WO2006052033A1 - Piezoelectric material and nonlinear piezoelectric element - Google Patents

Piezoelectric material and nonlinear piezoelectric element Download PDF

Info

Publication number
WO2006052033A1
WO2006052033A1 PCT/JP2005/021323 JP2005021323W WO2006052033A1 WO 2006052033 A1 WO2006052033 A1 WO 2006052033A1 JP 2005021323 W JP2005021323 W JP 2005021323W WO 2006052033 A1 WO2006052033 A1 WO 2006052033A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric material
piezoelectric
donor
added
valence
Prior art date
Application number
PCT/JP2005/021323
Other languages
French (fr)
Japanese (ja)
Inventor
Xiaobing Ren
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Publication of WO2006052033A1 publication Critical patent/WO2006052033A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO

Definitions

  • the invention of this application relates to a piezoelectric material and a piezoelectric element, and particularly to a nonlinear piezoelectric material that can be greatly displaced with a small voltage and the element.
  • a nonlinear piezoelectric effect is obtained by using the electric field induced phase transition of antiferroelectric.
  • the feature of this method is that it is transformed into a ferroelectric state by applying a strong electric field using an antiferroelectric material, and obtains a nonlinear displacement.
  • PNZST ceramic field induced antidielectric-dielectric phase transition This is the type that uses deformation.
  • piezoelectric materials and piezoelectric elements that can be deformed by an electric field as one of the methods described above
  • sensors such as acceleration sensors, knock sensors, sensor sensors, ultrasonic microphones, piezoelectric speakers, piezoelectric elements, etc.
  • piezoelectric elements are required to have high conversion efficiency for application to Actuary and Sensors.
  • an actuator that converts voltage to displacement is required to obtain a large stroke (displacement) even at low voltages.
  • the displacement be non-linear (for example, the displacement increases rapidly at a critical voltage).
  • the conventional techniques as described above have the following problems.
  • Patent Document 1 Non-patent Document 1
  • a ferroelectric piezoelectric material having a movable point defect, and the movable point defect is arranged so that the symmetry of the short range order matches the crystal symmetry of the ferroelectric phase. It is a piezoelectric material characterized in that a nonlinear piezoelectric effect is manifested by reversible transformation under the electric field of the domain.
  • Movable point defects are vacancies in the elements that make up ferroelectrics introduced by chemical equilibrium or by additive elements.
  • the ferroelectric is of AB0 3 type.
  • Ferroelectric is B aT i 0 3 or (B a, S r) T i 0 3 type. [9] The ferroelectric is P b (Z r, T i) 0 3 or (P b, rare earth element) (Z r, T i) 0 3 type. [10] Any of the above piezoelectric materials to which other elements are added.
  • the other element is at least one element selected from the group consisting of alkali metals, alkaline earth metals, and transition metals.
  • the invention as described above is based on the knowledge about the symmetry of universal nano-orders of point defects in crystals that the inventor has already conducted basic studies (Xiaobing Ren and Kazuhiro Otuka PHYSICAL REVIEW LETTERS Vol.85, No .5, 2000 July 31, pp.1016-1019)
  • As a means for obtaining the enormous electrostrictive effect the region where the electric polarization direction of the piezoelectric material is different using the symmetry of point defects: It was derived by making the domain transformation reversible. In other words, it has been completed as a new technical idea based on the above new technical knowledge.
  • Non-Patent Document 1 Nature Materials, 3, 91 (2004)
  • Patent Document 1 PCTZJ P 2004 00676 1 Invention Disclosure
  • the inventor of this application has already presented a piezoelectric material based on a completely new principle.
  • a study on a measure for realizing a larger electrostrictive effect at a lower voltage is further proposed. This is not always sufficient, and this point has become a very important issue for future technological development. Therefore, the invention of this application provides means for easily and reliably realizing a larger electrostrictive effect at a lower voltage with respect to the above-described new piezoelectric material presented by the inventor. It is an issue.
  • the invention of this application has the following features. First: In the AB0 type 3 ferroelectric material, a donor with a high valence is added together with an acceptor having an ion valency with a lower valence than at least one of the host atoms A and B Piezoelectric material characterized by
  • a B0 3 type ferroelectric material is B aT i 0 3 , (B a, S r)
  • a B0 type 3 ferroelectric material is B aT i 0 3 or (B a, S r) T i 0 3 and the acceptor is monovalent alkali when substituting B a or S r When substituting for metal, T i, the ion valence is smaller than T i (+4 valence), and the donor has a ionic valence higher than Ba or T i.
  • the acceptor to be substituted for Ti is at least one of Fe, Mn, Co, Cr, Ni, Cu, Zn, and A1, and is more ionic than Ba
  • the donor with higher valence is at least one of Y, lanthanoid, and B i
  • the donor with higher ionic value than T i is at least one of Nb, Ta, S b, and B i. It is characterized by being.
  • a nonlinear piezoelectric element characterized in that any one of the above piezoelectric materials is at least a part of the structure.
  • No. 10 An electrical device or apparatus, or a part thereof, characterized in that the above-described nonlinear piezoelectric element is incorporated as at least a part of the configuration.
  • the invention of this application as described above shows that the addition of metal elements such as K and Fe is effective for the introduction of point defects in the previously proposed invention.
  • metal elements such as K and Fe
  • FIG. 1 is a diagram illustrating the measurement result of the electric field-displacement characteristics in the case of 0.4 mol% La added Ba (T i, ⁇ ) 0 3 .
  • FIG. 2 is a diagram illustrating a hysteresis curve in the case of FIG.
  • FIG. 3 is a diagram exemplifying the measurement result of the electric field-displacement characteristic in the case of B a (T i, Mn) 0 2 added with 1 mo 1% La.
  • FIG. 4 is a diagram exemplifying the measurement result of the electric field-displacement characteristic of 8 & (T i, Mn) 0 3 to which La is added 0.2 to 0.411110 1%.
  • FIG. 5 is a diagram illustrating the measurement result of the electric field-displacement characteristic when 0.1 mol% Nb is added to B a (T i, Mn) 0 3 .
  • FIG. 6 is a diagram illustrating the electric field-displacement characteristic when l mol% Nb is added to B a (T i, Mn) 0 3 .
  • FIG. 7 is a diagram illustrating the electric field-displacement characteristics when 2 mol% Nb is added to Ba (Ti, Mn) 0 3 .
  • Akusepu evening one by a variety of processes in AB0 3 type ferroelectric material, and added donor element may be de one-flop.
  • the addition of the single crystal growth or during sintering of AB0 3 type material may be a dough-flop, other liquid phase method may be a variety of gas phase method.
  • a B0 3 type ferroelectric material for example, B aT i 0 3 , (B a, S r) T i 0 3 , P b (Z r, T i) 0 3, etc.
  • the host atoms A and B may be one type or two or more types.
  • the ion valence should be smaller than at least one of the atoms A and B, and the donor should be selected as having a higher ionic valence.
  • alkali metals such as K, L i and Na are used as the acceptor for B a or B a, S r.
  • Examples include lanthanoids such as Nd, Sm, Eu, and Gd, Y, Bi, etc., and Nb, Ta. Sb, Bi, etc., which have a higher ionic valence than Ti.
  • acceptors and donors are preferably considered to be added generally within the range of 0.0 mol% to 10 mol%.
  • Fig. 1 exemplifies the measurement result of the electric field-displacement characteristics of the crystal added with a.
  • Fig. 2 exemplifies the hysteresis curve.
  • a piezoelectric material was prepared by adding 11110 1% of & to Ba (TiD 99 Mnn. D1 ) 0 3 and measured the electric field-displacement characteristics.
  • FIG. 4 exemplifies the result, and the greatest increase effect was confirmed when 0.2 mol% La was added.
  • a piezoelectric material that realizes a nonlinear piezoelectric effect due to the presence of a movable point defect can exhibit a larger electrostrictive effect by adding an acceptor and a donor. Yes.

Abstract

A piezoelectric material, characterized in that in an ABO3 type ferroelectric material, together with an acceptor having an ionic valence number less than that of at least one of host atoms A and B, a donor having an ionic valence number more than the above valence number of a host atom is also added. The above piezoelectric material exhibits an electrostrictive effect being further greater as compared to that of a conventional piezoelectric material formed by the introduction of a point defect.

Description

技術分野 Technical field
この出願の発明は、 圧電材料と圧電素子に係るものであって、 特に、 小さい電圧で大きく変位させることができる非線形圧電性の材料とそ の素子に関するものである。 背景技術  The invention of this application relates to a piezoelectric material and a piezoelectric element, and particularly to a nonlinear piezoelectric material that can be greatly displaced with a small voltage and the element. Background art
従来、 電界による変形を得る方法としては以下に示す二通りのものが 知られている。  Conventionally, there are two known methods for obtaining deformation due to an electric field.
( 1 ) 強誘電体の強誘電相を用いて、 分極処理した後、 ほぼ線形的な 圧電効果 (電界による変形) を得る。 この方法の特徴は、 強誘電体を用 いて、 ドメインを分極処理によって固定し (つまり、 ドメインを回転さ せない)、 結晶中の正イオンと負イオンを電場印加によって移動させ、 線形的圧電変位を得るものである。 代表的なものとして圧電材料の P b ( Z r T i ) 03 ( P Z T ) はこの方法を用いて圧電効果を得ている。 こ れは、 いわゆる、 分極処理した Ρ Ζ Τセラミックスと呼ばれるものであ る。 (1) After a polarization treatment using the ferroelectric phase of a ferroelectric material, an almost linear piezoelectric effect (deformation due to an electric field) is obtained. The feature of this method is that a ferroelectric is used to fix the domain by polarization (that is, the domain is not rotated), and positive and negative ions in the crystal are moved by applying an electric field. Is what you get. As a typical example, the piezoelectric material P b (Z r T i) 0 3 (PZT) uses this method to obtain a piezoelectric effect. This is the so-called polarized Ρ Τ Τ ceramics.
( 2 )反強誘電体の電界誘起相転移を用いて非線形的圧電効果を得る。 この方法の特徴は、反強誘電体を用いて、強い電場を加えることにより、 強誘電状態に変態させ、 非線形変位を得る 〔いわゆる、 P N Z S Tセラ ミックスの電界誘起反誘電体一誘電体相転移によう変形を利用する型 がこれに相当する〕。  (2) A nonlinear piezoelectric effect is obtained by using the electric field induced phase transition of antiferroelectric. The feature of this method is that it is transformed into a ferroelectric state by applying a strong electric field using an antiferroelectric material, and obtains a nonlinear displacement. [In the so-called PNZST ceramic field induced antidielectric-dielectric phase transition This is the type that uses deformation.
以上いずれかの方法として電界によって変形を得る圧電材料そして 圧電素子については、 近年、 加速度センサー、 ノックセンサー、 Α Εセ ンサ一等のセンサ一や超音波マイクロホン、 圧電スピーカー、 圧電ァク チユエ一夕一、 超音波モーター、 プリンターヘッド、 インクジェットプ リンター用ガン等への応用が急速に拡大するにつれて、 ァクチユエ一夕 一やセンサーへの応用上、 圧電素子には高い変換効率が求められている。 特に、 電圧から変位へ変換するァクチユエ一ターに関しては、 低電圧で も大きなストローク (変位) を得るものが求められる。 また、 変位が非 線形的であることが望ましい (例えば臨界電圧で変位が急激に増加する など)。 しかしながら、 上記のような従来の技術では、 以下の問題点が あった。 With regard to piezoelectric materials and piezoelectric elements that can be deformed by an electric field as one of the methods described above, in recent years, sensors such as acceleration sensors, knock sensors, sensor sensors, ultrasonic microphones, piezoelectric speakers, piezoelectric elements, etc. As the applications to Chiyue, Ultrasonic Motors, Printer Heads, Inkjet Printer Guns, etc., rapidly expand, piezoelectric elements are required to have high conversion efficiency for application to Actuary and Sensors. . In particular, an actuator that converts voltage to displacement is required to obtain a large stroke (displacement) even at low voltages. It is also desirable that the displacement be non-linear (for example, the displacement increases rapidly at a critical voltage). However, the conventional techniques as described above have the following problems.
例えば、上記(1 ) の従来技術の場合、 1)低電圧では変位が小さい(1 0 0 0 V Zmmの電界下で 0 . 0 1— 0 . 1 %しか変形しない)。 2 )電 場のほぼ線形関数でしか変形できない。 3 )電極方向に分極処理が必要 となる。  For example, in the case of the prior art of (1) above, 1) the displacement is small at a low voltage (deforms only 0.001−0.1% under an electric field of 10 00 V Zmm). 2) It can be deformed only by an almost linear function of the electric field. 3) Polarization treatment is required in the electrode direction.
また、 上記 (2 ) の従来技術の場合には、 1)駆動電界が大きい (> 2 5 0 0 V Zmm)。 2)最大変形が小さい (0 . 0 1— 0 . 0 8 % )。 3)特 性が温度に非常に敏感であるという問題がある。  In the case of the prior art (2) above, 1) the driving electric field is large (> 25 500 V Zmm). 2) The maximum deformation is small (0.01—0.08%). 3) There is a problem that the characteristics are very sensitive to temperature.
そこで、 この出願の発明者は、 従来の圧電材料について根本的な再検 討を行ってきた。  Therefore, the inventor of this application has fundamentally reviewed the conventional piezoelectric material.
その際に注目したことは、 従来の圧電材料における逆圧電 ·電歪効果 は圧電材料中のイオンが電場下で微小に移動することによって結晶構 造が少し伸縮することに起因し、 このような過程による電歪は非常に小 さいことである。 一方、 圧電材料には電気分極方向が異なる領域 (ドメ イン) が存在することが注目される。 ドメインの間の分極方向は結晶対 称性によって、 1 8 0 ° や 9 0 ° などの角度がある。 電場を加えると、 分極方向が電圧方向に沿うようにドメイン変換が起こる。 例えば、 分極 が電場に対し垂直である a—ドメインが、 電場印加後に電場に一致する ように、 c一ドメインに変換される。 このドメイン変換に伴い、 低い対 称性を持つ強誘電相の長軸方向と短軸方向が交換することになる。 この 過程で得られる歪の大きさは長軸と短軸の差であり、 材料にもよるが、 この歪は最大 1一 5 %である。 この値は通常の圧電効果より数十倍以上 大きい。 しかし、 この巨大電歪効果は通常は不可逆であるため、 その有 用性は低い。 Attention was paid to the inverse piezoelectric / electrostrictive effect of conventional piezoelectric materials because the crystal structure slightly expands and contracts as ions in the piezoelectric material move minutely under an electric field. The electrostriction due to the process is very small. On the other hand, it is noted that there are regions (domains) with different electric polarization directions in piezoelectric materials. The polarization direction between domains has an angle such as 180 ° or 90 °, depending on crystal symmetry. When an electric field is applied, domain transformation occurs so that the polarization direction follows the voltage direction. For example, an a-domain whose polarization is perpendicular to the electric field is converted to a single domain so that it matches the electric field after application of the electric field. Along with this domain conversion, the major axis direction and minor axis direction of the ferroelectric phase having low symmetry are exchanged. The magnitude of strain obtained in this process is the difference between the major axis and the minor axis, and it depends on the material, This distortion is a maximum of 1-15%. This value is several tens of times greater than the normal piezoelectric effect. However, since this giant electrostrictive effect is usually irreversible, its usefulness is low.
しかしながら、 発明者は、 このようなドメイン交換を可逆的なものに することで巨大な電歪効果を得ることができるとの観点に注目した。 そして、 発明者は、 以上のような状況に鑑みて鋭意検討を進め、 新し い原理に基づいて、 低電圧でも変位が大きく、 かつ変位が急峻で非線形 特性を顕著に発現することのできる圧電材料とこれを用いた非線形圧 電素子、 その応用としての電気機器あるいは機械を提供することを課題 としてきた。  However, the inventor paid attention to the viewpoint that a huge electrostrictive effect can be obtained by making such domain exchange reversible. Then, the inventor has proceeded diligently in consideration of the above situation, and based on a new principle, a piezoelectric material that has a large displacement even at a low voltage and has a sharp displacement and can exhibit a nonlinear characteristic notably. The issue has been to provide materials, nonlinear piezoelectric elements using them, and electrical equipment or machines as their applications.
発明者による検討の結果として、 上記の課題を解決する新しい手段を 見出し、 これを発明としてすでに提案している (非特許文献 1) (特許 文献 1 )。 この発明は以下のような特徴を有している。  As a result of the study by the inventors, a new means for solving the above problems has been found and this has already been proposed as an invention (Non-patent Document 1) (Patent Document 1). The present invention has the following features.
〔1〕 可動性の点欠陥を有する強誘電体圧電材料であって、 可動性の点 欠陥が、 その短範囲秩序の対称性が強誘電相の結晶対称性に一致するよ うに配置されており、 ドメインの電場下での可逆的変換によって非線形 圧電効果が発現されることを特徴とする圧電材料である。  [1] A ferroelectric piezoelectric material having a movable point defect, and the movable point defect is arranged so that the symmetry of the short range order matches the crystal symmetry of the ferroelectric phase. It is a piezoelectric material characterized in that a nonlinear piezoelectric effect is manifested by reversible transformation under the electric field of the domain.
〔2〕 可動性の点欠陥は、 化学平衡によって、 または添加元素によって 導入された強誘電体を構成する元素の空孔である。  [2] Movable point defects are vacancies in the elements that make up ferroelectrics introduced by chemical equilibrium or by additive elements.
〔 3〕 キユリ一温度以下で時効処理されて点欠陥の短範囲秩序の対称性 が強誘電相の結晶対称性に一致するように配置されている。  [3] Arranged so that the short-range order symmetry of point defects coincides with the crystal symmetry of the ferroelectric phase after aging treatment at a temperature below the critical temperature.
〔4〕 単結晶体または多結晶体である。  [4] Single crystal or polycrystal.
〔5〕 薄膜である。  [5] Thin film.
〔6〕 多層膜である。  [6] A multilayer film.
〔7〕 強誘電体が AB03型のものである。 [7] the ferroelectric is of AB0 3 type.
〔8〕 強誘電体が B aT i 03または (B a, S r) T i 03型である。 〔9〕 強誘電体が P b (Z r , T i ) 03または (P b, 希土類元素) (Z r , T i ) 03型である。 〔10〕 他元素が添加されている上記いずれかの圧電材料である。 [8] Ferroelectric is B aT i 0 3 or (B a, S r) T i 0 3 type. [9] The ferroelectric is P b (Z r, T i) 0 3 or (P b, rare earth element) (Z r, T i) 0 3 type. [10] Any of the above piezoelectric materials to which other elements are added.
〔1 1〕 他元素はアルカリ金属、 アルカリ土類金属および遷移金属のう ちの 1種以上の元素である。  [1 1] The other element is at least one element selected from the group consisting of alkali metals, alkaline earth metals, and transition metals.
〔12〕 他元素が 20モル%以下の割合で添加されている。  [12] Other elements are added at a ratio of 20 mol% or less.
〔13〕 添加される他元素は、 Na, K, Mg, C a, A 1 , V, C r, Mn, F e, Co, N i , Zn, G a , Rb, S r, Y, Z r, Nb, Mo, R u, Rh, Ag, S n, H f , T a, W, O s , I r , P t , P b, B 1 , および、 希土類元素のうちの 1種以上である。  [13] Other elements added are Na, K, Mg, Ca, A1, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Rb, Sr, Y, Z r, Nb, Mo, Ru, Rh, Ag, Sn, Hf, Ta, W, Os, Ir, Pt, Pb, B1, and one or more of the rare earth elements is there.
以上のとおりの発明は、 発明者がすでにその基本的な検討を行ってき た結晶における点欠陥の普遍的なナノ秩序の対称性についての知見 (Xiaobing Ren and Kazuhiro Otuka PHYSICAL REVIEW LETTERS Vol.85, No.5, 2000 July 31, pp.1016-1019) を踏まえて、 前記巨大な電歪効果 を得るための手段として、 点欠陥の対称性を利用して圧電材料の電気分 極方向が異なる領域: ドメインの変換を可逆的なものとしたことにより 導かれたものである。 すなわち、 上記のような新しい技術的知見に基づ く新規な技術思想として完成されている。  The invention as described above is based on the knowledge about the symmetry of universal nano-orders of point defects in crystals that the inventor has already conducted basic studies (Xiaobing Ren and Kazuhiro Otuka PHYSICAL REVIEW LETTERS Vol.85, No .5, 2000 July 31, pp.1016-1019) As a means for obtaining the enormous electrostrictive effect, the region where the electric polarization direction of the piezoelectric material is different using the symmetry of point defects: It was derived by making the domain transformation reversible. In other words, it has been completed as a new technical idea based on the above new technical knowledge.
非特許文献 1 : Nature Materials, 3, 91 (2004)  Non-Patent Document 1: Nature Materials, 3, 91 (2004)
特許文献 1 : PCTZJ P 2004 00676 1 発明の開示  Patent Document 1: PCTZJ P 2004 00676 1 Invention Disclosure
上記のとおりの発明として、 この出願の発明者は全く新しい原理に基 づく圧電材料をすでに提示しているが、 さらにより低電圧で、 より大き な電歪効果を実現するための方策についての検討は必ずしも充分では なく、 この点が今後の技術発展のための極めて重要な課題となっていた。 そこで、 この出願の発明は、 発明者が提示している上記のとおりの新 しい圧電材料についてより低電圧で、 より大きな電歪効果を簡便に、 か つ確実に実現するための手段を提供することを課題としている。  As the invention as described above, the inventor of this application has already presented a piezoelectric material based on a completely new principle. However, a study on a measure for realizing a larger electrostrictive effect at a lower voltage is further proposed. This is not always sufficient, and this point has become a very important issue for future technological development. Therefore, the invention of this application provides means for easily and reliably realizing a larger electrostrictive effect at a lower voltage with respect to the above-described new piezoelectric material presented by the inventor. It is an issue.
この出願の発明は以下の特徴を有している。 第 1 : AB03型強誘電体材料において、 ホスト原子 Aおよび Bの少 くともいずれかよりも価数の小さいイオン価を有するァクセプ夕一と ともに、 価数の大きいドナーが添加されていることを特徴とする圧電材 料。 The invention of this application has the following features. First: In the AB0 type 3 ferroelectric material, a donor with a high valence is added together with an acceptor having an ion valency with a lower valence than at least one of the host atoms A and B Piezoelectric material characterized by
第 2 : A B03型強誘電体材料が、 B aT i 03、 (B a, S r ) Second: A B0 3 type ferroelectric material is B aT i 0 3 , (B a, S r)
T i 03、 P b (Z r , T i ) 03、 (P b, 希土類元素) (Z r, T i ) 03、 KNb 03もしくはそれらの固溶体であることを特徴とする。 T i 0 3 , P b (Z r, T i) 0 3 , (P b, rare earth element) (Z r, T i) 0 3 , KNb 0 3 or a solid solution thereof.
第 3 : A B03型強誘電体材料が、 B aT i 03または (B a, S r) T i 03であって、 ァクセプターは B aもしくは S rに置換する場合は 一価のアルカリ金属、 T iに置換する場合は T i (+4価)よりイオン価が 小さく、 ドナーは、 B aもしくは T iよりイオン価が大きいことを特徴 とする。 Third: A B0 type 3 ferroelectric material is B aT i 0 3 or (B a, S r) T i 0 3 and the acceptor is monovalent alkali when substituting B a or S r When substituting for metal, T i, the ion valence is smaller than T i (+4 valence), and the donor has a ionic valence higher than Ba or T i.
第 4 : T iに置換するァクセプ夕一は、 F e, Mn, C o, C r, N i, C u, Z nおよび A 1のうちの少くとも 1種であり、 B aよりィ オン価の大きいドナーは、 Y、 ランタノイド、 B iのうちの少くとも 1 種で、 T iよりイオン価の大きいドナ一は、 Nb, T a, S b, B iの うちの少くとも 1種であることを特徴とする。  Fourth: The acceptor to be substituted for Ti is at least one of Fe, Mn, Co, Cr, Ni, Cu, Zn, and A1, and is more ionic than Ba The donor with higher valence is at least one of Y, lanthanoid, and B i, and the donor with higher ionic value than T i is at least one of Nb, Ta, S b, and B i. It is characterized by being.
第 5 :ァクセブ夕一が、 0. 0 1 mo 1 %~ 1 Omo 1 %の範囲で、 ドナーが、 0. 0 1 mo 1 %〜 1 0 mo 1 %の範囲で添加されているこ とを特徴とする。  Fifth: It is confirmed that Xebubu is added in the range of 0.0 1 mo 1% to 1 Omo 1% and the donor is added in the range of 0.0 1 mo 1% to 1 0 mo 1%. Features.
第 6 :単結晶体または多結晶体であることを特徴とする。  Sixth: It is characterized by being a single crystal or a polycrystal.
第 7 :薄膜であることを特徴とする。  Seventh: It is characterized by being a thin film.
第 8 :キュリー温度以下で時効処理あるいは室温までゆつくり冷却さ れていることを特徴とする。  Eighth: It is characterized by being aging treated below the Curie temperature or cooled slowly to room temperature.
第 9 :上記いずれかの圧電材料が少くともその構成の一部とされてい ることを特徴とする非線形圧電素子。  Ninth: A nonlinear piezoelectric element characterized in that any one of the above piezoelectric materials is at least a part of the structure.
第 1 0 :上記の非線形圧電素子が構成の少くとも一部として組込まれ ていることを特徴とする電気機器もしくは機器、 あるいはその部品。 以上のとおりのこの出願の発明は、 すでに提案している前記の発明に おいても点欠陥の導入のために、 Kや F e等の金属元素の添加が有効で あることを提示しているが、 これをさらに発展させ、 ァクセプタ一原子 とともにドナー原子をともに添加することが電歪効果の顕著な増大を もたらすとの全く新しい知見を踏まえている。 図面の簡単な説明 No. 10: An electrical device or apparatus, or a part thereof, characterized in that the above-described nonlinear piezoelectric element is incorporated as at least a part of the configuration. The invention of this application as described above shows that the addition of metal elements such as K and Fe is effective for the introduction of point defects in the previously proposed invention. However, this is further developed and based on the completely new finding that adding a donor atom together with an acceptor atom brings about a significant increase in the electrostrictive effect. Brief Description of Drawings
図 1は、 0. 4mo l %L a添加 B a (T i , Μη) 03の場合の電 界ー変位特性の測定結果を例示した図である。 FIG. 1 is a diagram illustrating the measurement result of the electric field-displacement characteristics in the case of 0.4 mol% La added Ba (T i, Μη) 0 3 .
図 2は、 図 1の場合のヒステリシス曲線を例示した図である。  FIG. 2 is a diagram illustrating a hysteresis curve in the case of FIG.
図 3は、 1 mo 1 %L aを添加した B a (T i , Mn) 02の場合の 電界一変位特性の測定結果を例示した図である。 FIG. 3 is a diagram exemplifying the measurement result of the electric field-displacement characteristic in the case of B a (T i, Mn) 0 2 added with 1 mo 1% La.
図 4は、 L aを 0. 2~0. 41110 1 %添加した8 & (T i , Mn) 03の電界一変位特性の測定結果を例示した図である。 FIG. 4 is a diagram exemplifying the measurement result of the electric field-displacement characteristic of 8 & (T i, Mn) 0 3 to which La is added 0.2 to 0.411110 1%.
図 5は、 B a (T i , Mn) 03に 0. lmo l %Nbを添加した場 合の電界一変位特性の測定結果を例示した図である。 FIG. 5 is a diagram illustrating the measurement result of the electric field-displacement characteristic when 0.1 mol% Nb is added to B a (T i, Mn) 0 3 .
図 6は、 B a (T i , Mn) 03に l mo l %Nbを添加した場合の 電界一変位特性のを例示した図である。 FIG. 6 is a diagram illustrating the electric field-displacement characteristic when l mol% Nb is added to B a (T i, Mn) 0 3 .
図 7は、 B a (T i , Mn) 03に 2mo l %Nbを添加した場合の 電界一変位特性を例示した図である。 発明を実施するための最良の形態 FIG. 7 is a diagram illustrating the electric field-displacement characteristics when 2 mol% Nb is added to Ba (Ti, Mn) 0 3 . BEST MODE FOR CARRYING OUT THE INVENTION
この出願の発明の実施に際しては、 AB03型の強誘電体材料に各種 の方法によりァクセプ夕一、 そしてドナー元素を添加、 ド一プすること ができる。 In the practice of the invention of this application, Akusepu evening one by a variety of processes in AB0 3 type ferroelectric material, and added donor element may be de one-flop.
たとえば AB03型材料の単結晶育成時や焼結時における添加、 ドー プでもよいし、 その他の液相法、 気相法の各種であってよい。 For example the addition of the single crystal growth or during sintering of AB0 3 type material, may be a dough-flop, other liquid phase method may be a variety of gas phase method.
A B03型強誘電体材料については、 たとえば B aT i 03、 (B a, S r ) T i 03、 P b (Z r, T i ) 03等のように、 ホスト原子 A, Bは 1種または 2種以上の各種のものであってよく、 ァクセプ夕一は、 ホス ト原子 A, Bの少くともいずれかよりイオン価が小さく、 ドナ一は、 ィ オン価が大きいものとして選択されればよい。 たとえば B aT i 03型、 (B a, S r ) T i 03型のものにおいては、 ァクセプターとして、 B aまたは B a, S rに係わるものとして K, L i , Naというアルカリ 金属が、 T iに係わるものとして F e、 Mn、 Co, C r, N i, Cu, Z n, A 1等が、 ドナーとして、 B a, Srよりイオン価の大きい L a、 Ce, P r , Nd, Sm, E u, Gd等のランタノイドや Y, B i等や、 T iよりイオン価の大きい Nb、 Ta. S b, B i等が例示される。 これらのァクセプ夕一とドナーについては、 各々、 一般的には 0. 0 lmo l %〜10mo l %の範囲内において添加されることが好適に 考慮される。 A B0 3 type ferroelectric material, for example, B aT i 0 3 , (B a, S r) T i 0 3 , P b (Z r, T i) 0 3, etc., the host atoms A and B may be one type or two or more types. The ion valence should be smaller than at least one of the atoms A and B, and the donor should be selected as having a higher ionic valence. For example, in the case of B aT i 0 3 type and (B a, S r) T i 0 3 type, alkali metals such as K, L i and Na are used as the acceptor for B a or B a, S r. Fe, Mn, Co, Cr, Ni, Cu, Zn, A1, etc. as the donors of Ti, and La, Ce, Pr, Examples include lanthanoids such as Nd, Sm, Eu, and Gd, Y, Bi, etc., and Nb, Ta. Sb, Bi, etc., which have a higher ionic valence than Ti. These acceptors and donors are preferably considered to be added generally within the range of 0.0 mol% to 10 mol%.
そこで以下に実施例を示し、 さらに詳しくこの出願の発明について説 明する。 もちろん以下の例によって発明が限定されることはない。 実施例  Therefore, examples will be shown below, and the invention of this application will be described in more detail. Of course, the invention is not limited by the following examples. Example
< 1〉 1 mo 1 %の Mnを添加した B a (T i 0.99M n。 ) 03結晶と、 このものにさらに L a O. 4mo 1 %を添加した結晶を 1400^、 4 時間の焼結により製造した。 この各々のセラミックス圧電材料について 電界一変位特性を測定した。 <1> 1 mo 1% of Mn added was B a (T i 0. 99 M n.) 0 3 crystal and this one to a more crystalline with added L a O. 4mo 1% 1400 ^ , 4 hours It was manufactured by sintering. Electric field-displacement characteristics were measured for each of these ceramic piezoelectric materials.
その結果、 後者の L a 0. 4mo 1 %添加した B a (T i , Μη) 03結晶においては、 L aを添加しない場合に比べて歪みが、 30~4 0 %も増大することが確認された。 As a result, in the latter Ba a (T i, Μη) 0 3 crystal added with La 0.4% 1%, the strain increases by 30 to 40% compared to the case where La is not added. confirmed.
図 1は、 このし a添加した結晶の電界一変位特性の測定結果を例示し たものであり、 図 2は、 ヒステリシス曲線を例示したものである。  Fig. 1 exemplifies the measurement result of the electric field-displacement characteristics of the crystal added with a. Fig. 2 exemplifies the hysteresis curve.
このように、 ァクセプ夕一としての Mnとともにドナーとしての L a の添加によって、 電歪効果は極めて顕著に大きなものとなることが確認 された。 In this way, it is confirmed that the electrostriction effect becomes extremely remarkable by adding La as a donor together with Mn as an acceptor. It was done.
<2>同様にして B a (T i D 99Mnn.D1) 03に、 &を 11110 1 %添加 した圧電材料を製造し、 その電界一変位特性を測定した。 <2> Similarly, a piezoelectric material was prepared by adding 11110 1% of & to Ba (TiD 99 Mnn. D1 ) 0 3 and measured the electric field-displacement characteristics.
その結果を図 3に例示した。 L aを添加しない場合に比べて、 電歪効 果の増大が確認された。  The results are illustrated in FIG. The electrostrictive effect was increased compared to the case where La was not added.
く 3〉さらに、 B a ( T i 0.99M n 0.01) O 3に、 L aを 0. 1 m o 1 %、 0. 2mo l %、 0. 3mo l %、 0. 4 m o 1 %の各々を添加した場 合についても電歪効果を評価した。 Ku 3> In addition, B a (T i 0. 99 M n 0. 01) to O 3, the L a 0. 1 mo 1%, 0. 2mo l%, 0. 3mo l%, 0. 4 mo 1 The electrostriction effect was also evaluated when each of the percentages was added.
図 4はその結果を例示したものであって、 0. 2mo l %L a添加の 場合に最も大きな増大効果が確認された。  FIG. 4 exemplifies the result, and the greatest increase effect was confirmed when 0.2 mol% La was added.
ぐ 4〉上記と同様にして、 焼結法によって、 B a (T i 0. 99 Mn 0. 0 1) O3に、 Nbを、 0. lmo l %、 1. 0mo l %、 そして 2. Omo 1 %の各々を添加した場合の結晶体を製造した。 これら各々 について電歪効果を評価した。 その結果を例示したものが図 5、 図 6お よび図 7である。 いずれの場合も電歪効果の増大が見られる。 4> In the same manner as described above, by sintering, B a (T i 0. 99 Mn 0. 0 1) O 3 and Nb are changed to 0.1 mol%, 1.0 mol%, and 2. Crystals were prepared when each of Omo 1% was added. The electrostrictive effect was evaluated for each of these. The results are shown in Fig. 5, Fig. 6 and Fig. 7. In either case, the electrostriction effect is increased.
特に、 図 7に示した 1 mo 1 %Mnと 2mo 1 %Nbから添加されて いるものの場合は、 ヒステリシスが小さく、 臨界電場が小さいことが注 目される。 産業上の利用可能性  In particular, in the case of the one added from 1 mo 1% Mn and 2mo 1% Nb shown in Fig. 7, it is noted that the hysteresis is small and the critical electric field is small. Industrial applicability
以上のとおり、 この出願の発明によれば、 可動性の点欠陥の存在によ る非線形圧電効果を実現する圧電材料について、 ァクセプ夕一とドナー の添加によって、 さらに大きな電歪効果を発現可能としている。  As described above, according to the invention of this application, a piezoelectric material that realizes a nonlinear piezoelectric effect due to the presence of a movable point defect can exhibit a larger electrostrictive effect by adding an acceptor and a donor. Yes.

Claims

請求の範囲 The scope of the claims
1. AB03型強誘電体材料において、 ホスト原子 Aおよび Bの少く ともいずれかよりも価数の小さいイオン価を有するァクセプ夕一とと もに、 価数の大きいドナーが添加されていることを特徴とする圧電材料。 1. In the AB0 type 3 ferroelectric material, a donor having a high valence is added together with an acceptor having an ionic valence lower than that of at least one of the host atoms A and B. A piezoelectric material characterized by
2. A B03型強誘電体材料が、 B aT i 03、 (B a, S r) T i 03、 P b (Z r, T i ) 03、 (P b, 希土類元素) (Z r , T i ) 03、 KNb03 もしくはそれらの固溶体であることを特徴とする請求項 1の圧電材料。 2. A B0 3 type ferroelectric material is B aT i 0 3 , (B a, S r) T i 0 3 , P b (Z r, T i) 0 3 , (P b, rare earth element) ( Z r, T i) 0 3 , KNb0 3 or piezoelectric material according to claim 1, which is a solid solution thereof.
3. AB03型強誘電体材料が、 B a T i 03または (B a, S r) T i 03であって、 ァクセプタ一は Baもしくは Srに置換する場合は一 価のアルカリ金属、 T iに置換する場合は Ti (+4価) よりイオン価が小 さく、 ドナーは、 B aもしくは T iよりイオン価が大きいことを特徴と する請求項 2の圧電材料。 3. AB0 type 3 ferroelectric material is B a T i 0 3 or (B a, S r) T i 0 3 and the acceptor is a monovalent alkali metal when substituting Ba or Sr, 3. The piezoelectric material according to claim 2, wherein when Ti is substituted, the ion valence is smaller than that of Ti (+4 valence), and the donor has a larger ionic valence than Ba or Ti.
4. T iに置換するァクセプターは、 Fe, Mn, Co, C r, N i , Cu, Z nおよび A 1のうちの少くとも 1種であり、 B aよりイオン価 が大きいドナ一は、 Y、 ランタノイド、 B iのうちの少くとも 1種で、 T iよりイオン価が大きいドナーは、 Nb, T a, S b, B iのうちの 少くとも 1種であることを特徴とする請求項 3の圧電材料。  4. The acceptor substituted for Ti is at least one of Fe, Mn, Co, Cr, Ni, Cu, Zn, and A1, and the donor whose ion valence is higher than Ba is The donor having at least one of Y, lanthanoid and B i and having an ionic value greater than T i is at least one of Nb, Ta, S b and B i Item 3. Piezoelectric material.
5. ァクセプ夕一が、 0. 0 1 mo 1 %〜: L 0 mo 1 %の範囲で、 ド ナ一が、 0. 0 lmo 1 %〜: L Omo 1 %の範囲で添加されていること を特徴とする請求項 3または 4の圧電材料。  5. Axcepti is added in the range of 0.0 1 mo 1% to L 0 mo 1%, and the donor is added in the range of 0.0 lmo 1% to L Omo 1%. The piezoelectric material according to claim 3 or 4, wherein:
6. 単結晶体または多結晶体であることを特徴とする請求項 1から 5 のいずれかの圧電材料。  6. The piezoelectric material according to claim 1, wherein the piezoelectric material is a single crystal or a polycrystal.
7. 薄膜であることを特徴とする請求項 1から 6のいずれかの圧電材 料。  7. The piezoelectric material according to claim 1, wherein the piezoelectric material is a thin film.
8. キュリー温度以下で時効処理あるいは室温までゆつくり冷却され ていることを特徵とする請求項 1から 7のいずれかの圧電材料。  8. The piezoelectric material according to any one of claims 1 to 7, wherein the piezoelectric material is aging-treated at a Curie temperature or lower or slowly cooled to room temperature.
9. 請求項 1から 8のうちのいずれかの圧電材料が少くともその構成 の一部とされていることを特徴とする非線形圧電素子。 9. A piezoelectric material according to any one of claims 1 to 8 having at least its configuration A nonlinear piezoelectric element characterized in that it is a part of
1 0 . 請求項 9の非線形圧電素子が構成の少くとも一部として組込ま れていることを特徴とする電気機器もしくは機器、 あるいはその部品。  10. An electrical device or apparatus, or a component thereof, wherein the nonlinear piezoelectric element according to claim 9 is incorporated as at least a part of a configuration.
PCT/JP2005/021323 2004-11-15 2005-11-15 Piezoelectric material and nonlinear piezoelectric element WO2006052033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-331245 2004-11-15
JP2004331245A JP4997521B2 (en) 2004-11-15 2004-11-15 Piezoelectric materials and nonlinear piezoelectric elements

Publications (1)

Publication Number Publication Date
WO2006052033A1 true WO2006052033A1 (en) 2006-05-18

Family

ID=36336685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021323 WO2006052033A1 (en) 2004-11-15 2005-11-15 Piezoelectric material and nonlinear piezoelectric element

Country Status (2)

Country Link
JP (1) JP4997521B2 (en)
WO (1) WO2006052033A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100345A2 (en) 2009-03-02 2010-09-10 Alex Hr Roustaei Smart system for the high-yield production of solar energy in multiple capture chambers provided with nanoparticle photovoltaic cells

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305263B2 (en) * 2007-10-17 2013-10-02 独立行政法人産業技術総合研究所 Piezoelectric material for power generation
JP2010150126A (en) 2008-11-18 2010-07-08 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic composition, piezoelectric/electro-stric sintered compact, piezoelectric/electrostrictive element, method for producing piezoelectric/electrostrictive composition, and method for producing piezoelectric/electrostrictive element
KR101092464B1 (en) 2010-05-07 2011-12-13 경북대학교 산학협력단 piezoelectric element using of bulk heterojunction layer, and thereof manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244357A (en) * 1988-03-26 1989-09-28 Olympus Optical Co Ltd Method for forming ultrasonic wave image
JPH08333158A (en) * 1995-06-02 1996-12-17 Matsushita Electric Ind Co Ltd Piezoelectric ceramic composition and production of piezoelectric resonator using the same
JP2000327415A (en) * 1998-10-21 2000-11-28 Teikoku Chem Ind Corp Ltd Ferroelectric thin film forming composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748291B2 (en) * 2001-01-10 2011-08-17 Tdk株式会社 Laminate displacement element
DE10229086A1 (en) * 2001-09-29 2003-04-17 Ceramtec Ag Piezoelectric ceramic materials based on lead zirconate titanate (PZT) with the crystal structure of the perovskite
US6702952B2 (en) * 2001-12-19 2004-03-09 Ngk Insulators, Ltd. Piezoelectric/electrostrictive material and method for preparing the same
JP3678234B2 (en) * 2002-07-25 2005-08-03 株式会社村田製作所 Method for manufacturing multilayer piezoelectric component and multilayer electronic component
JP4698161B2 (en) * 2003-05-13 2011-06-08 独立行政法人科学技術振興機構 Piezoelectric material and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244357A (en) * 1988-03-26 1989-09-28 Olympus Optical Co Ltd Method for forming ultrasonic wave image
JPH08333158A (en) * 1995-06-02 1996-12-17 Matsushita Electric Ind Co Ltd Piezoelectric ceramic composition and production of piezoelectric resonator using the same
JP2000327415A (en) * 1998-10-21 2000-11-28 Teikoku Chem Ind Corp Ltd Ferroelectric thin film forming composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUKUNAGA M ET AL: "Compact and Simple Apparatus for Measuring Direct Piezoelectricity.", JPN. J. APPL. PHYS., vol. 42, no. 9B, 2003, pages 6115 - 6117, XP002995295 *
KISHI H ET AL: "Occupational sites and dielectric properties of rare-earth and Mn substituted BaTiO3.", JOURNAL OF THE EUROPEAN CERAMICS SOCIETY., vol. 21, no. 10-11, 2001, pages 1643 - 1647, XP004301740 *
KOKARE S R ET AL: "Studies on compensating valency substituted BaTi (1-x) Mn x/2 Nb x/2 O 3 ceramics.", BULLETIN OF MATERIALS SCIENCE., vol. 24, no. 2, 2001, pages 243 - 248, XP002995296 *
WAKINO K ET AL: "BEHAVIOR OF Mn- ION ON ELECTRICAL CONDUCTIVITY OF Nb-DOPED TiO2-BASED CERAMICS.", CERAMIC TRANSACTIONS., vol. 32, 1993, pages 129 - 137, XP008061718 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100345A2 (en) 2009-03-02 2010-09-10 Alex Hr Roustaei Smart system for the high-yield production of solar energy in multiple capture chambers provided with nanoparticle photovoltaic cells

Also Published As

Publication number Publication date
JP4997521B2 (en) 2012-08-08
JP2006137654A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
Luo et al. New Pb (Mg1/3Nb2/3) O3–Pb (In1/2Nb1/2) O3–PbZrO3–PbTiO3 quaternary ceramics: morphotropic phase boundary design and electrical properties
Jo et al. Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective
JP4698161B2 (en) Piezoelectric material and manufacturing method thereof
Zhang et al. Lead-free (K, Na) NbO3-based materials: Preparation techniques and piezoelectricity
Nguyen et al. Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb (Zr0. 52Ti0. 48) O3 films with columnar growth on amorphous glass substrates
Park et al. Highly enhanced mechanical quality factor in lead-free (K0. 5Na0. 5) NbO3 piezoelectric ceramics by co-doping with K5. 4Cu1. 3Ta10O29 and CuO
JP2009046373A (en) Piezoelectric/electrostrictive body, manufacturing method of the same, and piezoelectric/electrostrictive element
Zhao et al. Recoverable self-polarization in lead-free bismuth sodium titanate piezoelectric thin films
US10181554B2 (en) Piezoelectric thin film and piezoelectric thin film device
Zhao et al. Structure and enhanced piezoelectric performance of BiScO3-PbTiO3-Pb (Ni1/3Nb2/3) O3 ternary high temperature piezoelectric ceramics
Han et al. Origin of in situ domain formation of heavily Nb-doped Pb (Zr, Ti) O3 thin films sputtered on Ir/TiW/SiO2/Si substrates for mobile sensor applications
Jin et al. Enhanced ferroelectric and piezoelectric response in Mn-doped Bi0. 5Na0. 5TiO3–BaTiO3 lead-free film by pulsed laser deposition
WO2006052033A1 (en) Piezoelectric material and nonlinear piezoelectric element
Lee et al. Thermally stable high strain and piezoelectric characteristics of (Li, Na, K)(Nb, Sb) O3‐CaZrO3 ceramics for piezo actuators
Kim et al. Large electrostrain in K (Nb1− xMnx) O3 lead‐free piezoelectric ceramics
JP5196879B2 (en) Piezoelectric material
Tanaka et al. High electromechanical strain and enhanced temperature characteristics in lead-free (Na, Bi) TiO3–BaTiO3 thin films on Si substrates
Hur et al. Structural and Piezoelectric Properties of (1− x) Pb (Zr1− yTiy) O3–xPb (Zn0. 4Ni0. 6) 1/3Nb2/3O3 Ceramics Near Triple Point
Feng et al. High electric-field-induced strain of Pb (Mg1/3Nb2/3) O3–PbTiO3 crystals in multilayer actuators
Kim et al. Effect of CuO on the ferroelectric and piezoelectric properties of lead-free KNbO3 ceramics
Kim et al. Low‐Temperature Sintering and Piezoelectric Properties of CuO‐Added KNbO 3 Ceramics
Song et al. Electrical properties and temperature stability of SrTiO3‐modified (Bi1/2Na1/2) TiO3‐BaTiO3‐(K1/2Na1/2) NbO3 piezoceramics
Tan et al. In situ XRD observation of crystal deformation of piezoelectric (K, Na) NbO3 thin films
Lee et al. Large strain in CuO‐added (Na0. 2K0. 8) NbO3 ceramic for use in piezoelectric multilayer actuators
Jaita et al. Electric field-induced strain response of lead-free Fe2O3 nanoparticles-modified Bi0. 5 (Na0. 80K0. 20) 0.5 TiO3-0.03 (Ba0. 70Sr0. 03) TiO3 piezoelectric ceramics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806826

Country of ref document: EP

Kind code of ref document: A1