WO2006051703A1 - Stirling refrigration system and cooling room with the same - Google Patents

Stirling refrigration system and cooling room with the same Download PDF

Info

Publication number
WO2006051703A1
WO2006051703A1 PCT/JP2005/019964 JP2005019964W WO2006051703A1 WO 2006051703 A1 WO2006051703 A1 WO 2006051703A1 JP 2005019964 W JP2005019964 W JP 2005019964W WO 2006051703 A1 WO2006051703 A1 WO 2006051703A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
stirling
heat dissipation
refrigerator
Prior art date
Application number
PCT/JP2005/019964
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Kitatani
Masaki Ohtsuka
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006051703A1 publication Critical patent/WO2006051703A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00272Details for cooling refrigerating machinery characterised by the out-flowing air from the back top

Definitions

  • the present invention relates to a Stirling refrigeration system and a refrigerator provided with the same.
  • the Stirling refrigerator has a compact structure and a large refrigerating capacity, but has a small surface area in both the low temperature part and the high temperature part. Therefore, if a Stirling refrigerator is used, the heat dissipation and heat absorption efficiency of the refrigeration system can be improved, and the performance of the refrigerator can be dramatically improved.
  • a Stirling refrigeration system using a Stirling refrigerator has a cooling system that transmits the cold generated in the low temperature part and a heat dissipation system that efficiently releases the heat generated in the high temperature part. ing.
  • the refrigerator equipped with this Stirling refrigeration system has very high refrigeration performance, but the conventional refrigerator has a powerful heat dissipation system. For this reason, the volume of the space in which the object to be cooled in the refrigerator is accommodated is reduced by the heat dissipation system. Therefore, when a Stirling refrigeration system is used for a refrigerator, it is desired to make the heat dissipation system compact.
  • FIG. 9 is a front view of a Stirling refrigeration system 1 having a conventional heat dissipation system.
  • FIG. 10 is a cross-sectional view taken along the line XX in FIG. In addition, the arrow in a figure represents the direction of airflow.
  • the heat dissipation system 3 generates an endothermic heat exchanger (evaporator in the high temperature side heat transfer cycle) 4 attached to the worm section 11 of the Stirling refrigerator 2, a blower fan 6, and a blower fan 6.
  • the heat dissipation heat exchanger (condenser in the high temperature side heat transfer site) 5 is provided.
  • the endothermic heat exchanger 4 and the heat dissipating heat exchanger 5 are connected to each other by a circulation pipe 8 for circulating the refrigerant between the endothermic heat exchanger 4 and the heat dissipating heat exchanger 5.
  • the endothermic heat exchanger 4 is provided with a V-gas / liquid separator or a liquid reservoir (not shown).
  • the shape of the heat-dissipating heat exchanger 5 in the conventional heat-dissipating system is a rectangular parallelepiped having a length of 170 mm, a width of 200 mm, and a height of 100 mm.
  • an opening 10 having a length of 170 mm and a width of 200 mm is provided in the heat exchanger 5 for heat dissipation.
  • a duct 9 communicates with the opening 10.
  • the blower fan 6 has two axial fans with a diameter of 70 mm arranged in parallel at the end of the duct 9. The air flow generated by the blower fan 6 flows from the Stirling refrigerator 2 to the heat-dissipating heat exchanger 5 as directed by arrows in FIGS. 9 and 10.
  • the airflow passes through the heat-dissipating heat exchanger 5 and is then discharged to the outside of the heat-dissipating system 3 through the blower fan 6 from the end of the duct 9.
  • the Stirling refrigeration system 1 is installed in the middle part of the refrigerator.
  • the blower fan 6 is provided such that the rotation center axis of the blower fan 6 discharges airflow behind the refrigerator.
  • FIG. 11 is a diagram showing a wind speed distribution in the opening 10 of the heat exchanger 5 for heat dissipation of the conventional heat dissipation system 3, and the opening 10 of the heat dissipation system 3 shown in FIG. 9 and FIG. It is a view.
  • the rotation center axis of the blower fan 6 is located above the rear of the refrigerator so that the flow of the heat flow for heat dissipation ⁇ 5 in the figure is 0 due to the 0 position of the vertical axis of the vertical axis. It stretches by force.
  • the diameter of the blower fan 6 is smaller than the opening 10 of the heat exchanger for heat dissipation 5. Therefore, the wind speed distribution is biased.
  • Japanese Patent Application Laid-Open No. 20-228867 discloses a technique for making a heat dissipation system compact while efficiently performing heat dissipation.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-302117
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-156802
  • the heat dissipation heat exchange 5 When the natural circulation action of the refrigerant is used as a driving force for circulating the refrigerant in the heat dissipation system 3, the heat dissipation heat exchange 5 must be provided at a position higher than the heat absorption heat exchange 4 .
  • the distance between the heat exchanger 5 for heat dissipation and the heat exchanger 4 for heat absorption is increased, the heat dissipation efficiency of the heat dissipation system 3 decreases. Therefore, it is necessary to make adjustments so that the mutual positional relationship is appropriate. For this reason, a certain amount of space is required between the Stirling refrigerator 2 and the heat exchanger 5 for heat dissipation. Therefore, there is a problem that it is difficult to make the Stirling refrigeration system 1 compact.
  • the Stirling refrigeration system can be made compact. Air can be uniformly blown to the opening of the heat exchanger for heat dissipation.
  • the draft resistance in the heat exchanger for heat dissipation is small and the strong air flow is generated in the part, that is, the drift occurs.
  • a blower fan is installed in a blower path having a sufficiently long duct, a dredging method has also been used conventionally. However, this method has a problem that it is difficult to make the Stirling refrigeration system compact. is there.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to promote the release of warm heat generated in the worm section of a Stirling refrigerator, and to be compact and reduce noise.
  • a Stirling refrigeration system having a heat dissipation system with low power consumption and a refrigerator equipped with the same.
  • a Stirling refrigerator that generates cold by a reverse Stirling cycle and a heat dissipation system that releases the heat generated by the Stirling refrigerator are provided.
  • the heat dissipation system includes an endothermic heat exchanger attached to the worm section of the Stirling refrigerator, and a heat dissipation heat exchanger that is provided above the Stirling refrigerator and emits heat to the outside air.
  • the heat-absorbing heat exchanger and the heat-dissipating heat exchanger are connected by a circulation pipe through which the high-temperature side secondary refrigerant that receives the heat generated in the warm section circulates naturally.
  • the heat dissipation system includes a blower, and an air flow that promotes heat exchange between the high-temperature side secondary refrigerant and the outside air in the heat dissipation heat exchanger is generated by the blower.
  • the blower is installed between the heat-dissipating heat exchanger and the Stirling refrigerator.
  • the maximum wind speed is Vmax
  • the minimum wind speed is Vmin
  • the average wind speed is Vave
  • the value of the distortion index DI specified by the equation DI (Vmax—Vmin) ZVave be 0 or more and 0.5 or less.
  • blower is installed under the heat dissipation heat exchanger, the blower is configured to dissipate heat. It is hard to be affected by thermal effects. Therefore, a Stirling refrigeration system having a longer-life heat dissipation system can be obtained.
  • the blower is provided at a position upstream of the above-described airflow with respect to the position of the heat-dissipating heat exchanger, the heat-dissipating heat exchanger can radiate heat by effectively using the rising airflow. . Therefore, the burden on the blower is reduced. As a result, a Stirling refrigeration system having a heat dissipation system with lower noise and lower power consumption can be obtained.
  • the refrigerator of the present invention includes the above-described heat dissipation system. For this reason, the Stirling refrigeration system that has a heat dissipation system that can efficiently release the heat received in the warm section to the outside through the heat exchanger for heat dissipation and that is compact and has little adverse effect on the global environment is installed. You can get a refrigerator.
  • the space that is inevitably generated between the heat-dissipating heat exchanger ⁇ and the heat-absorbing heat exchanger or the Stirling refrigerator, and that has not been effectively used in the past is effectively used. It becomes possible to do.
  • FIG. 1 is a schematic diagram for explaining a heat dissipation system of the Stirling refrigeration system of the first embodiment.
  • FIG. 2 is a schematic view for explaining a position where a blower fan is installed in the Stirling refrigeration system of the first embodiment.
  • FIG. 3 is a schematic diagram for explaining a virtual space in which the heat dissipation heat exchanger according to the first embodiment is installed.
  • FIG.4 Distortion index DI of heat dissipation heat exchanger of the first embodiment and heat dissipation It is a graph which shows the relationship with the air volume required in order to obtain a fixed heat dissipation using heat exchange ⁇ .
  • FIG. 5 is a diagram showing a wind speed distribution on the upper surface of a virtual rectangular parallelepiped of the heat dissipation heat exchanger according to the first embodiment.
  • FIG. 6 is a schematic view for explaining the arrangement of the blower fans of the second embodiment.
  • FIG. 7 is a schematic diagram showing a heat dissipation system of a Stirling refrigeration system according to a third embodiment.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of a refrigerator equipped with a heat dissipation system of a Stirling refrigeration system of a fourth embodiment.
  • FIG. 9 is a schematic view of a Stirling refrigeration system having a conventional heat dissipation system.
  • FIG. 10 is a schematic view taken along the line XX in FIG. 9.
  • FIG. 11 is a diagram showing a wind speed distribution on a rectangular surface of a heat dissipation heat exchanger of a conventional heat dissipation system.
  • FIG. 1, FIG. 6, FIG. 7, and FIG. 9 show that only the power duct 9 that is a front view of the Stirling refrigeration system 1 is included in the heat exchanger 5 for heat dissipation and the blower fan 6 included therein. The cross-sectional view is shown so that can be seen.
  • FIG. 1 is a schematic diagram showing a heat dissipation system 3 of the Stirling refrigerator 2 according to the first embodiment of the present invention.
  • the heat dissipation system 3 includes an endothermic heat exchanger 4 attached to the worm section 11 of the Stirling refrigerator 2, a blower fan 6, and a heat dissipation heat exchanger 5 that radiates heat by the airflow generated by the blower fan 6. Speak.
  • the heat absorption heat exchanger 4 and the heat dissipation heat exchanger 5 are connected to each other by a circulation pipe 8 for circulating the high-temperature side secondary refrigerant between the heat absorption heat exchanger 4 and the heat dissipation heat exchanger 5. It is connected. Further, a gas-liquid separator or a liquid reservoir (not shown) is provided inside the heat absorption heat exchanger 4.
  • the above-described configuration is the same as that of the conventional Stirling refrigeration system 1.
  • the heat dissipation heat exchanger 5 includes heat transfer fins and heat transfer tubes.
  • the heat transfer fins are made by arranging plate members having a high heat conductivity such as aluminum or copper in parallel with each other at a predetermined interval.
  • the heat transfer tube has the same material force as the heat transfer fin, and penetrates through the plurality of heat transfer fins while meandering. That is, in the Stirling refrigeration system 1 of the present embodiment, a so-called fin tube type heat exchanger is used. This fin tube type heat exchange has a merit that maintenance-free can be realized because the ventilation resistance is small and the amount of dust attached is small.
  • the heat transfer fins are not limited to those used in the present embodiment as long as their heat conduction performance is high, and any heat transfer fins may be used.
  • the heat transfer fins may be of a lattice type or a corrugated type. Since these heat transfer fins have a larger surface area than the heat transfer fins in the present embodiment, they have high heat exchange efficiency.
  • the shape of the heat transfer fins may be an annular shape (doughnut shape) that matches the shape of the Stirling refrigerator 2. However, it is desirable that an appropriate type of heat transfer fin is selected according to the place and situation where the heat exchanger 5 for heat dissipation is installed.
  • a mixture of water and ethanol is sealed in the circulation pipe 8 of the heat dissipation system 3 as a high temperature side secondary refrigerant.
  • this refrigerant By using this refrigerant, adverse effects on the environment and the human body can be reduced.
  • refrigerants include water (simple substance), alcohol, hydrocarbon, CO, or ammonia.
  • water simple substance
  • alcohol alcohol
  • hydrocarbon hydrocarbon
  • CO ammonia
  • Ammonia is a refrigerant that has been practically used in the past, and has a proven track record, particularly when it is used at low temperatures.
  • ammonia is a toxic and flammable gas, it must be handled with great care.
  • ammonia is highly dangerous, it is necessary to prepare a gas mask, a warning device, an abatement device, and an absorbent material for its use.
  • the heat dissipation system that uses ammonia has a higher cost for the incidental facilities.
  • the high temperature side secondary refrigerant used in the present invention is not limited to the above-described one, and other cold refrigerants. It may be a medium.
  • the refrigerant vapor rises in the forward path of the circulation pipe 8 connected to the heat exchanger 5 for heat release and flows into the heat exchanger 5 for heat dissipation installed at a position higher than the heat exchanger 4 for heat absorption. .
  • the refrigerant vapor is liquefied by exchanging heat with the outside air.
  • pure liquid refrigerant or gas is mixed to produce liquid refrigerant.
  • the liquid refrigerant descends in the return path of the circulation pipe 8 connected to the heat-absorbing heat exchanger 4 and is separated into gas and liquid by the gas-liquid separator along the way. Thereafter, the liquid refrigerant returns to the endothermic heat exchanger 4 and again receives warm heat from the warm section 11 and evaporates.
  • heat exchange with a heat transfer amount several tens of times larger than heat exchange by sensible heat is performed by using latent heat in the evaporation and condensation of the refrigerant.
  • the heat exchange efficiency is greatly increased.
  • the difference in height between the heat exchanger 4 for heat absorption and the heat exchanger 5 for heat dissipation and the difference between the specific gravity of the gas refrigerant and the specific gravity of the liquid refrigerant are reduced.
  • a driving force for circulating the high-temperature side secondary refrigerant can be obtained by using the pressure difference. Accordingly, the refrigerant can be naturally circulated without the power of the driving device such as a pump, so that power consumption can be reduced. If the circulation pipe 8 is connected to the lowermost end portion of the heat absorption heat exchanger 4, the above-described pressure difference increases, so that natural circulation due to the evaporation and condensation of the refrigerant can be further smoothed.
  • the manufacturing cost can be reduced. Further, the life of the heat dissipation system 3 is not determined by the life of the drive device. That is, the life of the heat dissipation system 3 is extended.
  • FIG. 2 shows a schematic diagram of the Stirling refrigeration system 1 of the present invention.
  • the natural circulation action of the refrigerant is used as the driving force for circulating the refrigerant, it is necessary to install the heat-dissipating heat exchanger 5 above the heat-absorbing heat exchanger 4 and the Stirling refrigerator 2. .
  • blower fan 6 that is a component of the heat dissipation system 3 in the space S described above, the space S that is necessary but not effectively used can be used effectively.
  • the blower fan 6 is installed at the position as described above, the air flow generated by the drive of the blower fan 6 passes through the vicinity of the Stirling refrigerator 2 main body, so that not only the heat exchange 5 for heat dissipation but also the Stirling refrigerator 2 main body. Is also cooled.
  • FIG. 3 is a schematic diagram for explaining a virtual space in which the heat dissipating heat exchanger 5 according to the first embodiment of the present invention is installed.
  • the heat exchanger 5 for heat dissipation is installed in a rectangular parallelepiped space of 170 mm (length), 200 mm (width), force, and height (100 mm) as shown in Fig. 3.
  • the heat exchanger 5 for heat dissipation has substantially the same shape as the virtual rectangular parallelepiped space.
  • the axis perpendicular to the rectangular surface that faces the virtual rectangular surface of 170 (mm) and lateral b 200 (mm) and passes through the intersection of the diagonal lines of the aforementioned rectangle and the rotation center axis of the blower fan 6 It is installed on the upstream side of the air flow generated by the blower fan 6, that is, on the lower side of the heat exchanger 5 for heat dissipation so as to match.
  • the virtual rectangular shape is substantially the same as the shape of the opening 10 described above, that is, the cross section of the duct 9 provided so as to contain the blower fan 6.
  • the distortion index DI indicating the uniformity of the wind speed distribution generated on the above-described virtual rectangular surface of the heat-dissipating heat exchanger 5 will be described.
  • the distortion index DI 0.
  • FIG. 4 shows the distortion index DI of the heat dissipating heat exchanger 5 according to the first embodiment of the present invention and the air flow necessary to obtain a constant heat dissipating amount using the heat dissipating heat exchanger 5.
  • Data indicated by reference numeral 100 in the figure is data of the heat dissipation system of the first embodiment of the present invention
  • data indicated by reference numeral 200 in the figure is data of the conventional heat dissipation system.
  • the distortion index DI is approximately 0.5 or less
  • the air flow to obtain the desired heat exchange capacity is 2.3m 3 Zmin.
  • the distortion index DI is larger than about 0.5, the air volume for obtaining the desired heat exchange capacity gradually increases.
  • the distortion index DI value when the distortion index DI value is around 1, an air volume of about 3.2 m 3 Zmin, that is, an air volume of about 140% of the air volume of this embodiment is required. is there.
  • the reason why the result shown in FIG. 4 is obtained is considered to be as follows.
  • the distortion index DI is approximately 0.5 or less
  • the airflow is relatively uniform.
  • the heat dissipation amount per unit area of the heat transfer fin of the heat dissipation heat exchanger 5 is large.
  • a desired heat exchange capacity can be obtained with a minimum air volume.
  • the distortion index DI is larger than about 0.5, adverse effects due to the deviation of wind speed begin to appear, and more air volume is required to obtain the desired heat exchange capacity.
  • the distortion index DI value calculated using the maximum wind speed, the minimum wind speed, and the average wind speed on the virtual rectangular surface of the heat-dissipating heat exchanger 5 is 0.5 or more. In the lower range, it can be seen that the wind speed is substantially uniform.
  • FIG. 5 shows the wind speed distribution on the upper surface of the imaginary rectangular parallelepiped of the heat-dissipating heat exchanger 5 in the first embodiment of the present invention.
  • Table 1 shows the calculated value of the distortion index DI of the heat dissipating heat exchanger 5 according to the first embodiment of the present invention, and the calculated value of the distortion index DI of the conventional heat dissipating heat exchanger 5. Is shown.
  • the wind speed distribution on the upper surface of the virtual rectangular parallelepiped of the heat-dissipating heat exchanger 5 of the present embodiment is slightly lower at the position on the extension line of the boss portion of the blower fan 6. It can be seen that the force with the part is almost uniform.
  • the value of the distortion index DI of the present embodiment is 0.3, it can be seen that the wind speed distribution on the upper surface of the virtual rectangular parallelepiped of the heat exchanger 5 for heat radiation is almost uniform.
  • FIG. 6 is a schematic diagram showing the arrangement of the blower fans 6 of the Stirling refrigeration system according to the second embodiment of the present invention.
  • the structure of the blower fan 6 of this embodiment is the same as that of the first embodiment as shown in FIG. Note that the arrow in FIG. 6 indicates the direction of the airflow generated by the blower fan 6. It shows.
  • the heat exchanger 5 for heat dissipation in the heat dissipation system 3 is hotter than the surrounding outside air when the Stirling refrigeration system 1 is driven. Therefore, when the blower fan 6 is installed above the heat dissipation heat exchanger 5, the blower fan 6 is directly affected by the temperature diffusion due to natural convection from the heat dissipation heat exchanger 5. Therefore, in this embodiment, the ventilation fan 6 is installed under the heat exchanger 5 for heat radiation. Thereby, the thermal influence which the ventilation fan 6 receives from the heat exchanger 5 for heat radiation can be minimized. As a result, the life of the heat dissipation system 3 can be extended.
  • FIG. 7 is a schematic diagram showing a heat dissipation system 3 of a Stirling refrigerator system according to a third embodiment of the present invention.
  • the arrow extending in the vertical direction of the blower fan 6 represents the direction of the airflow.
  • the structure other than the structure of the blower fan 6 shown in FIG. 7 is the same as that of the first embodiment.
  • the blower fan 6 is installed so that the airflow is directed from the heat dissipation heat exchanger 5 to the Stirling refrigerator 2. That is, the blower fan 6 is installed below the heat dissipating heat exchanger 5 as in the second embodiment, and is disposed downstream of the airflow generated by the blower fan 6 than the heat dissipating heat exchanger 5. Yes.
  • the air flow rectified by passing through the heat dissipation heat exchanger 5 flows into the blower fan 6.
  • the separation of the airflow from the blade surface of the blower fan 6 is suppressed.
  • a heat dissipation system 3 with lower noise can be obtained.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of a refrigerator 7 in which a heat dissipation system 3 according to a fourth embodiment of the present invention is mounted.
  • the Stirling refrigerator 2 is installed in the vicinity of the rear surface and in the vicinity of the center in the height direction.
  • the cooler 111 constituting the cooling system 19 is installed in the vicinity of the rear surface of the refrigerator 7 and in the vicinity of the lower end portion in the height direction.
  • the heat dissipation system 3 is installed near the center of the direction.
  • the cooler 111 is installed inside the heat insulating wall 12 of the cooler 7, and the heat dissipation system 3 and the Stirling refrigerator 2 are installed in the air duct outside the heat insulating wall 12 of the cooler 7. ing.
  • Each of arrows A, B, C, D, and E in the figure represents the direction of airflow.
  • the blower fan 6 is provided on the upstream side of the airflow with respect to the heat-dissipating heat exchanger 5. Therefore, the heat exchange in the heat-dissipating heat exchanger 5 is promoted by effectively using the rising air flow generated by the heat released by the heat-dissipating heat exchanger 5, so that the burden on the blower fan 6 is reduced!
  • the cold generated in the cold section (cooler in the low-temperature side heat transfer cycle) 13 of the Stirling refrigerator 2 is cooled by the cooler (evaporator in the low-temperature side heat transfer cycle) 111 to the air in the cold air duct 14 Is transmitted to.
  • the rotation of the blower fan 6 (not shown), a partial force of the cold air in the cold air duct 14 is sent into the freezer compartment 15 as indicated by an arrow E and one of the cold air is indicated as indicated by an arrow C.
  • Department is sent into the refrigerator compartment 16.
  • the cold air sent into the refrigerator compartment 16 is sent into the vegetable compartment 17 as shown by arrow D. Further, the cold air in the vegetable compartment 17 is sent again to the vicinity of the cooler 111 through the opening of the cold air duct 14.
  • the drain water generated by the defrosting of the cooler 111 falls toward the drain pan and evaporates in the drain pan.
  • the heat generated in the worm section 11 is conveyed to the heat dissipation exchanger 5 by the refrigerant, and passes through the heat dissipation heat exchanger 5. And efficiently discharged to the outside of the refrigerator 7.
  • the heat dissipation system 3 of this embodiment Is compact, the heat dissipation system 3 does not occupy the space inside the refrigerator 7.
  • the cryogenic cold can be efficiently generated in the cold section 13. Specifically, it is possible to preserve stored items in a temperature range of -50 ° C or lower, the efficiency of freezing and refrigeration is high, the negative impact on the global environment is small, the noise is low, and the refrigerator is Obtainable.
  • Heat dissipation in the worm section of the Stirling refrigerator can be sufficiently promoted, and a Stirling refrigeration system having a heat dissipation system that is compact, low noise, and low power consumption can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A Stirling refrigeration system (1) comprising a Stirling refrigeration machine (2) for generating cold, and a system (3) for radiating heat generated in return for the generation of the cold. The heat radiation system (3) comprises a heat absorbing heat exchanger (4) fixed to a warm section (11) of the Stirling refrigeration machine (2), a heat radiating heat exchanger (5) for radiating heat to the outer air, piping (8) connecting the heat absorbing heat exchanger (4) to the heat radiating heat exchanger (5) and circulating a refrigerant, and a fan (6) for supplying air to the heat radiating heat exchanger (5). The air supply fan (6) is disposed between the heat radiating heat exchanger (5) and the Stirling refrigeration machine (2). Radiation of heat can be sufficiently accelerated at the warm section (11) of the Stirling refrigeration machine (2), so that the Stirling refrigeration system (1) having a compact, low noise and low power consumption heat radiation system (3) can be obtained.

Description

スターリング冷凍システムおよびそれを備えた冷却庫  Stirling refrigeration system and refrigerator equipped with the same
技術分野  Technical field
[0001] 本発明は、スターリング冷凍システムおよびそれを備えた冷却庫に関するものであ る。  [0001] The present invention relates to a Stirling refrigeration system and a refrigerator provided with the same.
背景技術  Background art
[0002] 冷蔵庫などに用いられて!/、る従来の冷凍機は、蒸気圧縮式冷凍サイクルを利用し たものである。この蒸気圧縮式冷凍機においては、冷媒として主に特定フロン (CFC: し hloro Fluoro し arbon)ま 7こ ίま代 ¾=スロン (Hし FC:Hydro Chloro Fluoro Carbonノ が用いられ、フロンの凝縮作用および蒸発作用を利用することによって、所要の冷却 能力が得られている。これらの冷媒は、非常に化学的安定性が高いため、大気中に 放出されると成層圏に達して、オゾン層を破壊するという指摘がある。このため、近年 、特定フロンまたは代替フロンを対象としたフロンの使用および生産が規制されてき ている。  [0002] Conventional refrigerators used in refrigerators and the like utilize a vapor compression refrigeration cycle. In this vapor compression refrigerator, the refrigerant is mainly specified chlorofluorocarbon (CFC: 7 hloro Fluoro arbon) or 7 ί ¾ 代 = stron (H FC: Hydro Chloro Fluoro Carbon), which is used for condensation of chlorofluorocarbons. The required cooling capacity is obtained by using the action and evaporation, and these refrigerants have a very high chemical stability, so when released into the atmosphere they reach the stratosphere and cause the ozone layer to penetrate. For this reason, in recent years, the use and production of chlorofluorocarbons for specific or alternative chlorofluorocarbons has been regulated.
[0003] そのため、蒸気圧縮式冷凍機の代替品として、逆スターリングサイクルを用いたスタ 一リング冷凍機が注目^^めている。  [0003] Therefore, as an alternative to a vapor compression refrigerator, a Stirling refrigerator using a reverse Stirling cycle has attracted attention.
[0004] スターリング冷凍機は、その構造がコンパクトであり、冷凍能力が大きい割に、その 低温部および高温部ともに表面積が小さい。そのため、スターリング冷凍機を用いれ ば、冷凍システムの放熱および吸熱効率が高められるため、冷却庫の性能を飛躍的 に向上させることができる。  [0004] The Stirling refrigerator has a compact structure and a large refrigerating capacity, but has a small surface area in both the low temperature part and the high temperature part. Therefore, if a Stirling refrigerator is used, the heat dissipation and heat absorption efficiency of the refrigeration system can be improved, and the performance of the refrigerator can be dramatically improved.
[0005] また、スターリング冷凍機を用いるスターリング冷凍システムは、低温部にて生成さ れた冷熱を伝達する冷却システムと、高温部にて発生した温熱を効率的に放出する 放熱システムとを有している。このスターリング冷凍システムを備える冷却庫は、冷凍 性能が非常に高いが、従来の冷却庫には必要な力つた放熱システムを有している。 そのため、放熱システムによって冷却庫内の冷却対象物が収容される空間の容積が 狭められている。したがって、スターリング冷凍システムを冷却庫に用いる場合には、 放熱システムをコンパクトにすることが切望されて 、る。 [0006] 図 9は、従来の放熱システムを有するスターリング冷凍システム 1の正面図である。 図 10は、図 9における X— X断面図である。なお、図中の矢印は気流の向きを表す。 [0005] Further, a Stirling refrigeration system using a Stirling refrigerator has a cooling system that transmits the cold generated in the low temperature part and a heat dissipation system that efficiently releases the heat generated in the high temperature part. ing. The refrigerator equipped with this Stirling refrigeration system has very high refrigeration performance, but the conventional refrigerator has a powerful heat dissipation system. For this reason, the volume of the space in which the object to be cooled in the refrigerator is accommodated is reduced by the heat dissipation system. Therefore, when a Stirling refrigeration system is used for a refrigerator, it is desired to make the heat dissipation system compact. FIG. 9 is a front view of a Stirling refrigeration system 1 having a conventional heat dissipation system. FIG. 10 is a cross-sectional view taken along the line XX in FIG. In addition, the arrow in a figure represents the direction of airflow.
[0007] 放熱システム 3は、スターリング冷凍機 2のウォームセクション 11に取り付けられた吸 熱用熱交換器 (高温側熱搬送サイクルにおける蒸発器) 4と、送風ファン 6と、送風フ アン 6が生成する気流によって放熱が促進される放熱用熱交換器 (高温側熱搬送サ イタルにおける凝縮器) 5とを有している。吸熱用熱交 4と放熱用熱交 5とは 、吸熱用熱交 4と放熱用熱交 5との間で冷媒を循環させるための循環用配 管 8によって互いに接続されている。また、吸熱用熱交換器 4の内部には、図示しな Vヽ気液分離器または液溜が設けられて 、る。  [0007] The heat dissipation system 3 generates an endothermic heat exchanger (evaporator in the high temperature side heat transfer cycle) 4 attached to the worm section 11 of the Stirling refrigerator 2, a blower fan 6, and a blower fan 6. The heat dissipation heat exchanger (condenser in the high temperature side heat transfer site) 5 is provided. The endothermic heat exchanger 4 and the heat dissipating heat exchanger 5 are connected to each other by a circulation pipe 8 for circulating the refrigerant between the endothermic heat exchanger 4 and the heat dissipating heat exchanger 5. In addition, the endothermic heat exchanger 4 is provided with a V-gas / liquid separator or a liquid reservoir (not shown).
[0008] 従来の放熱システムにおける放熱用熱交換器 5の形状は、縦 170mm、横 200mm 、かつ、高さ 100mmの直方体である。放熱用熱交換器 5においては、縦 170mm、 かつ、横 200mmの開口部 10が設けられている。開口部 10にはダクト 9が連通してい る。送風ファン 6は、ダクト 9の終端部に直径 70mmの軸流ファンが 2個並列に設けら れている。送風ファン 6によって生じた気流は、図 9および図 10中の矢印で示すよう に、スターリング冷凍機 2から放熱用熱交^^ 5に向力つて流れる。それにより、その 気流は、放熱用熱交 5を通過した後、ダクト 9の終端カゝら送風ファン 6を経て放熱 システム 3の外部に放出される。スターリング冷凍システム 1は、冷却庫の中段部に設 置される。また、送風ファン 6は、その回転中心軸が冷却庫の後方に気流が排出され るように設けられている。  [0008] The shape of the heat-dissipating heat exchanger 5 in the conventional heat-dissipating system is a rectangular parallelepiped having a length of 170 mm, a width of 200 mm, and a height of 100 mm. In the heat exchanger 5 for heat dissipation, an opening 10 having a length of 170 mm and a width of 200 mm is provided. A duct 9 communicates with the opening 10. The blower fan 6 has two axial fans with a diameter of 70 mm arranged in parallel at the end of the duct 9. The air flow generated by the blower fan 6 flows from the Stirling refrigerator 2 to the heat-dissipating heat exchanger 5 as directed by arrows in FIGS. 9 and 10. As a result, the airflow passes through the heat-dissipating heat exchanger 5 and is then discharged to the outside of the heat-dissipating system 3 through the blower fan 6 from the end of the duct 9. The Stirling refrigeration system 1 is installed in the middle part of the refrigerator. In addition, the blower fan 6 is provided such that the rotation center axis of the blower fan 6 discharges airflow behind the refrigerator.
[0009] 図 11は、従来の放熱システム 3の放熱用熱交換器 5の開口部 10の風速分布を示 す図であり、図 9および図 10に示す放熱システム 3の開口部 10を上側力も見た図で ある。図中の放熱用熱交^^ 5の開口部 10の縦軸の 0の位置力も外部に向力つて気 流が流出されるように、送風ファン 6の回転中心軸が冷却庫の後部上方に向力つて 延びている。また、放熱用熱交^^ 5の開口部 10に対して送風ファン 6の径が小さい 。そのため、風速分布に偏りが生じている。放熱システム 3において所望の熱交換能 力を得るためには、風速分布に偏りがある状態では、偏流の無い状態に比較して、 大きな風量が必要になる。その結果、騒音値が増大するとともに、消費電力が増加し てしまう。 [0010] スターリング冷凍機 2のウォームセクション(ウォームヘッドまたは高温部) 11から放 熱を効率よく行なうための技術が特開 2003-302117号公報に開示されている。 FIG. 11 is a diagram showing a wind speed distribution in the opening 10 of the heat exchanger 5 for heat dissipation of the conventional heat dissipation system 3, and the opening 10 of the heat dissipation system 3 shown in FIG. 9 and FIG. It is a view. In the figure, the rotation center axis of the blower fan 6 is located above the rear of the refrigerator so that the flow of the heat flow for heat dissipation ^^ 5 in the figure is 0 due to the 0 position of the vertical axis of the vertical axis. It stretches by force. In addition, the diameter of the blower fan 6 is smaller than the opening 10 of the heat exchanger for heat dissipation 5. Therefore, the wind speed distribution is biased. In order to obtain the desired heat exchange capacity in the heat dissipation system 3, a larger air volume is required when the wind speed distribution is uneven than when there is no drift. As a result, the noise level increases and the power consumption increases. [0010] A technique for efficiently releasing heat from the worm section (worm head or high temperature portion) 11 of the Stirling refrigerator 2 is disclosed in Japanese Patent Laid-Open No. 2003-302117.
[0011] また、放熱を効率よく行ないながら、放熱システムをコンパクトにする技術が特開 20[0011] Further, Japanese Patent Application Laid-Open No. 20-228867 discloses a technique for making a heat dissipation system compact while efficiently performing heat dissipation.
04- 156802号公報に開示されている。 It is disclosed in Japanese Laid-Open Patent Publication No. 04-156802.
特許文献 1:特開 2003— 302117号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-302117
特許文献 2:特開 2004— 156802号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-156802
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 放熱システム 3の冷媒を循環させる駆動力として冷媒の自然循環作用を利用する 場合には、放熱用熱交翻 5を吸熱用熱交翻 4よりも高い位置に設けなければな らない。一方、放熱用熱交 5と吸熱用熱交 4との間の距離を大きくした場合 には、放熱システム 3の放熱効率が低下する。そのため、お互いの位置関係が適切 なものとなるように調整する必要がある。そのため、スターリング冷凍機 2と放熱用熱 交 5の間にはある程度の大きさの空間が必要となる。したがって、スターリング冷 凍システム 1をコンパクトにすることが困難であるという問題がある。  [0012] When the natural circulation action of the refrigerant is used as a driving force for circulating the refrigerant in the heat dissipation system 3, the heat dissipation heat exchange 5 must be provided at a position higher than the heat absorption heat exchange 4 . On the other hand, when the distance between the heat exchanger 5 for heat dissipation and the heat exchanger 4 for heat absorption is increased, the heat dissipation efficiency of the heat dissipation system 3 decreases. Therefore, it is necessary to make adjustments so that the mutual positional relationship is appropriate. For this reason, a certain amount of space is required between the Stirling refrigerator 2 and the heat exchanger 5 for heat dissipation. Therefore, there is a problem that it is difficult to make the Stirling refrigeration system 1 compact.
[0013] また、特許文献 1および特許文献 2のそれぞれに記載の放熱システムでは、スター リング冷凍システムをコンパクトにすることができる力 放熱用熱交^^の開口部に対 して均一に送風できな 、ため、放熱用熱交^^中の通風抵抗の小さ 、部分に強 ヽ 気流が生じる、すなわち偏流が生じるという問題がある。なお、十分に長いダクトを有 する送風経路内に送風ファンを設置すると ヽぅ方法も従来から用いられて ヽるが、こ の方法ではスターリング冷凍システムをコンパクトにすることが困難であるという問題 がある。  [0013] In addition, in the heat dissipation system described in each of Patent Document 1 and Patent Document 2, the Stirling refrigeration system can be made compact. Air can be uniformly blown to the opening of the heat exchanger for heat dissipation. However, there is a problem that the draft resistance in the heat exchanger for heat dissipation is small and the strong air flow is generated in the part, that is, the drift occurs. In addition, when a blower fan is installed in a blower path having a sufficiently long duct, a dredging method has also been used conventionally. However, this method has a problem that it is difficult to make the Stirling refrigeration system compact. is there.
[0014] また、気流が放熱用熱交換器の全体に均一に生じないため、所望の熱交換能力を 確保するためには、送風ファンの送風能力を増加させなければならない。このため、 送風ファンを大型化させるという方法が考えられる。し力しながら、この方法ではスタ 一リング冷凍システムをコンパクトにするという要望に応えられないという問題が生じる 。また、送風ファンを大型化させずに、送風ファンの回転数を増加させることによって 、風量を増加させる方法も考えられる。し力しながら、この方法では騒音値が増大す るとともに消費電力が増加するという問題がある。 [0014] Further, since airflow is not uniformly generated in the entire heat dissipating heat exchanger, in order to secure a desired heat exchanging capacity, the air blowing capacity of the blower fan must be increased. For this reason, the method of enlarging a ventilation fan can be considered. However, this method has a problem that it cannot meet the demand for a compact sterilization refrigeration system. A method of increasing the air volume by increasing the rotation speed of the blower fan without increasing the size of the blower fan is also conceivable. However, this method increases the noise level. In addition, there is a problem that power consumption increases.
[0015] 本発明は、上記の問題点を鑑みてなされたものであり、その目的は、スターリング冷 凍機のウォームセクションで発生する温熱の放出が促進されるとともに、コンパクトで 、騒音が小さぐかつ消費電力が小さな放熱システムを有するスターリング冷凍システ ムおよびそれを備えた冷却庫を提供することである。 [0015] The present invention has been made in view of the above-described problems, and an object of the present invention is to promote the release of warm heat generated in the worm section of a Stirling refrigerator, and to be compact and reduce noise. A Stirling refrigeration system having a heat dissipation system with low power consumption and a refrigerator equipped with the same.
課題を解決するための手段  Means for solving the problem
[0016] 上記目的を達成するために、逆スターリングサイクルによって冷熱を生成するスター リング冷凍機と、スターリング冷凍機で発生した温熱を放出する放熱システムとを備え ている。放熱システムは、スターリング冷凍機のウォームセクションに取り付けられた 吸熱用熱交換器と、スターリング冷凍機の上方に設けられ、外気へ温熱を放出する ための放熱用熱交換器とを有している。吸熱用熱交換器と放熱用熱交換器とは、ゥ オームセクションで発生した温熱を受け取った高温側二次冷媒が自然循環する循環 用配管によって接続されている。また、放熱システムは、送風機を有しており、送風機 によって放熱用熱交換器における高温側二次冷媒と外気との熱交換を促進する気 流が生成される。また、送風機は、放熱用熱交^^とスターリング冷凍機との間に設 置されている。 [0016] In order to achieve the above object, a Stirling refrigerator that generates cold by a reverse Stirling cycle and a heat dissipation system that releases the heat generated by the Stirling refrigerator are provided. The heat dissipation system includes an endothermic heat exchanger attached to the worm section of the Stirling refrigerator, and a heat dissipation heat exchanger that is provided above the Stirling refrigerator and emits heat to the outside air. The heat-absorbing heat exchanger and the heat-dissipating heat exchanger are connected by a circulation pipe through which the high-temperature side secondary refrigerant that receives the heat generated in the warm section circulates naturally. In addition, the heat dissipation system includes a blower, and an air flow that promotes heat exchange between the high-temperature side secondary refrigerant and the outside air in the heat dissipation heat exchanger is generated by the blower. The blower is installed between the heat-dissipating heat exchanger and the Stirling refrigerator.
[0017] この構成によれば、放熱用熱交^^と吸熱用熱交 またはスターリング冷凍機と の間に必然的に生じる空間であって、従来のスターリング冷凍システムにおいては有 効に活用されていな力つた空間が有効に活用される。  [0017] According to this configuration, a space that is inevitably generated between the heat-dissipating heat exchanger ^^ and the heat-absorbing heat exchanger or the Stirling refrigerator, and is effectively utilized in the conventional Stirling refrigeration system. Effective space is utilized effectively.
[0018] また、気流が仮想の面を通過するときに、最大風速が Vmaxであり、最小風速が V minであり、かつ、平均風速が Vaveである場合において、仮想の面に生じる風速分 布の均一度合を示す値であって、 DI= (Vmax— Vmin) ZVaveという式によって規 定されるディストーションインデックス DIの値力 0以上かつ 0. 5以下であることが望ま しい。  [0018] Also, when the airflow passes through the virtual plane, the maximum wind speed is Vmax, the minimum wind speed is Vmin, and the average wind speed is Vave, and the wind speed distribution generated on the virtual plane It is desirable that the value of the distortion index DI specified by the equation DI = (Vmax—Vmin) ZVave be 0 or more and 0.5 or less.
[0019] この構成によれば、放熱用熱交^^の周囲を通過する気流が偏流となることを抑 制することができる。そのため、放熱用熱交^^における熱交換の効率を高めること ができる。  [0019] According to this configuration, it is possible to suppress the airflow passing around the heat-dissipating heat exchanger from becoming uneven. As a result, the efficiency of heat exchange in the heat exchanger for heat dissipation can be increased.
[0020] また、送風機が放熱用熱交換器の下側に設置されていれば、送風機が放熱用熱 交 力ゝら熱的な悪影響を受け難い。そのため、より長寿命な放熱システムを有する スターリング冷凍システムが得られる。 [0020] In addition, if the blower is installed under the heat dissipation heat exchanger, the blower is configured to dissipate heat. It is hard to be affected by thermal effects. Therefore, a Stirling refrigeration system having a longer-life heat dissipation system can be obtained.
[0021] また、送風機は、放熱用熱交換器の位置よりも前述の気流の上流側の位置に設け られていれば、放熱用熱交換器は上昇気流を有効利用して放熱することができる。 そのため、送風機の負担が軽減される。その結果、より騒音が小さぐかつ、消費電 力が小さな放熱システムを有するスターリング冷凍システムが得られる。  [0021] Further, if the blower is provided at a position upstream of the above-described airflow with respect to the position of the heat-dissipating heat exchanger, the heat-dissipating heat exchanger can radiate heat by effectively using the rising airflow. . Therefore, the burden on the blower is reduced. As a result, a Stirling refrigeration system having a heat dissipation system with lower noise and lower power consumption can be obtained.
[0022] また、送風機は、放熱用熱交換器の位置よりも前述の気流の下流側の位置に設け られていれば、放熱用熱交換器の整流効果によって、送風機に送り込まれる気流が 整流される。そのため、より騒音が小さな放熱システムを有するスターリング冷凍シス テムを得ることができる。  [0022] Further, if the blower is provided at a position downstream of the airflow from the position of the heat exchanger for heat dissipation, the airflow sent to the fan is rectified by the rectification effect of the heat exchanger for heat dissipation. The Therefore, a Stirling refrigeration system having a heat dissipation system with lower noise can be obtained.
[0023] また、本発明の冷却庫は、前述の放熱システムを備えている。そのため、ウォームセ クシヨンにおいて受け取った温熱を放熱用熱交換器を介して外部へ効率よく放出す ることができ、コンパクトで、かつ、地球環境に与える悪影響が小さな放熱システムを 有するスターリング冷凍システムが搭載された冷却庫を得ることができる。  [0023] The refrigerator of the present invention includes the above-described heat dissipation system. For this reason, the Stirling refrigeration system that has a heat dissipation system that can efficiently release the heat received in the warm section to the outside through the heat exchanger for heat dissipation and that is compact and has little adverse effect on the global environment is installed. You can get a refrigerator.
発明の効果  The invention's effect
[0024] 本発明によれば、放熱用熱交^^と吸熱用熱交 またはスターリング冷凍機と の間に必然的に生じる空間であって、従来有効に活用されていなかった空間を有効 に活用することが可能となる。  [0024] According to the present invention, the space that is inevitably generated between the heat-dissipating heat exchanger ^ and the heat-absorbing heat exchanger or the Stirling refrigerator, and that has not been effectively used in the past is effectively used. It becomes possible to do.
[0025] この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連し て理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。  [0025] The above and other objects, features, aspects and advantages of the present invention will become apparent from the following detailed description of the present invention which is to be understood in connection with the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]第 1の実施形態のスターリング冷凍システムの放熱システムを説明するための 概略図である。  FIG. 1 is a schematic diagram for explaining a heat dissipation system of the Stirling refrigeration system of the first embodiment.
[図 2]第 1実施形態のスターリング冷凍システムの送風ファンを設置する位置を説明 するための概略図である。  FIG. 2 is a schematic view for explaining a position where a blower fan is installed in the Stirling refrigeration system of the first embodiment.
[図 3]第 1の実施形態の放熱用熱交換器が設置される仮想の空間を説明するための 模式図である。  FIG. 3 is a schematic diagram for explaining a virtual space in which the heat dissipation heat exchanger according to the first embodiment is installed.
[図 4]第 1の実施形態の放熱用熱交換器のディストーションインデックス DIと、放熱用 熱交^^を用いて一定の放熱量を得るために必要となる風量との関係を示すグラフ である。 [Fig.4] Distortion index DI of heat dissipation heat exchanger of the first embodiment and heat dissipation It is a graph which shows the relationship with the air volume required in order to obtain a fixed heat dissipation using heat exchange ^^.
[図 5]第 1の実施形態の放熱用熱交換器の仮想の直方体の上面の風速分布を示す 図である。  FIG. 5 is a diagram showing a wind speed distribution on the upper surface of a virtual rectangular parallelepiped of the heat dissipation heat exchanger according to the first embodiment.
[図 6]第 2の実施形態の送風ファンの配置を説明するための模式図である。  FIG. 6 is a schematic view for explaining the arrangement of the blower fans of the second embodiment.
[図 7]第 3の実施形態のスターリング冷凍システムの放熱システムを示す概略図であ る。  FIG. 7 is a schematic diagram showing a heat dissipation system of a Stirling refrigeration system according to a third embodiment.
[図 8]第 4の実施形態のスターリング冷凍システムの放熱システムが搭載された冷却 庫の概略的な構成を示す断面図である。  FIG. 8 is a cross-sectional view showing a schematic configuration of a refrigerator equipped with a heat dissipation system of a Stirling refrigeration system of a fourth embodiment.
[図 9]従来の放熱システムを有するスターリング冷凍システムの概略図である。  FIG. 9 is a schematic view of a Stirling refrigeration system having a conventional heat dissipation system.
[図 10]図 9における X— X断面の模式図である。  FIG. 10 is a schematic view taken along the line XX in FIG. 9.
[図 11]従来の放熱システムの放熱用熱交換器の長方形の面の風速分布を示す図で ある。  FIG. 11 is a diagram showing a wind speed distribution on a rectangular surface of a heat dissipation heat exchanger of a conventional heat dissipation system.
符号の説明  Explanation of symbols
[0027] 1 スターリング冷凍システム、 2 スターリング冷凍機、 3 放熱システム、 4 吸熱用 熱交換器、 5 放熱用熱交換器、 6 送風ファン、 7 冷却庫、 8 循環用配管、 9 ダク ト、 10 開口咅、l l ウォームセクション、 12 断熱壁、 13 コーノレドセクション、 14 冷気ダクト、 15 冷凍室、 16 冷蔵室、 17 野菜室、 19 冷却システム、 111 冷却 発明を実施するための最良の形態  [0027] 1 Stirling refrigeration system, 2 Stirling refrigerator, 3 heat dissipation system, 4 heat absorption heat exchanger, 5 heat dissipation heat exchanger, 6 blower fan, 7 cooler, 8 circulation piping, 9 duct, 10 opening咅, ll Warm section, 12 Insulated wall, 13 Cornored section, 14 Cold air duct, 15 Freezer room, 16 Cold room, 17 Vegetable room, 19 Cooling system, 111 Cooling Best mode for carrying out the invention
[0028] 以下、図を参照しながら、本発明の実施の形態のスターリング冷凍システムを説明 する。なお、各実施の形態においては、同一の部位には同一の参照符号が付されて おり、その説明は繰り返さない。また、図 1、図 6、図 7、および図 9のそれぞれは、スタ 一リング冷凍システム 1の正面図である力 ダクト 9のみについては、それに内包され る放熱用熱交換器 5および送風ファン 6が見えるようにするために、断面図となってい る。  Hereinafter, a Stirling refrigeration system according to an embodiment of the present invention will be described with reference to the drawings. In each embodiment, the same reference numerals are assigned to the same parts, and description thereof will not be repeated. In addition, FIG. 1, FIG. 6, FIG. 7, and FIG. 9 show that only the power duct 9 that is a front view of the Stirling refrigeration system 1 is included in the heat exchanger 5 for heat dissipation and the blower fan 6 included therein. The cross-sectional view is shown so that can be seen.
[0029] (第 1の実施形態)  [0029] (First embodiment)
まず、本発明の第 1の実施形態のスターリング冷凍システム 1を図面を参照して説 明する。図 1は、本発明の第 1の実施形態のスターリング冷凍機 2の放熱システム 3を 示す概略図である。放熱システム 3は、スターリング冷凍機 2のウォームセクション 11 に取り付けられた吸熱用熱交換器 4と、送風ファン 6と、送風ファン 6が生成する気流 によって放熱する放熱用熱交換器 5とを有して ヽる。吸熱用熱交換器 4と放熱用熱交 換器 5とは、吸熱用熱交換器 4と放熱用熱交換器 5との間で高温側二次冷媒を循環 させるための循環用配管 8によって互いに接続されている。また、吸熱用熱交 4 の内部には、図示しない気液分離器または液溜が設けられている。なお、前述の構 成は、従来のスターリング冷凍システム 1と同様である。 First, the Stirling refrigeration system 1 according to the first embodiment of the present invention will be described with reference to the drawings. Light up. FIG. 1 is a schematic diagram showing a heat dissipation system 3 of the Stirling refrigerator 2 according to the first embodiment of the present invention. The heat dissipation system 3 includes an endothermic heat exchanger 4 attached to the worm section 11 of the Stirling refrigerator 2, a blower fan 6, and a heat dissipation heat exchanger 5 that radiates heat by the airflow generated by the blower fan 6. Speak. The heat absorption heat exchanger 4 and the heat dissipation heat exchanger 5 are connected to each other by a circulation pipe 8 for circulating the high-temperature side secondary refrigerant between the heat absorption heat exchanger 4 and the heat dissipation heat exchanger 5. It is connected. Further, a gas-liquid separator or a liquid reservoir (not shown) is provided inside the heat absorption heat exchanger 4. The above-described configuration is the same as that of the conventional Stirling refrigeration system 1.
[0030] また、本実施の形態のスターリング冷凍システム 1にお 、ては、放熱用熱交換器 5 は、伝熱フィンと伝熱管とを有している。伝熱フィンは、熱伝導性の良好なアルミまた は銅など力もなる板状部材が互いに平行に所定の間隔で配置されたものである。ま た、伝熱管は、伝熱フィンと同様の素材力 なり、蛇行しながら、複数の伝熱フィンを 貫通している。つまり、本実施の形態のスターリング冷凍システム 1においては、いわ ゆるフィンチューブ型熱交^^が用いられて 、る。このフィンチューブ型熱交 は 、通風抵抗が小さぐまた、ホコリの付着量も少ないため、メンテナンスフリーを実現で きるというメリットを有している。ただし、フィンチューブ型熱交^^のうち伝熱面積が 大きいものが用いられる場合には、冷却庫内の空間が熱交翻によって大きく占有 されてしまう。なお、伝熱フィンは、その熱伝導性能が高ければ、本実施形態で用い られるものに限定されず、如何なるものであってもよい。たとえば、伝熱フィンは、格子 型またはコルゲート型のものであってもよい。これらの伝熱フィンは、本実施形態にお ける伝熱フィンと比較して、表面積が大きいため、高い熱交換効率を有している。ま た、伝熱フィンの形状は、スターリング冷凍機 2の形状に適合する環状 (ドーナツ状) であってもよい。ただし、放熱用熱交換器 5を設置する場所および状況に応じて適切 な型の伝熱フィンが選択されることが望ま 、。  [0030] In the Stirling refrigeration system 1 of the present embodiment, the heat dissipation heat exchanger 5 includes heat transfer fins and heat transfer tubes. The heat transfer fins are made by arranging plate members having a high heat conductivity such as aluminum or copper in parallel with each other at a predetermined interval. In addition, the heat transfer tube has the same material force as the heat transfer fin, and penetrates through the plurality of heat transfer fins while meandering. That is, in the Stirling refrigeration system 1 of the present embodiment, a so-called fin tube type heat exchanger is used. This fin tube type heat exchange has a merit that maintenance-free can be realized because the ventilation resistance is small and the amount of dust attached is small. However, when a fin tube type heat exchanger having a large heat transfer area is used, the space in the refrigerator is largely occupied by heat exchange. The heat transfer fins are not limited to those used in the present embodiment as long as their heat conduction performance is high, and any heat transfer fins may be used. For example, the heat transfer fins may be of a lattice type or a corrugated type. Since these heat transfer fins have a larger surface area than the heat transfer fins in the present embodiment, they have high heat exchange efficiency. In addition, the shape of the heat transfer fins may be an annular shape (doughnut shape) that matches the shape of the Stirling refrigerator 2. However, it is desirable that an appropriate type of heat transfer fin is selected according to the place and situation where the heat exchanger 5 for heat dissipation is installed.
[0031] 上記放熱システム 3の循環用配管 8内には水とエタノールとの混合物が高温側二 次冷媒として封入されている。この冷媒を用いることにより、環境および人体への悪影 響を低減することができる。他の冷媒の例としては、水(単体)、アルコール、炭化水 素、 CO、またはアンモニア等が挙げられる。ただし、前述の冷媒は、それぞれ、メリツ トとデメリットとを有しているため、状況に応じて適切なものが選択されることが望まし い。 [0031] A mixture of water and ethanol is sealed in the circulation pipe 8 of the heat dissipation system 3 as a high temperature side secondary refrigerant. By using this refrigerant, adverse effects on the environment and the human body can be reduced. Examples of other refrigerants include water (simple substance), alcohol, hydrocarbon, CO, or ammonia. However, each of the aforementioned refrigerants Therefore, it is desirable to select the appropriate one according to the situation.
[0032] たとえば、炭化水素が用いられれば、高い熱交換効率を実現することができる。し 力しながら、炭化水素は、爆発性を有しているため、循環用配管 8内への封入量が制 限される。また、 COは、無毒であるが、圧縮率が高いため、循環用配管の耐圧を高  [0032] For example, if a hydrocarbon is used, high heat exchange efficiency can be realized. However, since the hydrocarbons are explosive, the amount enclosed in the circulation pipe 8 is limited. In addition, CO is non-toxic, but the compression rate is high, so the pressure resistance of the circulation piping is high.
2  2
める必要がある。また、アンモニアは、従来から実用的に用いられている冷媒であり、 特にそれが低温で用いられる場合には数多くの実績がある。しかしながら、アンモ- ァは、毒性ガスかつ可燃性ガスであるため、その取扱いには十分な配慮が必要とな る。さらに、アンモニアは、危険性が高いため、その使用においては、防毒マスク、警 報装置、除害装置、および吸収材等を準備する必要がある。その結果、アンモニアを 用いない他の放熱システムに比べて、アンモニアを用いる放熱システムは、その付帯 設備費用が大きなものとなる。  It is necessary to Ammonia is a refrigerant that has been practically used in the past, and has a proven track record, particularly when it is used at low temperatures. However, since ammonia is a toxic and flammable gas, it must be handled with great care. Furthermore, since ammonia is highly dangerous, it is necessary to prepare a gas mask, a warning device, an abatement device, and an absorbent material for its use. As a result, compared to other heat dissipation systems that do not use ammonia, the heat dissipation system that uses ammonia has a higher cost for the incidental facilities.
[0033] また、循環用配管 8内にフロンガスが冷媒として封入された場合には、フロン冷媒の 蒸発および凝縮による潜熱を積極的に利用することによって、顕熱による熱交換より も熱伝達量が数 10倍も大きくなる。そのため、スターリング冷凍機 2の成績係数 (CO P : Coefficient Of Performance)を大幅に向上させることができるとともに、スターリン グ冷凍機 2の消費電力を低減させることができる。し力しながら、フロン冷媒は、地球 温暖化係数(GWP : Global Warming Potential)が非常に高い。たとえば、最も広く 使用されているフロン冷媒 (HFC— 134a)は、その地球温暖化係数が二酸ィ匕炭素 の 1300倍であり、地球温暖化を大きく促進させてしまう。そのため、全世界的にフロ ン冷媒の使用および生産が規制されてきている。  [0033] In addition, when chlorofluorocarbon gas is sealed as a refrigerant in the circulation pipe 8, the amount of heat transfer is greater than the heat exchange by sensible heat by actively using the latent heat generated by the evaporation and condensation of the chlorofluorocarbon refrigerant. It is several tens of times larger. Therefore, the coefficient of performance (COP) of the Stirling refrigerator 2 can be greatly improved and the power consumption of the Stirling refrigerator 2 can be reduced. However, CFC refrigerants have a very high global warming potential (GWP). For example, the most widely used CFC refrigerant (HFC-134a) has a global warming potential of 1300 times that of carbon dioxide and promotes global warming significantly. For this reason, the use and production of Freon refrigerants has been regulated worldwide.
[0034] 本実施形態においては、水とエタノールとの混合物が高温側二次冷媒として使用さ れるが、本発明に用いられる高温側二次冷媒は、前述のものに限定されず、他の冷 媒であってもよい。  [0034] In the present embodiment, a mixture of water and ethanol is used as the high temperature side secondary refrigerant, but the high temperature side secondary refrigerant used in the present invention is not limited to the above-described one, and other cold refrigerants. It may be a medium.
[0035] 次に、図 1を参照して、放熱システム 3の動作について説明する。スターリング冷凍 機 2が駆動されると、スターリング冷凍機 2内の一次冷媒 (たとえば、ヘリウム)の逆ス ターリングサイクルによって、コールドセクションに冷熱が生成され、その代償として、 ウォームセクション 11に温熱が発生する。この温熱は、ウォームセクション 11の外周 面から吸熱用熱交 4に伝達され、それにより、吸熱用熱交 4内に溜まってい る高温側二次冷媒が蒸発する。その結果、冷媒蒸気が生成される。冷媒蒸気は、放 熱用熱交 5に接続されている循環用配管 8の往路内を上昇して、吸熱用熱交換 器 4よりも高い位置に設置された放熱用熱交翻 5に流入する。放熱用熱交翻 5 内においては、冷媒蒸気は、外気と熱交換することによって、液化する。それにより、 純粋の液体冷媒または気体が混ざって 、る液体冷媒が生成される。その液体冷媒は 、吸熱用熱交換器 4に接続された循環用配管 8の復路内を下降し、その途中で気液 分離器によって気体と液体とに分離される。その後、液体冷媒は、吸熱用熱交換器 4 に戻り、再びウォームセクション 11から温熱を受け取って蒸発する。 Next, the operation of the heat dissipation system 3 will be described with reference to FIG. When Stirling Refrigerator 2 is driven, cold heat is generated in the cold section by the reverse sterling cycle of the primary refrigerant (for example, helium) in Stirling Refrigerator 2, and at the expense of warm temperature in Warm Section 11. To do. This heat is the outer circumference of the worm section 11. The heat is transferred to the endothermic heat exchanger 4 from the surface, whereby the high temperature side secondary refrigerant accumulated in the endothermic heat exchanger 4 evaporates. As a result, refrigerant vapor is generated. The refrigerant vapor rises in the forward path of the circulation pipe 8 connected to the heat exchanger 5 for heat release and flows into the heat exchanger 5 for heat dissipation installed at a position higher than the heat exchanger 4 for heat absorption. . In the heat exchanger 5 for heat dissipation, the refrigerant vapor is liquefied by exchanging heat with the outside air. As a result, pure liquid refrigerant or gas is mixed to produce liquid refrigerant. The liquid refrigerant descends in the return path of the circulation pipe 8 connected to the heat-absorbing heat exchanger 4 and is separated into gas and liquid by the gas-liquid separator along the way. Thereafter, the liquid refrigerant returns to the endothermic heat exchanger 4 and again receives warm heat from the warm section 11 and evaporates.
[0036] 本実施の形態の放熱システム 3によれば、冷媒の蒸発および凝縮における潜熱を 利用することによって、顕熱による熱交換よりも数 10倍も大きい熱伝達量の熱交換が 行なわれるため、熱交換効率が大幅に高められる。 [0036] According to the heat dissipation system 3 of the present embodiment, heat exchange with a heat transfer amount several tens of times larger than heat exchange by sensible heat is performed by using latent heat in the evaporation and condensation of the refrigerant. The heat exchange efficiency is greatly increased.
[0037] さらに、本実施形態の放熱システム 3によれば、吸熱用熱交 4と放熱用熱交換 器 5との高さの差と、気体冷媒の比重と液体冷媒の比重との差とに起因する圧力差を 利用して、高温側二次冷媒を循環させる駆動力を得ることができる。したがって、ボン プなどの駆動装置の動力なしに冷媒を自然循環させることができるため、消費電力を 低減することが可能になる。なお、循環用配管 8を吸熱用熱交 4の最下端部に 接続すれば、前述の圧力差が大きくなるため、冷媒の蒸発および凝縮による自然循 環をより一層円滑にすることができる。  [0037] Further, according to the heat dissipation system 3 of the present embodiment, the difference in height between the heat exchanger 4 for heat absorption and the heat exchanger 5 for heat dissipation and the difference between the specific gravity of the gas refrigerant and the specific gravity of the liquid refrigerant are reduced. A driving force for circulating the high-temperature side secondary refrigerant can be obtained by using the pressure difference. Accordingly, the refrigerant can be naturally circulated without the power of the driving device such as a pump, so that power consumption can be reduced. If the circulation pipe 8 is connected to the lowermost end portion of the heat absorption heat exchanger 4, the above-described pressure difference increases, so that natural circulation due to the evaporation and condensation of the refrigerant can be further smoothed.
[0038] また、本実施形態の放熱システム 3によれは、ポンプ等の駆動装置が必要な 、ため 、製造コストを低減することができる。また、放熱システム 3の寿命が、駆動装置の寿 命によって決定されてしまうことがない。つまり、放熱システム 3の寿命が長くなる。  [0038] Further, according to the heat dissipation system 3 of the present embodiment, since a driving device such as a pump is required, the manufacturing cost can be reduced. Further, the life of the heat dissipation system 3 is not determined by the life of the drive device. That is, the life of the heat dissipation system 3 is extended.
[0039] 次に、本実施形態における送風ファン 6の配置について説明する。図 2は、本発明 のスターリング冷凍システム 1の概略図を示す。上述のように冷媒を循環させる駆動 力として冷媒の自然循環作用を利用する場合には、放熱用熱交換器 5を吸熱用熱 交換器 4およびスターリング冷凍機 2よりも上方に設置する必要がある。  [0039] Next, the arrangement of the blower fans 6 in this embodiment will be described. FIG. 2 shows a schematic diagram of the Stirling refrigeration system 1 of the present invention. As described above, when the natural circulation action of the refrigerant is used as the driving force for circulating the refrigerant, it is necessary to install the heat-dissipating heat exchanger 5 above the heat-absorbing heat exchanger 4 and the Stirling refrigerator 2. .
[0040] また、放熱用熱交換器 5と吸熱用熱交換器 4との間の距離 Dが大き過ぎる場合には 、放熱性能が悪ィ匕し、外気の温度が低くなるほどその悪影響が顕著に表れる。その ため、放熱用熱交 5と吸熱用熱交 4との位置関係を適切にする必要がある 。その結果、放熱用熱交換器 5と吸熱用熱交換器 4およびスターリング冷凍機 2との 間には、必要でありながら従来においては有効に活用されていない無駄な空間 Sが 存在する。 [0040] If the distance D between the heat-dissipating heat exchanger 5 and the heat-absorbing heat exchanger 4 is too large, the heat dissipating performance deteriorates, and the adverse effect becomes more noticeable as the temperature of the outside air decreases. appear. That Therefore, it is necessary to make the positional relationship between the heat exchanger 5 for heat dissipation and the heat exchanger 4 for heat absorption appropriate. As a result, there is a useless space S that is necessary but has not been effectively used in the past, between the heat-dissipating heat exchanger 5, the heat-absorbing heat exchanger 4, and the Stirling refrigerator 2.
[0041] したがって、放熱システム 3の構成要素である送風ファン 6を前述の空間 Sに設置す ることによって、必要でありながら有効に活用されていない空間 Sを有効に活用するこ とができる。また、前述のような位置に送風ファン 6を設置すれば、送風ファン 6の駆 動によって生じる気流がスターリング冷凍機 2本体付近を通過するため、放熱用熱交 5のみならずスターリング冷凍機 2本体もまた冷却される。  [0041] Therefore, by installing the blower fan 6 that is a component of the heat dissipation system 3 in the space S described above, the space S that is necessary but not effectively used can be used effectively. In addition, if the blower fan 6 is installed at the position as described above, the air flow generated by the drive of the blower fan 6 passes through the vicinity of the Stirling refrigerator 2 main body, so that not only the heat exchange 5 for heat dissipation but also the Stirling refrigerator 2 main body. Is also cooled.
[0042] ところで、一般に、放熱用熱交 5の伝熱面積が一定であると仮定とした場合、 熱交換効率を向上させるためには、放熱用熱交 5において生じる高温側二次冷 媒と外気との熱伝達作用を促進させることが必要である。そこで、放熱用熱交換器 5 の熱伝達を向上させる手法の一つとして風速を大きくする手法が考えられる。しかし ながら、この手法では、送風ファン 6の回転数を大きくするために騒音値が増大すると いった問題がある。この問題を解決するために、本実施形態のスターリング冷凍シス テム 1にお 、ては、次に説明する構造が採用されて 、る。  [0042] By the way, in general, assuming that the heat transfer area of the heat dissipating heat exchanger 5 is constant, in order to improve the heat exchange efficiency, the high-temperature side secondary refrigerant generated in the heat dissipating heat exchanger 5 and It is necessary to promote the heat transfer effect with the outside air. Therefore, a method of increasing the wind speed can be considered as one of the methods for improving the heat transfer of the heat exchanger 5 for heat radiation. However, this method has a problem that the noise value increases in order to increase the rotational speed of the blower fan 6. In order to solve this problem, the structure described below is adopted in the Stirling refrigeration system 1 of the present embodiment.
[0043] 図 3は、本発明の第 1の実施形態の放熱用熱交換器 5が設置される仮想の空間を 説明するための模式図である。本実施形態においては、放熱用熱交翻 5は、図 3 に示すように、縦 170 (mm)、横 200 (mm)、力、つ、高さ 100 (mm)の直方体の空間 内に設置されていると仮定する。また、放熱用熱交翻5は、仮想の直方体の空間と ほぼ同様の形状であるものとする。本実施形態においては、外径 d= 170 (mm)の円 形状の送風ファン 6が、放熱用熱交換器 5が設置される仮想の直方体の空間内の上 面または下面と平行な縦 a= 170 (mm)かつ横 b = 200 (mm)の仮想の長方形の面 に対向し、かつ、前述の長方形の対角線の交点を通る前述の長方形の面に垂直な 軸と送風ファン 6の回転中心軸とがー致するように、送風ファン 6によって生じる気流 の上流側、すなわち、放熱用熱交換器 5の下側に設置されている。なお、仮想の長 方形は、前述の開口部 10の形状、すなわち、送風ファン 6を内包するように設けられ たダクト 9の横断面とほぼ同様の形状であるものとする。 [0044] ここで、放熱用熱交換器 5の前述の仮想の長方形の面に生じる風速分布の均一度 合を示すディストーションインデックス DIにつ 、て説明する。前述の仮想の長方形の 面に生じる気流の、最大風速を Vmax、最小風速を Vmin、平均風速を Vaveとすると 、ディストーションインデックス DIは、 DI= (Vmax— Vmin) ZVaveという式によって 規定される。前述の式から分かるように、最大風速と最小風速との差が 0であるとき、 ディストーションインデックス DI = 0となる。つまり、放熱用熱交^^ 5の仮想の長方形 の面に生じる風速分布が均一であるほどディストーションインデックス DIの値は小さく なり、放熱用熱交換器 5の前述の仮想の長方形の面における風速の偏りが少ない。 FIG. 3 is a schematic diagram for explaining a virtual space in which the heat dissipating heat exchanger 5 according to the first embodiment of the present invention is installed. In this embodiment, the heat exchanger 5 for heat dissipation is installed in a rectangular parallelepiped space of 170 mm (length), 200 mm (width), force, and height (100 mm) as shown in Fig. 3. Assuming that In addition, it is assumed that the heat exchanger 5 for heat dissipation has substantially the same shape as the virtual rectangular parallelepiped space. In the present embodiment, the circular blower fan 6 having an outer diameter d = 170 (mm) has a longitudinal a = parallel to the upper surface or the lower surface in the space of the virtual rectangular parallelepiped where the heat exchanger 5 for heat dissipation is installed. The axis perpendicular to the rectangular surface that faces the virtual rectangular surface of 170 (mm) and lateral b = 200 (mm) and passes through the intersection of the diagonal lines of the aforementioned rectangle and the rotation center axis of the blower fan 6 It is installed on the upstream side of the air flow generated by the blower fan 6, that is, on the lower side of the heat exchanger 5 for heat dissipation so as to match. Note that the virtual rectangular shape is substantially the same as the shape of the opening 10 described above, that is, the cross section of the duct 9 provided so as to contain the blower fan 6. Here, the distortion index DI indicating the uniformity of the wind speed distribution generated on the above-described virtual rectangular surface of the heat-dissipating heat exchanger 5 will be described. The distortion index DI is defined by the formula DI = (Vmax-Vmin) ZVave, where Vmax is the maximum wind speed, Vmin is the minimum wind speed, and Vave is the average wind speed of the airflow generated on the virtual rectangular surface. As can be seen from the above equation, when the difference between the maximum wind speed and the minimum wind speed is 0, the distortion index DI = 0. In other words, the more uniform the wind speed distribution generated on the imaginary rectangular surface of the heat-dissipating heat exchanger ^^ 5, the smaller the distortion index DI value, and the wind speed on the imaginary rectangular surface of the heat-dissipating heat exchanger 5 There is little bias.
[0045] 図 4は、本発明の第 1の実施形態の放熱用熱交換器 5のディストーションインデック ス DIと、放熱用熱交 5を用いて一定の放熱量を得るために必要となる風量との 関係を示している。図中の符号 100で示すデータは、本発明の第 1の実施形態の放 熱システムのデータであり、図中の符号 200で示すデータは、従来の放熱システムの データである。ディストーションインデックス DIがほぼ 0. 5以下の場合には、所望の熱 交換能力を得るための風量は 2. 3m3Zminである。一方、ディストーションインデック ス DIがほぼ 0. 5よりも大きい場合には、所望の熱交換能力を得るための風量は、徐 々に増加する。また、従来の放熱用熱交換器においては、ディストーションインデック ス DIの値が 1付近においては、約 3. 2m3Zminの風量、すなわち、本実施形態の風 量の約 140%の風量が必要である。 FIG. 4 shows the distortion index DI of the heat dissipating heat exchanger 5 according to the first embodiment of the present invention and the air flow necessary to obtain a constant heat dissipating amount using the heat dissipating heat exchanger 5. The relationship is shown. Data indicated by reference numeral 100 in the figure is data of the heat dissipation system of the first embodiment of the present invention, and data indicated by reference numeral 200 in the figure is data of the conventional heat dissipation system. When the distortion index DI is approximately 0.5 or less, the air flow to obtain the desired heat exchange capacity is 2.3m 3 Zmin. On the other hand, when the distortion index DI is larger than about 0.5, the air volume for obtaining the desired heat exchange capacity gradually increases. In addition, in the conventional heat exchanger for heat dissipation, when the distortion index DI value is around 1, an air volume of about 3.2 m 3 Zmin, that is, an air volume of about 140% of the air volume of this embodiment is required. is there.
[0046] 前述の図 4に示すような結果が得られるのは次のような理由によるものと考えられる ディストーションインデックス DIがほぼ 0. 5以下である場合には、放熱用熱交換器 5 の近傍に比較的一様に気流が生じている。そのため、放熱用熱交換器 5の伝熱フィ ンの単位面積あたりの放熱量が大きい。その結果、最低限の風量で所望の熱交換能 力を得ることができる。一方、ディストーションインデックス DIがほぼ 0. 5よりも大きい 場合には、風速の偏りによる悪影響が表れ始め、所望の熱交換能力を得るためによ り多くの風量が必要となる。  [0046] The reason why the result shown in FIG. 4 is obtained is considered to be as follows. When the distortion index DI is approximately 0.5 or less, the vicinity of the heat exchanger 5 for heat dissipation is used. The airflow is relatively uniform. For this reason, the heat dissipation amount per unit area of the heat transfer fin of the heat dissipation heat exchanger 5 is large. As a result, a desired heat exchange capacity can be obtained with a minimum air volume. On the other hand, when the distortion index DI is larger than about 0.5, adverse effects due to the deviation of wind speed begin to appear, and more air volume is required to obtain the desired heat exchange capacity.
[0047] なお、図 4から、放熱用熱交換器 5の仮想の長方形の面における最大風速、最小 風速および平均風速を用いて計算されるディストーションインデックス DI値が 0. 5以 下の範囲では、風速は略一様であることが分かる。 [0047] From Fig. 4, the distortion index DI value calculated using the maximum wind speed, the minimum wind speed, and the average wind speed on the virtual rectangular surface of the heat-dissipating heat exchanger 5 is 0.5 or more. In the lower range, it can be seen that the wind speed is substantially uniform.
[0048] 図 5は、本発明の第 1の実施形態における放熱用熱交換器 5の仮想の直方体の上 面の風速分布を示している。また、表 1は、本発明の第 1の実施形態の放熱用熱交 換器 5のディストーションインデックス DIの値の計算値、および、従来の放熱用熱交 換器 5のディストーションインデックス DIの計算値を示している。  FIG. 5 shows the wind speed distribution on the upper surface of the imaginary rectangular parallelepiped of the heat-dissipating heat exchanger 5 in the first embodiment of the present invention. Table 1 shows the calculated value of the distortion index DI of the heat dissipating heat exchanger 5 according to the first embodiment of the present invention, and the calculated value of the distortion index DI of the conventional heat dissipating heat exchanger 5. Is shown.
[0049] [表 1]  [0049] [Table 1]
Figure imgf000014_0001
Figure imgf000014_0001
[0050] 図 5および表 1から、本実施形態の放熱用熱交換器 5の仮想の直方体の上面にお ける風速分布は、送風ファン 6のボス部の延長線上の位置に若干風速が小さ 、部分 を有している力 略一様であることが分かる。また、本実施形態のディストーションイン デッタス DIの値が 0. 3であることからも、放熱用熱交 5の仮想の直方体の上面に おける風速分布はほぼ一様であることが分かる。 [0050] From FIG. 5 and Table 1, the wind speed distribution on the upper surface of the virtual rectangular parallelepiped of the heat-dissipating heat exchanger 5 of the present embodiment is slightly lower at the position on the extension line of the boss portion of the blower fan 6. It can be seen that the force with the part is almost uniform. In addition, since the value of the distortion index DI of the present embodiment is 0.3, it can be seen that the wind speed distribution on the upper surface of the virtual rectangular parallelepiped of the heat exchanger 5 for heat radiation is almost uniform.
[0051] 一方、本実施の形態の放熱用熱交換器 5と比較される従来の放熱用熱交換器 5に おいては、ディストーションインデックス DIの 1. 0であることから、放熱用熱交^^ 5の 仮想の長方形の面における風速分布にばらつきが生じていることが分かる。したがつ て、前述の図 5および表 1から、放熱用熱交換器 5の伝熱面全体に均一に気流を生 じさせることによって単位面積あたりの熱交換効効率を向上させ、それにより、放熱用 熱交 5全体の放熱量を向上させることができることが分力る。  [0051] On the other hand, in the conventional heat-dissipating heat exchanger 5 compared with the heat-dissipating heat exchanger 5 of the present embodiment, since the distortion index DI is 1.0, It can be seen that there is variation in the wind speed distribution on the hypothetical rectangular surface of ^ 5. Therefore, from Fig. 5 and Table 1 above, the heat exchange efficiency per unit area is improved by generating an air flow uniformly over the entire heat transfer surface of the heat exchanger 5 for heat dissipation, Heat dissipation heat exchange 5 It can be divided that it can improve the heat radiation amount of the whole.
[0052] (第 2の実施形態)  [0052] (Second Embodiment)
次に、本発明における第 2の実施形態のスターリング冷凍システムを、図面を参照 して説明する。  Next, a Stirling refrigeration system according to a second embodiment of the present invention will be described with reference to the drawings.
[0053] 図 6は、本発明の第 2の実施形態のスターリング冷凍システムの送風ファン 6の配置 を示す模式図である。本実施形態の送風ファン 6の構造は、図 6に示すように、第 1の 実施形態と同様である。なお、図 6中の矢印は、送風ファン 6によって生じる気流の向 さを示している。 FIG. 6 is a schematic diagram showing the arrangement of the blower fans 6 of the Stirling refrigeration system according to the second embodiment of the present invention. The structure of the blower fan 6 of this embodiment is the same as that of the first embodiment as shown in FIG. Note that the arrow in FIG. 6 indicates the direction of the airflow generated by the blower fan 6. It shows.
[0054] 一般に、放熱システム 3における放熱用熱交換器 5は、スターリング冷凍システム 1 の駆動時に周囲の外気よりも高温となる。そのため、送風ファン 6が放熱用熱交換器 5の上方に設置されて 、る場合には、送風ファン 6は放熱用熱交 5からの自然対 流による温度拡散の悪影響を直接受ける。そのため、本実施形態では、送風ファン 6 が放熱用熱交換器 5の下方に設置されている。それにより、送風ファン 6が放熱用熱 交 5から受ける熱的な影響を最小限にすることができる。その結果、放熱システ ム 3の寿命をより長くすることができる。  In general, the heat exchanger 5 for heat dissipation in the heat dissipation system 3 is hotter than the surrounding outside air when the Stirling refrigeration system 1 is driven. Therefore, when the blower fan 6 is installed above the heat dissipation heat exchanger 5, the blower fan 6 is directly affected by the temperature diffusion due to natural convection from the heat dissipation heat exchanger 5. Therefore, in this embodiment, the ventilation fan 6 is installed under the heat exchanger 5 for heat radiation. Thereby, the thermal influence which the ventilation fan 6 receives from the heat exchanger 5 for heat radiation can be minimized. As a result, the life of the heat dissipation system 3 can be extended.
[0055] (第 3の実施形態)  [0055] (Third embodiment)
次に、本発明の第 3の実施形態のスターリング冷凍システムを図面を参照して説明 する。  Next, a Stirling refrigeration system according to a third embodiment of the present invention will be described with reference to the drawings.
[0056] 図 7は、本発明の第 3の実施形態のスターリング冷凍機システムの放熱システム 3を 示す概略図である。なお、図中の送風ファン 6の上下方向に延びる矢印は気流の向 きを表す。本実施の形態のスターリング冷凍システムにおいては、図 7に示す送風フ アン 6の構造以外の構造は、第 1の実施形態と同様である。本実施形態においては、 送風ファン 6は、放熱用熱交換器 5からスターリング冷凍機 2へ気流が向力 ように設 置されている。つまり、送風ファン 6は、実施の形態 2と同様に、放熱用熱交翻5の 下方に設置されているとともに、放熱用熱交 5よりも送風ファン 6によって生じる 気流の下流側に設置されている。  FIG. 7 is a schematic diagram showing a heat dissipation system 3 of a Stirling refrigerator system according to a third embodiment of the present invention. In the figure, the arrow extending in the vertical direction of the blower fan 6 represents the direction of the airflow. In the Stirling refrigeration system of the present embodiment, the structure other than the structure of the blower fan 6 shown in FIG. 7 is the same as that of the first embodiment. In the present embodiment, the blower fan 6 is installed so that the airflow is directed from the heat dissipation heat exchanger 5 to the Stirling refrigerator 2. That is, the blower fan 6 is installed below the heat dissipating heat exchanger 5 as in the second embodiment, and is disposed downstream of the airflow generated by the blower fan 6 than the heat dissipating heat exchanger 5. Yes.
[0057] 本実施形態の放熱システム 3によれば、放熱用熱交換器 5を通過することによって 整流された気流が送風ファン 6に流入する。そのため、送風ファン 6の翼面から気流 が剥離することが抑制される。その結果、より低騒音な放熱システム 3を得ることがで きる。  According to the heat dissipation system 3 of the present embodiment, the air flow rectified by passing through the heat dissipation heat exchanger 5 flows into the blower fan 6. As a result, the separation of the airflow from the blade surface of the blower fan 6 is suppressed. As a result, a heat dissipation system 3 with lower noise can be obtained.
[0058] (第 4の実施形態)  [0058] (Fourth Embodiment)
本発明の実施の形態の冷却庫を図面を参照して説明する。  A refrigerator according to an embodiment of the present invention will be described with reference to the drawings.
[0059] 図 8は、本発明の第 4の実施形態の放熱システム 3が搭載された冷却庫 7の概略的 な構成を示す断面図である。図 8に示すように、本実施形態の冷却庫 7においては、 その背面の近傍であって高さ方向の中央部の近傍に、スターリング冷凍機 2が設置さ れ、冷却庫 7の背面の近傍であって高さ方向の下端部の近傍に、冷却システム 19を 構成する冷却器 111が設置され、さらに、冷却庫 7の背面の近傍であって、高さ方向 の中央部の近傍に、放熱システム 3が設置されている。 [0059] FIG. 8 is a cross-sectional view showing a schematic configuration of a refrigerator 7 in which a heat dissipation system 3 according to a fourth embodiment of the present invention is mounted. As shown in FIG. 8, in the refrigerator 7 of the present embodiment, the Stirling refrigerator 2 is installed in the vicinity of the rear surface and in the vicinity of the center in the height direction. The cooler 111 constituting the cooling system 19 is installed in the vicinity of the rear surface of the refrigerator 7 and in the vicinity of the lower end portion in the height direction. The heat dissipation system 3 is installed near the center of the direction.
[0060] そして、冷却器 111は、冷却庫 7の断熱壁 12の内側に設置され、放熱システム 3お よびスターリング冷凍機 2は、冷却庫 7の断熱壁 12の外側の空気ダクト内に設置され ている。図中の矢印 A、 B、 C、 D、および Eのそれぞれは、気流の向きを表している。  [0060] The cooler 111 is installed inside the heat insulating wall 12 of the cooler 7, and the heat dissipation system 3 and the Stirling refrigerator 2 are installed in the air duct outside the heat insulating wall 12 of the cooler 7. ing. Each of arrows A, B, C, D, and E in the figure represents the direction of airflow.
[0061] スターリング冷凍機 2が起動すると、上述のようにウォームセクション 11で発生した 温熱を受け取った高温側二次冷媒と外気とが放熱用熱交換器 5を介して熱交換を行 なう。このとき、送風ファン 6の駆動によって、冷却庫 7の周囲の外気が矢印 Aで示す ように、放熱システム 3内に取り込まれるとともに、矢印 Bで示すように空気ダクト内の 温かい空気が冷却庫 7の周囲へ排出され、それによつて、前述の熱交換が促進され る。  When the Stirling refrigerator 2 is activated, the high-temperature side secondary refrigerant that has received the heat generated in the warm section 11 and the outside air exchange heat through the heat-dissipating heat exchanger 5 as described above. At this time, as the blower fan 6 is driven, outside air around the cooler 7 is taken into the heat dissipation system 3 as indicated by the arrow A, and warm air in the air duct is drawn into the cooler 7 as indicated by the arrow B. The heat exchange described above is facilitated.
[0062] 本実施の形態においては、送風ファン 6は、放熱用熱交換器 5よりも気流の上流側 に設けられている。したがって、放熱用熱交 5が放出した熱によって生じる上昇 気流を有効に利用して、放熱用熱交 5における熱交換が促進されるため、送風 ファン 6の負担が軽減されて!、る。  In the present embodiment, the blower fan 6 is provided on the upstream side of the airflow with respect to the heat-dissipating heat exchanger 5. Therefore, the heat exchange in the heat-dissipating heat exchanger 5 is promoted by effectively using the rising air flow generated by the heat released by the heat-dissipating heat exchanger 5, so that the burden on the blower fan 6 is reduced!
[0063] 一方、スターリング冷凍機 2のコールドセクション (低温側熱搬送サイクルの凝縮器) 13で発生した冷熱は、冷却器 (低温側熱搬送サイクルの蒸発器) 111によって、冷気 ダクト 14内の空気へ伝達される。このとき、送風ファン 6 (図示しない)の回転によって 、冷気ダクト 14内の冷気の一部力 矢印 Eで示すように、冷凍室 15内に送り込まれる とともに、矢印 Cで示すように、冷気の一部が冷蔵室 16内に送り込まれる。冷蔵室 16 内に送り込まれた冷気は、矢印 Dで示すように、野菜室 17内へ送り込まれる。さらに 、野菜室 17内の冷気は、冷気ダクト 14の開口介して、再び冷却器 111の付近へ送ら れる。なお、冷却器 111の除霜によって生じたドレン水は、ドレンパンに向かって落下 し、ドレンパン内で蒸発する。  [0063] On the other hand, the cold generated in the cold section (cooler in the low-temperature side heat transfer cycle) 13 of the Stirling refrigerator 2 is cooled by the cooler (evaporator in the low-temperature side heat transfer cycle) 111 to the air in the cold air duct 14 Is transmitted to. At this time, by the rotation of the blower fan 6 (not shown), a partial force of the cold air in the cold air duct 14 is sent into the freezer compartment 15 as indicated by an arrow E and one of the cold air is indicated as indicated by an arrow C. Department is sent into the refrigerator compartment 16. The cold air sent into the refrigerator compartment 16 is sent into the vegetable compartment 17 as shown by arrow D. Further, the cold air in the vegetable compartment 17 is sent again to the vicinity of the cooler 111 through the opening of the cold air duct 14. The drain water generated by the defrosting of the cooler 111 falls toward the drain pan and evaporates in the drain pan.
[0064] 前述のように、本実施の形態の放熱システム 3によれば、ウォームセクション 11にお いて発生した温熱は、冷媒によって放熱用交換器 5へ搬送され、放熱用熱交換器 5 を介して、冷却庫 7の外部に効率よく放出される。また、本実施形態の放熱システム 3 はコンパクトであるため、冷却庫 7内の空間を放熱システム 3が大きく占有してしまうこ とはない。さらに、ウォームセクション 11で発生した温熱の放出を十分に促進すること ができるため、コールドセクション 13において極低温の冷熱を効率よく発生させること ができる。具体的に言うと、—50°C以下の温度帯で貯蔵物を保存することが可能で あり、冷凍および冷蔵の効率が高ぐ地球環境に与える悪影響が小さぐかつ騒音が 小さ 、冷却庫を得ることができる。 [0064] As described above, according to the heat dissipation system 3 of the present embodiment, the heat generated in the worm section 11 is conveyed to the heat dissipation exchanger 5 by the refrigerant, and passes through the heat dissipation heat exchanger 5. And efficiently discharged to the outside of the refrigerator 7. In addition, the heat dissipation system 3 of this embodiment Is compact, the heat dissipation system 3 does not occupy the space inside the refrigerator 7. Furthermore, since the release of the warm heat generated in the warm section 11 can be sufficiently promoted, the cryogenic cold can be efficiently generated in the cold section 13. Specifically, it is possible to preserve stored items in a temperature range of -50 ° C or lower, the efficiency of freezing and refrigeration is high, the negative impact on the global environment is small, the noise is low, and the refrigerator is Obtainable.
[0065] この発明を詳細に説明し示してきた力 これは例示のためのみであって、限定ととつ てはならず、発明の精神と範囲は添付の請求の範囲によってのみ限定されることが 明らかに理解されるであろう。 [0065] Power to describe and illustrate this invention in detail This is for illustrative purposes only, and not as a limitation, and the spirit and scope of the invention is limited only by the scope of the appended claims. Will be clearly understood.
産業上の利用可能性  Industrial applicability
[0066] スターリング冷凍機のウォームセクションでの放熱を十分に促進することができ、コ ンパクト、低騒音、かつ低消費電力である放熱システムを有するスターリング冷凍シス テム等が得られる。  [0066] Heat dissipation in the worm section of the Stirling refrigerator can be sufficiently promoted, and a Stirling refrigeration system having a heat dissipation system that is compact, low noise, and low power consumption can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 逆スターリングサイクルによって冷熱を生成するスターリング冷凍機 (2)と、  [1] A Stirling refrigerator (2) that generates cold by a reverse Stirling cycle;
前記スターリング冷凍機 (2)で発生した温熱を放出する放熱システム(3)とを備え、 前記放熱システム(3)は、  A heat dissipating system (3) that releases the heat generated in the Stirling refrigerator (2), and the heat dissipating system (3) includes:
前記スターリング冷凍機(2)のウォームセクション(11)に取り付けられた吸熱用熱 交 (4)と、  An endothermic heat exchanger (4) attached to the worm section (11) of the Stirling refrigerator (2);
前記スターリング冷凍機(2)の上方に設けられ、外気へ温熱を放出するための放 熱用熱交 (5)と、  A heat exchange for heat release (5) provided above the Stirling refrigerator (2) for releasing heat to the outside air;
前記吸熱用熱交 (4)と前記放熱用熱交 (5)とを接続するとともに、前記 ウォームセクション(11)で発生した温熱を受け取った高温側二次冷媒が自然循環す る循環用配管 (8)と、  The endothermic heat exchanger (4) and the heat dissipating heat exchanger (5) are connected, and the high-temperature side secondary refrigerant that has received the heat generated in the worm section (11) circulates naturally. 8) and
前記放熱用熱交換器 (5)における前記高温側二次冷媒と外気との熱交換を促進 する気流を生成する送風機 (6)とを有し、  A blower (6) for generating an air flow that promotes heat exchange between the high-temperature side secondary refrigerant and the outside air in the heat dissipation heat exchanger (5),
前記送風機 (6)が、前記放熱用熱交 (5)と前記スターリング冷凍機 (2)との間 に設置された、スターリング冷凍システム。  A Stirling refrigeration system, wherein the blower (6) is installed between the heat dissipation heat exchanger (5) and the Stirling refrigerator (2).
[2] 前記気流が仮想の面を通過するときに、最大風速が Vmaxであり、最小風速が Vm inであり、かつ、平均風速が Vaveである場合において、前記仮想の面に生じる風速 分布の均一度合を示す値であって、 DI= (Vmax—Vmin) ZVaveという式によって 規定されるディストーションインデックス DIの値力 0以上かつ 0. 5以下である、請求 項 1に記載のスターリング冷凍システム。 [2] When the airflow passes through the virtual plane, the maximum wind speed is Vmax, the minimum wind speed is Vmin, and the average wind speed is Vave. 2. The Stirling refrigeration system according to claim 1, wherein the Stirling refrigeration system is a value indicating a degree of uniformity, and is a value of a distortion index DI defined by an equation of DI = (Vmax−Vmin) ZVave of 0 or more and 0.5 or less.
[3] 前記送風機 (6)は、前記放熱用熱交換器 (5)の下側に設置された、請求項 1に記 載のスターリング冷凍システム。 [3] The Stirling refrigeration system according to claim 1, wherein the blower (6) is installed below the heat-dissipating heat exchanger (5).
[4] 前記送風機 (6)は、前記放熱用熱交換器 (5)の位置よりも前記気流の上流側の位 置に設けられた、請求項 1に記載のスターリング冷凍システム。 [4] The Stirling refrigeration system according to claim 1, wherein the blower (6) is provided at a position upstream of the airflow from a position of the heat-dissipating heat exchanger (5).
[5] 前記送風機 (6)は、前記放熱用熱交換器 (5)の位置よりも前記気流の下流側の位 置に設けられた、請求項 1に記載のスターリング冷凍システム。 [5] The Stirling refrigeration system according to claim 1, wherein the blower (6) is provided at a position downstream of the airflow with respect to the heat dissipation heat exchanger (5).
[6] 請求項 1〜5のいずれかに記載のスターリング冷凍システム(1)を備えた、冷却庫。 [6] A refrigerator comprising the Stirling refrigeration system (1) according to any one of claims 1 to 5.
PCT/JP2005/019964 2004-11-12 2005-10-31 Stirling refrigration system and cooling room with the same WO2006051703A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-328732 2004-11-12
JP2004328732A JP2006138543A (en) 2004-11-12 2004-11-12 Stirling refrigeration system, and cooling storage provided therewith

Publications (1)

Publication Number Publication Date
WO2006051703A1 true WO2006051703A1 (en) 2006-05-18

Family

ID=36336385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019964 WO2006051703A1 (en) 2004-11-12 2005-10-31 Stirling refrigration system and cooling room with the same

Country Status (2)

Country Link
JP (1) JP2006138543A (en)
WO (1) WO2006051703A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337751A (en) * 1999-03-23 2000-12-08 Mitsubishi Electric Corp Cooler, manufacture thereof, freezer/refrigerator and refrigerator
JP2004156802A (en) * 2002-11-05 2004-06-03 Sharp Corp Cooling storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337751A (en) * 1999-03-23 2000-12-08 Mitsubishi Electric Corp Cooler, manufacture thereof, freezer/refrigerator and refrigerator
JP2004156802A (en) * 2002-11-05 2004-06-03 Sharp Corp Cooling storage

Also Published As

Publication number Publication date
JP2006138543A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
WO2005008160A1 (en) Loop type thermo syphone, heat radiation system, heat exchange system, and stirling cooling chamber
CN101922778B (en) Semiconductor refrigerating air conditioning device
JP6888102B2 (en) Heat exchanger unit and refrigeration cycle equipment
CN107560005A (en) Radiating assembly and air conditioner
WO2006137269A1 (en) Sterling cooling chamber
JP2012017967A (en) Air conditioning device
KR20100094788A (en) Airconditioner by a ultrasonic waves vibrator and thermoelectricelement
JP3826998B2 (en) Stirling refrigeration system and Stirling refrigerator
JP2006327350A (en) Air-conditioner for vehicle
JP3910096B2 (en) Heat dissipating system for Stirling engine and refrigerator equipped with the same
EP1312875A1 (en) Stirling cooling device, cooling chamber, and refrigerator
US20050016184A1 (en) Stirling cooling device, cooling chamber, and refrigerator
TWI311187B (en)
CN100373100C (en) Outdoor unit of air-conditioner
JP3751613B2 (en) Heat exchange system and Stirling refrigerator
WO2006051703A1 (en) Stirling refrigration system and cooling room with the same
JP2006084135A (en) Heat radiating system and stirling refrigerator
JP2007078275A (en) Heat exchanger for stirling refrigerating machine
JP2007178103A (en) Cooling storage
JP2006342989A (en) Cooling storage
CN110274330A (en) A kind of solar energy economical air conditioner
JP2007178102A (en) Cooling storage
JP2003207253A (en) Refrigerator
JP2009270787A (en) Heat exchanger, refrigerator and air conditioner
JP2006214709A (en) Stirling cooling storage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 05800489

Country of ref document: EP

Kind code of ref document: A1