WO2006067301A1 - Method for making a solid oxide fuel cell in the form of thin films - Google Patents

Method for making a solid oxide fuel cell in the form of thin films Download PDF

Info

Publication number
WO2006067301A1
WO2006067301A1 PCT/FR2005/003118 FR2005003118W WO2006067301A1 WO 2006067301 A1 WO2006067301 A1 WO 2006067301A1 FR 2005003118 W FR2005003118 W FR 2005003118W WO 2006067301 A1 WO2006067301 A1 WO 2006067301A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped
electron beam
electrolyte
dense
solid electrolyte
Prior art date
Application number
PCT/FR2005/003118
Other languages
French (fr)
Inventor
Stéphanie HUET
Cédric Ducros
Frédéric Sanchette
Gérard Piet
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO2006067301A1 publication Critical patent/WO2006067301A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for manufacturing a solid oxide fuel cell in the form of thin layers comprising at least one step of electron beam-assisted physical vapor deposition of a dense solid electrolyte.
  • Solid oxide fuel cells also known as SOFC batteries
  • SOFC batteries are typically manufactured as thin layers, using microelectronics techniques. SOFC batteries manufactured in the form of thin layers allow, in particular, an improvement in manufacturing costs, efficiency and energy density compared to other fuel cells.
  • the operating conditions of the SOFC cells impose a solid electrolyte having a high ionic conductivity to allow the passage of the O 2 ' ions from the cathode to the anode, thus the electrolyte is generally produced in the form of depositing a thin layer of yttrium-doped zirconia also denoted YSZ, on one of the two porous electrodes of the SOFC cell, making the solid electrolyte in the form of a thin layer having a thickness of between 1 and 10O ⁇ m reduces, indeed, the ionic resistance of the electrolyte, when the operating temperature of the SOFC battery is less than or equal to 700 ° C.
  • YSZ yttrium-doped zirconia
  • the deposition method used is generally adapted so as to obtain the thinnest possible thin layer.
  • this annealing step may cause cracks in the deposited thin layers and generate a difference in thermal coefficients between the electrolyte and the electrode on which it is deposited.
  • the electrolyte must maintain a coefficient of thermal expansion compatible with those of the other constituents of the SOFC stack.
  • US Pat. No. 5,741,406 describes a process for the physical vapor deposition of a dense electrolyte film made of YSZ on a porous lanthanum manganite electrode doped with strontium (LSM or "Lanthanum Strontium Manganite”).
  • LSM lanthanum manganite electrode doped with strontium
  • a YSZ film is deposited, by sputtering, on an LSM electrode disposed on a nickel support.
  • the nickel support is maintained at a continuous negative potential and at a temperature of 450 ° C.
  • the deposition is carried out by spraying a composite target comprising zirconium and yttrium and having a diameter of 5 centimeters, in a mixture argon and oxygen.
  • the total pressure in the chamber, during the deposition is of the order of 6 ⁇ 10 -3 torr, with an oxygen partial pressure of 0.2 ⁇ 10 -3 torr.
  • the sputtering process has, however, the disadvantage of having a low deposition rate, of the order of 0.15 to 0.5 ⁇ m / h.
  • the quality of the deposition obtained by sputtering depends on the morphology of the support on which it is made.
  • a dense electrolyte thin layer deposited by cathodic sputtering on a porous and unpolished electrode is rough and has the same defects as the electrode on which it is deposited, in particular holes or cracks.
  • patent US6007683 proposes to carry out a chemical vapor deposition (CVD) of a YSZ smooth intermediate thin layer, on a porous electrode made of nickel and YSZ, before the dense YSZ electrolyte is deposited by sputtering.
  • CVD chemical vapor deposition
  • This solution is, however, unsatisfactory in that chemical vapor deposition and sputtering still have relatively low deposition rates.
  • the development of a thin-layer electrolyte by such a method proves to be complex to implement.
  • the object of the invention is a method of manufacturing a solid oxide fuel cell in the form of thin layers overcoming the drawbacks of the prior art.
  • the object of the invention is to obtain, in a simple and fast manner, a solid oxide fuel cell having, during its operation, reduced risks of thermomechanical deformation of the dense electrolyte and a duration of increased life, while having an excellent interface between the dense electrolyte and the porous electrode on which the electrolyte is deposited.
  • FIGS. 1 and 2 show, respectively, first and second images obtained by scanning electron microscopy of a solid solid electrolyte deposited in a YSZ deposited by sputtering on a porous anode made of NiO: YSZ cermet.
  • FIGS. 3 and 4 respectively represent first and second images obtained by scanning electron microscopy of an EB-PVD solid YSZ solid electrolyte deposited on a porous cermet anode
  • a solid oxide fuel cell is produced in the form of thin layers, in particular by depositing a dense solid electrolyte, directly on a porous electrode, by electron beam-assisted physical vapor deposition.
  • Electron beam-assisted physical vapor deposition also known as EB-PVD ("Electron Beam Physical Vapor Deposition"), is understood to mean a deposit obtained by evaporation or by sublimation of a material contained in a vacuum crucible and heated at high temperature using an electron beam. The evaporated or sublimed material is then deposited by condensation on the porous electrode in the form of a thin layer forming a solid electrolyte.
  • the thin layer preferably has a thickness of between 1 and 100 micrometers.
  • the porous electrode may be disposed on a fixed or rotating support and the distance between the crucible and the support is, for example, 29 centimeters and may be adjusted.
  • the temperature at which the deposition of the dense electrolyte is made is determined so as to obtain a dense electrolyte and thus impervious to the electrode gases. It is between 500 ° C. and 900 ° C.
  • the choice of such a temperature range for the deposition temperature of the dense electrolyte also makes it possible to produce the dense electrolyte at a temperature close to the operating temperature of the SOFC (500 ° C.-900 ° C.) cell. This indeed makes it possible to reduce the risks of thermomechanical deformation of the dense electrolyte formed on the porous electrode during the operation of the SOFC stack and thus to increase the service life of the SOFC stack.
  • the deposition of the dense electrolyte is preferably carried out at a pressure of between 5 ⁇ 10 -5 and 7 ⁇ 10 -4 Torr in the presence of oxygen.
  • An additional step of pulsed electron beam treatment can also be performed after the deposition of the dense electrolyte on the porous electrode so as to improve the densification and the tightness of the solid electrolyte.
  • the intensity and the pulse duration of the electron beam used in this additional step are then determined so as to adjust the density and the tightness to the electrolyte gases of the dense electrolyte.
  • the dense solid electrolyte is preferably constituted by an oxide-based ceramic material and comprising at least one doping agent. More particularly, the dense solid electrolyte is constituted by a ceramic material chosen from: zirconia doped with at least one chemical element chosen from yttrium, scandium and ytterbium, - ceria doped with at least one chemical element chosen among gadolinium and samarium and their mixtures.
  • the dense solid electrolyte can be deposited on a porous electrode forming the anode or the cathode of the solid oxide fuel cell.
  • the porous electrode on which the dense solid electrolyte is deposited can be made by any type of known method.
  • the porous electrode forms the cathode of the SOFC cell, it is preferably constituted by a material chosen from: lanthanum manganite doped with at least one chemical element selected from strontium, calcium and iron, cobaltate of lanthanum doped with strontium, and mixtures thereof.
  • the porous electrode When the porous electrode forms the anode, it is preferably constituted by a material chosen from: a cermet (ceramic-metal composite material) of nickel and zirconia doped with at least one chemical element selected from yttrium, scandium and ytterbium, a cermet of nickel and ceria doped with at least one chemical element selected from gadolinium and samarium, yttrium stabilized zirconia doped with a titanium oxide, lanthanum manganite doped with strontium - and their mixtures.
  • a cermet ceramic-metal composite material
  • yttrium stabilized zirconia doped with a titanium oxide lanthanum manganite doped with stront
  • two dense electrolytes with a thickness of 6.5 ⁇ m have been deposited, by EB-PVD deposition and by cathode sputtering respectively, on porous anodes.
  • the dense electrolytes are made of yttrium-doped zirconia (YSZ) while the anodes are made of nickel cermet and yttrium-doped zirconia (NiO ⁇ SZ).
  • the deposit of YSZ by EB-PVD is carried out in an EB-PVD deposition chamber comprising a nickel support on which is disposed a porous NiO ⁇ SZ electrode and a crucible comprising zirconia and yttrium.
  • the crucible and the nickel support are spaced apart by a distance of about 29 centimeters.
  • the total pressure in the chamber, during the deposition is between 5.10 5 Torr and 7.10 4 Torr, with an oxygen flow rate of the order of 4 to 20 cm 3 / min.
  • the deposition temperature is between 500 and 900 ° C and the electron beam for evaporating the material contained in the crucible has a power of 10 keV.
  • FIGS. 1 and 3 illustrate, in section, the electrolytes 1a and 1b YSZ deposited respectively by sputtering and EB-PVD on a NiO ⁇ SZ electrode 2.
  • the surface state of the electrolytes 1a and 1b is illustrated respectively in FIGS. 2 and 4.
  • FIGS. 1 and 3 show that the EB-PVD deposit makes it possible to obtain a solid electrolyte 1b, dense and of uniform thickness, whereas, although it is not very porous, the electrolyte 1 has obtained by sputtering. is of irregular thickness.
  • the interface 3 between the solid electrolyte 1b obtained by EB-PVD and the porous electrode is sharper than that between the solid electrolyte 1 obtained by sputtering and the porous electrode 2.
  • EB-PVD deposit allows better adhesion of the electrolyte on the porous electrode than sputter deposition.
  • the EB-PVD deposit makes it possible to deposit a solid electrolyte having a thickness of the order of one micrometer, which reduces the ohmic losses and the operating temperature of the SOFC stack.
  • the dense solid electrolyte 1b obtained by EB-PVD deposition has a very good surface appearance, relatively smooth in particular with respect to the dense solid electrolyte 1 deposited by cathodic sputtering.
  • This improved surface state makes it possible to ensure a good stacking of the various constituent elements of the SOFC stack. It allows, in particular, to be able to deposit, with improved adhesion, an additional electrode on the dense electrolyte.
  • a porous LSM cathode can be deposited on the dense YSZ electrolyte, so as to form an Anode stack.
  • -Electrolyte-Cathode forming SOFC part.
  • the anode and the cathode, forming the porous electrodes can also be deposited by EB-PVD deposit, because the EB-PVD deposition method makes it possible to deposit thin films having any type of morphology, ie dense thin layers or porous thin layers.
  • Deposition of porous thin films is preferably carried out at a relatively low temperature and at a pressure greater than or equal to 10 3 Torr.
  • the deposition temperature of the porous thin layers is preferably between room temperature and 500 ° C.
  • the EB-PVD deposit has higher deposition rates than the deposition methods usually used and the thicknesses of the thin layers formed by EB-PVD deposition are uniform and easily controllable.

Abstract

The invention concerns a solid oxide fuel cell (SOFC) produced in the form of thin films, by depositing in particular a dense solid electrolyte (1b), directly on a porous electrode (2), by electron beam-assisted physical vapour deposition. The temperature at which the dense electrolyte is deposited ranges between 500 °C and 900 °C and the pressure ranges preferably between 5.10<SUP>-5</SUP> and 7.10<SUP>-4 </SUP>Torr.

Description

Procédé de fabrication d'une pile à combustible à oxyde solide sous forme de couches minces.Process for producing a solid oxide fuel cell in the form of thin layers
Domaine technique de l'inventionTechnical field of the invention
L'invention concerne un procédé de fabrication d'une pile à combustible à oxyde solide sous forme de couches minces comprenant au moins une étape de dépôt physique en phase vapeur assisté par faisceau d'électrons d'un électrolyte solide dense.The invention relates to a method for manufacturing a solid oxide fuel cell in the form of thin layers comprising at least one step of electron beam-assisted physical vapor deposition of a dense solid electrolyte.
État de la techniqueState of the art
Les piles à combustible à oxyde solide, également appelées piles SOFC, sont généralement fabriquées sous forme de couches minces, en utilisant des techniques de la microélectronique. Les piles SOFC fabriquées sous forme de couches minces permettent, notamment, une amélioration des coûts de fabrication, d'efficacité et de densité d'énergie par rapport à d'autres piles à combustibles.Solid oxide fuel cells, also known as SOFC batteries, are typically manufactured as thin layers, using microelectronics techniques. SOFC batteries manufactured in the form of thin layers allow, in particular, an improvement in manufacturing costs, efficiency and energy density compared to other fuel cells.
Par ailleurs, les conditions de fonctionnement des piles SOFC imposent, un électrolyte solide ayant une conductivité ionique élevée pour permettre le passage des ions O2" de la cathode vers l'anode. Ainsi, l'électrolyte est, généralement, réalisé sous forme d'un dépôt d'une couche mince en zircone dopée par de l'yttrium également notée YSZ, sur une des deux électrodes poreuses de la pile SOFC. Le fait de réaliser l'électrolyte solide sous forme d'une couche mince ayant une épaisseur comprise entre 1 et 10Oμm réduit, en effet, la résistance ionique de l'électrolyte, lorsque la température de fonctionnement de la pile SOFC est inférieure ou égale à 700°C. De plus, l'électrolyte mince devant être parfaitement étanche aux gaz d'électrodes, le procédé de dépôt utilisé est généralement adapté de manière à obtenir une couche mince la plus dense possible. Ainsi, pour améliorer la densité de l'électrolyte, certains ont tenté de réaliser un recuit à haute température (1300°C à 15000C) après dépôt. Cependant, cette étape de recuit peut provoquer des fissures dans les couches minces déposées et générer une différence de coefficients thermiques entre l'électrolyte et l'électrode sur laquelle il est déposé. Or, l'électrolyte doit conserver un coefficient de dilatation thermique compatible à ceux des autres constituants de la pile SOFC.Furthermore, the operating conditions of the SOFC cells impose a solid electrolyte having a high ionic conductivity to allow the passage of the O 2 ' ions from the cathode to the anode, thus the electrolyte is generally produced in the form of depositing a thin layer of yttrium-doped zirconia also denoted YSZ, on one of the two porous electrodes of the SOFC cell, making the solid electrolyte in the form of a thin layer having a thickness of between 1 and 10Oμm reduces, indeed, the ionic resistance of the electrolyte, when the operating temperature of the SOFC battery is less than or equal to 700 ° C. In addition, since the thin electrolyte must be perfectly impervious to the electrode gases, the deposition method used is generally adapted so as to obtain the thinnest possible thin layer. Thus, to improve the density of the electrolyte, some have tried to perform annealing at high temperature (1300 ° C. to 1500 0 C) after deposition. However, this annealing step may cause cracks in the deposited thin layers and generate a difference in thermal coefficients between the electrolyte and the electrode on which it is deposited. However, the electrolyte must maintain a coefficient of thermal expansion compatible with those of the other constituents of the SOFC stack.
A titre d'exemple, le brevet US5741406 décrit un procédé de dépôt physique en phase vapeur d'un film électrolyte dense en YSZ, sur une électrode poreuse en manganite de lanthane dopé au strontium (LSM ou "Lanthanum Strontium Manganite"). Ainsi, un film de YSZ est déposé, par pulvérisation cathodique, sur une électrode en LSM disposée sur un support en nickel. Le support en nickel est maintenu à un potentiel négatif continu et à une température de 4500C. Le dépôt est réalisé par pulvérisation d'une cible composite comprenant du zirconium et de l'yttrium et ayant un diamètre de 5 centimètres, dans un mélange d'argon et d'oxygène. La pression totale dans l'enceinte, lors du dépôt, est de l'ordre de 6.10'3 Torr, avec une pression partielle en oxygène de 0,2.10"3 Torr.By way of example, US Pat. No. 5,741,406 describes a process for the physical vapor deposition of a dense electrolyte film made of YSZ on a porous lanthanum manganite electrode doped with strontium (LSM or "Lanthanum Strontium Manganite"). Thus, a YSZ film is deposited, by sputtering, on an LSM electrode disposed on a nickel support. The nickel support is maintained at a continuous negative potential and at a temperature of 450 ° C. The deposition is carried out by spraying a composite target comprising zirconium and yttrium and having a diameter of 5 centimeters, in a mixture argon and oxygen. The total pressure in the chamber, during the deposition, is of the order of 6 × 10 -3 torr, with an oxygen partial pressure of 0.2 × 10 -3 torr.
Bien que permettant d'obtenir des couches minces denses, le procédé de pulvérisation cathodique présente, cependant, l'inconvénient d'avoir une vitesse de dépôt faible, de l'ordre de 0,15 à 0,5μm/h. De plus, la qualité du dépôt obtenu par pulvérisation cathodique dépend de Ia morphologie du support sur lequel il est réalisé. Ainsi, une couche mince électrolyte dense, déposée par pulvérisation cathodique sur une électrode poreuse et non polie est rugueuse et elle présente les mêmes défauts que l'électrode sur laquelle elle est déposée, notamment des trous ou des craquelures. Pour remédier à ce problème, Ie brevet US6007683 propose de réaliser un dépôt chimique en phase vapeur (CVD) d'une couche mince intermédiaire lisse en YSZ, sur une électrode poreuse en nickel et en YSZ, avant que l'électrolyte dense en YSZ ne soit déposé par pulvérisation cathodique. Cette solution n'est, cependant, pas satisfaisante dans la mesure où le dépôt chimique en phase vapeur et la pulvérisation cathodique ont toujours des vitesses de dépôt relativement faibles. De plus, l'élaboration d'un électrolyte en couche mince par un tel procédé s'avère être complexe à mettre en œuvre.Although making it possible to obtain dense thin layers, the sputtering process has, however, the disadvantage of having a low deposition rate, of the order of 0.15 to 0.5 μm / h. In addition, the quality of the deposition obtained by sputtering depends on the morphology of the support on which it is made. Thus, a dense electrolyte thin layer deposited by cathodic sputtering on a porous and unpolished electrode is rough and has the same defects as the electrode on which it is deposited, in particular holes or cracks. To remedy this problem, patent US6007683 proposes to carry out a chemical vapor deposition (CVD) of a YSZ smooth intermediate thin layer, on a porous electrode made of nickel and YSZ, before the dense YSZ electrolyte is deposited by sputtering. This solution is, however, unsatisfactory in that chemical vapor deposition and sputtering still have relatively low deposition rates. In addition, the development of a thin-layer electrolyte by such a method proves to be complex to implement.
Il a déjà été proposé à titre expérimental de réaliser un électrolyte dense par dépôt physique en phase vapeur assisté par faisceau d'électrons. Ainsi, le document EP-A-1403954 propose de réaliser une couche en YSZ d'une épaisseur de 6μm par dépôt physique en phase vapeur assisté par faisceau d'électrons et de la plaquer ensuite sur une couche d'électrode à faible porosité.It has already been proposed experimentally to produce a dense electrolyte by physical vapor deposition assisted by electron beam. Thus, the document EP-A-1403954 proposes to make a YSZ layer with a thickness of 6 .mu.m by electron beam-assisted physical vapor deposition and then to press it on a low porosity electrode layer.
L'article « Préparation of thin film zirconia cells » de Michibata et al. (Extended abstracts, Electrochemical Society. Princeton, New Jersey, Vol 87-2, pages 268-269) mentionne la réalisation de films en zircone stabilisée sur un support recouvert d'un film en oxyde de nickel. Le film en zircone stabilisée est, alors, réalisé en évaporant avec un faisceau d'électrons, à une température de 2500C1 du zirconium et de l'yttrium à la surface du film en oxyde de nickel, puis en oxydant le dépôt de zirconium et d'yttrium à une température de 7000C pendant une heure de manière à obtenir la zircone stabilisée. Objet de l'inventionThe article "Preparation of Thin Film Zirconia Cells" by Michibata et al. (Extended Abstracts, Electrochemical Society, Princeton, New Jersey, Vol 87-2, pages 268-269) mentions the production of stabilized zirconia films on a nickel oxide film-coated support. The film of stabilized zirconia is then made by evaporating with an electron beam, at a temperature of 250 0 C 1 of the zirconium and yttrium to the surface of the film of nickel oxide and then oxidizing the deposit zirconium and yttrium at a temperature of 700 0 C for one hour to obtain the stabilized zirconia. Object of the invention
L'invention a pour but un procédé de fabrication d'une pile à combustible à oxyde solide sous forme de couches minces remédiant aux inconvénients de l'art antérieur.The object of the invention is a method of manufacturing a solid oxide fuel cell in the form of thin layers overcoming the drawbacks of the prior art.
Plus particulièrement, l'invention a pour but d'obtenir, de manière simple et rapide, une pile à combustible à oxyde solide présentant, lors de son fonctionnement, des risques réduits de déformation thermo-mécaniques de l'électrolyte dense et une durée de vie accrue, tout en ayant une excellente interface entre l'électrolyte dense et l'électrode poreuse sur laquelle l'électrolyte est déposé.More particularly, the object of the invention is to obtain, in a simple and fast manner, a solid oxide fuel cell having, during its operation, reduced risks of thermomechanical deformation of the dense electrolyte and a duration of increased life, while having an excellent interface between the dense electrolyte and the porous electrode on which the electrolyte is deposited.
Selon l'invention, ce but est atteint par les revendications annexées.According to the invention, this object is achieved by the appended claims.
Description sommaire des dessinsBrief description of the drawings
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention given by way of non-limiting example and represented in the accompanying drawings, in which:
Les figures 1 et 2 représentent, respectivement des premier et second clichés obtenus par microscopie électronique à balayage d'un électrolyte solide dense en YSZ déposé par pulvérisation cathodique sur une anode poreuse en cermet NiO:YSZ.FIGS. 1 and 2 show, respectively, first and second images obtained by scanning electron microscopy of a solid solid electrolyte deposited in a YSZ deposited by sputtering on a porous anode made of NiO: YSZ cermet.
Les figures 3 et 4 représentent respectivement des premier et second clichés obtenus par microscopie électronique à balayage d'un électrolyte solide dense en YSZ déposé par EB-PVD sur une anode poreuse en cermetFIGS. 3 and 4 respectively represent first and second images obtained by scanning electron microscopy of an EB-PVD solid YSZ solid electrolyte deposited on a porous cermet anode
NiO: YSZ. Description de modes particuliers de réalisationNiO: YSZ. Description of particular embodiments
Une pile à combustible à oxyde solide (SOFC) est réalisée sous forme de couches minces, en déposant notamment un électrolyte solide dense, directement sur une électrode poreuse, par dépôt physique en phase vapeur assisté par faisceau d'électrons.A solid oxide fuel cell (SOFC) is produced in the form of thin layers, in particular by depositing a dense solid electrolyte, directly on a porous electrode, by electron beam-assisted physical vapor deposition.
Par dépôt physique en phase vapeur assisté par faisceau d'électrons, également appelé dépôt EB-PVD ("Electron Beam Physical Vapor Déposition"), on entend un dépôt obtenu par évaporation ou par sublimation d'un matériau contenu dans un creuset sous vide et chauffé à haute température à l'aide d'un faisceau d'électrons. Le matériau évaporé ou sublimé se dépose, alors, par condensation sur l'électrode poreuse, sous forme d'une couche mince formant un électrolyte solide. La couche mince a, de préférence, une épaisseur comprise entre 1 et 100 micromètres. L'électrode poreuse peut être disposée sur un support fixe ou en rotation et la distance entre le creuset et le support est, par exemple, de 29 centimètres et elle peut être ajustée.Electron beam-assisted physical vapor deposition, also known as EB-PVD ("Electron Beam Physical Vapor Deposition"), is understood to mean a deposit obtained by evaporation or by sublimation of a material contained in a vacuum crucible and heated at high temperature using an electron beam. The evaporated or sublimed material is then deposited by condensation on the porous electrode in the form of a thin layer forming a solid electrolyte. The thin layer preferably has a thickness of between 1 and 100 micrometers. The porous electrode may be disposed on a fixed or rotating support and the distance between the crucible and the support is, for example, 29 centimeters and may be adjusted.
La température à laquelle le dépôt de l'électrolyte dense est réalisé, est déterminée de manière à obtenir un électrolyte dense et donc étanche aux gaz d'électrodes. Elle est comprise entre 5000C et 900°C. Le choix d'une telle fourchette de températures pour la température de dépôt de l'électrolyte dense permet également de réaliser l'électrolyte dense à une température proche de la température de fonctionnement de la pile SOFC (500°C-900°C). Ceci permet en effet de réduire les risques de déformation thermomécaniques de l'électrolyte dense formé sur l'électrode poreuse, lors du fonctionnement de la pile SOFC et donc d'accroître la durée de vie de la pile SOFC. Le dépôt de l'électrolyte dense est, de préférence, réalisé à une pression comprise entre 5.10'5 et 7.10'4 Torr, en présence d'oxygène. Une étape supplémentaire de traitement par faisceau d'électrons puisé peut, également, être réalisée, après Ie dépôt de l'électrolyte dense sur l'électrode poreuse, de manière à améliorer la densification et l'étanchéité de l'électrolyte solide. L'intensité et la durée d'impulsion du faisceau d'électrons utilisé lors de cette étape supplémentaire sont, alors, déterminées de manière à ajuster la densité et l'étanchéité aux gaz d'électrodes de l'électrolyte dense.The temperature at which the deposition of the dense electrolyte is made is determined so as to obtain a dense electrolyte and thus impervious to the electrode gases. It is between 500 ° C. and 900 ° C. The choice of such a temperature range for the deposition temperature of the dense electrolyte also makes it possible to produce the dense electrolyte at a temperature close to the operating temperature of the SOFC (500 ° C.-900 ° C.) cell. This indeed makes it possible to reduce the risks of thermomechanical deformation of the dense electrolyte formed on the porous electrode during the operation of the SOFC stack and thus to increase the service life of the SOFC stack. The deposition of the dense electrolyte is preferably carried out at a pressure of between 5 × 10 -5 and 7 × 10 -4 Torr in the presence of oxygen. An additional step of pulsed electron beam treatment can also be performed after the deposition of the dense electrolyte on the porous electrode so as to improve the densification and the tightness of the solid electrolyte. The intensity and the pulse duration of the electron beam used in this additional step are then determined so as to adjust the density and the tightness to the electrolyte gases of the dense electrolyte.
L'électrolyte solide dense est, de préférence, constitué par un matériau céramique à base d'oxyde et comprenant au moins un agent dopant. Plus particulièrement, l'électrolyte solide dense est constitué par un matériau céramique choisi parmi : la zircone dopée par au moins un élément chimique choisi parmi l'yttrium, le scandium et l'ytterbium, - la cérine dopée par au moins un élément chimique choisi parmi le gadolinium et le samarium et leurs mélanges.The dense solid electrolyte is preferably constituted by an oxide-based ceramic material and comprising at least one doping agent. More particularly, the dense solid electrolyte is constituted by a ceramic material chosen from: zirconia doped with at least one chemical element chosen from yttrium, scandium and ytterbium, - ceria doped with at least one chemical element chosen among gadolinium and samarium and their mixtures.
Par ailleurs, l'électrolyte solide dense peut être déposé sur une électrode poreuse formant indifféremment l'anode ou Ia cathode de la pile à combustible à oxyde solide. De plus, l'électrode poreuse sur laquelle est déposé l'électrolyte solide dense peut être réalisée par tout type de méthode connue.Furthermore, the dense solid electrolyte can be deposited on a porous electrode forming the anode or the cathode of the solid oxide fuel cell. In addition, the porous electrode on which the dense solid electrolyte is deposited can be made by any type of known method.
Lorsque l'électrode poreuse forme la cathode de Ia pile SOFC, elle est, de préférence, constituée par un matériau choisi parmi : le manganite de lanthane dopée par au moins un élément chimique choisi parmi le strontium, le calcium et le fer, le cobaltate de lanthane dopé par le strontium, - et leurs mélanges. Lorsque l'électrode poreuse forme l'anode, elle est, de préférence, constituée par un matériau choisi parmi : un cermet (matériau composite céramique-métal) de nickel et de zircone dopée par au moins un élément chimique choisi parmi ryttrium, le scandium et i'ytterbium, un cermet de nickel et de cérine dopée par au moins un élément chimique choisi parmi le gadolinium et le samarium, la zircone stabilisée à l'yttrium et dopée par un oxyde de titane, la manganite de lanthane dopée par du strontium - et leurs mélanges.When the porous electrode forms the cathode of the SOFC cell, it is preferably constituted by a material chosen from: lanthanum manganite doped with at least one chemical element selected from strontium, calcium and iron, cobaltate of lanthanum doped with strontium, and mixtures thereof. When the porous electrode forms the anode, it is preferably constituted by a material chosen from: a cermet (ceramic-metal composite material) of nickel and zirconia doped with at least one chemical element selected from yttrium, scandium and ytterbium, a cermet of nickel and ceria doped with at least one chemical element selected from gadolinium and samarium, yttrium stabilized zirconia doped with a titanium oxide, lanthanum manganite doped with strontium - and their mixtures.
A titre d'exemple, deux électrolytes denses d'une épaisseur de 6,5μm ont été déposés, respectivement par dépôt EB-PVD et par pulvérisation cathodique, sur des anodes poreuses. Les électrolytes denses sont en zircone dopée par i'yttrium (YSZ) tandis que les anodes sont en cermet de nickel et de zircone dopée par l'yttrium (NiOΥSZ).By way of example, two dense electrolytes with a thickness of 6.5 μm have been deposited, by EB-PVD deposition and by cathode sputtering respectively, on porous anodes. The dense electrolytes are made of yttrium-doped zirconia (YSZ) while the anodes are made of nickel cermet and yttrium-doped zirconia (NiOΥSZ).
Le dépôt d'YSZ par EB-PVD est réalisé dans une enceinte de dépôt EB-PVD comportant un support en nickel sur lequel est disposée une électrode poreuse en NiOΥSZ et un creuset comprenant de la zircone et de ryttrium. Le creuset et le support en nickel sont espacés d'une distance de l'ordre de 29 centimètres. La pression totale dans l'enceinte, lors du dépôt, est comprise entre 5.105 Torr et 7.104 Torr, avec un débit d'oxygène de l'ordre de 4 à 20 cm3/mn. La température de dépôt est comprise entre 500 et 900°C et le faisceau d'électrons permettant d'évaporer le matériau contenu dans le creuset a une puissance de 10 keV.The deposit of YSZ by EB-PVD is carried out in an EB-PVD deposition chamber comprising a nickel support on which is disposed a porous NiOΥSZ electrode and a crucible comprising zirconia and yttrium. The crucible and the nickel support are spaced apart by a distance of about 29 centimeters. The total pressure in the chamber, during the deposition, is between 5.10 5 Torr and 7.10 4 Torr, with an oxygen flow rate of the order of 4 to 20 cm 3 / min. The deposition temperature is between 500 and 900 ° C and the electron beam for evaporating the material contained in the crucible has a power of 10 keV.
Le dépôt d'YSZ par pulvérisation cathodique est réalisé de manière connue, notamment du brevet US5741406. Des clichés par microscope électronique à balayage après dépôt ont été réalisés. Ainsi, les figures 1 et 3 illustrent, en coupe, les électrolytes 1 a et 1 b en YSZ, déposés respectivement par pulvérisation cathodique et par EB- PVD sur une électrode 2 en NiOΥSZ. L'état de surface des électrolytes 1a et 1 b est illustré, respectivement aux figures 2 et 4.The deposition of YSZ by sputtering is carried out in a known manner, in particular from US5741406. Scanning electron micrographs after deposition were made. Thus, Figures 1 and 3 illustrate, in section, the electrolytes 1a and 1b YSZ deposited respectively by sputtering and EB-PVD on a NiOΥSZ electrode 2. The surface state of the electrolytes 1a and 1b is illustrated respectively in FIGS. 2 and 4.
La comparaison des figures 1 et 3 montre que le dépôt EB-PVD permet d'obtenir un électrolyte solide 1 b, dense et d'une épaisseur uniforme tandis que, bien qu'étant peu poreux, l'électrolyte 1 a obtenu par pulvérisation cathodique est d'épaisseur irrégulière. De plus, l'interface 3 entre l'électrolyte solide 1 b obtenu par EB-PVD et l'électrode poreuse est plus nette que celle entre l'électrolyte solide 1 a obtenu par pulvérisation cathodique et l'électrode poreuse 2. Ainsi, le dépôt EB-PVD permet une meilleure adhérence de l'électrolyte sur l'électrode poreuse que le dépôt par pulvérisation cathodique.The comparison of FIGS. 1 and 3 shows that the EB-PVD deposit makes it possible to obtain a solid electrolyte 1b, dense and of uniform thickness, whereas, although it is not very porous, the electrolyte 1 has obtained by sputtering. is of irregular thickness. In addition, the interface 3 between the solid electrolyte 1b obtained by EB-PVD and the porous electrode is sharper than that between the solid electrolyte 1 obtained by sputtering and the porous electrode 2. EB-PVD deposit allows better adhesion of the electrolyte on the porous electrode than sputter deposition.
Contrairement à l'art antérieur, il est, donc possible de déposer un électrolyte solide dense directement sur une électrode poreuse, sans réaliser une étape préliminaire de préparation de surface de l'électrode poreuse, ladite étape préliminaire étant destinée, dans le cas d'un dépôt par pulvérisation cathodique, à améliorer la morphologie de l'électrode poreuse et donc l'adhérence de l'électrolyte sur l'électrode. De plus, le dépôt EB-PVD permet de déposer un électrolyte solide, ayant une épaisseur de l'ordre du micromètre, ce qui réduit les pertes ohmiques et la température de fonctionnement de la pile SOFC.Unlike the prior art, it is therefore possible to deposit a dense solid electrolyte directly on a porous electrode, without performing a preliminary surface preparation step of the porous electrode, said preliminary step being intended, in the case of sputter deposition, to improve the morphology of the porous electrode and thus the adhesion of the electrolyte to the electrode. In addition, the EB-PVD deposit makes it possible to deposit a solid electrolyte having a thickness of the order of one micrometer, which reduces the ohmic losses and the operating temperature of the SOFC stack.
Par ailleurs, comme illustré aux figures 2 et 4, l'électrolyte solide dense 1b obtenu par dépôt EB-PVD présente un très bon aspect de surface, relativement lisse notamment par rapport à l'électrolyte solide dense 1 a déposé par pulvérisation cathodique. Cet état de surface amélioré permet d'assurer un bon empilement des différents éléments constitutifs de la pile SOFC. Il permet, notamment, de pouvoir déposer, avec une adhérence améliorée, une électrode supplémentaire sur l'électrolyte dense. A titre d'exemple, après le dépôt EB- PVD de l'électrolyte dense en YSZ sur l'anode poreuse en NiOΥSZ, une cathode poreuse en LSM peut être déposée sur l'électrolyte dense en YSZ, de manière à former un empilement Anode-Electrolyte-Cathode formant la piie SOFC.Moreover, as illustrated in FIGS. 2 and 4, the dense solid electrolyte 1b obtained by EB-PVD deposition has a very good surface appearance, relatively smooth in particular with respect to the dense solid electrolyte 1 deposited by cathodic sputtering. This improved surface state makes it possible to ensure a good stacking of the various constituent elements of the SOFC stack. It allows, in particular, to be able to deposit, with improved adhesion, an additional electrode on the dense electrolyte. For example, after the EB-PVD deposition of the dense YSZ electrolyte on the porous NiOΥSZ anode, a porous LSM cathode can be deposited on the dense YSZ electrolyte, so as to form an Anode stack. -Electrolyte-Cathode forming SOFC part.
L'anode et la cathode, formant les électrodes poreuses, peuvent également être déposées par dépôt EB-PVD, car le procédé de dépôt EB-PVD permet de déposer des couches minces présentant tout type de morphologie, c'est- à-dire des couches minces denses ou des couches minces poreuses. Le dépôt de couches minces poreuses est, de préférence, réalisé à une température relativement basse et à une pression supérieure ou égale à 10'3 Torr. La température de dépôt des couches minces poreuses est, de préférence, comprise entre la température ambiante et 5000C.The anode and the cathode, forming the porous electrodes, can also be deposited by EB-PVD deposit, because the EB-PVD deposition method makes it possible to deposit thin films having any type of morphology, ie dense thin layers or porous thin layers. Deposition of porous thin films is preferably carried out at a relatively low temperature and at a pressure greater than or equal to 10 3 Torr. The deposition temperature of the porous thin layers is preferably between room temperature and 500 ° C.
Il est alors possible de réaliser une pile SOFC en continu, avec un procédé de dépôt commun aux électrodes poreuses et à l'électrolyte dense, ce qui facilite la mise en œuvre du procédé de fabrication d'une pile SOFC. Par ailleurs, le dépôt EB-PVD présente des vitesses de dépôt supérieures à celles des procédés de dépôt usuellement utilisés et les épaisseurs des couches minces formées par dépôt EB-PVD sont uniformes et facilement contrôlables. It is then possible to produce a SOFC stack continuously, with a deposition process common to the porous electrodes and to the dense electrolyte, which facilitates the implementation of the manufacturing process of an SOFC cell. Furthermore, the EB-PVD deposit has higher deposition rates than the deposition methods usually used and the thicknesses of the thin layers formed by EB-PVD deposition are uniform and easily controllable.

Claims

Revendications claims
1. Procédé de fabrication d'une pile à combustible à oxyde solide sous forme de couches minces comprenant au moins une étape de dépôt physique en phase vapeur assisté par faisceau d'électrons d'un électrolyte solide dense (1 b), procédé caractérisé en ce que l'étape de dépôt physique en phase vapeur assisté par faisceau d'électrons est réalisée directement sur une électrode poreuse (2), à une température comprise entre 5000C et 9000C.A method of manufacturing a solid oxide fuel cell in the form of thin layers comprising at least one step of electron beam-assisted physical vapor deposition of a dense solid electrolyte (1b), characterized in that the step of electron beam-assisted physical vapor deposition is carried out directly on a porous electrode (2), at a temperature of between 500 ° C. and 900 ° C.
2. Procédé selon la revendication 1 , caractérisé en ce que l'étape de dépôt physique en phase vapeur assisté par un faisceau d'électrons est réalisée à une pression comprise entre 5.105 Torr et 7.104 Torr.2. Method according to claim 1, characterized in that the step of physical vapor deposition assisted by an electron beam is carried out at a pressure between 5.10 5 Torr and 7.10 4 Torr.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que l'électrolyte solide dense (1 b) est constitué par un matériau céramique à base d'oxyde et comprenant au moins un agent dopant.3. Method according to one of claims 1 and 2, characterized in that the dense solid electrolyte (1b) is constituted by an oxide-based ceramic material and comprising at least one doping agent.
4. Procédé selon Ia revendication 3, caractérisé en ce que le matériau céramique est choisi parmi : la zircone dopée par au moins un élément chimique choisi parmi ryttrium, le scandium et l'ytterbium, la cérine dopée par au moins un élément chimique choisi parmi Ie gadolinium et le samarium et leurs mélanges.4. Method according to claim 3, characterized in that the ceramic material is chosen from: zirconia doped with at least one chemical element selected from yttrium, scandium and ytterbium, ceria doped with at least one chemical element selected from Gadolinium and samarium and their mixtures.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'électrode poreuse (2) formant une cathode est constituée par un matériau choisi parmi: - le manganite de lanthane dopée par au moins un élément chimique choisi parmi le strontium, Ie calcium et le fer,5. Method according to any one of claims 1 to 4, characterized in that the porous electrode (2) forming a cathode consists of a material chosen from: lanthanum manganite doped with at least one chemical element chosen from strontium, calcium and iron,
- le cobaltate de lanthane dopé par le strontium,strontium doped lanthanum cobaltate,
- et leurs mélanges.- and their mixtures.
6. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'électrode poreuse (2) formant une anode est constituée par un matériau choisi parmi :6. Method according to any one of claims 1 to 4, characterized in that the porous electrode (2) forming an anode consists of a material chosen from:
- un cermet de nickel et de zircone dopée par au moins un élément chimique choisi parmi l'yttrium, le scandium et l'ytterbium, un cermet de nickel et de cérine dopée par au moins un élément chimique choisi parmi le gadolinium et le samarium, la zircone stabilisée à l'yttrium et dopée par un oxyde de titane, la manganite de lanthane dopée par du strontium - et leurs mélanges.a cermet of nickel and zirconia doped with at least one chemical element chosen from yttrium, scandium and ytterbium, a cermet of nickel and ceria doped with at least one chemical element chosen from gadolinium and samarium, yttrium stabilized zirconia doped with titanium oxide, lanthanum manganite doped with strontium - and mixtures thereof.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'une étape supplémentaire de traitement par faisceau d'électrons puisé est réalisée après l'étape de dépôt de l'électrolyte solide dense sur l'électrode.7. Method according to any one of claims 1 to 6, characterized in that an additional step of pulsed electron beam treatment is performed after the step of depositing the dense solid electrolyte on the electrode.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'une électrode supplémentaire est déposée sur l'électrolyte solide dense (1 b) par dépôt physique en phase vapeur assisté par faisceaux d'électrons. 8. Process according to any one of claims 1 to 7, characterized in that an additional electrode is deposited on the dense solid electrolyte (1b) by electron beam-assisted physical vapor deposition.
PCT/FR2005/003118 2004-12-20 2005-12-13 Method for making a solid oxide fuel cell in the form of thin films WO2006067301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413588 2004-12-20
FR0413588A FR2879825A1 (en) 2004-12-20 2004-12-20 METHOD OF MANUFACTURING A SOLID OXIDE FUEL CELL IN THE FORM OF THIN LAYERS

Publications (1)

Publication Number Publication Date
WO2006067301A1 true WO2006067301A1 (en) 2006-06-29

Family

ID=34955137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/003118 WO2006067301A1 (en) 2004-12-20 2005-12-13 Method for making a solid oxide fuel cell in the form of thin films

Country Status (2)

Country Link
FR (1) FR2879825A1 (en)
WO (1) WO2006067301A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217197B (en) * 2008-01-18 2010-09-08 哈尔滨工业大学 A preparation method of gradient anode of solid oxide fuel battery
CN102005579A (en) * 2010-10-14 2011-04-06 华北电力大学 Method for preparing LSM (Lanthanum Strontium Manganate) cathode of solid oxide fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018303A1 (en) * 1999-08-04 2004-01-29 Bruce Robert William Electron beam physical vapor deposition apparatus and method of using
US20040048128A1 (en) * 1999-02-01 2004-03-11 The Regents Of The University Of California Solid polymer mems-based fuel cells
EP1403954A2 (en) * 2002-09-25 2004-03-31 Nissan Motor Co., Ltd. Unit cell for solid oxide fuel cell and related method
US20040229031A1 (en) * 2003-01-10 2004-11-18 Maurice Gell Coatings, materials, articles, and methods of making thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048128A1 (en) * 1999-02-01 2004-03-11 The Regents Of The University Of California Solid polymer mems-based fuel cells
US20040018303A1 (en) * 1999-08-04 2004-01-29 Bruce Robert William Electron beam physical vapor deposition apparatus and method of using
EP1403954A2 (en) * 2002-09-25 2004-03-31 Nissan Motor Co., Ltd. Unit cell for solid oxide fuel cell and related method
US20040229031A1 (en) * 2003-01-10 2004-11-18 Maurice Gell Coatings, materials, articles, and methods of making thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MICHIBATA H ET AL: "PREPARATION OF THIN FILM ZIRCONIA CELLS", EXTENDED ABSTRACTS, ELECTROCHEMICAL SOCIETY. PRINCETON, NEW JERSEY, US, vol. 87-2, 18 October 1987 (1987-10-18), pages 268 - 269, XP000115062, ISSN: 0160-4619 *
STRAUSS D ET AL: "OXIDE SCALE GROWTH ON MCRALY BOND COATINGS AFTER PULSED ELECTRON BEAM TREATMENT AND DEPOSITION OF EBPVD-TBC", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 135, no. 2/3, 2001, pages 196 - 201, XP001148282, ISSN: 0257-8972 *
WILL J ET AL: "Fabrication of thin electrolytes for second-generation solid oxide fuel cells", SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM, NL, vol. 131, no. 1-2, 1 June 2000 (2000-06-01), pages 79 - 96, XP004222614, ISSN: 0167-2738 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217197B (en) * 2008-01-18 2010-09-08 哈尔滨工业大学 A preparation method of gradient anode of solid oxide fuel battery
CN102005579A (en) * 2010-10-14 2011-04-06 华北电力大学 Method for preparing LSM (Lanthanum Strontium Manganate) cathode of solid oxide fuel cell

Also Published As

Publication number Publication date
FR2879825A1 (en) 2006-06-23

Similar Documents

Publication Publication Date Title
EP2356713B1 (en) Substrate made of a porous metal or metal alloy, its method of production and hte or sofc cells having a support metal comprising this substrate
EP1915797B1 (en) Polymer composite ionic/electronic conductance membrane methods for the production thereof and a planar fuel cell core comprising said membrane
EP1464092B1 (en) Sofc pen
JP5421101B2 (en) Method for producing a conductive layer
CA2885138C (en) Component constituting an hte electrolyser interconnector or sofc fuel cell interconnector and associated production processes
EP3474356A1 (en) Multilayer structure incorporating a carbon nanotube mat as the scattering layer in a pemfc
EP2335311A1 (en) Electrolyte for an sofc battery, and method for making same
JP5809159B2 (en) ASSEMBLY FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
WO2006067301A1 (en) Method for making a solid oxide fuel cell in the form of thin films
CA3102014C (en) Method for improved implementation of a component constituting an hte electrolyzer or sofc fuel cell interconnector
EP2248215B1 (en) Method for making a so-called sofc solid oxide thin layer fuel cell
EP2270914B1 (en) Fuel cell with built-in hydrogen purification membrane
EP0004808B1 (en) Process for preparing a ceramic body and cathode-solid electrolyte assembly obtained thereby
EP3669013B1 (en) Method for manufacturing an electrolyte for solid oxide cells by magnetron cathode sputtering
WO2013171651A2 (en) Chromia-forming component, use of such a component in a steam-rich atmosphere and an hte electrolyser interconnector
JPH04324251A (en) Manufacture of interconnector for solid electrolyte fuel cell
Solovyev et al. Magnetron deposition of yttria-stabilised zirconia electrolyte for solid oxide fuel cells
FR2959610A1 (en) METHOD FOR DEPOSITING A CATALYTIC LAYER FOR A FUEL CELL
JP2005078951A (en) Single cell for solid oxide fuel battery and its manufacturing method
EP3133681B1 (en) Fuel cell with built-in water management layer and method for manufacturing same
EP1557480A2 (en) Process and dispositive for manufacturing a catalytique layer
WO2002053798A1 (en) Method for depositing thin layers on a porous substrate, fuel cell and fuel cell comprising such a thin layer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05825975

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5825975

Country of ref document: EP