WO2006070756A1 - Wireless receiving apparatus, wireless transmitting apparatus, and interference signal removing method - Google Patents

Wireless receiving apparatus, wireless transmitting apparatus, and interference signal removing method Download PDF

Info

Publication number
WO2006070756A1
WO2006070756A1 PCT/JP2005/023808 JP2005023808W WO2006070756A1 WO 2006070756 A1 WO2006070756 A1 WO 2006070756A1 JP 2005023808 W JP2005023808 W JP 2005023808W WO 2006070756 A1 WO2006070756 A1 WO 2006070756A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
signal
interference signal
subcarriers
symbols
Prior art date
Application number
PCT/JP2005/023808
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Miyoshi
Akihiko Nishio
Daichi Imamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006550769A priority Critical patent/JP4836806B2/en
Priority to EP05820380A priority patent/EP1830502A4/en
Priority to US11/722,856 priority patent/US20080192857A1/en
Priority to CN2005800452366A priority patent/CN101091341B/en
Publication of WO2006070756A1 publication Critical patent/WO2006070756A1/en
Priority to US13/316,249 priority patent/US8401100B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining

Definitions

  • Radio receiving apparatus radio transmitting apparatus, and interference signal elimination method
  • the present invention relates to a radio reception device, a radio transmission device, and an interference signal removal method.
  • Multicarrier communication such as OFDM (Orthogonal Frequency Division Multiplexing) has attracted attention as one of frequency selective fading countermeasure techniques.
  • Multi-carrier communication is a technology that results in high-speed transmission by transmitting data using multiple carriers (subcarriers) whose transmission speed is suppressed to such an extent that frequency-selective fading does not occur.
  • subcarriers multiple carriers
  • frequency utilization efficiency is high even in multicarrier communication, and it can be realized with a relatively simple hardware configuration. In particular, it is attracting attention, and various studies are being conducted.
  • AAA adaptive 'array' antenna
  • Patent Document 1 discloses a technique relating to quick and accurate estimation of an optimum weight in a receiving apparatus that combines an OFDM scheme and AAA technology.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-218759
  • AAA technology can remove as many interference signals as the number of antennas.
  • the receiving device described in Patent Document 1 needs to include N + 1 antennas.
  • the number of receiving devices described in Patent Document 1 is NXM + 1. It is necessary to provide a large number of antennas.
  • An object of the present invention is to provide a radio reception apparatus, radio transmission apparatus, and interference signal removal method capable of efficiently removing an interference signal in multicarrier communication.
  • the radio reception apparatus of the present invention includes a receiving means for receiving a multicarrier signal including a plurality of subcarriers to which a plurality of identical symbols are mapped, and an interference signal from the multicarrier signal using the plurality of identical symbols. And an interference removing means for removing the noise.
  • FIG. 4 Diagram showing the operating principle of the present invention.
  • Block diagram showing the configuration of the base station according to Embodiment 1 of the present invention Block diagram showing the configuration of the mobile station according to Embodiment 1 of the present invention.
  • FIG. 25 A block diagram showing a configuration of a mobile station according to Embodiment 8 of the present invention. 25] A diagram showing a mapping pattern according to Embodiment 8 of the present invention.
  • OFDM symbols that are multicarrier signals have a very low symbol rate
  • OFDM symbols received in a multipath environment are combined signals of multiple paths, regardless of the number of multipaths. Is received as a characteristic. Therefore, when each of the desired signal and the interference signal is received by the mobile station via the multipath in the OFDM scheme, the mobile station, as shown in FIG. The signal is received as a combined signal.
  • each subcarrier # 1 to # 4 of the OFDM symbol when there are N interference signal sources, one desired signal and N interference signals are combined regardless of the number of multipaths. Can be considered as received.
  • N interference signal sources regardless of the number of multipaths
  • for each subcarrier there is one desired signal for Rayleigh fading for one path and N interference signals for Rayleaf aging for one path. It can be considered to exist. This situation is shown in Figs.
  • each subcarrier # 1 to # 4 receives a symbol in which an interference signal is added to a desired signal. Therefore, in OFDM, when there are N interference signal sources, it is possible to obtain a desired signal by removing N interference signals received at each subcarrier regardless of the number of multipaths.
  • the OFDM reception signal is Rayleigh fading when viewed for each subcarrier. The point is that the signal will be received.
  • N + 1 antennas are required to receive a composite signal of one desired signal and N interference signals.
  • the signals received by the N + 1 antennas include a desired signal and an interference signal, respectively.
  • the weights obtained by MMSE processing are multiplied by the signals received by the respective antennas, and the signals after weight multiplication are synthesized.
  • the received signal power N interference signals can be removed to obtain one desired signal.
  • each subcarrier # 1 to # 4 as shown in Fig. 1 is regarded as each antenna in AAA technology, and each subcarrier constituting the OFDM symbol. If the same symbol is mapped to the four subcarriers # 1 to # 4 as the desired signal, and MMSE processing similar to the AAA technology is performed for each subcarrier # 1 to # 4, multiple subcarriers # 1 to # 4 can be used for OFDM wireless communication. Even when there are many paths, the mobile station can cancel all the interference signals transmitted from the three interference signal sources.
  • a mobile station can remove all interference signals transmitted from three interference signal sources as long as it has only one antenna, regardless of the number of multipaths that do not need to have multiple antennas. it can.
  • OFDM communication to eliminate the interference signals transmitted from N interference signal sources from the received signal, even if there are many multipaths, one mobile station antenna is sufficient, and the desired It is sufficient to have N + 1 subcarriers with the same symbol mapped as the signal.
  • a plurality of subcarriers to which the same symbol is mapped are regarded as a plurality of antennas in AAA technology, and MMSE processing is performed on the plurality of the same symbols on the frequency axis. This eliminates the interference signal contained in the OFDM symbol.
  • desired signal D
  • interference signal U
  • channel estimation value of channel of desired signal at antenna n h
  • the received signal R at the antenna n is represented by the equation (1).
  • the received signal R-force interference signal: U is removed by multiplying the signal received by antenna n by the weight: W received by antenna n, which is obtained by MMSE processing according to Equation (2), and combining the signals. Desired signal: D can be obtained.
  • P is a P vector generated by channel estimation value: h and channel estimation value: h force.
  • the received signal at each antenna is given by equation (3). It is done.
  • channel estimation value of propagation path in desired signal D
  • interference signal U
  • subcarrier m of desired signal h
  • channel estimation value of propagation path in subcarrier m of interference signal Assuming h, the received signal Q on subcarrier m:
  • the received signal m is obtained by multiplying the signal received by the subcarrier m by W: the weight at the subcarrier m determined by the MMSE processing according to the equation (5), and combining the signal received by the subcarrier m.
  • P is the channel estimate: h and the channel estimate is: h force
  • the antenna number n is equal to the subcarrier number. It can be seen that the rest is expressed in exactly the same way, only by changing to issue m.
  • FIG. 5 shows the configuration of radio communication base station apparatus (hereinafter abbreviated as base station) 100 according to the present embodiment. Further, FIG. 6 shows the configuration of mobile station 200 according to the present embodiment.
  • base station radio communication base station apparatus
  • encoding section 101 encodes transmission data (bit string) and outputs the encoded data to modulation section 102.
  • Modulating section 102 generates a symbol by modulating the encoded bit string, and outputs the symbol to repetition section 103.
  • the S / P unit 104 receives K symbols of a plurality of subcarriers # 1 to #K constituting an OFDM symbol that is a multicarrier signal each time the symbols are input in series from the levitation unit 103. Are converted to parallel and output to IFFT section 105.
  • IFFT section 105 converts the symbol input from SZP section 104 into IFFT (Inverse Fast Fourier
  • Transform inverse fast Fourier transform
  • map each of subcarriers # 1 to #K according to a predetermined mapping pattern (arrangement pattern) to generate an OFDM symbol.
  • IFFT section 105 IFFTs the pilot symbol (PL) at the head of the frame and maps it to each of subcarriers # 1 to #K to generate an OFDM symbol.
  • the lOFDM symbol is composed of 8 subcarriers of subcarriers # 1 to # 8. To be made.
  • the OFDM symbol generated in this manner is added with a guard interval by the GI adding unit 106, and then subjected to predetermined radio processing such as amplifier conversion by the transmission RF unit 107. Is transmitted wirelessly.
  • mapping pattern in the present embodiment is as shown in FIG. 7, for example.
  • an OFDM symbol transmitted from base station 100 is received via antenna 201.
  • the received OFDM symbol includes the interference signal transmitted from the interference signal source in addition to the desired signal transmitted from the base station 100.
  • This interference signal is an OFDM symbol having the same frequency as the frequency # 1 to # 8 of the OFDM symbol transmitted from the base station 100, and is an OFDM symbol or mobile station transmitted from another base station other than the base station 100. OFDM symbols transmitted from other mobile stations other than 200.
  • antenna 108 of base station 100 is a sector antenna composed of a plurality of antennas
  • the transmitted OFDM symbol is also an interference signal from the antenna power for sectors other than the sector where mobile station 200 is located.
  • the OFDM symbol including the desired signal and the interference signal is subjected to predetermined radio processing such as down-conversion by the reception RF unit 202, and then the guard interval is removed by the GI removal unit 203, so that the FFT Input to part 204.
  • the FFT unit 204 converts the OFDM symbol input from the GI removal unit 203 into an FFT (Fast Fourier
  • Transform Fast Fourier transform
  • selection section 205 outputs pilot symbols mapped to subcarriers # 1 to # 8 to channel estimation section 206.
  • selection section 205 selects a plurality of identical symbols according to a mapping pattern when OFDM symbol is generated in base station 100, and correlation value calculation section 207 and multiplier 209—! ⁇ 209— Output to N. Specifically, in FIG.
  • Channel estimation section 206 uses input pilot symbols to generate subcarriers # 1 to
  • Channel estimation section 206 then generates a P vector from the channel estimation value and outputs it to MMSE processing section 208. For example, in tl in which four symbols S1 mapped to subcarriers # 1 to # 4 are selected by selection section 205, channel estimation section 206 uses channel estimation values h to h of subcarriers # 1 to # 4. From equation (7)
  • Correlation value calculation section 207 obtains a cross-correlation value between subcarriers of the same symbol. For example, when four symbols S1 mapped to subcarriers # 1 to # 4 are input, correlation value calculation section 207 performs mutual correlation between these four symbols between subcarriers # 1 to # 4. Find the correlation value. Correlation value calculation section 207 generates an R matrix from the cross-correlation values, obtains an inverse matrix of the R matrix, and outputs it to MMSE processing section 208. For example, the selection unit 20 In tl in which four symbols SI mapped to subcarriers # 1 to # 4 are selected by 5, correlation value calculation section 207 uses cross-correlation values X to x between subcarriers # 1 to # 4.
  • the MMSE processing unit 208 includes a P vector (P) input from the channel estimation unit 206, an inverse matrix (R _ 1 ) of the R matrix input from the correlation value calculation unit 207, and a force equation (9).
  • the weights W (W to W) are obtained by performing the MMSE processing using the matrix operation shown in Fig. 1, and the multipliers 209—:! To 209— N
  • the correlation value calculating unit 207, the MMSE processing unit 208, the multipliers 209 —:! To 209 — N and the combining unit 210 constitute an interference removing unit 213.
  • the combined signal generated in this way is demodulated by the demodulator 211 and then decoded by the decoder 212. Decrypted. As a result, received data is obtained.
  • a plurality of subcarriers in an OFDM symbol are regarded as a plurality of antennas in AAA technology, and MMSE processing similar to that in AAA technology is applied to a plurality of subcarriers in OFDM symbol.
  • this embodiment is particularly effective in a mobile communication system that is divided into a plurality of sectors in the angular direction by a sector antenna having a communication area (cell) force directivity covered by one base station. It is. Since the signals transmitted to each of the divided sectors are signals transmitted from multiple antennas of one base station, inter-sector interference is less than inter-cell interference regardless of where the mobile station is located. Therefore, the interference signal level tends to increase. Therefore, for inter-sector interference, even if the desired signal level is increased, the improvement effect of SIR (Signal to Interference Ratio) is small compared to inter-cell interference. SIR can be increased by reducing the SIR.
  • SIR Signal to Interference Ratio
  • FIG. 8 shows the configuration of base station 300 according to the present embodiment.
  • Base station 300 further includes an interleaver 301 in addition to the configuration of base station 100 (FIG. 5) according to Embodiment 1.
  • a plurality of repeated identical symbols may be interleaved on the frequency axis in order to further enhance the diversity effect in the frequency axis direction.
  • a plurality of repeated identical symbols are placed on the time axis. Can be interleaved.
  • the mapping pattern of the repeated desired signal to the subcarrier and the repeated interference signal is the same. That is, in mobile station 200 according to Embodiment 1, in order to obtain the desired signal by removing the interference signal as well as the received signal power, it is necessary that the desired signal and the interference signal are arranged on the frequency axis in the same pattern. That is, when the same symbol of the desired signal is mapped to subcarriers # 1 to # 4, the interference signal needs to be mapped to subcarriers # 1 to # 4 as well. Therefore, the interleaver 301 of the desired signal source and the interleaver 301 of the interference signal source need to perform interleaving on the frequency axis of the same symbol that has been repeated in the same interleaving pattern.
  • interleaver 301 interleaves the symbols shown in FIG. 7 as shown in FIG. At this time, the desired signal and the interference signal have the same interleave pattern in the frequency axis direction.
  • the interleaver 301 performs interleaving for each OFDM symbol (for each column) without performing interleaving for each symbol. In this way, the mapping pattern of the desired signal that has been repeated to the subcarrier and the mapping pattern of the repeated interference signal to the subcarrier can be made the same in the frequency axis direction.
  • the interference signal can be reliably removed from.
  • the interleaving pattern of interleaving in the time axis direction can be made different between the desired signal and the interference signal.
  • mapping pattern of the interference signal source is illustrated in FIG. 10 with respect to the mapping pattern of the desired signal source (FIG. 9).
  • symbol S1 which is the desired signal
  • symphonor S7 ' which is the interference signal
  • the combination of the desired signal and the interference signal in subcarriers # 1, # 3, # 5, and # 7 can all be the same, and the desired signal and the interference signal can be mixed.
  • the frequency axis direction It is possible to prevent a decrease in interference removal performance due to a difference in interleave pattern.
  • Cell This is particularly effective in a mobile communication system that is divided into a plurality of sectors in the angle direction by a sector antenna with 1S and directivity.
  • a signal is transmitted from the same base station to adjacent sectors. Therefore, in the base station, an interleave pattern of a desired signal and an interference signal in the mobile station 200 is transmitted. This is because it is easy to make the same.
  • signaling between base stations in different cells is required.
  • processing within the same base station is sufficient. Because.
  • the interleaving pattern of the interleaving in the time axis direction can be made different between the desired signal and the interference signal as described above, the symbol time for each mobile station It is possible to vary the interleaving interval in the axial direction. For example, the interleaving interval on the time axis for a mobile station with a fast moving speed is shortened to reduce the delay due to the interleaving, and the interleaving interval on the time axis for a mobile station with a slow moving speed is lengthened. Can be improved.
  • the processing amount of matrix operation in MMSE processing increases as RF (revision factor) increases. Therefore, in the present embodiment, the MMSE process is divided and performed.
  • FIG. 11 shows the configuration of mobile station 400 according to the present embodiment.
  • the same components as those of mobile station 200 (FIG. 6) according to Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the internal configuration of 403-3 is the same as the internal configuration of the interference removal unit 213 in FIG.
  • selection section 401 outputs the pilot symbols mapped to subcarriers # 1 to # 8 to channel estimation section 402. In addition, selection section 401 selects a plurality of identical symbols according to the mapping pattern at the time of OFDM symbol generation in base station 100, and provides interference cancellation sections 403-1 and 403-2 with each other. Output.
  • selection section 401 has subcarrier # 1,
  • Two symbols S1 mapped to # 3 are output to interference canceller 403-1 and two symbols S1 mapped to subcarriers # 2 and # 4 are output to interference canceller 403-2.
  • subcarriers # 1 and # 3 are combined, and subcarriers # 2 and # 4 are combined by combining the subcarriers having the smallest correlation between the subcarriers as much as possible. This is to ensure that the inverse of the R matrix can be generated at 403_2.
  • Channel estimation section 402 outputs the P-vector generated from the channel estimation values of subcarriers # 1 and # 3 to interference cancellation section 403-1 and generates it from the channel estimation values of subcarriers # 2 and # 4. The generated P vector is output to the interference canceller 403_2.
  • the MMSE processing is performed using the inverse ⁇ IJ of the 2-by-2 R matrix and the P-vector of 2-by-1 column, and the combined signal interferes.
  • Output to removal section 40 3-3 That is, first, as the first-stage MMSE process, the MMSE process corresponding to RF / 2 is performed in the interference cancellers 403-1 and 403-2.
  • interference canceller 403-1 multiplies channel estimation values of subcarriers # 1 and # 3 by weights W and W obtained by MMSE processing, respectively, and adds them (combined channel estimation).
  • Constant value is output to interference canceller 403-3, which then multiplies the channel estimation values of subcarriers # 2 and # 4 by weights W and W obtained by MMSE processing.
  • the interference canceller 403-3 performs the MMSE process corresponding to the remaining RF / 2.
  • the interference canceller 403-3 uses the inverse matrix of the 2-by-2 R matrix generated by the two combined signal forces and the 2-by-1 P vector generated from the two combined channel estimates.
  • MMSE processing is performed, and the combined signal is output to demodulator 211.
  • the combined signal output from the interference removing unit 403-3 is a signal from which the interference signal is removed, like the combined signal output from the interference removing unit 213 in FIG.
  • the MMSE processing in Embodiment 1 is performed in two stages, so the processing amount of matrix operation in MMSE processing can be reduced.
  • the R matrix is 2 rows 2 ⁇ lj and the P vector is 2 rows 1 column, so the effect of reducing the amount of computation is great.
  • the force described when the desired signal repetition factor and the interference signal repetition factor are the same. Even when the desired signal repetition factor and the interference signal repetition factor differ, In this way, the interference signal can be removed from the received signal.
  • the mobile station 400 adopting the configuration shown in the figure can remove interference signals as follows.
  • selection section 401 maps subcarriers in which symbol S1 'in FIG. 12 exists as an interference signal, ie, subcarriers # 1 and # 2 2
  • the two symbols S1 are output to the interference canceller 403-1 and the two subcarriers S2 'in Fig. 12 exist as interference signals, that is, the two symbols S1 mapped to subcarriers # 3 and # 4. Output to part 403-2.
  • Channel estimation section 402 outputs the P-vector generated from the channel estimation values of subcarriers # 1 and # 2 to interference cancellation section 403-1 and generates it from the channel estimation values of subcarriers # 3 and # 4.
  • the generated P vector is output to the interference canceller 403_2.
  • the MMSE process is performed using the inverse 2 IJ of the 2-by-2 R matrix and the P-vector of 2-by-1 column, and the combined signal interferes. Output to removal section 40 3-3.
  • interference canceller 403-1 multiplies channel estimation values of subcarriers # 1 and # 2 by weights W and W obtained by MMSE processing, and adds them (combined channel estimation).
  • Constant value is output to interference canceller 403-3, which then multiplies the channel estimation values of subcarriers # 3 and # 4 by weights W and W obtained by MMSE processing.
  • the interference canceller 403-3 has a 2-row 2-column inverse matrix generated from two combined signals and a 2-row 1-column P vector generated from two combined channel estimation values. Are used to perform M MSE processing, and the combined signal is output to the demodulation section 211.
  • the interference signal can be removed from the received signal in this manner.
  • the received signal force interference signal can be removed in the same manner as described above.
  • the interference signal can be removed by the mobile station 200 having the configuration shown in FIG. 6 as follows.
  • selection section 205 includes subcarriers # 1- # By selecting and outputting two symbols mapped to 8 sequentially, it is possible to remove the interference signal as well as the received signal strength in the same manner as in the first embodiment.
  • the repetition factor and the mapping pattern of the base station of the desired signal source and the base station of the interference signal source are determined.
  • the mapping pattern of the desired signal and the mapping pattern of the interference signal are made the same in at least two symbols. Also, as shown in FIGS. 16 and 17, even when the mapping patterns of FIGS. 7 and 13 are interleaved on the frequency axis, the mapping pattern of the desired signal and the interference signal Make the mapping pattern the same.
  • the mapping pattern of the desired signal and the mapping pattern of the interference signal are the same in at least two symbols as described above.
  • the interference signal is removed from the received signal to obtain the desired signal.
  • FIG. 18 shows the configuration of the mobile communication system according to the present embodiment. As shown in FIG. 18, in this embodiment, mobile station MS power is communicating with base station BS and cell A
  • the base station BS for the mobile station MS, the base station BS
  • base station BS becomes the interference signal source. That is, base station BS power
  • the signal transmitted to mobile station MS located in cell A is the desired signal for mobile station MS.
  • the signal transmitted from the base station BS to the mobile station MS located in the cell B is the mobile station M.
  • the base station BS interference signal source
  • the mobile station MS have multiple antennas (in Fig. 18).
  • the mobile station MS removes the interference signal in the same manner as described above.
  • mapping pattern of the desired signal source at the base station BS is shown in FIG.
  • the mapping pattern for one antenna is shown in Fig. 15.
  • the mapping pattern for the other antenna is as shown in FIG. In this way, by making the mapping pattern of the desired signal and the mapping pattern of the interference signal transmitted from the two antennas the same in the frequency axis direction, the base station BS of the interference signal source performs MIMO communication. Even in this case, the mobile station MS
  • Interference signals can be removed from the signal.
  • the repetition factor is L
  • L interference signals can be removed. Therefore, in the mobile station MS, the base station BS is the best.
  • the case where the desired signal is not transmitted by MIMO and the interference signal is transmitted by M1 MO is shown as an example.
  • the desired signal is transmitted by MIMO and the interference signal is not transmitted by MIMO.
  • the interference signal can be removed in the same manner as described above.
  • the mobile station can remove the received signal strength interference signal and obtain the desired signal. You can.
  • FIG. 20 shows the configuration of base station 500 according to the present embodiment.
  • Base station 500 further includes a scrambling unit 501 in addition to the configuration of base station 300 (FIG. 8) according to Embodiment 2.
  • the scrambling part 501 applies a 0 VSF (Orthogonal) to the interleaved symbol.
  • Scrambling is applied to each symbol by complex multiplication of one of Variable Spreading Factor (VOLD code, PN code, or rotation code.
  • Variable Spreading Factor Variable Spreading Factor
  • GOLD code GOLD code
  • PN code PN code
  • rotation code PN code
  • these codes used for the scrambling process may be used differently for each channel or each mobile station.
  • the mobile station By performing such scrambling processing, it is possible to reduce the influence of interference on the mobile station that receives the transmission signal from base station 500 and the interference signal. Therefore, even when a mobile station that receives a transmission signal from the base station 500 as an interference signal does not have the interference removal function as described above, the mobile station can receive an interference signal from the base station 500 by scrambling. Is whitened, the influence of interference can be reduced.
  • FIG. 21 shows the configuration of the mobile communication system according to the present embodiment. As shown in FIG. 21, in the present embodiment, mobile station MS power is communicating with base station BS, and cell A
  • the base station BS becomes a desired signal source, and the base station BS and the base station BS become interference signal sources.
  • the received signal is the interference signal B for the mobile station MS, and is positioned from the base station BS to the cell C.
  • the signal transmitted to the mobile station is the interference signal C for the mobile station MS. Also book
  • the mobile station MS includes a plurality of antennas (two in FIG. 21). This
  • the mobile station MS has a plurality of interference signals (interference signals B And the interference signal c) can be removed.
  • mapping pattern of the desired signal source at the base station BS is shown in FIG.
  • mapping pattern is as shown in FIG.
  • mapping pattern in is matched with the mapping pattern in the base station BS.
  • the mapping pattern in the base station BS which is another interference signal source, is changed.
  • interference signal B interference signal in which the mapping pattern is matched with a desired signal and a mapping pattern in accordance with the desired signal
  • interference signals interference signal C
  • the mobile station BS is equipped with multiple antennas, the mobile station BS
  • interference signal B and interference signal C can be removed from the received signal.
  • FIG. 22 shows the configuration of mobile station 600 according to the present embodiment.
  • the same components as those of mobile station 200 (FIG. 6) according to Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the antennas 201-1, 201-2, reception RF units 202-1, 202-2, GI removal units 203-1, 203-2, and FFT units 204-1, 204-2 in FIG. are the same as the antenna 201, the reception RF unit 202, the GI removal unit 203, and the FFT unit 204 in FIG.
  • the mobile station 600 performs the interference cancellation process in two stages. That is, as a first step, the interference removal unit 601—! ⁇ 601- K force Interference signal that does not match the mapping pattern with the desired signal (interference signal C) is separated on the spatial axis, and as a second step, the interference removal unit 213 performs interference that matches the mapping pattern with the desired signal. Separate the signal (interference signal B) on the frequency axis.
  • Interference remover 601—! ⁇ 601 _K is provided corresponding to each of the plurality of subcarriers # 1 to # K constituting the OFDM symbol, and received by the antenna 201-2 and the signal received by the antenna 201 _ 1 for each subcarrier. Both signals are input. Then, the interference removal unit 601—! ⁇ 601-K removes interference signal C from the received signal by performing MMSE processing on the spatial axis using these signals. Interference canceler 601 _ 1 to 60 1 1 K removes the interference signal C from the received signal by MMSE processing the signal (hereinafter referred to as “pseudo desired signal”) that combines the desired signal and the interference signal B. Desired signal in Without doing MMSE processing. By this MMSE processing, only the interference signal C is first separated from the received signal.
  • FIG. 23 shows the configuration of the interference cancellers 601— :! to 601—K.
  • channel estimation section 6011 calculates the channel estimation value of the desired signal for each antenna and outputs the result to combining section 6013.
  • channel estimation section 6012 calculates the channel estimation value of the interference signal ⁇ for each antenna and outputs it to combining section 6013.
  • Combining section 6013 combines the channel estimation value of the desired signal and the channel estimation value of the interference signal ⁇ for each antenna, and outputs the combined signal to MMSE processing section 6014.
  • the MMSE processing unit 6014 can perform the MMSE processing on the spatial axis by regarding the pseudo desired signal as the desired signal in MMSE.
  • a pseudo desired signal can be extracted from a received signal (a signal in which a desired signal, interference signal B and interference signal C are mixed). In other words, it is possible to remove the interference signal C from the received signal.
  • the pseudo-desired signals obtained by the MMSE processing units 6014 of the interference removal units 601— :! to 601-K are output to the selection unit 205.
  • the number of interference signal sources that match the mapping pattern with the desired signal is Ml
  • the mapping pattern is matched with the desired signal
  • the number of interference signal sources is M2. If the number of receiving antennas in the station is N and the repetition factor of the interference signal is adjusted to match the mapping pattern to the desired signal, all interference signals can be reliably removed when the relationship of Ml ⁇ N and M2 ⁇ L holds. can do.
  • the interference cancellation processing performed in two steps on the space axis and the frequency axis is combined into one.
  • the interference signal (interference signal C) that does not match the mapping pattern with the desired signal can be removed by using the interference signal (interference signal) that matches the mapping pattern with the desired signal.
  • the number of antennas and the amount of computation required to eliminate interference can be reduced. This is due to the following reasons.
  • the mapping pattern is matched between the desired signal and the interference signal B, when the interference signal C is removed from the received signal on the spatial axis, the interference signal B is It is extracted as a pseudo-desired signal that is not an interference signal.
  • the number of interference signals to be removed on the spatial axis can be reduced by extracting the interference signal B whose mapping pattern matches the desired signal as a pseudo desired signal, so the number of antennas required for interference removal Can be reduced, and the amount of inverse matrix computation required for interference removal can be reduced.
  • the mapping pattern is obtained by performing the interference removal on the spatial axis prior to the interference removal on the frequency axis. After the interference signal from one interference signal source is reliably removed using two antennas, the interference signal from three interference signal sources that match the mapping pattern to the desired signal source It can be removed using 4 identical symbols.
  • the received signal strength can also be obtained by removing the interference signal.
  • mapping pattern on the frequency axis is the same in the base station of the desired signal source and the base station of the interference signal source.
  • mapping pattern on the time axis is A case will be described in which the mapping pattern is the same between the base station of the desired signal source and the base station of the interference signal source.
  • Embodiment 1 in consideration of the fact that channel fluctuations in the time axis direction are generally smaller than channel fluctuations in the frequency axis direction, a plurality of identical repeated symbols are mapped in the frequency axis direction. ( Figure 7).
  • the channel fluctuation in the time axis direction becomes larger than the channel fluctuation in the frequency axis direction. There may be cases. In such a case, it is effective to map a plurality of identical repeated symbols in the time axis direction.
  • the base station of the desired signal source adopts the mapping pattern shown in FIG.
  • the base station of the interference signal source uses a mapping pattern that matches the mapping pattern of FIG. 24, as in the first embodiment.
  • mobile station 800 that receives a signal transmitted from a base station that adopts such a mapping pattern adopts the configuration shown in FIG. That is, mobile station 800 according to the present embodiment is configured to further include transposition section 801 in mobile station 200 (FIG. 6) according to Embodiment 1. 25, the same components as those in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted.
  • Transposition section 801 transposes the frequency axis and time axis of the signal input from FFT section 204. Specifically, in the mapping pattern shown in FIG. 24, transposition section 801 transposes frequencies (subcarriers) # 1 to # 8 and times tl to t8 with respect to the data portion. As a result, the mapping pattern is converted to be the same as in Figure 7. Data in which the mapping pattern is converted in this way is output to the selection unit 205.
  • a plurality of identical repeated symbols may be interleaved on the time axis.
  • the desired signal is obtained by removing the interference signal from the received signal. Therefore, it is necessary that the mapping pattern of the repeated desired signal to the subcarrier and the mapping pattern of the repeated interference signal to the subcarrier are the same in the time axis direction. That is, in order for mobile station 800 to remove the interference signal from the received signal and obtain the desired signal, the desired signal and the interference signal must be arranged on the time axis in the same pattern. Therefore, it is necessary for the interleaver of the desired signal source and the interleaver of the interference signal source to perform interleaving on the time axis of the same repeated symbol with the same interleave pattern.
  • each interleaver interleaves each symbol shown in FIG. 24 as shown in FIG. At this time, the interleave pattern in the time axis direction is made the same for the desired signal and the interference signal.
  • each interleaver does not perform interleaving for each symbol, but performs interleaving for each subcarrier (for each row). In this way, the mapping pattern of the desired signal after repetition to the subcarrier and the mapping pattern of the repeated interference signal to the subcarrier can be made the same in the time axis direction. It is possible to remove the interference signal from the force S.
  • the interleaving pattern of the interleaving in the frequency axis direction can be made different between the desired signal and the interference signal.
  • the desired signal and the interference signal can have the same interleave pattern in both the frequency axis direction and the time axis direction.
  • the mapping pattern after interleaving is the same between the base station of the desired signal source and the base station of the interference signal source.
  • the received signal force interference signal can be removed.
  • MMSE is used as the interference cancellation algorithm.
  • the interference cancellation algorithm is not limited to MMSE, and any algorithm can be used as long as it is an interference cancellation algorithm used in AAA technology. It is. For example, null steering, beam forming, LMS, RLS, CMA, etc. can be used.
  • the interference removal processing of the present invention can be performed using a stream separation algorithm to improve SINR.
  • stream estimation weights are calculated using channel estimation values for each stream and for each antenna, but when performing interference removal processing using a stream separation algorithm, each transmission station and Calculate stream separation weights using channel estimates for each subcarrier.
  • N X L-1 interference signals can be removed by applying the present invention.
  • N X L the sum of the number of desired signal sources and the number of interference signal sources is N X L at maximum.
  • a base station is a transmitting station (wireless transmitting apparatus), and a mobile station is a receiving station.
  • the present invention can also be implemented in the same manner as described above even when the mobile station is a transmitter station (wireless transmitter) and the base station is a receiver station (wireless receiver).
  • the base station receives the desired signal from the mobile station of the desired signal source and simultaneously receives the interference signal from the mobile station of the interfered signal source, the base station removes the interference signal from the received signal in the same manner as described above.
  • a desired signal can be obtained. That is, the present invention can be applied to the uplink as well as the downlink.
  • the base station may be referred to as Node B, the mobile station as UE, and the subcarrier as tone.
  • a communication area covered by one base station is referred to as a "cell”.
  • the area in which this cell is divided into a plurality of angular directions is called a “sector”.
  • the communication area covered by one base station is called a “cell site”, and this cell site is divided into a plurality of angular sites.
  • the divided areas are referred to as “cells”.
  • the present invention can also be applied to such a communication system.
  • symbols may be used in a communication system in which a plurality of subcarriers are collectively referred to as subblocks or resource blocks.
  • the unit of mapping By setting the unit of mapping to be a sub-block unit or a resource block unit, the present invention can be implemented as described above.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually arranged on one chip, or may be integrated into one chip so as to include a part or all of them.
  • IC integrated circuit
  • system LSI system LSI
  • super LSI super LSI
  • unilera LSI depending on the difference in power integration as LSI.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • FPGA Field Programmable Gate Array
  • the present invention is suitable for a base station, a mobile station, and the like used in a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)
  • Radio Transmission System (AREA)

Abstract

A wireless receiving apparatus capable of efficiently removing interference signals in a multicarrier communication. In a mobile station (200) incorporating this wireless receiving apparatus, a selecting part (205) selects a plurality of the same symbols in accordance with a mapping pattern established at the time of generating OFDM symbols in a base station. A correlation value calculating part (207) determines correlation values between the subcarriers of the same symbols to generate an R-matrix, and further determines an inverse matrix of the R-matrix. An MMSE processing part (208) performs an MMSE processing to determine a weight (W) from both a P-vector received from a channel estimating part (206) and the inverse matrix of the R-matrix received from the correlation value calculating part (207). Multipliers (209-1 to 209-N) multiply each of the symbols selected by the selecting part (205) by the weight determined by the MMSE processing part (208). A combining part (210) combines the symbols as multiplied by the weight.

Description

明 細 書  Specification
無線受信装置、無線送信装置、および、干渉信号除去方法  Radio receiving apparatus, radio transmitting apparatus, and interference signal elimination method
技術分野  Technical field
[0001] 本発明は、無線受信装置、無線送信装置、および、干渉信号除去方法に関する。  The present invention relates to a radio reception device, a radio transmission device, and an interference signal removal method.
背景技術  Background art
[0002] 近年、無線通信、特に移動体通信では、音声以外に画像やデータなどの様々な情 報が伝送の対象になっている。今後は、多様なコンテンツの伝送に対する需要がま すます高くなることが予想されるため、高速な伝送に対する必要性がさらに高まるで あろうと予想される。し力しながら、移動体通信において高速伝送を行う場合、マルチ パスによる遅延波の影響が無視できなくなり、周波数選択性フェージングにより伝送 特性が劣化する。  [0002] In recent years, in wireless communication, particularly mobile communication, various information such as images and data other than voice has been the object of transmission. In the future, the demand for transmission of various contents is expected to become higher, so the need for high-speed transmission is expected to increase further. However, when performing high-speed transmission in mobile communications, the effects of delayed waves due to multipath cannot be ignored, and transmission characteristics deteriorate due to frequency selective fading.
[0003] 周波数選択性フェージング対策技術の一つとして、 OFDM (Orthogonal Frequenc y Division Multiplexing)などのマルチキャリア通信が注目されている。マルチキャリア 通信は、周波数選択性フェージングが発生しない程度に伝送速度が抑えられた複数 の搬送波(サブキャリア)を用いてデータを伝送することにより、結果的に高速伝送を 行う技術である。特に、 OFDM方式は、データが配置される複数のサブキャリアが相 互に直交しているため、マルチキャリア通信の中でも周波数利用効率が高ぐまた、 比較的簡単なハードウェア構成により実現できることから、とりわけ注目されており、 様々な検討が行われてレ、る。  [0003] Multicarrier communication such as OFDM (Orthogonal Frequency Division Multiplexing) has attracted attention as one of frequency selective fading countermeasure techniques. Multi-carrier communication is a technology that results in high-speed transmission by transmitting data using multiple carriers (subcarriers) whose transmission speed is suppressed to such an extent that frequency-selective fading does not occur. In particular, in the OFDM scheme, since multiple subcarriers in which data is arranged are orthogonal to each other, frequency utilization efficiency is high even in multicarrier communication, and it can be realized with a relatively simple hardware configuration. In particular, it is attracting attention, and various studies are being conducted.
[0004] 一方、移動体通信においては、複数のアンテナによって受信された信号に各々重 み係数 (ウェイト)を乗算して受信指向性を適応的に制御するァダプティブ'アレイ'ァ ンテナ(以下、 AAAと省略する)技術についての検討が行われている。この AAA技 術では、 MMSE (Minimum Mean Square Error)によりウェイトを適応的に制御するこ とにより受信信号から干渉信号を除去することができる。  [0004] On the other hand, in mobile communication, an adaptive 'array' antenna (hereinafter referred to as AAA) that adaptively controls reception directivity by multiplying signals received by multiple antennas by weight coefficients. Technology is being studied. In this AAA technology, the interference signal can be removed from the received signal by adaptively controlling the weight using MMSE (Minimum Mean Square Error).
[0005] そして、 OFDM方式と AAA技術とを組み合わせた受信装置において、最適ウェイ トの推定を迅速かつ精度良く行うことに関する技術が、例えば特許文献 1に記載され ている。 特許文献 1 :特開 2003— 218759号公報 [0005] Then, for example, Patent Document 1 discloses a technique relating to quick and accurate estimation of an optimum weight in a receiving apparatus that combines an OFDM scheme and AAA technology. Patent Document 1: Japanese Unexamined Patent Publication No. 2003-218759
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] AAA技術では、その原理上、アンテナ数 1の数だけの干渉信号を除去すること ができる。換言すれば、干渉信号源の数を Nとした場合、特許文献 1記載の受信装 置は N + 1本のアンテナを備える必要がある。さらに、各干渉信号源から送信される 信号がマルチパス環境において受信装置に受信される場合、各干渉信号源のマル チパスの数を Mとすると、特許文献 1記載の受信装置は N X M + 1本の多数のアン テナを備える必要がある。  [0006] In principle, AAA technology can remove as many interference signals as the number of antennas. In other words, when the number of interference signal sources is N, the receiving device described in Patent Document 1 needs to include N + 1 antennas. Furthermore, when a signal transmitted from each interference signal source is received by a receiving device in a multipath environment, assuming that the number of multipaths of each interference signal source is M, the number of receiving devices described in Patent Document 1 is NXM + 1. It is necessary to provide a large number of antennas.
[0007] このように、特許文献 1記載の受信装置は、干渉信号の除去にあたり多数のアンテ ナを備える必要があるため、近年ますますの小型化を要求される無線通信移動局装 置 (以下、移動局と省略する)に特許文献 1記載の受信装置を搭載することは実際に は難しい。  [0007] As described above, since the receiving device described in Patent Document 1 needs to include a large number of antennas in order to eliminate interference signals, a wireless communication mobile station device (hereinafter referred to as “reduced size”) that is increasingly required in recent years. In fact, it is difficult to mount the receiving apparatus described in Patent Document 1 on a mobile station.
[0008] 本発明の目的は、マルチキャリア通信において、効率よく干渉信号を除去すること 力できる無線受信装置、無線送信装置、および、干渉信号除去方法を提供すること である。  An object of the present invention is to provide a radio reception apparatus, radio transmission apparatus, and interference signal removal method capable of efficiently removing an interference signal in multicarrier communication.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の無線受信装置は、複数の同一シンボルがマッピングされた複数のサブキ ャリアを含むマルチキャリア信号を受信する受信手段と、前記複数の同一シンボルを 用いて前記マルチキャリア信号から干渉信号を除去する干渉除去手段と、を具備す る構成を採る。 [0009] The radio reception apparatus of the present invention includes a receiving means for receiving a multicarrier signal including a plurality of subcarriers to which a plurality of identical symbols are mapped, and an interference signal from the multicarrier signal using the plurality of identical symbols. And an interference removing means for removing the noise.
発明の効果  The invention's effect
[0010] 本発明によれば、マルチキャリア通信において、干渉信号の除去を効率的に行うこ とができる。  [0010] According to the present invention, it is possible to efficiently remove interference signals in multicarrier communication.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 l]OFDMシンボルの概念図  [0011] [Figure l] OFDM symbol concept
[図 2A]サブキャリア # 1のシンボルの概念図 [図 2B]サブキャリア # 2のシンポ/レの概念図 [Figure 2A] Conceptual diagram of symbol for subcarrier # 1 [Fig. 2B] Conceptual diagram of subcarrier # 2 symposium / re
[図 2C]サブキャリア # 3のシンポ/レの概念図 [Figure 2C] Conceptual diagram of subcarrier # 3 symposium
[図 2D]サブキャリア # 4のシンボルの概念図 [Figure 2D] Conceptual diagram of subcarrier # 4 symbol
[図 3]AAA技術の動作原理を示す図 [Figure 3] Diagram showing the operating principle of AAA technology
[図 4]本発明の動作原理を示す図 [Fig. 4] Diagram showing the operating principle of the present invention.
園 5]本発明の実施の形態 1に係る基地局の構成を示すブロック図 園 6]本発明の実施の形態 1に係る移動局の構成を示すブロック図 園 7]本発明の実施の形態 1に係るマッピングパターンを示す図 園 8]本発明の実施の形態 2に係る基地局の構成を示すブロック図 園 9]本発明の実施の形態 2に係るマッピングパターンを示す図 園 10]本発明の実施の形態 2に係るマッピングパターンを示す図 園 11]本発明の実施の形態 3に係る移動局の構成を示すブロック図 園 12]本発明の実施の形態 4に係るマッピングパターンを示す図 園 13]本発明の実施の形態 4に係るマッピングパターンを示す図 園 14]本発明の実施の形態 4に係るマッピングパターンを示す図 園 15]本発明の実施の形態 4に係るマッピングパターンを示す図 園 16]本発明の実施の形態 4に係るマッピングパターンを示す図 園 17]本発明の実施の形態 4に係るマッピングパターンを示す図 園 18]本発明の実施の形態 5に係る移動体通信システムの構成図 園 19]本発明の実施の形態 5に係るマッピングパターンを示す図 園 20]本発明の実施の形態 6に係る基地局の構成を示すブロック図 園 21]本発明の実施の形態 7に係る移動体通信システムの構成図 園 22]本発明の実施の形態 7に係る移動局の構成を示すブロック図 園 23]本発明の実施の形態 7に係る干渉除去部の構成を示すブロック図 園 24]本発明の実施の形態 8に係るマッピングパターンを示す図 園 25]本発明の実施の形態 8に係る移動局の構成を示すブロック図 園 26]本発明の実施の形態 8に係るマッピングパターンを示す図 発明を実施するための最良の形態 [0012] まず、本発明の動作原理について説明する。なお、以下の説明では、 OFDM方式 をマルチキャリア通信方式の一例として説明する力 S、本発明は OFDM方式に限定さ れるものではない。 5] Block diagram showing the configuration of the base station according to Embodiment 1 of the present invention. 6] Block diagram showing the configuration of the mobile station according to Embodiment 1 of the present invention. [7] Garden 7] Embodiment 1 of the present invention. 8] A block diagram showing the configuration of the base station according to Embodiment 2 of the present invention. 9] A diagram showing the mapping pattern according to Embodiment 2 of the present invention. FIG. 11: A diagram showing a mapping pattern according to the second embodiment 11] A block diagram showing a configuration of the mobile station according to the third embodiment of the present invention. 12] A diagram showing a mapping pattern according to the fourth embodiment of the present invention. ] A diagram showing a mapping pattern according to Embodiment 4 of the present invention 14] A diagram showing a mapping pattern according to Embodiment 4 of the present invention 15] A diagram showing a mapping pattern according to Embodiment 4 of the present invention 16] Mapin according to Embodiment 4 of the present invention A diagram showing a pattern 17] A diagram showing a mapping pattern according to Embodiment 4 of the present invention. 18] A configuration diagram of a mobile communication system according to Embodiment 5 of the present invention. Fig. 19] A fifth embodiment of the present invention. 20] Block diagram showing the configuration of the base station according to Embodiment 6 of the present invention. 21) Configuration diagram of mobile communication system according to Embodiment 7 of the present invention. Block diagram showing configuration of mobile station according to Embodiment 7 of the present invention 23] Block diagram showing configuration of interference canceling section according to Embodiment 7 of the present invention. Garden 24] Mapping according to Embodiment 8 of the present invention FIG. 25] A block diagram showing a configuration of a mobile station according to Embodiment 8 of the present invention. 25] A diagram showing a mapping pattern according to Embodiment 8 of the present invention. [Best Mode for Carrying Out the Invention] First, the operation principle of the present invention will be described. In the following description, the OFDM system is described as an example of a multicarrier communication system, and the present invention is not limited to the OFDM system.
[0013] マルチキャリア信号である OFDMシンボルはシンボルレートが非常に小さいため、 マルチパス環境において受信される OFDMシンボルは、マルチパスの数にかかわら ず、複数のパスの信号が 1つの合成された信号として受信されるという特性がある。よ つて、 OFDM方式において所望信号および干渉信号のそれぞれがマルチパスを介 して移動局に受信される場合、移動局では、図 1に示すように、所望信号も干渉信号 も、複数のパスの信号が合成された信号として受信される。  [0013] Because OFDM symbols that are multicarrier signals have a very low symbol rate, OFDM symbols received in a multipath environment are combined signals of multiple paths, regardless of the number of multipaths. Is received as a characteristic. Therefore, when each of the desired signal and the interference signal is received by the mobile station via the multipath in the OFDM scheme, the mobile station, as shown in FIG. The signal is received as a combined signal.
[0014] よって、 OFDMシンボルの各サブキャリア # 1〜# 4毎では、干渉信号源が N個の 場合、マルチパスの数にかかわらず、 1つの所望信号と N個の干渉信号とが合成され た信号が受信されるとみなすことができる。換言すれば、干渉信号源が N個の場合、 マルチパスの数にかかわらず、サブキャリア毎には、 1パスのレイリーフェージングの 所望信号 1つと 1パスのレイリーフエージングの干渉信号 N個とが存在しているとみな すことができる。この様子を示したのが図 2A〜Dである。これらの図に示すように、各 サブキャリア # 1〜# 4では、所望信号に干渉信号が加わったシンボルが受信される 。よって、 OFDMでは、干渉信号源が N個の場合は、マルチパスの数にかかわらず 、各サブキャリアにおいて受信信号力 N個の干渉信号を除去すれば所望信号を得 ること力 Sできる。  [0014] Therefore, for each subcarrier # 1 to # 4 of the OFDM symbol, when there are N interference signal sources, one desired signal and N interference signals are combined regardless of the number of multipaths. Can be considered as received. In other words, when there are N interference signal sources, regardless of the number of multipaths, for each subcarrier, there is one desired signal for Rayleigh fading for one path and N interference signals for Rayleaf aging for one path. It can be considered to exist. This situation is shown in Figs. As shown in these figures, each subcarrier # 1 to # 4 receives a symbol in which an interference signal is added to a desired signal. Therefore, in OFDM, when there are N interference signal sources, it is possible to obtain a desired signal by removing N interference signals received at each subcarrier regardless of the number of multipaths.
[0015] このように、 OFDM受信信号の特徴として、シングルキャリア伝送では周波数選択 性フェージングを受けた信号が受信されるようなマルチパス環境でも、 OFDM受信 信号は、サブキャリア毎に見ればレイリーフェージングを受けた信号となる、という点 が挙げられる。  [0015] Thus, as a feature of the OFDM reception signal, even in a multipath environment where a signal subjected to frequency selective fading is received in single carrier transmission, the OFDM reception signal is Rayleigh fading when viewed for each subcarrier. The point is that the signal will be received.
[0016] 一方、 AAA技術の特徴として、 N個の干渉信号を除去するためには、 1つの所望 信号と N個の干渉信号とが合成された信号を受信する N + 1本のアンテナを必要と する、という点が挙げられる。このとき、 N + 1本のアンテナで受信される信号にはそ れぞれ所望信号と干渉信号とが含まれる。そして、 MMSE処理により求められるゥヱ イトを各アンテナで受信された信号に乗算し、ウェイト乗算後の信号を合成することに より受信信号力 N個の干渉信号を除去して 1つの所望信号を得ることができる。 [0016] On the other hand, as a feature of AAA technology, in order to remove N interference signals, N + 1 antennas are required to receive a composite signal of one desired signal and N interference signals. The point is. At this time, the signals received by the N + 1 antennas include a desired signal and an interference signal, respectively. Then, the weights obtained by MMSE processing are multiplied by the signals received by the respective antennas, and the signals after weight multiplication are synthesized. The received signal power N interference signals can be removed to obtain one desired signal.
[0017] 上記 OFDM受信信号の特徴と AAA技術の特徴とを鑑みると、図 1に示すような各 サブキャリア # 1〜# 4を AAA技術における各アンテナとみなし、 OFDMシンボルを 構成する各サブキャリア # 1〜 # 4の 4つのサブキャリアに同一シンボルを所望信号と してマッピングし、各サブキャリア # 1〜 # 4に対して AAA技術同様の MMSE処理を 行えば、 OFDM方式の無線通信においてマルチパスが多数存在する場合でも、移 動局は、 3個の干渉信号源から送信された干渉信号のすべてを除去することができ る。また、移動局は、複数のアンテナを備える必要がなぐマルチパスの数にかかわら ず 1本のアンテナさえ備えれば、 3個の干渉信号源から送信された干渉信号のすべ てを除去することができる。つまり、 OFDM通信においては、 N個の干渉信号源から 送信される干渉信号を受信信号から除去するには、マルチパスが多数存在する場合 でも、移動局のアンテナは 1本で足り、また、所望信号として同一シンボルがマツピン グされる N + 1個のサブキャリアがあれば足りる。 [0017] In view of the characteristics of the OFDM received signal and the characteristics of AAA technology, each subcarrier # 1 to # 4 as shown in Fig. 1 is regarded as each antenna in AAA technology, and each subcarrier constituting the OFDM symbol. If the same symbol is mapped to the four subcarriers # 1 to # 4 as the desired signal, and MMSE processing similar to the AAA technology is performed for each subcarrier # 1 to # 4, multiple subcarriers # 1 to # 4 can be used for OFDM wireless communication. Even when there are many paths, the mobile station can cancel all the interference signals transmitted from the three interference signal sources. In addition, a mobile station can remove all interference signals transmitted from three interference signal sources as long as it has only one antenna, regardless of the number of multipaths that do not need to have multiple antennas. it can. In other words, in OFDM communication, to eliminate the interference signals transmitted from N interference signal sources from the received signal, even if there are many multipaths, one mobile station antenna is sufficient, and the desired It is sufficient to have N + 1 subcarriers with the same symbol mapped as the signal.
[0018] このように、本発明では、同一シンボルがマッピングされる複数のサブキャリアを AA A技術における複数のアンテナとみなし、それら複数の同一シンボルに対して周波 数軸上で MMSE処理を行うことにより、 OFDMシンボルに含まれる干渉信号を除去 する。 [0018] Thus, in the present invention, a plurality of subcarriers to which the same symbol is mapped are regarded as a plurality of antennas in AAA technology, and MMSE processing is performed on the plurality of the same symbols on the frequency axis. This eliminates the interference signal contained in the OFDM symbol.
[0019] より具体的には、以下のように説明することができる。  More specifically, it can be explained as follows.
[0020] AAA技術の場合、所望信号: D、干渉信号 : U、所望信号のアンテナ nにおける伝 搬路のチャネル推定値: h 、干渉信号のアンテナ nにおける伝搬路のチャネル推定  [0020] In the case of AAA technology, desired signal: D, interference signal: U, channel estimation value of channel of desired signal at antenna n: h, channel estimation of channel of interference signal at antenna n
Dn  Dn
値: h とすると、アンテナ nにおける受信信号: Rは、式(1)により表される。  If the value is h, the received signal R at the antenna n is represented by the equation (1).
Un n  Un n
[数 1]  [Number 1]
R^ D - h^ + U - ^ ■■■ ( 1 )  R ^ D-h ^ + U-^ ■■■ (1)
[0021] そして、式(2)に従って MMSE処理により求められるアンテナ nにおけるウェイト: W をアンテナ nで受信された信号に乗算して合成することにより受信信号: R力 干渉 信号: Uを除去して所望信号: Dを得ることができる。なお、式(2)において、 Pは、チ ャネル推定値: h およびチャネル推定値: h 力 生成される Pベクトルである。  [0021] Then, the received signal: R-force interference signal: U is removed by multiplying the signal received by antenna n by the weight: W received by antenna n, which is obtained by MMSE processing according to Equation (2), and combining the signals. Desired signal: D can be obtained. In Equation (2), P is a P vector generated by channel estimation value: h and channel estimation value: h force.
Dn Un  Dn Un
[数 2] Wn ^R-x-P ■■■ (2) [Equation 2] W n ^ R- x -P (2)
[0022] よって、例えば、図 3に示すように、干渉信号源が 1つで、受信機側が 2本のアンテ ナを備える場合、 AAA技術では、各アンテナにおける受信信号は式(3)により与え られる。  Therefore, for example, as shown in FIG. 3, when there is one interference signal source and the receiver side includes two antennas, in the AAA technique, the received signal at each antenna is given by equation (3). It is done.
[数 3]
Figure imgf000008_0001
[Equation 3]
Figure imgf000008_0001
[0023] 一方、本発明において、所望信号: D、干渉信号 :U、所望信号のサブキャリア mに おける伝搬路のチャネル推定値: h 、干渉信号のサブキャリア mにおける伝搬路の チャネル推定値: h とすると、サブキャリア mにおける受信信号: Q は、式 (4)により  [0023] On the other hand, in the present invention, channel estimation value of propagation path in desired signal: D, interference signal: U, subcarrier m of desired signal: h, channel estimation value of propagation path in subcarrier m of interference signal: Assuming h, the received signal Q on subcarrier m:
Um m  Um m
表される。  expressed.
[数 4]  [Equation 4]
Q^D-h^+U-^ … (4)  Q ^ D-h ^ + U- ^… (4)
[0024] そして、式(5)に従って MMSE処理により求められるサブキャリア mにおけるウェイ ト: Wをサブキャリア mにより受信された信号に乗算して合成することにより受信信号 m  [0024] Then, the received signal m is obtained by multiplying the signal received by the subcarrier m by W: the weight at the subcarrier m determined by the MMSE processing according to the equation (5), and combining the signal received by the subcarrier m.
: Q 力 干渉信号: Uを除去して所望信号: Dを得ることができる。なお、式(5)にお m  : Q force Interference signal: U can be removed to obtain the desired signal: D. In equation (5), m
いて、 Pは、チャネル推定値: h およびチャネル推定値: h 力 生成される Pベタト  P is the channel estimate: h and the channel estimate is: h force
Dm Um  Dm Um
ルである。  It is le.
[数 5] [Equation 5]
=Q -、 'P … (5)  = Q-, 'P… (5)
[0025] よって、例えば、図 4に示すように、干渉信号源が 1つで、受信機側が 1本のアンテ ナにより 2つのサブキャリアからなる OFDMシンボルを受信する場合、各サブキャリア における受信信号は式(6)により与えられる。  Therefore, for example, as shown in FIG. 4, when there is one interference signal source and the receiver side receives an OFDM symbol consisting of two subcarriers by one antenna, the received signal in each subcarrier Is given by equation (6).
[数 6]
Figure imgf000008_0002
[Equation 6]
Figure imgf000008_0002
[0026] 二で、式(1)〜(3)と式 (4)〜(6)とを比較すると、アンテナ番号 nがサブキャリア番 号 mに変わっているだけで、その他は全く同じ式で表されていることが分かる。このこ とは、つまり、 OFDMシンボルの複数のサブキャリアを AAA技術における複数のァ ンテナとみなし、 1本のアンテナで受信された OFDMシンボルの複数のサブキャリア に対して AAA技術と同様の MMSE処理を行うことにより、 OFDMシンボルから干渉 信号を除去できることを示す。 [0026] When the equations (1) to (3) are compared with the equations (4) to (6), the antenna number n is equal to the subcarrier number. It can be seen that the rest is expressed in exactly the same way, only by changing to issue m. This means that multiple subcarriers in the OFDM symbol are regarded as multiple antennas in AAA technology, and MMSE processing similar to that in AAA technology is applied to multiple subcarriers in the OFDM symbol received by one antenna. It is shown that the interference signal can be removed from the OFDM symbol by performing.
[0027] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0028] (実施の形態 1)  [0028] (Embodiment 1)
本実施の形態に係る無線通信基地局装置 (以下、基地局と省略する) 100の構成 を図 5に示す。また、本実施の形態に係る移動局 200の構成を図 6に示す。  FIG. 5 shows the configuration of radio communication base station apparatus (hereinafter abbreviated as base station) 100 according to the present embodiment. Further, FIG. 6 shows the configuration of mobile station 200 according to the present embodiment.
[0029] 図 5に示す基地局 100において、符号化部 101は、送信データ(ビット列)を符号ィ匕 して変調部 102に出力する。  In base station 100 shown in FIG. 5, encoding section 101 encodes transmission data (bit string) and outputs the encoded data to modulation section 102.
[0030] 変調部 102は、符号化後のビット列を変調してシンボルを生成し、レピテイシヨン部 103に出力する。  [0030] Modulating section 102 generates a symbol by modulating the encoded bit string, and outputs the symbol to repetition section 103.
[0031] レピテイシヨン部 103は、入力された各シンボルを複製(レビテイシヨン)して同一の シンボルを複数生成する。例えば、レピテイシヨン'ファクター(RF) =4とした場合、レ ピテイシヨン部 103では、変調部 102から入力される各シンボルにっき、同一シンポ ルが 4個ずつ得られる。なお、ここでは、 31〜316の16個のシンボルがそれぞれ1¾^ =4でレピテイシヨンされるものとする。すなわち、レピテイシヨン部 103では、シンボル S1〜S16が 4個ずつ得られる。  [0031] The repetition unit 103 duplicates each input symbol (repetition) to generate a plurality of the same symbols. For example, when repetition factor (RF) = 4, the repetition unit 103 obtains four identical symbols for each symbol input from the modulation unit 102. Here, it is assumed that 16 symbols 31 to 316 are repeated with 1¾ ^ = 4. That is, repetition part 103 obtains four symbols S1 to S16.
[0032] S/P部 104は、マルチキャリア信号である OFDMシンボルを構成する複数のサブ キャリア # 1〜 # Kの K本分のシンボルがレビティション部 103から直列に入力される 度に、それらのシンボルを並列に変換して IFFT部 105に出力する。  [0032] The S / P unit 104 receives K symbols of a plurality of subcarriers # 1 to #K constituting an OFDM symbol that is a multicarrier signal each time the symbols are input in series from the levitation unit 103. Are converted to parallel and output to IFFT section 105.
[0033] IFFT部 105は、 SZP部 104より入力されるシンボルを IFFT (Inverse Fast Fourier  [0033] IFFT section 105 converts the symbol input from SZP section 104 into IFFT (Inverse Fast Fourier
Transform:逆高速フーリエ変換)してサブキャリア # 1〜 # Kの各々に所定のマツピ ングパターン(配置パターン)に従ってマッピング(配置)し、 OFDMシンボルを生成 する。また、 IFFT部 105は、フレーム先頭において、パイロットシンボル(PL)を IFF Tしてサブキャリア # 1〜# Kの各々にマッピングし、 OFDMシンボルを生成する。な お、ここでは、 lOFDMシンボルがサブキャリア # 1〜# 8の 8個のサブキャリアで構 成されるちのとする。 Transform (inverse fast Fourier transform) and map (arrange) each of subcarriers # 1 to #K according to a predetermined mapping pattern (arrangement pattern) to generate an OFDM symbol. Also, IFFT section 105 IFFTs the pilot symbol (PL) at the head of the frame and maps it to each of subcarriers # 1 to #K to generate an OFDM symbol. Here, the lOFDM symbol is composed of 8 subcarriers of subcarriers # 1 to # 8. To be made.
[0034] このようにして生成された OFDMシンボルは、 GI付加部 106でガードインターバル を付加された後、送信 RF部 107でアンプコンバート等の所定の無線処理が施され、 アンテナ 108から移動局 200へ無線送信される。  [0034] The OFDM symbol generated in this manner is added with a guard interval by the GI adding unit 106, and then subjected to predetermined radio processing such as amplifier conversion by the transmission RF unit 107. Is transmitted wirelessly.
[0035] ここで、 RF = 4で、 1フレームが 9個の OFDMシンボル(パイロットシンボルからなる OFDMシンボルが 1個 +シンボル S 1〜S 16からなる OFDMシンボルが 8個)で構成 される場合、本実施の形態でのマッピングパターンは例えば図 7に示すようになる。 すなわち、シンポノレ Sl、 S3、 S5、 S7、 S9、 Sl l、 S13、 S15の各々力 S、 RF = 4で周 波数軸方向にレピテイシヨンされてサブキャリア # 1〜 # 4にマッピングされ、また、シ ンボノレ S2、 S4、 S6、 S8、 S10、 S12、 S14、 S16の各々力 RF = 4で周波数軸方向 にレピテイシヨンされてサブキャリア # 5〜# 8にマッピングされる。つまり、同一のシン ボルが互いに異なる 4つのサブキャリアにマッピングされて移動局 200へ送信される  [0035] Here, when RF = 4 and one frame is composed of nine OFDM symbols (one OFDM symbol composed of pilot symbols + eight OFDM symbols composed of symbols S1 to S16), The mapping pattern in the present embodiment is as shown in FIG. 7, for example. In other words, simponole Sl, S3, S5, S7, S9, Sl l, S13, S15 are each force S, RF = 4, repeated in the frequency axis direction, mapped to subcarriers # 1 to # 4, and Repetition in the direction of the frequency axis with each force RF = 4 and mapping to subcarriers # 5 to # 8 is performed for each of the ribbons S2, S4, S6, S8, S10, S12, S14, and S16. That is, the same symbol is mapped to four different subcarriers and transmitted to mobile station 200.
[0036] 図 6に示す移動局 200では、基地局 100から送信された OFDMシンボルがアンテ ナ 201を介して受信される。この際、受信される OFDMシンボルには、基地局 100か ら送信された所望信号の他に干渉信号源から送信された干渉信号が含まれる。この 干渉信号は、基地局 100から送信された OFDMシンボルの周波数 # 1〜# 8と同じ 周波数を有する OFDMシンボルであり、基地局 100以外の他の基地局から送信さ れた OFDMシンボル、移動局 200以外の他の移動局から送信された OFDMシンポ ル等である。また、基地局 100のアンテナ 108が複数のアンテナで構成されるセクタ アンテナである場合は、移動局 200が位置するセクタ以外のセクタに対するアンテナ 力、ら送信された OFDMシンボルも干渉信号となる。 In mobile station 200 shown in FIG. 6, an OFDM symbol transmitted from base station 100 is received via antenna 201. At this time, the received OFDM symbol includes the interference signal transmitted from the interference signal source in addition to the desired signal transmitted from the base station 100. This interference signal is an OFDM symbol having the same frequency as the frequency # 1 to # 8 of the OFDM symbol transmitted from the base station 100, and is an OFDM symbol or mobile station transmitted from another base station other than the base station 100. OFDM symbols transmitted from other mobile stations other than 200. Further, when antenna 108 of base station 100 is a sector antenna composed of a plurality of antennas, the transmitted OFDM symbol is also an interference signal from the antenna power for sectors other than the sector where mobile station 200 is located.
[0037] このような所望信号および干渉信号を含む OFDMシンボルは、受信 RF部 202で ダウンコンバート等の所定の無線処理を施された後、 GI除去部 203でガードインター バルを除去されて、 FFT部 204に入力される。  [0037] The OFDM symbol including the desired signal and the interference signal is subjected to predetermined radio processing such as down-conversion by the reception RF unit 202, and then the guard interval is removed by the GI removal unit 203, so that the FFT Input to part 204.
[0038] FFT部 204は、 GI除去部 203より入力される OFDMシンボルを FFT (Fast Fourier  [0038] The FFT unit 204 converts the OFDM symbol input from the GI removal unit 203 into an FFT (Fast Fourier
Transform :高速フーリエ変換)して、サブキャリア # 1〜 # 8の各々にマッピングされ たシンボルを得る。これらのシンボルは、選択部 205に入力される。 [0039] 選択部 205は、フレーム先頭の OFDMシンボルの場合は、サブキャリア # 1〜# 8 にマッピングされたパイロットシンボルをチャネル推定部 206に出力する。また、選択 部 205は、基地局 100での OFDMシンボル生成時のマッピングパターンに従って複 数の同一シンボルを選択し、相関値算出部 207および乗算器 209—:!〜 209— Nに 出力する。具体的には、図 7において、 tlでは、選択部 205は、まず、サブキャリア # 1〜# 4にマッピングされた 4個のシンボル S1を選択して出力し、次に、サブキャリア # 5〜# 8にマッピングされた 4個のシンボル S2を選択して出力する。 t2〜t8におい ても同様である。よって、図 6においては、 N = RF = 4となる。また、これら 4個のシン ボルにはそれぞれ干渉信号が加わっている。つまり、選択部 205では、干渉信号が 加わっている同一シンボルが順次選択されて出力される。 Transform: Fast Fourier transform) to obtain symbols mapped to subcarriers # 1 to # 8. These symbols are input to the selection unit 205. [0039] In the case of the OFDM symbol at the head of the frame, selection section 205 outputs pilot symbols mapped to subcarriers # 1 to # 8 to channel estimation section 206. In addition, selection section 205 selects a plurality of identical symbols according to a mapping pattern when OFDM symbol is generated in base station 100, and correlation value calculation section 207 and multiplier 209—! ~ 209— Output to N. Specifically, in FIG. 7, in tl, the selection unit 205 first selects and outputs four symbols S1 mapped to subcarriers # 1 to # 4, and then subcarriers # 5 to # Select and output 4 symbols S2 mapped to 8. The same applies to t2 to t8. Therefore, in FIG. 6, N = RF = 4. In addition, interference signals are added to each of these four symbols. That is, in the selection unit 205, the same symbols to which the interference signal is added are sequentially selected and output.
[0040] チャネル推定部 206は、入力されたパイロットシンボルを用いてサブキャリア # 1〜  [0040] Channel estimation section 206 uses input pilot symbols to generate subcarriers # 1 to
# 8のチャネル推定値を求める。そして、チャネル推定部 206は、チャネル推定値よ り Pベクトルを生成して MMSE処理部 208に出力する。例えば、選択部 205によりサ ブキャリア # 1〜 # 4にマッピングされた 4個のシンボル S1が選択される tlでは、チヤ ネル推定部 206は、サブキャリア # 1〜# 4のチャネル推定値 h〜hより式(7)に示  # Find channel estimate for 8. Channel estimation section 206 then generates a P vector from the channel estimation value and outputs it to MMSE processing section 208. For example, in tl in which four symbols S1 mapped to subcarriers # 1 to # 4 are selected by selection section 205, channel estimation section 206 uses channel estimation values h to h of subcarriers # 1 to # 4. From equation (7)
1 4  14
す Pベクトルを生成する。シンボル S2〜S16についても同様である。なお、チャネル 推定値は、フレーム先頭のパイロットシンボルに基づいて算出されるため、各サブキ ャリア毎に 1フレームに渡って同じ値が使用される。  Generate a P vector. The same applies to symbols S2 to S16. Since the channel estimation value is calculated based on the pilot symbol at the head of the frame, the same value is used for one frame for each subcarrier.
[数 7]  [Equation 7]
Figure imgf000011_0001
Figure imgf000011_0001
[0041] 相関値算出部 207は、同一シンボルのサブキャリア間の相互相関値を求める。例え ば、サブキャリア # 1〜# 4にマッピングされた 4個のシンボル S1が入力された場合、 相関値算出部 207は、サブキャリア # 1〜 # 4の間において、これら 4個のシンボルの 相互相関値を求める。そして、相関値算出部 207は、相互相関値より R行列を生成し 、その R行列の逆行列を求めて MMSE処理部 208に出力する。例えば、選択部 20 5によりサブキャリア # 1〜 # 4にマッピングされた 4個のシンボル SIが選択される tl では、相関値算出部 207は、サブキャリア # 1〜 # 4の間における相互相関値 X 〜x [0041] Correlation value calculation section 207 obtains a cross-correlation value between subcarriers of the same symbol. For example, when four symbols S1 mapped to subcarriers # 1 to # 4 are input, correlation value calculation section 207 performs mutual correlation between these four symbols between subcarriers # 1 to # 4. Find the correlation value. Correlation value calculation section 207 generates an R matrix from the cross-correlation values, obtains an inverse matrix of the R matrix, and outputs it to MMSE processing section 208. For example, the selection unit 20 In tl in which four symbols SI mapped to subcarriers # 1 to # 4 are selected by 5, correlation value calculation section 207 uses cross-correlation values X to x between subcarriers # 1 to # 4.
11 より式(8)に示す R行列を生成する。シンボル S2〜S16についても同様である。 11 generates the R matrix shown in equation (8). The same applies to symbols S2 to S16.
44 44
[数 8]  [Equation 8]
Figure imgf000012_0001
Figure imgf000012_0001
[0042] MMSE処理部 208は、チャネル推定部 206から入力された Pベクトル(P)と相関値 算出部 207から入力された R行列の逆行列 (R_ 1)と力ら、式(9)に示す行列演算によ る MMSE処理を行ってウェイト W(W〜W )を求め、乗算器 209— :!〜 209— Nに [0042] The MMSE processing unit 208 includes a P vector (P) input from the channel estimation unit 206, an inverse matrix (R _ 1 ) of the R matrix input from the correlation value calculation unit 207, and a force equation (9). The weights W (W to W) are obtained by performing the MMSE processing using the matrix operation shown in Fig. 1, and the multipliers 209—:! To 209— N
1 4  14
出力する。シンポノレ S2〜S 16につレ、ても同様である。  Output. The same applies to Simponole S2 to S16.
[数 9]  [Equation 9]
W = R~l - P · · · ( 9 ) W = R ~ l -P (9)
[0043] なお、このようなウェイト生成方法は、 AAA技術において SMI (Sample Matrix Inver se)法として広く知られている方法である。  It should be noted that such a weight generation method is widely known as an SMI (Sample Matrix Inverse) method in AAA technology.
[0044] 乗算器 209— :!〜 209— Nは、選択部 205で選択されたシンボルの各々に MMSE 処理部 208で求められたウェイトを乗算して合成部 210に出力する。  Multipliers 209 —:! To 209 — N multiply each of the symbols selected by selection unit 205 by the weight obtained by MMSE processing unit 208 and output the result to synthesis unit 210.
[0045] 合成部 210は、ウェイト乗算後の各シンボルを合成して合成信号を生成する。合成 部 210で合成される各シンボルは複数の異なるサブキャリアにマッピングされていた 同一シンボルであるため、このようなサブキャリア間での合成により、各シンボル Sl〜 S16から干渉信号を除去することができる。本発明では OFDMシンボルにおける各 サブキャリアが AAA技術における各アンテナに相当するため、 RF = 4の各シンポノレ S1〜S16では、 RF—1個(3個)の干渉信号源からの干渉信号を、マルチパスの数 にかかわらず、すべて除去することができる。  [0045] Combining section 210 combines each symbol after weight multiplication to generate a combined signal. Since each symbol synthesized by the synthesis unit 210 is the same symbol mapped to a plurality of different subcarriers, the interference signal can be removed from each symbol Sl to S16 by such synthesis between subcarriers. it can. In the present invention, each subcarrier in the OFDM symbol corresponds to each antenna in the AAA technology. Therefore, in each symphonor S1 to S16 with RF = 4, interference signals from RF-1 (three) interference signal sources are All can be removed regardless of the number of passes.
[0046] なお、相関値算出部 207、 MMSE処理部 208、乗算器 209— :!〜 209— Nおよび 合成部 210により干渉除去部 213が構成される。  It should be noted that the correlation value calculating unit 207, the MMSE processing unit 208, the multipliers 209 —:! To 209 — N and the combining unit 210 constitute an interference removing unit 213.
[0047] こうようにして生成された合成信号は、復調部 211で復調された後、復号部 212で 復号される。これにより受信データが得られる。 The combined signal generated in this way is demodulated by the demodulator 211 and then decoded by the decoder 212. Decrypted. As a result, received data is obtained.
[0048] このように、本実施の形態によれば、 OFDMシンボルの複数のサブキャリアを AAA 技術における複数のアンテナとみなし、 OFDMシンボルの複数のサブキャリアに対 して AAA技術と同様の MMSE処理を行うことにより、マルチパスの数にかかわらず、 RF—1個の干渉信号源からの干渉信号をすベて除去することができる。よって、移 動局では、干渉信号を除去するために、従来の AAA技術のように多数のアンテナを 備える必要がなぐマルチパスの数にかかわらず 1本のアンテナさえ備えれば足りる ため、干渉信号の除去にあたり装置が大型化することを避けることができる。また、 A AA技術では、干渉信号源の数およびマルチパス数の増加に伴い受信アンテナの 数を増加させる必要があるが、本実施の形態によれば、干渉信号源の数が増加する 場合でも、マルチパス数の増加にはかかわらず、 RFを増加させるだけでよいため、 効率よく干渉信号を除去することができる。 [0048] Thus, according to this embodiment, a plurality of subcarriers in an OFDM symbol are regarded as a plurality of antennas in AAA technology, and MMSE processing similar to that in AAA technology is applied to a plurality of subcarriers in OFDM symbol. By doing this, it is possible to eliminate all interference signals from RF—one interference signal source, regardless of the number of multipaths. Therefore, the mobile station needs only one antenna regardless of the number of multipaths that need to be equipped with multiple antennas as in the conventional AAA technology in order to eliminate the interference signal. It is possible to avoid an increase in the size of the apparatus when removing the substrate. In the AAA technology, it is necessary to increase the number of reception antennas as the number of interference signal sources and the number of multipaths increase. However, according to this embodiment, even when the number of interference signal sources increases. Regardless of the increase in the number of multipaths, it is only necessary to increase the RF, so the interference signal can be efficiently removed.
[0049] また、本実施の形態は、 1つの基地局がカバーする通信エリア(セル)力 指向性を 持つセクタアンテナにより角度方向に複数のセクタに分割されている移動体通信シス テムにおいて特に有効である。分割された複数のセクタにそれぞれ送信される信号 は 1つの基地局の複数のアンテナから送信された信号であるため、移動局が位置す る場所によらず、セクタ間干渉はセル間干渉に比べて干渉信号レベルが大きくなる 傾向にある。よって、セクタ間干渉に対しては、所望信号レベルを大きくしても SIR (Si gnal to Interference Ratio)の改善効果はセル間干渉に比べて小さいので、本実施の 形態のようにして干渉信号レベルを抑えることにより SIRの改善効果を大きくすること ができる。  [0049] In addition, this embodiment is particularly effective in a mobile communication system that is divided into a plurality of sectors in the angular direction by a sector antenna having a communication area (cell) force directivity covered by one base station. It is. Since the signals transmitted to each of the divided sectors are signals transmitted from multiple antennas of one base station, inter-sector interference is less than inter-cell interference regardless of where the mobile station is located. Therefore, the interference signal level tends to increase. Therefore, for inter-sector interference, even if the desired signal level is increased, the improvement effect of SIR (Signal to Interference Ratio) is small compared to inter-cell interference. SIR can be increased by reducing the SIR.
[0050] (実施の形態 2)  [0050] (Embodiment 2)
本実施の形態に係る基地局 300の構成を図 8に示す。基地局 300は、実施の形態 1に係る基地局 100 (図 5)の構成に、さらにインタリーバ 301を備える。  FIG. 8 shows the configuration of base station 300 according to the present embodiment. Base station 300 further includes an interleaver 301 in addition to the configuration of base station 100 (FIG. 5) according to Embodiment 1.
[0051] ここで、実施の形態 1のように各シンボルをレピテイシヨンする場合、さらに周波数軸 方向のダイバーシチ効果を高めるために、レピテイシヨンされた複数の同一シンボル を周波数軸上においてインタリーブすることがある。また、時間軸方向のダイバーシ チ効果を高めるために、レピテイシヨンされた複数の同一シンボルを時間軸上におい てインタリーブすることが考えられる。 Here, when each symbol is repeated as in the first embodiment, a plurality of repeated identical symbols may be interleaved on the frequency axis in order to further enhance the diversity effect in the frequency axis direction. In addition, in order to enhance the diversity effect in the time axis direction, a plurality of repeated identical symbols are placed on the time axis. Can be interleaved.
[0052] しかし、実施の形態 1に係る移動局 200において受信信号から干渉信号を除去し て所望信号を得るには、レピテイシヨンされた所望信号のサブキャリアへのマッピング パターンと、レピテイシヨンされた干渉信号のサブキャリアへのマッピングパターンとが 周波数軸方向で同一であることが必要である。すなわち、実施の形態 1に係る移動 局 200において受信信号力も干渉信号を除去して所望信号を得るには、所望信号と 干渉信号とが同じパターンで周波数軸上に配置される必要がある。つまり、所望信号 の同一シンボルがサブキャリア # 1〜# 4にマッピングされる場合には、干渉信号も同 様に同一シンボルがサブキャリア # 1〜# 4にマッピングされる必要がある。よって、 所望信号源のインタリーバ 301と干渉信号源のインタリーバ 301は、レピテイシヨンさ れた同一シンボルの周波数軸上でのインタリーブを同じインタリーブパターンにて行 う必要がある。  However, in mobile station 200 according to Embodiment 1, in order to remove the interference signal from the received signal and obtain the desired signal, the mapping pattern of the repeated desired signal to the subcarrier and the repeated interference signal It is necessary that the mapping pattern to the subcarriers in the frequency axis direction is the same. That is, in mobile station 200 according to Embodiment 1, in order to obtain the desired signal by removing the interference signal as well as the received signal power, it is necessary that the desired signal and the interference signal are arranged on the frequency axis in the same pattern. That is, when the same symbol of the desired signal is mapped to subcarriers # 1 to # 4, the interference signal needs to be mapped to subcarriers # 1 to # 4 as well. Therefore, the interleaver 301 of the desired signal source and the interleaver 301 of the interference signal source need to perform interleaving on the frequency axis of the same symbol that has been repeated in the same interleaving pattern.
[0053] そこで、インタリーバ 301は、図 7に示す各シンボルを図 9に示すようにインタリーブ する。そして、このとき、所望信号と干渉信号とで、周波数軸方向のインタリーブパタ ーンを同一にする。これに対し、時間軸上でのインタリーブを行う場合には、インタリ ーバ 301は、シンボル毎のインタリーブを行わず、 OFDMシンボル毎(列毎)のインタ リーブを行う。このようにすることで、レピテイシヨンされた所望信号のサブキャリアへの マッピングパターンと、レピテイシヨンされた干渉信号のサブキャリアへのマッピングパ ターンとを周波数軸方向で同一にすることができるので、受信信号から干渉信号を確 実に除去することができる。  Therefore, interleaver 301 interleaves the symbols shown in FIG. 7 as shown in FIG. At this time, the desired signal and the interference signal have the same interleave pattern in the frequency axis direction. On the other hand, when interleaving on the time axis is performed, the interleaver 301 performs interleaving for each OFDM symbol (for each column) without performing interleaving for each symbol. In this way, the mapping pattern of the desired signal that has been repeated to the subcarrier and the mapping pattern of the repeated interference signal to the subcarrier can be made the same in the frequency axis direction. The interference signal can be reliably removed from.
[0054] ここで、所望信号と干渉信号とで、時間軸方向でのインタリーブのインタリーブパタ ーンを異ならせることは可能である。  [0054] Here, the interleaving pattern of interleaving in the time axis direction can be made different between the desired signal and the interference signal.
[0055] 例えば、所望信号源のマッピングパターン(図 9)に対し、干渉信号源のマッピング パターンを図示すると図 10に示すようになる。この図に示すように、所望信号である シンボル S1がサブキャリア # 1、 # 3、 # 5、 # 7にマッピングされるときは、干渉信号 であるシンポノレ S7'もサブキャリア # 1、 # 3、 # 5、 # 7にマッピングされる。このように することで、サブキャリア # 1、 # 3、 # 5、 # 7における所望信号と干渉信号との組合 せをすベて同じにすることができ、所望信号と干渉信号との間の周波数軸方向での インタリーブパターンの相違による干渉除去性能の低下を防止することができる。 For example, the mapping pattern of the interference signal source is illustrated in FIG. 10 with respect to the mapping pattern of the desired signal source (FIG. 9). As shown in this figure, when symbol S1, which is the desired signal, is mapped to subcarriers # 1, # 3, # 5, # 7, symphonor S7 ', which is the interference signal, is also subcarriers # 1, # 3, Maps to # 5 and # 7. In this way, the combination of the desired signal and the interference signal in subcarriers # 1, # 3, # 5, and # 7 can all be the same, and the desired signal and the interference signal can be mixed. In the frequency axis direction It is possible to prevent a decrease in interference removal performance due to a difference in interleave pattern.
[0056] なお、本実施の形態は、実施の形態 1同様、 1つの基地局がカバーする通信エリア  [0056] Note that, in the present embodiment, as in Embodiment 1, the communication area covered by one base station
(セル) 1S、指向性を持つセクタアンテナにより角度方向に複数のセクタに分割されて レ、る移動体通信システムにおいて特に有効である。 1つの基地局が複数のセクタを 有する場合は、互いに隣接するセクタに対して同一の基地局から信号が送信される ため、その基地局では、移動局 200における所望信号と干渉信号のインタリーブパタ ーンを同一にすることが容易だからである。すなわち、隣接セル間でインタリーブパタ ーンを合わせるためには、異なるセルの基地局間でのシグナリングが必要になるが、 隣接セクタ間でインタリーブパターンを合わせるには、同一基地局内での処理で済 むからである。  (Cell) This is particularly effective in a mobile communication system that is divided into a plurality of sectors in the angle direction by a sector antenna with 1S and directivity. When one base station has a plurality of sectors, a signal is transmitted from the same base station to adjacent sectors. Therefore, in the base station, an interleave pattern of a desired signal and an interference signal in the mobile station 200 is transmitted. This is because it is easy to make the same. In other words, in order to match the interleave pattern between adjacent cells, signaling between base stations in different cells is required. To match the interleave pattern between adjacent sectors, processing within the same base station is sufficient. Because.
[0057] なお、本実施の形態では、上記のように時間軸方向のインタリーブのインタリーブパ ターンを所望信号と干渉信号とで異ならせることが可能であるため、各移動局に対す るシンボルの時間軸方向でのインタリーブ間隔を異ならせることが可能である。例え ば、移動速度が速い移動局に対する時間軸上でのインタリーブ間隔を短くしてインタ リーブによる遅延を少なくするとともに、移動速度が遅い移動局に対する時間軸上で のインタリーブ間隔を長くして受信特性を向上させることができる。  [0057] In the present embodiment, since the interleaving pattern of the interleaving in the time axis direction can be made different between the desired signal and the interference signal as described above, the symbol time for each mobile station It is possible to vary the interleaving interval in the axial direction. For example, the interleaving interval on the time axis for a mobile station with a fast moving speed is shortened to reduce the delay due to the interleaving, and the interleaving interval on the time axis for a mobile station with a slow moving speed is lengthened. Can be improved.
[0058] (実施の形態 3)  [Embodiment 3]
実施の形態 1に係る移動局 200では、 RF (レビテイシヨン'ファクター)が大きくなる に従い MMSE処理における行列演算の処理量が大きくなる。そこで、本実施の形態 では、 MMSE処理を分割して行うようにする。  In mobile station 200 according to Embodiment 1, the processing amount of matrix operation in MMSE processing increases as RF (revision factor) increases. Therefore, in the present embodiment, the MMSE process is divided and performed.
[0059] 本実施の形態に係る移動局 400の構成を図 11に示す。なお、図 11において、実 施の形態 1に係る移動局 200 (図 6)と同一の構成には同一符号を付し、説明を省略 する。また、図 11において、干渉除去部 403—:!〜 403— 3の内部構成は、図 6にお ける干渉除去部 213の内部構成と同一である。  FIG. 11 shows the configuration of mobile station 400 according to the present embodiment. In FIG. 11, the same components as those of mobile station 200 (FIG. 6) according to Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted. Further, in FIG. 11, the interference removal unit 403—! The internal configuration of 403-3 is the same as the internal configuration of the interference removal unit 213 in FIG.
[0060] 選択部 401は、図 7において、フレーム先頭の OFDMシンボルの場合は、サブキヤ リア # 1〜 # 8にマッピングされたパイロットシンボルをチャネル推定部 402に出力す る。また、選択部 401は、基地局 100での OFDMシンボル生成時のマッピングパタ ーンに従って複数の同一シンボルを選択し、干渉除去部 403— 1および 403— 2に 出力する。 In the case of the OFDM symbol at the head of the frame in FIG. 7, selection section 401 outputs the pilot symbols mapped to subcarriers # 1 to # 8 to channel estimation section 402. In addition, selection section 401 selects a plurality of identical symbols according to the mapping pattern at the time of OFDM symbol generation in base station 100, and provides interference cancellation sections 403-1 and 403-2 with each other. Output.
[0061] 例えば、図 7におけるシンボル SIに着目すると、選択部 401は、サブキャリア # 1、  [0061] For example, when attention is paid to symbol SI in FIG. 7, selection section 401 has subcarrier # 1,
# 3にマッピングされた 2つのシンボル S1を干渉除去部 403— 1に出力し、サブキヤリ ァ # 2、 # 4にマッピングされた 2つのシンボル S1を干渉除去部 403— 2に出力する。  Two symbols S1 mapped to # 3 are output to interference canceller 403-1 and two symbols S1 mapped to subcarriers # 2 and # 4 are output to interference canceller 403-2.
[0062] ここで、サブキャリア # 1、 # 3を組合せ、サブキャリア # 2、 # 4を組み合わせたのは 、なるべくサブキャリア間の相関が小さいものを組み合わせることで、干渉除去部 403 - 1および 403 _ 2におレ、て R行列の逆行列を確実に生成することができるようにす るためである。  [0062] Here, subcarriers # 1 and # 3 are combined, and subcarriers # 2 and # 4 are combined by combining the subcarriers having the smallest correlation between the subcarriers as much as possible. This is to ensure that the inverse of the R matrix can be generated at 403_2.
[0063] チャネル推定部 402は、サブキャリア # 1、 # 3のチャネル推定値より生成した Pベタ トルを干渉除去部 403— 1に出力し、サブキャリア # 2、 # 4のチャネル推定値より生 成した Pベクトルを干渉除去部 403 _ 2に出力する。  [0063] Channel estimation section 402 outputs the P-vector generated from the channel estimation values of subcarriers # 1 and # 3 to interference cancellation section 403-1 and generates it from the channel estimation values of subcarriers # 2 and # 4. The generated P vector is output to the interference canceller 403_2.
[0064] よって、干渉除去部 403— 1および 403— 2ではそれぞれ、 2行 2列の R行列の逆行 歹 IJと 2行 1列の Pベクトルと用いて MMSE処理が行われ、合成信号が干渉除去部 40 3— 3に出力される。つまり、まず第 1段階の MMSE処理として、干渉除去部 403— 1 および 403— 2におレ、て、 RF/2に相当する分の MMSE処理が行われる。  [0064] Therefore, in the interference cancellers 403-1 and 403-2, the MMSE processing is performed using the inverse 歹 IJ of the 2-by-2 R matrix and the P-vector of 2-by-1 column, and the combined signal interferes. Output to removal section 40 3-3. That is, first, as the first-stage MMSE process, the MMSE process corresponding to RF / 2 is performed in the interference cancellers 403-1 and 403-2.
[0065] また、干渉除去部 403— 1は、サブキャリア # 1、 # 3のチャネル推定値に、 MMSE 処理で求めたウェイト W、 Wをそれぞれ乗算した後、加算したもの(合成チャネル推  [0065] Further, interference canceller 403-1 multiplies channel estimation values of subcarriers # 1 and # 3 by weights W and W obtained by MMSE processing, respectively, and adds them (combined channel estimation).
1 3  13
定値)を干渉除去部 403— 3に出力し、干渉除去部 403— 2は、サブキャリア # 2、 # 4のチャネル推定値に、 MMSE処理で求めたウェイト W、 Wをそれぞれ乗算した後  Constant value) is output to interference canceller 403-3, which then multiplies the channel estimation values of subcarriers # 2 and # 4 by weights W and W obtained by MMSE processing.
2 4  twenty four
、加算したもの(合成チャネル推定値)を干渉除去部 403— 3に出力する。  , And the sum (combined channel estimation value) is output to the interference canceller 403-3.
[0066] そして、第 2段階の MMSE処理として、干渉除去部 403— 3は、残りの RF/2に相 当する分の MMSE処理を行う。すなわち、干渉除去部 403— 3は、 2つの合成信号 力 生成される 2行 2列の R行列の逆行列と、 2つの合成チャネル推定値から生成さ れる 2行 1列の Pベクトルと用いて MMSE処理を行レ、、合成信号を復調部 211に出 力する。干渉除去部 403— 3から出力される合成信号は、図 6の干渉除去部 213から 出力される合成信号と同様、干渉信号が除去された信号となる。 [0066] Then, as a second-stage MMSE process, the interference canceller 403-3 performs the MMSE process corresponding to the remaining RF / 2. In other words, the interference canceller 403-3 uses the inverse matrix of the 2-by-2 R matrix generated by the two combined signal forces and the 2-by-1 P vector generated from the two combined channel estimates. MMSE processing is performed, and the combined signal is output to demodulator 211. The combined signal output from the interference removing unit 403-3 is a signal from which the interference signal is removed, like the combined signal output from the interference removing unit 213 in FIG.
[0067] このように、本実施の形態では、実施の形態 1における MMSE処理を 2段階に分け て行うため、 MMSE処理における行列演算の処理量を減少させることができる。特 に、本実施の形態では、 R行列を 2行 2歹 lj、 Pベクトルを 2行 1列としたため、演算量の 削減効果が大きい。 [0067] Thus, in this embodiment, the MMSE processing in Embodiment 1 is performed in two stages, so the processing amount of matrix operation in MMSE processing can be reduced. Special In addition, in this embodiment, the R matrix is 2 rows 2 歹 lj and the P vector is 2 rows 1 column, so the effect of reducing the amount of computation is great.
[0068] なお、 RF (レビテイシヨン'ファクター)が大きくなるに従い MMSE処理の分割数を 多くすることにより、 RFが大きくなつた場合でも、本実施の形態と同様にして MMSE 処理の演算量を削減することができる。  [0068] By increasing the number of divisions of MMSE processing as RF (Levitation 'factor) increases, even when RF increases, the amount of computation of MMSE processing is reduced in the same way as in this embodiment. be able to.
[0069] (実施の形態 4)  [Embodiment 4]
上記各実施の形態では、所望信号のレピテイシヨン'ファクターと干渉信号のレピテ イシヨン'ファクターが同じ場合について説明した力 所望信号のレピテイシヨン 'ファタ ターと干渉信号のレピテイシヨン'ファクターが相違する場合でも、以下のようにして受 信信号から干渉信号を除去することができる。  In each of the above embodiments, the force described when the desired signal repetition factor and the interference signal repetition factor are the same. Even when the desired signal repetition factor and the interference signal repetition factor differ, In this way, the interference signal can be removed from the received signal.
[0070] 例えば、図 7に示すように所望信号のレピテイシヨン'ファクターが RF = 4であるのに 対し、干渉信号のレピテイシヨン'ファクターが図 12に示すように RF = 2である場合、 図 11に示す構成を採る移動局 400によって、以下のようにして干渉信号を除去する こと力 Sできる。  [0070] For example, when the repetition factor of the desired signal is RF = 4 as shown in FIG. 7 and the repetition factor of the interference signal is RF = 2 as shown in FIG. The mobile station 400 adopting the configuration shown in the figure can remove interference signals as follows.
[0071] すなわち、選択部 401は、図 7において、フレーム先頭の OFDMシンボルの場合 は、サブキャリア # 1〜 # 8にマッピングされたパイロットシンボルをチャネル推定部 4 02に出力する。また、選択部 401は、所望信号のレピテイシヨン'ファクター(RF=4) が干渉信号のレピテイシヨン'ファクター(RF = 2)以上であるので、干渉信号のレピテ イシヨン'ファクター(RF= 2)に応じて複数の同一シンボルを選択し、干渉除去部 40 3— 1および 403— 2に出力する。  That is, in FIG. 7, selection section 401 outputs pilot symbols mapped to subcarriers # 1 to # 8 to channel estimation section 402 in the case of the OFDM symbol at the head of the frame in FIG. Further, since the desired signal repetition factor (RF = 4) is greater than or equal to the interference signal repetition factor (RF = 2), the selection unit 401 responds to the interference signal repetition factor (RF = 2). A plurality of identical symbols are selected and output to the interference cancellers 40 3-1 and 40 3-2.
[0072] 例えば、図 7におけるシンボル S1に着目すると、選択部 401は、図 12のシンボル S 1'が干渉信号として存在するサブキャリア、すなわち、サブキャリア # 1, # 2にマツピ ングされた 2つのシンボル S1を干渉除去部 403— 1に出力し、図 12のシンポノレ S2' が干渉信号として存在するサブキャリア、すなわち、サブキャリア # 3, # 4にマツピン グされた 2つのシンボル S1を干渉除去部 403— 2に出力する。  [0072] For example, when attention is paid to symbol S1 in FIG. 7, selection section 401 maps subcarriers in which symbol S1 'in FIG. 12 exists as an interference signal, ie, subcarriers # 1 and # 2 2 The two symbols S1 are output to the interference canceller 403-1 and the two subcarriers S2 'in Fig. 12 exist as interference signals, that is, the two symbols S1 mapped to subcarriers # 3 and # 4. Output to part 403-2.
[0073] チャネル推定部 402は、サブキャリア # 1、 # 2のチャネル推定値より生成した Pベタ トルを干渉除去部 403— 1に出力し、サブキャリア # 3、 # 4のチャネル推定値より生 成した Pベクトルを干渉除去部 403 _ 2に出力する。 [0074] よって、干渉除去部 403— 1および 403— 2ではそれぞれ、 2行 2列の R行列の逆行 歹 IJと 2行 1列の Pベクトルと用いて MMSE処理が行われ、合成信号が干渉除去部 40 3— 3に出力される。 [0073] Channel estimation section 402 outputs the P-vector generated from the channel estimation values of subcarriers # 1 and # 2 to interference cancellation section 403-1 and generates it from the channel estimation values of subcarriers # 3 and # 4. The generated P vector is output to the interference canceller 403_2. [0074] Therefore, in the interference cancellers 403-1 and 403-2, the MMSE process is performed using the inverse 2 IJ of the 2-by-2 R matrix and the P-vector of 2-by-1 column, and the combined signal interferes. Output to removal section 40 3-3.
[0075] また、干渉除去部 403— 1は、サブキャリア # 1、 # 2のチャネル推定値に、 MMSE 処理で求めたウェイト W、 Wをそれぞれ乗算した後、加算したもの(合成チャネル推  [0075] Also, interference canceller 403-1 multiplies channel estimation values of subcarriers # 1 and # 2 by weights W and W obtained by MMSE processing, and adds them (combined channel estimation).
1 2  1 2
定値)を干渉除去部 403— 3に出力し、干渉除去部 403— 2は、サブキャリア # 3、 # 4のチャネル推定値に、 MMSE処理で求めたウェイト W、 Wをそれぞれ乗算した後  Constant value) is output to interference canceller 403-3, which then multiplies the channel estimation values of subcarriers # 3 and # 4 by weights W and W obtained by MMSE processing.
3 4  3 4
、加算したもの(合成チャネル推定値)を干渉除去部 403— 3に出力する。  , And the sum (combined channel estimation value) is output to the interference canceller 403-3.
[0076] そして、干渉除去部 403— 3は、 2つの合成信号から生成される 2行 2列の R行列の 逆行列と、 2つの合成チャネル推定値から生成される 2行 1列の Pベクトルと用いて M MSE処理を行い、合成信号を復調部 211に出力する。  [0076] Then, the interference canceller 403-3 has a 2-row 2-column inverse matrix generated from two combined signals and a 2-row 1-column P vector generated from two combined channel estimation values. Are used to perform M MSE processing, and the combined signal is output to the demodulation section 211.
[0077] 所望信号のレピテイシヨン'ファクターが干渉信号のレピテイシヨン'ファクター以上で ある場合は、このようにして受信信号から干渉信号を除去することができる。  When the desired signal repetition factor is equal to or greater than the interference signal repetition factor, the interference signal can be removed from the received signal in this manner.
[0078] さらに、干渉信号のレピテイシヨン'ファクター(RF)が複数ある場合、例えば、図 13 に示すように、サブキャリア # 1〜 # 4では RF = 2、サブキャリア # 5〜 # 8では RF = 4である場合でも、上記同様にして受信信号力 干渉信号を除去することができる。こ の場合、干渉信号源の基地局では、複数の移動局毎にレピテイシヨン'ファクターを 異ならせ、 RF = 2の移動局と RF=4の移動局とをサブキャリア # 1〜 # 8に周波数多 重すること力 Sできる。なお、図 12に示すマッピングパターンを用いる場合でも、干渉 信号源の基地局では、 RF = 2の複数の移動局を最大 4つまでサブキャリア # 1〜 # 8に周波数多重することができる。  [0078] Further, when there are multiple interference signal repetition factors (RF), for example, as shown in FIG. 13, RF = 2 for subcarriers # 1 to # 4 and RF = for subcarriers # 5 to # 8. Even in the case of 4, the received signal force interference signal can be removed in the same manner as described above. In this case, in the base station of the interference signal source, the repetition factor is changed for each of the plurality of mobile stations, and the mobile station with RF = 2 and the mobile station with RF = 4 are subcarriers # 1 to # 8 with a high frequency. The power of weight S Even when the mapping pattern shown in FIG. 12 is used, the interference signal source base station can frequency-multiplex a plurality of RF = 2 mobile stations up to a maximum of four on subcarriers # 1 to # 8.
[0079] 一方、所望信号のレピテイシヨン'ファクターが干渉信号のレピテイシヨン'ファクター 以下である場合、例えば、所望信号のレピテイシヨン'ファクターが図 14に示すように RF = 2であるのに対し、干渉信号のレピテイシヨン'ファクターが図 15に示すように R F = 4である場合は、図 6に示す構成を採る移動局 200によって、以下のようにして干 渉信号を除去することができる。  [0079] On the other hand, if the repetition factor of the desired signal is equal to or less than the repetition factor of the interference signal, for example, the repetition factor of the desired signal is RF = 2 as shown in FIG. When the repetition factor is RF = 4 as shown in FIG. 15, the interference signal can be removed by the mobile station 200 having the configuration shown in FIG. 6 as follows.
[0080] すなわち、図 6に示す構成を採る移動局 200において、所望信号のレピテイシヨン' ファクター(RF = 2)に応じて N = RF = 2として、選択部 205が、サブキャリア # 1〜# 8にマッピングされたシンボルを 2個ずつ順次選択して出力することにより、実施の形 態 1と同様にして受信信号力も干渉信号を除去することができる。 That is, in mobile station 200 adopting the configuration shown in FIG. 6, N = RF = 2 according to the repetition factor (RF = 2) of the desired signal, and selection section 205 includes subcarriers # 1- # By selecting and outputting two symbols mapped to 8 sequentially, it is possible to remove the interference signal as well as the received signal strength in the same manner as in the first embodiment.
[0081] また、上記のようにして移動局において干渉信号を除去できるようにするため、所望 信号源の基地局および干渉信号源の基地局のレピテイシヨン'ファクターおよびマツ ビングパターンを決定する。 Further, in order to be able to remove the interference signal in the mobile station as described above, the repetition factor and the mapping pattern of the base station of the desired signal source and the base station of the interference signal source are determined.
[0082] 例えば、図 7に示すように所望信号のレピテイシヨン'ファクターが RF = 4であるのに 対し、干渉信号のレピテイシヨン'ファクターが図 12に示すように RF = 2である場合は 、干渉信号のレピテイシヨン'ファクター(RF = 2)に基づき、少なくとも 2つのシンボル におレ、て、所望信号のマッピングパターンと干渉信号のマッピングパターンとを同一 にする。また、図 16および図 17に示すように、図 7および図 13のマッピングパターン をそれぞれ周波数軸上においてインタリーブした場合でも、少なくとも 2つのシンボル におレ、て、所望信号のマッピングパターンと干渉信号のマッピングパターンとを同一 にする。  [0082] For example, if the desired signal repetition factor is RF = 4 as shown in FIG. 7 and the interference signal repetition factor is RF = 2 as shown in FIG. Based on the repetition factor (RF = 2), the mapping pattern of the desired signal and the mapping pattern of the interference signal are made the same in at least two symbols. Also, as shown in FIGS. 16 and 17, even when the mapping patterns of FIGS. 7 and 13 are interleaved on the frequency axis, the mapping pattern of the desired signal and the interference signal Make the mapping pattern the same.
[0083] 一方、図 14に示すように所望信号のレピテイシヨン'ファクターが RF = 2であるのに 対し、干渉信号のレピテイシヨン'ファクターが図 15に示すように RF = 4である場合は 、所望信号のレピテイシヨン'ファクター (RF = 2)に基づき、上記同様に、少なくとも 2 つのシンボルにおいて、所望信号のマッピングパターンと干渉信号のマッピングパタ 一ンとを同一にする。  [0083] On the other hand, when the repetition factor of the desired signal is RF = 2 as shown in FIG. 14 and the repetition factor of the interference signal is RF = 4 as shown in FIG. Based on the repetition factor (RF = 2), the mapping pattern of the desired signal and the mapping pattern of the interference signal are the same in at least two symbols as described above.
[0084] これらの例では、干渉信号源が 1つである場合を示しているため、少なくとも 2つの 同一シンボルがあれば足りる力 干渉信号源が M個である場合は、少なくとも M + 1 個の同一シンボルが必要になる。つまり、すべての干渉信号源からの干渉信号を受 信信号から除去するためには、干渉信号源の数を Mとした場合、少なくとも M + 1個 のサブキャリアにおいて複数の同一シンボルの周波数軸上でのマッピングパターン を、所望信号源の基地局と干渉信号源の基地局とで同一にするようにする。  [0084] These examples show the case where there is only one interference signal source. Therefore, it is sufficient to have at least two identical symbols. When there are M interference signal sources, at least M + 1 The same symbol is required. In other words, in order to remove interference signals from all interference signal sources from the received signal, when the number of interference signal sources is M, at least M + 1 subcarriers on the frequency axis of the same symbol. The mapping pattern at is the same for the base station of the desired signal source and the base station of the interference signal source.
[0085] このようして、本実施の形態では、所望信号のレピテイシヨン'ファクターと干渉信号 のレピテイシヨン'ファクターが相違する場合でも、受信信号から干渉信号を除去して 所望信号を得ることができる。  Thus, in the present embodiment, even when the repetition factor of the desired signal is different from the repetition factor of the interference signal, the interference signal is removed from the received signal to obtain the desired signal.
[0086] (実施の形態 5) 図 18に、本実施の形態に係る移動体通信システムの構成を示す。図 18に示すよう に、本実施の形態では、移動局 MS 力 基地局 BS と通信中であり、セル Aのセル [0086] (Embodiment 5) FIG. 18 shows the configuration of the mobile communication system according to the present embodiment. As shown in FIG. 18, in this embodiment, mobile station MS power is communicating with base station BS and cell A
A A  A A
境界付近に位置する場合について説明する。また、セル Aに隣接するセルがセル B である場合について説明する。よって、図 18では、移動局 MS にとつて、基地局 BS  The case where it is located near the boundary will be described. A case where the cell adjacent to the cell A is the cell B will be described. Therefore, in FIG. 18, for the mobile station MS, the base station BS
A  A
が所望信号源となり、基地局 BSが干渉信号源となる。すなわち、基地局 BS 力 Becomes the desired signal source, and the base station BS becomes the interference signal source. That is, base station BS power
A B A A B A
セル Aに位置する移動局 MS へ送信される信号が移動局 MS に対する所望信号と  The signal transmitted to mobile station MS located in cell A is the desired signal for mobile station MS.
A A  A A
なり、基地局 BSからセル Bに位置する移動局 MSへ送信される信号が、移動局 M  The signal transmitted from the base station BS to the mobile station MS located in the cell B is the mobile station M.
B B  B B
S に対する所望信号および移動局 MS に対する干渉信号となる。また、本実施の形 The desired signal for S and the interference signal for mobile station MS. In addition, this form
B A B A
態では、基地局 BS (干渉信号源)および移動局 MS は複数のアンテナ(図 18では  In this state, the base station BS (interference signal source) and the mobile station MS have multiple antennas (in Fig. 18).
B B  B B
2本)を備え、 MIM〇(Multi Input Multi Output)通信を行っている。このような移動体 通信システムにおいても、移動局 MS では上記同様にして干渉信号を除去すること  2) and performs MIM ○ (Multi Input Multi Output) communication. In such a mobile communication system, the mobile station MS removes the interference signal in the same manner as described above.
A  A
ができる。  Can do.
[0087] 例えば、所望信号源の基地局 BS でのマッピングパターンを図 7とした場合、干渉  [0087] For example, when the mapping pattern of the desired signal source at the base station BS is shown in FIG.
A  A
信号源の基地局 BSでは、一方のアンテナにおけるマッピングパターンを図 15に示  In the base station BS of the signal source, the mapping pattern for one antenna is shown in Fig. 15.
B  B
すようにし、他方のアンテナにおけるマッピングパターンを図 19に示すようにする。こ のように所望信号のマッピングパターンと、 2本のアンテナから送信される干渉信号の マッピングパターンとを周波数軸方向で同一にすることにより、干渉信号源の基地局 BS が MIMO通信を行っている場合でも、移動局 MS では、上記同様にして受信 The mapping pattern for the other antenna is as shown in FIG. In this way, by making the mapping pattern of the desired signal and the mapping pattern of the interference signal transmitted from the two antennas the same in the frequency axis direction, the base station BS of the interference signal source performs MIMO communication. Even in this case, the mobile station MS
B A B A
信号から干渉信号を除去することができる。レピテイシヨン'ファクターが Lの場合は、 L 1個の干渉信号を除去することができるため、移動局 MS では、基地局 BS が最  Interference signals can be removed from the signal. When the repetition factor is L, L interference signals can be removed. Therefore, in the mobile station MS, the base station BS is the best.
A B  A B
大 L 1本のアンテナを用いて MIMO通信を行っている場合にすべての干渉信号を 除去することができる。  Large L All interference signals can be removed when MIMO communication is performed using one antenna.
[0088] なお、本実施の形態においては、所望信号が MIMO送信されず、干渉信号が Ml MO送信される場合を一例として示したが、所望信号が MIMO送信され、干渉信号 が MIMO送信されなレ、場合や、所望信号および干渉信号の双方が MIMO送信さ れる場合も、上記同様にして干渉信号を除去することができる。  [0088] In the present embodiment, the case where the desired signal is not transmitted by MIMO and the interference signal is transmitted by M1 MO is shown as an example. However, the desired signal is transmitted by MIMO and the interference signal is not transmitted by MIMO. In the case where the desired signal and the interference signal are both MIMO transmitted, the interference signal can be removed in the same manner as described above.
[0089] このように、本実施の形態によれば、基地局が複数のアンテナを備え MIMO送信 する場合でも、移動局において受信信号力 干渉信号を除去して所望信号を得るこ とができる。 Thus, according to the present embodiment, even when the base station is equipped with a plurality of antennas and performs MIMO transmission, the mobile station can remove the received signal strength interference signal and obtain the desired signal. You can.
[0090] (実施の形態 6)  [0090] (Embodiment 6)
本実施の形態に係る基地局 500の構成を図 20に示す。基地局 500は、実施の形 態 2に係る基地局 300 (図 8)の構成に、さらにスクランプリング部 501を備える。  FIG. 20 shows the configuration of base station 500 according to the present embodiment. Base station 500 further includes a scrambling unit 501 in addition to the configuration of base station 300 (FIG. 8) according to Embodiment 2.
[0091] スクランプリング部 501は、インタリーブ後のシンボルに対して、〇VSF (Orthogonal  [0091] The scrambling part 501 applies a 0 VSF (Orthogonal) to the interleaved symbol.
Variable Spreading Factor)符号、 GOLD符号、 PN符号、または、回転符号のいず れかを複素乗算して、各シンボルに対してスクランプリング処理を施す。例えば、スク ランプリング処理に用いるこれらの符号を、チャネル毎、移動局毎等に異ならせて用 いてもよい。  Scrambling is applied to each symbol by complex multiplication of one of Variable Spreading Factor) code, GOLD code, PN code, or rotation code. For example, these codes used for the scrambling process may be used differently for each channel or each mobile station.
[0092] このようなスクランプリング処理を施すことにより、基地局 500からの送信信号を干渉 信号と受信する移動局に対して与える干渉の影響を少なくすることができる。よって、 基地局 500からの送信信号を干渉信号として受信する移動局が上記のような干渉除 去機能を有していない場合でも、スクランプリング処理により、その移動局では基地 局 500からの干渉信号が白色化されるため、干渉の影響を低減することができる。  By performing such scrambling processing, it is possible to reduce the influence of interference on the mobile station that receives the transmission signal from base station 500 and the interference signal. Therefore, even when a mobile station that receives a transmission signal from the base station 500 as an interference signal does not have the interference removal function as described above, the mobile station can receive an interference signal from the base station 500 by scrambling. Is whitened, the influence of interference can be reduced.
[0093] このように、本実施の形態によれば、スクランプリング処理により干渉の影響を低減 すること力 Sできる。  As described above, according to the present embodiment, it is possible to reduce the influence of interference S by the scrambling process.
[0094] (実施の形態 7)  [0094] (Embodiment 7)
図 21に、本実施の形態に係る移動体通信システムの構成を示す。図 21に示すよう に、本実施の形態では、移動局 MS 力 基地局 BS と通信中であり、セル Aのセル  FIG. 21 shows the configuration of the mobile communication system according to the present embodiment. As shown in FIG. 21, in the present embodiment, mobile station MS power is communicating with base station BS, and cell A
A A  A A
境界付近に位置する場合について説明する。また、セル Aに隣接するセル力 セル Bおよびセル Cである場合について説明する。よって、図 21では、移動局 MS にとつ  The case where it is located near the boundary will be described. In addition, a case where the cell force is cell B and cell C adjacent to cell A will be described. Therefore, in FIG.
A  A
て、基地局 BS が所望信号源となり、基地局 BSおよび基地局 BS が干渉信号源と  Therefore, the base station BS becomes a desired signal source, and the base station BS and the base station BS become interference signal sources.
A B C  A B C
なる。すなわち、基地局 BS からセル Aに位置する移動局 MS へ送信される信号が  Become. That is, the signal transmitted from the base station BS to the mobile station MS located in the cell A is
A A  A A
移動局 MS に対する所望信号となり、基地局 BSからセル Bに位置する移動局へ送  This is the desired signal for mobile station MS and is sent from base station BS to the mobile station located in cell B.
A B  A B
信される信号が移動局 MS に対する干渉信号 Bとなり、基地局 BS からセル Cに位  The received signal is the interference signal B for the mobile station MS, and is positioned from the base station BS to the cell C.
A C  A C
置する移動局へ送信される信号が移動局 MS に対する干渉信号 Cとなる。また、本  The signal transmitted to the mobile station is the interference signal C for the mobile station MS. Also book
A  A
実施の形態では、移動局 MS は複数のアンテナ(図 21では 2本)を備えている。この  In the embodiment, the mobile station MS includes a plurality of antennas (two in FIG. 21). this
A  A
ような移動体通信システムにおいても、移動局 MS は複数の干渉信号 (干渉信号 B および干渉信号 c)を除去することができる。 Even in such mobile communication systems, the mobile station MS has a plurality of interference signals (interference signals B And the interference signal c) can be removed.
[0095] 例えば、所望信号源の基地局 BS でのマッピングパターンを図 7とした場合、干渉  [0095] For example, when the mapping pattern of the desired signal source at the base station BS is shown in FIG.
A  A
信号源の基地局 BSではマッピングパターンを図 15に示すようにして、基地局 BS  In the base station BS of the signal source, the mapping pattern is as shown in FIG.
B B  B B
でのマッピングパターンを基地局 BS でのマッピングパターンに合わせる。ここで、本  The mapping pattern in is matched with the mapping pattern in the base station BS. Where the book
A  A
実施の形態では、もう一つの干渉信号源である基地局 BS でのマッピングパターンを  In the embodiment, the mapping pattern in the base station BS, which is another interference signal source, is changed.
C  C
、基地局 BS でのマッピングパターンに合わせる必要はない。  It is not necessary to match the mapping pattern in the base station BS.
A  A
[0096] このように、マッピングパターンを所望信号に合わせた干渉信号 (干渉信号 B)とマ ッビングパターンを所望信号に合わせてレ、なレ、干渉信号 (干渉信号 C)とが混在する 場合でも、移動局 BS が複数のアンテナを備えることにより、移動局 BS では、以下  [0096] As described above, when an interference signal (interference signal B) in which the mapping pattern is matched with a desired signal and a mapping pattern in accordance with the desired signal are mixed, interference signals (interference signal C) are mixed. However, since the mobile station BS is equipped with multiple antennas, the mobile station BS
A A  A A
のようにして、受信信号から干渉信号 Bおよび干渉信号 Cの双方を除去することがで きる。  In this way, both interference signal B and interference signal C can be removed from the received signal.
[0097] 本実施の形態に係る移動局 600の構成を図 22に示す。なお、図 22において、実 施の形態 1に係る移動局 200 (図 6)と同一の構成には同一符号を付し、説明を省略 する。また、図 11におけるアンテナ 201— 1、 201— 2、受信 RF部 202— 1、 202- 2 、 GI除去部 203— 1、 203— 2、 FFT部 204— 1、 204— 2はそれぞれ、図 6における アンテナ 201、受信 RF部 202、 GI除去部 203、 FFT部 204と同一のものである。  FIG. 22 shows the configuration of mobile station 600 according to the present embodiment. In FIG. 22, the same components as those of mobile station 200 (FIG. 6) according to Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted. In addition, the antennas 201-1, 201-2, reception RF units 202-1, 202-2, GI removal units 203-1, 203-2, and FFT units 204-1, 204-2 in FIG. These are the same as the antenna 201, the reception RF unit 202, the GI removal unit 203, and the FFT unit 204 in FIG.
[0098] 移動局 600は、干渉除去処理を二段階に分けて実施する。すなわち、第一段階と して、干渉除去部 601—:!〜 601— K力 マッピングパターンを所望信号に合わせて いない干渉信号 (干渉信号 C)を空間軸上で分離し、第二段階として、干渉除去部 2 13が、マッピングパターンを所望信号に合わせた干渉信号 (干渉信号 B)を周波数 軸上で分離する。  The mobile station 600 performs the interference cancellation process in two stages. That is, as a first step, the interference removal unit 601—! ~ 601- K force Interference signal that does not match the mapping pattern with the desired signal (interference signal C) is separated on the spatial axis, and as a second step, the interference removal unit 213 performs interference that matches the mapping pattern with the desired signal. Separate the signal (interference signal B) on the frequency axis.
[0099] 干渉除去部 601—:!〜 601 _Kは、 OFDMシンボルを構成する複数のサブキヤリ ァ # 1〜# Kにそれぞれ対応して備えられ、サブキャリア毎にアンテナ 201 _ 1で受 信された信号およびアンテナ 201—2で受信された信号の双方が入力される。そして 、干渉除去部 601—:!〜 601—Kは、それらの信号を用いて空間軸上で MMSE処 理を行うことにより、受信信号から干渉信号 Cを除去する。干渉除去部 601 _ 1〜60 1一 Kでは、受信信号から干渉信号 Cを除去するにあたり、所望信号と干渉信号 Bと を合わせた信号 (以下「疑似所望信号」とレ、う)を MMSE処理における所望信号とみ なして、 MMSE処理を行う。この MMSE処理により、受信信号からまず干渉信号 C のみが分離される。 [0099] Interference remover 601—! ~ 601 _K is provided corresponding to each of the plurality of subcarriers # 1 to # K constituting the OFDM symbol, and received by the antenna 201-2 and the signal received by the antenna 201 _ 1 for each subcarrier. Both signals are input. Then, the interference removal unit 601—! ~ 601-K removes interference signal C from the received signal by performing MMSE processing on the spatial axis using these signals. Interference canceler 601 _ 1 to 60 1 1 K removes the interference signal C from the received signal by MMSE processing the signal (hereinafter referred to as “pseudo desired signal”) that combines the desired signal and the interference signal B. Desired signal in Without doing MMSE processing. By this MMSE processing, only the interference signal C is first separated from the received signal.
[0100] 図 23に、干渉除去部 601—:!〜 601— Kの構成を示す。 FIG. 23 shows the configuration of the interference cancellers 601— :! to 601—K.
[0101] FFT部 204— 1、 204— 2からの信号は、サブキャリア # 1〜 # K毎に干渉除去部 6 01—:!〜 601 _Kに人力される。  [0101] The signals from the FFT units 204-1 and 204-2 are subtracted from the subcarriers # 1 to #K. ~ Human power to 601 _K.
[0102] 干渉除去部 601—:!〜 601—Kでは、チャネル推定部 6011が、アンテナ毎に所望 信号のチャネル推定値を算出して、合成部 6013に出力する。  [0102] Interference remover 601—! ˜601-K, channel estimation section 6011 calculates the channel estimation value of the desired signal for each antenna and outputs the result to combining section 6013.
[0103] また、チャネル推定部 6012が、アンテナ毎に干渉信号 Βのチャネル推定値を算出 して、合成部 6013に出力する。  [0103] Further, channel estimation section 6012 calculates the channel estimation value of the interference signal に for each antenna and outputs it to combining section 6013.
[0104] 合成部 6013は、アンテナ毎に所望信号のチャネル推定値と干渉信号 Βのチヤネ ル推定値とを合成して、 MMSE処理部 6014に出力する。  Combining section 6013 combines the channel estimation value of the desired signal and the channel estimation value of the interference signal に for each antenna, and outputs the combined signal to MMSE processing section 6014.
[0105] この合成処理により、 MMSE処理部 6014は、疑似所望信号を MMSEにおける所 望信号とみなして空間軸上での MMSE処理を行うことができる。そして、この MMS E処理により、受信信号 (所望信号、干渉信号 Bおよび干渉信号 Cが混在した信号) から疑似所望信号を取り出すことができる。すなわち、受信信号から干渉信号 Cを除 去すること力 Sできる。干渉除去部 601—:!〜 601—Kの各々の MMSE処理部 6014 にて得られた疑似所望信号は、選択部 205に出力される。  [0105] With this synthesis processing, the MMSE processing unit 6014 can perform the MMSE processing on the spatial axis by regarding the pseudo desired signal as the desired signal in MMSE. By this MMS E processing, a pseudo desired signal can be extracted from a received signal (a signal in which a desired signal, interference signal B and interference signal C are mixed). In other words, it is possible to remove the interference signal C from the received signal. The pseudo-desired signals obtained by the MMSE processing units 6014 of the interference removal units 601— :! to 601-K are output to the selection unit 205.
[0106] その後、干渉除去部 213では、実施の形態 1と同様にして、疑似所望信号から干渉 信号 Bを除去して、所望信号のみを取り出す。レピテイシヨン'ファクター(RF)がしの 場合は L 1個の干渉信号を除去することができるため、移動局 MS では、 RF = 4  [0106] After that, interference removing section 213 removes interference signal B from the pseudo-desired signal and takes out only the desired signal, as in the first embodiment. If the repetition factor (RF) is L, one interference signal can be removed, so that the mobile station MS has RF = 4
A  A
の各シンボル S1〜S16において、 RF— 1個(3個)の干渉信号源からの干渉信号を すべて除去することができる。  In each of the symbols S1 to S16, RF—all interference signals from one (three) interference signal sources can be removed.
[0107] なお、本実施の形態においては、マッピングパターンを所望信号に合わせた干渉 信号源の数を Ml、マッピングパターンを所望信号に合わせてレ、なレ、干渉信号源の 数を M2、移動局の受信アンテナの数を N、マッピングパターンを所望信号に合わせ た干渉信号のレピテイシヨン'ファクターをしとすれば、 Ml < Nおよび M2 < Lの関係 が成り立つ場合にすべての干渉信号を確実に除去することができる。  In the present embodiment, the number of interference signal sources that match the mapping pattern with the desired signal is Ml, the mapping pattern is matched with the desired signal, and the number of interference signal sources is M2. If the number of receiving antennas in the station is N and the repetition factor of the interference signal is adjusted to match the mapping pattern to the desired signal, all interference signals can be reliably removed when the relationship of Ml <N and M2 <L holds. can do.
[0108] また、空間軸と周波数軸とで二段階に分けて実施した干渉除去処理をひとつにまと めて実施することも可能である力 本実施の形態のように、マッピングパターンを所望 信号に合わせていない干渉信号 (干渉信号 C)の除去を、マッピングパターンを所望 信号に合わせた干渉信号 (干渉信号 B)の除去に先立って行うことにより、干渉除去 に必要なアンテナ数および演算量を削減することができる。これは、以下の理由によ る。 [0108] In addition, the interference cancellation processing performed in two steps on the space axis and the frequency axis is combined into one. As in this embodiment, the interference signal (interference signal C) that does not match the mapping pattern with the desired signal can be removed by using the interference signal (interference signal) that matches the mapping pattern with the desired signal. By performing prior to the removal of signal B), the number of antennas and the amount of computation required to eliminate interference can be reduced. This is due to the following reasons.
[0109] すなわち、上記のように、所望信号と干渉信号 Bとの間でマッピングパターンを合わ せておけば、受信信号から干渉信号 Cを空間軸上で除去する際に、干渉信号 Bは、 干渉信号としてではなぐ疑似所望信号として取り出される。このように、マッピングパ ターンを所望信号に合わせた干渉信号 Bを疑似所望信号として取り出すことにより、 空間軸上において除去すべき干渉信号の数を減らすことができるため、干渉除去に 必要なアンテナ数を削減することができるとともに、干渉除去に必要な逆行列演算量 を削減することができる。  That is, as described above, if the mapping pattern is matched between the desired signal and the interference signal B, when the interference signal C is removed from the received signal on the spatial axis, the interference signal B is It is extracted as a pseudo-desired signal that is not an interference signal. In this way, the number of interference signals to be removed on the spatial axis can be reduced by extracting the interference signal B whose mapping pattern matches the desired signal as a pseudo desired signal, so the number of antennas required for interference removal Can be reduced, and the amount of inverse matrix computation required for interference removal can be reduced.
[0110] 例えば、上記において Ml = 3、 M2 = l、 N = 2、 L=4とした場合、空間軸上での 干渉除去を周波数軸上での干渉除去に先立って行うことにより、マッピングパターン を所望信号源に合わせていない 1つの干渉信号源からの干渉信号を 2本のアンテナ を用いて確実に除去した後に、マッピングパターンを所望信号源に合わせた 3つの 干渉信号源からの干渉信号を 4つの同一シンボルを用いて除去することができる。  [0110] For example, when Ml = 3, M2 = l, N = 2, and L = 4 in the above, the mapping pattern is obtained by performing the interference removal on the spatial axis prior to the interference removal on the frequency axis. After the interference signal from one interference signal source is reliably removed using two antennas, the interference signal from three interference signal sources that match the mapping pattern to the desired signal source It can be removed using 4 identical symbols.
[0111] つまり、干渉除去処理を一度にまとめて実施する場合には 8 X 8の逆行列演算が必 要なのに対して、本実施の形態のように干渉除去処理を二段階に分けて行えば、空 間軸上での 2 X 2の逆行列演算、および、周波数軸上での 4 X 4の逆行列演算で済 む。逆行列演算は、そのサイズに応じて演算量が指数関数的に増大するので、本実 施の形態のように二段階に分けて干渉除去処理を行うことで演算量を大きく削減す ること力 Sできる。  [0111] That is, when performing the interference cancellation processing all at once, an 8 × 8 inverse matrix operation is required, but if the interference cancellation processing is performed in two stages as in the present embodiment. 2 X 2 inverse matrix operation on the spatial axis and 4 X 4 inverse matrix operation on the frequency axis. Inverse matrix computation increases in the amount of computation exponentially according to its size, so it is possible to greatly reduce the amount of computation by performing interference cancellation processing in two stages as in this embodiment. S can.
[0112] このように、本実施の形態によれば、マッピングパターンを所望信号に合わせた干 渉信号とマッピングパターンを所望信号に合わせてレ、なレ、干渉信号とが混在する場 合でも、移動局において受信信号力も干渉信号を除去して所望信号を得ることがで きる。  [0112] Thus, according to the present embodiment, even when an interference signal in which a mapping pattern is matched with a desired signal and a mapping pattern in accordance with the desired signal are mixed, In the mobile station, the received signal strength can also be obtained by removing the interference signal.
[0113] (実施の形態 8) 実施の形態 1では、周波数軸上でのマッピングパターンを、所望信号源の基地局と 干渉信号源の基地局とで同一にする場合について説明したが、本実施の形態では、 時間軸上でのマッピングパターンを、所望信号源の基地局と干渉信号源の基地局と で同一にする場合について説明する。 [0113] (Embodiment 8) In the first embodiment, the case where the mapping pattern on the frequency axis is the same in the base station of the desired signal source and the base station of the interference signal source has been described. However, in this embodiment, the mapping pattern on the time axis is A case will be described in which the mapping pattern is the same between the base station of the desired signal source and the base station of the interference signal source.
[0114] 実施の形態 1では、一般的に時間軸方向のチャネル変動が周波数軸方向のチヤネ ル変動に比べて小さいことを勘案し、レピテイシヨンされた複数の同一シンボルを周 波数軸方向にマッピングした(図 7)。  [0114] In Embodiment 1, in consideration of the fact that channel fluctuations in the time axis direction are generally smaller than channel fluctuations in the frequency axis direction, a plurality of identical repeated symbols are mapped in the frequency axis direction. (Figure 7).
[0115] し力、しながら、移動局が非常に高速で移動し、かつ、マルチパスがほとんど存在し ない環境においては、時間軸方向のチャネル変動が周波数軸方向のチャネル変動 に比べて大きくなる場合もあり得る。このような場合には、レピテイシヨンされた複数の 同一シンボルを時間軸方向にマッピングすることが有効である。  [0115] However, in an environment where the mobile station moves at a very high speed and there are few multipaths, the channel fluctuation in the time axis direction becomes larger than the channel fluctuation in the frequency axis direction. There may be cases. In such a case, it is effective to map a plurality of identical repeated symbols in the time axis direction.
[0116] そこで、本実施の形態では、所望信号源の基地局は、図 24に示すマッピングバタ ーンを採る。また、干渉信号源の基地局は、実施の形態 1同様、図 24のマッピングパ ターンに合わせたマッピングパターンを用いる。  [0116] Therefore, in the present embodiment, the base station of the desired signal source adopts the mapping pattern shown in FIG. Also, the base station of the interference signal source uses a mapping pattern that matches the mapping pattern of FIG. 24, as in the first embodiment.
[0117] このようなマッピングパターンを採る基地局から送信された信号を受信する移動局 は、図 25に示す構成を採る。すなわち、本実施の形態に係る移動局 800は、実施の 形態 1に係る移動局 200 (図 6)に、さらに転置部 801を備えて構成される。なお、図 2 5において、図 6と同一の構成には同一符号を付し、説明を省略する。  A mobile station that receives a signal transmitted from a base station that adopts such a mapping pattern adopts the configuration shown in FIG. That is, mobile station 800 according to the present embodiment is configured to further include transposition section 801 in mobile station 200 (FIG. 6) according to Embodiment 1. 25, the same components as those in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted.
[0118] 転置部 801は、 FFT部 204から入力される信号の周波数軸と時間軸とを転置する 。具体的には、図 24に示すマッピングパターンにおいて、転置部 801は、データ部 分に対して、周波数 (サブキャリア) # 1〜# 8と時間 tl〜t8とを転置する。その結果、 マッピングパターンが変換されて図 7と同一になる。このようにしてマッピングパターン を変換されたデータが選択部 205に出力される。  [0118] Transposition section 801 transposes the frequency axis and time axis of the signal input from FFT section 204. Specifically, in the mapping pattern shown in FIG. 24, transposition section 801 transposes frequencies (subcarriers) # 1 to # 8 and times tl to t8 with respect to the data portion. As a result, the mapping pattern is converted to be the same as in Figure 7. Data in which the mapping pattern is converted in this way is output to the selection unit 205.
[0119] ここで、さらに時間軸方向のダイバーシチ効果を高めるために、レピテイシヨンされ た複数の同一シンボルを時間軸上においてインタリーブすることがある。また、周波 数軸方向のダイバーシチ効果を高めるために、レピテイシヨンされた複数の同一シン ボルを周波数軸上においてインタリーブすることが考えられる。  [0119] Here, in order to further enhance the diversity effect in the time axis direction, a plurality of identical repeated symbols may be interleaved on the time axis. In order to enhance the diversity effect in the frequency axis direction, it is conceivable to interleave a plurality of identically repeated symbols on the frequency axis.
[0120] しかし、移動局 800において受信信号から干渉信号を除去して所望信号を得るに は、レピテイシヨンされた所望信号のサブキャリアへのマッピングパターンと、レビティ シヨンされた干渉信号のサブキャリアへのマッピングパターンとが時間軸方向で同一 であることが必要である。すなわち、移動局 800において受信信号から干渉信号を除 去して所望信号を得るには、所望信号と干渉信号とが同じパターンで時間軸上に配 置される必要がある。よって、所望信号源のインタリーバと干渉信号源のインタリーバ は、レピテイシヨンされた同一シンボルの時間軸上でのインタリーブを同じインタリー ブパターンにて行う必要がある。 [0120] However, in mobile station 800, the desired signal is obtained by removing the interference signal from the received signal. Therefore, it is necessary that the mapping pattern of the repeated desired signal to the subcarrier and the mapping pattern of the repeated interference signal to the subcarrier are the same in the time axis direction. That is, in order for mobile station 800 to remove the interference signal from the received signal and obtain the desired signal, the desired signal and the interference signal must be arranged on the time axis in the same pattern. Therefore, it is necessary for the interleaver of the desired signal source and the interleaver of the interference signal source to perform interleaving on the time axis of the same repeated symbol with the same interleave pattern.
[0121] そこで、各インタリーバは、図 24に示す各シンボルを図 26に示すようにインタリーブ する。そして、このとき、所望信号と干渉信号とで、時間軸方向のインタリーブパター ンを同一にする。これに対し、周波数軸上でのインタリーブを行う場合には、各インタ リーバは、シンボル毎のインタリーブを行わず、サブキャリア毎(行毎)のインタリーブ を行う。このようにすることで、レピテイシヨンされた所望信号のサブキャリアへのマツピ ングパターンと、レピテイシヨンされた干渉信号のサブキャリアへのマッピングパターン とを時間軸方向で同一にすることができるので、受信信号から干渉信号を確実に除 去すること力 Sできる。 Therefore, each interleaver interleaves each symbol shown in FIG. 24 as shown in FIG. At this time, the interleave pattern in the time axis direction is made the same for the desired signal and the interference signal. On the other hand, when interleaving on the frequency axis is performed, each interleaver does not perform interleaving for each symbol, but performs interleaving for each subcarrier (for each row). In this way, the mapping pattern of the desired signal after repetition to the subcarrier and the mapping pattern of the repeated interference signal to the subcarrier can be made the same in the time axis direction. It is possible to remove the interference signal from the force S.
[0122] ここで、所望信号と干渉信号とで、周波数軸方向でのインタリーブのインタリーブパ ターンを異ならせることは可能である。  [0122] Here, the interleaving pattern of the interleaving in the frequency axis direction can be made different between the desired signal and the interference signal.
[0123] また、所望信号と干渉信号とで、周波数軸方向および時間軸方向の双方でインタリ ーブパターンを同じにすることも可能である。この場合、所望信号源の基地局と干渉 信号源の基地局とで、インタリーブ後のマッピングパターンが同一となる。  [0123] Further, the desired signal and the interference signal can have the same interleave pattern in both the frequency axis direction and the time axis direction. In this case, the mapping pattern after interleaving is the same between the base station of the desired signal source and the base station of the interference signal source.
[0124] このように、本実施の形態によれば、レピテイシヨンされた複数の同一シンボルを時 間軸方向にマッピングする場合でも、受信信号力 干渉信号を除去することができる  [0124] Thus, according to the present embodiment, even when a plurality of repeated identical symbols are mapped in the time axis direction, the received signal force interference signal can be removed.
[0125] なお、上記各実施の形態では、干渉除去アルゴリズムとして MMSEを用いたが、 干渉除去アルゴリズムは MMSEに限定されず、 AAA技術に使用される干渉除去ァ ルゴリズムであればいかなるアルゴリズムでも使用可能である。例えば、ヌルステアリ ング、ビームフォーミング、 LMS、 RLS、 CMA等を使用可能である。 [0125] In each of the above embodiments, MMSE is used as the interference cancellation algorithm. However, the interference cancellation algorithm is not limited to MMSE, and any algorithm can be used as long as it is an interference cancellation algorithm used in AAA technology. It is. For example, null steering, beam forming, LMS, RLS, CMA, etc. can be used.
[0126] さらに、 MIMO通信で使用されるストリーム分離アルゴリズムを使用することも可能 である。 MIMO通信で使用されるストリーム分離アルゴリズムを使用すると、さらに以 下の効果を得ることができる。 [0126] Furthermore, it is possible to use the stream separation algorithm used in MIMO communication It is. The following effects can be obtained by using the stream separation algorithm used in MIMO communication.
[0127] すなわち、移動体通信システムではデータレートの高速化に対応するために MIM O受信を行うことが必須となりつつあるため、干渉除去アルゴリズムとしてストリーム分 離アルゴリズムを使用すれば、そのストリーム分離アルゴリズムを MIMO受信処理だ けでなく干渉除去処理にも使用することができるため、受信機の回路構成を簡単に すること力 Sできる。また、干渉除去アルゴリズムとしてストリーム分離アルゴリズムを使 用することで、 MMSEを用いる際に必要であった相互相関行列の演算が不要となる ため、受信信号のシンボル数が少ない場合でも干渉信号を確実に除去することがで きる。さらに、基地局一移動局間の伝搬環境や、基地局一移動局間の距離に応じて 、 MIMO受信処理と干渉除去処理とを適応的に切り替えることができる。例えば、移 動局が基地局の比較的近くに位置し低速で移動しているときは、ストリーム分離アル ゴリズムを用いて MIMO受信処理を行って伝送レートを向上させ、移動局がセルェ ッジゃセクタエッジに位置するときは、ストリーム分離アルゴリズムを用いて本発明の 干渉除去処理を行って SINRを向上させることができる。  [0127] That is, in a mobile communication system, it is indispensable to perform MIMO reception in order to cope with higher data rates. Therefore, if a stream separation algorithm is used as an interference cancellation algorithm, the stream separation algorithm is used. Can be used not only for MIMO reception processing but also for interference cancellation processing, so that the circuit configuration of the receiver can be simplified. In addition, the use of the stream separation algorithm as the interference cancellation algorithm eliminates the need for cross-correlation matrix calculations that were required when using MMSE, so interference signals can be reliably received even when the number of received signal symbols is small. Can be removed. Furthermore, MIMO reception processing and interference cancellation processing can be adaptively switched according to the propagation environment between the base station and the mobile station and the distance between the base station and the mobile station. For example, when the mobile station is relatively close to the base station and moving at a low speed, MIMO reception processing is performed using the stream separation algorithm to improve the transmission rate, and the mobile station When located at the sector edge, the interference removal processing of the present invention can be performed using a stream separation algorithm to improve SINR.
[0128] なお、 MIMO受信処理ではストリーム毎およびアンテナ毎のチャネル推定値を用 レ、てストリーム分離ウェイトを算出するが、ストリーム分離アルゴリズムを用いて干渉除 去処理を行う場合は、送信局毎およびサブキャリア毎のチャネル推定値を用いてスト リーム分離ウェイトを算出すればょレ、。  [0128] In MIMO reception processing, stream estimation weights are calculated using channel estimation values for each stream and for each antenna, but when performing interference removal processing using a stream separation algorithm, each transmission station and Calculate stream separation weights using channel estimates for each subcarrier.
[0129] また、上記各実施の形態では、受信局である移動局が 1本または 2本のアンテナを 備える場合について説明したが、本発明は 3本以上のアンテナを備える無線受信装 置と組み合わせて使用することも可能である。例えば、無線受信装置のアンテナ数を Nとし、レピテイシヨン'ファクターをしとすれば、本発明を適用することにより、 N X L- 1の干渉信号を除去することができる。換言すれば、本発明にて、所望信号源の数と 干渉信号源の数の和が最大 N X Lの無線通信システムに対応することができる。  [0129] Further, although cases have been described with the above embodiments where a mobile station as a receiving station includes one or two antennas, the present invention is combined with a radio receiving apparatus including three or more antennas. Can also be used. For example, assuming that the number of antennas of the radio receiving apparatus is N and a repetition factor, N X L-1 interference signals can be removed by applying the present invention. In other words, according to the present invention, it is possible to cope with a radio communication system in which the sum of the number of desired signal sources and the number of interference signal sources is N X L at maximum.
[0130] また、上記各実施の形態では、基地局を送信局(無線送信装置)、移動局を受信局  [0130] In each of the above embodiments, a base station is a transmitting station (wireless transmitting apparatus), and a mobile station is a receiving station.
(無線受信装置)として説明したが、本発明は、移動局が送信局 (無線送信装置)で、 基地局が受信局(無線受信装置)である場合も、上記同様にして実施することができ る。例えば、基地局が、所望信号源の移動局から所望信号を受信すると同時に、干 渉信号源の移動局から干渉信号を受信する場合に、上記同様にして、受信信号から 干渉信号を除去して所望信号を得ることができる。つまり、本発明は、上り回線に対し ても、下り回線同様に適用することができる。 Although described as a (wireless receiver), the present invention can also be implemented in the same manner as described above even when the mobile station is a transmitter station (wireless transmitter) and the base station is a receiver station (wireless receiver). The For example, when the base station receives the desired signal from the mobile station of the desired signal source and simultaneously receives the interference signal from the mobile station of the interfered signal source, the base station removes the interference signal from the received signal in the same manner as described above. A desired signal can be obtained. That is, the present invention can be applied to the uplink as well as the downlink.
[0131] また、基地局は Node B、移動局は UE、サブキャリアはトーンと称されることがある。  [0131] Also, the base station may be referred to as Node B, the mobile station as UE, and the subcarrier as tone.
[0132] また、上記各実施の形態では 1つの基地局がカバーする通信エリアを「セル」と称し[0132] In each of the above embodiments, a communication area covered by one base station is referred to as a "cell".
、このセルが角度方向に複数に分割されたエリアを「セクタ」と称して説明した力 1つ の基地局がカバーする通信エリアを「セルサイト」と称し、このセルサイトが角度方向 に複数に分割されたエリアを「セル」と称する通信システムもある。本発明はこのような 通信システムにも適用することができる。 The area in which this cell is divided into a plurality of angular directions is called a “sector”. The communication area covered by one base station is called a “cell site”, and this cell site is divided into a plurality of angular sites. In some communication systems, the divided areas are referred to as “cells”. The present invention can also be applied to such a communication system.
[0133] また、上記各実施の形態ではサブキャリア単位でシンボルをマッピングする場合に ついて説明したが、複数のサブキャリアをまとめてサブブロックまたはリソースブロック と称する通信システムにおレ、ても、シンボルマッピングの単位をサブブロック単位また はリソースブロック単位とすることより、本発明を上記同様に実施することができる。 [0133] Also, although cases have been described with the above embodiments where symbols are mapped in units of subcarriers, symbols may be used in a communication system in which a plurality of subcarriers are collectively referred to as subblocks or resource blocks. By setting the unit of mapping to be a sub-block unit or a resource block unit, the present invention can be implemented as described above.
[0134] また、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって 説明したが、本発明はソフトウェアで実現することも可能である。 Further, although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be realized by software.
[0135] また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップィ匕されてもよいし、一部又は全 てを含むように 1チップ化されてもよい。 [0135] Also, each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually arranged on one chip, or may be integrated into one chip so as to include a part or all of them.
[0136] ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LSI、ゥ ノレトラ LSIと呼称されることもある。 [0136] Here, it may be called IC, system LSI, super LSI, or unilera LSI, depending on the difference in power integration as LSI.
[0137] また、集積回路化の手法は LSIに限るものではなぐ専用回路又は汎用プロセッサ で実現してもよい。 LSI製造後に、プログラムすることが可能な FPGA (Field Program mable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフィ ギユラブル'プロセッサーを利用してもょレ、。 [0137] Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. Use an FPGA (Field Programmable Gate Array) that can be programmed after LSI manufacture, or a reconfigurable processor that reconfigures the connection and settings of circuit cells inside the LSI.
[0138] さらには、半導体技術の進歩又は派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用レ、て機能ブロックの集積化を行って もよレ、。バイオ技術の適応等が可能性としてありえる。 [0139] 本明糸田書 ίま、 2004年 12月 28曰出願の特願 2004— 381796、 2005年 6月 28曰 出願の特願 2005— 188424、および、 2005年 7月 25日出願の特願 2005— 2139[0138] Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is natural to use that technology to integrate functional blocks. ,. Biotechnology can be applied. [0139] Honmyo Itoda ίoma, 2004 December 28, Japanese Patent Application 2004- 381796, 2005 June 28, Japanese Patent Application 2005— 188424, and Japanese Patent Application, July 25, 2005 2005— 2139
30に基づくものである。これらの内容はすべてここに含めておく。 Based on 30. All these contents are included here.
産業上の利用可能性  Industrial applicability
[0140] 本発明は、移動体通信システムにおいて使用される基地局や移動局等に好適であ る。 [0140] The present invention is suitable for a base station, a mobile station, and the like used in a mobile communication system.

Claims

請求の範囲 The scope of the claims
[1] 複数の同一シンボルがマッピングされた複数のサブキャリアを含むマルチキャリア 信号を受信する受信手段と、  [1] receiving means for receiving a multicarrier signal including a plurality of subcarriers to which a plurality of identical symbols are mapped;
前記複数の同一シンボルを用いて前記マルチキャリア信号から干渉信号を除去す る干渉除去手段と、  Interference removing means for removing an interference signal from the multi-carrier signal using the plurality of identical symbols;
を具備する無線受信装置。  A wireless receiver comprising:
[2] 前記干渉除去手段は、  [2] The interference canceling means includes:
前記複数の同一シンボルの相互相関値を求め、それらの相互相関値からなる第 1 の行列を生成する相関値算出手段と、  Correlation value calculating means for obtaining cross-correlation values of the plurality of identical symbols and generating a first matrix comprising the cross-correlation values;
前記第 1の行列の逆行列および前記複数のサブキャリアのチャネル推定値からな る第 2の行列を用いた行列演算により前記複数の同一シンボルに対するウェイトを算 出するウェイト算出手段と、  Weight calculating means for calculating weights for the plurality of identical symbols by a matrix operation using an inverse matrix of the first matrix and a second matrix comprising channel estimation values of the plurality of subcarriers;
前記ウェイトを乗算された前記複数の同一シンボルを合成して前記干渉信号を除 去する合成手段と、  Combining means for combining the plurality of identical symbols multiplied by the weight to remove the interference signal;
を具備する請求項 1記載の無線受信装置。  The wireless receiver according to claim 1, further comprising:
[3] 複数の前記干渉除去手段を具備し、 [3] comprising a plurality of the interference canceling means,
前記複数の干渉除去手段が前記行列演算を分割して行う、  The plurality of interference canceling means divide and perform the matrix operation.
請求項 1記載の無線受信装置。  The wireless receiver according to claim 1.
[4] 前記干渉除去手段は、第一段階として空間軸上において干渉信号を除去し、第二 段階として周波数軸上において干渉信号を除去する、 [4] The interference removing means removes the interference signal on the spatial axis as a first stage, and removes the interference signal on the frequency axis as a second stage.
請求項 1記載の無線受信装置。  The wireless receiver according to claim 1.
[5] 複数のサブキャリアを含むマルチキャリア信号を請求項 1記載の無線受信装置へ 送信する無線送信装置であって、 [5] A wireless transmission device that transmits a multicarrier signal including a plurality of subcarriers to the wireless reception device according to claim 1,
シンボルを複製して複数の同一シンボルを生成する複製手段と、  Duplicating means for duplicating the symbol to generate a plurality of identical symbols;
前記複数の同一シンボルの前記複数のサブキャリアに対する周波数軸方向のマツ ビングを、前記複数のサブキャリアのうち少なくとも M + 1個(但し、 Mは干渉信号源 の数)のサブキャリアにおいて、干渉信号のシンボルのマッピングパターンと同一のマ ッビングパターンにて行って前記マルチキャリア信号を生成する生成手段と、 を具備する無線送信装置。 The mapping of the plurality of subcarriers of the plurality of identical symbols in the frequency axis direction is performed on at least M + 1 subcarriers of the plurality of subcarriers (where M is the number of interference signal sources). Generating means for generating the multicarrier signal by performing the same mapping pattern as the symbol mapping pattern of A wireless transmission device comprising:
[6] 複数の前記マルチキャリア信号を送信する複数のアンテナ、をさらに具備する、 請求項 5記載の無線送信装置。  6. The wireless transmission device according to claim 5, further comprising a plurality of antennas that transmit a plurality of the multicarrier signals.
[7] 請求項 1記載の無線受信装置を具備する無線通信移動局装置。 7. A radio communication mobile station apparatus comprising the radio reception apparatus according to claim 1.
[8] 請求項 5記載の無線送信装置を具備する無線通信移動局装置。 8. A radio communication mobile station apparatus comprising the radio transmission apparatus according to claim 5.
[9] 請求項 1記載の無線受信装置を具備する無線通信基地局装置。 9. A radio communication base station apparatus comprising the radio reception apparatus according to claim 1.
[10] 請求項 5記載の無線送信装置を具備する無線通信基地局装置。 10. A radio communication base station apparatus comprising the radio transmission apparatus according to claim 5.
[11] マルチキャリア通信において、複数の同一シンボルがマッピングされる複数のサブ キャリアを AAA技術における複数のアンテナとみなし、前記複数の同一シンボルに 対して周波数軸上での MMSE処理を行って、前記マルチキャリア信号に含まれる干 渉信号を除去する、 [11] In multicarrier communication, a plurality of subcarriers to which a plurality of the same symbols are mapped are regarded as a plurality of antennas in AAA technology, and the MMSE processing on the frequency axis is performed on the plurality of the same symbols, Remove interference signals contained in multi-carrier signals,
干渉信号除去方法。  Interference signal removal method.
PCT/JP2005/023808 2004-12-28 2005-12-26 Wireless receiving apparatus, wireless transmitting apparatus, and interference signal removing method WO2006070756A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006550769A JP4836806B2 (en) 2004-12-28 2005-12-26 Radio receiving apparatus, radio transmitting apparatus, and interference signal elimination method
EP05820380A EP1830502A4 (en) 2004-12-28 2005-12-26 Wireless receiving apparatus, wireless transmitting apparatus, and interference signal removing method
US11/722,856 US20080192857A1 (en) 2004-12-28 2005-12-26 Wireless Receiving Apparatus, Wireless Transmitting Apparatus, and Interference Signal Removing Method
CN2005800452366A CN101091341B (en) 2004-12-28 2005-12-26 Wireless receiving apparatus, wireless transmitting apparatus, and interference signal removing method
US13/316,249 US8401100B2 (en) 2004-12-28 2011-12-09 Transmission apparatus and transmission method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-381796 2004-12-28
JP2004381796 2004-12-28
JP2005188424 2005-06-28
JP2005-188424 2005-06-28
JP2005-213930 2005-07-25
JP2005213930 2005-07-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/722,856 A-371-Of-International US20080192857A1 (en) 2004-12-28 2005-12-26 Wireless Receiving Apparatus, Wireless Transmitting Apparatus, and Interference Signal Removing Method
US13/316,249 Continuation US8401100B2 (en) 2004-12-28 2011-12-09 Transmission apparatus and transmission method

Publications (1)

Publication Number Publication Date
WO2006070756A1 true WO2006070756A1 (en) 2006-07-06

Family

ID=36614873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023808 WO2006070756A1 (en) 2004-12-28 2005-12-26 Wireless receiving apparatus, wireless transmitting apparatus, and interference signal removing method

Country Status (5)

Country Link
US (2) US20080192857A1 (en)
EP (1) EP1830502A4 (en)
JP (2) JP4836806B2 (en)
CN (2) CN101091341B (en)
WO (1) WO2006070756A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042249A (en) * 2006-08-01 2008-02-21 Sharp Corp Mobile communication system, base station apparatus, and communication method
JP2008061244A (en) * 2006-08-28 2008-03-13 Samsung Electronics Co Ltd Receiving apparatus and method in broadband wireless access system
JP2008211752A (en) * 2007-01-31 2008-09-11 Toshiba Corp Radio communication system
JP2009017235A (en) * 2007-07-04 2009-01-22 Toyo Networks & System Integration Co Ltd Ofdm communication system
JP2011055213A (en) * 2009-09-01 2011-03-17 Fujitsu Ltd Relay method and relay apparatus
WO2011158727A1 (en) * 2010-06-17 2011-12-22 シャープ株式会社 Wireless communication apparatus, reception method and program thereof
US8160597B2 (en) 2006-10-13 2012-04-17 Samsung Electronics Co., Ltd Apparatus and method for allocating segments in broadband wireless communication system
CN101115047B (en) * 2007-08-03 2014-01-01 清华大学 OFDM receiving and dispatching system for high speed mobile environment

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725066B2 (en) * 2006-08-23 2014-05-13 Samsung Electronics Co., Ltd. Apparatus and method for allocating resource to mobile station connected to relay station in broadband wireless communication system
US8213541B2 (en) * 2006-09-12 2012-07-03 Hera Wireless S.A. Receiving method for receiving signals by a plurality of antennas, and a receiving apparatus and a radio apparatus using the same
KR100962114B1 (en) * 2006-11-23 2010-06-10 삼성전자주식회사 Apparatus and method for estimating channel in broadband wireless communication system
KR101003373B1 (en) * 2007-04-04 2010-12-22 삼성전자주식회사 Apparatus and method for interference cancellation in multiple antenna telecommunication system
US8369864B2 (en) * 2008-06-16 2013-02-05 Alcatel Lucent Inter-sector macrodiversity interference cancellation and scheduling
CN101815042B (en) * 2010-04-13 2012-12-05 新邮通信设备有限公司 Orthogonal frequency division multiplexing (OFDM) system channel estimation method and device
US8982686B2 (en) * 2010-06-07 2015-03-17 Qualcomm Incorporated Communication devices for generating and using a matrix-mapped sequence
US8804671B2 (en) * 2010-07-15 2014-08-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining UE mobility status
US9312968B2 (en) * 2013-06-07 2016-04-12 Samsung Electronics Co., Ltd. Computing system with power estimation mechanism and method of operation thereof
US10009053B2 (en) * 2013-09-27 2018-06-26 Qualcomm Incorporated Measurement and signaling for network assistance to enable data-IC in small cell clusters
CN107710857A (en) * 2015-07-10 2018-02-16 富士通株式会社 Multi-user's overlapping transmission methods, devices and systems based on re-transmission
US10411913B2 (en) * 2015-10-12 2019-09-10 Syracuse University Efficient channel estimation and symbol detection for massive MIMO-OFDM
CN106534026B (en) * 2016-10-14 2020-01-14 深圳市元征科技股份有限公司 Data sequence processing method and related equipment
JP6587781B2 (en) * 2017-06-15 2019-10-09 三菱電機株式会社 Transmitting apparatus, receiving apparatus, and wireless communication system
US10158454B1 (en) 2017-06-15 2018-12-18 At&T Intellectual Property I, L.P. Adaptive interleaver for wireless communication systems
KR102149611B1 (en) * 2019-08-26 2020-08-28 한국교통대학교산학협력단 Apparatus for MMSE channel estimation based Multi stage in OFDM system
US20210336834A1 (en) * 2020-04-27 2021-10-28 Qualcomm Incorporated Repetition on subcarriers for noncoherent modulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509959A (en) * 1999-09-14 2003-03-11 フランス テレコム An equalization method in a receiver using a combination of multi-carrier and code division multiple access modulation techniques
JP2004350242A (en) * 2003-05-26 2004-12-09 Sharp Corp Receiving apparatus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068628B2 (en) * 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
KR100401801B1 (en) * 2001-03-27 2003-10-17 (주)텔레시스테크놀로지 Orthogonal frequency division multiplexing/modulation communication system for improving ability of data transmission and method thereof
KR100510434B1 (en) * 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 OFDM signal transmission system, OFDM signal transmission apparatus and OFDM signal receiver
JPWO2003021833A1 (en) * 2001-08-28 2004-12-24 松下電器産業株式会社 Multipath interference canceller and multipath interference canceling method
HUP0401806A2 (en) * 2001-08-30 2004-11-29 Ntt Docomo Inc Radio transmission system and method and transmission station apparatus and reception station apparatus used in the radio transmission system
KR100849338B1 (en) * 2001-11-10 2008-07-29 삼성전자주식회사 Apparatus and method for coding/decoding of sttd in ofdm mobile communication system
JP3954849B2 (en) 2002-01-22 2007-08-08 小島プレス工業株式会社 Adaptive receiver
JP3745692B2 (en) * 2002-02-18 2006-02-15 日本電信電話株式会社 Multicarrier-CDMA modulation system transmitter and multicarrier-CDMA modulation system receiver
US7072693B2 (en) * 2002-08-05 2006-07-04 Calamp Corp. Wireless communications structures and methods utilizing frequency domain spatial processing
US7317750B2 (en) * 2002-10-31 2008-01-08 Lot 41 Acquisition Foundation, Llc Orthogonal superposition coding for direct-sequence communications
US7386057B2 (en) * 2003-02-20 2008-06-10 Nec Corporation Iterative soft interference cancellation and filtering for spectrally efficient high-speed transmission in MIMO systems
WO2004077777A1 (en) * 2003-02-28 2004-09-10 Nortel Networks Limited Sub-carrier allocation for ofdm
JP4068500B2 (en) * 2003-05-14 2008-03-26 日本無線株式会社 Array antenna communication device
EP1667349A4 (en) * 2003-09-30 2011-03-02 Panasonic Corp Radio transmission apparatus, radio reception appartus, and radio transmission method
KR100981121B1 (en) * 2007-12-18 2010-09-10 한국전자통신연구원 Apparatus and Method for Receiving Signal for MIMO System

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509959A (en) * 1999-09-14 2003-03-11 フランス テレコム An equalization method in a receiver using a combination of multi-carrier and code division multiple access modulation techniques
JP2004350242A (en) * 2003-05-26 2004-12-09 Sharp Corp Receiving apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAEDA N. ET AL: "Performance of Forward Link Broadband OFCDM Packet Wireless Access using MMSE Combining Scheme Based on SIR Estimation", 55TH, IEEE VEHICULAR TECHNOLOGY CONFERENCE (VTC) SPRING 2002, vol. 2, 6 May 2002 (2002-05-06), pages 1045 - 1049, XP001214453 *
MEDINA L. ET AL: "Proposal of OFDM System with Data Repetition", 52ND, IEEE VEHICULAR TECHNOLOGY CONFERENCE (VTC) FALL 2000, vol. 1, 24 September 2000 (2000-09-24), pages 352 - 357, XP001033164 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042249A (en) * 2006-08-01 2008-02-21 Sharp Corp Mobile communication system, base station apparatus, and communication method
JP2008061244A (en) * 2006-08-28 2008-03-13 Samsung Electronics Co Ltd Receiving apparatus and method in broadband wireless access system
US8077627B2 (en) 2006-08-28 2011-12-13 Samsung Electronics Co., Ltd Receiving apparatus and method in broadband wireless access system
US8160597B2 (en) 2006-10-13 2012-04-17 Samsung Electronics Co., Ltd Apparatus and method for allocating segments in broadband wireless communication system
JP2008211752A (en) * 2007-01-31 2008-09-11 Toshiba Corp Radio communication system
JP2009017235A (en) * 2007-07-04 2009-01-22 Toyo Networks & System Integration Co Ltd Ofdm communication system
CN101115047B (en) * 2007-08-03 2014-01-01 清华大学 OFDM receiving and dispatching system for high speed mobile environment
JP2011055213A (en) * 2009-09-01 2011-03-17 Fujitsu Ltd Relay method and relay apparatus
WO2011158727A1 (en) * 2010-06-17 2011-12-22 シャープ株式会社 Wireless communication apparatus, reception method and program thereof

Also Published As

Publication number Publication date
EP1830502A1 (en) 2007-09-05
CN102244637B (en) 2014-07-30
JPWO2006070756A1 (en) 2008-06-12
US20080192857A1 (en) 2008-08-14
CN101091341A (en) 2007-12-19
CN101091341B (en) 2011-09-21
US8401100B2 (en) 2013-03-19
JP2012010384A (en) 2012-01-12
JP5349553B2 (en) 2013-11-20
CN102244637A (en) 2011-11-16
EP1830502A4 (en) 2013-02-13
JP4836806B2 (en) 2011-12-14
US20120128087A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP4836806B2 (en) Radio receiving apparatus, radio transmitting apparatus, and interference signal elimination method
JP4898707B2 (en) Radio transmission apparatus and multicarrier signal generation method
CN101112061B (en) Multi-carrier receiver and method for separating transmitted signal in multi-antenna system and method
EP1714454B1 (en) Multicarrier receivers and methods for separating transmitted signals in a multiple antenna system
JP4454308B2 (en) Multi-carrier CDMA transmission method and base station transmitter
JP4827845B2 (en) Radio communication base station apparatus, radio communication mobile station apparatus, and pilot signal sequence allocation method in multicarrier communication
WO2011090028A1 (en) Communication apparatus and base station apparatus
CN1507715A (en) OFDM signal selection systems
US20070188381A1 (en) Receiver, transmission device and receiving method
JP2011010353A (en) Radio communication device and transmitting method
CN107317612B (en) Transmission device, reception device, transmission method, reception method, and communication system
JP7144808B2 (en) Wireless communication device and wireless communication method
JP2010193350A (en) Communication apparatus and communication system
JP2003234718A (en) Ofdm signal transmitting apparatus, ofdm signal receiving apparatus and ofdm signal receiving method
JP2005252637A (en) Multicarrier cdma transmitter and receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550769

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005820380

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580045236.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1017/MUMNP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005820380

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11722856

Country of ref document: US