder 8B protrudes in the radial direction from the outer diameters of the intermediate partition plate 7 and the auxiliary bearing 11.
[0022] 一方、上記回転軸 4は、中途部と下端部が上記主軸受 9と上記副軸受 11に回転自 在に枢支される。さらに回転軸 4は各シリンダ 8A, 8B内部を貫通するとともに、略 18 0° の位相差をもって形成される 2つの偏心部 4a, 4bを一体に備えている。各偏心 部 4a, 4bは互いに同一直径をなし、各シリンダ 8A, 8B内径部に位置するよう組立て られる。各偏心部 4a, 4bの周面には、互いに同一直径をなす偏心ローラ 13a, 13b が嵌合される。  On the other hand, the rotating shaft 4 is pivotally supported by the main bearing 9 and the sub bearing 11 at its midpoint and lower end. Further, the rotary shaft 4 penetrates through the cylinders 8A and 8B, and integrally includes two eccentric portions 4a and 4b formed with a phase difference of about 180 °. Each eccentric part 4a, 4b has the same diameter as each other, and is assembled so as to be located in the inner diameter part of each cylinder 8A, 8B. Eccentric rollers 13a and 13b having the same diameter are fitted on the peripheral surfaces of the eccentric parts 4a and 4b.
[0023] 上記第 1のシリンダ 8Aと第 2のシリンダ 8Bは、中間仕切り板 7と主軸受 9及び副軸 受 11で上下面が区画され、内部に第 1のシリンダ室 14aと第 2のシリンダ室 14bが形 成される。各シリンダ室 14a, 14bは互いに同一直径及び高さ寸法に形成され、上記 偏心ローラ 13a, 13bがそれぞれ偏心回転自在に収容される。  [0023] The first cylinder 8A and the second cylinder 8B are divided into upper and lower surfaces by an intermediate partition plate 7, a main bearing 9, and a sub-bearing 11, and the first cylinder chamber 14a and the second cylinder are inside. Chamber 14b is formed. The cylinder chambers 14a and 14b are formed to have the same diameter and height, and the eccentric rollers 13a and 13b are accommodated so as to be eccentrically rotatable.
[0024] 各偏心ローラ 13a, 13bの高さ寸法は、各シリンダ室 14a, 14bの高さ寸法と同一に 形成される。したがって、偏心ローラ 13a, 13bは互いに 180° の位相差がある力 シ リンダ室 14a, 14bで偏心回転することにより、同一の排除容積に設定される。  [0024] The height of each eccentric roller 13a, 13b is formed to be the same as the height of each cylinder chamber 14a, 14b. Accordingly, the eccentric rollers 13a and 13b are set to the same excluded volume by rotating eccentrically in the force cylinder chambers 14a and 14b having a phase difference of 180 ° from each other.
[0025] 図 2は、第 1のシリンダ 8Aと第 2のシリンダ 8Bを分解して示す斜視図である。  FIG. 2 is an exploded perspective view showing the first cylinder 8A and the second cylinder 8B.
各シリンダ 8A, 8Bには、シリンダ室 14a, 14bと連通するべーン室 22a, 22b力 S設 けられてレヽる。各べーン室 22a, 22bには、ベーン 15a, 15b力 Sシリンダ室 14a, 14b に対して突没自在に収容される。上記べーン室 22a, 22bは、ベーン 15a, 15bの両 側面が摺動自在に移動できるベーン収納溝 23a, 23bと、各べーン収納溝 23a, 23 b端部に一体に連設されべーン 15a, 15bの後端部が収容される縦孔部 24a, 24bと からなる。  Each cylinder 8A, 8B is provided with vane chambers 22a, 22b force S communicating with the cylinder chambers 14a, 14b. In each vane chamber 22a, 22b, a vane 15a, 15b force S is accommodated so as to protrude and retract with respect to the cylinder chamber 14a, 14b. The vane chambers 22a and 22b are integrally connected to vane storage grooves 23a and 23b in which both side surfaces of the vanes 15a and 15b can be slidably moved, and the end portions of the vane storage grooves 23a and 23b. It consists of vertical holes 24a and 24b in which the rear ends of the vanes 15a and 15b are accommodated.
[0026] 上記第 1のシリンダ 8Aには、外周面とベーン室 22aとを連通する横孔 25が設けら れ、ばね部材 26が収容される。ばね部材 26は、ベーン 15aの背面側端面と密閉ケ ース 1内周面との間に介在され、ベーン 15aに弾性力(背圧)を付与して、この先端縁 を偏心ローラ 13aに接触させる圧縮ばねである。 [0026] The first cylinder 8A is provided with a lateral hole 25 for communicating the outer peripheral surface with the vane chamber 22a, and the spring member 26 is accommodated therein. The spring member 26 is interposed between the rear side end surface of the vane 15a and the inner peripheral surface of the sealing case 1, and applies an elastic force (back pressure) to the vane 15a, and this tip edge Is a compression spring that contacts the eccentric roller 13a.
[0027] 上記第 2のシリンダ 8B側のベーン室 22bにはべーン 15b以外に何らの部材も収容 されていないが、後述するようにべーン室 22bに対する設定環境と、後述する圧力切 換え機構(手段) Kの作用に応じて、ベーン 15bの先端縁を上記偏心ローラ 13bに接 離させるようになつている。各べーン 15a, 15bの先端縁は平面視で半円状に形成さ れており、平面視で円形状の偏心ローラ 13a, 13b周壁に偏心ローラ 13aの回転角 度にかかわらず線接触できる。  [0027] The vane chamber 22b on the second cylinder 8B side does not contain any members other than the vane 15b. However, as will be described later, the setting environment for the vane chamber 22b and the pressure switch described later will be described. According to the action of the change mechanism (means) K, the tip edge of the vane 15b is brought into contact with and separated from the eccentric roller 13b. The leading edges of the vanes 15a and 15b are formed in a semicircular shape in plan view, and can make line contact with the circumferential walls of the circular eccentric rollers 13a and 13b in plan view regardless of the rotation angle of the eccentric roller 13a. .
[0028] 偏心ローラ 13a, 13bがシリンダ室 14a, 14bの内周壁に沿って偏心回転したとき、 ベーン 15a, 15bはべーン収納溝 23a, 23bに沿って往復運動し、かつべーン後端 部が縦孔部 24a, 24bから進退自在となる作用ができる。上述したように、上記第 2の シリンダ 8Bの外形寸法形状と、中間仕切板 7及び副軸受 11の外径寸法との関係か ら、第 2のシリンダ 8Bの外形一部は密閉ケース 1内に露出する。  [0028] When the eccentric rollers 13a and 13b rotate eccentrically along the inner peripheral walls of the cylinder chambers 14a and 14b, the vanes 15a and 15b reciprocate along the vane housing grooves 23a and 23b, and after the vane. The end portion can act to advance and retract freely from the vertical hole portions 24a and 24b. As described above, due to the relationship between the outer dimensions of the second cylinder 8B and the outer diameters of the intermediate partition plate 7 and the auxiliary bearing 11, a part of the outer shape of the second cylinder 8B is contained in the sealed case 1. Exposed.
この密閉ケース 1への露出部分が上記べーン室 22bに相当するように設計されて おり、したがってベーン室 22b及びべーン 15b後端部はケース内圧力を直接的に受 けることになる。特に、第 2のシリンダ 8B及びべーン室 22bは、それ自体が固定構造 物であるからケース内圧力を受けても何らの影響もなレ、が、ベーン 15bはべーン室 2 2bに摺動自在に収容され、かつ後端部がベーン室 22bの縦孔部 24bに位置するの で、ケース内圧力を直接的に受ける。  The exposed portion of the sealed case 1 is designed to correspond to the vane chamber 22b, so that the rear end portion of the vane chamber 22b and the vane 15b directly receives the pressure in the case. . In particular, since the second cylinder 8B and the vane chamber 22b are fixed structures themselves, there is no influence even if they are subjected to the pressure in the case, but the vane 15b is replaced with the vane chamber 22b. Since it is slidably housed and its rear end is located in the vertical hole 24b of the vane chamber 22b, it receives the pressure in the case directly.
[0029] そしてさらに、上記べーン 15bの先端部が第 2のシリンダ室 14bに対向しており、ベ ーン先端部はシリンダ室 14b内の圧力を受ける。結局、上記べーン 15bは先端部と 後端部が受ける互いの圧力の大小に応じて、圧力の大きい方力も圧力の小さい方向 へ移動するよう構成されてレ、る。  [0029] Further, the tip of the vane 15b faces the second cylinder chamber 14b, and the vane tip receives the pressure in the cylinder chamber 14b. Eventually, the vane 15b is constructed so that the direction of a higher pressure also moves in the direction of a lower pressure in accordance with the magnitude of the pressure applied to the front end portion and the rear end portion.
[0030] 各シリンダ 8A, 8Bには上記取付けボルトが揷通する、もしくは螺揷される取付け用 孔もしくはねじ孔が設けられるとともに、第 1のシリンダ 8Aのみ円弧状のガス通し用孔 部 27が設けられている。特に、上記第 2のシリンダ 8B側のベーン室 22bに、シリンダ 室 14bに導かれる吸込み圧力と、ベーン室 22bに導かれる密閉ケース 1内圧力との 差圧よりも小さい力で、ベーン 15bを偏心ローラ 13bから引き離す方向に付勢する保 持機構 10が設けられる。 [0031] 上記保持機構 10は、永久磁石、電磁石もしくは弾性体のいずれかを用いればよい 。なお説明すると、保持機構 10は第 2のシリンダ室 14bにかかる吸込み圧力とベーン 室 22bにかかる密閉ケース 1内圧力との差圧よりも小さい力で、上記べーン 15bを偏 心ローラ 13bから引き離す方向に付勢保持する。 [0030] Each cylinder 8A, 8B is provided with a mounting hole or screw hole through which the mounting bolt is threaded or screwed, and only the first cylinder 8A has an arc-shaped gas passage hole 27. Is provided. In particular, the vane 15b is eccentrically placed in the vane chamber 22b on the second cylinder 8B side with a force smaller than the differential pressure between the suction pressure guided to the cylinder chamber 14b and the internal pressure of the sealed case 1 guided to the vane chamber 22b. A holding mechanism 10 is provided that urges the roller 13b away from the roller 13b. [0031] The holding mechanism 10 may be a permanent magnet, an electromagnet, or an elastic body. In other words, the holding mechanism 10 is configured to remove the vane 15b from the eccentric roller 13b with a force smaller than the differential pressure between the suction pressure applied to the second cylinder chamber 14b and the pressure inside the sealed case 1 applied to the vane chamber 22b. Energize and hold in the pulling direction.
[0032] 保持機構 10として永久磁石を備えることにより、常に所定の力でベーン 15bを磁気 吸引する。あるいは、永久磁石に代って電磁石を備え、必要に応じて磁気吸引する ようにしてもよい。あるいは、保持機構 10は弾性体である引張りばねとする。この引張 りばねの一端部をべーン 15bの背面端部に掛止して、常に所定の弾性力で引張り付 勢するようにしてもよい。  [0032] By providing a permanent magnet as the holding mechanism 10, the vane 15b is always magnetically attracted with a predetermined force. Alternatively, an electromagnet may be provided instead of the permanent magnet, and magnetic attraction may be performed as necessary. Alternatively, the holding mechanism 10 is a tension spring that is an elastic body. One end of the tension spring may be hooked on the rear end of the vane 15b so that the tension spring is always pulled with a predetermined elastic force.
[0033] 再び図 1に示すように、上記ロータリ式密閉型圧縮機 Cを構成する密閉ケース 1の 上端部には、圧縮ガスの吐出部である冷媒管 18が接続される。この冷媒管 18には、 四方切換え弁 19を介して室外熱交換器 20と膨張機構である電子膨張弁 21と、室内 熱交換器 22を介してアキュームレータ 17に接続され、これらで冷凍サイクル回路 R が構成される。  As shown in FIG. 1 again, a refrigerant pipe 18 serving as a compressed gas discharge section is connected to the upper end of the hermetic case 1 constituting the rotary type hermetic compressor C. The refrigerant pipe 18 is connected to an outdoor heat exchanger 20 through an four-way switching valve 19, an electronic expansion valve 21 as an expansion mechanism, and an accumulator 17 through an indoor heat exchanger 22, and these are connected to the refrigeration cycle circuit R. Is configured.
[0034] アキュームレータ 17底部には、ロータリ式密閉型圧縮機 Cと連通する第 1の吸込み 管 16a及び第 2の吸込み管 16bが接続される。第 1の吸込み管 16aは密閉ケース 1と 第 1のシリンダ 8A側部を貫通し、第 1のシリンダ室 14a内に直接連通する。第 2の吸 込み管 16bは密閉ケース 1を介して第 2のシリンダ 8B側部を貫通し、第 2のシリンダ 室 14b内に直接連通する。  [0034] To the bottom of the accumulator 17, a first suction pipe 16a and a second suction pipe 16b communicating with the rotary hermetic compressor C are connected. The first suction pipe 16a penetrates the sealed case 1 and the side of the first cylinder 8A, and communicates directly with the first cylinder chamber 14a. The second suction pipe 16b passes through the side of the second cylinder 8B via the hermetic case 1, and communicates directly with the second cylinder chamber 14b.
[0035] このように構成される冷凍サイクル回路 Rにおいて、上記ロータリ式密閉型圧縮機 C の運転切換えをなすための圧力切換え機構 (手段) Kが設けられている。以下、圧力 切換え機構 Kにつレ、て詳述する。  In the refrigeration cycle circuit R configured as described above, a pressure switching mechanism (means) K for switching the operation of the rotary type hermetic compressor C is provided. The pressure switching mechanism K will be described in detail below.
[0036] この圧力切換え機構 Kは、分岐管 30を備えていて、中途部には電磁開閉弁 31が 設けられる。上記分岐管 30は、一端が圧縮機 Cと四方切換え弁 19とを連通する冷媒 管 18の中途部に接続され、他端が上記電磁開閉弁 31に接続される第 1の分岐管 3 OAと、一端が電磁開閉弁 31に接続され、他端が上記第 2のシリンダ室 14bとアキュ 一ムレータ 17を連通する第 2の吸込み管 16bの中途部に接続される第 2の分岐管 3 0Bと力、らなる。第 2の分岐管 30Bの中途部は、支持具 32を介してアキュームレータ 1 7に取付け支持されている。 [0036] This pressure switching mechanism K includes a branch pipe 30, and an electromagnetic on-off valve 31 is provided in the middle. The branch pipe 30 has one end connected to the middle part of the refrigerant pipe 18 communicating with the compressor C and the four-way switching valve 19, and the other end connected to the first branch pipe 3OA connected to the electromagnetic on-off valve 31. One end is connected to the electromagnetic on-off valve 31 and the other end is connected to the second branch pipe 30B connected to the middle portion of the second suction pipe 16b communicating with the second cylinder chamber 14b and the accumulator 17. Power. The middle part of the second branch pipe 30B is connected to the accumulator 1 through the support 32. 7 is mounted and supported.
[0037] 上記電磁開閉弁 31は、上記制御部からの電気信号に応じて開閉制御されるように なっている。すなわち、冷媒管 18から分岐管 30を介して第 2の吸込み管 16bへ冷媒 を導通させ、もしくは冷媒の流通を遮断する。  [0037] The electromagnetic on-off valve 31 is controlled to open and close in response to an electrical signal from the control unit. That is, the refrigerant is conducted from the refrigerant pipe 18 to the second suction pipe 16b via the branch pipe 30, or the refrigerant flow is blocked.
[0038] 上記第 2の分岐管 30Bの他端部は、上記第 2の吸込み管 16bの中途部に設けられ る接続口体 33に接続される。そして、上記第 2の吸込み管 16b自体、上記アキユーム レータ 17に取付けられるガイドパイプ 34に揷入され、かつガイドパイプ 34の下端 cに おいてロー付け等の接続力卩ェが施されている。  [0038] The other end of the second branch pipe 30B is connected to a connection port 33 provided in the middle of the second suction pipe 16b. The second suction pipe 16b itself is inserted into the guide pipe 34 attached to the accumulator 17, and a connection force such as brazing is applied to the lower end c of the guide pipe 34.
[0039] 上記補助吸込み管 35と、アキュームレータ 17貫通部における第 2の吸込み管 16b 及びガイドパイプ 34は互いに垂直状に形成され、補助吸込み管 35はアキユームレ ータ 17内において上記第 1の吸込み管 16aと並設され、かつ互いの上端位置(高さ) がー致するよう揃えられる。  [0039] The auxiliary suction pipe 35, the second suction pipe 16b and the guide pipe 34 in the accumulator 17 penetrating portion are formed perpendicular to each other, and the auxiliary suction pipe 35 is formed in the accumulator 17 with the first suction pipe. It is aligned with 16a and aligned so that the top positions (heights) of each other match.
[0040] 上記第 2の吸込み管 16b内には逆止弁 36が挿入され、装着される。この逆止弁 36 は、後述するように補助吸込み管 35から第 2の吸込み管 16b及び分岐管 30との接 続口体 33部分への冷媒の流れを許容し、逆に、第 2の吸込み管 16bから補助吸込 み管 35を介してアキュームレータ 17内への冷媒の流れを遮断する機能を有する。  [0040] A check valve 36 is inserted into the second suction pipe 16b. As will be described later, the check valve 36 allows the refrigerant to flow from the auxiliary suction pipe 35 to the connection port body 33 portion of the second suction pipe 16b and the branch pipe 30, and conversely, the second suction pipe 36 It has a function of blocking the flow of the refrigerant from the pipe 16b into the accumulator 17 through the auxiliary suction pipe 35.
[0041] このようにして、第 2のシリンダ室 14bに接続される第 2の吸込み管 16b、分岐管 30 、電磁開閉弁 31、ガイドパイプ 34、補助吸込み管 35及び逆止弁 36とで圧力切換え 機構 Kが構成される。後述するように、圧力切換え機構 Kの切換え作動に応じて、第 2のシリンダ 8Bに備えられる第 2のシリンダ室 14bに低圧である吸込み圧もしくは高圧 である吐出圧が導かれるようになつている。  [0041] In this way, pressure is generated between the second suction pipe 16b, the branch pipe 30, the electromagnetic on-off valve 31, the guide pipe 34, the auxiliary suction pipe 35, and the check valve 36 connected to the second cylinder chamber 14b. Switching mechanism K is configured. As will be described later, in accordance with the switching operation of the pressure switching mechanism K, a suction pressure that is a low pressure or a discharge pressure that is a high pressure is guided to the second cylinder chamber 14b provided in the second cylinder 8B. .
[0042] なお、この圧力切換え機構 Kの構成及び組立てと、アキュームレータ 17の組立て 及び、アキュームレータ 17への圧力切換え機構 Kの取付けについては、さらに後述 する。  [0042] The configuration and assembly of the pressure switching mechanism K, the assembly of the accumulator 17, and the attachment of the pressure switching mechanism K to the accumulator 17 will be further described later.
[0043] つぎに、上述のロータリ式密閉型圧縮機 Cを備えた冷凍サイクル装置の作用につ いて説明する。  [0043] Next, the operation of the refrigeration cycle apparatus provided with the above-described rotary hermetic compressor C will be described.
[0044] (1)通常運転 (全能力運転)を選択した場合: [0044] (1) When normal operation (full capacity operation) is selected:
圧力切換え機構 Kを構成する電磁開閉弁 31を閉成したうえで、インバータを介して 電動機部 3へ運転信号が送られ、回転軸 4が回転駆動される。圧縮機構部 2におい て、偏心ローラ 13a, 13bは各シリンダ室 14a, 14b内で偏心回転を行う。第 1のシリン ダ 8Aでは、ベーン 15aがばね部材 26によって常に弾性的に押圧付勢されるところか ら、ベーン 15aの先端縁が偏心ローラ 13a周壁に摺接して第 1のシリンダ室 14a内を 吸込み室と圧縮室に二分する。 After closing the solenoid valve 31 that constitutes the pressure switching mechanism K, An operation signal is sent to the motor unit 3, and the rotary shaft 4 is driven to rotate. In the compression mechanism 2, the eccentric rollers 13a and 13b rotate eccentrically in the cylinder chambers 14a and 14b. In the first cylinder 8A, since the vane 15a is always elastically pressed and biased by the spring member 26, the tip edge of the vane 15a is in sliding contact with the peripheral wall of the eccentric roller 13a to move inside the first cylinder chamber 14a. Divide into suction chamber and compression chamber.
[0045] 偏心ローラ 13aのシリンダ室 14a内周面転接位置とベーン収納溝 23aがー致し、ベ ーン 15aが最も後退した状態で、このシリンダ室 14aの空間容量が最大となる。冷媒 ガスはアキュームレータ 17から第 1の吸込み管 16aを介して第 1シリンダ室 14dに吸 込まれ充満する。偏心ローラ 13aの偏心回転にともなって、偏心ローラの第 1のシリン ダ室 14a内周面に対する転接位置が移動し、このシリンダ室 14aの区画された圧縮 室の容積が減少する。すなわち、先に第 1のシリンダ室 14aに導かれたガスが徐々に 圧縮される。 [0045] The inner circumferential surface rolling contact position of the cylinder chamber 14a of the eccentric roller 13a and the vane storage groove 23a are aligned, and the space capacity of the cylinder chamber 14a is maximized when the vane 15a is retracted most. The refrigerant gas is sucked into the first cylinder chamber 14d from the accumulator 17 through the first suction pipe 16a and is filled. As the eccentric roller 13a rotates eccentrically, the rolling contact position of the eccentric roller with respect to the inner peripheral surface of the first cylinder chamber 14a moves, and the volume of the compression chamber partitioned by the cylinder chamber 14a decreases. That is, the gas previously introduced into the first cylinder chamber 14a is gradually compressed.
[0046] 回転軸 4が継続して回転され、第 1のシリンダ室 14aの圧縮室容量がさらに減少し てガスが圧縮され、所定圧まで上昇したところで図示しない吐出弁が開放する。高圧 ガスはバルブカバー aを介して密閉ケース 1内に吐出され充満する。そして、密閉ケ ース上部の冷媒管 18から吐出され、四方切換え弁 19を介して例えば室外熱交換器 20に導かれる。  [0046] The rotating shaft 4 is continuously rotated, the compression chamber capacity of the first cylinder chamber 14a is further reduced, the gas is compressed, and when the pressure rises to a predetermined pressure, a discharge valve (not shown) is opened. The high-pressure gas is discharged into the sealed case 1 through the valve cover a and is filled. Then, the refrigerant is discharged from the refrigerant pipe 18 at the upper part of the sealed case and guided to, for example, the outdoor heat exchanger 20 through the four-way switching valve 19.
[0047] 一方、圧力切換え機構 Kにおける電磁開閉弁 31が閉成されているので、第 2のシリ ンダ室 14bに吐出圧(高圧)が導かれることはない。アキュームレータ 17で気液分離 された低圧の蒸発冷媒が補助吸込み管 35と逆止弁 37及び第 2の吸込み管 16bを 介して第 2のシリンダ室 14bに導かれる。  [0047] On the other hand, since the electromagnetic on-off valve 31 in the pressure switching mechanism K is closed, the discharge pressure (high pressure) is not guided to the second cylinder chamber 14b. The low-pressure evaporative refrigerant separated from the gas and liquid by the accumulator 17 is guided to the second cylinder chamber 14b via the auxiliary suction pipe 35, the check valve 37 and the second suction pipe 16b.
[0048] したがって、第 2のシリンダ室 14bは吸込み圧(低圧)雰囲気となる一方で、ベーン 室 22bが密閉ケース 1内に露出して吐出圧(高圧)下にある。上記べーン 15bにおい ては、その先端部が低圧条件となり、かつ後端部が高圧条件となって、前後端部で 差圧が存在する。  Therefore, the second cylinder chamber 14b is in a suction pressure (low pressure) atmosphere, while the vane chamber 22b is exposed in the sealed case 1 and is under a discharge pressure (high pressure). In the vane 15b, the front end portion is under a low pressure condition and the rear end portion is under a high pressure condition, and there is a differential pressure at the front and rear ends.
[0049] この差圧の影響で、保持機構 10の保持力に抗してべ一ン 15bの先端部が偏心口 ーラ 13bに摺接するように押圧付勢される。すなわち、第 1のシリンダ室 14a側のベー ン 15aがばね部材 26により押圧付勢され圧縮作用が行われるのと全く同様の圧縮作 用力 第 2のシリンダ室 14bでも行われる。 [0049] Under the influence of this differential pressure, the tip of the vane 15b is pressed and urged against the eccentric roller 13b against the holding force of the holding mechanism 10. In other words, the vane 15a on the first cylinder chamber 14a side is pressed and urged by the spring member 26 to perform the same compression operation as the compression action. Utility This is also performed in the second cylinder chamber 14b.
[0050] 結局、ロータリ式密閉型圧縮機 Cにおいては、第 1のシリンダ室 14aと、第 2のシリン ダ室 14bとの両方で圧縮作用がなされる、全能力運転が行われる。密閉ケース 1から 冷媒管 18を介して吐出される高圧ガスは、室外熱交換器 20に導かれて凝縮液化し 、電子膨張弁 21で断熱膨張し、室内熱交換器 23で熱交換空気から蒸発潜熱を奪つ て冷房作用をなす。そして、蒸発したあとの冷媒はアキュームレータ 17に導かれて気 液分離され、再び第 1、第 2の吸込み管 16b, 16bから圧縮機 Cにおけるそれぞれの シリンダ室 14a, 14bに吸込まれて上述の経路を循環する。  [0050] Eventually, in the rotary hermetic compressor C, full capacity operation is performed in which the compression action is performed in both the first cylinder chamber 14a and the second cylinder chamber 14b. The high pressure gas discharged from the sealed case 1 through the refrigerant pipe 18 is led to the outdoor heat exchanger 20 to be condensed and liquefied, adiabatically expanded by the electronic expansion valve 21, and evaporated from the heat exchange air by the indoor heat exchanger 23. Takes out latent heat and performs cooling. Then, the evaporated refrigerant is guided to the accumulator 17, where it is separated into gas and liquid, and again sucked into the cylinder chambers 14a and 14b in the compressor C from the first and second suction pipes 16b and 16b. Circulate.
[0051] (2)特別運転 (能力半減運転)を選択した場合:  [0051] (2) When special operation (capability half operation) is selected:
特別運転 (圧縮能力を半減する運転)を選択すると、圧力切換え機構 Kの電磁開 閉弁 31が開放される。電動機部 3に通電して回転軸 4が回転駆動されると、第 1のシ リンダ室 14aにおいては上述したように通常の圧縮作用がなされ、密閉ケース 1内に 吐出された高圧ガスが充満してケース内高圧となる。  When special operation (operation that halves the compression capacity) is selected, the electromagnetic switching valve 31 of the pressure switching mechanism K is opened. When the motor unit 3 is energized and the rotating shaft 4 is driven to rotate, the first cylinder chamber 14a is compressed as described above, and the high-pressure gas discharged into the sealed case 1 is filled. And high pressure inside the case.
[0052] 冷媒管 18から吐出される高圧ガスの一部が分岐管 30に分流され、開放された電 磁開閉弁 31及び第 2の吸込み管 16bを介して第 2のシリンダ室 14b内に直接、導入 される。なお、一部の高圧冷媒は第 2の吸込み管 16bからアキュームレータ 17方向 へ逆流しょうとするが、逆止弁 36によってアキュームレータ 17内への逆流が阻止され る。  [0052] A part of the high-pressure gas discharged from the refrigerant pipe 18 is diverted to the branch pipe 30, and directly into the second cylinder chamber 14b via the opened electromagnetic on-off valve 31 and the second suction pipe 16b. ,be introduced. A part of the high-pressure refrigerant tries to flow backward from the second suction pipe 16b toward the accumulator 17, but the check valve 36 prevents the reverse flow into the accumulator 17.
[0053] 上記第 2のシリンダ室 14bが吐出圧(高圧)雰囲気にある一方で、ベーン室 22bは ケース内高圧と同一の状況下にあることには変りがなレ、。そのため、第 2のシリンダ室 14bに備えられるベーン 15bは前後端部とも高圧の影響を受けていて、前後端部に おいて差圧が存在しなレ、。ベーン 15bはローラ 13b外周面から離間した位置で移動 することなく停止状態を保持し、第 2のシリンダ室 14bでの圧縮作用は行われない。 結局、第 1のシリンダ室 14aでの圧縮作用のみが有効であり、能力を半減した運転が なされることになる。  [0053] While the second cylinder chamber 14b is in a discharge pressure (high pressure) atmosphere, the vane chamber 22b is in the same situation as the high pressure in the case. Therefore, the vane 15b provided in the second cylinder chamber 14b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends. The vane 15b does not move at a position away from the outer peripheral surface of the roller 13b and maintains the stopped state, and the compression action in the second cylinder chamber 14b is not performed. Eventually, only the compression action in the first cylinder chamber 14a is effective, and the operation is reduced by half.
[0054] また、第 2のシリンダ室 14bの内部は高圧となっているので、密閉ケース 1内から第 2 のシリンダ室 14b内への圧縮ガスの漏れは発生せず、それによる損失も発生しない。 したがって、圧縮効率の低下なしに能力を半分にした運転が可能となる。 [0055] 例えば、圧縮機構部 2の排除容積を半減させた能力になるように回転数を調整する 場合と比較して、上述の能力半減運転を採用することにより通常の運転と同一の高 回転を保持した状態で行うことができて圧縮効率の向上を得られる。 [0054] Further, since the inside of the second cylinder chamber 14b is at a high pressure, there is no leakage of compressed gas from the sealed case 1 into the second cylinder chamber 14b, and no loss is caused thereby. . Therefore, it is possible to operate with half the capacity without lowering the compression efficiency. [0055] For example, as compared with the case where the rotational speed is adjusted so that the displacement volume of the compression mechanism section 2 is reduced by half, the above-described half-power operation is employed to achieve the same high rotation speed as that in normal operation. The compression efficiency can be improved by maintaining the pressure.
[0056] そして、圧縮機構部 2における潤滑性により定まる最低回転数による最小能力を、 排除容積を半減可変することにより下げることができ、最小能力を拡大してきめの細 カ 、温度 ·湿度制御が可能な冷凍サイクル装置を提供できる。圧縮機 R内ではべ一 ン 15bを付勢するばね部材を省略するだけの単純な構造で容量可変が可能となり、 コスト的に有利であり、製造性に優れ、かつ高効率が得られる。  [0056] The minimum capacity based on the minimum rotational speed determined by the lubricity in the compression mechanism section 2 can be lowered by changing the displacement volume by half, and the minimum capacity can be expanded to finely control the temperature and humidity. A possible refrigeration cycle apparatus can be provided. In the compressor R, the capacity can be varied with a simple structure that simply omits the spring member that biases the base 15b, which is advantageous in terms of cost, is excellent in manufacturability, and provides high efficiency.
[0057] 最大能力の必要時には 2シリンダ運転により所定能力を確保し、 1台の圧縮機で幅 広い能力を確保できる。すなわち、電磁開閉弁 31を運転モードに応じて開閉制御す ることにより、容易に必要な能力を得られる。  [0057] When the maximum capacity is required, a predetermined capacity can be secured by operating two cylinders, and a wide capacity can be secured with one compressor. That is, the required capacity can be easily obtained by controlling the opening / closing of the electromagnetic switching valve 31 in accordance with the operation mode.
[0058] つぎに、圧力切換え機構 Kの構成及び組立てと、アキュームレータ 17の組立て、及 び圧力切換え機構 Kのアキュームレータ 17への取付けについて、詳述する。  Next, the configuration and assembly of the pressure switching mechanism K, the assembly of the accumulator 17, and the attachment of the pressure switching mechanism K to the accumulator 17 will be described in detail.
[0059] 図 3は第 2の吸込み管 16bの一部断面図と下面図、図 4は第 2の吸込み管 16bと補 助吸込み管 35及び逆止弁 36の構成と組立てを説明する図、図 5は第 2の吸込み管 16bと補助吸込み管 35及び逆止弁 36の組立てられた拡大図、図 6はアキユームレ ータ 17の組立て説明図と、組立てられたアキュームレータ 17の一部断面図である。  FIG. 3 is a partial cross-sectional view and bottom view of the second suction pipe 16b, and FIG. 4 is a diagram illustrating the configuration and assembly of the second suction pipe 16b, the auxiliary suction pipe 35, and the check valve 36. FIG. 5 is an enlarged view of the assembled second suction pipe 16b, auxiliary suction pipe 35 and check valve 36, and FIG. 6 is an assembly explanatory view of the accumulator 17 and a partial sectional view of the assembled accumulator 17. is there.
[0060] はじめに、図 3から第 2の吸込み管 16bについて説明する。  [0060] First, the second suction pipe 16b will be described with reference to FIG.
[0061] 上記第 2の吸込み管 16bは、上記ガイドパイプ 34を介してアキュームレータ 17に接 続される部分と、上記密閉ケース 1を貫通して第 2のシリンダ 8Bに形成される第 2のシ リンダ室 14bに連通する部分とからなる。アキュームレータ 17に接続される部分は垂 直に向けられ、第 2のシリンダ室 14bに連通する部分は水平に向けられていて、中途 部が略 90° 折り曲げられる。  [0061] The second suction pipe 16b includes a portion connected to the accumulator 17 through the guide pipe 34, and a second casing formed in the second cylinder 8B through the sealing case 1. It consists of a part communicating with the Linda chamber 14b. The part connected to the accumulator 17 is oriented vertically, the part communicating with the second cylinder chamber 14b is oriented horizontally, and the middle part is bent approximately 90 °.
[0062] そして、第 2の吸込み管 16bの 90° 折曲げ部分には曲げ部 37が形成される。上記 曲げ部 37は、水平方向への延出部分よりも下方に突出(距離: H)して R状に形成さ れていて、この曲げ部 37に上記接続口体 33が設けられる。接続口体 33の位置は、 曲げ部 37の曲げ中心点〇から水平方向に引いた線 Lを中心にして上下に 45° づっ 振り分けた範囲内に設定される。 [0063] すなわち、加工順序として第 2の吸込み管 16bは、はじめ直状の状態であり、先に 上記接続口体 33を、例えば油圧を用いたバルジカ卩ェもしくはバーリング加工によつ て形成する。図 3Bのみに示すように、接続口体 33の基端に形成される段部 33dは、 接続口体 33を設けたあと、後加工として成形する。 [0062] A bent portion 37 is formed at the 90 ° bent portion of the second suction pipe 16b. The bent portion 37 protrudes downward (distance: H) from the horizontally extending portion and is formed in an R shape, and the connecting port body 33 is provided in the bent portion 37. The position of the connection port 33 is set within a range of 45 ° up and down with respect to the line L drawn in the horizontal direction from the bending center point 0 of the bending portion 37. In other words, the second suction pipe 16b is in a straight state as a processing order, and the connection port body 33 is first formed by, for example, bulging or burring using hydraulic pressure. . As shown only in FIG. 3B, the stepped portion 33d formed at the base end of the connection port body 33 is formed as post-processing after the connection port body 33 is provided.
[0064] つぎに、第 2の吸込み管 16bに曲げ力卩ェを施して、曲げ部 37を形成する。このとき 、上記接続口体 33を上述した位置に設けていれば、曲げ部 37をカ卩ェする際の影響 が接続口体 33に及ぶことがなぐ変形の発生がない。  [0064] Next, the bending portion 37 is formed by applying a bending force to the second suction pipe 16b. At this time, if the connection port body 33 is provided in the above-described position, there is no deformation that does not affect the connection port body 33 when the bent portion 37 is caulked.
[0065] また、第 2の吸込み管 16bの垂直方向へ延出される部分は拡管形成されていて、こ の拡管部 38は上記接続口体 33の上端から少なくともひ (2mm)分だけは離間した位 置に設けられる。上記拡管部 38は、接続口体 33と同時にバルジカ卩ェで形成すること ができ、上記ひ寸法離間した状態で拡管加工をなせば、拡管加工の影響が接続口 体 33に及ぶことがなぐ変形の発生がない。  [0065] Further, the portion extending in the vertical direction of the second suction pipe 16b is formed as an expanded pipe, and the expanded section 38 is separated from the upper end of the connection port body 33 by at least a distance of (2 mm). It is provided at the position. The pipe expansion part 38 can be formed by bulge caking at the same time as the connection port body 33. If the pipe expansion process is performed in a state of being spaced apart from the above dimensions, the deformation of the pipe expansion process does not reach the connection port body 33. There is no occurrence.
[0066] このような第 2の吸込み管 16bであり、上記曲げ部 37を備えてアキュームレータ 17 に取付けることにより、アキュームレータ 17の取付け位置を突出分 Hだけ低くすること ができる。すなわち、圧縮機 Cと一体的に組み合わされるアキュームレータ 17の取付 け高さを低くして、コンパクトィ匕を図ることができる。  [0066] Such a second suction pipe 16b is provided with the bent portion 37 and attached to the accumulator 17, whereby the attachment position of the accumulator 17 can be lowered by the protrusion H. In other words, the mounting height of the accumulator 17 combined with the compressor C can be lowered to achieve compactness.
[0067] 特に図 4Aに示すように、逆止弁 36は、ボール状の弁体 40と、この弁体 40を収容 する弁ホルダ 41と、この弁ホルダ 41を保持し、下端部が前座部 kを構成する弁筐 42 とから構成される。上記弁ホルダ 41は薄い板材を折曲加工してなり、下端には図示 しない弁孔が設けられている。上記弁体 40は弁ホルダ 41内に上下方向のみに変位 自在に収容され、その位置に応じて上記弁孔を開閉するようになっている。  [0067] In particular, as shown in FIG. 4A, the check valve 36 includes a ball-shaped valve body 40, a valve holder 41 that accommodates the valve body 40, and the valve holder 41, and a lower end portion of the front seat portion. and a valve casing 42 constituting k. The valve holder 41 is formed by bending a thin plate material, and a valve hole (not shown) is provided at the lower end. The valve body 40 is accommodated in the valve holder 41 so as to be displaceable only in the vertical direction, and the valve hole is opened and closed according to the position.
[0068] 弁ホルダ 41の上端は開口されるとともに、内側に折曲された片部 fを備えている。こ の片部 fが上記弁筐 42側面に設けられる掛止部 gに引掛けられ、弁ホルダ 41は弁筐 42に吊持状態となる。このようにして構成される逆止弁 36は、外径寸法が上記第 2の 吸込み管 16bに形成される拡管部 38にタイトな状態で揷入可能に設定されている。  [0068] The upper end of the valve holder 41 is opened and provided with a piece f bent inward. This piece f is hooked on a latching portion g provided on the side surface of the valve casing 42, and the valve holder 41 is suspended from the valve casing 42. The check valve 36 configured in this way is set so that its outer diameter can be inserted into the expanded portion 38 formed in the second suction pipe 16b in a tight state.
[0069] 弁筐 42の上端部には、上記補助吸込み管 35の拡管加工された下端 mが揷入され る位置決め用段部 hが設けられ、さらに孔部 iが連設される。したがって、弁筐 42には 、上端の位置決め用段部 hから下端面に亘る中心軸に沿って孔部 iが貫通して設けら れる。なお、図 4Aでは第 2の吸込み管 16bの水平部分を直状に図示しており、上述 の曲げ部 37は省略している。 [0069] An upper end portion of the valve housing 42 is provided with a positioning step portion h into which the lower end m of the auxiliary suction pipe 35 that has been expanded is inserted, and a hole portion i is further provided continuously. Accordingly, the valve casing 42 is provided with a hole i passing through the central axis extending from the positioning step h at the upper end to the lower end surface. It is. In FIG. 4A, the horizontal portion of the second suction pipe 16b is illustrated in a straight shape, and the above-described bent portion 37 is omitted.
[0070] 図 4Bに示すように、予め組立てられた逆止弁 36が第 2の吸込み管 16bの拡管部 3 8内に収容され、拡管部 38上端に補助吸込み管 35の下端 mが接続される。具体的 には、弁体 40を弁ホルダ 41内に挿入し、かつ弁ホルダ 41を弁筐 42に掛止して逆止 弁 36を組立て、上記弁筐 42の位置決め用段部 hに補助吸込み管 35の拡管形成し た下端 mを揷入する。 [0070] As shown in FIG. 4B, a preassembled check valve 36 is accommodated in the expanded pipe portion 38 of the second suction pipe 16b, and the lower end m of the auxiliary suction pipe 35 is connected to the upper end of the expanded pipe section 38. The Specifically, the valve body 40 is inserted into the valve holder 41, the valve holder 41 is hooked on the valve housing 42, the check valve 36 is assembled, and the auxiliary suction is inserted into the positioning step h of the valve housing 42. Insert the lower end m of the pipe 35 that has been expanded.
[0071] そのうえで、逆止弁 36を第 2の吸込み管 16bの拡管部 38上端カも揷入する。上述 したように、逆止弁 36外径と拡管部 38内径とはタイトに寸法設定されているので、逆 止弁 36が拡管部 38下端までストレートに落下することはない。逆止弁 36上端と第 2 の吸込み管 16b上端との位置が一致したところで、逆止弁 36の拡管部 38に対する 揷入を停止する。  [0071] In addition, the check valve 36 is also inserted into the upper end of the expanded portion 38 of the second suction pipe 16b. As described above, since the outer diameter of the check valve 36 and the inner diameter of the expanded portion 38 are tightly set, the check valve 36 does not fall straight down to the lower end of the expanded portion 38. When the upper end of the check valve 36 and the upper end of the second suction pipe 16b coincide with each other, the insertion of the check valve 36 into the expanded portion 38 is stopped.
[0072] このあと、拡管部 38上端と逆止弁 36上端及び補助吸込み管 35下端 mが同一位置 となる連結部 dに対して、例えば高周波ロー付け加工をなす。したがって、第 2の吸込 み管 16b上端と逆止弁 36上端及び補助吸込み管 35下端 mがー体に連結される。  [0072] Thereafter, for example, high-frequency brazing is performed on the connecting portion d where the upper end of the expanded portion 38, the upper end of the check valve 36, and the lower end m of the auxiliary suction pipe 35 are in the same position. Therefore, the upper end of the second suction pipe 16b, the upper end of the check valve 36, and the lower end m of the auxiliary suction pipe 35 are connected to the body.
[0073] 逆止弁 36における弁筐 42の弁座部 kの上記ロー付け加工による熱変形を防止す るため、ロー付け部(連結部 d)の下方を水没させる等の冷却手段により、冷却しなが らロー付け加工を行なうことが望ましい。冷却手段としては、水没させること以外に内 部に水や不活性ガスを流しても良い。  [0073] In order to prevent thermal deformation due to the brazing process of the valve seat 42 of the valve housing 42 in the check valve 36, cooling is performed by cooling means such as submerging the lower part of the brazing part (connecting part d). However, it is desirable to perform brazing. As a cooling means, water or an inert gas may be flowed inside, other than submerging.
[0074] 図 4Cに示すように、第 2の分岐管 30Bが用意される。この第 2の分岐管 30Bのほと んど大部分は垂直状態であり、下部において斜めに傾斜し、下端部において水平方 向に折曲される。この水平端部は第 2の吸込み管 16Bに設けられる接続口体 33に揷 入のうえ、高周波ロー付け加工により接続される。  [0074] As shown in FIG. 4C, a second branch pipe 30B is prepared. Most of the second branch pipe 30B is in a vertical state, is inclined obliquely at the lower part, and is bent in the horizontal direction at the lower end part. The horizontal end portion is inserted into a connection port body 33 provided in the second suction pipe 16B and connected by high-frequency brazing.
[0075] このとき、接続口体 33に段部 33dが形成されているので、第 2の分岐管 30B端部を 接続口体 33に揷入し、かつ段部 33dに突き当てることで、第 2の分岐管 30Bの位置 決めと、ロー付けの際の位置ずれ発生がない。  [0075] At this time, since the step portion 33d is formed in the connection port body 33, the end of the second branch pipe 30B is inserted into the connection port body 33 and abuts against the step portion 33d. There is no misalignment during positioning and brazing of the branch pipe 30B.
[0076] そして、第 2の吸込み管 16bにおける接続口体 33の位置は、既に拡管部 38に組み 込まれる逆止弁 36の弁座部 kから遠く離間してレ、るので、第 2の分岐管 30Bと接続口 体 33とのロー付け加工の際の熱影響が及ばずにすむ。なお、熱影響が考えられる 場合は、内部に窒素ガス等の不活性ガスを流しながらロー付け加工を行うことが望ま しい。 [0076] The position of the connection port 33 in the second suction pipe 16b is far away from the valve seat portion k of the check valve 36 that is already incorporated in the expanded pipe portion 38. Branch pipe 30B and connection port The heat effect during brazing with the body 33 is not affected. If there is a thermal effect, it is desirable to perform brazing while flowing an inert gas such as nitrogen gas.
以上の加工成形により、図 5に示すように、第 2の吸込み管 16bに逆止弁 36を収容 し、かつ補助吸込み管 35と第 2の分岐管 30Bを上述したように接続して一体化した サブ組立て体 43が得られる。  By the above processing and molding, as shown in FIG. 5, the check valve 36 is accommodated in the second suction pipe 16b, and the auxiliary suction pipe 35 and the second branch pipe 30B are connected and integrated as described above. Subassembly 43 is obtained.
[0077] 一方、アキュームレータ 17は、図 6A、図 6Bに示すように、軸方向の略中間部にフ ィルタ組立て 45が嵌め込まれたうえで、一体に接続加工される上カップ 17Aと下カツ プ 17Bとから構成される。上カップ 17Aには、上記圧縮機 Cから室外熱交換器 20な ど各冷凍サイクル構成機器を介して延出される冷媒管 18が接続される。下カップ 17 Bには、第 1の吸込み管 16a及びガイドパイプ 34がー部をアキュームレータ 17内に 挿入した状態で取付けられる。  [0077] On the other hand, as shown in FIGS. 6A and 6B, the accumulator 17 has an upper cup 17A and a lower cup which are integrally connected after the filter assembly 45 is fitted in a substantially middle portion in the axial direction. It consists of 17B. The upper cup 17A is connected to a refrigerant pipe 18 extending from the compressor C through each refrigeration cycle component device such as an outdoor heat exchanger 20. A first suction pipe 16a and a guide pipe 34 are attached to the lower cup 17B in a state where the first part is inserted into the accumulator 17.
[0078] すなわち、上記第 1の吸込み管 16aは、垂直部分と水平部分との略 L字状に折曲 形成されている。直状部分が下カップ 17Bを貫通し、上端部がアキュームレータ 17 内のフィルタ組立て 45内まで延出される。下カップ 17Bから下方に突出する部分は、 上記圧縮機 Cに向かって水平方向に延出される。  That is, the first suction pipe 16a is formed in a substantially L shape with a vertical portion and a horizontal portion. The straight portion passes through the lower cup 17B, and the upper end extends to the filter assembly 45 in the accumulator 17. The portion protruding downward from the lower cup 17B extends in the horizontal direction toward the compressor C.
[0079] 上記ガイドパイプ 34は、一部がアキュームレータ 17の内部へ挿入され、他の一部 はアキュームレータ 17から下方に突出する。アキュームレータ 17内の上端開口部 n は、予め内側に折曲され開口量が絞られている。  [0079] A part of the guide pipe 34 is inserted into the accumulator 17, and the other part projects downward from the accumulator 17. The upper end opening n in the accumulator 17 is bent inward in advance to reduce the opening amount.
[0080] 上記アキュームレータ 17に対して冷媒管 18と第 1の吸込み管 16a及びガイドパイ プ 34のいずれも、アキュームレータ 17の貫通部周面に沿ってロー付け加工され、ァ キュームレータ 17の密封状態が損なわれることはなレ、。以上でアキュームレータ 17 の組立てが完了する。  [0080] With respect to the accumulator 17, the refrigerant pipe 18, the first suction pipe 16a, and the guide pipe 34 are all brazed along the peripheral surface of the accumulator 17, and the accumulator 17 is sealed. It will not be damaged. This completes the assembly of the accumulator 17.
[0081] そして、組立てられたアキュームレータ 17におけるガイドパイプ 34の下方部位に第 2の吸込み管 16b等からなる上記サブ組立て体 43を対向し、補助吸込み管 35上端 をガイドパイプ 34下端に宛がつて、補助吸込み管 35をガイドパイプ 34内に揷入する  [0081] Then, the sub-assembly 43 consisting of the second suction pipe 16b and the like is opposed to the lower part of the guide pipe 34 in the assembled accumulator 17, and the upper end of the auxiliary suction pipe 35 is directed to the lower end of the guide pipe 34. Insert the auxiliary suction pipe 35 into the guide pipe 34.
[0082] そのままサブ組立て体 43を上方へ移動することで、補助吸込み管 35全体がガイド パイプ 34内に挿入され、かつガイドパイプ 34の絞られた上端開口部 nに補助吸込み 管 35と逆止弁 36及び第 2の吸込み管 16bのロー付け位置 dが当接し、それ以上の 上昇が規制される。 [0082] By moving the sub-assembly 43 upward as it is, the entire auxiliary suction pipe 35 is guided. The auxiliary suction pipe 35 and the brazed position d of the check valve 36 and the second suction pipe 16b come into contact with the narrowed upper end opening n of the guide pipe 34 and inserted into the pipe 34. Be regulated.
[0083] アキュームレータ 17内において補助吸込み管 35は垂直に立位し、上記第 1の吸込 み管 16aと並行で、かつ互いの上端位置が略一致する。また、ガイドパイプ 34内に 第 2の吸込み管 16bの拡管部 38が嵌め込まれ、ガイドパイプ 34の下端と拡管部 38 の下端位置が略一致する。  [0083] In the accumulator 17, the auxiliary suction pipe 35 stands vertically, and is parallel to the first suction pipe 16a, and the upper end positions thereof substantially coincide with each other. Further, the expanded portion 38 of the second suction pipe 16b is fitted into the guide pipe 34, so that the lower end of the guide pipe 34 and the lower end position of the expanded portion 38 are substantially aligned.
[0084] そして、サブ組立て体 43の位置を仮保持して、ガイドパイプ 34下端と拡管部 38下 端との周面(図 1の符号 cの部分)に沿ってロー付け加工をなす。第 2の吸込み管 16b (サブ組立て体 43)は、ガイドパイプ 34を介してアキュームレータ 17に取付けられる こととなり、逆止弁 36を備えた第 2の吸込み管 16bのアキュームレータ 17への取付け が完了する。このロー付け位置と逆止弁 36の弁座部 kは 10mm以上離間させること が望ましぐさらに 20mm以上離間させることが好ましい。また、内部に窒素ガス等の 不活性ガスを流しながらロー付け加工を行ない、酸化防止を図るとともに、冷却を図 ることが望ましい。  [0084] Then, the position of the sub-assembly 43 is temporarily held, and brazing is performed along the peripheral surface (the portion c in FIG. 1) between the lower end of the guide pipe 34 and the lower end of the expanded portion 38. The second suction pipe 16b (subassembly 43) is attached to the accumulator 17 through the guide pipe 34, and the second suction pipe 16b having the check valve 36 is completely attached to the accumulator 17. . It is desirable that the brazed position and the valve seat k of the check valve 36 be separated from each other by 10 mm or more. In addition, it is desirable to perform brazing while flowing an inert gas such as nitrogen gas inside to prevent oxidation and to cool.
[0085] 上記逆止弁 36は、アキュームレータ 17とは別体にして製作されているので、アキュ 一ムレータ 17を組立てる際の直接の熱影響を受けずにすむ。そして、逆止弁 36は 第 2の吸込み管 16bと補助吸込み管 35とのロー付けの位置 d及び、第 2の分岐管 30 Bと第 2の吸込み管 16bに設けられる接続口体 33とのロー付け位置からも離間してい るので、熱影響が小さぐまた、冷却手段による冷却を行ないながらろう付け加工を行 なうことが可能である。したがって、逆止弁 36の組立て精度が高く保持され、極めて 円滑に作用する。  Since the check valve 36 is manufactured separately from the accumulator 17, it is not necessary to be directly affected by heat when the accumulator 17 is assembled. The check valve 36 is connected to the brazed position d between the second suction pipe 16b and the auxiliary suction pipe 35, and to the connection port body 33 provided in the second branch pipe 30B and the second suction pipe 16b. Since it is also away from the brazing position, the thermal effect is small, and it is possible to perform brazing while cooling with a cooling means. Therefore, the assembly accuracy of the check valve 36 is kept high, and it works extremely smoothly.
[0086] なお、上記実施の形態では、第 2の吸込み管 16bに拡管部 38を形成して逆止弁 3 6を収容するようにしたが、これに限定されるものではなぐ補助吸込み管 35内に逆 止弁を収容するような構成であってもよい。また、第 1の分岐管 30Aの一端は、密閉 ケースに接続するようにしても良レ、。  In the above embodiment, the expanded portion 38 is formed in the second suction pipe 16b to accommodate the check valve 36. However, the auxiliary suction pipe 35 is not limited to this. A configuration in which the check valve is accommodated may be employed. Also, one end of the first branch pipe 30A can be connected to a sealed case.
[0087] さらに、本発明においては上述した実施の形態そのままに限定されるものではなく 、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そ して、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせ により種々の発明を形成できる。 Furthermore, the present invention is not limited to the above-described embodiments as they are, but can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. So Various inventions can be formed by appropriately combining a plurality of components disclosed in the above-described embodiments.
産業上の利用可能性 Industrial applicability
本発明によれば、負荷の大小に応じて運転切換えをなして使用範囲の拡大化を図 り、アキュームレータへの冷媒の逆流を確実に阻止して冷凍サイクル効率の向上化 を得られ、かつ熱的悪影響を防止して信頼性を保持する等の効果を奏する。  According to the present invention, the range of use can be expanded by switching the operation according to the magnitude of the load, the reverse flow of the refrigerant to the accumulator can be reliably prevented, the refrigeration cycle efficiency can be improved, and the heat can be increased. Effects such as maintaining reliability by preventing adverse effects.

Claims

請求の範囲 The scope of the claims
[1] 密閉ケース内に、電動機部及び、この電動機部と連結される複数組のロータリ式圧 縮機構部を収容してなり、上記密閉ケース外に設けられたアキュームレータからそれ ぞれ吸込み管を介して冷媒を上記各圧縮機構部に吸込み、各圧縮機構部において 圧縮したあと密閉ケース内空間を介して吐出するロータリ式密閉型圧縮機と、 このロータリ式密閉型圧縮機と、冷媒管を介して連通される冷凍サイクル構成部品 とから構成される冷凍サイクル回路と、  [1] A motor case and a plurality of sets of rotary compression mechanisms connected to the motor unit are accommodated in the sealed case, and suction pipes are respectively provided from the accumulators provided outside the sealed case. The rotary type hermetic compressor that sucks the refrigerant into the respective compression mechanism parts and compresses the refrigerant in each compression mechanism part and then discharges it through the space inside the sealed case, the rotary type hermetic compressor, and the refrigerant pipe. A refrigeration cycle circuit composed of refrigeration cycle components communicated with each other,
上記ロータリ式密閉型圧縮機における一方の圧縮機構部に対し、負荷の大小に応 じて、低圧ガスを導いて通常の圧縮運転を行わせ、もしくは高圧ガスを導いて圧縮運 転を停止させるよう切換える圧力切換え手段とを具備し、  Depending on the size of the load, one compression mechanism in the rotary type hermetic compressor may introduce a low pressure gas to perform a normal compression operation, or introduce a high pressure gas to stop the compression operation. Pressure switching means for switching,
上記圧力切換え手段は、  The pressure switching means is
一端部が電磁開閉弁を介して冷凍サイクルの高圧側に接続され、他端部が上記ァ キュームレータと一方の圧縮機構部とを連通する吸込み管に接続される分岐管と、 上記吸込み管の上記アキュームレータ内に突出する端部に接続される補助吸込み 管と、  A branch pipe having one end connected to the high pressure side of the refrigeration cycle via an electromagnetic on-off valve and the other end connected to a suction pipe communicating the accumulator and one compression mechanism; and An auxiliary suction pipe connected to an end protruding into the accumulator;
この補助吸込み管もしくは上記吸込み管のいずれか一方に装着され、アキユームレ ータ内への冷媒の逆流を阻止する逆止弁と、  A check valve that is attached to either the auxiliary suction pipe or the suction pipe and prevents the refrigerant from flowing back into the accumulator;
上記吸込み管もしくは補助吸込み管をアキュームレータに取付け保持するガイドパ イブと  A guide pipe for attaching and holding the suction pipe or the auxiliary suction pipe to the accumulator;
を具備することを特徴とする冷凍サイクル装置。  A refrigeration cycle apparatus comprising:
[2] 上記吸込み管は、上記分岐管を接続するためのバルジ成形加工がなされた接続 口体を備えるとともに、上記逆止弁を装着するための拡管部を備え、この拡管部に上 記補助吸込み管が一体に連結されることを特徴とする請求項 1記載の冷凍サイクル 装置。  [2] The suction pipe includes a connection port body that is bulged to connect the branch pipe, and has a pipe expansion section for mounting the check valve. 2. The refrigeration cycle apparatus according to claim 1, wherein the suction pipe is integrally connected.
[3] 上記吸込み管は、上記圧縮機構部との接続部よりも下方に突出成形される曲げ部 を有することを特徴とする請求項 1記載の冷凍サイクル装置。  [3] The refrigeration cycle apparatus according to claim 1, wherein the suction pipe has a bent portion that projects downward from a connection portion with the compression mechanism portion.
[4] 上記吸込み管は、上記圧縮機構部との接続部よりも下方に突出成形される曲げ部 を有することを特徴とする請求項 2記載の冷凍サイクル装置。 密閉ケース内に、電動機部及び、この電動機部と連結される複数組のロータリ式圧 縮機構部を収容してなり、上記密閉ケース外に設けられたアキュームレータからそれ ぞれ吸込み管を介して冷媒を上記各圧縮機構部に吸込み、各圧縮機構部において 圧縮したあと密閉ケース内空間を介して吐出するロータリ式密閉型圧縮機において、 一端部が電磁開閉弁を介して冷凍サイクルの高圧側に接続され、他端部が上記ァ キュームレータと一方の圧縮機構部とを連通する吸込み管に接続される分岐管と、 上記吸込み管の上記アキュームレータ内に突出する端部に接続される補助吸込み 管と、 4. The refrigeration cycle apparatus according to claim 2, wherein the suction pipe has a bent portion that is formed to project downward from a connection portion with the compression mechanism portion. A sealed case contains a motor part and a plurality of sets of rotary compression mechanisms connected to the motor part. Refrigerant from the accumulator provided outside the sealed case via a suction pipe. In a rotary type hermetic compressor that sucks the air into each compression mechanism, compresses in each compression mechanism, and then discharges it through the space inside the sealed case. A branch pipe connected at the other end to a suction pipe communicating the accumulator and one compression mechanism, and an auxiliary suction pipe connected to an end of the suction pipe protruding into the accumulator. ,
この補助吸込み管もしくは上記吸込み管のいずれか一方に装着され、アキユームレ ータ内への冷媒の逆流を阻止する逆止弁と、  A check valve which is attached to either the auxiliary suction pipe or the suction pipe and prevents the refrigerant from flowing back into the accumulator;
上記吸込み管もしくは補助吸込み管をアキュームレータに取付け保持するガイドパ イブとを有する圧力切換え手段  Pressure switching means having a guide pipe for attaching and holding the suction pipe or auxiliary suction pipe to the accumulator
を具備することを特徴とするロータリ式密閉型圧縮機。  A rotary hermetic compressor characterized by comprising:
PCT/JP2005/023031 2005-01-04 2005-12-15 Refrigerating cycle device and rotary hermetic compressor WO2006073048A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006550669A JP4700624B2 (en) 2005-01-04 2005-12-15 Refrigeration cycle apparatus and rotary hermetic compressor
US11/772,885 US20080092586A1 (en) 2005-01-04 2007-07-03 Refrigerating cycle device and sealed-type rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-000226 2005-01-04
JP2005000226 2005-01-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/772,885 Continuation US20080092586A1 (en) 2005-01-04 2007-07-03 Refrigerating cycle device and sealed-type rotary compressor

Publications (1)

Publication Number Publication Date
WO2006073048A1 true WO2006073048A1 (en) 2006-07-13

Family

ID=36647533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023031 WO2006073048A1 (en) 2005-01-04 2005-12-15 Refrigerating cycle device and rotary hermetic compressor

Country Status (5)

Country Link
US (1) US20080092586A1 (en)
JP (1) JP4700624B2 (en)
KR (1) KR20070086908A (en)
CN (1) CN101094992A (en)
WO (1) WO2006073048A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150184906A1 (en) * 2012-08-09 2015-07-02 Thermo King Corporation Methods and devices to prevent fluid migration in a refrigeration system during an off cycle
CN104807228A (en) * 2014-01-23 2015-07-29 三星电子株式会社 Cooling apparatus and compressor
EP3757391A1 (en) * 2019-06-25 2020-12-30 LG Electronics Inc. Suction valve assembly of compressor
CN112412793A (en) * 2019-08-23 2021-02-26 广东美芝制冷设备有限公司 Compressor and refrigeration cycle device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111382B (en) 2004-12-03 2010-05-26 富士胶卷迪马蒂克斯股份有限公司 Printheads and systems using printheads
WO2009018150A1 (en) * 2007-07-27 2009-02-05 Johnson Controls Technology Company Multichannel heat exchanger
KR101409876B1 (en) * 2008-08-22 2014-06-20 엘지전자 주식회사 Variable capacity type rotary compressor and refrigerator having the same and method for driving thereof
PL2494292T3 (en) 2009-10-27 2019-12-31 Carrier Corporation Hybrid refrigeration system for a mobile unit and method of operation
WO2012160832A1 (en) * 2011-05-26 2012-11-29 パナソニック株式会社 Refrigeration cycle device
JP6071190B2 (en) * 2011-12-09 2017-02-01 東芝キヤリア株式会社 Multi-cylinder rotary compressor and refrigeration cycle apparatus
CN203362447U (en) * 2013-04-26 2013-12-25 珠海格力电器股份有限公司 Compressor pipeline assembly and air conditioner
WO2016113785A1 (en) * 2015-01-15 2016-07-21 パナソニックIpマネジメント株式会社 Refrigeration cycle device and compressor used in same
CN112360738B (en) * 2020-10-23 2022-12-16 珠海格力节能环保制冷技术研究中心有限公司 Variable-capacity compressor and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597367U (en) * 1982-07-07 1984-01-18 三菱電機株式会社 Accumulator for refrigerant compressor
JP2003206865A (en) * 2002-01-18 2003-07-25 Fujitsu General Ltd Closed compressor
JP2004301114A (en) * 2003-03-18 2004-10-28 Toshiba Kyaria Kk Rotary type closed compressor and refrigerating cycle device
WO2004113731A1 (en) * 2003-06-20 2004-12-29 Toshiba Carrier Corporation Rotary-type enclosed compressor and refrigeration cycle apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597367U (en) * 1982-07-07 1984-01-18 三菱電機株式会社 Accumulator for refrigerant compressor
JP2003206865A (en) * 2002-01-18 2003-07-25 Fujitsu General Ltd Closed compressor
JP2004301114A (en) * 2003-03-18 2004-10-28 Toshiba Kyaria Kk Rotary type closed compressor and refrigerating cycle device
WO2004113731A1 (en) * 2003-06-20 2004-12-29 Toshiba Carrier Corporation Rotary-type enclosed compressor and refrigeration cycle apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150184906A1 (en) * 2012-08-09 2015-07-02 Thermo King Corporation Methods and devices to prevent fluid migration in a refrigeration system during an off cycle
CN104807228A (en) * 2014-01-23 2015-07-29 三星电子株式会社 Cooling apparatus and compressor
US10365021B2 (en) 2014-01-23 2019-07-30 Samsung Electronics Co., Ltd. Cooling apparatus and compressor
EP3757391A1 (en) * 2019-06-25 2020-12-30 LG Electronics Inc. Suction valve assembly of compressor
US11111920B2 (en) 2019-06-25 2021-09-07 Lg Electronics Inc. Suction valve assembly for a compressor and a compressor having a suction valve assembly
CN112412793A (en) * 2019-08-23 2021-02-26 广东美芝制冷设备有限公司 Compressor and refrigeration cycle device
CN112412793B (en) * 2019-08-23 2022-08-23 广东美芝制冷设备有限公司 Compressor and refrigeration cycle device

Also Published As

Publication number Publication date
US20080092586A1 (en) 2008-04-24
JPWO2006073048A1 (en) 2008-06-12
JP4700624B2 (en) 2011-06-15
KR20070086908A (en) 2007-08-27
CN101094992A (en) 2007-12-26

Similar Documents

Publication Publication Date Title
WO2006073048A1 (en) Refrigerating cycle device and rotary hermetic compressor
JP4447859B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
JP4343627B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
US8857200B2 (en) Compressor having capacity modulation or fluid injection systems
JP5005579B2 (en) Hermetic compressor and refrigeration cycle apparatus
KR0147883B1 (en) Fluid compressor
EP0987501A2 (en) Air conditioner
JP4594301B2 (en) Hermetic rotary compressor
WO2005061901A1 (en) Freezing cycle device
JP4219198B2 (en) Refrigerant cycle equipment
JPWO2007023904A1 (en) Hermetic compressor and refrigeration cycle apparatus
JP4039921B2 (en) Transcritical refrigerant cycle equipment
US20060104846A1 (en) Scroll compressor
JP4398321B2 (en) Refrigeration cycle equipment
JP2003254276A (en) Rotary compressor
CN114641617A (en) Scroll compressor and refrigeration cycle device
KR102403950B1 (en) High pressure compressor and refrigerating machine having the same
WO2023144953A1 (en) Compressor and refrigeration cycle device
CN109154296B (en) Hermetic rotary compressor and refrigerating and air-conditioning apparatus
JP4634191B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP2003201981A (en) Rotary compressor
JP2005344683A (en) Hermetic compressor
JP2003254272A (en) Rotary compressor
JP2021017852A (en) Compressor, outdoor unit and air conditioning device
WO2006126399A1 (en) Hermetic compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550669

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580045710.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11772885

Country of ref document: US

Ref document number: 1020077015259

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05816865

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5816865

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11772885

Country of ref document: US