WO2006054517A1 - Stereoscopic display apparatus - Google Patents

Stereoscopic display apparatus Download PDF

Info

Publication number
WO2006054517A1
WO2006054517A1 PCT/JP2005/020841 JP2005020841W WO2006054517A1 WO 2006054517 A1 WO2006054517 A1 WO 2006054517A1 JP 2005020841 W JP2005020841 W JP 2005020841W WO 2006054517 A1 WO2006054517 A1 WO 2006054517A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
stereoscopic
display mode
stereoscopic display
light
Prior art date
Application number
PCT/JP2005/020841
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Ochi
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2006054517A1 publication Critical patent/WO2006054517A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels

Definitions

  • the present invention relates to a stereoscopic display device.
  • the use of the present invention is not limited to the above-described stereoscopic display device.
  • a binocular system in which images from respective viewpoints (hereinafter referred to as binocular parallax images) are generally presented to the left and right eyes of an observer.
  • a stereoscopic image can be obtained by displaying a plurality of binocular parallax images and reconstructing them.
  • a method of presenting the binocular parallax images to the left and right eyes of the observer for example, a method using special polarizing glasses, shatter glasses or the like is used. Examples of methods that do not use glasses include a lenticular method and a noralux stereogram method.
  • an IP stereoscopic display device using an integral photography system (hereinafter abbreviated as IP system) that has been proposed in the field of photography.
  • IP system an integral photography system
  • an IP stereoscopic display device has a display panel that displays a plurality of planar images obtained by viewing a stereoscopic image that is a display target from different directions, and a front panel (observation side) of the display panel. And a non-translucent display control panel configured to observe an image of the display panel through the translucent portion.
  • an IP-type stereoscopic display device updating a display of a small image of a display object viewed from slightly different positions and controlling the translucency of a translucent portion of a display control panel.
  • a method that is performed synchronously for example, refer to Patent Document 1.
  • a light transmitting portion that is not always transparent can be sequentially and selectively transmitted, and light can be transmitted.
  • a small image corresponding to the transparent portion is displayed on the display panel. Then, by viewing all the small images that are sequentially updated and displayed in this way within the remaining eye retention time, a desired stereoscopic image can be viewed as a whole.
  • such a method is used in particular as a multiplex pinhole scanning type in- It is called Tegral Photography (MPS-IP).
  • MPS-IP Tegral Photography
  • the translucent portion can be sequentially transmitted and the small image is updated in synchronization with this, so that the number of small images that can be observed from one translucent portion increases. Therefore, the resolution can be improved compared to the case of the normal IP method in which the translucency of the translucent part does not change constantly.
  • Patent Document 1 JP-A-6-160770
  • the display in the 3D stereoscopic display mode (hereinafter simply referred to as the stereoscopic display mode), It is effective to be able to switch between display in the dimension flat display mode (hereinafter simply referred to as flat display mode).
  • the stereoscopic display device is configured to realize stereoscopic display by observing the display image on the display panel through the light-transmitting portion of the display control panel as described above, the configuration in the stereoscopic display mode is planarly displayed.
  • the stereoscopic display device is a stereoscopic display device configured to be able to switch between a stereoscopic image display in the stereoscopic display mode and a planar image display in the flat display mode.
  • the stereoscopic display device includes display means for displaying a planar image based on the input image data, and includes a stereoscopic image display in the stereoscopic display mode and a planar image in the planar display mode.
  • a stereoscopic display device that performs display wherein the display means includes a stereoscopic display area that performs stereoscopic image display in the stereoscopic display mode and a planar display area that performs planar image display in the planar display mode.
  • light control means is provided between the stereoscopic display area of the display means and the observer to adjust the amount of light transmitted from the stereoscopic display area and enable the stereoscopic image display in the stereoscopic display mode.
  • the power consumption in the flat display area of the display means is smaller than the power consumption in the stereoscopic display area of the display means.
  • FIG. 1 is a flowchart showing an outline of a display operation in a stereoscopic display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining a display mode in a stereoscopic display mode in the stereoscopic display device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram for explaining a display mode in a flat display mode in the stereoscopic display device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic block diagram showing a schematic configuration of the stereoscopic display device according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing an outline of a display operation of the stereoscopic display device according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram for explaining the configuration and operation of the optical slit member of the stereoscopic display device in Example 1 of the present invention.
  • FIG. 7 is a schematic diagram for explaining the configuration and operation of the optical slit member of the stereoscopic display device in Example 1 of the present invention.
  • Fig. 8 is a diagram showing the configuration of the optical slit member of the stereoscopic display device according to Example 1 of the present invention. It is a schematic diagram for demonstrating operation
  • FIG. 9 is a flowchart showing an outline of a display operation of the stereoscopic display device in Example 2 of the present invention.
  • FIG. 10 is a diagram showing a relative relationship between drive current and light emission luminance in an organic EL element.
  • FIG. 11 is a diagram showing a relative relationship between drive voltage and drive current in an organic EL element.
  • FIG. 12 is a flowchart showing an outline of a display operation of the stereoscopic display device in Embodiment 3 of the present invention.
  • FIG. 13 is a flowchart showing an outline of a display operation of the stereoscopic display device in Example 4 of the present invention.
  • FIG. 14 is a schematic diagram for explaining the configuration and operation of an optical slit member of a stereoscopic display device in Example 5 of the present invention.
  • FIG. 15 is a schematic partially enlarged cross-sectional view showing the configuration of the pinhole of the optical slit member of FIG.
  • FIG. 16 is a schematic plan view showing a configuration of a light control panel of a stereoscopic display device in Example 6 of the present invention.
  • An object of this embodiment is to provide a stereoscopic display device that realizes good display characteristics in each display in the stereoscopic display mode and the flat display mode, and that reduces power consumption. To do.
  • the stereoscopic display device is a stereoscopic display device configured to be able to switch between a stereoscopic image display in the stereoscopic display mode and a planar image display in the flat display mode.
  • a light control unit disposed between the display unit and the display unit in the flat display mode, wherein the power consumption of the display unit is smaller than the power consumption of the display unit in the stereoscopic display mode.
  • the stereoscopic display device includes a display panel drive control unit, and the drive control unit performs drive control of the display panel, thereby adjusting the power consumption of the display unit as described above.
  • the stereoscopic display device having the characteristic configuration as described above has a configuration in which the area of the light transmitting portion of the light control means can be adjusted by the light transmitting portion adjusting means.
  • the light part adjusting means adjusts the area of the light transmitting part so that the total area of the light transmitting part in the flat display mode is larger than the total area of the light transmitting part in the stereoscopic display mode.
  • the display means in the flat display mode is different from the stereoscopic display mode in which the display means requires a high luminance because the area of the light transmitting portion is small, and the light emission luminance of the display means is as high as the stereoscopic display mode. Even if it is not increased, good external observation brightness can be realized.
  • the external observation luminance is the luminance when the observer observes the stereoscopic display device with both eyes.
  • the scanning frequency that is, the driving frequency
  • the image update rate in the flat display mode need not be increased as in the stereoscopic display mode, and these are lower than in the stereoscopic display mode. Even so, it is possible to achieve good display characteristics (specifically, resolution, etc.).
  • the operation state of the display unit in the flat display mode is the operation in the stereoscopic display mode in which the power consumption is large and the overspec.
  • the power consumption in the flat display mode is reduced from the power consumption in the stereoscopic display mode.
  • FIG. 1 is a flowchart showing an overview of a display operation in the stereoscopic display device according to the embodiment of the present invention.
  • the image data is read (Step S102), and the image data is output to the display means. Is done.
  • the type of the read image data specifically, the force that this image data is data of a two-dimensional planar image, the force that is data of a three-dimensional solid image
  • a control signal for controlling operations of the display means and the light control means is appropriately generated according to the determined display mode. These control signals are displayed on the display means and light control. When output to the control means, the display means and the light control means are driven according to the operation state set based on the control signal.
  • step 103 when the display mode is determined to be the stereoscopic display mode (step 103: Yes), the display means is driven in the operation state of the stereoscopic display mode in which the power consumption is E1 (step S104), and the light control is performed.
  • the means is driven in the operation state of the stereoscopic display mode in which the total area of the translucent part is S1 (step S105). Thereby, stereoscopic display is performed, and a three-dimensional stereoscopic image corresponding to the read image data is obtained (step S106).
  • the display means uses the flat display mode in which the power consumption is E2, which is lower than the power consumption E1 in the stereoscopic display mode. (Step S107), and the light control means is driven in the operation state of the flat display mode in which the total area of the translucent part is S2 which is larger than the total area S1 of the stereoscopic display mode (Step S108). . Thereby, planar display is performed, and a two-dimensional planar image corresponding to the read image data is obtained (step S109).
  • step S110 it is determined whether or not a force is input when an instruction to end the display operation is input (step S110).
  • step S110: Yes the display operation ends.
  • step S110: No the process returns to step S102 again and the display operation is continued.
  • the stereoscopic display device As described above, in the stereoscopic display device according to the present embodiment, it is possible to switch the operation state of the display unit in accordance with the display mode. In this case, the display means is driven in an operating state in which power consumption is reduced. Therefore, in this stereoscopic display device, it is possible to reduce power consumption without causing deterioration in external observation luminance, display characteristics, or the like in the display in the flat display mode. As a result, in the stereoscopic display device, power consumption can be reduced as a whole device.
  • the stereoscopic display device of the first embodiment includes a display panel as a display means, and the scanning frequency of the display panel in the flat display mode.
  • the number is made lower than the scanning frequency of the display panel in the stereoscopic display mode. As a result, the power consumption of the display panel in the flat display mode is reduced.
  • FIG. 2 is a schematic diagram for explaining a display mode in the stereoscopic display mode of the stereoscopic display device according to the first embodiment.
  • FIG. 3 is a schematic diagram for explaining a display mode in the planar display mode of the stereoscopic display device according to the first embodiment.
  • FIG. 4 is a schematic block diagram illustrating a schematic configuration of the stereoscopic display device according to the first embodiment.
  • FIG. 5 is a flowchart showing an outline of the display operation of the stereoscopic display device according to the first embodiment.
  • the stereoscopic display device 100 includes a display panel 101 configured by arranging a plurality of pixels in a matrix, and an optical slit member 1022 in which an optical slit 1021 is formed. And a light control panel 102 having a panel body.
  • the light control panel 102 is disposed between the display panel 101 and the observation position 104, specifically, the front surface of the display panel 101 (that is, the side close to the observer).
  • the stereoscopic display device 100 includes a signal generator 300 that outputs control signals to the display panel 101 and the light control panel 102 to control them.
  • the signal generator 300 includes a control unit 301 configured by a CPU, a timing generation circuit 302, and a storage unit 303 configured by a semiconductor memory. Although illustration is omitted here, the signal generator 300 includes other configurations as appropriate. Image data is stored in the storage unit 303 and output to the display panel 101 via the image data force timing generation circuit 302.
  • the timing generation circuit 302 of the signal generator 300 In addition to the output of image data, the timing generation circuit 302 of the signal generator 300 generates various control signals for controlling the display panel 101 and the light control panel 102, and these are displayed on the display panel. 101 and light control panel 102, respectively.
  • the timing generation circuit 302 can perform system clock frequency division, image update, phase synchronization adjustment, and the like.
  • the control signal generated by the signal generator 300 and output to the display panel 101 includes, for example, a control signal for controlling the scanning frequency and the image update rate of the display panel 101 (specifically, a clock signal). ), A control signal for controlling the light emission luminance of the display panel 101, a control signal for controlling the lighting time of the display panel 101, and a control of the power supply voltage of the display panel 101. Control signals and the like.
  • control signal generated by the signal generator 300 and output to the light control panel 102 is output to the optical slit driver 1023, for example, and the timing control of the formation of the optical slit 1021 in the optical slit member 1022 For example, a control signal for controlling the formation position of the optical slit 1021 and the like.
  • the light control panel 102 includes an optical slit driver 1023 that controls the formation of the optical slit 1021 in the optical slit member 1022.
  • the optical slit driver 1023 forms the optical slit 1021 at a predetermined position of the optical slit member 1022 based on the control signal output from the signal generator 300.
  • FIGS. 6 to 8 are schematic views for explaining the configuration and operation of the optical slit member 1021 of the stereoscopic display device according to this embodiment.
  • the light control panel 102 of the stereoscopic display device 100 of FIG. 4 includes a plurality of shirter plates 500 in which the optical slit members 1022 are configured to be controlled to be opened and closed independently. Consists of.
  • each of the plurality of shirter plates 500 is made of a rectangular plate material made of a non-translucent material, and is supported via a support shaft 501 protruding from both ends in the long axis direction. It is attached to the frame material 502.
  • Each of the shatter plates 500 is driven by the optical slit driver 1023 in FIG. 4 and independently rotates about the support shaft 501.
  • Each shatter plate 500 is arranged with its long axis direction aligned with the vertical direction of the display panel 101 (see FIG. 2 and FIG. 3), and a small gap for the rotation is provided between adjacent shatter plates 500.
  • a plurality of shatter plates 500 are formed and arranged along the horizontal direction of the display panel 101.
  • the optical slit driver 1023 in FIG. 4 that drives each shirter plate 500 is controlled by the control signal output from the signal generator 300. Then, the optical slit driver 1023 controls the rotation operation of each shirter plate 500 of the optical slit member 1022 based on the control signal from the signal generator 300, so that the optical slit member 1022 is optically moved to a predetermined position.
  • the slit 1021 can be formed.
  • the state in which the display surface of the display panel 101 (see FIG. 2 and FIG. 3) disposed on the rear side and the main surface of the shatter plate 500 are substantially parallel is the shatter plate 50 0.
  • the closed state When the shirt board 500 is in the closed state, for example, the areas 504 to 5 in FIG. As shown in FIG. 10, the main surface of the shatter board 500 is observed by an observer. Therefore, in such a state, the optical slit 1021 is not formed in the regions 504 to 510, and therefore, the image displayed on the display panel 101 disposed behind cannot be observed.
  • a minute gap for rotation is formed between the adjacent closed shirter plates 500, and the gap also serves as a light-transmitting portion.
  • Such a gap is distinguished from the optical slit 1021 that is intentionally formed as a light transmitting portion, and is not called the optical slit 1021.
  • the state in which the display surface of the display panel 101 (see FIGS. 2 and 3) disposed on the rear side and the main surface of the shatter plate 500 are substantially orthogonal is referred to as the open state of the shatter plate 500. That is, when the shutter plate 500 is in the open state, for example, as shown in a region 503 in FIG. 6, the side surface of the shatter plate 500 is observed by the observer. When the shirter plate 500 is in such an open state, the optical slit 1021 serving as a light transmitting portion is formed in the optical slit member 1022. Therefore, the image displayed on the display panel 101 can be observed through the formed optical slit 1021.
  • the shatter plate 500 constituting the optical slit member 1022 is required to open and close at high speed.
  • the shatter plate 500 of the optical slit member 1022 is configured with, for example, a piezoelectrically controlled ceramic force capable of realizing a high-speed opening / closing operation.
  • an organic EL display panel capable of realizing high-speed response is used here for the display panel 101 of the stereoscopic display device 100.
  • a display panel other than the organic EL display panel may be used as long as high-speed response capable of handling image updating can be realized.
  • the display panel 101 corresponds to the display unit
  • the light control panel 102 corresponds to the light control unit
  • the optical slit 1021 of the light control panel 102 The optical slit member 1022 and the optical slit driver 1023 correspond to the light transmitting part adjusting means
  • the signal generator 300 corresponds to the drive control means of the display panel 100. I win.
  • step S501 when the power is turned on and the stereoscopic display device 100 is activated (step S501), the signal generator 300 of FIG. Image data is read and output to the timing generation circuit 302 (step S502). Then, the control unit 301 determines whether the type of the image data, that is, whether the image data is the data of the force two-dimensional plane image that is the data of the three-dimensional solid image (step S503), and based on the determination result, The signal generator 300 in FIG. 4 generates various control signals to be output to the display panel 101 and the light control panel 102 according to the determined display mode.
  • display mode discrimination information for discriminating whether to perform display in the stereoscopic display mode or the flat display mode is included in the image data, and control is performed based on the display mode discrimination information.
  • the unit 301 determines the display mode.
  • the display mode determination information is included in, for example, a header file of image data.
  • time division information is used as a specific example of the display mode discrimination information.
  • the number of time divisions in the display in the stereoscopic display mode is 8, and the number of time divisions in the display in the flat display mode is 1. Therefore, using the time division information of the image data makes it possible to easily determine the display mode.
  • the display mode determination information is not limited to the time division information, and other information may be used as long as the display mode can be determined. Also, the display mode discrimination information is stored in the storage unit 303 separately from the image data that is not necessarily included in the image data!
  • step S50 Based on the display mode discrimination information (that is, time division information) included in the image data, a discrimination result that the type of the image data is the stereoscopic display mode is obtained (step S50). 3: Yes), the signal generator 300 in FIG. 4 generates various control signals corresponding to the stereoscopic display mode and outputs them to the display panel 101 and the light control panel 102. Thereby, the display panel 101 and the light control panel 102 are in an operation state suitable for the stereoscopic display mode.
  • the display mode discrimination information that is, time division information
  • the display panel 101 sets the scanning frequency to A1 (step S504) and the light emission luminance to B1 (step S505).
  • the image update rate is set to C1 (step S506), and the power supply voltage is set to D1 (step S507).
  • the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the aperture ratio of the optical slit 1021 formed in the optical slit member 1022 is controlled. Is set to SS 1 (step S508).
  • the display panel 101 and the light control panel 102 are driven in the operation state as described above to realize stereoscopic display (step S509).
  • a three-dimensional stereoscopic image 103 is displayed using the IP method.
  • MPS-3D display is performed by IP method.
  • an organic EL element constituting the panel emits light, and thereby a two-dimensional planar image (that is, a component for realizing stereoscopic display) , Corresponding to the component plane image) is displayed on the display panel 101.
  • a two-dimensional planar image that is, a component for realizing stereoscopic display
  • stereoscopic display is realized by driving the display panel 101 and the light control panel 102 in the operation state of steps S504 to S508 in FIG.
  • each of eight two-dimensional planar images obtained by observing a sphere as a display object (corresponding to the three-dimensional stereoscopic image 103 in FIG. 2) from eight different directions is used as a small image. Therefore, one 3D stereoscopic image 103 is displayed.
  • Each small image is configured by dividing one two-dimensional planar image obtained by observing a spherical object in a predetermined direction into a plurality of strip-shaped picture elements and rearranging the picture elements in a predetermined arrangement.
  • eight small images correspond to time-division images, and the number of time divisions in the stereoscopic display mode is eight.
  • the optical slit driver 1023 forms an optical slit 1021 force at a predetermined position of the optical slit member 1022. Then, by observing a small image of the display panel 101 through the optical slit 1021, the display object is projected and displayed on the front surface (that is, the observer side) of the light control panel 102, that is, as shown in FIG. A three-dimensional stereoscopic image 103 is obtained. As described above, in the display in the stereoscopic display mode, the light transmission of the light control panel 102 is limited by controlling the formation of the optical slit 1021 which is a light transmitting portion.
  • the change (that is, movement) of the formation position of the optical slit 1021 in the optical slit member 1022 as described above is caused by opening and closing of the shutter plate 500 constituting the optical slit member 1022, as shown in FIGS. Realized. That is, by the control signal output from the signal generator 300 in FIG. 4, the optical slit driver 1023 controls the rotation operation of the shirter plate 500 of the optical slit member 1022, and only the shirter plate 500 at a predetermined position is opened. At the same time, the position of the open state is sequentially shifted. Such an operation of the shatter board 500 is performed in synchronization with the image update on the display panel 101.
  • the optical slit member 1022 is based on the control signal output from the signal generator 300 in FIG. 4, and first, as shown in FIG. The board 500 is opened, and the shatter board 500 in the other areas 504 to 510 is closed. Thereby, an optical slit 1021 is formed in the region 503. At this time, on the display panel 101 in FIG. 4, a small image corresponding to the optical slit 1021 formed in the region 503 is displayed, and this small image is observed through the optical slit 1021.
  • the optical slit member 1022 opens the shatter plate 500 in the region 504 adjacent to the region 503 and closes the shatter plate 500 in the other regions 503 and 505 to 510.
  • an optical slit 1021 is formed in the region 504.
  • a small image corresponding to the optical slit 1021 formed in the region 504 is displayed, and this small image is observed through the optical slit 1021.
  • the shatter plate 500 force S is sequentially opened and closed in each region 503 to 510 of the optical slit member 1022, and the optical slit 1021 is sequentially formed in each region 503 to 510.
  • a configuration is realized in which the position of the optical slit 1021 is sequentially and selectively changed, and the small image is updated in synchronization with the position change of the optical slit 1021.
  • the three-dimensional stereoscopic image 103 is displayed by the MPS-IP method as shown in FIG.
  • step S503 a discrimination result that the type of the image data is the flat display mode is obtained (step S503). : No), the signal generator 300 in FIG. 4 generates various control signals corresponding to the flat display mode and outputs them to the display panel 101 and the light control panel 102. Thereby, the display panel 101 and the light control panel 102 are set to an operation state suitable for the flat display mode.
  • the scanning frequency is set to A2 lower than the scanning frequency A1 in the stereoscopic display mode by the control signal output from the signal generator 300 (step S510).
  • Such adjustment of the scanning frequency is realized by dividing the system clock by the timing generator circuit 302 in the signal generator 300 and using the divided clock as a clock signal in the display panel 101.
  • the emission luminance is set to B1 by the control signal output from the signal generator 300 (step S511) and the image update rate is set to C1, as in the stereoscopic display mode. (Step S512) and the power supply voltage is set to D1 (Step S513).
  • the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, thereby opening the optical slit 1021 formed in the optical slit member 1022. Power Set to SS2 higher than in the 3D display mode (step S514).
  • the display panel 101 and the light control panel 102 operate under the conditions as described above, thereby realizing flat display (step S515).
  • the optical slit driver 1023 controls the rotation operation of the shirt plate 500 of the optical slit member 1022 based on the control signal output from the signal generator 300 in FIG.
  • the shirt plate 500 in the entire region 503 to 510 of the slit member 1022 is opened.
  • the optical slit 1021 is formed in the entire region 503 to 510 of the optical slit member 1022.
  • a two-dimensional planar image 201 is obtained by observing the display image on the display panel 101 through the optical slit 1021.
  • the aperture ratio SS2 of the optical slit 1021 is larger than the aperture ratio SS1 in the case of stereoscopic display.
  • the total area of the optical slits 1021 in the planar display mode is larger than that in the stereoscopic display mode.
  • the optical slit 1021 is formed only in one of the eight regions 503 to 510, whereas in the flat display mode Then, as shown in FIG. 8, optical slits 1021 are formed in all of the eight regions 503 to 510.
  • the aperture ratio power of the optical slit 1021 is eight times that in the stereoscopic display mode.
  • the external observation luminance when observing the two-dimensional planar image 201 from the observation position 104 in FIG. 2 is 8 times the external observation luminance in the stereoscopic display mode
  • the visible region of the display image on the display panel 101 in the light control panel 102 is 8 times.
  • the amount of light emitted from the display panel 101 and the visible area of the displayed image are increased as compared with the case of the stereoscopic display mode. 101 emission brightness and resolution are improved.
  • the scanning frequency A2 of the display panel 101 is lower than the scanning frequency A1 in the stereoscopic display mode as in step S510 of FIG. 5 described above, the display in the flat display mode is good. It is possible to realize a high resolution.
  • the scanning frequency A2 in the flat display mode is determined in the stereoscopic display mode from the point of the time division number in the flat display mode and the stereoscopic display mode and the aperture ratios SS1 and SS2 of the optical slit 1021.
  • the scanning frequency Al is 1Z8.
  • step S516 After the display of the image data read out as described above, as shown in FIG. 5, the determination as to whether or not the force to input the display operation end instruction is made by the signal generator 300 of FIG. This is performed by the control unit 301 (step S516). If an end instruction is input (step S516: Yes), the display operation ends. On the other hand, if the end instruction has not been input (step S516: No), the process returns to step S502 again to continue the display operation.
  • the opening area of the optical slit 1021 formed in the optical slit member 1022 is larger than that in the stereoscopic display mode as described above.
  • the total sum is increased to increase the area of the light transmitting part in the light control panel 102 to improve the light transmission, and the scanning frequency A2 of the display panel 101 is compared with the scanning frequency A1 in the solid display mode. make low.
  • the display in the flat display mode it is possible to reduce the power consumption of the display panel 101 without reducing the resolution. Therefore, in the stereoscopic display device 100, it is possible to reduce the power consumption of the entire device while realizing excellent display characteristics for display in the flat display mode and the stereoscopic display mode.
  • the display panel 101 and the light control panel 102 are appropriately operated according to each display mode. Because it is possible to automatically control the state, it is possible to easily and optimally perform good stereoscopic display and flat display and reduce power consumption without the observer's intentional operation. It becomes possible.
  • the optimum aperture ratio of the optical slit 1021 in each display mode, and the setting information of the scanning frequency, light emission luminance, image update rate, and power supply voltage of the display panel 101 are generated in advance. It may be stored in the storage unit 303 of the container 300.
  • the setting information may be included in the image data, or may be stored in the storage unit 303 of the signal generator 300 separately from the image data.
  • the timing generation circuit 302 of the signal generator 300 appropriately generates and outputs control signals to be output to the optical slit driver 1023 and the display panel 101 based on the setting information.
  • the optimal operation of the optical slit 1021 and the display panel 101 is supported for each display mode. The state is realized, and the above effect is effectively achieved.
  • the number of time divisions in the display in the stereoscopic display mode corresponds to the number of optical slits 1021 formed in the optical slit member 1022
  • the number of time divisions and optical The number of the elementary slits 1021 can be arbitrarily set. Therefore, the number of time divisions and the number of optical slits 1021 are not limited to 8 as described above.
  • Example 2
  • FIG. 9 is a flowchart showing an outline of the display operation of the stereoscopic display device according to Embodiment 2 of the present invention.
  • the stereoscopic display device of this example has the same configuration as the stereoscopic display device 100 of Example 1 shown in FIGS. 1 to 4 and FIGS. 6 to 8. As in the case of Example 1, the display in the stereoscopic display mode shown in FIG. 2 and the display in the flat display mode shown in FIG. 3 are performed. However, the following points are different from those in Example 1. Yes.
  • the scanning frequency A2 of the display panel 101 in the flat display mode is set lower than the scanning frequency A1 in the stereoscopic display mode.
  • the display panel 101 emission brightness in the flat display mode is less than the emission brightness in the stereoscopic display mode. Accordingly, the power consumption of the display panel 101 in the flat display mode is reduced as compared with that in the stereoscopic display mode.
  • Steps S901 to S903 operations similar to Steps S501 to S503 in Embodiment 1 in FIG. 5 are performed in Steps S901 to S903. Then, based on the determination result of the display mode in step S903, the signal generator 300 in FIG. 4 generates various control signals corresponding to the display mode and outputs them to the display panel 101 and the light control panel 102, respectively. . Accordingly, the display panel 101 and the light control panel 102 operate in an optimum state according to the display mode.
  • the device 300 generates various control signals corresponding to the stereoscopic display mode and outputs them to the display panel 101 and the light control panel 102.
  • the display panel 101 and The light control panel 102 is in an operation state suitable for the stereoscopic display mode.
  • the display panel 101 sets the light emission luminance to B1 (step S904) and the scanning frequency to A1 (step S905).
  • the image update rate is set to C1 (step S906), and the power supply voltage is set to D1 (step S907).
  • the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the aperture ratio of the optical slit 1021 formed in the optical slit member 1022 is controlled. Is set to SS 1 (step S908).
  • the stereoscopic display shown in FIG. 2 is realized by the MPS-IP method described in the first embodiment ( Step S909).
  • step S903 when a determination result indicating that the display mode is the flat display mode is obtained based on the display mode determination information included in the image data (step S903: No), the signal generator 300 in FIG. Various control signals corresponding to the mode are output to the display panel 101 and the light control panel 102. Thereby, the display panel 101 and the light control panel 102 are in an operation state suitable for the flat display mode.
  • the display panel 101 sets the light emission luminance B2 to be lower than the light emission luminance B1 in the stereoscopic display mode. (Step S910). Further, in the display panel 101, the scanning frequency is set to A1 (step S911) and the image update rate is set to C1 as in the stereoscopic display mode by the control signal output from the signal generator 300 (step S911). In step S912), the power supply voltage is set to D1 (step S913).
  • the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the optical slit formed in the optical slit member 1022 is controlled.
  • the aperture ratio SS2 of 1021 is set to be higher than the aperture ratio SS1 in the stereoscopic display mode (step S914).
  • the control unit 301 of the signal generator 300 determines whether or not a display operation end instruction has been input (step 301). S916). If an end instruction is input (step S916: Yes), the display operation ends. On the other hand, if the end instruction has not been input (step S916: No), the process returns to step S902 and the display operation is continued.
  • the opening area of the optical slit 1021 formed in the optical slit member 1022 is larger than that in the stereoscopic display mode. Is increased to increase the area of the light-transmitting part in the light control panel 102 to improve the light-transmitting property, and the light emission luminance B2 of the display panel 101 is compared with the light emission luminance B1 in the stereoscopic display mode. Lower.
  • the stereoscopic display device it is possible to reduce the light emission luminance of the display panel 101 while suppressing the decrease in the external observation luminance in the display in the flat display mode. Therefore, in the display in the flat display mode, it is possible to reduce power consumption while realizing good display characteristics. As a result, the same effects as those described in the first embodiment can be obtained.
  • the drive current or drive voltage of the organic EL element constituting the display panel 101 is controlled by the control signal output from the signal generator 300. Accordingly, the peak luminance of the display panel 101 is reduced, and the light emission luminance of the display panel 101 is reduced.
  • FIG. 10 is a schematic diagram showing the relative relationship between the drive current and the light emission luminance of the organic EL elements constituting the display panel 101, the horizontal axis showing the drive current and the vertical axis showing the light emission luminance.
  • FIG. 11 is a schematic diagram showing the relative relationship between the drive voltage and drive current of the organic EL elements constituting the display panel 101, where the horizontal axis represents the drive voltage and the vertical axis represents the drive current.
  • the drive current and the light emission luminance are in a proportional relationship, and the light emission luminance increases as the drive current increases. Therefore, based on the relationship between the driving current of the organic EL element and the light emission luminance, the driving current of the organic EL element constituting the display panel 101 is controlled using the control signal from the signal generator 300. Display As described above, the light emission luminance of panel 101 can be adjusted according to the display mode.
  • the drive current in the flat display mode is made smaller than the drive current in the stereoscopic display mode.
  • the light emission luminance of the display panel 101 in the flat display mode can be reduced as compared with the case of the stereoscopic display mode.
  • Such a control of the driving current of the organic EL element can be realized, for example, by providing the display panel 101 with a variable resistor configured to be controllable based on a control signal output from the signal generator 300. Become.
  • the organic EL element has a diode characteristic, and the drive voltage and the drive current do not have a proportional relationship. Therefore, when the relationship between the drive current and the light emission luminance shown in FIG. 10 is taken into consideration, the drive voltage and the light emission luminance are not proportional to the drive current and the light emission luminance.
  • the light emission luminance of the display panel 101 is adjusted by adjusting the peak luminance in the organic EL element of the display panel 101 has been described, but in addition to the peak luminance, the lighting time (light emission) of the display panel 101 is adjusted.
  • the light emission luminance of the display panel 101 can be adjusted by adjusting (time).
  • the lighting time of the display panel 101 in the display in the flat display mode is made shorter than the lighting time in the display in the stereoscopic display mode. In this way, by appropriately adjusting the lighting time of the display panel 101 according to the display mode, the power consumption of the display panel 101 in the flat display mode can be reduced. It becomes possible to reduce.
  • FIG. 12 is a flowchart showing an outline of the display operation of the stereoscopic display device according to Embodiment 3 of the present invention.
  • the stereoscopic display device of this example has the same configuration as the stereoscopic display device 100 of Example 1 shown in FIGS. 1 to 4 and FIGS. 6 to 8. As in the case of Example 1, the display in the stereoscopic display mode shown in FIG. 2 and the display in the flat display mode shown in FIG. 3 are performed. However, the following points are different from those in Example 1. Yes.
  • the image update rate of the display panel 101 in the display in the flat display mode is set lower than the image update rate in the display in the stereoscopic display mode.
  • the power consumption of the display panel 101 in the mode is reduced as compared with the case of the vertical display mode.
  • step S 1203 Based on the display mode discrimination result in step S 1203, the signal generator 300 generates various control signals according to the display mode, and outputs them to the display panel 101 and the light control panel 102, respectively. Accordingly, the display panel 101 and the light control panel 102 operate in an optimum state according to the display mode.
  • the signal generator 300 when a determination result indicating that the display mode is the stereoscopic display mode is obtained based on the display mode determination information (that is, time division information) included in the image data (step S1203: Yes), the signal generator 300 generates various control signals corresponding to the stereoscopic display mode and outputs them to the display panel 101 and the light control panel 102. Accordingly, the display panel 101 and the light control panel 102 are in an operation state suitable for the stereoscopic display mode.
  • the display panel 101 sets the image update rate to C1 (step S1204), and sets the scanning frequency to A1 (step S1205).
  • the emission luminance is set to B1 (step S1206), and the power supply voltage is set to D1 (step S1207).
  • the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the opening of the optical slit 1021 formed in the optical slit member 1022 is controlled.
  • the power S1 is set (step S1208).
  • the stereoscopic display shown in FIG. 2 is realized by the MPS-IP method described in the first embodiment ( Step S 1209).
  • step S1203 based on the display mode discrimination information included in the image data, if the discrimination result that the plane display mode is selected is obtained (step S1203: No), the signal generator 300 Various control signals corresponding to the display mode are generated and output to the display panel 101 and the light control panel 102. Thereby, the display panel 101 and the light control panel 102 are set to an operation state suitable for the flat display mode.
  • the image update rate C2 is set lower than the image update rate C1 in the stereoscopic display mode by the control signal output from the signal generator 300 (step S1). S1210).
  • the image update rate C2 in the flat display mode is set to 1Z8 of the image update rate C1 in the stereoscopic display mode.
  • the adjustment of the image update rate according to such a display mode is performed by dividing the system clock in the signal generator 300 and outputting the divided clock to the display panel 101 as a control signal. Can be realized.
  • the scanning frequency is set to A1 by the control signal output from the signal generator 300 as in the stereoscopic display mode (step S1211), and the light emission is performed.
  • the brightness is set to B1 (step S1212), and the power supply voltage is set to D1 (step S1213).
  • the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the optical slit formed in the optical slit member 1022 is controlled.
  • the aperture ratio SS2 of 1021 is set to be higher than the aperture ratio SS1 in the stereoscopic display mode (step S1214). Then, when the display panel 101 and the light control panel 102 are driven in such an operation state, the flat display shown in FIG. 3 is realized (step S 1215).
  • Image update rate C2 is the image update rate CI of 1Z8 in the stereoscopic display mode.
  • Force In the flat display mode normal flat display is possible without displaying time-division images as in the stereoscopic display mode.
  • step S1216 After the image data read out as described above is displayed, the control unit 301 of the signal generator 300 determines whether or not an instruction to end the display operation has been input (step S1216). ). If an end instruction is input (step S1216: Yes), the display operation ends. On the other hand, if the end instruction has not been input (step S1216: No), the process returns to step S1202 again to continue the display operation.
  • the stereoscopic display device 100 in the display in the flat display mode, the sum of the opening areas of the optical slits 1021 formed in the optical slit member 1022 is made larger than in the display in the stereoscopic display mode.
  • the light control panel 102 increases the area of the translucent part to improve translucency, and the image update rate C2 of the display panel 101 is reduced compared to the image update rate C1 in the stereoscopic display mode. .
  • An effect similar to the effect can be obtained.
  • FIG. 13 is a flowchart showing an overview of the display operation of the stereoscopic display device according to Embodiment 4 of the present invention.
  • the stereoscopic display device of the present embodiment has the same configuration as the stereoscopic display device 100 of Embodiment 1 shown in FIGS. 1 to 4 and FIGS. 6 to 8.
  • the stereoscopic display in the stereoscopic display mode shown in FIG. 2 and the display in the flat display mode shown in FIG. 3 are performed. The following points are different from the first embodiment. Yes.
  • the stereoscopic display device of the present embodiment display in the display in the flat display mode.
  • the power supply voltage of the panel 101 is made lower than the power supply voltage in the stereoscopic display mode, thereby reducing the power consumption of the display panel 101 in the flat display mode than in the stereoscopic display mode.
  • the signal generator 300 Based on the display mode discrimination result in step S1303, the signal generator 300 generates various control signals corresponding to the display mode, and outputs them to the display panel 101 and the light control panel 102, respectively. Accordingly, the display panel 101 and the light control panel 102 operate in an optimum state according to the display mode.
  • the signal generator 300 when a determination result indicating that the display mode is the stereoscopic display mode is obtained based on the display mode determination information (that is, time division information) included in the image data (step S1303: Yes), the signal generator 300 generates various control signals corresponding to the stereoscopic display mode and outputs them to the display panel 101 and the light control panel 102. Accordingly, the display panel 101 and the light control panel 102 are in an operation state suitable for the stereoscopic display mode.
  • the display panel 101 sets the power supply voltage to D1 (step S 1304) and the scanning frequency to A1 (step S1305).
  • the emission brightness is set to B1 (step S1306), and the image update rate is set to C1 (step S1307).
  • the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the aperture ratio power of the optical slit 1021 formed in the optical slit member 1022 is controlled.
  • S 1 is set (step S 1308).
  • the stereoscopic display shown in FIG. 2 is realized by the MPS-IP method described in the first embodiment ( Step S 1309).
  • step S1303 when a determination result indicating that the display mode is the flat display mode is obtained based on the determination of the display mode determination information included in the image data (step S1303: No), the signal generator 300 Various control signals corresponding to the above are generated and output to the display panel 101 and the light control panel 102. Thereby, the display panel 101 and the light control panel 102 are The operating state is suitable for the flat display mode.
  • the power supply voltage D2 is set lower than the power supply voltage D1 in the stereoscopic display mode on the display panel 101 by the control signal output from the signal generator 300 (step S1310).
  • the display panel 101 includes a step-up / step-down circuit configured to be controllable based on a control signal output from the signal generator 300, so that the power supply voltage of the display panel 101 can be adjusted. It becomes.
  • the scanning frequency is set to A1 by the control signal output from the signal generator 300 as in the stereoscopic display mode (step S1311), and the emission luminance is increased. Is set to B1 (step S1312), and the image update rate is set to 1 (step S1313).
  • the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the optical slit formed in the optical slit member 1022 is controlled.
  • the aperture ratio SS2 of 1021 is set to be higher than the aperture ratio SS1 in the stereoscopic display mode (step S 1314). Then, when the display panel 101 and the light control panel 102 are driven in such an operation state, the flat display shown in FIG. 3 is realized (step S 1315).
  • step 301 After the image data read out as described above is displayed, the control unit 301 of the signal generator 300 determines whether or not a display operation end instruction has been input (step 301). S1316). If an end instruction is input (step S1316: Yes), the display operation ends. On the other hand, if the end instruction has not been input (step S1316: No), the process returns to step S1302 and the display operation is continued.
  • the stereoscopic display device 100 in the display in the flat display mode, the sum of the opening areas of the optical slits 1021 formed in the optical slit member 1022 is made larger than that in the stereoscopic display mode.
  • the area of the light transmitting portion in the light control panel 102 is increased to improve the light transmitting property, and the power supply voltage D2 of the display panel 101 is made lower than the power supply voltage D1 in the stereoscopic display mode.
  • the stereoscopic display device of this embodiment it is possible to reduce power consumption while realizing good display characteristics in the display in the flat display mode.
  • the effects described above in Embodiment 1 can be achieved. Has the same effect as can get.
  • the light control panel 102 is configured by the optical slit member 1022 including the shirter plate 500 configured to be openable and closable is described.
  • the light control panel 102 may be configured by an optical slit member having a pinhole whose opening is configured to be opened and closed by a shirt.
  • Example 5 a stereoscopic display device having an optical slit member 1022 having a pinhole will be described.
  • FIG. 14 is a schematic plan view showing the configuration of the optical slit member of the light control panel of the stereoscopic display device according to Embodiment 5 of the present invention.
  • FIG. 15 is a schematic partial enlarged view showing the configuration of the pinhole of the optical slit member of FIG.
  • the optical slit member 1022 constituting the panel body of the light control panel 102 is formed in a circular shape having a predetermined diameter on the panel base material 800 constituted by a non-translucent material cover.
  • a plurality of pinholes 801 that are openings are arranged at predetermined intervals.
  • the pinhole 801 is provided with a movable pinhole shutter 900 that opens and closes an opening.
  • the pinhole shirt 900 is formed, for example, by combining a plurality of non-translucent plates that are configured to be able to advance and retreat and that can freely enter and exit in the opening of the pinhole 801.
  • the force not shown here is a panel base material 800 at the peripheral edge of the pinhole 801, and a plate material storage portion constituting the pinhole shirter 900 is provided. Then, when the plate material of the pinhole shirter 900 is stored in the storage portion and the opening force of the pinhole 801 is retracted, the pinhole 801 is in an open state (that is, translucent). When the plate material of the pinhole shirter 900 is discharged from the storage portion and moves forward toward the center of the opening of the pinhole 801, the opening of the pinhole 801 is blocked by the plate material of the pinhole shirter 900. It becomes a closed state (that is, light transmission is impossible). Thus, in this embodiment, the pinhole 801 in the light control panel 102 corresponds to a light transmitting part.
  • the advance / retreat operation of the pinhole shatter 900 is controlled by a control signal output from the signal generator 300 of FIG. 3, and the open / close control is performed independently for each pinhole.
  • the display mode is determined in accordance with the time division information included in the image data extracted from the storage unit 303 of the signal generator 300 (for example, step S503 in FIG. 5).
  • the signal generator 300 generates a control signal corresponding to the determined display mode. Then, by controlling the optical slit driver 1023 based on this control signal, the opening / closing of the pinhole 801 is controlled.
  • the plurality of pinholes 801 that are normally closed are sequentially sequentially opened and the same as in the first embodiment.
  • a small image corresponding to the pinhole 801 in the open state is displayed on the display panel 101.
  • stereoscopic display is performed by the MPS-IP method.
  • all the pinholes 801 are opened, and the display image of the display panel 101 is observed through these pinholes 801 to perform flat display.
  • the power consumption of the display panel 101 in the flat display mode can be reduced by any one of the methods described in Embodiments 1 to 4. Thereby, the same effect as in the case of Examples 1 to 4 is exhibited.
  • the opening of the optical slit 1021 and the pinhole 801 that are light-transmitting portions of the light control panel 102 is opened and closed by the shirter plate 500 and the pinhole shatter 900 that are movable shielding members.
  • the translucent part is not physically opened and closed by the movable shielding member, and the translucency of the material constituting the translucent part is controlled.
  • a light-transmitting part made of a liquid crystal material is formed, and the light-transmitting part is controlled by using the polarization characteristics of the liquid crystal material to perform the same function as physical opening and closing. Is also possible.
  • FIG. 16 is a schematic plan view showing the configuration of the optical slit member of the light control panel in the sixth embodiment.
  • the optical slit member 1022 of the present embodiment is configured by a liquid crystal panel 1000 formed by sandwiching a liquid crystal layer between a pair of substrates arranged opposite to each other.
  • the liquid crystal panel 1000 has a configuration in which a plurality of unit cells 1001 are arranged in a matrix. in this case, Each of the unit cells 1001 corresponds to a light transmitting portion of the optical slit member 1022.
  • Each unit cell 1001 of the liquid crystal panel 1000 has the polarization property of the liquid crystal layer set so that light transmission is impossible at all times. Then, light can be transmitted by changing the polarization property of the liquid crystal layer at a predetermined time.
  • the unit cell 1001 that can transmit light is in an open state, and the unit cell 1001 that cannot transmit light is in a closed state.
  • the liquid crystal panel 1000 constituting the optical slit member 1022 is made of a liquid crystal material capable of high-speed response, for example, a ferroelectric liquid crystal material.
  • the liquid crystal panel 1000 is controlled by the output from the timing generation circuit 302 of the signal generator 300 in FIG. 3, and the polarization property of the liquid crystal layer is controlled independently for each unit cell 1001.
  • the display mode is determined in accordance with the time division information included in the image data extracted from the storage unit 303 of the signal generator 300 (for example, the step of FIG. 5).
  • the signal generator 300 generates a control signal corresponding to the determined display mode.
  • the optical slit driver 1023 by this control signal, the polarization property of the liquid crystal layer of the unit cell 1001 of the liquid crystal panel 1000 is controlled for each cell.
  • the translucency of the unit cell 1001 can be adjusted for each cell, and thus the unit cell 1001 can be in a desired open / close state.
  • a plurality of unit cells 1001 which are normally closed (that is, not translucent), are sequentially selectively opened (that is, translucent).
  • a small image corresponding to the unit cell 1001 in the open state is displayed on the display panel 101.
  • stereoscopic display is performed by the MPS-IP method.
  • all the unit cells 1001 of the liquid crystal panel 1000 are opened (that is, light can be transmitted), and the display image of the display panel 101 is observed through these unit cells 1001. The flat display is performed.
  • the power consumption of the display panel 101 can be reduced by any one of the methods described in the first to fourth embodiments. As a result, the same effects as those of the first to fourth embodiments are exhibited.
  • the stereoscopic display device according to the present invention is not limited to the configurations of the first to sixth embodiments, but may have other configurations.
  • the light transmitting portion of the light control panel 102 that is, the optical slit 1021, the pinhole 801, and the unit cell 1001 is selectively opened from the closed state to the open state.
  • the MPS-IP type stereoscopic display device has been described in which a small image corresponding to the transparent portion in the state is displayed on the display panel 101 and stereoscopic display is performed, the present invention is in a state where all the transparent portions are normally open.
  • the present invention can also be applied to a conventional IP 3D display device that performs 3D display without changing the position of the translucent part.
  • the resolution and the like can be improved as compared with the conventional IP type stereoscopic display device, so that a more effective stereoscopic display device can be realized.
  • the MPS-IP type stereoscopic display device has a configuration for changing the position of the light transmitting portion of the light control panel 102 as an essential requirement for the stereoscopic display operation in advance. It is possible to easily realize the adjustment of the total area of the translucent part according to the mode.
  • the present invention is also applicable to a stereoscopic display system other than the IP system, for example, a stereoscopic display device such as a parallax stereogram system.
  • a stereoscopic display device such as a parallax stereogram system.
  • the position of the light control panel 102 is not particularly limited.
  • the light control panel 102 and the display panel 101 may be configured integrally, or the light control panel 102 is arranged at a distance from the display panel 101, or the light control panel 102 is displayed.
  • the configuration may be arranged independently from the panel 101.
  • any one of the scanning frequency, the light emission luminance, the image update rate, and the power supply voltage is independently adjusted according to the display mode, thereby The power described in the case where the power consumption of the display panel 101 in the flat display mode is reduced.
  • the power consumption of the display panel 101 may be adjusted by combining these.
  • the present invention is a stereoscopic display having a configuration in which a stereoscopic display display surface for displaying a stereoscopic image in the stereoscopic display mode and a flat display display surface for displaying a planar image in the flat display mode are individually provided.
  • the present invention can also be applied to a display device.
  • a stereoscopic display device having a powerful configuration for example, the same display surface of the display panel is divided into a plurality of display areas, and a stereoscopic display area for displaying a stereoscopic image in the stereoscopic display mode, and a flat display mode are provided.
  • the flat display area for performing the flat image display may be provided individually.
  • a display unit is configured by a plurality of display panels, and a stereoscopic display panel that performs stereoscopic image display in the stereoscopic display mode and a flat display panel that performs planar image display in the planar display mode are provided separately. It may be a configured.
  • the stereoscopic display device having such a configuration consumes less power than the power consumption in the flat display area or the flat display panel on the display surface. It is configured. As described above in the first to fourth embodiments, such power consumption control is performed by selecting one of the display area or display panel scanning frequency, light emission luminance, image update rate, and power supply voltage according to the display mode. This can be realized by adjusting these parameters independently or in combination. As a result, the same Thus, the same effects as those described above can be obtained in a stereoscopic display device having a structure in which the display mode is switched over time.
  • the present invention as described above can be used for various purposes, and examples thereof include use in information equipment terminals such as mobile phones and personal computers, game machines, and the like.

Abstract

A stereoscopic display apparatus for performing both stereoscopic display and plane display determines, based on information on display mode determination included in image data, which one of two display modes to use for display, a stereoscopic display mode or a plane display mode (Step 103). When it is determined that the plane display mode is to be used (No in Step S103), a display means is driven in a second state where the display means consumes less electric power than in the stereoscopic display mode (Step S107) to perform the plane display (Step S109).

Description

明 細 書  Specification
立体表示装置  3D display device
技術分野  Technical field
[0001] この発明は、立体表示装置に関する。ただし本発明の利用は、前述の立体表示装 置には限らない。  [0001] The present invention relates to a stereoscopic display device. However, the use of the present invention is not limited to the above-described stereoscopic display device.
背景技術  Background art
[0002] 立体表示装置では、観察者の左右の眼に各々の視点からの画像 (以下、両眼視差 画像と呼ぶ)が提示される二眼式が一般的である。かかる方式の立体表示装置では 、複数の両眼視差画像を表示してこれらを再構成することにより立体画像を得ること が可能となる。二眼式の立体表示装置において、観察者の左右の眼に各々の両眼 視差画像を提示する方法としては、例えば、特殊な偏光眼鏡やシャツタ眼鏡等の眼 鏡を用いる方法があげられる。また、眼鏡を用いない方法としては、レンチキユラ式や ノ ララックスステレオグラム式等があげられる。  In a stereoscopic display device, a binocular system in which images from respective viewpoints (hereinafter referred to as binocular parallax images) are generally presented to the left and right eyes of an observer. In such a stereoscopic display device, a stereoscopic image can be obtained by displaying a plurality of binocular parallax images and reconstructing them. In a binocular stereoscopic display device, as a method of presenting the binocular parallax images to the left and right eyes of the observer, for example, a method using special polarizing glasses, shatter glasses or the like is used. Examples of methods that do not use glasses include a lenticular method and a noralux stereogram method.
[0003] また、以前より写真の分野において提案されているインテグラルフォトグラフィ方式( 以下、 IP方式と略す)を利用した立体表示装置がある。例えば、 IP方式の立体表示 装置は、表示対象である一つの立体画像を異なる複数の方向から見ることによって 得られる複数の平面画像をそれぞれ表示する表示パネルと、この表示パネルの前面 (観察側)に配置され、表示パネルの画像を透光部を介して観察するよう構成された 非透光性の表示制御パネルとを有する。  [0003] Further, there is a stereoscopic display device using an integral photography system (hereinafter abbreviated as IP system) that has been proposed in the field of photography. For example, an IP stereoscopic display device has a display panel that displays a plurality of planar images obtained by viewing a stereoscopic image that is a display target from different directions, and a front panel (observation side) of the display panel. And a non-translucent display control panel configured to observe an image of the display panel through the translucent portion.
[0004] また、 IP方式の立体表示装置の一例として、少しずつ異なる位置から見た表示対 象物の小画像の表示の更新と、表示制御パネルの透光部の透光性の制御とが同期 して行われる方式がある(例えば、特許文献 1参照。 ) oかかる方式では、常時は透光 不可能である透光部が逐次選択的に透光可能となるとともに、透光可能となった透 光部に対応する小画像が表示パネルに表示される。そして、このようにして逐次更新 されて表示される全ての小画像を眼の残存保持時間内に見ることにより、全体として 所望の立体画像を見ることが可能となる。  [0004] In addition, as an example of an IP-type stereoscopic display device, updating a display of a small image of a display object viewed from slightly different positions and controlling the translucency of a translucent portion of a display control panel. There is a method that is performed synchronously (for example, refer to Patent Document 1.) o With this method, a light transmitting portion that is not always transparent can be sequentially and selectively transmitted, and light can be transmitted. A small image corresponding to the transparent portion is displayed on the display panel. Then, by viewing all the small images that are sequentially updated and displayed in this way within the remaining eye retention time, a desired stereoscopic image can be viewed as a whole.
[0005] ここでは、このような方式を、特に、マルチプレックスピンホールスキャニング型イン テグラルフォトグラフィ方式(以下、 MPS— IP方式と略す)と呼ぶ。 MPS— IP方式に よれば、透光部が逐次透光可能となるとともにこれに同期して小画像が更新されるの で、一つの透光部から観察可能な小画像が増加する。よって、透光部の透光性が常 時変化しない通常の IP方式の場合に比べて、解像度の向上が図られる。 [0005] Here, such a method is used in particular as a multiplex pinhole scanning type in- It is called Tegral Photography (MPS-IP). According to the MPS-IP method, the translucent portion can be sequentially transmitted and the small image is updated in synchronization with this, so that the number of small images that can be observed from one translucent portion increases. Therefore, the resolution can be improved compared to the case of the normal IP method in which the translucency of the translucent part does not change constantly.
[0006] 特許文献 1 :特開平 6— 160770号公報 [0006] Patent Document 1: JP-A-6-160770
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 立体表示装置では、機能性等の点から、表示する画像の種類や装置の用途等に 応じて、 3次元立体表示モード (以下、単に立体表示モードと呼ぶ)での表示と、 2次 元平面表示モード (以下、単に平面表示モードと呼ぶ)での表示とを切替可能とする ことが有効である。ところで、立体表示装置では、前述のように表示制御パネルの透 光部を介して表示パネルの表示画像を観察することにより立体表示を実現する構成 であることから、立体表示モードにおける構成を平面表示モードに同様に適用すると 、平面表示の際に、通常の平面表示装置に比べて、表示パネルを高輝度とする必要 があり、また、表示パネルの走査周波数や画像更新レートを高くする必要がある。  [0007] In the stereoscopic display device, from the viewpoint of functionality and the like, depending on the type of image to be displayed, the use of the device, etc., the display in the 3D stereoscopic display mode (hereinafter simply referred to as the stereoscopic display mode), It is effective to be able to switch between display in the dimension flat display mode (hereinafter simply referred to as flat display mode). By the way, since the stereoscopic display device is configured to realize stereoscopic display by observing the display image on the display panel through the light-transmitting portion of the display control panel as described above, the configuration in the stereoscopic display mode is planarly displayed. When similarly applied to the mode, it is necessary to increase the brightness of the display panel and to increase the scanning frequency of the display panel and the image update rate in the flat display as compared with the normal flat display device. .
[0008] したがって、立体表示モードにおける構成を表示モードに適用して平面表示を行う と、通常の平面表示装置において平面表示を行う場合に比べて、表示パネルの消費 電力が増加する。それゆえ、 3次元立体表示モードでの表示と 2次元平面表示モード での表示とが切替可能な立体表示装置では、 2次元平面表示モードでの表示の際 に、 3次元立体表示モードにおける構成がオーバースペックとなり、その結果、全体 的な装置の消費電力が増加する。  [0008] Therefore, when flat display is performed by applying the configuration in the stereoscopic display mode to the display mode, the power consumption of the display panel is increased as compared with the case of performing flat display in a normal flat display device. Therefore, in a stereoscopic display device that can switch between the display in the 3D stereoscopic display mode and the display in the 2D planar display mode, the configuration in the 3D stereoscopic display mode is not possible when displaying in the 2D planar display mode. As a result, the overall power consumption of the device increases.
課題を解決するための手段  Means for solving the problem
[0009] 請求項 1の発明にかかる立体表示装置は、立体表示モードでの立体画像表示と平 面表示モードでの平面画像表示とが切替可能に構成された立体表示装置であって 、入力された画像データに基づき平面画像を表示する表示手段と、前記表示手段と 観察者との間に配置され、前記表示手段からの透光量の調整を行う光制御手段とを 備え、前記光制御手段は、非透光性の基体と、前記基体に形成された前記平面画 像の可視領域である複数の透光部と、前記透光部の面積を調整して前記透光量の 調整を行う透光部調整手段と、を有し、前記平面表示モードにおける前記表示手段 の消費電力を、前記立体表示モードにおける前記表示手段の消費電力に比べて少 なくすることを特徴とする。 [0009] The stereoscopic display device according to the invention of claim 1 is a stereoscopic display device configured to be able to switch between a stereoscopic image display in the stereoscopic display mode and a planar image display in the flat display mode. Display means for displaying a planar image based on the obtained image data, and light control means arranged between the display means and the observer and adjusting the amount of light transmitted from the display means, the light control means Is a non-translucent substrate, a plurality of translucent portions that are visible regions of the planar image formed on the substrate, and an area of the translucent portion is adjusted to adjust the light transmission amount. A light-transmitting part adjusting means for performing adjustment, wherein the power consumption of the display means in the flat display mode is less than the power consumption of the display means in the stereoscopic display mode.
[0010] 請求項 16の発明にかかる立体表示装置は、入力された画像データに基づき平面 画像を表示する表示手段を備え、立体表示モードでの立体画像表示と平面表示モ ードでの平面画像表示とを行う立体表示装置であって、前記表示手段は、前記立体 表示モードでの立体画像表示を行う立体表示領域と、前記平面表示モードでの平面 画像表示を行う平面表示領域と、を有し、前記表示手段の前記立体表示領域と観察 者との間に、前記立体表示領域からの透光量の調整を行い前記立体表示モードで の前記立体画像表示を可能とする光制御手段が配設され、前記表示手段の前記平 面表示領域における消費電力を、前記表示手段の前記立体表示領域における消費 電力に比べて少なくすることを特徴とする。  The stereoscopic display device according to the invention of claim 16 includes display means for displaying a planar image based on the input image data, and includes a stereoscopic image display in the stereoscopic display mode and a planar image in the planar display mode. A stereoscopic display device that performs display, wherein the display means includes a stereoscopic display area that performs stereoscopic image display in the stereoscopic display mode and a planar display area that performs planar image display in the planar display mode. Then, light control means is provided between the stereoscopic display area of the display means and the observer to adjust the amount of light transmitted from the stereoscopic display area and enable the stereoscopic image display in the stereoscopic display mode. The power consumption in the flat display area of the display means is smaller than the power consumption in the stereoscopic display area of the display means.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]図 1は、本発明の実施の形態に力かる立体表示装置における表示動作の概要 を示すフローチャートである。  [0011] FIG. 1 is a flowchart showing an outline of a display operation in a stereoscopic display device according to an embodiment of the present invention.
[図 2]図 2は、本発明の実施例 1の立体表示装置における立体表示モードでの表示 態様を説明するための概略図である。  FIG. 2 is a schematic diagram for explaining a display mode in a stereoscopic display mode in the stereoscopic display device according to Embodiment 1 of the present invention.
[図 3]図 3は、本発明の実施例 1の立体表示装置における平面表示モードでの表示 態様を説明するための概略図である。  FIG. 3 is a schematic diagram for explaining a display mode in a flat display mode in the stereoscopic display device according to Embodiment 1 of the present invention.
[図 4]図 4は、本発明の実施例 1における立体表示装置の概略構成を示す模式的な ブロック図である。  FIG. 4 is a schematic block diagram showing a schematic configuration of the stereoscopic display device according to Embodiment 1 of the present invention.
[図 5]図 5は、本発明の実施例 1における立体表示装置の表示動作の概要を示すフ ローチャートである。  FIG. 5 is a flowchart showing an outline of a display operation of the stereoscopic display device according to Embodiment 1 of the present invention.
[図 6]図 6は、本発明の実施例 1における立体表示装置の光学スリット部材の構成お よび動作を説明するための模式図である。 FIG. 6 is a schematic diagram for explaining the configuration and operation of the optical slit member of the stereoscopic display device in Example 1 of the present invention.
[図 7]図 7は、本発明の実施例 1における立体表示装置の光学スリット部材の構成お よび動作を説明するための模式図である。  FIG. 7 is a schematic diagram for explaining the configuration and operation of the optical slit member of the stereoscopic display device in Example 1 of the present invention.
[図 8]図 8は、本発明の実施例 1における立体表示装置の光学スリット部材の構成お よび動作を説明するための模式図である。 [Fig. 8] Fig. 8 is a diagram showing the configuration of the optical slit member of the stereoscopic display device according to Example 1 of the present invention. It is a schematic diagram for demonstrating operation | movement.
[図 9]図 9は、本発明の実施例 2における立体表示装置の表示動作の概要を示すフ ローチャートである。  FIG. 9 is a flowchart showing an outline of a display operation of the stereoscopic display device in Example 2 of the present invention.
[図 10]図 10は、有機 EL素子における駆動電流と発光輝度との相対関係を示す図で ある。 FIG. 10 is a diagram showing a relative relationship between drive current and light emission luminance in an organic EL element.
[図 11]図 11は、有機 EL素子における駆動電圧と駆動電流との相対関係を示す図で ある。  FIG. 11 is a diagram showing a relative relationship between drive voltage and drive current in an organic EL element.
[図 12]図 12は、本発明の実施例 3における立体表示装置の表示動作の概要を示す フローチャートである。  FIG. 12 is a flowchart showing an outline of a display operation of the stereoscopic display device in Embodiment 3 of the present invention.
[図 13]図 13は、本発明の実施例 4における立体表示装置の表示動作の概要を示す フローチャートである。  FIG. 13 is a flowchart showing an outline of a display operation of the stereoscopic display device in Example 4 of the present invention.
[図 14]図 14は、本発明の実施例 5における立体表示装置の光学スリット部材の構成 および動作を説明するための模式図である。  FIG. 14 is a schematic diagram for explaining the configuration and operation of an optical slit member of a stereoscopic display device in Example 5 of the present invention.
[図 15]図 15は、図 14の光学スリット部材のピンホールの構成を示す模式的な部分拡 大断面図である。  FIG. 15 is a schematic partially enlarged cross-sectional view showing the configuration of the pinhole of the optical slit member of FIG.
[図 16]図 16は、本発明の実施例 6における立体表示装置の光制御パネルの構成を 示す模式的な平面図である。  FIG. 16 is a schematic plan view showing a configuration of a light control panel of a stereoscopic display device in Example 6 of the present invention.
符号の説明 Explanation of symbols
100 立体表示装置  100 stereoscopic display
101 表示パネル  101 Display panel
102 光制御パネル  102 Light control panel
103 3次元立体画像  103 3D image
104 観察位置  104 Observation position
201 2次元平面画像  201 2D planar image
300 信号発生器  300 signal generator
301 制御部  301 Control unit
302 タイミング生成回路  302 Timing generator
303 記憶部 500 シャツタ板 303 memory 500 shirt board
501 支軸  501 spindle
502 枠材  502 Frame material
800 パネル基材  800 Panel base material
801 ピンホーノレ  801 Pinhonore
900 ピンホールシャツタ  900 Pinhole shirt
1000 液晶パネル  1000 LCD panel
1001 単位セル  1001 unit cell
1021 光学スリット  1021 Optical slit
1022 光学スリット部材  1022 Optical slit member
1023 光学スリットドライバ  1023 optical slit driver
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下に、本発明にかかる立体表示装置の好適な実施の形態を詳細に説明する。こ の実施の形態は、立体表示モードおよび平面表示モードでの各表示において良好 な表示特性を実現するとともに、消費電力の低減ィ匕が図られた立体表示装置を提供 することを目的の一つとする。  Hereinafter, preferred embodiments of the stereoscopic display device according to the present invention will be described in detail. An object of this embodiment is to provide a stereoscopic display device that realizes good display characteristics in each display in the stereoscopic display mode and the flat display mode, and that reduces power consumption. To do.
[0014] (実施の形態)  [0014] (Embodiment)
本発明の実施の形態に力かる立体表示装置は、立体表示モードでの立体画像表 示と平面表示モードでの平面画像表示とが切替可能に構成された立体表示装置で あって、入力された画像データに基づき平面画像を表示する表示手段と、非透光性 の基体とこの基体に形成された平面画像の可視領域である複数の透光部とを有し、 表示手段と観察者との間に配置される光制御手段とを備え、平面表示モードにおけ る表示手段の消費電力を、立体表示モードにおける表示手段の消費電力に比べて 少なくすることを特徴とするものである。ここでは、立体表示装置が表示パネルの駆 動制御手段を備えており、この駆動制御手段が表示パネルの駆動制御を行うことに より、上記のような表示手段の消費電力の調整が行われる。  The stereoscopic display device according to the embodiment of the present invention is a stereoscopic display device configured to be able to switch between a stereoscopic image display in the stereoscopic display mode and a planar image display in the flat display mode. A display means for displaying a planar image based on image data; a non-translucent substrate; and a plurality of translucent portions that are visible regions of the planar image formed on the substrate; And a light control unit disposed between the display unit and the display unit in the flat display mode, wherein the power consumption of the display unit is smaller than the power consumption of the display unit in the stereoscopic display mode. Here, the stereoscopic display device includes a display panel drive control unit, and the drive control unit performs drive control of the display panel, thereby adjusting the power consumption of the display unit as described above.
[0015] 例えば、上記のような特徴的構成を有する本実施の形態の立体表示装置は、光制 御手段の透光部の面積を透光部調整手段によって調整可能な構成を有し、この透 光部調整手段が、平面表示モードにおける透光部の総面積を、立体表示モードに おける透光部の総面積よりも大きくするよう透光部の面積調整を行う。 For example, the stereoscopic display device according to the present embodiment having the characteristic configuration as described above has a configuration in which the area of the light transmitting portion of the light control means can be adjusted by the light transmitting portion adjusting means. Transparency The light part adjusting means adjusts the area of the light transmitting part so that the total area of the light transmitting part in the flat display mode is larger than the total area of the light transmitting part in the stereoscopic display mode.
[0016] かかる構成では、光制御手段を介して観察側に到達する表示手段からの光の量が 、立体表示モードの場合に比べて、平面表示モードの場合の方が多くなる。したがつ て、平面表示モードの場合における表示手段では、透光部の面積が小さいゆえに表 示手段に高輝度を要する立体表示モードの場合とは異なり、表示手段の発光輝度を 立体表示モードほど高くしなくても、良好な外部観察輝度を実現することが可能とな る。ここで、外部観察輝度とは、観察者が両眼で立体表示装置を観察した際の輝度 である。  [0016] With such a configuration, the amount of light from the display unit that reaches the observation side via the light control unit is larger in the planar display mode than in the stereoscopic display mode. Therefore, the display means in the flat display mode is different from the stereoscopic display mode in which the display means requires a high luminance because the area of the light transmitting portion is small, and the light emission luminance of the display means is as high as the stereoscopic display mode. Even if it is not increased, good external observation brightness can be realized. Here, the external observation luminance is the luminance when the observer observes the stereoscopic display device with both eyes.
[0017] また、平面表示モードの場合には、立体表示モードの場合のような IP方式を用いる 必要がないことから、表示手段において画像を高速で更新する必要がない。したが つて、表示手段では、平面表示モードの場合における走査周波数 (すなわち駆動周 波数)や画像更新レートを立体表示モードの場合のように高くする必要がなぐこれら を立体表示モードの場合よりも低くしても、良好な表示特性 (具体的には解像度等) を実現することが可能となる。  [0017] Further, in the case of the flat display mode, it is not necessary to use the IP method as in the case of the stereoscopic display mode. Therefore, in the display means, the scanning frequency (that is, the driving frequency) and the image update rate in the flat display mode need not be increased as in the stereoscopic display mode, and these are lower than in the stereoscopic display mode. Even so, it is possible to achieve good display characteristics (specifically, resolution, etc.).
[0018] そこで、上記の点に鑑み、本実施の形態の立体表示装置では、平面表示モードに おける表示手段の動作状態を、消費電力が多くオーバースペックとなる立体表示モ ードの場合の動作状態とは異なる状態とし、それにより、平面表示モードの場合にお ける消費電力を、立体表示モードの場合における消費電力よりも低減する。  Therefore, in view of the above points, in the stereoscopic display device of the present embodiment, the operation state of the display unit in the flat display mode is the operation in the stereoscopic display mode in which the power consumption is large and the overspec. The power consumption in the flat display mode is reduced from the power consumption in the stereoscopic display mode.
[0019] 図 1は、本発明の実施の形態に力かる立体表示装置における表示動作の概要を示 すフローチャートである。図 1に示すように、立体表示装置では、電源が ONされて装 置が起動すると (ステップ S 101)、画像データの読み出しが行われるとともに (ステツ プ S102)、この画像データが表示手段に出力される。また、読み出された画像デー タの種類 (具体的には、この画像データが 2次元平面画像のデータである力 3次元立 体画像のデータである力)に応じて、立体表示モードおよび平面表示モードのいず れの表示であるかの判別が行われる(ステップ S 103)。  FIG. 1 is a flowchart showing an overview of a display operation in the stereoscopic display device according to the embodiment of the present invention. As shown in FIG. 1, in the stereoscopic display device, when the power is turned on and the device is activated (Step S101), the image data is read (Step S102), and the image data is output to the display means. Is done. In addition, depending on the type of the read image data (specifically, the force that this image data is data of a two-dimensional planar image, the force that is data of a three-dimensional solid image), It is determined which of the display modes is displayed (step S103).
[0020] そして、表示手段および光制御手段の動作を制御する制御信号が、この判別され た表示モードに応じて適宜生成される。これらの各制御信号が表示手段および光制 御手段にそれぞれ出力されると、制御信号に基づいて設定された動作状態により、 表示手段および光制御手段が駆動する。 [0020] Then, a control signal for controlling operations of the display means and the light control means is appropriately generated according to the determined display mode. These control signals are displayed on the display means and light control. When output to the control means, the display means and the light control means are driven according to the operation state set based on the control signal.
[0021] 具体的に、立体表示モードと判別された場合には (ステップ 103: Yes)、表示手段 は、消費電力が E1となる立体表示モードの動作状態で駆動し (ステップ S104)、光 制御手段は、透光部の総面積が S1となる立体表示モードの動作状態で駆動する (ス テツプ S105)。それにより、立体表示が行われ、読み出した画像データに対応する 3 次元立体画像が得られる (ステップ S 106)。  [0021] Specifically, when the display mode is determined to be the stereoscopic display mode (step 103: Yes), the display means is driven in the operation state of the stereoscopic display mode in which the power consumption is E1 (step S104), and the light control is performed. The means is driven in the operation state of the stereoscopic display mode in which the total area of the translucent part is S1 (step S105). Thereby, stereoscopic display is performed, and a three-dimensional stereoscopic image corresponding to the read image data is obtained (step S106).
[0022] 一方、平面表示モードと判別された場合には (ステップ S 103: No)、表示手段は、 消費電力が立体表示モードの場合の消費電力 E1よりも少ない E2となる平面表示モ ードの動作状態で駆動し (ステップ S 107)、光制御手段は、透光部の総面積が立体 表示モードの総面積 S1よりも大きい S2となる平面表示モードの動作状態で駆動する (ステップ S108)。それにより、平面表示が行われ、読み出した画像データに対応す る 2次元平面画像が得られる (ステップ S109)。  [0022] On the other hand, when the display mode is determined to be the flat display mode (step S103: No), the display means uses the flat display mode in which the power consumption is E2, which is lower than the power consumption E1 in the stereoscopic display mode. (Step S107), and the light control means is driven in the operation state of the flat display mode in which the total area of the translucent part is S2 which is larger than the total area S1 of the stereoscopic display mode (Step S108). . Thereby, planar display is performed, and a two-dimensional planar image corresponding to the read image data is obtained (step S109).
[0023] 上記のようにして表示を行った後、表示動作の終了指示が入力された力否かの判 定が行われる (ステップ S 110)。そして、終了指示が入力されると (ステップ S110 : Y es)、表示動作が終了する。一方、終了指示が入力されないと (ステップ S110 :No) 、再びステップ S102に戻って表示動作が続行される。  [0023] After the display is performed as described above, it is determined whether or not a force is input when an instruction to end the display operation is input (step S110). When an end instruction is input (step S110: Yes), the display operation ends. On the other hand, if the end instruction is not input (step S110: No), the process returns to step S102 again and the display operation is continued.
[0024] 以上のように、本実施の形態の立体表示装置では、表示モードに応じて表示手段 の動作状態の切替えを行うことが可能であり、平面表示モードの場合には、立体表 示モードの場合よりも消費電力を低減する動作状態で表示手段が駆動する。したが つて、この立体表示装置では、平面表示モードでの表示において、外部観察輝度や 表示特性等の劣化を招くことなぐ消費電力の低減ィ匕を図ることが可能となる。その 結果、立体表示装置では、装置全体として消費電力の低減化が図られる。  [0024] As described above, in the stereoscopic display device according to the present embodiment, it is possible to switch the operation state of the display unit in accordance with the display mode. In this case, the display means is driven in an operating state in which power consumption is reduced. Therefore, in this stereoscopic display device, it is possible to reduce power consumption without causing deterioration in external observation luminance, display characteristics, or the like in the display in the flat display mode. As a result, in the stereoscopic display device, power consumption can be reduced as a whole device.
[0025] 次に、表示手段の消費電力の具体的な低減方法について、以下の実施例を参照 して説明する。  [0025] Next, a specific method for reducing the power consumption of the display means will be described with reference to the following examples.
実施例 1  Example 1
[0026] まず、本発明の実施例 1の概要を説明すると、実施例 1の立体表示装置は、表示手 段として表示パネルを備えており、平面表示モードにおける表示パネルの走査周波 数を、立体表示モードにおける表示パネルの走査周波数よりも低くする。それにより、 平面表示モードにおける表示パネルの消費電力の低減ィ匕を図る。 First, the outline of the first embodiment of the present invention will be described. The stereoscopic display device of the first embodiment includes a display panel as a display means, and the scanning frequency of the display panel in the flat display mode. The number is made lower than the scanning frequency of the display panel in the stereoscopic display mode. As a result, the power consumption of the display panel in the flat display mode is reduced.
[0027] 図 2は、実施例 1における立体表示装置の立体表示モードでの表示の態様を説明 するための概略図である。また、図 3は、実施例 1における立体表示装置の平面表示 モードでの表示の態様を説明するための概略図である。また、図 4は、実施例 1にお ける立体表示装置の概略構成を示す模式的なブロック図である。また、図 5は、実施 例 1における立体表示装置の表示動作の概略を示すフローチャートである。  FIG. 2 is a schematic diagram for explaining a display mode in the stereoscopic display mode of the stereoscopic display device according to the first embodiment. FIG. 3 is a schematic diagram for explaining a display mode in the planar display mode of the stereoscopic display device according to the first embodiment. FIG. 4 is a schematic block diagram illustrating a schematic configuration of the stereoscopic display device according to the first embodiment. FIG. 5 is a flowchart showing an outline of the display operation of the stereoscopic display device according to the first embodiment.
[0028] 図 2および図 3に示すように、立体表示装置 100は、複数の画素がマトリクス状に配 列されて構成された表示パネル 101と、光学スリット 1021が形成される光学スリット部 材 1022によってパネル本体が構成された光制御パネル 102とを備える。光制御パ ネル 102は、表示パネル 101と観察位置 104との間、具体的には表示パネル 101の 前面 (すなわち観察者に近い側)に配置される。また、図 4に示すように、立体表示装 置 100は、この表示パネル 101と光制御パネル 102とに制御信号を出力してこれらを 制御する信号発生器 300を備える。  As shown in FIGS. 2 and 3, the stereoscopic display device 100 includes a display panel 101 configured by arranging a plurality of pixels in a matrix, and an optical slit member 1022 in which an optical slit 1021 is formed. And a light control panel 102 having a panel body. The light control panel 102 is disposed between the display panel 101 and the observation position 104, specifically, the front surface of the display panel 101 (that is, the side close to the observer). Also, as shown in FIG. 4, the stereoscopic display device 100 includes a signal generator 300 that outputs control signals to the display panel 101 and the light control panel 102 to control them.
[0029] 図 4に示すように、信号発生器 300は、 CPUから構成される制御部 301と、タイミン グ生成回路 302と、半導体メモリから構成される記憶部 303とを含む。なお、ここでは 図示を省略するが、信号発生器 300は、これ以外の構成も適宜含んでいる。記憶部 303には、画像データが記憶されており、この画像データ力 タイミング生成回路 30 2を介して表示パネル 101に出力される。  As shown in FIG. 4, the signal generator 300 includes a control unit 301 configured by a CPU, a timing generation circuit 302, and a storage unit 303 configured by a semiconductor memory. Although illustration is omitted here, the signal generator 300 includes other configurations as appropriate. Image data is stored in the storage unit 303 and output to the display panel 101 via the image data force timing generation circuit 302.
[0030] また、信号発生器 300のタイミング生成回路 302は、画像データの出力以外に、表 示パネル 101および光制御パネル 102を制御するための各種制御信号を生成し、こ れらを表示パネル 101および光制御パネル 102にそれぞれ出力する。例えば、この タイミング生成回路 302は、システムクロックの分周や、画像更新と位相同期調整等 を行うことが可能である。  In addition to the output of image data, the timing generation circuit 302 of the signal generator 300 generates various control signals for controlling the display panel 101 and the light control panel 102, and these are displayed on the display panel. 101 and light control panel 102, respectively. For example, the timing generation circuit 302 can perform system clock frequency division, image update, phase synchronization adjustment, and the like.
[0031] 信号発生器 300で生成されて表示パネル 101に出力される制御信号としては、例 えば、表示パネル 101の走査周波数や画像更新レートの制御を行う制御信号 (具体 的〖こはクロック信号)や、表示パネル 101の発光輝度の制御を行う制御信号や、表示 パネル 101の点灯時間の制御を行う制御信号や表示パネル 101の電源電圧の制御 を行う制御信号等があげられる。 [0031] The control signal generated by the signal generator 300 and output to the display panel 101 includes, for example, a control signal for controlling the scanning frequency and the image update rate of the display panel 101 (specifically, a clock signal). ), A control signal for controlling the light emission luminance of the display panel 101, a control signal for controlling the lighting time of the display panel 101, and a control of the power supply voltage of the display panel 101. Control signals and the like.
[0032] また、信号発生器 300で生成されて光制御パネル 102に出力される制御信号とし ては、例えば、光学スリットドライバ 1023に出力され、光学スリット部材 1022における 光学スリット 1021の形成のタイミング制御を行う制御信号 (すなわちクロック信号)や、 光学スリット 1021の形成位置の制御を行う制御信号等があげられる。  In addition, the control signal generated by the signal generator 300 and output to the light control panel 102 is output to the optical slit driver 1023, for example, and the timing control of the formation of the optical slit 1021 in the optical slit member 1022 For example, a control signal for controlling the formation position of the optical slit 1021 and the like.
[0033] 光制御パネル 102は、光学スリット部材 1022における光学スリット 1021の形成を 制御する光学スリットドライバ 1023を備える。光学スリットドライバ 1023は、信号発生 器 300から出力される制御信号に基づいて、光学スリット部材 1022の所定の位置に 光学スリット 1021を形成する。  The light control panel 102 includes an optical slit driver 1023 that controls the formation of the optical slit 1021 in the optical slit member 1022. The optical slit driver 1023 forms the optical slit 1021 at a predetermined position of the optical slit member 1022 based on the control signal output from the signal generator 300.
[0034] 図 6〜図 8は、本実施例における立体表示装置の光学スリット部材 1021の構成お よび動作を説明するための模式図である。図 6〜図 8に示すように、図 4の立体表示 装置 100の光制御パネル 102は、光学スリット部材 1022が、各々独立して開閉が制 御可能に構成された複数のシャツタ板 500を含んで構成される。  FIGS. 6 to 8 are schematic views for explaining the configuration and operation of the optical slit member 1021 of the stereoscopic display device according to this embodiment. As shown in FIG. 6 to FIG. 8, the light control panel 102 of the stereoscopic display device 100 of FIG. 4 includes a plurality of shirter plates 500 in which the optical slit members 1022 are configured to be controlled to be opened and closed independently. Consists of.
[0035] 具体的に、複数のシャツタ板 500の各々は、非透光性材料から構成された矩形状 の板材で構成されており、長軸方向の両端カゝら突出する支軸 501を介して枠材 502 に取り付けられている。そして、シャツタ板 500の各々は、図 4の光学スリットドライバ 1 023によって駆動されて支軸 501を中心に各々独立に回動する。各シャツタ板 500 は、長軸方向を表示パネル 101 (図 2および図 3参照)の上下方向と一致させて配置 され、隣接するシャツタ板 500同士の間に前記回動のための微小な間隙を形成して 複数のシャツタ板 500が表示パネル 101の水平方向に沿って配列されている。  [0035] Specifically, each of the plurality of shirter plates 500 is made of a rectangular plate material made of a non-translucent material, and is supported via a support shaft 501 protruding from both ends in the long axis direction. It is attached to the frame material 502. Each of the shatter plates 500 is driven by the optical slit driver 1023 in FIG. 4 and independently rotates about the support shaft 501. Each shatter plate 500 is arranged with its long axis direction aligned with the vertical direction of the display panel 101 (see FIG. 2 and FIG. 3), and a small gap for the rotation is provided between adjacent shatter plates 500. A plurality of shatter plates 500 are formed and arranged along the horizontal direction of the display panel 101.
[0036] 前述のように、各シャツタ板 500を駆動させる図 4の光学スリットドライバ 1023は、信 号発生器 300から出力される制御信号によって制御される。そして、光学スリットドラ ィバ 1023が、信号発生器 300からの制御信号に基づいて光学スリット部材 1022の 各シャツタ板 500の回動動作を制御することにより、光学スリット部材 1022の所定の 位置に光学スリット 1021を形成することが可能となる。  As described above, the optical slit driver 1023 in FIG. 4 that drives each shirter plate 500 is controlled by the control signal output from the signal generator 300. Then, the optical slit driver 1023 controls the rotation operation of each shirter plate 500 of the optical slit member 1022 based on the control signal from the signal generator 300, so that the optical slit member 1022 is optically moved to a predetermined position. The slit 1021 can be formed.
[0037] ここでは、光学スリット部材 1022において、後方に配設された表示パネル 101 (図 2 および図 3参照)の表示面とシャツタ板 500の主面とが略平行な状態をシャツタ板 50 0の閉状態とする。シャツタ板 500が閉状態の場合には、例えば、図 6の領域 504〜5 10に示すように、シャツタ板 500の主面が観察者に観察される。したがって、かかる 状態では、領域 504〜510に光学スリット 1021が形成されず、よって、後方に配置さ れた表示パネル 101に表示された画像を観察することができな 、。 Here, in the optical slit member 1022, the state in which the display surface of the display panel 101 (see FIG. 2 and FIG. 3) disposed on the rear side and the main surface of the shatter plate 500 are substantially parallel is the shatter plate 50 0. The closed state. When the shirt board 500 is in the closed state, for example, the areas 504 to 5 in FIG. As shown in FIG. 10, the main surface of the shatter board 500 is observed by an observer. Therefore, in such a state, the optical slit 1021 is not formed in the regions 504 to 510, and therefore, the image displayed on the display panel 101 disposed behind cannot be observed.
[0038] なお、隣接する閉状態のシャツタ板 500の間には、前述のように回動のための微小 な間隙が形成されており当該間隙も厳密には透光部となるが、ここでは、このような間 隙は、意図的に透光部として形成される光学スリット 1021と区別し、光学スリット 102 1とは呼ばない。 [0038] Note that, as described above, a minute gap for rotation is formed between the adjacent closed shirter plates 500, and the gap also serves as a light-transmitting portion. Such a gap is distinguished from the optical slit 1021 that is intentionally formed as a light transmitting portion, and is not called the optical slit 1021.
[0039] 一方、後方に配設された表示パネル 101 (図 2および図 3参照)の表示面とシャツタ 板 500の主面とが略直交する状態を、シャツタ板 500の開状態とする。すなわち、シ ャッタ板 500が開状態の場合には、例えば、図 6の領域 503に示すように、シャツタ板 500の側面が観察者に観察される。シャツタ板 500がこのような開状態となると、光学 スリット部材 1022に透光部となる光学スリット 1021が形成される。したがって、形成さ れた光学スリット 1021を介して、表示パネル 101に表示された画像を観察することが できる。  On the other hand, the state in which the display surface of the display panel 101 (see FIGS. 2 and 3) disposed on the rear side and the main surface of the shatter plate 500 are substantially orthogonal is referred to as the open state of the shatter plate 500. That is, when the shutter plate 500 is in the open state, for example, as shown in a region 503 in FIG. 6, the side surface of the shatter plate 500 is observed by the observer. When the shirter plate 500 is in such an open state, the optical slit 1021 serving as a light transmitting portion is formed in the optical slit member 1022. Therefore, the image displayed on the display panel 101 can be observed through the formed optical slit 1021.
[0040] ここで、後述するように、本実施例では立体表示モードで表示を行う際に、図 1の表 示パネル 101における画像更新に同期させて光学スリット 1021の形成位置を移動さ せる必要があり、また、この表示パネル 101の画像更新が高速で行われる。それゆえ 、光学スリット部材 1022を構成するシャツタ板 500は、高速での開閉を要件とする。 力かる点に鑑み、光学スリット部材 1022のシャツタ板 500は、例えば、高速開閉動作 を実現可能な圧電制御型セラミック力 構成される。  [0040] Here, as will be described later, in this embodiment, when displaying in the stereoscopic display mode, it is necessary to move the formation position of the optical slit 1021 in synchronization with the image update on the display panel 101 of FIG. In addition, the image on the display panel 101 is updated at high speed. Therefore, the shatter plate 500 constituting the optical slit member 1022 is required to open and close at high speed. In view of this, the shatter plate 500 of the optical slit member 1022 is configured with, for example, a piezoelectrically controlled ceramic force capable of realizing a high-speed opening / closing operation.
[0041] また、画像更新が高速で行われることから、ここでは立体表示装置 100の表示パネ ル 101に、高速応答が実現可能な有機 EL表示パネルを用いている。なお、画像更 新に対応可能な高速応答性を実現できるのであれば、有機 EL表示パネル以外の表 示パネルを用いてもよい。  [0041] In addition, since image updating is performed at high speed, an organic EL display panel capable of realizing high-speed response is used here for the display panel 101 of the stereoscopic display device 100. Note that a display panel other than the organic EL display panel may be used as long as high-speed response capable of handling image updating can be realized.
[0042] 以上のように、本実施例の立体表示装置 100では、表示パネル 101が表示手段に 相当し、光制御パネル 102が光制御手段に相当し、光制御パネル 102の光学スリツ ト 1021が透光部に相当し、光学スリット部材 1022および光学スリットドライバ 1023が 透光部調整手段に相当し、信号発生器 300が表示パネル 100の駆動制御手段に相 当する。 As described above, in the stereoscopic display device 100 of this embodiment, the display panel 101 corresponds to the display unit, the light control panel 102 corresponds to the light control unit, and the optical slit 1021 of the light control panel 102 The optical slit member 1022 and the optical slit driver 1023 correspond to the light transmitting part adjusting means, and the signal generator 300 corresponds to the drive control means of the display panel 100. I win.
[0043] 続いて、立体表示装置 100における表示動作を、図 5を参照して説明する。図 5に 示すように、電源が ONされて立体表示装置 100が起動すると(ステップ S501)、図 3 の信号発生器 300において、制御部 301からの指示により、記憶部 303から表示対 象物の画像データが読み出されてタイミング生成回路 302に出力される (ステップ S5 02)。そして、制御部 301がこの画像データの種類、すなわち画像データが 3次元立 体画像のデータである力 2次元平面画像のデータであるかを判別し (ステップ S503) 、その判別結果に基づいて、図 4の信号発生器 300が、表示パネル 101および光制 御パネル 102へ出力する各種制御信号を判別された表示モードに応じてそれぞれ 生成する。  Next, a display operation in the stereoscopic display device 100 will be described with reference to FIG. As shown in FIG. 5, when the power is turned on and the stereoscopic display device 100 is activated (step S501), the signal generator 300 of FIG. Image data is read and output to the timing generation circuit 302 (step S502). Then, the control unit 301 determines whether the type of the image data, that is, whether the image data is the data of the force two-dimensional plane image that is the data of the three-dimensional solid image (step S503), and based on the determination result, The signal generator 300 in FIG. 4 generates various control signals to be output to the display panel 101 and the light control panel 102 according to the determined display mode.
[0044] この場合、立体表示モードおよび平面表示モードのいずれのモードで表示を行うか を判別する表示モード判別情報が画像データ中に含まれており、この表示モード判 別情報に基づいて、制御部 301が表示モードの判別を行う。表示モード判別情報は 、例えば、画像データのヘッダファイルに含まれる。このように表示モード判別情報を 画像データに付随させることにより、本発明の特徴的構成である表示モードに応じた 表示パネル 101の消費電力の調整を、ユーザ (観察者)が意識しなくとも自動で行う ことが可能となる。また、画像データの読み出しが高速で行われても、当該読み出し 動作と連動して高速で表示モードの判別を行うことが可能となる。  [0044] In this case, display mode discrimination information for discriminating whether to perform display in the stereoscopic display mode or the flat display mode is included in the image data, and control is performed based on the display mode discrimination information. The unit 301 determines the display mode. The display mode determination information is included in, for example, a header file of image data. By attaching display mode discrimination information to image data in this way, adjustment of power consumption of the display panel 101 according to the display mode, which is a characteristic configuration of the present invention, is automatically performed without the user (observer) being conscious. It is possible to do this. Further, even when image data is read at high speed, the display mode can be determined at high speed in conjunction with the read operation.
[0045] ここでは、表示モード判別情報の具体例として、時分割情報を用いて 、る。後述す るように、本実施例では、立体表示モードでの表示における時分割数を 8とし、平面 表示モードでの表示における時分割数を 1としている。したがって、画像データの時 分割情報を用いれば、表示モードの判別を容易に行うことが可能となる。  Here, as a specific example of the display mode discrimination information, time division information is used. As will be described later, in this embodiment, the number of time divisions in the display in the stereoscopic display mode is 8, and the number of time divisions in the display in the flat display mode is 1. Therefore, using the time division information of the image data makes it possible to easily determine the display mode.
[0046] なお、表示モード判別情報は、時分割情報に限定されるものではなぐ表示モード の判別が可能であればこれ以外の情報を用いてもよい。また、表示モード判別情報 は、必ずしも画像データ中に含まれている必要はなぐ画像データとは別に記憶部 3 03に記憶されて!、てもよ!/、。  [0046] The display mode determination information is not limited to the time division information, and other information may be used as long as the display mode can be determined. Also, the display mode discrimination information is stored in the storage unit 303 separately from the image data that is not necessarily included in the image data!
[0047] 画像データ中に含まれる表示モード判別情報 (すなわち時分割情報)に基づいて、 画像データの種類が立体表示モードであるとの判別結果が得られると (ステップ S 50 3 : Yes) ,図 4の信号発生器 300は、立体表示モードに対応した各種制御信号を生 成して表示パネル 101および光制御パネル 102に出力する。それにより、表示パネ ル 101および光制御パネル 102が、立体表示モードに適した動作状態となる。 [0047] Based on the display mode discrimination information (that is, time division information) included in the image data, a discrimination result that the type of the image data is the stereoscopic display mode is obtained (step S50). 3: Yes), the signal generator 300 in FIG. 4 generates various control signals corresponding to the stereoscopic display mode and outputs them to the display panel 101 and the light control panel 102. Thereby, the display panel 101 and the light control panel 102 are in an operation state suitable for the stereoscopic display mode.
[0048] 具体的に、信号発生器 300から出力された制御信号によって、表示パネル 101で は、走査周波数が A1に設定され (ステップ S504)、発光輝度が B1に設定され (ステ ップ S505)、画像更新レートが C1に設定され (ステップ S506)、電源電圧が D1に設 定される(ステップ S507)。また、光制御パネル 102の光学スリット部材 1022では、 信号発生器 300から出力された制御信号によって光学スリットドライバ 1023が制御さ れ、それにより、光学スリット部材 1022に形成される光学スリット 1021の開口率が SS 1に設定される(ステップ S508)。  [0048] Specifically, according to the control signal output from the signal generator 300, the display panel 101 sets the scanning frequency to A1 (step S504) and the light emission luminance to B1 (step S505). The image update rate is set to C1 (step S506), and the power supply voltage is set to D1 (step S507). Further, in the optical slit member 1022 of the light control panel 102, the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the aperture ratio of the optical slit 1021 formed in the optical slit member 1022 is controlled. Is set to SS 1 (step S508).
[0049] そして、上記のような動作状態で表示パネル 101および光制御パネル 102が駆動 することにより、立体表示が実現される (ステップ S509)。図 2に示すように、立体表 示装置 100では、 IP方式を利用して 3次元立体画像 103が表示され、特に、ここでは 、前述の特許文献 1 (特開平 6— 160770号公報)と同様、 MPS— IP方式により立体 表示が行われる。  [0049] Then, the display panel 101 and the light control panel 102 are driven in the operation state as described above to realize stereoscopic display (step S509). As shown in FIG. 2, in the stereoscopic display device 100, a three-dimensional stereoscopic image 103 is displayed using the IP method. In particular, here, as in the above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 6-160770), , MPS-3D display is performed by IP method.
[0050] MPS— IP方式では、表示パネル 101において、パネルを構成する有機 EL素子( 図示せず)が発光し、それにより、立体表示を実現するための構成要素となる 2次元 平面画像 (すなわち、構成要素平面画像に相当)が表示パネル 101に表示される。 以下においては、このような立体表示の構成要素となる画像を小画像と呼ぶ。ここで は、図 5のステップ S504〜ステップ S508の動作状態で表示パネル 101および光制 御パネル 102を駆動させてこの小画像の平面表示を行うことにより、立体表示が実現 される。  [0050] In the MPS-IP method, in the display panel 101, an organic EL element (not shown) constituting the panel emits light, and thereby a two-dimensional planar image (that is, a component for realizing stereoscopic display) , Corresponding to the component plane image) is displayed on the display panel 101. In the following, such an image that is a component of stereoscopic display is referred to as a small image. Here, stereoscopic display is realized by driving the display panel 101 and the light control panel 102 in the operation state of steps S504 to S508 in FIG.
[0051] 例えば、ここでは、表示対象物である球体(図 2の 3次元立体画像 103に相当)を異 なる 8つの方向から観察して得られる 8つの 2次元平面画像の各々を小画像として用 いて 1つの 3次元立体画像 103を表示する構成としている。各小画像は、所定の方向 力 球体を観察して得られる 1つの 2次元平面画像を短冊状の複数の絵素に分割し 、当該絵素を所定の配置に並べ替えて構成される。ここでは 8つの小画像が時分割 画像に相当し、立体表示モードにおける時分割数は 8である。 [0052] そして、表示パネル 101における小画像の表示と対応して、光制御パネル 102で は、光学スリットドライバ 1023により、光学スリット部材 1022の所定位置に光学スリツ ト 1021力形成される。そして、光学スリット 1021を介してこの表示パネル 101の小画 像を観察することにより、表示対象物が光制御パネル 102の前面 (すなわち観察者 側)に飛び出して表示された状態、すなわち図 2の 3次元立体画像 103が得られる。 このように、立体表示モードでの表示の際には、透光部である光学スリット 1021の形 成を制御して光制御パネル 102の透光性を制限する。 [0051] For example, here, each of eight two-dimensional planar images obtained by observing a sphere as a display object (corresponding to the three-dimensional stereoscopic image 103 in FIG. 2) from eight different directions is used as a small image. Therefore, one 3D stereoscopic image 103 is displayed. Each small image is configured by dividing one two-dimensional planar image obtained by observing a spherical object in a predetermined direction into a plurality of strip-shaped picture elements and rearranging the picture elements in a predetermined arrangement. Here, eight small images correspond to time-division images, and the number of time divisions in the stereoscopic display mode is eight. [0052] Then, corresponding to the display of the small image on the display panel 101, in the light control panel 102, the optical slit driver 1023 forms an optical slit 1021 force at a predetermined position of the optical slit member 1022. Then, by observing a small image of the display panel 101 through the optical slit 1021, the display object is projected and displayed on the front surface (that is, the observer side) of the light control panel 102, that is, as shown in FIG. A three-dimensional stereoscopic image 103 is obtained. As described above, in the display in the stereoscopic display mode, the light transmission of the light control panel 102 is limited by controlling the formation of the optical slit 1021 which is a light transmitting portion.
[0053] ここで、上記の立体表示の際には、表示パネル 101における小画像の更新と、光 学スリット部材 1022における光学スリット 1021の形成とを同期して行う。そして、光学 スリット部材 1022に形成される光学スリット 1021の位置を逐次選択的に移動させ、 かつ、光学スリット 1021の形成位置の移動に同期して、この形成された光学スリット 1 021に対応する小画像を表示パネル 101に逐次表示する。それにより、 MPS—IP方 式による立体表示が実現される。  Here, in the above-described stereoscopic display, updating of the small image on the display panel 101 and formation of the optical slit 1021 on the optical slit member 1022 are performed in synchronization. Then, the position of the optical slit 1021 formed in the optical slit member 1022 is sequentially and selectively moved, and in synchronization with the movement of the formation position of the optical slit 1021, the small size corresponding to the formed optical slit 1021 is obtained. Images are sequentially displayed on the display panel 101. As a result, stereoscopic display using the MPS-IP method is realized.
[0054] 上記のような光学スリット部材 1022における光学スリット 1021の形成位置の変化( すなわち移動)は、図 6および図 7に示すように、光学スリット部材 1022を構成するシ ャッタ板 500の開閉により実現される。すなわち、図 4の信号発生器 300から出力さ れる制御信号によって、光学スリットドライバ 1023が光学スリット部材 1022のシャツタ 板 500の回動動作を制御し、所定位置のシャツタ板 500のみを開状態とするとともに 、この開状態とする位置を逐次ずらしていく。このようなシャツタ板 500の動作は、表 示パネル 101における画像更新と同期して行う。  The change (that is, movement) of the formation position of the optical slit 1021 in the optical slit member 1022 as described above is caused by opening and closing of the shutter plate 500 constituting the optical slit member 1022, as shown in FIGS. Realized. That is, by the control signal output from the signal generator 300 in FIG. 4, the optical slit driver 1023 controls the rotation operation of the shirter plate 500 of the optical slit member 1022, and only the shirter plate 500 at a predetermined position is opened. At the same time, the position of the open state is sequentially shifted. Such an operation of the shatter board 500 is performed in synchronization with the image update on the display panel 101.
[0055] 例えば、光学スリット部材 1022は、図 4の信号発生器 300から出力される制御信号 に基づいて、まず図 6に示すように、光学スリット部材 1022の一端に位置する領域 5 03のシャツタ板 500を開き、それ以外の領域 504〜510のシャツタ板 500を閉じる。 それにより、領域 503に光学スリット 1021が形成される。この時、図 4の表示パネル 1 01では、領域 503に形成された光学スリット 1021に対応した小画像が表示され、光 学スリット 1021を介してこの小画像が観察される。  For example, the optical slit member 1022 is based on the control signal output from the signal generator 300 in FIG. 4, and first, as shown in FIG. The board 500 is opened, and the shatter board 500 in the other areas 504 to 510 is closed. Thereby, an optical slit 1021 is formed in the region 503. At this time, on the display panel 101 in FIG. 4, a small image corresponding to the optical slit 1021 formed in the region 503 is displayed, and this small image is observed through the optical slit 1021.
[0056] 続いて、光学スリット部材 1022は、図 7に示すように、領域 503に隣接する領域 50 4のシャツタ板 500を開き、それ以外の領域 503, 505〜510のシャツタ板 500を閉じ る。それにより、領域 504に光学スリット 1021が形成される。この時、図 4の表示パネ ル 101では、領域 504に形成された光学スリット 1021に対応した小画像が表示され 、光学スリット 1021を介してこの小画像が観察される。 Subsequently, as shown in FIG. 7, the optical slit member 1022 opens the shatter plate 500 in the region 504 adjacent to the region 503 and closes the shatter plate 500 in the other regions 503 and 505 to 510. The Thereby, an optical slit 1021 is formed in the region 504. At this time, in the display panel 101 of FIG. 4, a small image corresponding to the optical slit 1021 formed in the region 504 is displayed, and this small image is observed through the optical slit 1021.
[0057] このように、光学スリット部材 1022の各領域 503〜510においてシャツタ板 500力 S 順次開閉して各領域 503〜510に順次光学スリット 1021が形成される。それにより、 光学スリット 1021の位置が逐次選択的に変化し、かつ、この光学スリット 1021の位 置変化と同期して小画像の更新が行われる構成が実現される。その結果、 MPS— I P方式により、図 2に示すように 3次元立体画像 103が表示される。  In this way, the shatter plate 500 force S is sequentially opened and closed in each region 503 to 510 of the optical slit member 1022, and the optical slit 1021 is sequentially formed in each region 503 to 510. Thus, a configuration is realized in which the position of the optical slit 1021 is sequentially and selectively changed, and the small image is updated in synchronization with the position change of the optical slit 1021. As a result, the three-dimensional stereoscopic image 103 is displayed by the MPS-IP method as shown in FIG.
[0058] 一方、画像データ中に含まれる表示モード判別情報 (すなわち時分割情報)に基 づ 、て、画像データの種類が平面表示モードであるとの判別結果が得られると (ステ ップ S503 :No)、図 4の信号発生器 300は、平面表示モードに対応した各種制御信 号を生成して表示パネル 101および光制御パネル 102に出力する。それにより、表 示パネル 101および光制御パネル 102が、平面表示モードに適した動作状態に設 定される。  [0058] On the other hand, based on the display mode discrimination information (that is, time division information) included in the image data, a discrimination result that the type of the image data is the flat display mode is obtained (step S503). : No), the signal generator 300 in FIG. 4 generates various control signals corresponding to the flat display mode and outputs them to the display panel 101 and the light control panel 102. Thereby, the display panel 101 and the light control panel 102 are set to an operation state suitable for the flat display mode.
[0059] 具体的に、信号発生器 300から出力された制御信号によって、表示パネル 101で は、走査周波数が、立体表示モードの場合の走査周波数 A1よりも低い A2に設定さ れる (ステップ S510)。このような走査周波数の調整は、信号発生器 300においてタ イミング生成回路 302によりシステムクロックの分周を行い、この分周したクロックを、 表示パネル 101におけるクロック信号として用いることにより実現される。  [0059] Specifically, on the display panel 101, the scanning frequency is set to A2 lower than the scanning frequency A1 in the stereoscopic display mode by the control signal output from the signal generator 300 (step S510). . Such adjustment of the scanning frequency is realized by dividing the system clock by the timing generator circuit 302 in the signal generator 300 and using the divided clock as a clock signal in the display panel 101.
[0060] さらに、表示パネル 101では、信号発生器 300から出力された制御信号によって、 立体表示モードの場合と同様、発光輝度が B1に設定され (ステップ S511)、画像更 新レートが C1に設定され (ステップ S512)、電源電圧が D1に設定される (ステップ S 513)。一方、光制御パネル 102の光学スリット部材 1022では、信号発生器 300から 出力された制御信号によって、光学スリットドライバ 1023が制御され、それにより、光 学スリット部材 1022に形成される光学スリット 1021の開口率力 立体表示モードの 場合よりも高 ヽ SS2に設定される (ステップ S514)。  [0060] Further, in the display panel 101, the emission luminance is set to B1 by the control signal output from the signal generator 300 (step S511) and the image update rate is set to C1, as in the stereoscopic display mode. (Step S512) and the power supply voltage is set to D1 (Step S513). On the other hand, in the optical slit member 1022 of the light control panel 102, the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, thereby opening the optical slit 1021 formed in the optical slit member 1022. Power Set to SS2 higher than in the 3D display mode (step S514).
[0061] そして、上記のような条件で表示パネル 101および光制御パネル 102が動作するこ とにより、平面表示が実現される (ステップ S515)。図 8に示すように、平面表示モー ドでの表示における光制御パネル 102では、図 4の信号発生器 300から出力された 制御信号に基づいて、光学スリットドライバ 1023が光学スリット部材 1022のシャツタ 板 500の回動動作を制御し、光学スリット部材 1022の全領域 503〜510のシャツタ 板 500を開状態とする。それにより、光学スリット部材 1022の全領域 503〜510に光 学スリット 1021が形成される。そして、図 3に示すように、この光学スリット 1021を介し て表示パネル 101の表示画像を観察することにより、 2次元平面画像 201が得られる [0061] Then, the display panel 101 and the light control panel 102 operate under the conditions as described above, thereby realizing flat display (step S515). As shown in Figure 8, In the light control panel 102 in the display on the screen, the optical slit driver 1023 controls the rotation operation of the shirt plate 500 of the optical slit member 1022 based on the control signal output from the signal generator 300 in FIG. The shirt plate 500 in the entire region 503 to 510 of the slit member 1022 is opened. Thereby, the optical slit 1021 is formed in the entire region 503 to 510 of the optical slit member 1022. Then, as shown in FIG. 3, a two-dimensional planar image 201 is obtained by observing the display image on the display panel 101 through the optical slit 1021.
[0062] ここで、平面表示モードでの表示では、図 5のステップ S515において前述したよう に、光学スリット 1021の開口率 SS2を立体表示の場合の開口率 SS1に比べて大きく しているため、図 6および図 7と図 8とから明らかなように、平面表示モードの場合にお ける光学スリット 1021の面積の総和は、立体表示モードの場合に比べて大きくなつ ている。この場合、立体表示モードでは、図 6および図 7に示すように、光学スリット 10 21が 8つの領域 503〜510のうちのいずれ力 1つの領域にしか形成されないのに対 して、平面表示モードでは、図 8に示すように、 8つの領域 503〜510の全てに光学 スリット 1021が形成される。 [0062] Here, in the display in the flat display mode, as described above in step S515 of FIG. 5, the aperture ratio SS2 of the optical slit 1021 is larger than the aperture ratio SS1 in the case of stereoscopic display. As is apparent from FIGS. 6, 7, and 8, the total area of the optical slits 1021 in the planar display mode is larger than that in the stereoscopic display mode. In this case, in the stereoscopic display mode, as shown in FIGS. 6 and 7, the optical slit 1021 is formed only in one of the eight regions 503 to 510, whereas in the flat display mode Then, as shown in FIG. 8, optical slits 1021 are formed in all of the eight regions 503 to 510.
[0063] したがって、平面表示モードの場合には、光学スリット 1021の開口率力 立体表示 モードの場合の 8倍となる。その結果、表示パネル 101の発光輝度が同一の場合、 図 2の観察位置 104から 2次元平面画像 201を観察した際の外部観察輝度は、立体 表示モードにおける外部観察輝度の 8倍となり、また、光制御パネル 102における表 示パネル 101の表示画像の可視領域が 8倍となる。このように、平面表示モードの場 合には、表示パネル 101から出射される光の透光量と表示された画像の可視領域と が立体表示モードの場合に比べて増加し、よって、表示パネル 101の発光輝度およ び解像度の向上が図られる。  Accordingly, in the flat display mode, the aperture ratio power of the optical slit 1021 is eight times that in the stereoscopic display mode. As a result, when the light emission luminance of the display panel 101 is the same, the external observation luminance when observing the two-dimensional planar image 201 from the observation position 104 in FIG. 2 is 8 times the external observation luminance in the stereoscopic display mode, The visible region of the display image on the display panel 101 in the light control panel 102 is 8 times. As described above, in the flat display mode, the amount of light emitted from the display panel 101 and the visible area of the displayed image are increased as compared with the case of the stereoscopic display mode. 101 emission brightness and resolution are improved.
[0064] それゆえ、前述の図 5のステップ S510のように表示パネル 101の走査周波数 A2を 立体表示モードの場合の走査周波数 A1より低くしても、平面表示モードでの表示に おいて、良好な解像度を実現することが可能となる。例えば、ここでは、平面表示モ ードおよび立体表示モードにおける時分割数および光学スリット 1021の開口率 SS1 , SS2の点から、平面表示モードにおける走査周波数 A2を、立体表示モードにおけ る走査周波数 Alの 1Z8とする。 Therefore, even when the scanning frequency A2 of the display panel 101 is lower than the scanning frequency A1 in the stereoscopic display mode as in step S510 of FIG. 5 described above, the display in the flat display mode is good. It is possible to realize a high resolution. For example, here, the scanning frequency A2 in the flat display mode is determined in the stereoscopic display mode from the point of the time division number in the flat display mode and the stereoscopic display mode and the aperture ratios SS1 and SS2 of the optical slit 1021. The scanning frequency Al is 1Z8.
[0065] 上記のようにして読み出した画像データの表示が行われた後、図 5に示すように、 表示動作の終了指示が入力された力否かの判定が図 4の信号発生器 300の制御部 301で行われる (ステップ S516)。そして、終了指示が入力された場合には (ステップ S516 : Yes)、表示動作が終了する。一方、終了指示が入力されていない場合には( ステップ S516 :No)、再びステップ S502に戻って表示動作が続行される。  [0065] After the display of the image data read out as described above, as shown in FIG. 5, the determination as to whether or not the force to input the display operation end instruction is made by the signal generator 300 of FIG. This is performed by the control unit 301 (step S516). If an end instruction is input (step S516: Yes), the display operation ends. On the other hand, if the end instruction has not been input (step S516: No), the process returns to step S502 again to continue the display operation.
[0066] 以上のように、立体表示装置 100では、平面表示モードでの表示において、上記 のように立体表示モードでの表示に比べて光学スリット部材 1022に形成される光学 スリット 1021の開口面積の総和を大きくして光制御パネル 102における透光部の面 積を増加させて透光性の向上を図るとともに、表示パネル 101の走査周波数 A2を立 体表示モードの場合の走査周波数 A1に比べて低くする。その結果、平面表示モー ドでの表示において、解像度の低下を招くことなく表示パネル 101の消費電力の低 減ィ匕を図ることが可能となる。したがって、立体表示装置 100では、平面表示モード および立体表示モードの表示にお!、て良好な表示特性を実現しつつ、装置全体とし ての消費電力の低減ィ匕を図ることが可能となる。  As described above, in the stereoscopic display device 100, in the display in the flat display mode, the opening area of the optical slit 1021 formed in the optical slit member 1022 is larger than that in the stereoscopic display mode as described above. The total sum is increased to increase the area of the light transmitting part in the light control panel 102 to improve the light transmission, and the scanning frequency A2 of the display panel 101 is compared with the scanning frequency A1 in the solid display mode. make low. As a result, in the display in the flat display mode, it is possible to reduce the power consumption of the display panel 101 without reducing the resolution. Therefore, in the stereoscopic display device 100, it is possible to reduce the power consumption of the entire device while realizing excellent display characteristics for display in the flat display mode and the stereoscopic display mode.
[0067] 特に、ここでは、画像データに含まれる表示モード判別情報 (具体的には時分割情 報)に基づいて、表示パネル 101および光制御パネル 102を、各表示モードに応じ て適切な動作状態に自動的に制御することが可能であることから、観察者が意図的 に操作しなくても、良好な立体表示および平面表示を容易かつ最適に行うとともに、 消費電力の低減ィ匕を図ることが可能となる。  [0067] In particular, here, based on the display mode discrimination information (specifically, time division information) included in the image data, the display panel 101 and the light control panel 102 are appropriately operated according to each display mode. Because it is possible to automatically control the state, it is possible to easily and optimally perform good stereoscopic display and flat display and reduce power consumption without the observer's intentional operation. It becomes possible.
[0068] なお、立体表示装置 100では、各表示モードにおける最適な光学スリット 1021の 開口率や、表示パネル 101の走査周波数、発光輝度、画像更新レートおよび電源電 圧の設定情報が、予め信号発生器 300の記憶部 303に記憶されていてもよい。例え ば、これらの設定情報は画像データ中に含まれていてもよぐまた、画像データとは 別に、信号発生器 300の記憶部 303に記憶されていてもよい。信号発生器 300のタ イミング生成回路 302は、これらの設定情報に基づいて、適宜、光学スリットドライバ 1 023および表示パネル 101に出力する制御信号を生成して各々出力する。それによ り、各表示モードに対応して、光学スリット 1021および表示パネル 101の最適な動作 状態が実現され、上記効果が有効に奏される。 [0068] Note that in the stereoscopic display device 100, the optimum aperture ratio of the optical slit 1021 in each display mode, and the setting information of the scanning frequency, light emission luminance, image update rate, and power supply voltage of the display panel 101 are generated in advance. It may be stored in the storage unit 303 of the container 300. For example, the setting information may be included in the image data, or may be stored in the storage unit 303 of the signal generator 300 separately from the image data. The timing generation circuit 302 of the signal generator 300 appropriately generates and outputs control signals to be output to the optical slit driver 1023 and the display panel 101 based on the setting information. As a result, the optimal operation of the optical slit 1021 and the display panel 101 is supported for each display mode. The state is realized, and the above effect is effectively achieved.
[0069] ところで、立体表示装置 100では、立体表示モードでの表示における時分割数と光 学スリット部材 1022に形成される光学スリット 1021の数とが対応しているならば、時 分割数および光学素スリット 1021の数は任意に設定可能である。したがって、上記 のように時分割数が 8および光学スリット 1021の数が 8に限定されるものではない。 実施例 2  By the way, in the stereoscopic display device 100, if the number of time divisions in the display in the stereoscopic display mode corresponds to the number of optical slits 1021 formed in the optical slit member 1022, the number of time divisions and optical The number of the elementary slits 1021 can be arbitrarily set. Therefore, the number of time divisions and the number of optical slits 1021 are not limited to 8 as described above. Example 2
[0070] 図 9は、本発明の実施例 2における立体表示装置の表示動作の概要を示すフロー チャートである。本実施例の立体表示装置は、図 1〜図 4および図 6〜図 8に示す実 施例 1の立体表示装置 100と同様の構成を有している。そして、実施例 1の場合と同 様、図 2に示す立体表示モードでの表示と、図 3に示す平面表示モードでの表示とを 行うが、以下の点が、実施例 1とは異なっている。  FIG. 9 is a flowchart showing an outline of the display operation of the stereoscopic display device according to Embodiment 2 of the present invention. The stereoscopic display device of this example has the same configuration as the stereoscopic display device 100 of Example 1 shown in FIGS. 1 to 4 and FIGS. 6 to 8. As in the case of Example 1, the display in the stereoscopic display mode shown in FIG. 2 and the display in the flat display mode shown in FIG. 3 are performed. However, the following points are different from those in Example 1. Yes.
[0071] すなわち、実施例 1では、前述のように、平面表示モードの場合の表示パネル 101 の走査周波数 A2を、立体表示モードの場合の走査周波数 A1よりも小さくし、それに より、平面表示モードにおける表示パネル 101の消費電力を立体表示モードの場合 よりも少なくするが、本実施例の立体表示装置では、平面表示モードの場合の表示 パネル 101の発光輝度を、立体表示モードの場合の発光輝度よりも低くし、それによ り、平面表示モードにおける表示パネル 101の消費電力を立体表示モードの場合よ りも低減する。  That is, in the first embodiment, as described above, the scanning frequency A2 of the display panel 101 in the flat display mode is set lower than the scanning frequency A1 in the stereoscopic display mode. However, in the stereoscopic display device of this embodiment, the display panel 101 emission brightness in the flat display mode is less than the emission brightness in the stereoscopic display mode. Accordingly, the power consumption of the display panel 101 in the flat display mode is reduced as compared with that in the stereoscopic display mode.
[0072] 図 9に示すように、本実施例の立体表示装置では、図 5の実施例 1のステップ S501 〜ステップ S503と同様の動作がステップ S901〜ステップ S903において行われる。 そして、ステップ S903における表示モードの判別結果に基づいて、図 4の信号発生 器 300が、表示モードに応じた各種制御信号を生成してこれらを表示パネル 101お よび光制御パネル 102にそれぞれ出力する。それにより、表示パネル 101および光 制御パネル 102が、表示モードに応じてそれぞれ最適な状態で動作する。  As shown in FIG. 9, in the stereoscopic display device according to the present embodiment, operations similar to Steps S501 to S503 in Embodiment 1 in FIG. 5 are performed in Steps S901 to S903. Then, based on the determination result of the display mode in step S903, the signal generator 300 in FIG. 4 generates various control signals corresponding to the display mode and outputs them to the display panel 101 and the light control panel 102, respectively. . Accordingly, the display panel 101 and the light control panel 102 operate in an optimum state according to the display mode.
[0073] 例えば、画像データ中に含まれる表示モード判別情報 (すなわち時分割情報)に基 づき、立体表示モードであるとの判別結果が得られると (ステップ S903 : Yes)、図 4 の信号発生器 300は、立体表示モードに対応した各種制御信号を生成して表示パ ネル 101および光制御パネル 102に出力する。それにより、表示パネル 101および 光制御パネル 102が、立体表示モードに適した動作状態となる。 [0073] For example, if a determination result indicating that the display mode is the stereoscopic display mode is obtained based on the display mode determination information (that is, time division information) included in the image data (step S903: Yes), the signal generation in FIG. The device 300 generates various control signals corresponding to the stereoscopic display mode and outputs them to the display panel 101 and the light control panel 102. Thereby, the display panel 101 and The light control panel 102 is in an operation state suitable for the stereoscopic display mode.
[0074] 具体的に、信号発生器 300から出力された制御信号によって、表示パネル 101で は、発光輝度が B1に設定され (ステップ S904)、走査周波数が A1に設定され (ステ ップ S905)、画像更新レートが C1に設定され (ステップ S906)、電源電圧が D1に設 定される(ステップ S907)。また、光制御パネル 102の光学スリット部材 1022では、 信号発生器 300から出力された制御信号によって光学スリットドライバ 1023が制御さ れ、それにより、光学スリット部材 1022に形成される光学スリット 1021の開口率が SS 1に設定される(ステップ S908)。  Specifically, according to the control signal output from the signal generator 300, the display panel 101 sets the light emission luminance to B1 (step S904) and the scanning frequency to A1 (step S905). The image update rate is set to C1 (step S906), and the power supply voltage is set to D1 (step S907). Further, in the optical slit member 1022 of the light control panel 102, the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the aperture ratio of the optical slit 1021 formed in the optical slit member 1022 is controlled. Is set to SS 1 (step S908).
[0075] そして、上記のような動作状態で表示パネル 101および光制御パネル 102が駆動 することにより、実施例 1で前述した MPS— IP方式により、図 2に示す立体表示が実 現される(ステップ S909)。  [0075] Then, when the display panel 101 and the light control panel 102 are driven in the operation state as described above, the stereoscopic display shown in FIG. 2 is realized by the MPS-IP method described in the first embodiment ( Step S909).
[0076] 一方、画像データ中に含まれる表示モード判別情報に基づき、平面表示モードで あるとの判別結果が得られると (ステップ S903 : No)、図 4の信号発生器 300は、平 面表示モードに対応した各種制御信号を表示パネル 101および光制御パネル 102 に出力する。それにより、表示パネル 101および光制御パネル 102が、平面表示モ ードに適した動作状態となる。  [0076] On the other hand, when a determination result indicating that the display mode is the flat display mode is obtained based on the display mode determination information included in the image data (step S903: No), the signal generator 300 in FIG. Various control signals corresponding to the mode are output to the display panel 101 and the light control panel 102. Thereby, the display panel 101 and the light control panel 102 are in an operation state suitable for the flat display mode.
[0077] 具体的に、信号発生器 300から出力された制御信号によって、表示パネル 101で は、発光輝度 B2が、立体表示モードの場合の発光輝度 B1よりも低く設定される。(ス テツプ S910)。さらに、表示パネル 101では、信号発生器 300から出力された制御信 号によって、立体表示モードの場合と同様、走査周波数が A1に設定され (ステップ S 911)、画像更新レートが C1に設定され (ステップ S912)、電源電圧が D1に設定さ れる(ステップ S 913)。  Specifically, according to the control signal output from the signal generator 300, the display panel 101 sets the light emission luminance B2 to be lower than the light emission luminance B1 in the stereoscopic display mode. (Step S910). Further, in the display panel 101, the scanning frequency is set to A1 (step S911) and the image update rate is set to C1 as in the stereoscopic display mode by the control signal output from the signal generator 300 (step S911). In step S912), the power supply voltage is set to D1 (step S913).
[0078] 一方、光制御パネル 102の光学スリット部材 1022では、信号発生器 300から出力 された制御信号によって光学スリットドライバ 1023が制御され、それにより、光学スリ ット部材 1022に形成される光学スリット 1021の開口率 SS2が、立体表示モードの場 合の開口率 SS1よりも高く設定される (ステップ S914)。そして、上記のような動作状 態で表示パネル 101および光制御パネル 102が駆動することにより、図 3に示す平 面表示が実現される (ステップ S915)。 [0079] 上記のようにして読み出した画像データの表示が行われた後、表示動作の終了指 示が入力されたカゝ否かの判定が信号発生器 300の制御部 301で行われる (ステップ S916)。そして、終了指示が入力された場合には (ステップ S916 : Yes)、表示動作 が終了する。一方、終了指示が入力されていない場合には (ステップ S916 :No)、再 びステップ S902に戻って表示動作が続行される。 On the other hand, in the optical slit member 1022 of the light control panel 102, the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the optical slit formed in the optical slit member 1022 is controlled. The aperture ratio SS2 of 1021 is set to be higher than the aperture ratio SS1 in the stereoscopic display mode (step S914). Then, when the display panel 101 and the light control panel 102 are driven in the operation state as described above, the flat display shown in FIG. 3 is realized (step S915). [0079] After the image data read out as described above is displayed, the control unit 301 of the signal generator 300 determines whether or not a display operation end instruction has been input (step 301). S916). If an end instruction is input (step S916: Yes), the display operation ends. On the other hand, if the end instruction has not been input (step S916: No), the process returns to step S902 and the display operation is continued.
[0080] 以上のように、本実施例の立体表示装置では、平面表示モードでの表示において 、立体表示モードでの表示に比べて、光学スリット部材 1022に形成される光学スリツ ト 1021の開口面積の総和を大きくして光制御パネル 102における透光部の面積を 増加させて透光性の向上を図るとともに、表示パネル 101の発光輝度 B2を、立体表 示モードの場合の発光輝度 B1に比べて低くする。  As described above, in the stereoscopic display device according to the present embodiment, in the display in the flat display mode, the opening area of the optical slit 1021 formed in the optical slit member 1022 is larger than that in the stereoscopic display mode. Is increased to increase the area of the light-transmitting part in the light control panel 102 to improve the light-transmitting property, and the light emission luminance B2 of the display panel 101 is compared with the light emission luminance B1 in the stereoscopic display mode. Lower.
[0081] それにより、本実施例の立体表示装置では、平面表示モードにおける表示におい て、外部観察輝度の低下を抑制しつつ表示パネル 101の発光輝度の低減ィ匕を図る ことが可能となる。したがって、平面表示モードでの表示では、良好な表示特性を実 現しつつ消費電力の低減ィ匕を図ることが可能となり、その結果、実施例 1で前述した 効果と同様の効果が得られる。  Accordingly, in the stereoscopic display device according to the present embodiment, it is possible to reduce the light emission luminance of the display panel 101 while suppressing the decrease in the external observation luminance in the display in the flat display mode. Therefore, in the display in the flat display mode, it is possible to reduce power consumption while realizing good display characteristics. As a result, the same effects as those described in the first embodiment can be obtained.
[0082] 次に、表示パネル 101の発光輝度を低減する具体的な方法について説明する。例 えば、ここでは、信号発生器 300から出力された制御信号によって、表示パネル 101 を構成する有機 EL素子の駆動電流または駆動電圧を制御する。それにより、表示パ ネル 101のピーク輝度を低減させて表示パネル 101の発光輝度を低減する。  Next, a specific method for reducing the light emission luminance of the display panel 101 will be described. For example, here, the drive current or drive voltage of the organic EL element constituting the display panel 101 is controlled by the control signal output from the signal generator 300. Accordingly, the peak luminance of the display panel 101 is reduced, and the light emission luminance of the display panel 101 is reduced.
[0083] 図 10は、表示パネル 101を構成する有機 EL素子の駆動電流と発光輝度との相対 関係を示す模式図であり、横軸が駆動電流を示し、縦軸が発光輝度を表している。ま た、図 11は、表示パネル 101を構成する有機 EL素子の駆動電圧と駆動電流との相 対関係を示す模式図であり、横軸が駆動電圧を示し、縦軸が駆動電流を表している  FIG. 10 is a schematic diagram showing the relative relationship between the drive current and the light emission luminance of the organic EL elements constituting the display panel 101, the horizontal axis showing the drive current and the vertical axis showing the light emission luminance. . FIG. 11 is a schematic diagram showing the relative relationship between the drive voltage and drive current of the organic EL elements constituting the display panel 101, where the horizontal axis represents the drive voltage and the vertical axis represents the drive current. Have
[0084] 図 10に示すように、有機 EL素子では、駆動電流と発光輝度とが比例関係にあり、 駆動電流の増加に伴って発光輝度が増加する。したがって、このような有機 EL素子 の駆動電流と発光輝度との関係に基づき、信号発生器 300からの制御信号を用いて 、表示パネル 101を構成する有機 EL素子の駆動電流を制御する。それにより、表示 パネル 101の発光輝度を、前述のように表示モードに応じて調整することが可能とな る。 As shown in FIG. 10, in the organic EL element, the drive current and the light emission luminance are in a proportional relationship, and the light emission luminance increases as the drive current increases. Therefore, based on the relationship between the driving current of the organic EL element and the light emission luminance, the driving current of the organic EL element constituting the display panel 101 is controlled using the control signal from the signal generator 300. Display As described above, the light emission luminance of panel 101 can be adjusted according to the display mode.
[0085] 例えば、本実施例では、表示パネル 101を構成する有機 EL素子において、平面 表示モードにおける駆動電流を、立体表示モードにおける駆動電流よりも小さくする 。それにより、平面表示モードにおける表示パネル 101の発光輝度を、立体表示モ ードの場合よりも低減することが可能となる。このような有機 EL素子の駆動電流の制 御は、例えば、信号発生器 300から出力される制御信号に基づいて制御可能に構 成された可変抵抗器を表示パネル 101が備えることによって実現可能となる。  For example, in the present embodiment, in the organic EL element constituting the display panel 101, the drive current in the flat display mode is made smaller than the drive current in the stereoscopic display mode. Thereby, the light emission luminance of the display panel 101 in the flat display mode can be reduced as compared with the case of the stereoscopic display mode. Such a control of the driving current of the organic EL element can be realized, for example, by providing the display panel 101 with a variable resistor configured to be controllable based on a control signal output from the signal generator 300. Become.
[0086] 一方、図 11に示すように、有機 EL素子はダイオード特性を有しており、駆動電圧と 駆動電流とが比例関係にならない。したがって、図 10に示す駆動電流と発光輝度と の関係を考慮すると、駆動電圧と発光輝度とは、駆動電流と発光輝度とのような比例 関係にはならない。  On the other hand, as shown in FIG. 11, the organic EL element has a diode characteristic, and the drive voltage and the drive current do not have a proportional relationship. Therefore, when the relationship between the drive current and the light emission luminance shown in FIG. 10 is taken into consideration, the drive voltage and the light emission luminance are not proportional to the drive current and the light emission luminance.
[0087] したがって、表示パネル 101を構成する有機 EL素子の駆動電圧を調整すること〖こ より表示パネル 101の発光輝度を調整する場合には、有機 EL素子の電気特性を考 慮し、信号発生器 300からの制御信号を用いて、当該電気特性に応じて有機 EL素 子の駆動電圧を適宜制御する。それにより、平面表示モードにおける表示パネル 10 1の発光輝度を、立体表示モードの場合よりも低減することが可能となる。ここでは、 例えば、信号発生器 300から出力される制御信号に基づいて制御可能に構成され た昇降圧回路を表示パネル 101が備えることによって、このような有機 EL素子の駆 動電圧調整が可能となる。  [0087] Therefore, when adjusting the light emission luminance of the display panel 101 by adjusting the drive voltage of the organic EL element that constitutes the display panel 101, signal generation is performed in consideration of the electrical characteristics of the organic EL element. Using the control signal from the device 300, the drive voltage of the organic EL element is appropriately controlled according to the electrical characteristics. Thereby, the light emission luminance of the display panel 101 in the flat display mode can be reduced as compared with the case of the stereoscopic display mode. Here, for example, when the display panel 101 includes a step-up / step-down circuit configured to be controllable based on a control signal output from the signal generator 300, the driving voltage of such an organic EL element can be adjusted. Become.
[0088] 上記においては、表示パネル 101の有機 EL素子におけるピーク輝度を調整して表 示パネル 101の発光輝度を調整する場合について説明したが、ピーク輝度以外に、 表示パネル 101の点灯時間(発光時間)を調整することにより表示パネル 101の発光 輝度を調整することが可能である。  [0088] In the above description, the case where the light emission luminance of the display panel 101 is adjusted by adjusting the peak luminance in the organic EL element of the display panel 101 has been described, but in addition to the peak luminance, the lighting time (light emission) of the display panel 101 is adjusted. The light emission luminance of the display panel 101 can be adjusted by adjusting (time).
[0089] 例えば、信号発生器 300から出力される制御信号に基づいて、平面表示モードで の表示における表示パネル 101の点灯時間を、立体表示モードでの表示における 点灯時間よりも短くする。このように、表示パネル 101の点灯時間を表示モードに応じ て適宜調整することにより、平面表示モードにおける表示パネル 101の消費電力を 低減することが可能となる。 For example, based on the control signal output from the signal generator 300, the lighting time of the display panel 101 in the display in the flat display mode is made shorter than the lighting time in the display in the stereoscopic display mode. In this way, by appropriately adjusting the lighting time of the display panel 101 according to the display mode, the power consumption of the display panel 101 in the flat display mode can be reduced. It becomes possible to reduce.
実施例 3  Example 3
[0090] 図 12は、本発明の実施例 3における立体表示装置の表示動作の概要を示すフロ 一チートである。本実施例の立体表示装置は、図 1〜図 4および図 6〜図 8に示す実 施例 1の立体表示装置 100と同様の構成を有している。そして、実施例 1の場合と同 様、図 2に示す立体表示モードでの表示と、図 3に示す平面表示モードでの表示とを 行うが、以下の点が、実施例 1とは異なっている。  FIG. 12 is a flowchart showing an outline of the display operation of the stereoscopic display device according to Embodiment 3 of the present invention. The stereoscopic display device of this example has the same configuration as the stereoscopic display device 100 of Example 1 shown in FIGS. 1 to 4 and FIGS. 6 to 8. As in the case of Example 1, the display in the stereoscopic display mode shown in FIG. 2 and the display in the flat display mode shown in FIG. 3 are performed. However, the following points are different from those in Example 1. Yes.
[0091] すなわち、本実施例の立体表示装置では、平面表示モードでの表示における表示 パネル 101の画像更新レートを、立体表示モードでの表示における画像更新レート よりも低くし、それにより、平面表示モードにおける表示パネル 101の消費電力を、立 体表示モードの場合よりも低減する。  That is, in the stereoscopic display device according to the present embodiment, the image update rate of the display panel 101 in the display in the flat display mode is set lower than the image update rate in the display in the stereoscopic display mode. The power consumption of the display panel 101 in the mode is reduced as compared with the case of the vertical display mode.
[0092] 図 12に示すように、本実施例の立体表示装置では、図 5の実施例 1のステップ S50 1〜ステップ S 503と同様の動作がステップ S 1201〜ステップ S 1203にお!/、て行わ れる。そして、ステップ S 1203における表示モードの判別結果に基づいて、信号発 生器 300が表示モードに応じた各種制御信号を生成し、これらを表示パネル 101お よび光制御パネル 102にそれぞれ出力する。それにより、表示パネル 101および光 制御パネル 102が、表示モードに応じてそれぞれ最適な状態で動作する。  As shown in FIG. 12, in the stereoscopic display device of this embodiment, operations similar to those in steps S50 1 to S 503 in embodiment 1 in FIG. 5 are performed in steps S 1201 to S 1203! /, Done. Based on the display mode discrimination result in step S 1203, the signal generator 300 generates various control signals according to the display mode, and outputs them to the display panel 101 and the light control panel 102, respectively. Accordingly, the display panel 101 and the light control panel 102 operate in an optimum state according to the display mode.
[0093] 例えば、画像データ中に含まれる表示モード判別情報 (すなわち時分割情報)に基 づいて、立体表示モードであるとの判別結果が得られると (ステップ S 1203 : Yes)、 信号発生器 300は、立体表示モードに対応した各種制御信号を生成して表示パネ ル 101および光制御パネル 102に出力する。それにより、表示パネル 101および光 制御パネル 102が、立体表示モードに適した動作状態となる。  [0093] For example, when a determination result indicating that the display mode is the stereoscopic display mode is obtained based on the display mode determination information (that is, time division information) included in the image data (step S1203: Yes), the signal generator 300 generates various control signals corresponding to the stereoscopic display mode and outputs them to the display panel 101 and the light control panel 102. Accordingly, the display panel 101 and the light control panel 102 are in an operation state suitable for the stereoscopic display mode.
[0094] 具体的に、信号発生器 300から出力された制御信号によって、表示パネル 101で は、画像更新レートが C1に設定され (ステップ S1204)、走査周波数が A1に設定さ れ (ステップ S1205)、発光輝度が B1に設定され (ステップ S1206)、電源電圧が D1 に設定される (ステップ S 1207)。また、光制御パネル 102の光学スリット部材 1022 では、信号発生器 300から出力された制御信号によって光学スリットドライバ 1023が 制御され、それにより、光学スリット部材 1022に形成される光学スリット 1021の開口 率力 S 1に設定される(ステップ S 1208)。 Specifically, according to the control signal output from the signal generator 300, the display panel 101 sets the image update rate to C1 (step S1204), and sets the scanning frequency to A1 (step S1205). The emission luminance is set to B1 (step S1206), and the power supply voltage is set to D1 (step S1207). Further, in the optical slit member 1022 of the light control panel 102, the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the opening of the optical slit 1021 formed in the optical slit member 1022 is controlled. The power S1 is set (step S1208).
[0095] そして、上記のような動作状態で表示パネル 101および光制御パネル 102が駆動 することにより、実施例 1で前述した MPS— IP方式により、図 2に示す立体表示が実 現される(ステップ S 1209)。  Then, when the display panel 101 and the light control panel 102 are driven in the operation state as described above, the stereoscopic display shown in FIG. 2 is realized by the MPS-IP method described in the first embodiment ( Step S 1209).
[0096] 一方、画像データ中に含まれる表示モード判別情報に基づ!/、て、平面表示モード であるとの判別結果が得られると (ステップ S1203 :No)、信号発生器 300は、平面 表示モードに対応した各種制御信号を生成して表示パネル 101および光制御パネ ル 102に出力する。それにより、表示パネル 101および光制御パネル 102が、平面 表示モードに適した動作状態に設定される。  On the other hand, based on the display mode discrimination information included in the image data, if the discrimination result that the plane display mode is selected is obtained (step S1203: No), the signal generator 300 Various control signals corresponding to the display mode are generated and output to the display panel 101 and the light control panel 102. Thereby, the display panel 101 and the light control panel 102 are set to an operation state suitable for the flat display mode.
[0097] 具体的に、信号発生器 300から出力された制御信号によって、表示パネル 101で は、画像更新レート C2が、立体表示モードの場合の画像更新レート C1よりも低く設 定される(ステップ S1210)。例えば、ここでは立体表示モードでの表示における時分 割数が 8であることから、平面表示モードにおける画像更新レート C2を、立体表示モ ードにおける画像更新レート C1の 1Z8とする。  [0097] Specifically, on the display panel 101, the image update rate C2 is set lower than the image update rate C1 in the stereoscopic display mode by the control signal output from the signal generator 300 (step S1). S1210). For example, here, since the time division number in the display in the stereoscopic display mode is 8, the image update rate C2 in the flat display mode is set to 1Z8 of the image update rate C1 in the stereoscopic display mode.
[0098] このような表示モードに応じた画像更新レートの調整は、信号発生器 300において システムクロックの分周を行 、、この分周したクロックを表示パネル 101に制御信号と して出力することにより実現可能となる。  The adjustment of the image update rate according to such a display mode is performed by dividing the system clock in the signal generator 300 and outputting the divided clock to the display panel 101 as a control signal. Can be realized.
[0099] さらに、平面表示モードの場合の表示パネル 101では、信号発生器 300から出力 された制御信号によって、立体表示モードの場合と同様、走査周波数が A1に設定さ れ (ステップ S1211)、発光輝度が B1に設定され (ステップ S1212)、電源電圧が D1 に設定される (ステップ S 1213)。  [0099] Further, in the display panel 101 in the flat display mode, the scanning frequency is set to A1 by the control signal output from the signal generator 300 as in the stereoscopic display mode (step S1211), and the light emission is performed. The brightness is set to B1 (step S1212), and the power supply voltage is set to D1 (step S1213).
[0100] 一方、光制御パネル 102の光学スリット部材 1022では、信号発生器 300から出力 された制御信号によって光学スリットドライバ 1023が制御され、それにより、光学スリ ット部材 1022に形成される光学スリット 1021の開口率 SS2が、立体表示モードの場 合の開口率 SS1よりも高く設定される (ステップ S1214)。そして、このような動作状態 で表示パネル 101および光制御パネル 102が駆動することにより、図 3に示す平面 表示が実現される (ステップ S 1215)。  On the other hand, in the optical slit member 1022 of the light control panel 102, the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the optical slit formed in the optical slit member 1022 is controlled. The aperture ratio SS2 of 1021 is set to be higher than the aperture ratio SS1 in the stereoscopic display mode (step S1214). Then, when the display panel 101 and the light control panel 102 are driven in such an operation state, the flat display shown in FIG. 3 is realized (step S 1215).
[0101] ここで、本実施例では、前述のように、平面表示モードにおける表示パネル 101の 画像更新レート C2を立体表示モードの場合の画像更新レート CIの 1Z8としている 力 平面表示モードにおける表示では、立体表示モードの場合のような時分割画像 の表示を行わなくても、通常の平面表示の場合と同様、表示対象物である 2次元平 面画像 201 (図 3参照)を良好な表示特性で表示することが可能となる。したがって、 平面表示モードにおける表示パネル 101の画像更新レート C2を立体表示モードの 場合の画像更新レート C1よりも低くすることにより、平面表示モードにおける表示に おいて、良好な表示特性を実現しつつ表示パネル 101の消費電力を低減することが 可能となる。 [0101] Here, in the present embodiment, as described above, the display panel 101 in the flat display mode is displayed. Image update rate C2 is the image update rate CI of 1Z8 in the stereoscopic display mode. Force In the flat display mode, normal flat display is possible without displaying time-division images as in the stereoscopic display mode. As in the case of, it is possible to display the two-dimensional flat image 201 (see FIG. 3), which is a display object, with good display characteristics. Therefore, by reducing the image update rate C2 of the display panel 101 in the flat display mode to be lower than the image update rate C1 in the stereoscopic display mode, the display in the flat display mode is performed while realizing good display characteristics. The power consumption of panel 101 can be reduced.
[0102] 上記のようにして読み出した画像データの表示が行われた後、表示動作の終了指 示が入力されたが否かの判定が信号発生器 300の制御部 301で行われる (ステップ S1216)。そして、終了指示が入力された場合には (ステップ S1216 : Yes)、表示動 作が終了する。一方、終了指示が入力されていない場合には (ステップ S1216 :No) 、再びステップ S 1202に戻って表示動作が続行される。  [0102] After the image data read out as described above is displayed, the control unit 301 of the signal generator 300 determines whether or not an instruction to end the display operation has been input (step S1216). ). If an end instruction is input (step S1216: Yes), the display operation ends. On the other hand, if the end instruction has not been input (step S1216: No), the process returns to step S1202 again to continue the display operation.
[0103] 以上のように、立体表示装置 100では、平面表示モードでの表示において、立体 表示モードでの表示に比べて光学スリット部材 1022に形成される光学スリット 1021 の開口面積の総和を大きくして光制御パネル 102における透光部の面積を増加させ て透光性の向上を図るとともに、表示パネル 101の画像更新レート C2を立体表示モ ードの場合の画像更新レート C1に比べて低減する。それにより、本実施例の立体表 示装置では、平面表示モードにおける表示において、良好な表示特性を実現しつつ 消費電力の低減ィ匕を図ることが可能となり、その結果、実施例 1で前述した効果と同 様の効果が得られる。  [0103] As described above, in the stereoscopic display device 100, in the display in the flat display mode, the sum of the opening areas of the optical slits 1021 formed in the optical slit member 1022 is made larger than in the display in the stereoscopic display mode. The light control panel 102 increases the area of the translucent part to improve translucency, and the image update rate C2 of the display panel 101 is reduced compared to the image update rate C1 in the stereoscopic display mode. . As a result, in the stereoscopic display device of the present embodiment, it is possible to reduce power consumption while realizing good display characteristics in the display in the flat display mode. As a result, as described above in the first embodiment. An effect similar to the effect can be obtained.
実施例 4  Example 4
[0104] 図 13は、本発明の実施例 4における立体表示装置の表示動作の概要を示すフロ 一チャートである。本実施例の立体表示装置は、図 1〜図 4および図 6〜図 8に示す 実施例 1の立体表示装置 100と同様の構成を有している。そして、実施例 1の場合と 同様、図 2に示す立体表示モードでの立体表示と、図 3に示す平面表示モードでの 表示とを行うが、以下の点が、実施例 1とは異なっている。  FIG. 13 is a flowchart showing an overview of the display operation of the stereoscopic display device according to Embodiment 4 of the present invention. The stereoscopic display device of the present embodiment has the same configuration as the stereoscopic display device 100 of Embodiment 1 shown in FIGS. 1 to 4 and FIGS. 6 to 8. As in the case of the first embodiment, the stereoscopic display in the stereoscopic display mode shown in FIG. 2 and the display in the flat display mode shown in FIG. 3 are performed. The following points are different from the first embodiment. Yes.
[0105] すなわち、本実施例の立体表示装置では、平面表示モードでの表示における表示 パネル 101の電源電圧を、立体表示モードの場合の電源電圧よりも小さくし、それに より、平面表示モードにおける表示パネル 101の消費電力を立体表示モードの場合 よりも低減する。 That is, in the stereoscopic display device of the present embodiment, display in the display in the flat display mode. The power supply voltage of the panel 101 is made lower than the power supply voltage in the stereoscopic display mode, thereby reducing the power consumption of the display panel 101 in the flat display mode than in the stereoscopic display mode.
[0106] 図 13に示すように、本実施例の立体表示装置では、図 5の実施例 1のステップ S50 1〜ステップ S503と同様の動作がステップ S1301〜ステップ S1303において行わ れる。そして、ステップ S 1303における表示モードの判別結果に基づいて、信号発 生器 300が表示モードに応じた各種制御信号を生成し、これらを表示パネル 101お よび光制御パネル 102にそれぞれ出力する。それにより、表示パネル 101および光 制御パネル 102が、表示モードに応じてそれぞれ最適な状態で動作する。  As shown in FIG. 13, in the stereoscopic display device of the present embodiment, operations similar to steps S50 1 to S503 of Embodiment 1 in FIG. 5 are performed in steps S1301 to S1303. Based on the display mode discrimination result in step S1303, the signal generator 300 generates various control signals corresponding to the display mode, and outputs them to the display panel 101 and the light control panel 102, respectively. Accordingly, the display panel 101 and the light control panel 102 operate in an optimum state according to the display mode.
[0107] 例えば、画像データ中に含まれる表示モード判別情報 (すなわち時分割情報)に基 づいて、立体表示モードであるとの判別結果が得られると (ステップ S 1303 : Yes)、 信号発生器 300は、立体表示モードに対応した各種制御信号を生成して表示パネ ル 101および光制御パネル 102に出力する。それにより、表示パネル 101および光 制御パネル 102が、立体表示モードに適した動作状態となる。  [0107] For example, when a determination result indicating that the display mode is the stereoscopic display mode is obtained based on the display mode determination information (that is, time division information) included in the image data (step S1303: Yes), the signal generator 300 generates various control signals corresponding to the stereoscopic display mode and outputs them to the display panel 101 and the light control panel 102. Accordingly, the display panel 101 and the light control panel 102 are in an operation state suitable for the stereoscopic display mode.
[0108] 具体的に、信号発生器 300から出力された制御信号によって、表示パネル 101で は、電源電圧が D1に設定され (ステップ S 1304)、走査周波数が A1に設定され (ス テツプ S1305)、発光輝度が B1に設定され (ステップ S1306)、画像更新レートが C1 に設定される (ステップ S 1307)。また、光制御パネル 102の光学スリット部材 1022 では、信号発生器 300から出力された制御信号によって光学スリットドライバ 1023が 制御され、それにより、光学スリット部材 1022に形成される光学スリット 1021の開口 率力 S 1に設定される(ステップ S 1308)。  Specifically, according to the control signal output from the signal generator 300, the display panel 101 sets the power supply voltage to D1 (step S 1304) and the scanning frequency to A1 (step S1305). The emission brightness is set to B1 (step S1306), and the image update rate is set to C1 (step S1307). Further, in the optical slit member 1022 of the light control panel 102, the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the aperture ratio power of the optical slit 1021 formed in the optical slit member 1022 is controlled. S 1 is set (step S 1308).
[0109] そして、上記のような動作状態で表示パネル 101および光制御パネル 102が駆動 することにより、実施例 1で前述した MPS— IP方式により、図 2に示す立体表示が実 現される(ステップ S 1309)。  Then, when the display panel 101 and the light control panel 102 are driven in the operation state as described above, the stereoscopic display shown in FIG. 2 is realized by the MPS-IP method described in the first embodiment ( Step S 1309).
[0110] 一方、画像データ中に含まれる表示モード判別情報の判別に基づいて、平面表示 モードであるとの判別結果が得られると (ステップ S1303 :No)、信号発生器 300は、 平面表示モードに対応した各種制御信号を生成して表示パネル 101および光制御 パネル 102に出力する。それにより、表示パネル 101および光制御パネル 102が、 平面表示モードに適した動作状態となる。 [0110] On the other hand, when a determination result indicating that the display mode is the flat display mode is obtained based on the determination of the display mode determination information included in the image data (step S1303: No), the signal generator 300 Various control signals corresponding to the above are generated and output to the display panel 101 and the light control panel 102. Thereby, the display panel 101 and the light control panel 102 are The operating state is suitable for the flat display mode.
[0111] 具体的に、信号発生器 300から出力された制御信号によって、表示パネル 101で は、電源電圧 D2が、立体表示モードの場合の電源電圧 D1よりも低く設定される (ス テツプ S1310)。ここでは、例えば、信号発生器 300から出力される制御信号に基づ いて制御可能に構成された昇降圧回路を表示パネル 101が備えることによって、こ のような表示パネル 101の電源電圧調整が可能となる。  [0111] Specifically, the power supply voltage D2 is set lower than the power supply voltage D1 in the stereoscopic display mode on the display panel 101 by the control signal output from the signal generator 300 (step S1310). . Here, for example, the display panel 101 includes a step-up / step-down circuit configured to be controllable based on a control signal output from the signal generator 300, so that the power supply voltage of the display panel 101 can be adjusted. It becomes.
[0112] さらに、平面表示モードにおける表示パネル 101では、信号発生器 300から出力さ れた制御信号によって、立体表示モードの場合と同様、走査周波数が A1に設定さ れ (ステップ S1311)、発光輝度が B1に設定され (ステップ S1312)、画像更新レート 力 1に設定される(ステップ S 1313)。  [0112] Furthermore, in the display panel 101 in the flat display mode, the scanning frequency is set to A1 by the control signal output from the signal generator 300 as in the stereoscopic display mode (step S1311), and the emission luminance is increased. Is set to B1 (step S1312), and the image update rate is set to 1 (step S1313).
[0113] 一方、光制御パネル 102の光学スリット部材 1022では、信号発生器 300から出力 された制御信号によって光学スリットドライバ 1023が制御され、それにより、光学スリ ット部材 1022に形成される光学スリット 1021の開口率 SS2が、立体表示モードの場 合の開口率 SS1よりも高く設定される (ステップ S 1314)。そして、このような動作状態 で表示パネル 101および光制御パネル 102が駆動することにより、図 3に示す平面 表示が実現される (ステップ S 1315)。  On the other hand, in the optical slit member 1022 of the light control panel 102, the optical slit driver 1023 is controlled by the control signal output from the signal generator 300, whereby the optical slit formed in the optical slit member 1022 is controlled. The aperture ratio SS2 of 1021 is set to be higher than the aperture ratio SS1 in the stereoscopic display mode (step S 1314). Then, when the display panel 101 and the light control panel 102 are driven in such an operation state, the flat display shown in FIG. 3 is realized (step S 1315).
[0114] 上記のようにして読み出した画像データの表示が行われた後、表示動作の終了指 示が入力されたカゝ否かの判定が信号発生器 300の制御部 301で行われる (ステップ S1316)。そして、終了指示が入力された場合には (ステップ S1316 : Yes)、表示動 作が終了する。一方、終了指示が入力されていない場合には (ステップ S1316 :No) 、再びステップ S 1302に戻って表示動作が続行される。  [0114] After the image data read out as described above is displayed, the control unit 301 of the signal generator 300 determines whether or not a display operation end instruction has been input (step 301). S1316). If an end instruction is input (step S1316: Yes), the display operation ends. On the other hand, if the end instruction has not been input (step S1316: No), the process returns to step S1302 and the display operation is continued.
[0115] 以上のように、立体表示装置 100では、平面表示モードでの表示において、立体 表示モードでの表示に比べて光学スリット部材 1022に形成される光学スリット 1021 の開口面積の総和を大きくして光制御パネル 102における透光部の面積を増加させ て透光性の向上を図るとともに、表示パネル 101の電源電圧 D2を立体表示モードの 場合の電源電圧 D1に比べて低くする。それにより、本実施例の立体表示装置では、 平面表示モードにおける表示において、良好な表示特性を実現しつつ消費電力の 低減ィ匕を図ることが可能となり、その結果、実施例 1で前述した効果と同様の効果が 得られる。 [0115] As described above, in the stereoscopic display device 100, in the display in the flat display mode, the sum of the opening areas of the optical slits 1021 formed in the optical slit member 1022 is made larger than that in the stereoscopic display mode. Thus, the area of the light transmitting portion in the light control panel 102 is increased to improve the light transmitting property, and the power supply voltage D2 of the display panel 101 is made lower than the power supply voltage D1 in the stereoscopic display mode. As a result, in the stereoscopic display device of this embodiment, it is possible to reduce power consumption while realizing good display characteristics in the display in the flat display mode. As a result, the effects described above in Embodiment 1 can be achieved. Has the same effect as can get.
実施例 5  Example 5
[0116] 上記の実施例 1〜4においては、開閉可能に構成されたシャツタ板 500を備えた光 学スリット部材 1022によって光制御パネル 102が構成される場合について説明した 1S 本発明にかかる立体表示装置は、開口部がシャツタにより開閉可能に構成され たピンホールを備えた光学スリット部材によって光制御パネル 102が構成されてもよ い。  [0116] In Examples 1 to 4 described above, the case where the light control panel 102 is configured by the optical slit member 1022 including the shirter plate 500 configured to be openable and closable is described. 1S Stereoscopic display according to the present invention In the apparatus, the light control panel 102 may be configured by an optical slit member having a pinhole whose opening is configured to be opened and closed by a shirt.
[0117] 実施例 5においては、ピンホールを備えた光学スリット部材 1022を有する立体表示 装置について説明する。図 14は、本発明の実施例 5における立体表示装置の光制 御パネルの光学スリット部材の構成を示す模式的な平面図である。また、図 15は、図 14の光学スリット部材のピンホールの構成を示す模式的な部分拡大図である。  In Example 5, a stereoscopic display device having an optical slit member 1022 having a pinhole will be described. FIG. 14 is a schematic plan view showing the configuration of the optical slit member of the light control panel of the stereoscopic display device according to Embodiment 5 of the present invention. FIG. 15 is a schematic partial enlarged view showing the configuration of the pinhole of the optical slit member of FIG.
[0118] 図 14に示すように、光制御パネル 102のパネル本体を構成する光学スリット部材 1 022は、非透光性材料カゝら構成されるパネル基材 800に、所定の径を有する円形の 開口部であるピンホール 801が所定間隔で複数配設された構成を有する。そして、 図 15に示すように、ピンホール 801には、開口部を開閉する可動式のピンホールシ ャッタ 900が配設されている。ピンホールシャツタ 900は、例えば、進退可能に構成さ れてピンホール 801の開口部内に出没自在な非透光性の板材を複数枚組み合わせ て形成される。  [0118] As shown in FIG. 14, the optical slit member 1022 constituting the panel body of the light control panel 102 is formed in a circular shape having a predetermined diameter on the panel base material 800 constituted by a non-translucent material cover. A plurality of pinholes 801 that are openings are arranged at predetermined intervals. As shown in FIG. 15, the pinhole 801 is provided with a movable pinhole shutter 900 that opens and closes an opening. The pinhole shirt 900 is formed, for example, by combining a plurality of non-translucent plates that are configured to be able to advance and retreat and that can freely enter and exit in the opening of the pinhole 801.
[0119] ここでは図示を省略している力 ピンホール 801の周縁部のパネル基材 800には、 ピンホールシャツタ 900を構成する板材の収納部が配設されている。そして、この収 納部にピンホールシャツタ 900の板材が収納されてピンホール 801の開口力 後退 することにより、ピンホール 801が開状態 (すなわち透光可能)となる。また、ピンホー ルシャツタ 900の板材が収納部から排出されてピンホール 801の開口中心に向けて 前進すると、ピンホール 801の開口がピンホールシャツタ 900の板材で塞がれ、それ によりピンホール 801が閉状態 (すなわち透光不可能)となる。このように、本実施例 では、光制御パネル 102においてピンホール 801が透光部に相当する。  The force not shown here is a panel base material 800 at the peripheral edge of the pinhole 801, and a plate material storage portion constituting the pinhole shirter 900 is provided. Then, when the plate material of the pinhole shirter 900 is stored in the storage portion and the opening force of the pinhole 801 is retracted, the pinhole 801 is in an open state (that is, translucent). When the plate material of the pinhole shirter 900 is discharged from the storage portion and moves forward toward the center of the opening of the pinhole 801, the opening of the pinhole 801 is blocked by the plate material of the pinhole shirter 900. It becomes a closed state (that is, light transmission is impossible). Thus, in this embodiment, the pinhole 801 in the light control panel 102 corresponds to a light transmitting part.
[0120] ピンホールシャツタ 900の進退動作は、図 3の信号発生器 300から出力される制御 信号により制御されており、ピンホール毎にそれぞれ独立して開閉制御が行われる。 ここでは、実施例 1の場合と同様、信号発生器 300の記憶部 303から取り出された画 像データに含まれる時分割情報に応じて表示モードの判別が行われ (例えば、図 5 のステップ S503参照)、判別された表示モードに対応して、信号発生器 300が制御 信号を生成する。そして、この制御信号に基づいて光学スリットドライバ 1023を制御 することにより、ピンホール 801の開閉が制御される。 [0120] The advance / retreat operation of the pinhole shatter 900 is controlled by a control signal output from the signal generator 300 of FIG. 3, and the open / close control is performed independently for each pinhole. Here, as in the first embodiment, the display mode is determined in accordance with the time division information included in the image data extracted from the storage unit 303 of the signal generator 300 (for example, step S503 in FIG. 5). The signal generator 300 generates a control signal corresponding to the determined display mode. Then, by controlling the optical slit driver 1023 based on this control signal, the opening / closing of the pinhole 801 is controlled.
[0121] 具体的に、立体表示モードでの表示の際には、常時は閉状態である複数のピンホ ール 801が逐次選択的に開状態となるとともに、実施例 1の場合と同様、この開状態 となったピンホール 801に対応する小画像が表示パネル 101に表示される。それに より、実施例 1の場合と同様、 MPS— IP方式により立体表示が行われる。一方、平面 表示モードでの表示の際には、ピンホール 801が全て開状態となり、これらのピンホ ール 801を介して表示パネル 101の表示画像が観察されて平面表示が行われる。  [0121] Specifically, when displaying in the stereoscopic display mode, the plurality of pinholes 801 that are normally closed are sequentially sequentially opened and the same as in the first embodiment. A small image corresponding to the pinhole 801 in the open state is displayed on the display panel 101. As a result, as in the first embodiment, stereoscopic display is performed by the MPS-IP method. On the other hand, at the time of display in the flat display mode, all the pinholes 801 are opened, and the display image of the display panel 101 is observed through these pinholes 801 to perform flat display.
[0122] 力かる構成の本実施例の立体表示装置では、実施例 1〜4において前述した方法 のいずれかの方法により、平面表示モードにおける表示パネル 101の消費電力の低 減化が図られる。それにより、実施例 1〜4の場合と同様の効果が奏される。  [0122] In the stereoscopic display device of this embodiment having a powerful configuration, the power consumption of the display panel 101 in the flat display mode can be reduced by any one of the methods described in Embodiments 1 to 4. Thereby, the same effect as in the case of Examples 1 to 4 is exhibited.
実施例 6  Example 6
[0123] 上記の実施例 1〜5では、可動式の遮蔽部材であるシャツタ板 500およびピンホー ルシャツタ 900によって光制御パネル 102の透光部である光学スリット 1021およびピ ンホール 801の開口が開閉される場合について説明した力 本発明にかかる立体表 示装置では、透光部が可動式の遮蔽部材によって物理的に開閉されるのではなぐ 透光部を構成する材料の透光性を制御する、具体的には、液晶材料で構成された 透光部を形成して当該液晶材料の偏光特性を利用し透光部の透光性を制御するこ とにより物理的な開閉と同様の機能を果たす構成も可能である。  [0123] In Examples 1 to 5 described above, the opening of the optical slit 1021 and the pinhole 801 that are light-transmitting portions of the light control panel 102 is opened and closed by the shirter plate 500 and the pinhole shatter 900 that are movable shielding members. In the three-dimensional display device according to the present invention, the translucent part is not physically opened and closed by the movable shielding member, and the translucency of the material constituting the translucent part is controlled. Specifically, a light-transmitting part made of a liquid crystal material is formed, and the light-transmitting part is controlled by using the polarization characteristics of the liquid crystal material to perform the same function as physical opening and closing. Is also possible.
[0124] 実施例 6にお ヽては、液晶材料で構成された透光部を有する立体表示装置につ!、 て説明する。かかる構成の立体表示装置では、図 16は、実施例 6における光制御パ ネルの光学スリット部材の構成を示す模式的な平面図である。図 16に示すように、本 実施例の光学スリット部材 1022は、対向配置された一対の基板の間に液晶層が挟 持された形成された液晶パネル 1000によって構成されている。そして、液晶パネル 1 000は、複数の単位セル 1001がマトリクス状に配列された構成を有する。この場合、 単位セル 1001の各々が光学スリット部材 1022の透光部に相当する。 [0124] In Example 6, a stereoscopic display device having a light-transmitting portion made of a liquid crystal material will be described. In the stereoscopic display device having such a configuration, FIG. 16 is a schematic plan view showing the configuration of the optical slit member of the light control panel in the sixth embodiment. As shown in FIG. 16, the optical slit member 1022 of the present embodiment is configured by a liquid crystal panel 1000 formed by sandwiching a liquid crystal layer between a pair of substrates arranged opposite to each other. The liquid crystal panel 1000 has a configuration in which a plurality of unit cells 1001 are arranged in a matrix. in this case, Each of the unit cells 1001 corresponds to a light transmitting portion of the optical slit member 1022.
[0125] 液晶パネル 1000の各単位セル 1001は、常時は透光不可能であるように液晶層の 偏光性が設定されている。そして、所定時に液晶層の偏光性を変化させることにより 、透光可能となる。ここでは、透光可能な単位セル 1001を開状態とし、透光不可能 な単位セル 1001を閉状態とする。液晶パネル 1000では、実施例 1の場合と同様、 立体表示モードでの表示の際に、高速で更新される表示パネル 101の小画像に同 期して透光性を変化させる必要がある。したがって、光学スリット部材 1022を構成す る液晶パネル 1000は、高速応答が可能な液晶材料、例えば強誘電性液晶材料によ つて構成される。 [0125] Each unit cell 1001 of the liquid crystal panel 1000 has the polarization property of the liquid crystal layer set so that light transmission is impossible at all times. Then, light can be transmitted by changing the polarization property of the liquid crystal layer at a predetermined time. Here, the unit cell 1001 that can transmit light is in an open state, and the unit cell 1001 that cannot transmit light is in a closed state. In the liquid crystal panel 1000, as in the case of the first embodiment, it is necessary to change the translucency in synchronization with the small image of the display panel 101 that is updated at high speed when displaying in the stereoscopic display mode. Therefore, the liquid crystal panel 1000 constituting the optical slit member 1022 is made of a liquid crystal material capable of high-speed response, for example, a ferroelectric liquid crystal material.
[0126] 液晶パネル 1000は、図 3の信号発生器 300のタイミング生成回路 302からの出力 により制御されており、単位セル 1001毎にそれぞれ独立して液晶層の偏光性が制 御される。ここでは、実施例 1の場合と同様、信号発生器 300の記憶部 303から取り 出された画像データに含まれる時分割情報に応じて表示モードの判別が行われ (例 えば、図 5のステップ S503参照)、判別された表示モードに対応して信号発生器 30 0が制御信号を生成する。そして、この制御信号によって光学スリットドライバ 1023を 制御することにより、液晶パネル 1000の単位セル 1001の液晶層の偏光性がセル毎 に制御される。その結果、単位セル 1001の透光性をセル毎に調整することが可能と なり、よって、単位セル 1001を所望の開閉状態とすることができる。  The liquid crystal panel 1000 is controlled by the output from the timing generation circuit 302 of the signal generator 300 in FIG. 3, and the polarization property of the liquid crystal layer is controlled independently for each unit cell 1001. Here, as in the case of the first embodiment, the display mode is determined in accordance with the time division information included in the image data extracted from the storage unit 303 of the signal generator 300 (for example, the step of FIG. 5). In step S503, the signal generator 300 generates a control signal corresponding to the determined display mode. Then, by controlling the optical slit driver 1023 by this control signal, the polarization property of the liquid crystal layer of the unit cell 1001 of the liquid crystal panel 1000 is controlled for each cell. As a result, the translucency of the unit cell 1001 can be adjusted for each cell, and thus the unit cell 1001 can be in a desired open / close state.
[0127] 具体的に、立体表示モードでの表示の際には、常時は閉状態 (すなわち透光不可 能)である複数の単位セル 1001が逐次選択的に開状態 (すなわち透光可能)となる とともに、実施例 1の場合と同様、この開状態となった単位セル 1001に対応する小画 像が表示パネル 101に表示される。それにより、実施例 1の場合と同様、 MPS -IP 方式により立体表示が行われる。一方、平面表示モードでの表示の際には、液晶パ ネル 1000の単位セル 1001が全て開状態(すなわち透光可能)となり、これらの単位 セル 1001を介して表示パネル 101の表示画像が観察されて平面表示が行われる。  [0127] Specifically, when displaying in the stereoscopic display mode, a plurality of unit cells 1001, which are normally closed (that is, not translucent), are sequentially selectively opened (that is, translucent). At the same time, as in the first embodiment, a small image corresponding to the unit cell 1001 in the open state is displayed on the display panel 101. As a result, as in the case of the first embodiment, stereoscopic display is performed by the MPS-IP method. On the other hand, when displaying in the flat display mode, all the unit cells 1001 of the liquid crystal panel 1000 are opened (that is, light can be transmitted), and the display image of the display panel 101 is observed through these unit cells 1001. The flat display is performed.
[0128] 力かる構成の本実施例の立体表示装置では、実施例 1〜4において前述した方法 のいずれかの方法により表示パネル 101の消費電力の低減ィ匕が図られる。それによ り、実施例 1〜4の場合と同様の効果が奏される。 [0129] なお、本発明にかかる立体表示装置は、上記の実施例 1〜6の構成に限定されるも のではなぐこれ以外の構成であってもよい。例えば、上記の実施例 1〜6において は、光制御パネル 102の透光部(すなわち光学スリット 1021、ピンホール 801、単位 セル 1001)が、逐次選択的に閉状態から開状態になるとともに、開状態の透光部に 対応する小画像が表示パネル 101に表示されて立体表示が行われる MPS— IP方 式の立体表示装置について説明したが、本発明は、全ての透光部が常時開状態で あり、かつ、透光部の位置が変化することなく立体表示を行う従来の IP方式立体表示 装置についても適用可能である。 [0128] In the stereoscopic display device according to the present embodiment having a powerful configuration, the power consumption of the display panel 101 can be reduced by any one of the methods described in the first to fourth embodiments. As a result, the same effects as those of the first to fourth embodiments are exhibited. [0129] Note that the stereoscopic display device according to the present invention is not limited to the configurations of the first to sixth embodiments, but may have other configurations. For example, in Examples 1 to 6 described above, the light transmitting portion of the light control panel 102 (that is, the optical slit 1021, the pinhole 801, and the unit cell 1001) is selectively opened from the closed state to the open state. Although the MPS-IP type stereoscopic display device has been described in which a small image corresponding to the transparent portion in the state is displayed on the display panel 101 and stereoscopic display is performed, the present invention is in a state where all the transparent portions are normally open. In addition, the present invention can also be applied to a conventional IP 3D display device that performs 3D display without changing the position of the translucent part.
[0130] 本発明を MPS— IP方式の立体表示装置に適用した場合には、従来の IP方式の 立体表示装置よりも解像度等の向上が図られるので、より有効な立体表示装置を実 現できる。また、 MPS— IP方式の立体表示装置では、光制御パネル 102の透光部 の位置を変化させる構成を立体表示動作の必須要件として予め有して 、るため、 かる構成を利用すれば、表示モードに応じて透光部の総面積を調整することを容易 に実現することが可能となる。  [0130] When the present invention is applied to an MPS-IP type stereoscopic display device, the resolution and the like can be improved as compared with the conventional IP type stereoscopic display device, so that a more effective stereoscopic display device can be realized. . In addition, the MPS-IP type stereoscopic display device has a configuration for changing the position of the light transmitting portion of the light control panel 102 as an essential requirement for the stereoscopic display operation in advance. It is possible to easily realize the adjustment of the total area of the translucent part according to the mode.
[0131] また、本発明は、 IP方式以外の立体表示方式、例えばパララックスステレオグラム 式等の立体表示装置についても適用可能である。さらに、本発明において、光制御 パネル 102が観察者と表示パネル 101との間に配置されるのであれば、光制御パネ ル 102の配置位置は、特には限定されない。例えば、光制御パネル 102と表示パネ ル 101とが一体的に構成されてもよぐあるいは、光制御パネル 102が表示パネル 1 01と距離をあけて配置された構成や、光制御パネル 102が表示パネル 101から独立 して配置された構成であってもよ 、。  The present invention is also applicable to a stereoscopic display system other than the IP system, for example, a stereoscopic display device such as a parallax stereogram system. Furthermore, in the present invention, as long as the light control panel 102 is disposed between the observer and the display panel 101, the position of the light control panel 102 is not particularly limited. For example, the light control panel 102 and the display panel 101 may be configured integrally, or the light control panel 102 is arranged at a distance from the display panel 101, or the light control panel 102 is displayed. The configuration may be arranged independently from the panel 101.
[0132] また、上記の実施例 1〜4では、表示パネル 101において、表示モードに応じて走 查周波数、発光輝度、画像更新レートおよび電源電圧のいずれか 1つを単独で調整 し、それにより、平面表示モードにおける表示パネル 101の消費電力を低減する場 合について説明した力 これらを組み合わせることによって表示パネル 101の消費電 力の調整を行ってもよい。  [0132] Also, in the above-described Examples 1 to 4, on the display panel 101, any one of the scanning frequency, the light emission luminance, the image update rate, and the power supply voltage is independently adjusted according to the display mode, thereby The power described in the case where the power consumption of the display panel 101 in the flat display mode is reduced. The power consumption of the display panel 101 may be adjusted by combining these.
[0133] ところで、上記では、表示パネルの同一表示面において、立体表示モードでの立 体画像表示と平面表示モードでの平面画像表示とが経時的に適宜切替わる構成を 説明したが、本発明は、立体表示モードでの立体画像表示を行う立体表示用表示面 と、平面表示モードでの平面画像表示を行う平面表示用表示面とを個別に備えた構 成の立体表示装置においても適用可能である。 [0133] By the way, in the above, on the same display surface of the display panel, the configuration in which the solid image display in the stereoscopic display mode and the flat image display in the flat display mode are appropriately switched over time. As described above, the present invention is a stereoscopic display having a configuration in which a stereoscopic display display surface for displaying a stereoscopic image in the stereoscopic display mode and a flat display display surface for displaying a planar image in the flat display mode are individually provided. The present invention can also be applied to a display device.
[0134] 力かる構成の立体表示装置としては、例えば、表示パネルの同一表示面が複数の 表示領域に分割され、立体表示モードでの立体画像表示を行う立体表示用領域と、 平面表示モードでの平面画像表示を行う平面表示用領域とが、それぞれ個別に設 けられた構成であってもよい。また、複数の表示パネルによって表示部が構成され、 立体表示モードでの立体画像表示を行う立体表示用パネルと、平面表示モードでの 平面画像表示を行う平面表示用パネルとが、それぞれ個別に設けられた構成であつ てもよい。  As a stereoscopic display device having a powerful configuration, for example, the same display surface of the display panel is divided into a plurality of display areas, and a stereoscopic display area for displaying a stereoscopic image in the stereoscopic display mode, and a flat display mode are provided. The flat display area for performing the flat image display may be provided individually. In addition, a display unit is configured by a plurality of display panels, and a stereoscopic display panel that performs stereoscopic image display in the stereoscopic display mode and a flat display panel that performs planar image display in the planar display mode are provided separately. It may be a configured.
[0135] かかる構成を有する立体表示装置は、表示面の平面表示用領域あるいは平面表 示用パネルにおける消費電力力 表示面の立体表示用領域あるいは立体表示用パ ネルにおける消費電力よりも少なくなるよう構成されている。このような消費電力の制 御は、実施例 1〜4で前述したように、表示モードに応じて表示領域あるいは表示パ ネルの走査周波数、発光輝度、画像更新レートおよび電源電圧のいずれか 1つを単 独で、または、これらを組み合わせて調整することにより実現される。その結果、同一
Figure imgf000032_0001
、て表示モードが経時的に適宜切替わる構成の立体表示装置において 前述した効果と同様の効果が奏される。
[0135] The stereoscopic display device having such a configuration consumes less power than the power consumption in the flat display area or the flat display panel on the display surface. It is configured. As described above in the first to fourth embodiments, such power consumption control is performed by selecting one of the display area or display panel scanning frequency, light emission luminance, image update rate, and power supply voltage according to the display mode. This can be realized by adjusting these parameters independently or in combination. As a result, the same
Figure imgf000032_0001
Thus, the same effects as those described above can be obtained in a stereoscopic display device having a structure in which the display mode is switched over time.
[0136] このような本発明は、種々の用途に利用可能であり、一例として、携帯電話やバソコ ン等の情報機器端末や、ゲーム機器等への利用があげられる。  [0136] The present invention as described above can be used for various purposes, and examples thereof include use in information equipment terminals such as mobile phones and personal computers, game machines, and the like.

Claims

請求の範囲 The scope of the claims
[1] 立体表示モードでの立体画像表示と平面表示モードでの平面画像表示とが切替 可能に構成された立体表示装置であって、  [1] A stereoscopic display device configured to be switchable between stereoscopic image display in the stereoscopic display mode and planar image display in the flat display mode,
入力された画像データに基づき平面画像を表示する表示手段と、  Display means for displaying a planar image based on the input image data;
前記表示手段と観察者との間に配置され、前記表示手段からの透光量の調整を行 う光制御手段とを備え、  A light control means arranged between the display means and the observer and adjusting the amount of light transmitted from the display means,
前記光制御手段は、非透光性の基体と、前記基体に形成された前記平面画像の 可視領域である複数の透光部と、前記透光部の面積を調整して前記透光量の調整 を行う透光部調整手段と、を有し、  The light control means adjusts an area of the light-transmitting light amount by adjusting a non-light-transmitting base material, a plurality of light-transmitting portions that are visible regions of the planar image formed on the base material, and an area of the light-transmitting portion. Translucent part adjusting means for performing adjustment,
前記平面表示モードにおける前記表示手段の消費電力を、前記立体表示モード における前記表示手段の消費電力に比べて少なくすることを特徴とする立体表示装 置。  A stereoscopic display device characterized in that power consumption of the display means in the flat display mode is less than power consumption of the display means in the stereoscopic display mode.
[2] 前記平面表示モードにおける前記光制御手段の前記透光部の総面積を、前記立 体表示モードにおける前記透光部の総面積に比べて大きくすることを特徴とする請 求項 1に記載の立体表示装置。  [2] Claim 1 characterized in that the total area of the translucent part of the light control means in the planar display mode is made larger than the total area of the translucent part in the solid display mode. The three-dimensional display apparatus of description.
[3] 前記平面表示モードにおける前記表示手段の消費電力が前記立体表示モードに おける前記表示手段の消費電力に比べて少なくなるように前記表示手段の駆動制 御を行う駆動制御手段をさらに備えたことを特徴とする請求項 1に記載の立体表示装 置。  [3] The apparatus further includes drive control means for controlling drive of the display means so that power consumption of the display means in the flat display mode is smaller than power consumption of the display means in the stereoscopic display mode. The stereoscopic display device according to claim 1, wherein:
[4] 前記駆動制御手段は、前記平面表示モードにおける前記表示手段の走査周波数 を、前記立体表示モードにおける前記表示手段の走査周波数に比べて低くすること により、前記駆動制御を行うことを特徴とする請求項 3に記載の立体表示装置。  [4] The drive control means performs the drive control by making a scanning frequency of the display means in the flat display mode lower than a scanning frequency of the display means in the stereoscopic display mode. The stereoscopic display device according to claim 3.
[5] 前記駆動制御手段は、前記平面表示モードにおける前記表示手段の発光輝度を 、前記立体表示モードにおける前記表示手段の発光輝度に比べて低くすることによ り、前記駆動制御を行うことを特徴とする請求項 3に記載の立体表示装置。  [5] The drive control means performs the drive control by lowering the light emission luminance of the display means in the planar display mode as compared with the light emission luminance of the display means in the stereoscopic display mode. 4. The stereoscopic display device according to claim 3, wherein
[6] 前記表示手段は有機 EL素子を含んで構成され、  [6] The display means includes an organic EL element,
前記駆動制御手段は、前記有機 EL素子の駆動電流または駆動電圧を調整するこ とを特徴とする請求項 5に記載の立体表示装置。 6. The stereoscopic display device according to claim 5, wherein the drive control unit adjusts a drive current or a drive voltage of the organic EL element.
[7] 前記駆動制御手段は、前記平面表示モードにおける前記表示手段の点灯時間を 、前記立体表示モードにおける前記表示手段の点灯時間よりも短くすることにより、 前記駆動制御を行うことを特徴とする請求項 5に記載の立体表示装置。 [7] The drive control means performs the drive control by making a lighting time of the display means in the flat display mode shorter than a lighting time of the display means in the stereoscopic display mode. The stereoscopic display device according to claim 5.
[8] 前記駆動制御手段は、前記平面表示モードにおける前記表示手段の画像更新レ ートを、前記立体表示モードにおける前記表示手段の画像更新レートよりも低くする ことにより、前記駆動制御を行うことを特徴とする請求項 3に記載の立体表示装置。  [8] The drive control unit performs the drive control by setting an image update rate of the display unit in the planar display mode lower than an image update rate of the display unit in the stereoscopic display mode. The stereoscopic display device according to claim 3, wherein:
[9] 前記駆動制御手段は、前記平面表示モードにおける前記表示手段の電源電圧を 、前記立体表示モードにおける前記表示手段の電源電圧よりも低くすることにより、 前記駆動制御を行うことを特徴とする請求項 3に記載の立体表示装置。  [9] The drive control means performs the drive control by making a power supply voltage of the display means in the flat display mode lower than a power supply voltage of the display means in the stereoscopic display mode. The stereoscopic display device according to claim 3.
[10] 前記駆動制御手段は、システムクロックを分周して前記駆動制御を行うことを特徴と する請求項 1に記載の立体表示装置。  10. The stereoscopic display device according to claim 1, wherein the drive control unit performs the drive control by dividing a system clock.
[11] 前記立体表示モードでの立体画像表示では、  [11] In the stereoscopic image display in the stereoscopic display mode,
前記表示手段において、目的とする立体画像を表示するための複数の構成要素 平面画像が逐次選択的に表示されるとともに、  In the display means, a plurality of component plane images for displaying a target stereoscopic image are selectively displayed sequentially,
前記光制御手段において、所定の前記透光部が透光可能となるとともにこれ以外 の前記透光部が透光不可能となり、かつ、透光可能な前記透光部の位置が逐次選 択的に変化し、  In the light control means, the predetermined light-transmitting portion can transmit light, the other light-transmitting portions cannot transmit light, and the positions of the light-transmitting portions that can transmit light are sequentially selected. Change to
前記表示手段に表示される前記構成要素平面画像が前記透光部の位置の変化と 同期して更新され、かつ、前記透光部に対応する前記構成要素平面画像が表示さ れることを特徴とする請求項 1に記載の立体表示装置。  The component plane image displayed on the display means is updated in synchronization with a change in the position of the translucent portion, and the component plane image corresponding to the translucent portion is displayed. The stereoscopic display device according to claim 1.
[12] 前記駆動制御手段は、前記表示手段に入力される画像データの種類に応じて前 記駆動制御を行うことを特徴とする請求項 3に記載の立体表示装置。 12. The stereoscopic display device according to claim 3, wherein the drive control means performs the drive control according to the type of image data input to the display means.
[13] 前記駆動制御手段は、前記画像データに含まれる表示モード判別情報に基づい て前記駆動制御を行うことを特徴とする請求項 12に記載の立体表示装置。 13. The stereoscopic display device according to claim 12, wherein the drive control means performs the drive control based on display mode determination information included in the image data.
[14] 前記表示手段は、前記画像データの種類に応じて時分割数を変更可能に構成さ れ、 [14] The display means is configured to be able to change the number of time divisions according to the type of the image data,
前記駆動制御手段は、前記時分割数に応じて前記駆動制御を行うことを特徴とす る請求項 13に記載の立体表示装置。 14. The stereoscopic display device according to claim 13, wherein the drive control means performs the drive control according to the number of time divisions.
[15] 前記駆動制御手段は、前記画像データに含まれる前記時分割数の情報に基づい て前記駆動制御を行うことを特徴とする請求項 14に記載の立体表示装置。 15. The stereoscopic display device according to claim 14, wherein the drive control means performs the drive control based on information on the number of time divisions included in the image data.
[16] 入力された画像データに基づき平面画像を表示する表示手段を備え、立体表示モ ードでの立体画像表示と平面表示モードでの平面画像表示とを行う立体表示装置で あって、  [16] A stereoscopic display device comprising a display means for displaying a planar image based on input image data, and performing a stereoscopic image display in a stereoscopic display mode and a planar image display in a planar display mode,
前記表示手段は、前記立体表示モードでの立体画像表示を行う立体表示領域と、 前記平面表示モードでの平面画像表示を行う平面表示領域と、を有し、  The display means includes a stereoscopic display area for performing stereoscopic image display in the stereoscopic display mode, and a planar display area for performing planar image display in the planar display mode,
前記表示手段の前記立体表示領域と観察者との間に、前記立体表示領域からの 透光量の調整を行い前記立体表示モードでの前記立体画像表示を可能とする光制 御手段が配設され、  Light control means is provided between the stereoscopic display area of the display means and the observer to adjust the amount of light transmitted from the stereoscopic display area and enable the stereoscopic image display in the stereoscopic display mode. And
前記表示手段の前記平面表示領域における消費電力を、前記表示手段の前記立 体表示領域における消費電力に比べて少なくすることを特徴とする立体表示装置。  A stereoscopic display device characterized in that power consumption in the flat display area of the display means is less than power consumption in the solid display area of the display means.
[17] 前記立体表示領域と前記平面表示領域とが、前記表示手段の同一領域に切替可 能に形成されることを特徴とする請求項 16に記載の立体表示装置。  17. The stereoscopic display device according to claim 16, wherein the stereoscopic display area and the flat display area are formed to be switchable to the same area of the display means.
[18] 前記立体表示領域と前記平面表示領域とが、前記表示手段の互いに異なる領域 に個別に形成されたことを特徴とする請求項 16に記載の立体表示装置。  18. The stereoscopic display device according to claim 16, wherein the stereoscopic display area and the flat display area are individually formed in different areas of the display means.
PCT/JP2005/020841 2004-11-18 2005-11-14 Stereoscopic display apparatus WO2006054517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-335182 2004-11-18
JP2004335182 2004-11-18

Publications (1)

Publication Number Publication Date
WO2006054517A1 true WO2006054517A1 (en) 2006-05-26

Family

ID=36407060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020841 WO2006054517A1 (en) 2004-11-18 2005-11-14 Stereoscopic display apparatus

Country Status (1)

Country Link
WO (1) WO2006054517A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217310A (en) * 2009-03-13 2010-09-30 Sony Corp Image display device, image display observation system, and image display method
JP2013064770A (en) * 2011-09-15 2013-04-11 Sony Corp Display controller and display control method
JPWO2011145584A1 (en) * 2010-05-17 2013-07-22 シャープ株式会社 Liquid crystal display
JP2013258705A (en) * 2013-06-26 2013-12-26 Nec Casio Mobile Communications Ltd Terminal device and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160770A (en) * 1992-11-25 1994-06-07 Nittetsu Eretsukusu:Kk Three-dimensional stereoscopic picture display device
JPH0973049A (en) * 1995-06-29 1997-03-18 Canon Inc Image display method and image display device using the same
JP2001211465A (en) * 1999-11-15 2001-08-03 Hit Design:Kk Three-dimensional image display method and three- dimensional image display device using the method
JP2003259395A (en) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd Stereoscopic display method and stereoscopic display apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160770A (en) * 1992-11-25 1994-06-07 Nittetsu Eretsukusu:Kk Three-dimensional stereoscopic picture display device
JPH0973049A (en) * 1995-06-29 1997-03-18 Canon Inc Image display method and image display device using the same
JP2001211465A (en) * 1999-11-15 2001-08-03 Hit Design:Kk Three-dimensional image display method and three- dimensional image display device using the method
JP2003259395A (en) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd Stereoscopic display method and stereoscopic display apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217310A (en) * 2009-03-13 2010-09-30 Sony Corp Image display device, image display observation system, and image display method
JPWO2011145584A1 (en) * 2010-05-17 2013-07-22 シャープ株式会社 Liquid crystal display
JP5675795B2 (en) * 2010-05-17 2015-02-25 シャープ株式会社 Liquid crystal display
US9007287B2 (en) 2010-05-17 2015-04-14 Sharp Kabushiki Kaisha Liquid-crystal display device
JP2013064770A (en) * 2011-09-15 2013-04-11 Sony Corp Display controller and display control method
JP2013258705A (en) * 2013-06-26 2013-12-26 Nec Casio Mobile Communications Ltd Terminal device and program

Similar Documents

Publication Publication Date Title
JP4568731B2 (en) 3D display device
US20200111258A1 (en) Apparatus, systems, and methods for display devices including local dimming
JP4706880B2 (en) Cell-structured parallax barrier and stereoscopic image display apparatus using the same
JP4727412B2 (en) Barrier device, stereoscopic image display device using the same, and driving method thereof
JP4332158B2 (en) Backlight module and 2D / 3D display device using the backlight module
JP4561525B2 (en) Display device and game machine
US7079174B2 (en) Electronic equipment
CN101840073A (en) Multi full size displayable system including liquid crystal display device
CN105744253B (en) Automatic stereo three-dimensional display apparatus
JP2010243705A (en) Stereoscopic display
JP2011069869A (en) Display device, and image control method
US8665322B2 (en) Shutter glasses and method for controlling a pair of shutter glasses
JPWO2011096322A1 (en) Stereoscopic image display apparatus and stereoscopic image display method
JP2004258631A (en) Stereoscopic picture display device
EP1427222A2 (en) 2D/3D display
TW201040930A (en) Displays with sequential drive schemes
KR100728158B1 (en) Autostereoscopic display appratus
JP2009511942A (en) Configurable multi-view display device
JP2014179750A (en) Display device
WO2006054517A1 (en) Stereoscopic display apparatus
JP3753763B2 (en) Apparatus and method for recognizing 3D image
TW201142781A (en) Stereoscopic image displaying method and stereoscopic display device
EP2405668B1 (en) Controlling a video image display apparatus and a pair of shutter glasses for stereoscopic image display
JP2004166886A (en) Game machine
WO2006054516A1 (en) Stereoscopic display apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP