WO2006046563A1 - Optical fiber provided with lens and method for manufacturing the optical fiber - Google Patents

Optical fiber provided with lens and method for manufacturing the optical fiber Download PDF

Info

Publication number
WO2006046563A1
WO2006046563A1 PCT/JP2005/019605 JP2005019605W WO2006046563A1 WO 2006046563 A1 WO2006046563 A1 WO 2006046563A1 JP 2005019605 W JP2005019605 W JP 2005019605W WO 2006046563 A1 WO2006046563 A1 WO 2006046563A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
lens
etching solution
core
etching
Prior art date
Application number
PCT/JP2005/019605
Other languages
French (fr)
Japanese (ja)
Inventor
Akinori Sugimura
Masahiro Saito
Noriyoshi Hiroi
Original Assignee
Namiki Seimitsu Houseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Seimitsu Houseki Kabushiki Kaisha filed Critical Namiki Seimitsu Houseki Kabushiki Kaisha
Publication of WO2006046563A1 publication Critical patent/WO2006046563A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements

Definitions

  • the present invention relates to an optical fiber with a lens and a method for manufacturing the same.
  • FIG. 10 shows a perspective view of the LD active layer and the light emitted from the active layer.
  • the light emitted from the active layer 109 of the LD 108 is radiated in a non-circular or circular shape while spreading at a large spread angle in the space.
  • a non-circular shape is defined as including all shapes other than a circular shape.
  • the outgoing light that spreads in an elliptical shape is shown as an example of a non-circular shape, but there are also semiconductor lasers that spread in a circular shape.
  • the coupling efficiency between the outgoing light and the optical fiber is mainly the same as that of the optical fiber. It is determined by the coupling loss due to wavefront aberration when entering the core. That is, the wavefront of the outgoing light coupled to the end face of the optical fiber is not completely converted into a flat shape inside the core, leaving an aberration, and the coupling efficiency is significantly reduced due to the wavefront aberration of the outgoing light propagating inside the core. There was a problem of doing so.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 05-264858 (Page 3, Figures 2 and 4)
  • the optical phoino 101 with the coating removed is set between the discharge electrodes 100 disposed opposite to each other, and heated by arc discharge between the discharge electrodes 100. It is softened and stretched by pulling both ends of the optical fiber 101 to reduce the diameter.
  • the optical fiber 101 is cut at the extending portion 102 and heated and melted again by electric discharge machining to form a lens 103 at the tip of the optical fibre 101 as shown in FIG.
  • an end surface of a silica-based optical fiber including a core and a clad having a composition having a higher etching rate when using a hydrofluoric acid solution than the core is immersed in the hydrofluoric acid solution.
  • a method of forming a lens by projecting a frustoconical core on the end face, and then heating and melting the frustoconical core or its vicinity to change the frustoconical shape into a curved shape is described. ing.
  • Patent Document 2 Japanese Patent Laid-Open No. 06-242331 (Pages 2-3 and Figs. 4, 6)
  • a clad end surface 104 and a truncated cone-shaped lens portion 105 projecting from the center of the end surface 104 are formed.
  • laser light is irradiated onto the end face of the optical fiber 101 to heat the lens portion 105 and its vicinity.
  • the lens part 105 is softly or partially melted by the laser light irradiation, and the truncated cone-shaped base part 105a and the top part 105b are rounded, and the entire shape becomes a spherical shape as shown in FIG.
  • a spherical lens 107 is formed at the tip of 106.
  • a method of forming a convex curved lens having a predetermined curvature force is also disclosed. Disclosure of the invention
  • the method of polishing the tip of the optical fiber in a conical shape and then repolishing the top of the conical portion is not suitable for mass production because the optical fibers must be processed one by one. There was a problem that the manufacturing cost was also expensive.
  • the present invention has been made in view of the above problems, and has a method of manufacturing an optical fiber with a lens that has constant and good characteristics and can be mass-produced at a low cost in a lump, and manufactured by the manufacturing method.
  • An object of the present invention is to provide an optical fiber with a lens.
  • the invention according to claim 1 of the present invention is such that an optical fiber tip composed of a core for propagating light and a clad covering the core is brought into contact with an etching solution, and the outer peripheral surface of the optical fiber is etched with the etching. Etching with a liquid allows the tip to be removed from the cladding.
  • a method of manufacturing an optical fiber with a lens is such that an optical fiber tip composed of a core for propagating light and a clad covering the core is brought into contact with an etching solution, and the outer peripheral surface of the optical fiber is etched with the etching. Etching with a liquid allows the tip to be removed from the cladding.
  • the invention according to claim 2 of the present invention provides an etching solution and a fluid having a specific gravity higher than that of the etching solution and immiscible with the etching solution in one container.
  • the tip of an optical fiber consisting of a core for propagating light and a clad covering the core is brought into contact perpendicularly to the liquid surface of the etching liquid, and the etching liquid is raised to increase the liquid surface force of the optical fiber.
  • a meniscus in contact with the outer peripheral surface is formed, the optical fiber is held in this state, and the outer peripheral surface of the optical fiber is etched, so that the tip is conical from the outer periphery of the cladding to the center of the core.
  • the invention according to claim 3 of the present invention is characterized in that the etching of the primary step is performed by the etching solution degassed and degassed. 2.
  • the invention according to claim 4 of the present invention is manufactured by the method for manufacturing an optical fiber with lens according to any one of claims 1 to 3. It is.
  • the conical surface of the tip of the optical fiber with a lens is formed by chemical etching with an etching solution. Since there is almost no eccentricity and the tip can be tapered, the characteristics can be kept good. Furthermore, by immersing a large number of fibers in the etching solution at once, the optical fiber with a lens can be mass-produced by batch processing, and the associated manufacturing cost can be reduced. [0023] Furthermore, by forming a lens by curvature processing on the top of the conical surface by physical polishing with a polishing plate, highly accurate curvature processing is possible.
  • the lens can be easily formed by a physical polishing method.
  • a plurality of optical fibers with lenses can be manufactured in a batch process. From the above, by combining a chemical etching process and a physical polishing process, it becomes possible to mass-produce optical fibers with lenses having good characteristics at a lower cost than conventional manufacturing methods.
  • the etching solution used for the etching is degassed to prevent the generation of bubbles during the etching process, thereby preventing the meniscus from being distorted. It is possible to form a uniform conical surface.
  • FIG. 1 is a partially enlarged view showing a tip portion of an optical fiber with a lens according to the present invention.
  • FIG. 2 is a schematic diagram showing a state in which an optical fiber is immersed in a fluid.
  • FIG. 5 is a schematic diagram showing a state where a conical surface is formed at the tip of the optical fiber after etching is completed.
  • FIG. 6 is a schematic diagram showing a state where a meniscus distorted by bubbles is formed.
  • FIG. 1 A first figure.
  • FIG. 8 is a graph that schematically shows the temperature change state of the etching solution.
  • FIG. 9 is a schematic view showing a polishing step according to the method for manufacturing an optical fiber with a lens according to the present invention.
  • FIG. 10 is a schematic diagram showing non-circular light emitted from the active layer of an LD.
  • the schematic diagram which shows the manufacturing method of a bar.
  • FIG. 14 is a schematic diagram showing a state in which the truncated cone-shaped core of FIG. 13 is softly or partially melted and formed into a spherical shape.
  • Fig. 1 shows the tip of an optical fiber 1 with a lens according to the present invention.
  • the tip of optical fiber 1 where the diameter of core 2 for propagating light is dc and the diameter of clad 3 is do is conical with the outer surface force of clad 3 toward the center of core 2.
  • a conical surface 4 having a sharp taper angle of ⁇ is formed.
  • a convex curved surface 5 having a predetermined curvature having a radius of curvature R force is integrally formed on the top of the conical surface 4 continuously with the conical surface.
  • the core 2 diameter dc is 10 m
  • the clad 3 diameter do is 125 m
  • the conical surface 4 has a taper angle ⁇ of 30 degrees
  • the conical surface apex radius R is 7.0 to 10.0 ⁇ m. m or less.
  • the core 2 of the optical fiber 1 also has a quartz force supplemented with quartz or germanium.
  • the core 2 is quartz
  • the clad 3 covering the periphery is composed of quartz to which fluorine is added.
  • 2 is quartz added with germanium, it is composed of quartz.
  • the clad 3 may be formed by mixing phosphorus instead of fluorine.
  • the convex curved surface 5 functions as a lens unit coupled to the incident light (hereinafter, the optical fiber 1 is attached with a lens as necessary). (Referred to as optical fiber 1).
  • the lens effect makes it possible to convert the wavefront of the emitted light from the semiconductor laser propagating with a divergence angle into a planar shape with high efficiency. Therefore, the wavefront aberration of the outgoing light propagating through the inside of the core can be eliminated and the coupling efficiency can be increased.
  • the portion corresponding to the lens for alignment (convex curved surface 5 functioning as a lens portion) is integrated with the force optical fiber 1, it is possible to save the trouble of mounting the lens individually. At the same time, it is possible to prevent a discontinuous portion of the refractive index from interposing between the lens and the optical fiber. Therefore, the instability of the LD characteristics due to re-incidence of the reflected light to the LD 108 is remarkably improved.
  • an etching solution 7 and a fluid 8 having a specific gravity smaller than that of the etching solution 7 and immiscible with the etching solution 7 are contained and prepared.
  • Etching solution 7 contains ammonium fluoride aqueous solution (NH F) and
  • the optical fiber 1 is first immersed in the fluid 8 and is held almost vertically in the fluid 8. State force The optical fiber 1 is lowered, and the tip of the optical fiber 1 is brought into perpendicular contact with the liquid surface of the etching solution 7 so that the end face 10 of the optical fiber 1 substantially coincides with the interface 9. Then, as shown in FIG. 3, the surface layer of the etching solution 7 rises along the outer peripheral surface of the tip of the optical fiber 1 due to the interfacial tension, and the meniscus 11 is formed so as to be in contact with the outer peripheral surface. The By holding the optical fiber 1 in this state, etching gradually proceeds from the outer peripheral surface immersed in the etching solution 7 to the height of the meniscus 11. In this state, for example, hold for 160 minutes.
  • the diameter of the optical fiber 1 gradually decreases as shown in FIG.
  • the height of the meniscus 11 decreases in proportion to the decrease in diameter, and the height of the outer peripheral surface in contact with the etching solution 7 gradually decreases.
  • the etching solution 7 is removed as shown in FIG. The liquid level becomes flat and the etching is finished.
  • a conical etching surface (conical surface 4) can be formed smoothly.
  • the etching solution 7 is always kept at a constant temperature (40 degrees) by heating the water 15 in the thermostatic chamber 14 with the heater 13 or the like.
  • the gas dissolved in the etching solution 7 is degassed. Since the gas is dissolved in the etching solution 7, the etching is performed without degassing. When this is started, the gas dissolved in the etchant 7 immediately after the start of etching becomes saturated, volatilizes and bubbles are generated. As shown in FIG. 8, when the temperature of the etching solution 7 is increased to the etching temperature (40 degrees) over time d at the start of etching (starting point s), the temperature rises to room temperature. This is because the gas force dissolved in the etching solution 7 becomes saturated at the etching temperature.
  • the generated bubbles 16 gather near the interface 9 of the meniscus 11 so as to contact the outer peripheral surface of the optical fiber 1 as shown in FIG. If the etching is continued in this state, the meniscus 11 where the bubbles 16 stop is distorted, As shown in FIG. 7, the conical surface 4 formed after the etching has a non-uniform shape having an asymmetric portion over the entire circumference of 360 degrees.
  • the degassing step is performed as follows.
  • the temperature of the etching solution 7 is increased from room temperature to the solution temperature (40 degrees) in the etching of the primary process over time a. Further, the temperature of the etchant 7 is increased by heating the water 15 at time b so that the temperature is higher than 40 degrees (in this embodiment, the temperature is set to 50 degrees, which is about 10 degrees higher). Stir while further raising the temperature to keep the entire etching solution 7 at a uniform temperature (50 degrees).
  • the liquid temperature of the etching liquid 7 is kept higher than the liquid temperature (40 degrees) in the etching in the primary process, so that it dissolves in the etching liquid 7 at the room temperature and promotes volatilization of the air.
  • the etching solution 7 is deaerated.
  • the degassed etching solution 7 is then cooled to a temperature (40 ° C.) used for the etching in the primary process over time c, and then kept at a constant temperature and used for the etching. .
  • the generation of the bubbles 16 during the etching process of the optical fiber 1 can prevent the meniscus 11 from being distorted, and the uniform conical surface 4 can be formed.
  • Means for stirring the etching solution 7 is not particularly limited, but in the present embodiment, the stirring is performed by a stirrer (not shown).
  • the temperature uniformizing means for the etching solution 7 may be performed by vibrations such as circulation, convection, and ultrasonic waves in addition to the above stirring. Further, as a means for degassing the etching solution 7, it is possible to apply a method other than the above-described method.
  • the top 4a of the conical surface 4 is physically polished, and the convex curved surface 5 having a predetermined curvature having the curvature radius R is formed in a continuous manner with the conical surface 4.
  • a polishing plate 12 is used to form the convex curved surface 5, as shown in FIG. 9, a polishing plate 12 is used.
  • An optical fiber 1 is set and brought into contact with the polishing plate 12 at a predetermined angle, and its state force is also driven by the optical fiber 1 to be predetermined.
  • the top 4a is lensed by forming the radius of curvature R.
  • Various methods and forms can be applied to the polishing. Here, puff polishing is used.
  • the coupling efficiency is 80% with respect to the non-circular shaped emitted light from the LD108. It is desirable to decide to ensure the above. Set taper angle ⁇ within the range of 30 to 130 degrees This is preferable because good coupling efficiency can be obtained for the non-circular shaped emitted light.
  • the optimization of the radius of curvature R accompanying the change in the taper angle ⁇ can also be realized by changing the polishing plate 12, the polishing conditions, or changing the tilt angle of the optical fiber 1 with respect to the polishing plate 12. I can do it.
  • the formation of the conical surface 4 in the production of the optical fiber 1 with a lens is performed by chemical etching with an etching solution, so that theoretically there is almost no eccentricity of the core axis. Since the tip can be tapered, the characteristics can be kept good. Furthermore, by immersing a large number of fibers in the etching solution at a time, the optical fiber 1 with a lens can be mass-produced by batch processing, and the manufacturing cost associated therewith can be reduced.
  • the lens by curvature processing on the top 4a by physical polishing with a polishing plate, highly accurate curvature processing becomes possible. Furthermore, as compared with the conventional lens forming method in which the core or the vicinity thereof is melted by heat, the lens can be easily formed by a physical polishing method. If a plurality of optical fibers 1 are brought into contact with the polishing plate 12 under the same conditions, a plurality of optical fibers with lenses can be manufactured in a batch process. From the above, by combining the chemical etching process and the physical polishing process, it is possible to mass-produce optical fibers with lenses with good characteristics at a lower cost than conventional manufacturing methods.
  • the present invention can be variously modified based on its technical idea. For example, when etching the outer peripheral surface of the tip portion of the optical fiber 1, etching is performed only with the etching solution 7 without using the fluid 8.
  • the tip portion may be sharpened conically from the outer periphery of the cladding to the center of the core to form a conical surface, thereby simplifying the etching process.
  • the method for manufacturing an optical fiber with a lens and the optical fiber with a lens according to the present invention provide an optical communication device. It can be used for the device and its manufacture.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

A method is provided for manufacturing an optical fiber which has a lens, has excellent constant characteristics and can be mass-produced by batch processing at a low cost. The optical fiber which is provided with a lens and is manufactured by such manufacturing method is also provided. The method is composed of a primary process and a secondary process. In the primary process, an etching solution and a fluid which has a smaller specific gravity than that of the etching solution and is immiscible in the etching solution are prepared in one container, the leading edge part of the optical fiber composed of a core and a clad is vertically brought into contact with the liquid surface of the etching solution so as to raise the etching solution from the liquid surface, and a meniscus is formed on the outer circumference surface of the optical fiber. Under such status, the outer circumference surface of the optical fiber is etched, the leading edge part is acuminated in a conical shape from the clad outer circumference to the core center and a circular conical surface is formed. In the secondary process, the summit part of the circular conical surface is formed into a protruding curved surface having a prescribed curvature by physical polishing.

Description

明 細 書  Specification
レンズ付き光ファイバとその製造方法  Optical fiber with lens and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、レンズ付き光ファイバとその製造方法に関するものである。  The present invention relates to an optical fiber with a lens and a method for manufacturing the same.
背景技術  Background art
[0002] 光通信用の発光素子としては、レーザダイオード (以下、 LD)等の半導体レーザが 用いられている。図 10に、 LDの活性層と、その活性層からの出射光の斜視図を示す 。 LD108の活性層 109からの出射光は空間中で大きな広がり角で広がりながら非円形 状若しくは円形状に放射される。なお本明細書中では、非円形状とは円形状以外の 全ての形状を含むものと定義する。図 10では非円形状の一例として楕円形状に広が る出射光を図示したが、円形状に広がる半導体レーザも存在する。  [0002] Semiconductor lasers such as laser diodes (hereinafter referred to as LDs) are used as light emitting elements for optical communication. FIG. 10 shows a perspective view of the LD active layer and the light emitted from the active layer. The light emitted from the active layer 109 of the LD 108 is radiated in a non-circular or circular shape while spreading at a large spread angle in the space. In this specification, a non-circular shape is defined as including all shapes other than a circular shape. In FIG. 10, the outgoing light that spreads in an elliptical shape is shown as an example of a non-circular shape, but there are also semiconductor lasers that spread in a circular shape.
[0003] 広がり角をもって伝搬する出射光の波面は円弧状になるため、その出射光が光ファ ィバに入射されると、出射光と光ファイバの結合効率は主に出射光が光ファイバのコ ァ内部に入射する際の波面収差による結合損失で決定される。即ち、光ファイバの 端面に結合された出射光の波面がコア内部で平面状に変換され切れずに収差が残 り、コア内部を伝搬する出射光の波面収差によって、結合効率が著しく低下してしま うという問題点があった。 [0003] Since the wavefront of the outgoing light propagating with a divergence angle is circular, when the outgoing light is incident on the optical fiber, the coupling efficiency between the outgoing light and the optical fiber is mainly the same as that of the optical fiber. It is determined by the coupling loss due to wavefront aberration when entering the core. That is, the wavefront of the outgoing light coupled to the end face of the optical fiber is not completely converted into a flat shape inside the core, leaving an aberration, and the coupling efficiency is significantly reduced due to the wavefront aberration of the outgoing light propagating inside the core. There was a problem of doing so.
[0004] そこで、光ファイバと発光素子を効率良く結合させるために、従来ではレンズが用い られてきたが、レンズを用いる場合には光ファイノ 、発光素子、及びレンズが最適な 位置になるように調芯する必要があり、その調芯作業に時間を要していた。そのため 最近では、光ファイバ先端部にレンズ機能を一体化させた、所謂、レンズ付き光ファ ィバが用いられている。レンズ付き光ファイバを用いると、調芯作業が光ファイバと発 光素子の調芯だけで済むため、組み立て工程を大幅に簡素化出来る。  [0004] Thus, in order to efficiently couple the optical fiber and the light emitting element, a lens has been used in the past. However, when a lens is used, the optical fino, the light emitting element, and the lens are positioned in an optimal position. It was necessary to align, and the alignment work took time. Therefore, recently, a so-called optical fiber with a lens in which a lens function is integrated at the tip of an optical fiber has been used. If an optical fiber with a lens is used, the alignment process can be performed only by aligning the optical fiber and the light emitting element, so that the assembly process can be greatly simplified.
[0005] 光ファイバの先端にレンズを作製する方法としては、例えば特許文献 1に開示され ているように、光ファイバを加熱軟ィ匕させて引き伸ばすことによって細径ィ匕し、その細 径部で光ファイバを切断した後に、細径部の先端を再び加熱溶融して先端を球状に レンズ形状化する方法が知られて 、る。 [0005] As a method of manufacturing a lens at the tip of an optical fiber, for example, as disclosed in Patent Document 1, the optical fiber is heated and softened and stretched to reduce the diameter. It is known to cut the optical fiber at the diameter portion and then heat and melt the tip of the small diameter portion again to make the tip into a spherical lens shape.
[0006] 特許文献 1:特開平 05— 264858号公報 (第 3頁、第 2, 4図) [0006] Patent Document 1: Japanese Patent Application Laid-Open No. 05-264858 (Page 3, Figures 2 and 4)
[0007] この方法は、図 11〖こ示すよう〖こ、対向して設置された放電電極 100の間に被覆を除 去した光ファイノ 101をセットし、放電電極 100間のアーク放電により加熱'軟化させ、 光ファイバ 101の両端部を引っ張ることにより延伸し、細径化する。この延伸部 102で 光ファイバ 101を切断し、再度放電加工によって加熱溶融して、図 12に示す様に光フ ァイノく 101先端にレンズ 103を形成する。  [0007] In this method, as shown in FIG. 11, the optical phoino 101 with the coating removed is set between the discharge electrodes 100 disposed opposite to each other, and heated by arc discharge between the discharge electrodes 100. It is softened and stretched by pulling both ends of the optical fiber 101 to reduce the diameter. The optical fiber 101 is cut at the extending portion 102 and heated and melted again by electric discharge machining to form a lens 103 at the tip of the optical fibre 101 as shown in FIG.
[0008] また特許文献 2には、コアと、前記コアよりもフッ酸溶液を用いたときのエッチング速 度が大きい組成のクラッドとから成る石英系光ファイバの端面をフッ酸溶液に浸漬し て、前記端面に円錐台形状のコアを突出させて、次いで、前記円錐台形状のコア又 はその近傍を加熱溶融して前記円錐台形状を曲面形状に変化させてレンズを形成 する方法が述べられている。  [0008] Further, in Patent Document 2, an end surface of a silica-based optical fiber including a core and a clad having a composition having a higher etching rate when using a hydrofluoric acid solution than the core is immersed in the hydrofluoric acid solution. A method of forming a lens by projecting a frustoconical core on the end face, and then heating and melting the frustoconical core or its vicinity to change the frustoconical shape into a curved shape is described. ing.
[0009] 特許文献 2 :特開平 06— 242331号公報 (第 2— 3頁、第 4, 6図) [0009] Patent Document 2: Japanese Patent Laid-Open No. 06-242331 (Pages 2-3 and Figs. 4, 6)
[0010] コア又はクラッドに添加物を混入して、コアとクラッドとの間でエッチング速度に差を 付けることにより、フッ酸溶液浸漬後に図 13に示すように、光ファイノ 101の端面に、 平滑なクラッド端面 104と、その端面 104の中心に突出する円錐台形状のレンズ部 105 を形成する。 [0010] By adding an additive to the core or the clad and making a difference in the etching rate between the core and the clad, as shown in FIG. A clad end surface 104 and a truncated cone-shaped lens portion 105 projecting from the center of the end surface 104 are formed.
[0011] 次に、レーザ光を光ファイバ 101の端面に照射してレンズ部 105とその近傍を加熱す る。レーザ光の照射を受けレンズ部 105は軟ィ匕または部分溶融して、円錐台形状の 基部 105aや頂部 105bが丸みを帯び、全体の形状が図 14に示すように球面形状にな り、コア 106先端に球面レンズ 107が形成される。  Next, laser light is irradiated onto the end face of the optical fiber 101 to heat the lens portion 105 and its vicinity. The lens part 105 is softly or partially melted by the laser light irradiation, and the truncated cone-shaped base part 105a and the top part 105b are rounded, and the entire shape becomes a spherical shape as shown in FIG. A spherical lens 107 is formed at the tip of 106.
[0012] 又、光ファイバのストリップ力 レーザカ卩ェにより光ファイバ先端をレンズ形状に成形 する方法や、光ファイバの先端部をコアを中心として円錐状に研磨した後、円錐部の 頂部を再研磨して、所定の曲率力 なる凸曲面状のレンズに成形する方法も開示さ れている。 発明の開示 [0012] In addition, a method of forming the tip of the optical fiber into a lens shape by a laser force of the optical fiber, or after polishing the tip of the optical fiber in a conical shape centering on the core, the top of the cone is re-polished. In addition, a method of forming a convex curved lens having a predetermined curvature force is also disclosed. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] し力しながら特許文献 1の方法では、光ファイバ 101を放電によって加熱して延伸部 102を引き伸ばす際に、光ファイノ 101のコア 106も引き伸ばされるため、図 12に示す ように、テーパ部 108におけるコア 106の直径が細くなり、光の伝搬に障害が生じる。 従って、レンズ 103によって集光された光は、テーパ部 108を通過する際に減衰され、 LD108と結合したときに、結合効率が低下するという課題が生じる。更に、延伸時にコ ァ軸の偏芯が大きくなるため、特性が悪化する。  [0013] In the method of Patent Document 1, however, when the optical fiber 101 is heated by electric discharge and the stretched portion 102 is stretched, the core 106 of the optical fino 101 is also stretched. Therefore, as shown in FIG. The diameter of the core 106 in the portion 108 is reduced, and the light propagation is obstructed. Therefore, the light condensed by the lens 103 is attenuated when passing through the tapered portion 108, and there arises a problem that the coupling efficiency is lowered when coupled with the LD 108. Furthermore, the eccentricity of the core axis increases during stretching, and the characteristics deteriorate.
[0014] また、特許文献 2の方法では、円錐台形状のレンズ部 105を球面形状に加工するェ 程が難しいためレンズ 107形状の再現性が悪ぐ個々の光ファイバ 101毎のレンズ 107 形状にバラツキが発生して、結合効率を光ファイバ 101毎に一定に保てないという課 題があった。 [0014] Further, in the method of Patent Document 2, it is difficult to process the truncated cone-shaped lens portion 105 into a spherical shape, so the reproducibility of the shape of the lens 107 is poor, and the shape of the lens 107 for each individual optical fiber 101 is reduced. Due to variations, there was a problem that the coupling efficiency could not be kept constant for each optical fiber 101.
[0015] また、光ファイバのストリップからレーザ力卩ェを行う方法では、レーザ加工用装置が 高価なので製造コスト並びに製造品単価が力さむという課題があった。 [0015] Further, in the method of performing laser force check from an optical fiber strip, there is a problem that the manufacturing cost and the unit price of the manufactured product are increased because the laser processing apparatus is expensive.
[0016] また、光ファイバの先端部を円錐状に研磨した後、円錐部の頂部を再研磨する方 法では、光ファイバを 1本ずつ加工しなければならないため、大量生産に不向きであ り製造コストも高価になるという課題があった。 [0016] In addition, the method of polishing the tip of the optical fiber in a conical shape and then repolishing the top of the conical portion is not suitable for mass production because the optical fibers must be processed one by one. There was a problem that the manufacturing cost was also expensive.
[0017] 本発明は上記各課題に鑑みて成されたものであり、特性が一定且つ良好で、一括 で低コストに大量生産が可能なレンズ付き光ファイバの製造方法と、その製造方法で 製造されたレンズ付き光ファイバを提供することを目的とする。 [0017] The present invention has been made in view of the above problems, and has a method of manufacturing an optical fiber with a lens that has constant and good characteristics and can be mass-produced at a low cost in a lump, and manufactured by the manufacturing method. An object of the present invention is to provide an optical fiber with a lens.
課題を解決するための手段  Means for solving the problem
[0018] 本発明の請求項 1記載の発明は、光を伝搬させるコアとこのコアを覆うクラッドから なる光ファイバの先端部を、エッチング液に接触させ、前記光ファイバの外周面を、 前記エッチング液によってエッチングすることにより、前記先端部を前記クラッドの外 周から前記コアの中心にかけて円錐状に先鋭ィ匕して円錐面を形成する一次工程と、 前記円錐面の頂部を、研磨によって所定の曲率を有する凸曲面に成形する二次ェ 程とから構成されることを特徴とするレンズ付き光ファイバの製造方法である。 [0018] The invention according to claim 1 of the present invention is such that an optical fiber tip composed of a core for propagating light and a clad covering the core is brought into contact with an etching solution, and the outer peripheral surface of the optical fiber is etched with the etching. Etching with a liquid allows the tip to be removed from the cladding. A primary step of forming a conical surface by conically sharpening from the circumference to the center of the core, and a secondary step of forming the top of the conical surface into a convex curved surface having a predetermined curvature by polishing. A method of manufacturing an optical fiber with a lens.
[0019] 更に、本発明の請求項 2記載の発明は、エッチング液と、このエッチング液より比重 力 、さく且つ前記エッチング液に対して非混和性である流体とを 1つの容器内に準 備し、  [0019] Furthermore, the invention according to claim 2 of the present invention provides an etching solution and a fluid having a specific gravity higher than that of the etching solution and immiscible with the etching solution in one container. And
光を伝搬させるコアとこのコアを覆うクラッドからなる光ファイバの先端部を、前記ェ ツチング液の液面に対し垂直に接触させ、前記エッチング液をその液面力 上昇さ せて前記光ファイバの外周面に接するメニスカスを形成し、その状態で前記光フアイ バを保持して、前記光ファイバの外周面をエッチングすることにより、前記先端部を前 記クラッドの外周から前記コアの中心にかけて円錐状に先鋭ィ匕して円錐面を形成す る一次工程と、前記円錐面の頂部を、物理的研磨によって所定の曲率を有する凸曲 面に成形する二次工程とから構成されることを特徴とするレンズ付き光ファイバの製 造方法である。  The tip of an optical fiber consisting of a core for propagating light and a clad covering the core is brought into contact perpendicularly to the liquid surface of the etching liquid, and the etching liquid is raised to increase the liquid surface force of the optical fiber. A meniscus in contact with the outer peripheral surface is formed, the optical fiber is held in this state, and the outer peripheral surface of the optical fiber is etched, so that the tip is conical from the outer periphery of the cladding to the center of the core. And a secondary process of forming the top of the conical surface into a convex curved surface having a predetermined curvature by physical polishing. This is a method of manufacturing an optical fiber with a lens.
[0020] 更に、本発明の請求項 3記載の発明は、前記エッチング液を脱気し、脱気を行った 前記エッチング液によって、前記一次工程のエッチングを行うことを特徴とする請求 項 1又は 2に記載のレンズ付き光ファイバの製造方法である。  [0020] Furthermore, the invention according to claim 3 of the present invention is characterized in that the etching of the primary step is performed by the etching solution degassed and degassed. 2. A method for producing an optical fiber with a lens according to 2.
[0021] 更に、本発明の請求項 4記載の発明は、請求項 1乃至請求項 3の何れかに記載の レンズ付き光ファイバの製造方法によって製造されたことを特徴とするレンズ付き光フ アイバである。 Furthermore, the invention according to claim 4 of the present invention is manufactured by the method for manufacturing an optical fiber with lens according to any one of claims 1 to 3. It is.
発明の効果  The invention's effect
[0022] 本発明のレンズ付き光ファイバの製造方法に依れば、レンズ付き光ファイバ先端部 の円錐面の形成を、エッチング液による化学的なエッチングによって行っているので 、理論上、コア軸の偏芯が殆ど無く先端部のテーパ化が行えるので、特性を良好に 保つことが出来る。更に、一度に多数のファイバをエッチング液に浸漬することにより 、レンズ付き光ファイバを一括処理で大量生産が出来ると共にそれに伴う製造コスト の低コストィ匕を図ることが可能となる。 [0023] 更に、円錐面の頂部への曲率加工によるレンズ形成を研磨板による物理的な研磨 で行うことにより、高精度な曲率加工が可能である。更に、コア又はその近傍を加熱 溶融する従来のレンズ形成方法と比較して、物理的な研磨による方法ならば容易に レンズ形成を行える。力 tlえて、研磨工程時に使用する研磨板に、複数の光ファイバを 同条件で接触させる事により、一括処理で複数のレンズ付き光ファイバの製造を行う ことが出来る。以上から、化学的なエッチング工程と物理的な研磨工程を組み合わせ ることにより、従来の製造方法よりも低コストに、特性が良好なレンズ付き光ファイバを 大量生産することが可能となる。 According to the method for manufacturing an optical fiber with a lens of the present invention, the conical surface of the tip of the optical fiber with a lens is formed by chemical etching with an etching solution. Since there is almost no eccentricity and the tip can be tapered, the characteristics can be kept good. Furthermore, by immersing a large number of fibers in the etching solution at once, the optical fiber with a lens can be mass-produced by batch processing, and the associated manufacturing cost can be reduced. [0023] Furthermore, by forming a lens by curvature processing on the top of the conical surface by physical polishing with a polishing plate, highly accurate curvature processing is possible. Furthermore, as compared with the conventional lens forming method in which the core or its vicinity is heated and melted, the lens can be easily formed by a physical polishing method. By bringing a plurality of optical fibers into contact with the polishing plate used in the polishing process under the same conditions, a plurality of optical fibers with lenses can be manufactured in a batch process. From the above, by combining a chemical etching process and a physical polishing process, it becomes possible to mass-produce optical fibers with lenses having good characteristics at a lower cost than conventional manufacturing methods.
[0024] 更に、一次工程のエッチングの前処理として、エッチングに使用するエッチング液 を脱気することにより、エッチング処理中における気泡の発生ゃメニスカスの歪みを 防止することができ、光ファイバの端面を均一な円錐面に形成することが可能とする。 図面の簡単な説明  [0024] Furthermore, as a pretreatment for the etching in the primary process, the etching solution used for the etching is degassed to prevent the generation of bubbles during the etching process, thereby preventing the meniscus from being distorted. It is possible to form a uniform conical surface. Brief Description of Drawings
[0025] [図 1]本発明に係るレンズ付き光ファイバの先端部を示す部分拡大図。 FIG. 1 is a partially enlarged view showing a tip portion of an optical fiber with a lens according to the present invention.
[図 2]光ファイバを流体に浸潰した状態を示す模式図。  FIG. 2 is a schematic diagram showing a state in which an optical fiber is immersed in a fluid.
[図 3]エッチング液の液面に光ファイバの先端部を接触させてメニスカスを形成  [Figure 3] Forming a meniscus by bringing the tip of the optical fiber into contact with the etchant surface
した状態を示す模式図。  The schematic diagram which shows the state made.
[図 4]光ファイバの外周面力 徐々にエッチングが進行して行く状態を示す模  [Fig. 4] Force on the outer peripheral surface of the optical fiber
式図。  Formula diagram.
[図 5]エッチングが終了して光ファイバ先端部に円錐面が形成された状態を示す 模式図。  FIG. 5 is a schematic diagram showing a state where a conical surface is formed at the tip of the optical fiber after etching is completed.
[図 6]気泡により歪んだメニスカスが形成された状態を示す模式図。  FIG. 6 is a schematic diagram showing a state where a meniscus distorted by bubbles is formed.
[図 7]歪んだメニスカスにより不均一な円錐面が形成された光ファイバの先端部  [Figure 7] Optical fiber tip with a non-uniform conical surface formed by a distorted meniscus
を示す部分拡大図。  FIG.
[図 8]エッチング液の液温変化状態を模式的に描いたグラフ。  FIG. 8 is a graph that schematically shows the temperature change state of the etching solution.
[図 9]本発明に係るレンズ付き光ファイバの製造方法に係る研磨工程を示す模式 図。  FIG. 9 is a schematic view showing a polishing step according to the method for manufacturing an optical fiber with a lens according to the present invention.
[図 10]LDの活性層から出射される非円形状の光を示す模式図。  FIG. 10 is a schematic diagram showing non-circular light emitted from the active layer of an LD.
[図 11]光ファイバを加熱軟化させて弓 Iき伸ばす従来のレンズ付き光ファイバの 製造方法を示す模式図。 [Figure 11] The conventional optical fiber with a lens that heats and softens the optical fiber and stretches the bow I The schematic diagram which shows a manufacturing method.
圆 12]図 11の製造方法で作製されたレンズ付き光ファイバの先端部を示す側 [12] Side showing the tip of the optical fiber with a lens produced by the manufacturing method of FIG.
断面図。  Sectional drawing.
[図 13]エッチングで円錐台形状のコアを突出させる従来のレンズ付き光フアイ  [Fig.13] Conventional optical lens with lens that protrudes a frustoconical core by etching
バの製造方法を示す模式図。  The schematic diagram which shows the manufacturing method of a bar.
[図 14]図 13の円錐台形状のコアを軟ィ匕または部分溶融して球面形状に成形し た状態を示す模式図。 FIG. 14 is a schematic diagram showing a state in which the truncated cone-shaped core of FIG. 13 is softly or partially melted and formed into a spherical shape.
符号の説明 Explanation of symbols
1 光ファイバ  1 Optical fiber
2 コア  2 core
3 クラッド  3 Cladding
4 円錐面  4 Conical surface
4a 頂部  4a top
5 凸曲面  5 Convex surface
6 容器  6 containers
7 エッチング液  7 Etching solution
8 流体  8 Fluid
9 界面  9 Interface
10 光ファイバ端面  10 Optical fiber end face
11 メニスカス  11 Meniscus
12 研磨板  12 Polishing plate
13 ヒータ  13 Heater
14 恒温槽  14 Thermostatic bath
15 水  15 water
16 気泡  16 bubbles
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明に係るレンズ付き光ファイバ及びその製造方法の実施形態を図面を 参照しながら詳細に説明する。 [0028] 本発明に係るレンズ付き光ファイバ 1の先端部を図 1に示す。図 1に示すように、光 を伝搬させるコア 2の径が dc、クラッド 3の径が doである光ファイバ 1の先端部には、ク ラッド 3の外周面力 コア 2の中心にかけて円錐状に先鋭ィ匕したテーパ角が Θ度であ る円錐面 4が形成されている。更に、円錐面 4の頂部には曲率半径 R力もなる所定の 曲率を有する凸曲面 5が円錐面に連続して一体成形されている。具体的な数値の一 例として、コア 2径 dcは 10 m、クラッド 3の径 doは 125 m、円錐面 4のテーパ角 Θは 30度で、円錐面頂部の曲率半径 Rは 7.0〜10.0 μ m以内である。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an optical fiber with a lens and a method for manufacturing the same according to the present invention will be described in detail with reference to the drawings. [0028] Fig. 1 shows the tip of an optical fiber 1 with a lens according to the present invention. As shown in Fig. 1, the tip of optical fiber 1 where the diameter of core 2 for propagating light is dc and the diameter of clad 3 is do is conical with the outer surface force of clad 3 toward the center of core 2. A conical surface 4 having a sharp taper angle of Θ is formed. Further, a convex curved surface 5 having a predetermined curvature having a radius of curvature R force is integrally formed on the top of the conical surface 4 continuously with the conical surface. As an example, the core 2 diameter dc is 10 m, the clad 3 diameter do is 125 m, the conical surface 4 has a taper angle Θ of 30 degrees, and the conical surface apex radius R is 7.0 to 10.0 μm. m or less.
[0029] 光ファイバ 1のコア 2は、石英若しくはゲルマニウムを添カ卩した石英力もなり、その周 囲を覆うクラッド 3としては、コア 2が石英の場合はフッ素を添加した石英で構成され、 コア 2がゲルマニウム添加の石英の場合は、石英から構成される。なお、クラッド 3に はフッ素に代えてリンを混入して形成しても良 、。  [0029] The core 2 of the optical fiber 1 also has a quartz force supplemented with quartz or germanium. When the core 2 is quartz, the clad 3 covering the periphery is composed of quartz to which fluorine is added. When 2 is quartz added with germanium, it is composed of quartz. The clad 3 may be formed by mixing phosphorus instead of fluorine.
[0030] このような構造の光ファイバ 1に LD108からの出射光が入射されると、凸曲面 5が入 射光と結合するレンズ部として機能する(以下、光ファイバ 1を必要に応じてレンズ付 き光ファイバ 1と記す)。そのレンズ効果によって、広がり角をもって伝搬する半導体レ 一ザからの出射光の波面を高効率で平面状に変換することが可能となる。従って、コ ァ内部を伝搬する出射光の波面収差を解消して、結合効率を高めることが出来る。  [0030] When the light emitted from the LD 108 is incident on the optical fiber 1 having such a structure, the convex curved surface 5 functions as a lens unit coupled to the incident light (hereinafter, the optical fiber 1 is attached with a lens as necessary). (Referred to as optical fiber 1). The lens effect makes it possible to convert the wavefront of the emitted light from the semiconductor laser propagating with a divergence angle into a planar shape with high efficiency. Therefore, the wavefront aberration of the outgoing light propagating through the inside of the core can be eliminated and the coupling efficiency can be increased.
[0031] 更に、整合用のレンズに相当する部分 (レンズ部として機能する凸曲面 5)力 光フ アイバ 1と一体ィ匕されているので、個別にレンズをマウントする手間を省略することが 出来ると共に、レンズと光ファイバ間に屈折率の不連続部分が介在することを防止出 来る。従って、 LD108への反射光の再入射による LD特性の不安定性が著しく改善さ れる。 [0031] Further, since the portion corresponding to the lens for alignment (convex curved surface 5 functioning as a lens portion) is integrated with the force optical fiber 1, it is possible to save the trouble of mounting the lens individually. At the same time, it is possible to prevent a discontinuous portion of the refractive index from interposing between the lens and the optical fiber. Therefore, the instability of the LD characteristics due to re-incidence of the reflected light to the LD 108 is remarkably improved.
[0032] 次に、本発明に係るレンズ付き光ファイバの製造方法について図 2〜図 5を参照し て説明する。まず、一次工程について説明する。図 2より、 1つの容器 6にエッチング 液 7と、このエッチング液 7よりも比重が小さく且つエッチング液 7に対して非混和性の 流体 8 (例えば、流動パラフィンと云った有機溶媒や、スピンドルオイルやシリコンオイ ル等)が収容、準備されている。エッチング液 7はフッ化アンモ-ゥム水溶液 (NH F)と  [0032] Next, a method for manufacturing an optical fiber with a lens according to the present invention will be described with reference to FIGS. First, the primary process will be described. As shown in FIG. 2, an etching solution 7 and a fluid 8 having a specific gravity smaller than that of the etching solution 7 and immiscible with the etching solution 7 (for example, an organic solvent such as liquid paraffin or spindle oil) And silicon oil) are contained and prepared. Etching solution 7 contains ammonium fluoride aqueous solution (NH F) and
4 フッ化水素酸 (HF)と水(H 0)からなる。図中、エッチング液 7と流体 8の界面を符号 9 で表わしている。 4 Consists of hydrofluoric acid (HF) and water (H 0). In the figure, reference numeral 9 denotes the interface between the etching solution 7 and the fluid 8. It is represented by
[0033] 次に、光ファイバ 1をまず流体 8に浸漬し、流体 8中でほぼ垂直に保持する。その状 態力 光ファイバ 1を下降させて、光ファイバ 1の端面 10をほぼ界面 9に一致させるよ うに、エッチング液 7の液面に対して光ファイバ 1の先端部を垂直に接触させる。する と、図 3に示すように、界面張力によりエッチング液 7の表層が光ファイバ 1の先端部 外周面に沿って液面カゝら上昇し、前記外周面に接するようにメニスカス 11が形成され る。この状態で光ファイバ 1を保持することにより、メニスカス 11の高さ分までエツチン グ液 7に浸漬された前記外周面から、徐々にエッチングが進行して行く。この状態で 、例えば、 160分間保持する。  Next, the optical fiber 1 is first immersed in the fluid 8 and is held almost vertically in the fluid 8. State force The optical fiber 1 is lowered, and the tip of the optical fiber 1 is brought into perpendicular contact with the liquid surface of the etching solution 7 so that the end face 10 of the optical fiber 1 substantially coincides with the interface 9. Then, as shown in FIG. 3, the surface layer of the etching solution 7 rises along the outer peripheral surface of the tip of the optical fiber 1 due to the interfacial tension, and the meniscus 11 is formed so as to be in contact with the outer peripheral surface. The By holding the optical fiber 1 in this state, etching gradually proceeds from the outer peripheral surface immersed in the etching solution 7 to the height of the meniscus 11. In this state, for example, hold for 160 minutes.
[0034] 光ファイバ 1の先端部のエッチングが進行すると、図 4に示すように徐々に光フアイ ノ 1の直径が小さくなつていく。すると、直径の減少に比例してメニスカス 11の高さも 低くなり、前記外周面のエッチング液 7と接触している高さも徐々に低くなつてくる。そ して、光ファイバ 1先端部がクラッド 3の外周からコア 2の中心にかけて円錐状に先鋭 化するまでエッチングが進行すると、図 5に示すように前記メニスカス 11は消滅してェ ツチング液 7の液面は平らになってエッチングが終了する。流体 8を用いてメニスカス 11を形成しながらエッチングを行うことにより、円錐状のエッチング面(円錐面 4)を滑 らかに形成することが可能となる。なお、エッチング中は、ヒータ 13等で恒温槽 14内部 の水 15を加熱することにより、エッチング液 7を常に一定温度 (40度)に保つ。  As etching of the tip of the optical fiber 1 proceeds, the diameter of the optical fiber 1 gradually decreases as shown in FIG. Then, the height of the meniscus 11 decreases in proportion to the decrease in diameter, and the height of the outer peripheral surface in contact with the etching solution 7 gradually decreases. Then, when the etching proceeds until the tip of the optical fiber 1 is sharpened in a conical shape from the outer periphery of the cladding 3 to the center of the core 2, the meniscus 11 disappears and the etching solution 7 is removed as shown in FIG. The liquid level becomes flat and the etching is finished. By performing etching while forming the meniscus 11 using the fluid 8, a conical etching surface (conical surface 4) can be formed smoothly. During etching, the etching solution 7 is always kept at a constant temperature (40 degrees) by heating the water 15 in the thermostatic chamber 14 with the heater 13 or the like.
[0035] 又、エッチングの前処理として、エッチング液 7中に溶解して 、る気体の脱気を行う エッチング液 7中には気体が溶解して ヽるため、脱気を行わずに前記エッチングを開 始すると、エッチング開始後間もなぐエッチング液 7に溶解していた気体が飽和状態 となり、揮発して気泡が発生する。これは、図 8に示すように、エッチングの開始(開始 点 s)にあたってエッチング液 7の液温を、エッチング温度 (40度)まで時間 dでもって 上昇させると、その液温の上昇により、室温でエッチング液 7に溶解していた気体力 エッチング温度で飽和状態となるためである。発生した気泡 16は、図 6に示すように 光ファイバ 1の外周面に接するようにメニスカス 11の界面 9付近に集まる。この状態の まま前記エッチングを進めると、気泡 16が止まる箇所のメニスカス 11に歪みが発生し、 エッチング後に形成される円錐面 4は、図 7に示すように 360度の全周に亘つて非対 称な部分を有する不均一形状となってしまう。 [0035] Further, as a pretreatment for etching, the gas dissolved in the etching solution 7 is degassed. Since the gas is dissolved in the etching solution 7, the etching is performed without degassing. When this is started, the gas dissolved in the etchant 7 immediately after the start of etching becomes saturated, volatilizes and bubbles are generated. As shown in FIG. 8, when the temperature of the etching solution 7 is increased to the etching temperature (40 degrees) over time d at the start of etching (starting point s), the temperature rises to room temperature. This is because the gas force dissolved in the etching solution 7 becomes saturated at the etching temperature. The generated bubbles 16 gather near the interface 9 of the meniscus 11 so as to contact the outer peripheral surface of the optical fiber 1 as shown in FIG. If the etching is continued in this state, the meniscus 11 where the bubbles 16 stop is distorted, As shown in FIG. 7, the conical surface 4 formed after the etching has a non-uniform shape having an asymmetric portion over the entire circumference of 360 degrees.
[0036] 脱気工程は次のようにして行う。エッチング液 7を室温から、前記一次工程のエッチ ングにおける液温 (40度)まで時間 aでもって昇温する。更に、前記 40度よりも高い温 度 (本実施形態では一例として、 10度程高い 50度に設定する。)となるように、時間 b で水 15を加熱することでエッチング液 7の液温を更に上昇させながら撹拌を行って、 エッチング液 7全体を均一な温度 (50度)に保持する。時間 bの間、エッチング液 7の 液温を、一次工程のエッチングにおける液温 (40度)よりも高く保持することにより、室 温時にエッチング液 7中に溶解して 、た空気の揮発を促して、エッチング液 7の脱気 が行われる。脱気が行われたエッチング液 7は、その後、時間 cでもって、一次工程の エッチング時に使用される液温 (40度)まで降温された後、一定温度に保たれて前記 エッチングに使用される。これにより、光ファイバ 1のエッチング処理中における気泡 1 6の発生ゃメニスカス 11の歪みを防止することができ、均一な円錐面 4の形成を可能 とする。 [0036] The degassing step is performed as follows. The temperature of the etching solution 7 is increased from room temperature to the solution temperature (40 degrees) in the etching of the primary process over time a. Further, the temperature of the etchant 7 is increased by heating the water 15 at time b so that the temperature is higher than 40 degrees (in this embodiment, the temperature is set to 50 degrees, which is about 10 degrees higher). Stir while further raising the temperature to keep the entire etching solution 7 at a uniform temperature (50 degrees). During the time b, the liquid temperature of the etching liquid 7 is kept higher than the liquid temperature (40 degrees) in the etching in the primary process, so that it dissolves in the etching liquid 7 at the room temperature and promotes volatilization of the air. Thus, the etching solution 7 is deaerated. The degassed etching solution 7 is then cooled to a temperature (40 ° C.) used for the etching in the primary process over time c, and then kept at a constant temperature and used for the etching. . As a result, the generation of the bubbles 16 during the etching process of the optical fiber 1 can prevent the meniscus 11 from being distorted, and the uniform conical surface 4 can be formed.
[0037] エッチング液 7の撹拌手段は特に限定されないが、本実施形態では図示しないスタ 一ラーにより行った。なお、エッチング液 7の温度均一化手段としては、上記撹拌の 他に、循環 ·対流 ·超音波などによる振動により行っても良い。又、エッチング液 7の 脱気手段としては、前述の様な方法以外を適用しても良ぐ例えばポンプを使用した 真空引きや、減圧脱気等で行うことも可能である。  [0037] Means for stirring the etching solution 7 is not particularly limited, but in the present embodiment, the stirring is performed by a stirrer (not shown). The temperature uniformizing means for the etching solution 7 may be performed by vibrations such as circulation, convection, and ultrasonic waves in addition to the above stirring. Further, as a means for degassing the etching solution 7, it is possible to apply a method other than the above-described method.
[0038] 次に、二次工程について以下に説明する。エッチング終了後、円錐面 4の頂部 4aを 物理的に研磨して、前記曲率半径 Rからなる所定の曲率を有する前記凸曲面 5を円 錐面 4と一続きに成形する。凸曲面 5形成には、図 9に示すように研磨板 12を用い、 光ファイバ 1をセットして研磨板 12に所定角度傾けて接触させ、その状態力も光ファ ィバ 1を動力して所定の前記曲率半径 Rを形成して頂部 4aをレンズィ匕する。研磨は、 種々の方法や形態が適用可能であるが、ここではパフ研磨とする。  Next, the secondary process will be described below. After completion of the etching, the top 4a of the conical surface 4 is physically polished, and the convex curved surface 5 having a predetermined curvature having the curvature radius R is formed in a continuous manner with the conical surface 4. To form the convex curved surface 5, as shown in FIG. 9, a polishing plate 12 is used. An optical fiber 1 is set and brought into contact with the polishing plate 12 at a predetermined angle, and its state force is also driven by the optical fiber 1 to be predetermined. The top 4a is lensed by forming the radius of curvature R. Various methods and forms can be applied to the polishing. Here, puff polishing is used.
[0039] なお、レンズ付き光ファイバ 1の先端部形状を決定する、テーパ角 Θと曲率半径尺と を設定する際は、 LD108からの前記非円形状の出射光に対して、結合効率 80%以上 を確保するように決定する事が望ましい。テーパ角 Θを 30〜130度の範囲内で設定 すれば、前記非円形状の出射光に対して良好な結合効率を得ることが出来るので好 ましい。 [0039] When setting the taper angle Θ and the radius of curvature for determining the shape of the tip of the optical fiber 1 with a lens, the coupling efficiency is 80% with respect to the non-circular shaped emitted light from the LD108. It is desirable to decide to ensure the above. Set taper angle Θ within the range of 30 to 130 degrees This is preferable because good coupling efficiency can be obtained for the non-circular shaped emitted light.
[0040] 更に、テーパ角 Θの変更に伴う曲率半径 Rの最適化も、研磨板 12や研磨条件の変 更、又は研磨板 12に対する光ファイバ 1の傾け角を変更することにより実現することが 出来る。 [0040] Further, the optimization of the radius of curvature R accompanying the change in the taper angle Θ can also be realized by changing the polishing plate 12, the polishing conditions, or changing the tilt angle of the optical fiber 1 with respect to the polishing plate 12. I can do it.
[0041] 以上のように、本発明ではレンズ付き光ファイバ 1の製造における円錐面 4の形成を 、エッチング液による化学的なエッチングによって行っているので、理論上、コア軸の 偏芯が殆ど無く先端部のテーパ化が行えるので、特性を良好に保つことが出来る。 更に、一度に多数のファイバをエッチング液に浸漬することにより、レンズ付き光ファ ィバ 1を一括処理で大量生産が出来ると共にそれに伴う製造コストの低コストィヒを図 ることが可能となる。 [0041] As described above, in the present invention, the formation of the conical surface 4 in the production of the optical fiber 1 with a lens is performed by chemical etching with an etching solution, so that theoretically there is almost no eccentricity of the core axis. Since the tip can be tapered, the characteristics can be kept good. Furthermore, by immersing a large number of fibers in the etching solution at a time, the optical fiber 1 with a lens can be mass-produced by batch processing, and the manufacturing cost associated therewith can be reduced.
[0042] 更に、前記頂部 4aへの曲率加工によるレンズ形成を研磨板による物理的な研磨に よって行うことにより、高精度な曲率加工が可能となる。更に、コア又はその近傍をカロ 熱溶融する従来のレンズ形成方法と比較して、物理的な研磨による方法ならば容易 にレンズ形成を行える。カロえて、研磨板 12に複数の光ファイバ 1を同条件で接触させ る事により、一括処理で複数のレンズ付き光ファイバの製造を行うことが出来る。以上 から、化学的なエッチング工程と物理的な研磨工程を組み合わせることにより、従来 の製造方法よりも低コストに、特性が良好なレンズ付き光ファイバを大量生産可能と なる。 [0042] Further, by forming the lens by curvature processing on the top 4a by physical polishing with a polishing plate, highly accurate curvature processing becomes possible. Furthermore, as compared with the conventional lens forming method in which the core or the vicinity thereof is melted by heat, the lens can be easily formed by a physical polishing method. If a plurality of optical fibers 1 are brought into contact with the polishing plate 12 under the same conditions, a plurality of optical fibers with lenses can be manufactured in a batch process. From the above, by combining the chemical etching process and the physical polishing process, it is possible to mass-produce optical fibers with lenses with good characteristics at a lower cost than conventional manufacturing methods.
[0043] なお、本発明はその技術的思想に基づいて種々変更可能であり、例えば、光フアイ ノ 1先端部の外周面をエッチングする際に、流体 8を用いずエッチング液 7のみでェ ツチングして、前記先端部をクラッドの外周からコアの中心にかけて円錐状に先鋭ィ匕 して円錐面を形成して、エッチング工程の簡略化を図っても良!、。  It should be noted that the present invention can be variously modified based on its technical idea. For example, when etching the outer peripheral surface of the tip portion of the optical fiber 1, etching is performed only with the etching solution 7 without using the fluid 8. The tip portion may be sharpened conically from the outer periphery of the cladding to the center of the core to form a conical surface, thereby simplifying the etching process.
産業上の利用可能性  Industrial applicability
[0044] 本発明のレンズ付き光ファイバの製造方法及びレンズ付き光ファイバは、光通信装 置とその製造等に利用することが出来る。 [0044] The method for manufacturing an optical fiber with a lens and the optical fiber with a lens according to the present invention provide an optical communication device. It can be used for the device and its manufacture.

Claims

請求の範囲 The scope of the claims
[1] 光を伝搬させるコアとこのコアを覆うクラッドからなる光ファイバの先端部を、エッチ ング液に接触させ、前記光ファイバの外周面を、前記エッチング液によってエツチン グすることにより、前記先端部を前記クラッドの外周から前記コアの中心にかけて円 錐状に先鋭化して円錐面を形成する一次工程と、  [1] A tip portion of an optical fiber made of a core for propagating light and a clad covering the core is brought into contact with an etching solution, and the outer peripheral surface of the optical fiber is etched with the etching solution, thereby A primary step of sharpening a portion in a conical shape from the outer periphery of the cladding to the center of the core to form a conical surface;
前記円錐面の頂部を、研磨によって所定の曲率を有する凸曲面に成形する二次ェ 程とから構成されることを特徴とするレンズ付き光ファイバの製造方法。  A method for producing an optical fiber with a lens, comprising: a second step of forming a top portion of the conical surface into a convex curved surface having a predetermined curvature by polishing.
[2] エッチング液と、このエッチング液より比重が小さく且つ前記エッチング液に対して 非混和性である流体とを 1つの容器内に準備し、  [2] An etching solution and a fluid having a specific gravity smaller than that of the etching solution and immiscible with the etching solution are prepared in one container.
光を伝搬させるコアとこのコアを覆うクラッドからなる光ファイバの先端部を、前記ェ ツチング液の液面に対し垂直に接触させ、前記エッチング液をその液面力 上昇さ せて前記光ファイバの外周面に接するメニスカスを形成し、その状態で前記光フアイ バを保持して、前記光ファイバの外周面をエッチングすることにより、前記先端部を前 記クラッドの外周から前記コアの中心にかけて円錐状に先鋭ィ匕して円錐面を形成す る一次工程と、  The tip of an optical fiber consisting of a core for propagating light and a clad covering the core is brought into contact perpendicularly to the liquid surface of the etching liquid, and the etching liquid is raised to increase the liquid surface force of the optical fiber. A meniscus in contact with the outer peripheral surface is formed, the optical fiber is held in this state, and the outer peripheral surface of the optical fiber is etched, so that the tip is conical from the outer periphery of the cladding to the center of the core. A primary process of forming a conical surface by sharpening,
前記円錐面の頂部を、物理的研磨によって所定の曲率を有する凸曲面に成形する 二次工程とから構成されることを特徴とするレンズ付き光ファイバの製造方法。  A method of manufacturing an optical fiber with a lens, comprising: a secondary step of forming a top of the conical surface into a convex curved surface having a predetermined curvature by physical polishing.
[3] 前記エッチング液を脱気し、脱気を行った前記エッチング液によって、前記一次ェ 程のエッチングを行うことを特徴とする請求項 1又は 2に記載のレンズ付き光ファイバ の製造方法。 [3] The method for producing an optical fiber with a lens according to [1] or [2], wherein the etching solution is degassed, and the first-stage etching is performed with the degassed etchant.
[4] 請求項 1乃至請求項 3の何れかに記載のレンズ付き光ファイバの製造方法によって 製造されたことを特徴とするレンズ付き光ファイバ。  [4] An optical fiber with a lens manufactured by the method for manufacturing an optical fiber with a lens according to any one of claims 1 to 3.
PCT/JP2005/019605 2004-10-27 2005-10-25 Optical fiber provided with lens and method for manufacturing the optical fiber WO2006046563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-312750 2004-10-27
JP2004312750 2004-10-27

Publications (1)

Publication Number Publication Date
WO2006046563A1 true WO2006046563A1 (en) 2006-05-04

Family

ID=36227804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019605 WO2006046563A1 (en) 2004-10-27 2005-10-25 Optical fiber provided with lens and method for manufacturing the optical fiber

Country Status (1)

Country Link
WO (1) WO2006046563A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232514A (en) * 2010-04-27 2011-11-17 Ritsumeikan Manufacturing method of optical fiber with processed tip, tip processing apparatus for optical fiber, method of liquid level detection, and optical fiber with processed tip
CN106199835A (en) * 2016-07-20 2016-12-07 京东方科技集团股份有限公司 A kind of optical fiber lens manufacture method and optical fiber lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152213A (en) * 1982-03-05 1983-09-09 Fujitsu Ltd Method for shaping terminal of optical fiber array
US4469554A (en) * 1983-04-05 1984-09-04 At&T Bell Laboratories Etch procedure for optical fibers
JPS63208811A (en) * 1987-02-26 1988-08-30 Adamando Kogyo Kk Terminal part processing method for optical fiber
US5598493A (en) * 1994-05-16 1997-01-28 Alcatel Network Systems, Inc. Method and system for forming an optical fiber microlens
JP2000077381A (en) * 1998-09-02 2000-03-14 Toshiba Corp Etching method, etching device, and analysis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152213A (en) * 1982-03-05 1983-09-09 Fujitsu Ltd Method for shaping terminal of optical fiber array
US4469554A (en) * 1983-04-05 1984-09-04 At&T Bell Laboratories Etch procedure for optical fibers
JPS63208811A (en) * 1987-02-26 1988-08-30 Adamando Kogyo Kk Terminal part processing method for optical fiber
US5598493A (en) * 1994-05-16 1997-01-28 Alcatel Network Systems, Inc. Method and system for forming an optical fiber microlens
JP2000077381A (en) * 1998-09-02 2000-03-14 Toshiba Corp Etching method, etching device, and analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232514A (en) * 2010-04-27 2011-11-17 Ritsumeikan Manufacturing method of optical fiber with processed tip, tip processing apparatus for optical fiber, method of liquid level detection, and optical fiber with processed tip
CN106199835A (en) * 2016-07-20 2016-12-07 京东方科技集团股份有限公司 A kind of optical fiber lens manufacture method and optical fiber lens

Similar Documents

Publication Publication Date Title
US4824195A (en) Monomode optical transmission fibre having a tapered end portion provided with a lens and method of manufacturing such a fibre
EP1137959B1 (en) Polished, fused optical fiber endface
TW200412334A (en) Etching method for fabricating high quality optical fiber probe
CN1650207A (en) Beam bending apparatus and method of manufacture
JP2006146212A (en) Planar lightwave circuit and fabrication method thereof
WO2006046563A1 (en) Optical fiber provided with lens and method for manufacturing the optical fiber
US7515789B2 (en) Conical-wedge-shaped lensed fiber and the method of making the same
CN114815066A (en) Technology for preparing optical fiber end face micro-lens array based on femtosecond laser assisted wet etching
JPH0531124B2 (en)
JP3917034B2 (en) Optical connector and manufacturing method thereof
JP2013142792A (en) Optical fiber processing method, optical fiber processing device, optical fiber, and optical fiber input/output structure
JP6110403B2 (en) How to make a resonator
US20050069256A1 (en) Lensed optical fiber and method for making the same
JP2005519341A (en) Biconic lens for optical fiber and manufacturing method thereof
US7062135B2 (en) Method for fabricating curved elements
US9429707B2 (en) Making fiber axicon tapers for fusion splicers
US6556747B2 (en) Chemical mill method and structure formed thereby
US7460748B2 (en) Lensed tip optical fiber and method of making the same
JPH06242331A (en) Quartz group optical fiber with lens and its production
JPH06324234A (en) Production of optical fiber array
JP3234347B2 (en) Optical fiber array and manufacturing method thereof
JP2007171545A (en) Optical receptacle
JPH0843678A (en) Optical fiber lens and its production
JPH06242353A (en) Optical fiber array and its production
TWI282447B (en) Lensed tip optical fiber and method of making the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP