WO2006045824A2 - Organe reglant pour montre bracelet, et mouvement mecanique comportant un tel organe reglant - Google Patents

Organe reglant pour montre bracelet, et mouvement mecanique comportant un tel organe reglant Download PDF

Info

Publication number
WO2006045824A2
WO2006045824A2 PCT/EP2005/055582 EP2005055582W WO2006045824A2 WO 2006045824 A2 WO2006045824 A2 WO 2006045824A2 EP 2005055582 W EP2005055582 W EP 2005055582W WO 2006045824 A2 WO2006045824 A2 WO 2006045824A2
Authority
WO
WIPO (PCT)
Prior art keywords
regulating member
balance
magnets
magnet
fixed
Prior art date
Application number
PCT/EP2005/055582
Other languages
English (en)
Other versions
WO2006045824A3 (fr
Inventor
Thomas Houlon
Original Assignee
Tag Heuer Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tag Heuer Sa filed Critical Tag Heuer Sa
Priority to AT05801381T priority Critical patent/ATE481662T1/de
Priority to EP05801381A priority patent/EP1805565B1/fr
Priority to DE602005023633T priority patent/DE602005023633D1/de
Priority to CN2005800449626A priority patent/CN101091141B/zh
Priority to JP2007538419A priority patent/JP4607966B2/ja
Publication of WO2006045824A2 publication Critical patent/WO2006045824A2/fr
Publication of WO2006045824A3 publication Critical patent/WO2006045824A3/fr
Priority to US11/789,817 priority patent/US7396154B2/en
Priority to HK08103991.5A priority patent/HK1113830A1/xx

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/06Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
    • G04C3/065Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance the balance controlling gear-train by means of static switches, e.g. transistor circuits
    • G04C3/066Constructional details, e.g. disposition of coils
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
    • G04C5/005Magnetic or electromagnetic means

Definitions

  • a regulating organ for a wristwatch, and a mechanical movement comprising such a regulating organ.
  • the present invention discloses a regulating organ for a wristwatch, and a mechanical movement for a wristwatch provided with such a movement.
  • the usual mechanical watches comprise an energy accumulator constituted by a cylinder, a kinematic chain, or cog, driving needles, a regulating organ determining the running of the watch, and an escapement for transmitting the oscillations of the regulating organ to the train.
  • the present invention relates in particular to the regulating organ.
  • Conventional regulating members most often have a rocker mounted on a rotating axis and a return member exerting a torque on the balance to bring it back to an equilibrium position.
  • the escapement, or drive member maintains oscillation of the balance around the equilibrium position.
  • the return member generally comprises a spiral spring, often called spiral, mounted coaxially with the balance.
  • the hairspring transmits a restoring torque to the balance wheel through the ferrule; the rest position of the spiral spring determines the return position of the balance.
  • the deformation of material at each oscillation of the spiral spring causes a loss of energy, and therefore a reduction in the running time of the watch.
  • the accuracy of the watch depends to a large extent on the properties of the material used for the spiral spring, as well as the machining accuracy of the final curves. Despite significant progress in metallurgy, the reproducibility of these properties is difficult to guarantee.
  • spiral springs tend to fade with time, so that the restoring force decreases with aging of the watch, resulting in a variation in accuracy.
  • the piton and the ferrule to fix the spiral cock (or balance bridge), respectively to the pendulum, constitute other sources of disturbances and unbalance that unbalance the pendulum.
  • the hairspring exerts a torsion torque on the balance at the point of attachment of the ferrule, which influence negatively the accuracy obtained. In a vertical position, the hairspring also tends to deflect under its own weight, which causes a shift in its center of gravity and a disturbance of the period.
  • the balance is also subject to gravitational attraction as well as acceleration caused by the movements of the wearer. Since the return force of the spiral spring is small, these external disturbances have an important influence on the accuracy of the gait, and complex correction mechanisms, for example whirlpools or even three-axis bursts, are often used to compensate for them.
  • the thickness of the spiral is added to that of the balance, so that the total thickness of the regulating member is relatively large.
  • An object of the present invention is therefore to provide a regulating organ for a different wristwatch and which avoids the disadvantages of the prior art.
  • Another object is to provide a regulating member that can be used with a mechanical watch, devoid of power source.
  • Another object of the invention is to provide a regulating device with a pendulum for a mechanical watch which is devoid of a cock, stud, ferrule and other means for fixing the return member to the balance wheel and to the axis of the balance wheel .
  • a regulating organ for a mechanical wristwatch comprising: a rocker arm, a return member for bringing back said rocker arm at least once equilibrium position, a drive member for maintaining the movement of the balance around said equilibrium position, said balance being connected to at least one movable permanent magnet, and said return member comprising at least one fixed permanent magnet for generating a magnetic field to return said balance to said equilibrium position.
  • This arrangement has the advantage of allowing the complete removal of the spiral spring in mechanical watches, and of most of the problems associated with it.
  • This arrangement also has the advantage of providing greater accuracy, as well as lower influence to disturbances caused by gravitation or external accelerations.
  • the return member tends to return the balance to at least one stable equilibrium position
  • the drive member for example an exhaust, tends to remove it.
  • the additional document U S2003 / 0137901 describes a mechanical watch movement in which the balance is provided with permanent magnets.
  • the rotating field caused by oscillations of the pendulum is detected by a gait control mechanism in order to control the variations in the oscillations of the pendulum.
  • These oscillations are caused by a conventional spiral spring, with all the drawbacks mentioned above.
  • the objects of the invention are also achieved by means of a regulating organ for a mechanical wristwatch, ⁇ mlois: a balance, a return member for bringing back said balance to at least a stable equilibrium position, a drive member for maintain the movement of the balance around said equilibrium position, wherein the return member acts on said balance without material deformation.
  • the advantage is to allow a precision that does not depend on the metallurgy or the shape of a defmed part, and thus to facilitate the reproducibility of the accuracy.
  • a regulating organ for a mechanical wristwatch comprising: a rocker arm, a return member for bringing back said rocker arm towards at least one stable equilibrium position, a drive member for maintain the movement of the balance around said equilibrium position, wherein the return member acts without contact with said balance.
  • the advantage is in particular to limit the disturbancesduts torsion torque at the attachment of the spiral pendulum.
  • the magnetic field generated by the fixed part of the return member is fixed and constant, that is to say that it is not current and that it does not vary. not in time.
  • the magnetic field generated by the mobile magnet (s) is rotating; that is to say that the balance has an axis of rotation and that the mobile magnet or magnets, integral with the balance on which they are directly fixed, oscillate along a trajectory circular around said axis of rotation.
  • all of the kinematic energy of the moving magnets is transmitted to the balance.
  • the movements of rotation of the balance can be transmitted by means of a conventional exhaust to the rest of the watch.
  • the movement of the balance is thus constituted by oscillations around the axis of rotation of the balance, the amplitude of oscillations being less than 360 °, for example less than 180 °, or even less than 120 °. It is thus possible to obtain a significant oscillation frequency, favorable to the precision and the resolution of the regulating organ; moreover, it is more likely to obtain a relationship without discontinuities between the return force and the angular position of the balance when the latter oscillates within a limited range.
  • the invention is however not limited to particular oscillation amplitudes; Oscillation amplitudes between 180 and 300 °, or even amplitudes close to 360 °, can also be employed, for example by employing a single fixed magnet and a single moving magnet. These oscillations of greater amplitude have the advantage of minimizing the impact of the disturbance introduced by the exhaust at each cycle.
  • At least one movable magnet oscillates in a circular path between two fixed permanent magnets arranged on an arc of a circle and spaced angularly by less than 180 °.
  • a large magnetic interaction is created whose intensity varies according to a continuous function along the oscillation trajectory.
  • the balance is excited by mechanical elements to oscillate isochronously around the equilibrium position.
  • the balance can thus be associated with a conventional escapement for a mechanical watch.
  • the energy required for the excitation of the balance can be transmitted from the exhaust through permanent magnets
  • the magnetic balance of the invention can be used in a purely mechanical watch, devoid of coils, electromagnets and power supply.
  • the movable magnets are fixed relative to the balance, which facilitates the construction.
  • the pendulum and the magnets therefore oscillate according to the same alternating circular movement.
  • the fixed magnets preferably act to repel the moving magnets mounted on the pendulum.
  • the equilibrium position is determined by repulsion forces, and is reached when the moving magnets are equidistant between two magnets, and the repulsive force of the two fixed magnets acting on each movable magnet is compensated.
  • the magnetic field generated by the fixed magnets is minimal at the equilibrium position, so that the amount of energy required to move the balance away from this equilibrium position and to maintain an oscillation is reduced.
  • the magnetic interaction between the fixed and movable magnets increases as the balance moves away from the equilibrium position, so that the restoring force increases proportionally with the angular distance of the balance relative to its rest position.
  • the stability of the equilibrium point can, however, be controlled by additional magnets acting by attraction. Likewise, the balance can be moved away from undesired balance positions
  • the invention does not excludevariants in which the equilibrium position is determined by attraction forces, and is reached when the moving magnets are at a minimum distance from corresponding magnets, or at equidistance between two fixed magnets whose attraction compensate.
  • this variant has the disadvantage of requiring a greater excitation to oscillate the balance around a position of equilibrium corresponding to a maximum of the magnetic attraction.
  • the magnetized pieces are constituted by magnetized portions of the balance itself.
  • the pendulum could thus be constituted by a magnetized ring with alternating polarities along the periphery.
  • the movable magnets are directly mounted on or linked to the anchor of the exhaust.
  • the anchor then constitutes a pendulum, that is to say an oscillating element of isochronic pitch in a magnetic field.
  • Figure 1 is a schematic top view of a first variant of regulating member according to the invention.
  • FIG. 1b is a schematic top view of a first variant of a regulating member according to the invention, the balance being in the equilibrium position defined by the magnets.
  • FIG. 2 is a sectional view of the regulating member according to the first variant of the invention, comprising in this example two magnetic bearings and a magnetic shielding.
  • Figure 3 a top view of an alternative regulating member according to the invention, comprising fixed magnets and mobile magnets each consisting of two bipolar magnets contiguous in opposition.
  • FIG. 4 is a plan view of a variant of a regulating member according to the invention, comprising fixed magnets each consisting of two bipolar magnets contiguous in opposition, and mobile magnets each consisting of a single bipolar magnet.
  • Figure 5 a top view of a variant of the regulating organ according to the invention, ⁇ mterrorism additional magnets to locally increase the stability of the equilibrium point.
  • Figure 6 a top view of a variant of the regulating member according to the invention, ⁇ mlois a right rocker pivoting about a central axis.
  • Figure 7 a top view of an alternative regulating member according to the invention, comprising a right rocker pivoting about an off-axis.
  • Figure 8 a top view of a variant of regulating organ according to the invention, comprising four magnets mobilessur the balance and four fixed magnets.
  • FIG. 9 is a top view of a variant of a regulating member according to the invention, comprising two movable magnets on the balance and four fixed magnets.
  • Figure 10 a top view of a variant of regulating organ according to the invention, comprising four magnets mobilessur the balance and two magnetsf ixes.
  • FIG. 11 is a top view of a variant of a regulating member according to the invention, comprising a toroidal element in which a movable magnet is pushed towards an equilibrium position by a fixed magnet.
  • FIG. 12 is a top view of a variant of a regulating member according to the invention, comprising a cylinder closed at its ends by two fixed magnets and a movable magnet pushed in an intermediate position by the two fixed magnets.
  • FIG. 13 is a perspective view of an alternative regulating device according to the invention in which the mobile magnets connected to the balance wheel and the fixed magnets are superimposed in two parallel planes, the regulating member being in equilibrium position.
  • Figure 14 is a perspective view of the regulating member of Figure 13, oscillating in an intermediate position.
  • Figure 15 a top view of a variant of the regulating member according to the invention, wherein the movable magnets are directly mounted on the anchor which acts as a pendulum.
  • FIG. 16 is a top view of a variant of regulating organ according to the invention, in which the mobile magnets are directly mounted on the anchor which thus acts as a rocker, the fixed magnets being superimposed on the moving magnets in a parallel plane.
  • FIG. 17 is a plan view of a variant of a regulating member according to the invention, in which the fixed magnets have a particular shape intended to guarantee a restoring force proportional to the angular distance, and in which the balance has the shape of a rod.
  • Figure 18 a cross section of the regulating member of Figure 17 in the plane of the rod.
  • FIG. 19 is a plan view of another variant of a regulating organ in which the return force is proportional to the angular distance.
  • FIG. 20 is a top view of another variant of a regulating organ in which the return force is proportional to the angular distance, this variant employing a magnetic ring with a magnetization varying along the periphery.
  • FIG. 21 a sectional view of an alternative regulating member according to the invention comprising magnets of variable thickness radially.
  • FIG. 22 is a top view of an alternative regulating device according to the invention corresponding to the first variant but in which a sensor and a circuit make it possible to determine and / or control the amplitude of the oscillations of the balance.
  • FIG. 23 is a top view of a variant of a regulating member according to the invention corresponding to the first variant but in which a coil generates a current whose frequency depends on the oscillation frequency of the balance.
  • pendulum refers to a piece oscillating under the effect of an excitation around a position of equilibrium.
  • the substantially isochronic oscillations determine the progress of the watch.
  • the balance can be constituted by a wheel with any number of spokes, a disc, a rod, an anchor, etc.
  • Figure 1b schematically illustrates a regulating member 1 having a rocker 3 oscillating about an axis 300 perpendicular to the plate of the movement.
  • the balance 3 comprises an annular serge and comprises two radial spokes (or arms) 302 about the axis 300.
  • Desvis301 can easily move the moment of inertia of the balance.
  • the pendulum constitutes a mass of inertia; its mass, as well as its radius, are preferably imported within the limits imposed by the movement's desire for miniaturization.
  • the substantial return force that the claimed solution provides makes it possible to use particularly large masses of inertia.
  • Bimetallic rockers that deform to compensate for temperature variations are also possible in the context of the invention.
  • Other means can be implemented to ⁇ mpenser the variation of the intensity of the magnetic field related to the temperature.
  • the balance 3 is connected to or provided with mobile permanent magnets 30 driven in rotation with the balance.
  • the illustrated example comprises two permanent bipolar permanent magnets which are arranged symmetrically with respect to the axis 300, at 180 ° to one another. Each magnet has a positive pole and a negative pole equidistant from the axis 300.
  • the magnets can be held mechanically or by sticking on the balance 3.
  • the magnetized parts could also be constituted by magnetized portions of the balance itself, or a magnetic track on the balance.
  • the pendulum could thus be constituted by a magnetized ring with alternating polarities along the periphery.
  • the pendulum could for example be magnetized homogeneously or gradually by means of a recording head, that is to say a coil generating a magnetic field of controlled intensity in a gap.
  • the regulating member further comprises two fixed permanent magnets 40, mounted on a bridge or on the stage of the movement by any suitable means.
  • the two magnets are arranged in the plane of the balance 3, symmetrically and 180 ° with respect to the axis 300.
  • the fixed magnets 40 could also be arranged in another plane, parallel to the plane of the balance 3.
  • the magnets 40 each comprise a positive pole and a negative pole whose arrangement, symmetrical with respect to the axis 300, is inverted inversely with respect to the arrangement of the poles on the moving magnets30.
  • the movable and movable magnets 30 repel with maximum magnetic interaction force when they are close.
  • the equilibrium position is reached by turning the balance 90 °, so as to repel each movable magnet 30 equidistant from two magnets ixes40; the magnetic field generated by the permanent magnets is minimal in this arrangement, so that the force or moment necessary to leave this equilibrium position is also reduced.
  • the magnets 30 and 40 are preferably chosen so that the magnetic repulsion force, even in the equilibrium position illustrated, is much greater than the gravitational force exerted on the balance 3.
  • Permanent magnetscomposed of metal oxides, earth compounds rare or platinum-cobalt alloys will preferably be used to obtain large residual fields.
  • the position of the stationary magnets, or even the position of the movable magnets, can in all variants be adjusted, for example by means of screws, in order to adjust the oscillation frequency of the pendulum.
  • the oscillations of the balance thus depend little on the inclination of the balance.
  • the rotating mass of the balance 3 (including the screws 301) and moving magnets 30 is further preferably distributed as evenly as possible about the axis 300, so as to improve the balance of the balance.
  • additional mechanical stops can be provided on the balance 3 and / or on a bridge in order to limit the amplitude of the possible rotations of the balance, and thus prevent the balance from moving from a position of equi ⁇ free to another following a shock, for example.
  • Similar abutment elements can also be used with the other embodiments of realization discussed below
  • the additional stops may for example comprise elastic means for damping shocks at the end of the race.
  • the balance 3 is set in oscillation around the equi ⁇ free position of Figure 1b by means of a drive member constituted in this example by an exhaust 2, here a conventional Swiss anchor escapement 20.
  • the escapement can also be specially adapted to take into account the low oscillation amplitude of the balance.
  • the movements of the anchor, limited by the stops 201 are transmitted to the balance 3 through the fork 202 and the pin 31.
  • the pulses given to the balance 30 are preferably by attraction or repulsion between magnetized parts on the balance and on the escapement. Uncontacted training is possible.
  • the amplitude and frequency of oscillations around the equilibrium position are determined by the shape and disposition of the magnets, and by the amplitude of the torque transmitted by the drive member. It is also seen that the rocker 30 oscillates without material deformations, so that the oscillation frequency does not depend on the metallurgical characteristics or the aging of elastic parts.
  • the large restoring force that the use of powerful magnets allows makes it possible to obtain significant oscillations, greater than the usual frequencies in the usual mechanical watches, and thus to increase the accuracy and / or the resolution of the movement.
  • a choice of appropriate magnets and geometry thus makes it possible to display indications of time or duration with a resolution of the order of one tenth or even one hundredth of a second.
  • the regulating member of Figure 1b is shown in partial section in Figure 2, the exhaust 2 has been removed from the figure to improve readability.
  • the rocker 3 pivots about an axis 300 perpendicular to the upper bridge 41 and the lower bridge 42.
  • the bridges 41 and 42 preferably form a magnetic shielding both to protect the balance 3 from external magnetic fields, and to protect the other components of the watch from the magnetic fields generated in particular by the magnets 30 and 40.
  • a shield may also, in a variant not shown, be obtained by means of different elements of the bridges, for example by means of the plate , of the dial, the box, or items dedicated A shield on all sides can also be adopted.
  • the kinematic chain between the regulating member and the needles comprises at least one element made of synthetic material. for example a belt driven by a pulley.
  • the axle 300 of the balance 3 is held in the bridges 41, 42 by means of two bearings 410 and 420, for example conventional shock-bearing bearings, bearingsincablocksor in the preferred example illustrated magnetic bearings
  • the upper ends 3001 and lower3002 of the axis 300 are magnetized or provided with magnets.
  • the bearings 410 and 420 each comprise a housing 4100 respectively 4200 whose depth and diameter are slightly greater than the corresponding dimensions of the axis 300.
  • the walls of the housings are magnetized with a polarization identical to that of the corresponding ends of the axis 300, so as to repel this axis which is thus maintained in levitation between the bearings410 and 420.
  • the axis 300 can thus rotate without rottements. This arrangement also makes it possible to eliminate the wear of the bearings 410, 420 and the axis 300.
  • the balance 3 of the invention can thus oscillate without any contact with other elements, being returned to its equilibrium position by means of the magnets 30, 40 held by magnetic bearings 410, 420 and / or driven by a magnetic escapement . It is thus possible to reduce the friction and wear occasioned by the movements of the balance wheel. These different measures can however be implemented independently of each other.
  • FIG. 1a illustrates an alternative regulating device similar to the variant of FIG. 1b, but in which the embodiment of the escapement makes it possible to oscillate the balance of greater amplitude, for example oscillations of up to 180 °, see further modifying the arrangement of the magnets.
  • the exhaust is preferably an exhaust with Swiss anchor which allows significant oscillations of the balance without generating excessive oscillations of the anchor.
  • the balance 3 is further equipped with screws for correcting any unbalance, or other sources of disturbances of walking.
  • FIG. 3 schematically illustrates a second variant of a regulating member according to the invention (without the escapement 2), in which the fixed permanent magnets 40 and the moving permanent magnets 30 are each constituted by two magnets contiguous in opposition.
  • the resulting magnetized piece thus has two ends provided with identical polarities.
  • FIG. 4 schematically illustrates a third variant of regulating member according to the invention, in which the permanent fixed magnets 40 each consist of two magnets contiguous in opposition.
  • the resulting magnetized piece thus has two ends provided with identical polarities.
  • FIG. 5 schematically illustrates a fourth variant of the invention, corresponding to FIG. 1, but in which additional permanent magnets are arranged facing moving magnets 30 at the equilibrium position.
  • the additional magnets 47 and the moving magnets 30 attract each other to the equilibrium position.
  • the equilibrium position is thus determined both by the repulsion of the magnets 30 and 40, and by the attraction of the magnets 30 and 47; the contribution of the repulsive forces is, however, preponderant te, so as to limit the stability of the equilibrium point and allow the system to oscillate even with a low drive energy.
  • the magnetic field generated by the additional magnets 47 is therefore preferably much smaller than the magnetic field of the magnets 40.
  • Additionalmagnets may also be provided at the end of stroke, either on a bridge or on the balance, so as to attract or repel the balance in this position, and to reduce the variation of the amplitude of the oscillations caused by disturbances
  • FIG. 6 schematically illustrates a variant of the regulating member according to the invention, comprising a right-hand rocker (needle) 3 pivoting about a central axis 300.
  • the two ends of the rocker 3 are provided with magnets 30 pushed towards the position of FIG. balanced by the fixed magnets40 mounted on a bridge not shown.
  • this arrangement reduces the size of the regulating member.
  • FIG. 7 illustrates a top view of a variant of regulating member according to the invention, comprising a right rocker 3 similar to that of FIG. 6, but pivoting about an axis 300 off-center. Only the end of the rocker 3 remote from the axis 300 is in this example provided with a magnet pushed towards the equilibrium position illustrated by means of two magnets 40. In this variant, the exhaust could be obtained by extending the balance 3 by an anchor-shaped part directly actuated by the anchor wheel.
  • FIG. 8 illustrates a view from above of a sixth variant of regulating member according to the invention.
  • the regulating member is similar to that of Figures 1 to 2, but comprises four movable magnets 30 distributed at 90 ° to each other on the beam 3 and four fixed magnets40 distributed at 90 ° to each other on a not shown bridge. This arrangement makes it possible in particular to reduce the distance between the magnets and the moving magnets, while multiplying the number of magnets, so that the resulting magnetic interaction force, and thus the return torque, are increased.
  • magnetan ⁇ parts with a plurality of zones of alternating magnetic polarities.
  • An alternating magnetic field in all or nothing, or according to a sinusoidal function for example, may for example be written by a magnetic head on the periphery of the balance and / or on a fixed element linked to the movement.
  • FIG. 9 illustrates a top view of a variant of a regulating organ in which the number of movable magnets 30 on the balance is less than the number of magnets.
  • Each moving magnet is thus subjected to the action of a pair of fixed magnets; each fixed magnet acts only on a single moving magnet. Provisions with two magnets and one moving magnet can also be imagined.
  • FIG. 10 illustrates a top view of a variant of regulating organ in which the number of moving magnets 30 on the balance is greater than the number of fixed magnets 40.
  • Each moving magnet is thus subjected to the action of a single fixed magnet; however, each fixed magnet acts on two moving magnets
  • the amplitude of the oscillations of the balance of Figure 9 is very limited, less than 90 °. It is thus possible to oscillate it very rapidly and to obtain a very fine resolution for the measurement of time.
  • oscillations of small amplitude, very fast have the disadvantage of amplifying the inf luence of the disturbances caused at each cycle by Rots with the anchor and the pendulum.
  • arrangements with two movable magnets and one fixed magnet are also possible, or even a single fixed magnet and a single movable magnet which can provide oscillations of almost 360 °.
  • inertia it is also possible to increase the rotational mass of inertia by linking the balance 3 with another oscillating mass through a kinematic chain, for example a gear on the axis the balance, or a belt.
  • the oscillation of the balance is thus transmitted to an additional oscillating weight.
  • Gear ratios between the balance 3 and the additional oscillating mass also make it possible to obtain a different amplitude of oscillation on these two components. For example, it is conceivable to swing the balance 3 by 180 ° and to connect it kinematically through from a gear of factor 8 to another rotating mass effecting oscillations of ⁇ X 180 °, that is to say four turns, at each cycle.
  • FIG. 11 illustrates a variant of the invention in which the rocker is constituted by a movable magnet 30 whose trajectory is constrained by a guide 43, for example a slide, a slide or a rail, in this example a toric slide.
  • the arrangement of the poles of the fixed magnet 40 is opposed to the arrangement of the poles of the movable magnet 30, so that the equilibrium position is reached when the movable magnet is diametrically opposed to the fixed magnet.
  • This provision allows to use a single movable magnet and a single fixed magnet. Desf ormesde slides, rails or slides 43 different, non-annular, can also be imagined; moreover, the fixed magnet 40 could be out of the slide.
  • the rocker 30 is driven through the anchor 20 actuated by an unrepresented escape wheel and articulated about the axis 300.
  • the anchor 20 extends the arm of the rocker out of the slide 43.
  • a magnetic escapement can also be used in the context of the invention.
  • FIG. 12 illustrates a variant of the invention in which the rocker 3 is constituted by or comprises a magnet 3 moving linearly in a cylinder, a slide or along a rail 43 whose two ends are closed by fixed magnets40.
  • the polarities of the magnets 30 and 40 are arranged such that the magnetic interaction force tends to urge the movable magnet 30 levitated midway between the two magnets 40, as shown in FIG. misen oscillation by means of a member external to the rail 43 and following displacements of the balance 3 through a mechanical or magnetic link.
  • Rockers oscillating in a plane according to two degrees of freedom, or even three degrees of freedom, can also be imagined within the scope of the invention.
  • a plurality of permanent magnets in this case be provided to push the balance to a point of equilibrium around which a drive member oscillates.
  • Figures 13 and 14 illustrate a variant of the regulating member comprising a movable magnet 30 constituted by a disc mounted in the center of the balance 3.
  • the disc 30 comprises sectors, in the illustrated example two sectors, provided with alternating magnetic polarities L '
  • the fixed magnet 40 is mounted above the movable magnet 30 in a parallel plane and is also constituted by a disk provided with sectors of alternating polarity.
  • the balance is positioned in such a way that the opposite polarity sectors of the two magnets 30 and 40 are exactly superimposed.
  • the balance is brought into this position essentially by attraction of the opposite poles of the two magnets, and a lesser measure by repulsion of the identical poles.
  • the pendulum oscillates around this position of stable equilibrium when a disturbance is brought to it for example by the escapement not shown in the figure.
  • magnets 30 and 40 for example, by using magnets 30 and 40 with more than two sectors of alternating polarity, or employing several fixed magnets in a first plane and several movable magnets in a parallel plane.
  • the mobile magnets may also for example be placed on the periphery of the pendulum, and the mobile magnets above these positions. It is also possible to use a number of different magnets and mobile magnets; for example, in the context of the invention, it is also possible to mount the movable magnet 30 between a fixed magnet on an upper plane, as illustrated in the figures, and an additional fixed magnet, not shown, in a lower parallel plane.
  • FIG. 15 illustrates a view from above of a variant of a regulating organ in which the mobile magnets are directly mounted on Anchor 20.
  • Fixed magnets 40 tend to repel and swing these moving magnets around an equilibrium position.
  • the anchor 20 thus acts as a pendulum.
  • This variant although conceivable, however, has the disadvantage of being more sensitive to shocks, the inertia of the anchor is generally insufficient to ensure isochronous oscillation. An inertial anchor would be feasible, but would require significant excitation energy to cause it to oscillate.
  • FIG. 16 combines the characteristics of the solutions illustrated in FIGS. 13 and 15, that is to say an anchor 20 which itself acts as a rocker and permanent and permanent magnets consisting of superposed disks provided with sectors of alternating polarity.
  • FIG. 17 illustrates an example of a regulating member in which the relationship between the spread of the balance (ie its angular distance from the rest position) and the force or the torque. recall has a different relationship.
  • the volume of magnets ixes40 increases when, within the range of oscillations p, it moves away from the rest position by an angular distance d, so as to increase the reminder force at a distance from this position.
  • the moving magnets 30 on the balance 3 are of constant size along the trajectory of the oscillations. Mechanical or magnetic stops not shown can be provided to constrain the balance to remain in the oscillation range p even in case of impact for example.
  • the unrepresented escapement tends to turn the balance in the antechamber, rotation which is countered by the repulsion of the magnet.
  • the surface of the magnets 40 in a plane parallel to the plane of the oscillations of the balance 3 increases inside the oscillation range p with the cube of the angular distance d, or possibly in accordance with FIG. 4 .
  • the fixed magnets 40 thus have the shape of the selected elements.
  • FIG. 19 Another possible arrangement is illustrated in FIG. 19, in which the balance oscillates about the axis 300 on each side of the rest position.
  • the moving magnets 30 of Figure 17 move in a circular path in a plane parallel to the plane of the fixed magnets 40.
  • FIG. 20 illustrates a variant of the invention in which the balance 3 is provided with three spokes 302, at least one of which is magnetized with poles opposite to each radial end.
  • the magnets 40 which are constituted by a magnetic ring 40 with a polarization in one direction inside, and in the opposite direction to the outside.
  • the density of the magnetic field generated by the fixed magnet varies along the periphery of the beam so as to preferably ensure a return force that varies linearly with the angular position of the balance.
  • the balance could also be provided with a magnetic peripheral ring, or peripherally disengaged magnets, with a variable magnetization along the periphery.
  • the progressive magnetization of the fixed magnet can for example be obtained by magnetizing it by means of a recording head, as mentioned above. In case of saturation of the magnetic material, it may be necessary to limit oscillations of the balance in the portion ensuring the desired relationship between the angular position of the beam and the return force.
  • magnetizing the entire balance it is conceivable to magnetize only a magnetic track attached to the latter, parallel or perpendicular to the plane of the balance.
  • An additional fixed permanent magnet 47 is disposed facing the movable magnet 30 at the maximum repulsion position, in order to prevent the balance from reaching and exceeding that position.
  • This magnet 47 thus acts as a magnetic stop to move the balance from a position of undesired balance, without the disadvantages of mechanical stops causing shocks likely to disrupt the isochronic movement of the balance.
  • the permanent magnets consist of a continuous ring. It is however also possible to provide a discontinuous ring, for example provided with one or more entref ersou or with discrete magnets
  • FIG. 21 illustrates a variant of the invention in which the thickness of the moving magnets 30 increases radially, while the thickness of the fixed magnets 40 decreases away from the axis of rotation 300.
  • An inverted arrangement ensuring a gap between lovers and mobile, can also be adopted.
  • the radial variation in thickness can also be varied with variation along the periphery of the regulating member.
  • the radial and / or circumferential variation in the thickness of the magnets 30, 40 can also be employed with the embodiments of FIGS. 13 and 14 comprising superimposed magnets.
  • FIG. 22 illustrates a variant of the regulating member illustrated in FIGS. 1 to 2, and further comprising a plurality of electrodes 44, whose electric property varies in electric field felection to which it is subjected.
  • the electrodes 44 thus make it possible to detect or even to measure the rotating magnetic field generated by the oscillations of the moving magnets30.
  • the electrodes 44 may for example be constituted by magneto-resistive electrodes or by Hall sensors. Wheat can be connected to each other and to an integrated circuit 46 through conductive tracks440 according to differentestologies.
  • the circuit 440 makes it possible to determine the oscillation amplitude of the rocker 30 and / or the oscillation frequency.
  • the circuit 46 may be powered by an independent power source, for example a battery, or by a coil generating an alternating current under the action of the movements of the balance, as illustrated in relation to the f igure 18 mentioned below A correction electronic walking of a mechanical watch can thus be obtained.
  • an independent power source for example a battery
  • a coil generating an alternating current under the action of the movements of the balance as illustrated in relation to the f igure 18 mentioned below
  • a correction electronic walking of a mechanical watch can thus be obtained.
  • the measurement of the frequency and / or the amplitude of the oscillations of the balance 30 makes it possible, for example, to detect any irregularities in the operating frequency.
  • This information can be used to correct the running of the watch, for example by exerting a correction torque on the balance 30 by means of unrepresented electromagnets or other electromechanical means, so as to correct the amplitude
  • This information can also be used to display an end-of-march signal, so as to signal to the user that the operation of the watch becomes imprecise.
  • FIG. 23 illustrates a variant of the regulating member in which a coil 45 facing each movable magnet 30 generates a current proportional to the magnetic field generated during the displacement of this magnet close to the coil.
  • a coil 45 facing each movable magnet 30 generates a current proportional to the magnetic field generated during the displacement of this magnet close to the coil.
  • Arrangements having two coils in opposition of phase, or three coils generating a three-phase current system, can also be used.
  • the illustrated coils generate an approximately sinusoidal current whose frequency corresponds to the pendulum oscillation frequency. This frequency can be measured by a circuit 45, for example by comparing it with a reference frequency provided by a quartz, in order, for example, to inform the user in case of irregular frequency and / or to correct this frequency, for example by injecting a compensation current into the coil 45.
  • the circuit 46 may comprise a rectifier and thus be powered itself by the current generated by the coil 45.
  • the current generated by the coil can also be used to power a circuit providing any
  • the regulating organ described can be used in a movement for a stand-alone wristwatch, or in an auxiliary module, for example a chronograph module, intended to be superimposed on a basic movement.
  • the different regulating members described all comprise at least one movable permanent magnet and at least one fixed permanent magnet.
  • constructions with fixed permanent magnet or without moving permanent magnet can be imagined within the scope of the invention.
  • the regulating member of the invention is preferably mounted in a mechanical movement, preferably without a battery, and in a watch case revealing at least part of the pendulum, which allows the user to control his movements at all times

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Vibration Prevention Devices (AREA)
  • Electric Clocks (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electromechanical Clocks (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Micromachines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Switches With Compound Operations (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Organe réglant pour montre-bracelet, comprenant: un balancier, un organe de rappel magnétique pour ramener ledit balancier vers au moins une position d'équilibre stable, un échappement pour entretenir une oscillation du balancier autour de ladite position d'équilibre.

Description

Organe réglant pour montre bracelet, et mouvement mécanique comportant un tel organe réglant.
La présente invention ∞ncerne un organe réglant pour montre bracelet, et un mouvement mécanique pour montre bracelet muni d'un tel mouvement.
Les montres mécaniques usuelles comportent un accumulateur d'énergie constitué par un barillet, une chaîne cinématique, ou rouage, entraînant des aiguilles, un organe réglant déterminant la marche de la montre, ainsi qu'un échappement pour transmettre les oscillationsde l'organe réglant au rouage. La présente invention concerne en particulier l'organe réglant.
Les organes réglant conventionnelscomportent le plussouvent un balancier monté sur un axe en rotation et un organe de rappel exerçant un couple sur le balancier pour le ramener vers une position d'équilibre. L'échappement, ou organe d'entraînement, entretient lesoscillationsdu balancier autour de la position d'équilibre. L'organe de rappel comporte généralement un ressort spiral, souvent appelé spiral, monté coaxialement au balancier. Le spiral transmet un couple de rappel au balancier au travers de la virole ; la position de reposdu ressort spiral détermine la position de rappel du balancier.
Cette disposition très répandue présente cependant certains inconvénients
Tout d'abord, la déformation de matière à chaque oscillation du ressort spiral occasionne une déperdition d'énergie, et donc une réduction de la durée de marche de la montre. D'autre part, la précision de la montre dépend dans une large mesure des propriétésdu matériau utilisé pour le ressort spiral, ainsi que de la précision d'usinage des courbesterminales. En dépit de progrès important dans la métallurgie, la reproductibilité de ces propriétés est difficile à garantir. Par ailleurs, les ressorts spiraux tendent à se f atiguer avec le temps, en sorte que la force de rappel diminue avec le vieillissement de la montre, ce qui entraîne une variation de la précision.
Par ailleurs, lesoscillationsdu balancier dans un sens, par exemple dans le sens horaire, tendent à dérouler le ressort spiral tandis que les rotationsdans le sensopposé ont au contraire pour eff et de le contracter. La déformation du ressort s'exerce donc diff éremment selon le sensde rotation du balancier, ce qui inf luence la force de rappel et donc la précision et la reproductibilité.
Le piton et la virole permettant de fixer le spiral au coq (ou pont de balancier), respectivement au balancier, constituent d'autressourcesde perturbationset un balourd qui déséquilibre le balancier. D'autre part, le spiral exerce un couple de torsion sur le balancier au niveau du point d'attache de la virole, ce qui inf luence négativement la précision obtenue. En position verticale, le spiral tend par ailleursà se déf ormer sousson propre poidsce qui entraîne un déplacement de son centre de gravité et une perturbation de la période.
D'autre part, le balancier est également soumis à l'attraction gravitationnelle ainsi qu'aux accélérations provoquées par les mouvements du porteur. La force de rappel du ressort spiral étant peu importante, ces perturbationsextérieures ont une inf luence importante sur la précision de la marche, et des mécanismesde correction complexes, par exemple des tourbillons ou mêmesdestourbillonsà troisaxes, sont parf oisemployés pour les compenser.
Ensuite, l'épaisseur du spiral s'ajoute à celle du balancier, en sorte que l'épaisseur totale de l'organe réglant est relativement importante.
Desorganes réglants pour montre bracelet mettant en œuvre un diapason vibrant ont été imaginés, qui permettent de résoudre un certain nombre des problèmes évoqués. Ces organes réglants agissent cependant aussi par déformation et vibration élastique de matière dans les branches du diapason, en sorte que la précision dépend dansce cas également de la métallurgie et de la précision d'usinage. Ces solutions ne se sont pas imposéesà large échelle.
Des organes réglant de constructionstrèsvariéesont également été imaginésdansdes pendules, des horloges, ou d'autresdispositifs horlogersde grande dimension. Le volume à disposition, et la position verticale fixe, permettent par exemple d'employer la force gravitationnelle pour rappeler un balancier, ou pendule, vers sa position d'équilibre. La miniaturisation et lesaccélérationsimportantes imposéesaux mouvements de montre mécaniques usuels dissuadent cependant les constructeurs horlogersde transposer lessolutions utilisées pour des pendulesou des horloges à des mouvements pour montre bracelets.
Un but de la présente invention est donc de proposer un organe réglant pour montre bracelet différent et qui évite lesinconvénientsde l'art antérieur.
Un autre but est de proposer un organe réglant pouvant être employé avec une montre mécanique, dépourvue de source d'alimentation électrique.
Un autre but de l'invention est de proposer un organe régulant à balancier pour montre mécanique qui soit dépourvu de coq, de piton, de virole et d'autres moyensde fixation de l'organe de rappel au balancier et à l'axe du balancier.
Selon l'invention, ces butssont atteints au moyen d'un organe réglant comportant les caractéristiques de la revendication principale, des variantes préférentielles étant indiquéesdans les revendications dépendantes
Ces butssont notamment atteintsau moyen d'un organe réglant pour montre-bracelet mécanique, comprenant : un balancier, un organe de rappel pour ramener ledit balancier versau moins une position d'équilibre, un organe d'entraînement pour entretenir le mouvement du balancier autour de ladite position d'équilibre, ledit balancier étant lié à au moins un aimant permanent mobile, et ledit organe de rappel comportant au moins un aimant permanent fixe pour générer un champ magnétique af in de rappeler ledit balancier vers ladite position d'équilibre.
Cette disposition a l'avantage de permettre la suppression complète du ressort spiral dans les montres mécaniques, et de la plupart des problèmesqui lui sont associés.
Cette disposition a également l'avantage d'off rir une précision supérieure, ainsi qu'une inf luence moindre aux perturbations occasionnées par la gravitation ou par des accélérations externes
Dans une variante, l'organe de rappel tend à ramener le balancier vers au moins une position d'équilibre stable dont l'organe d'entraînement, par exemple un échappement, tend à l'écarter.
Des organes oscillants employant des champs magnétiques sont notamment décritsdans US4'266'291 , US3'921 '386, US3'714'773, US3'665'699, US3'161 '012, de2424212, et GB1444627. Ces sept documents concernent cependant des montresélectriques, dans lesquels un champ magnétique est généré au moyen d'un électro-aimant. Ces solutions ne sont do ne pas adaptées à des montres mécaniques dépourvues de source d'alimentation électrique.
Le document supplémentaire U S2003/0137901 décrit un mouvement de montre mécanique dans lequel le balancier est muni d'aimants permanents. Le champ tournant provoqué par lesoscillationsdu balancier est détecté par un mécanisme de contrôle de marche afin de contrôler lesvariationsdans lesoscillationsdu balancier. Cesoscillations sont cependant provoquées par un ressort spiral conventionnel, avectous les inconvénients mentionnés plus haut. Les butsde l'invention sont également atteints au moyen d'un organe réglant pour montre-bracelet mécanique, ∞mprenant : un balancier, un organe de rappel pour ramener ledit balancier versau moins une position d'équilibre stable, un organe d'entraînement pour entretenir le mouvement du balancier autour de ladite position d'équilibre, dans lequel l'organe de rappel agit sur ledit balancier sans déf ormation de matière.
L'avantage est de permettre une précision qui ne dépende pasde la métallurgie ou de la forme d'une pièce déf ormée, et donc de faciliter la reproductibilité de la précision.
Les butsde l'invention sont en outre atteints au moyen d'un organe réglant pour montre-bracelet mécanique, comprenant : un balancier, un organe de rappel pour ramener ledit balancier versau moins une position d'équilibre stable, un organe d'entraînement pour entretenir le mouvement du balancier autour de ladite position d'équilibre, dans lequel l'organe de rappel agit sans contact avec ledit balancier.
L'avantage est notamment de limiter les perturbationsduesau couple de torsion au niveau de l'attache du spiral au balancier.
Dans une variante préf érentielle de l'invention, le champ magnétique généré par la partie f ixe de l'organe de rappel est fixe et constant, c'est-à-dire qu'il n'est pastournant et qu'il ne varie pasdans le temps.
Dans une variante préf érentielle, le champ magnétique généré par le ou lesaimants mobiles est tournant ; c'est-à-dire que le balancier comporte un axe de rotation et que le ou les aimants mobiles, solidairesdu balancier sur lequel ilssont directement f ixés, oscillent selon une trajectoire circulaire autour dudit axe de rotation. On réduit ainsi le nombre de pièces mobiles et on évite des mouvementsde translation qui génèrent des f rottements plusimportants. En outre, la totalité de l'énergie cinématique des aimants mobilesest transmise au balancier. Par ailleurs, les mouvementsde rotation du balancier peuvent être transmis au moyen d'un échappement conventionnel au reste de la montre. Le mouvement du balancier est ainsi constitué par desoscillationsautour de l'axe de rotation du balancier, l'amplitude desoscillationsétant inférieure à 360°, par exemple inférieure à 180°, voire même inférieure à 120°. Il est ainsi possible d'obtenir une f réquence d'oscillationsimportante, favorable à la précision et à la résolution de l'organe réglant ; en outre, il est plusaisé d'obtenir une relation sansdiscontinuités entre la f orce de rappel et la position angulaire du balancier lorsque ce dernier oscille dans un intervalle limité. L'invention n'est cependant pas limitée à des amplitudesd'oscillation particulières ; des amplitudesd'oscillation entre 180 et 300°, ou même des amplitudes prochesde 360°, peuvent aussi être employées, par exemple en employant un seul aimant fixe et un seul aimant mobile. Cesoscillationsde plusgrande amplitude ont l'avantage de minimiser l'impact de la perturbation introduite par l'échappement à chaque cycle.
De préférence, au moins un aimant mobile oscille selon une trajectoire circulaire entre deux aimants permanentsfixesdisposéssur un arc de cercle et espacés angu lai rement de moinsde 180°. En rapprochant ainsi les aimants permanentsf ixes, on créé une interaction magnétique importante dont l'intensité varie selon une f onction continue le long de la trajectoire d'oscillation.
Dans une variante préf érentielle de l'invention, le balancier est excité par des éléments mécaniques pour osciller de manière isochrone autour de la position d'équilibre. De manière avantageuse, le balancier peut ainsi être associé à un échappement classique pour montre mécanique. Alternativement, l'énergie nécessaire à l'excitation du balancier peut être transmise depuis l'échappement au travers d'aimants permanents Ainsi le balancier magnétique de l'invention peut être employé dans une montre purement mécanique, dépourvue de bobines, d'électro-aimants et de source d'alimentation électrique.
Dans une variante préf érentielle, le ou les aimants mobiles sont fixes par rapport au balancier, ce qui facilite la construction. Le balancier et les aimantsoscillent donc selon le même mouvement circulaire alterné.
Les aimants fixes agissent de préférence de manière à repousser les aimants mobiles montéssur le balancier. La position d'équilibre est déterminée par desforcesde répulsion, et est atteinte lorsque les aimants mobiles se trouvent à équidistance entre deux aimantsf ixes, et que la f orce de répulsion desdeux aimants fixes agissant sur chaque aimant mobile se compense. Ainsi, le champ magnétique généré par les aimants f ixes est minimal à la position d'équilibre, en sorte que la quantité d'énergie nécessaire pour écarter le balancier de cette position d'équilibre et pour entretenir une oscillation est réduite. L'interaction magnétique entre les aimantsfixes et mobiles augmente à mesure que le balancier s'éloigne de la position d'équilibre, en sorte que la force de rappel augmente proportionnellement avec la distance angulaire du balancier par rapport à sa position de repos.
La stabilité du point d'équilibre peut cependant être contrôlée par desaimantssupplémentairesagissant par attraction. De même, le balancier peut être écarté de positionsd'équilibres non souhaitées
L'invention n'exclut pasdesvariantesdans lesquelles la position d'équilibre est déterminée par desforcesd'attraction, et est atteinte lorsque les aimants mobiles se trouvent à distance minimale d'aimantsf ixes correspondants, ou à équidistance entre deux aimantsfixesdont lesf orces d'attraction se compensent. Cette variante a cependant l'inconvénient de nécessiter une excitation plusimportante pour f aire osciller le balancier autour d'une position d'équilibre correspondant à un maximum de l'attraction magnétique. Dans une variante, I es pièces aimantées sont constituées par des portions magnétisées du balancier lui-même. Le balancier pourrait ainsi être constitué d'un anneau magnétisé avec des polarités alternées le long de la périphérie.
Dans une autre variante, lesaimants mobilessont directement montés sur ou liésà l'ancre de l'échappement. L'ancre constitue alors un balancier, c'est-à-dire un élément oscillant de f açon isochronique dans un champ magnétique.
L'invention sera mieux comprise à la lecture desexemplesde modesde réalisation illustrés par lesfiguresannexéesqui montrent :
La figure 1 a une vue de dessus schématique d'une première variante d'organe réglant selon l'invention.
La figure 1 b une vue de dessus schématique d'une première variante d'organe réglant selon l'invention, le balancier étant dans la position d'équilibre déf inie par lesaimants.
La figure 2 une vue en coupe de l'organe réglant selon la première variante de l'invention, comprenant danscet exemple deux paliers magnétiques et un blindage magnétique.
La figure 3 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant des aimants fixes et desaimants mobiles constitués chacun de deux aimants bipolaires accolés en opposition.
La figure 4 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant des aimantsfixes constitués chacun de deux aimants bipolaires accolés en opposition, et desaimants mobiles constitués chacun d'un seul aimant bipolaire. La figure 5 une vue de dessusd'une variante d'organe réglant selon l'invention, ∞mprenant desaimantssupplémentaires pour augmenter localement la stabilité du point d'équilibre.
La figure 6 une vue de dessusd'une variante d'organe réglant selon l'invention, ∞mprenant un balancier droit pivotant autour d'un axe central.
La figure 7 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant un balancier droit pivotant autour d'un axe décentré.
La figure 8 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant quatre aimants mobilessur le balancier et quatre aimantsfixes.
La figure 9 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant deux aimants mobilessur le balancier et quatre aimantsfixes.
La figure 10 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant quatre aimants mobilessur le balancier et deux aimantsf ixes.
La figure 11 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant un élément torique dans lequel un aimant mobile est repoussé vers une position d'équilibre par un aimant fixe.
La figure 12 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant un cylindre fermé à ses extrémités par deux aimantsfixes, ainsi qu'un aimant mobile repoussé en position intermédiaire par lesdeux aimantsfixes.
La figure 13 une vue en perspective d'une variante d'organe réglant selon l'invention dans laquelle lesaimants mobiles liés au balancier et les aimants f ixes sont superposés, dansdeux plans parallèles, l'organe réglant étant en position d'équilibre.
La figure 14 une vue en perspective de l'organe réglant de la figure 13, oscillant dans une position intermédiaire.
La figure 15 une vue de dessusd'une variante d'organe réglant selon l'invention, dans laquelle les aimants mobiles sont directement montés sur l'ancre qui agit ainsi comme balancier.
La figure 16 une vue de dessusd'une variante d'organe réglant selon l'invention, dans laquelle les aimants mobiles sont directement montéssur l'ancre qui agit ainsi comme balancier, les aimantsfixesétant superposé aux aimants mobilesdans un plan parallèle.
La figure 17 une vue de dessusd'une variante d'organe réglant selon l'invention, dans laquelle les aimantsfixesont une forme particulière destinée à garantir une force de rappel proportionnelle à la distance angulaire, et dans laquelle le balancier a la forme d'une tige.
La figure 18 une coupe transversale de l'organe réglant de la figure 17 dans le plan de la tige.
La figure 19 une vue de dessusd'une autre variante d'organe réglant dans laquelle la f orce de rappel est proportionnelle à la distance angulaire.
La figure 20 une vue de dessusd'une autre variante d'organe réglant dans laquelle la f orce de rappel est proportionnelle à la distance angulaire, cette variante employant un anneau magnétique avec une magnétisation variant le long de la périphérie.
La figure 21 une vue en coupe d'une variante d'organe réglant selon l'invention comportant des aimants d'épaisseur variable radialement. La figure 22 une vue de dessusd'une variante d'organe réglant selon l'invention, correspondant à la première variante maisdans laquelle un capteur et un circuit permettent de déterminer et/ou contrôler l'amplitude des oscillationsdu balancier.
La figure 23 une vue de dessusd'une variante d'organe réglant selon l'invention, correspondant à la première variante maisdans laquelle une bobine génère un courant dont la f réquence dépend de la f réquence d'oscillation du balancier.
Dans la description qui suit et dans les revendications, l'adjectif « fixe » se réfère toujoursau mouvement. Un élément est fixe s'il ne se déplace pas par rapport au mouvement, par exemple par rapport à la platine du mouvement.
Le terme « balancier » désigne une pièce oscillant sous l'eff et d'une excitation autour d'une position d'équilibre. Les oscillations sensiblement isochroniquesdéterminent la marche de la montre. Le balancier peut être constitué par une roue avec un nombre quelconque de rayons, un disque, une tige, une ancre, etc.
La figure 1 b illustre de manière schématique un organe réglant 1 comportant un balancier 3 oscillant autour d'un axe 300 perpendiculaire à la platine du mouvement. Danscet exemple, le balancier 3 comporte une serge annulaire et comporte deux rayons (ou bras) radiaux 302 autour de l'axe 300. Desvis301 permettent de déplacer facilement le moment d'inertie du balancier. Le balancier constitue une masse d'inertie; sa masse, ainsi que son rayon, sont de préf érence import antsdans les limites imposées par la volonté de miniaturisation du mouvement. La f orce de rappel importante que permet la solution revendiquée permet d'utiliser des masses d'inertie particulièrement importantes.
Des balanciers bimétalliquesqui se déforment pour compenser lesvariationsde température sont aussi possiblesdans le cadre de l'invention. D'autres moyens peuvent être misen œuvre pour ∞mpenser la variation de l'intensité du champ magnétique liée à la température.
Le balancier 3 est lié à ou muni d'aimants permanents mobiles30 entraînés en rotation avec le balancier. L'exemple illustré comporte deux aimants bipolaires permanentsdiscretsqui sont disposés symétriquement par rapport à l'axe 300, à 180° l'un de l'autre. Chaque aimant comporte un pôle positif et un pôle négatif à équidistance de l'axe 300. Lesaimants30 peuvent être maintenus mécaniquement ou par collage sur le balancier 3. Comme indiqué, les pièces aimantées pourraient aussi être constituées par des portions magnétiséesdu balancier lui-même, ou d'une piste magnétique sur le balancier. Le balancier pourrait ainsi être constitué d'un anneau magnétisé avec des polarités alternées le long de la périphérie. Le balancier pourrait par exemple être magnétisé de manière homogène ou progressive au moyen d'une tête d'enregistrement, c'est-à-dire une bobine générant un champ magnétique d'intensité contrôlée dans un entrefer.
L'organe réglant comporte en outre deux aimants permanents fixes 40, montés sur un pont ou sur la platine du mouvement par n'importe quel moyen adapté. Lesdeux aimantssont disposésdans le plan du balancier 3, symétriquement et à 180° par rapport à l'axe 300. Dans une variante non illustrée, les aimantsfixes40 pourraient aussi être disposés dans un autre plan, parallèle au plan du balancier 3. Lesaimants40 comportent chacun un pôle positif et un pôle négatif dont la disposition, symétrique par rapport à l'axe 300, est toutef ois inversée par rapport à la disposition des pôles sur Iesaimants mobiles30. Ainsi, lesaimantsf ixes40 et mobiles30 se repoussent avec une force d'interaction magnétique maximale lorsqu'ilssont proches. La position d'équilibre est atteinte en tournant le balancier de 90°, de manière à repousser chaque aimant mobile 30 à équidistance desdeux aimantsf ixes40 ; le champ magnétique généré par les aimants permanents40 est minimal dans cette disposition, en sorte que la force ou le moment nécessaire pour quitter cette position d'équilibre est également réduit. Lesaimants30 et 40 sont de préférence choisisde manière à ce que la f orce de répulsion magnétique, même dans la position d'équilibre illustrée, soit largement supérieure à la f orce gravitationnelle exercée sur le balancier 3. Desaimants permanentscomposésd'oxydes métalliques, de composésde terres rares ou d'alliagesde platine-cobalt seront de préférence utilisés pour obtenir des champs rémanents importants.
La position des aimants fixes, ou même la position des aimants mobiles, peut danstoutes les variantes être ajustée, par exemple au moyen de vis, afin de régler la f réquence d'oscillation du balancier.
Lesoscillationsdu balancier dépendent ainsi peu de l'inclinaison du balancier. La masse tournante du balancier 3 (y compris les vis 301 ) et des aimants mobiles30 est en outre de préférence répartie aussi régulièrement que possible autour de l'axe 300, de manière à améliorer l'équilibrage du balancier.
Danstous les modesde réalisation, des butées mécaniques supplémentaires, non représentées, peuvent être prévues sur le balancier 3 et/ou sur un pont afin de limiter l'amplitude des rotations possiblesdu balancier, et empêcher ainsi que le balancier passe d'une position d'équi¬ libre à une autre suite à un choc, par exemple. Desélémentsde butée similaires peuvent aussi être employés avec les autres variantesde réalisa¬ tion discutées plus bas Les butées supplémentaires peuvent par exemple comprendre des moyens élastiques pour amortir les chocs en fin de course.
Le balancier 3 est misen oscillation autour de la position d'équi¬ libre de la figure 1 b au moyen d'un organe d'entraînement constitué dans cet exemple par un échappement 2, ici un échappement à ancre 20 suisse conventionnel. L'échappement peut aussi être spécialement adapté pour tenir compte de la faible amplitude d'oscillation du balancier.
Une roue d'échappement 210 entraînée par les barillets (non représentés) ou par n'importe quelle source d'énergie mécanique appropriée actionne l'ancre 20 au travers des palettes en rubis200. Les déplacements de l'ancre, limitées par les butées 201 sont transmises au balancier 3 par l'intermédiaire de la fourchette 202 et de la cheville 31.
D'autrestypesd'échappements, y comprisdes échappements électriques ou magnétiques, peuvent être utilisésdans le cadre de l'invention. Dans un échappement magnétique, lesimpulsionsdonnées au balancier 30 le sont de préférence par attraction ou répulsion entre des pièces aimantées sur le balancier et sur l'échappement. Un entraînement sanscontact est ainsi possible.
L'amplitude et la f réquence desoscillationsautour de la position d'équilibre sont déterminées par la f orce et la disposition des aimants, et par l'amplitude du couple transmis par l'organe d'entraînement. On constate par ailleursque le balancier 30 oscille sansdéf ormationsde matière, en sorte que la f réquence d'oscillation ne dépend pasdes caractéristiques métallurgiques ni du vieillissement de pièces élastiques
La force de rappel importante que permet l'utilisation d'aimants puissants permet d'obtenir desf réquencesd'oscillations importantes, supérieures aux f réquences habituellesdans les montres mécaniques usuelles, et donc d'augmenter la précision et/ou la résolution du mouvement. Un choix d'aimantset de géométrie appropriés permet ainsi d'afficher desindicationsde temps ou de durée avec une résolution de l'ordre de dixième ou même du centième de seconde.
L'organe réglant de la f igure 1 b est représenté en coupe partielle sur la figure 2, l'échappement 2 ayant été supprimé de la figure pour en améliorer la lisibilité. Dans l'exemple de réalisation illustré, le balancier 3 pivote autour d'un axe 300 perpendiculaire au pont supérieur 41 et au pont inf érieur 42. Les ponts41 et 42 forment de préf érence un blindage magnétique permettant à la foisde protéger le balancier 3 des champs magnétiques externes, et de protéger les autres composantsde la montre des champs magnétiquesgénérés notamment par les aimants 30 et 40. Un blindage peut également, dans une variante non illustrée, être obtenu au moyen d'élémentsdistinctsdes ponts, par exemple au moyen de la platine, du cadran, de la boîte, ou d'élémentsdédiéa Un blindage sur toutes les faces peut aussi être adopté. On utilisera par ailleursde préférence un mouvement dont au moins certains axes, pignons, roues et ou pontssont réalisés dans des matériaux non magnétiques Dans une variante préférentielle, la chaîne cinématique entre l'organe réglant et les aiguilles comporte au moins un élément en matériau synthétique, par exemple une courroie entraînée par une poulie.
L'axe 300 du balancier 3 est maintenu dans les ponts41 , 42 au moyen de deux paliers410 et 420, par exemple des paliers antichocs conventionnels, des paliersincablocsou dans l'exemple préférentiel illustré des paliers magnétiques Danscet exemple, lesextrémitéssupérieures3001 et inférieures3002de l'axe 300 sont aimantéesou muniesd'aimants. Les paliers410 respectivement 420 comportent chacun un logement 4100 respectivement 4200 dont la profondeur et le diamètre sont légèrement supérieursaux dimensionscorrespondantesde l'axe 300. Les paroisdes logementssont aimantées avec une polarisation identique à celle des extrémités correspondantes de l'axe 300, de manière à repousser cet axe qui est ainsi maintenu en lévitation entre les paliers410 et 420. L'axe 300 peut ainsi pivoter sansf rottements. Cet arrangement permet en outre de supprimer l'usure des paliers410, 420 et de l'axe 300.
Le balancier 3 de l'invention peut ainsi osciller sansaucun contact avec d'autres éléments, en étant rappelé vers sa position d'équilibre au moyen des aimants 30,40, maintenu par des paliers magnétiques410, 420 et/ou entraîné par un échappement magnétique. Il est ainsi possible de réduire lesf rottements et les usures occasion nées par les mouvementsdu balancier. Ces différentes mesures peuvent cependant être mises en œuvre indépendamment les unes des autres.
La figure 1 a illustre une variante d'organe réglant similaire à la variante de la figure 1 b, maisdans lequel la réalisation de l'échappement permet desoscillationsdu balancier de plusgrande amplitude, par exemple des oscillationsde 180° au maximum, voir davantage en modif iant la disposition des aimants. L'échappement est de préférence un échappement à ancre suisse qui permet des oscillationsimportantesdu balancier sans générer d'oscillations excessive de l'ancre. Le balancier 3 est en outre équipé de vis permettant de corriger d'éventuels balourds, ou d'autres sourcesde perturbationsde la marche.
La géométrie du balancier décrit en relation avec les figures 1 a,
1 b et 2 est similaire à celle des balanciersdes organes réglants mécaniques conventionnels. L'usage d'un organe de rappel magnétique permet cependant d'imaginer des constructionsde balanciers3 différentes, dont plusieurs exemplesvont être décrits en relation avec Iesf igures3 à 13 notamment.
La figure 3 illustre de manière simplifiée une deuxième variante d'organe réglant selon l'invention (sans l'échappement 2), dans laquelle les aimants permanentsfixes 40 et Iesaimants permanents mobiles30 sont chacun constitués par deux aimants accolés en opposition. La pièce aimantée résultante comporte ainsi deux extrémités muniesde polarités identiques.
La figure 4 illustre de manière simplifiée une troisième variante d'organe réglant selon l'invention, dans laquelle les aimants permanents fixes 40 sont chacun constituésde deux aimants accolés en opposition. La pièce aimantée résultante comporte ainsi deux extrémités muniesde polaritésidentiques. Lesdeux aimants mobiles 30 sur le balancier 3 sont cependant constitués chacun d'un aimant bipolaire, l'ensemble comportant un axe de symétrie horizontal.
La figure 5 illustre de manière simplifiée une quatrième variante de l'invention, correspondant à la figure 1 , maisdans laquelle des aimants permanentsfixessupplémentaires47 sont disposés en regard des aimants mobiles 30 à la position d'équilibre. Dans l'exemple illustré, les aimants supplémentairesfixes47 et Ies aimants mobiles30 s'attirent mutuellement à la position d'équilibre. La position d'équilibre est ainsi déterminée à la fois par la répulsion desaimants30 et 40, et par l'attraction desaimants30 et 47 ; la contribution desf orcesde répulsion est cependant prépondéran- te, de manière à limiter la stabilité du point d'équilibre et à permettre au système d'osciller même avec une faible énergie d'entraînement. Le champ magnétique généré par Iesaimantsf ixessupplémentaires47 est donc de préférence largement inférieur au champ magnétique des aimants40.
Desaimantssupplémentaires47 avec des pôles inversés, de manière à réduire la stabilité du point d'équilibre, peuvent aussi être imaginésdans le cadre de l'invention.
Des résultat s similaires peu vent être obtenus en disposant des aimants permanentssupplémentairessur le balancier.
Desaimantssupplémentaires peuvent aussi être prévusen bout de course, soit sur un pont soit sur le balancier, de manière à attirer ou à repousser le balancier dans cette position, et à réduire la variation de l'amplitude des oscillations provoquée par des perturbations
La figure 6 illustre de manière simplifiée une variante d'organe réglant selon l'invention, comprenant un balancier droit (en aiguille) 3 pivotant autour d'un axe central 300. Lesdeux extrémitésdu balancier 3 sont muniesd'aimants30 repoussés vers la position d'équilibre par les aimantsfixes40 montés sur un pont non représenté. Bien que la masse d'inertie du balancier 3 danscette variante d'exécution soit fortement réduite, cette disposition permet de réduire l'encombrement de l'organe réglant.
La figure 7 illustre une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant un balancier droit 3 similaire à celui de la figure 6, mais pivotant autour d'un axe 300 décentré. Seule l'extrémité du balancier 3 éloignée de l'axe 300 est dans cet exemple munie d'un aimant repoussé vers la position d'équilibre illustrée au moyen de deux aimants40. Dans cette variante, l'échappement pourrait être obtenu en prolongeant le balancier 3 par une pièce en forme d'ancre directement actionnée par la roue d'ancre.
Outre les balanciersdroits (en aiguille, ou en I) desf iguresδ et 7, des balanciers en f orme de T ou de H, par exemple, peuvent aisément être imaginés.
La figure 8 illustre une vue de dessusd'une sixième variante d'organe réglant selon l'invention. L'organe réglant est similaire à celui des figures 1 à 2, mais comprend quatre aimants mobiles 30 répartis à 90° les uns des autres sur le balancier 3 et quatre aimantsfixes40 répartisà 90° les uns des autres sur un pont non représenté. Cette disposition permet notam¬ ment de réduire la distance entre lesaimantsf ixeset les aimants mobiles, tout en multipliant le nombre d'aimants, en sorte que la f orce d'interaction magnétique résultante, et donc le couple de rappel, sont augmentés.
Desdispositions comprenant plusde quatre aimants mobiles et/ou plusde quatre aimantsfixes peuvent également être imaginées. Par ailleurs, comme évoqué, il est aussi possible d'employer des pièces aiman¬ tées avec une pluralité de zonesde polarités magnétiques alternées. Un champ magnétique alterné en tout ou rien, ou selon une f onction sinusoï- dale par exemple, peut par exemple être écrit par une tête magnétique sur la périphérie du balancier et/ou sur un élément f ixe lié au mouvement.
La figure 9 illustre une vue de dessusd'une variante d'organe réglant dans laquelle le nombre d'aimants mobiles 30 sur le balancier est inf érieur au nombre d'aimantsf ixes40. Chaque aimant mobile est ainsi soumisà l'action d'une paire d'aimantsfixes ; chaque aimant fixe n'agit que sur un seul aimant mobile. Desdispositionscomportant deux aimantsf ixes et un seul aimant mobile peuvent aussi être imaginées
La figure 10 illustre une vue de dessusd'une variante d'organe réglant dans laquelle le nombre d'aimants mobiles 30 sur le balancier est supérieur au nombre d'aimantsfixes40. Chaque aimant mobile est ainsi soumisà l'action d'un seul aimant fixe ; chaque aimant f ixe agit cependant sur deux aimants mobiles
L'amplitude des oscillationsdu balancier de la figure 9 est très limitée, inférieure à 90°. Il est ainsi possible de le f aire osciller très rapidement et d'obtenir une résolution trèsfine pour la mesure du temps Toutef ois, desoscillationsde faible amplitude, très rapidesont l'inconvénient d'amplif ier l'inf luence des perturbations provoquées à chaque cycle par lesf rottementsavec l'ancre et le balancier. Selon la résolution souhaitée et la qualité de la réalisation de l'échappement, il peut donc être souhaitable d'augmenter l'amplitude desoscillations au-delà de 180°, au lieu de chercher à la réduire. Dansce but, desdispositions comportant deux aimants mobiles et un seul aimant f ixe sont aussi possibles, ou même un seul aimant f ixe et un seul aimant mobile qui permettent d'obtenir desoscillationsde presque 360°.
Par ailleurs, dans une variante non illustrée, il est aussi possible d'augmenter la masse d'inertie en rotation en liant le balancier 3 avec une autre masse oscillante au traversd'une chaîne cinématique, par exemple d'un engrenage sur l'axe du balancier, ou d'une courroie. Lesoscillationsdu balancier sont ainsi transmisesà une masse oscillante supplémentaire. Des rapportsd'engrenage entre le balancier 3 et la masse oscillante supplémentaire permettent en outre d'obtenir une amplitude d'oscillation différente sur cesdeux composants Par exemple, il est imaginable de faire osciller le balancier 3 de 180° et de le relier cinématiquement au travers d'un engrenage de facteur 8 à une autre masse en rotation eff ectuant des oscillationsde δ X 180°, c'est-à-dire de quatre tours, à chaque cycle.
La figure 11 illustre une variante de l'invention dans laquelle le balancier est constitué par un aimant mobile 30 dont la trajectoire est contrainte par un guide 43, par exemple une coulisse, une glissière ou un rail, dans cet exemple une coulisse torique. La disposition des pôles de l'aimant f ixe 40 est opposée à la disposition des pôlesde l'aimant mobile 30, en sorte que la position d'équilibre est atteinte lorsque l'aimant mobile se trouve diamétralement opposé à l'aimant f ixe. Cette disposition permet d'employer un seul aimant mobile et un seul aimant f ixe. Desf ormesde coulisses, de railsou de glissières 43 différentes, non annulaires, peuvent aussi être imaginées ; par ailleurs l'aimant f ixe 40 pourrait se trouver hors de la glissière.
Dans cet exemple, le balancier 30 est entraîné au traversde l'ancre 20 actionnée par une roue d'échappement non représentée et articulée autour de l'axe 300. L'ancre 20 prolonge le brasdu balancier hors de la coulisse 43. Un échappement magnétique peut aussi être utilisé dans le cadre de l'invention.
Desdispositionsd'organes réglantscomportant plusieurs positionsd'équilibre stables peuvent aussi être imaginées dans le cadre de l'invention.
La figure 12 illustre une variante de l'invention dans laquelle le balancier 3 est constitué par ou comporte un aimant 3 se déplaçant linéairement dans un cylindre, une coulisse ou le long d'un rail 43 dont les deux extrémités sont fermées par des aimantsfixes40. Les polarités des aimants30 et 40 sont disposéesde manière à ce que la f orce d'interaction magnétique tend à repousser l'aimant mobile 30 en lévitation à mi-distance entre lesdeux aimantsf ixes40, comme illustré sur la figure 12. Le balancier 3 peut être misen oscillation au moyen d'un organe externe au rail 43 et suivant lesdéplacementsdu balancier 3 au traversd'une liaison mécanique ou magnétique.
Le mouvement du balancier dans lesfigures H et 12 est contraint par Ies guides43, ce qui entraîne une déperdition d'énergie et une perte de précision en casde déformation ou de dilatation dessurfacesde guidage. Ces variantes permettent cependant de mettre en œuvre des solutions non conventionnelles pour répondre à des besoins particuliers.
Des balanciers oscillant dans un plan selon deux degrésde liberté, ou même troisdegrésde liberté, peuvent aussi être imaginésdans le cadre de l'invention. Une pluralité d'aimants permanentsf ixesdoivent dansce cas être prévus pour repousser le balancier vers un point d'équilibre autour duquel un organe d'entraînement le fait osciller. La faible épaisseur à disposition dans une montre bracelet, et lesdiff icultésde réalisation de l'échappement, rendent toutef oisde telles solutions plusdifficilement applicables.
Lesf igures 13 et 14 illustrent une variante de l'organe réglant comportant un aimant mobile 30 constitué par un disque monté au centre du balancier 3. Le disque 30 comporte des secteurs, dans l'exemple illustré deux secteurs, munisde polarités magnétiques alternées L'aimant f ixe 40 est monté au-dessusde l'aimant mobile 30, dans un plan parallèle, et également constitué par un disque munisde secteursde polarités alternées. Dans la position d'équilibre illustrée sur la f igure 13, le balancier se positionne de manière à ce que les secteursde polarité opposées des deux aimants30 et 40 soient exactement superposés Le balancier est amené danscette position essentiellement par attraction des pôlesopposésdes deux aimants, et dans une moindre mesure par répulsion des pôles identiques. Le balancier oscille autour de cette position d'équilibre stable lorsqu'une perturbation lui est apportée par exemple par l'échappement non représenté sur la f igure.
II est également possible de modifier l'arrangement desf igures
13 et 14 par exemple en employant desaimants30 et 40 munisde plusde deux secteursde polarités alternées, ou en employant plusieurs aimants fixesdans un premier plan et plusieurs aimants mobilesdans un plan parallèle. Lesaimants mobiles peuvent aussi par exemple être placés à la périphérie du balancier, et lesaimants mobilesau-dessusde ces positions. Il est aussi possible d'employer un nombre d'aimantsf ixeset d'aimants mobilesdifférents ; par exemple, on pourrait aussi dans le cadre de l'invention monter l'aimant mobile 30 entre un aimant f ixe sur un plan supérieur, comme illustré sur lesfigures, et un aimant fixe supplémentaire, non représenté, dansun plan parallèle inférieur.
La figure 15 illustre une vue de dessusd'une variante d'organe réglant dans laquelle Ies aimants mobiles30 sont directement montés sur l'ancre 20. Des aimants f ixes 40 tendent à repousser et à faire osciller ces aimants mobiles autour d'une position d'équilibre. L'ancre 20 agit ainsi elle- même comme balancier. Cette variante, bien qu'envisageable, présente cependant l'inconvénient d'être plussensible aux chocs, l'inertie de l'ancre étant généralement insuffisante pour garantir une oscillation isochronique. Une ancre à f orte inertie serait envisageable, mais nécessiterait une énergie d'excitation importante pour la faire osciller.
La variante de la figure 16 combine les caractéristiques des solutions illustréessur lesf igures 13 et 15, c'est-à-dire une ancre 20 agissant elle-même comme balancier et des aimants fixes et permanents constitués par desdisques superposés munisde secteursde polarités alternées.
Lesaimants mécaniquesordinaires ont une force de rappel proportionnelle à leur élongation d :
F= k d
Appliqué à un ressort spiral destiné à ramener un balancier vers sa position de reposstable, cette force garantit une oscillation isochronique lorsque l'excitation du balancier, provoquée par l'échappement, obéit à certaines contraintes.
La force de rappel entre deux aimants ponctuelsdécroit en revanche de manière quadratique, ou même cubique, lorsque l'écartement d entre les aimantsaugmente :
F≡ j / d2 ou F≡ j / d3
Employé avec un échappement conventionnel, cette relation ne garantit une oscillation isochronique stable que lorsque les oscillations satisfont à des conditionstrès particulières (par exemple lorsque leur amplitude est faible). La variante de la f igure 17 illustre un exemple d'organe réglant dans laquelle la relation entre l'écart ement du balancier (c'est-à-dire sa distance angulaire par rapport à la position de repos) et la force ou le couple de rappel obéit à une relation diff érente.
Pour cela, le volume desaimantsf ixes40 augmente lorsque, à l'intérieur de la plage d'oscillations p, l'on s'éloigne de la position de repos d'une distance angulaire d, de manière à accroitre la force de rappel à distance de cette position. Les aimants mobiles 30 sur le balancier 3 sont en revanche de taille constante le long de la trajectoire des oscillations. Des butées mécaniques ou magnétiques non représentées peuvent être prévues pour contraindre le balancier à rester dans la plage d'oscillation p même en casde choc par exemple.
Ainsi, l'échappement non représenté tend à f aire tourner le balancier dans le sensantihoraire, rotation qui est contrée par la répulsion dés aimanta
Dans l'exemple de la f igure 17, la surface des aimantsf ixes 40 dans un plan parallèle au plan des oscillationsdu balancier 3 augmente à l'intérieur du domaine d'oscillation p avec le cube de la distance angulaire d, ou éventuellement selon d4. Les aimants f ixes 40 ont ainsi la f orme de lunessectionnées. Une autre disposition possible est illustrée sur la figure 19, dans laquelle le balancier oscille autour de l'axe 300 de chaque côté de la position de repos.
Les aimants mobiles 30 de la f igure 17 se déplacent selon une trajectoire circulaire dans un plan parallèle au plan des aimantsfixes40. Il est cependant aussi possible, af in d'augmenter l'interaction magnétique, de faire tourner les aimants mobiles entre deux plans parallèles munis chacun d'un ou plusieurs aimantsfixes 40. Inversement, il est aussi possible de prévoir un balancier 3 composé de plusieurs plateaux superposés, tournant sur un même axe et tous munisd'aimants mobiles30 ; lesdifférents plateaux mobilessont alors séparés par un pont ou plusieurs ponts portant les aimantsfixea D'autrestypesd'empilagesd'un nombre quel∞nque de plansd'aimants mobiles et de plansd'aimantsfixes peuvent être imaginés
D'autresdispositions non il lustrées sont possibles pour ∞rriger la relation entre la f orce de rappel provoquée par lesaimants30, 40 et la distance ou la distance angulaire du balancier 3 par rapport à la position de repos. Par exemple, au lieu de varier la surface des aimantsf ixesdans le plan horizontal, il est possible de varier la surf ace des aimants mobiles. D'autre part, il est aussi possible de modifier l'épaisseur desaimantsf ixes et/ou mobiles, ou leur magnétisation, le long du parcoursdu balancier. Ces différentes mesures peuvent en outre être corn binées entre elles Par ailleurs, il est aussi possible d'employer desaimantsde volume ou de magnétisation variable dans un système comprenant un balancier circulaire avec une inertie importante, et/ou d'employer un nombre arbitraire d'aimantsfixes et/ou mobilesde volume ou de densité variable. Enf in, une force de rappel variable selon la distance angulaire du balancier peut aussi être obtenue avec des aimants discrets de taille, de matériau, de magnétisation et/ou
La figure 20 illustre une variante de l'invention dans laquelle le balancier 3 est muni de trois rayons302, dont au moins un est magnétisé avec des pôles opposés à chaque extrémité radiale. Ainsi, seul le pôle externe du rayon exerce une interaction importante avec lesaimantsf ixes 40, qui sont constitués par un anneau magnétique 40 avec une polarisation dans un sensà l'intérieur, et dans le sens opposé à l'extérieur. En outre, la magnétisation de l'aimant f ixe 40 augmente, de préférence selon d3 ou éventuellement selon d4, avec la distance angulaire d par rapport à la position de reposd=0 du balancier. La densité du champ magnétique généré par l'aimant fixe varie le long de la périphérie du balancier de manière à assurer de préf érence une f orce de rappel variant linéairement avec la position angulaire du balancier. Dans une variante non illustrée, le balancier pourrait aussi être muni d'un anneau périphérique magnétique, ou d'aimantsdiscretsà la périphérie, avec une magnétisation variable le long de la périphérie. L'aimantation progressive de l'aimant f ixe peut par exemple être obtenue en le magnétisant au moyen d'une tête d'enregistrement, ∞mme mentionné plus haut. En casde saturation du matériau magnétique, il peut être nécessaire de limiter les oscillationsdu balancier dans la portion garantissant la relation souhaitée entre la position angulaire du balancier et la f orce de rappel. Par ailleurs, au lieu de magnétiser tout le balancier, il est imaginable de ne magnétiser qu'une piste magnétique fixée sur ce dernier, parallèlement ou perpendiculairement au plan du balancier.
Un aimant permanent f ixe supplémentaire 47 est disposé en regard de l'aimant mobile 30 à la position de répulsion maximale, af in d'empêcher le balancier d'atteindre puisde dépasser cette position. Cet aimant 47 agit ainsi comme une butée magnétique pour écarter le balancier d'une position d'équilibre non désirée, sans présenter les inconvénients des butées mécaniques provoquant des chocs susceptibles de perturber la marche isochronique du balancier.
Dans le casd'oscillationsdu balancier inférieuresà 180°, il serait aussi possible et même préf érable de prévoir des butées magnétiques47 non illustrées plus prochesdes limitesde la course du balancier, par exemple une butée à 10 heures et une seconde butée à 2 heures af in de repousser le balancier bien avant qu'il n'atteigne la position d'équilibre instable indésirable à 12 heures.
Sur la variante de la f igure 20, les aimants permanentssont constitués par un anneau continu. Il est cependant aussi possible de prévoir un anneau discontinu, par exemple muni d'un ou plusieurs entref ersou comportant des aimants discrets
Sur lesvariantesdesfigures 17 à 20, le volume desaimantsf ixes (et/ou mobiles) varie donc de manière continue le long de la trajectoire circulaire du balancier, de manière à contrôler la relation entre la force de rappel et la position angulaire du balancier. La figure 21 illustre une variante de l'invention dans laquelle l'épaisseur des aimants mobiles 30 augmente radialement, tandisque l'épaisseur des aimants fixes 40 diminue en s'éloignant de l'axe de rotation 300. Une disposition inversée, assurant un interstice entre lesaimantsf ixes et mobiles, peut aussi être adoptée. Par ailleurs, la variation radiale d'épaisseur peut aussi être ∞mbinée avec une variation le long de la périphérie de l'organe réglant. La variation radiale et/ou circonf érentielle d'épaisseur desaimants30, 40 peut aussi être employée avec les modes d'exécution desfigures 13 et 14 comportant des aimants superposés. Par ailleurs, il est aussi possible de varier la magnétisation desaimantsf ixeset ou mobiles en fonction de la distance au centre.
La figure 22 illustre une variante de l'organe réglant illustré sur lesfigures i à 2, et comprenant en outre une pluralité d'électrodes 44 dont une propriété électrique varie en f onction du champ électrique auxquelles ellessont soumises Les électrodes 44 permettent ainsi de détecter ou même de mesurer le champ magnétique tournant généré par lesoscilla- tionsdes aimants mobiles30. Les électrodes 44 peuvent par exemple être constituées par des électrodes magnéto résistives ou par descapteursde Hall. Blés peuvent être connectées entre elles et à un circuit intégré 46 au traversde pistes conductrices440 selon différentestopologies. Le circuit 440 permet de déterminer l'amplitude desoscillationsdu balancier 30 et/ou la f réquence d'oscillation. Le circuit 46 peut être alimenté par une source d'énergie indépendante, par exemple une batterie, ou par une bobine générant un courant alternatif sous l'action des déplacements du balancier, comme illustré en relation avec la f igure 18 évoquée plus bas Une correction électronique de la marche d'une montre mécanique peut ainsi être obtenue.
La mesure de la f réquence et/ou de l'amplitude des oscillations du balancier 30 permet par exemple de détecter d'éventuelles irrégularités dans la f réquence de marche. Cette information peut être utilisée pour corriger la marche de la montre, par exemple en exerçant un couple de correction sur le balancier 30 au moyen d'électroaimants non représentés ou d'autres moyens électromécaniques, de manière à corriger l'amplitude et la f réquence desoscillationa Cette information peut aussi être utilisée pour aff icher un signal de fin de marche, de manière à signaler à l'utilisateur que la marche de la montre devient imprécise.
La figure 23 illustre une variante de l'organe réglant dans laquelle une bobine 45 en regard de chaque aimant mobile 30 génère un courant proportionnel au champ magnétique généré lorsdu déplacement de cet aimant prèsde la bobine. Desdispositions comportant deux bobines en opposition de phase, ou trois bobinesgénérant un système de courant triphasé, peuvent aussi être utilisées. Les bobines illustrées génèrent un courant approximativement sinusoïdal dont la f réquence correspond à la f réquence d'oscillation du balancier. Cette f réquence peut être mesurée par un circuit 45, par exemple en la comparant à une f réquence de référence fournie par un quartz, afin par exemple d'informer l'utilisateur en casde f réquence irrégulière et/ou de corriger cette f réquence, par exemple en injectant un courant de compensation dans la bobine 45. Le circuit 46 peut comporter un redresseur et ainsi être alimenté lui-même par le courant généré par la bobine 45. Le courant généré par la bobine peut aussi servir à alimenter un circuit fournissant n'importe quel type de fonction que l'on souhaite apporter à une montre mécanique sans batterie.
L'organe réglant décrit peut être utilisé dans un mouvement pour montre bracelet autonome, ou dans un module auxiliaire, par exemple un module chronographe, destiné à être superposé à un mouvement de base.
Lesdiff érents organes réglant décrits comportent tous au moins un aimant permanent mobile et au moins un aimant permanent f ixe. Des constructionsdépourvuesd'aimant permanent fixe ou dépourvues d'aimant permanent mobile peuvent cependant être imaginéesdans le cadre de l'invention.
L'organe réglant de l'invention est de préférence monté dans un mouvement mécanique, de préférence dépourvu de batterie, et dans une boîte de montre laissant apparaître au moins une partie du balancier, ce qui permet à l'utilisateur de contrôler ses déplacements en tout temps

Claims

Revendications
1. Organe réglant pour mouvement de montre-bracelet mécanique, comprenant : un balancier (3), un organe de rappel (30, 40) pour ramener ledit balancier vers au moins une position d'équilibre, un organe d'entraînement (2) pour entretenir le mouvement du balancier autour de ladite position d'équilibre, caractérisé en ce que ledit balancier est lié à au moins un aimant permanent mobile (30), et en ce que ledit organe de rappel comporte au moins un aimant permanent fixe (40) pour générer un champ magnétique afin de rappeler ledit balancier vers ladite position d'équilibre.
2. L'organe réglant de la revendication 1 , dans lequel ledit balancier comporte un axe de rotation (300), ledit au moins un aimant permanent mobile oscillant selon une trajectoire circulaire autour dudit axe de rotation.
3. L'organe réglant de l'une des revendications 1 à 2, dans lequel lesditsaimantsf ixessont répartissur un arc de cercle.
4. L'organe réglant de la revendication 3, dans lequel au moins un dit aimant mobile (30) oscille selon une trajectoire circulaire entre deux aimant s fixes (40) espacés angulairement de moinsde 180°sur ledit arc de cercle.
5. L'organe réglant de l'une des revendications 1 à 4, dans lequel ledit mouvement du balancier est constitué par desoscillationsautour de l'axe de rotation du balancier, l'amplitude desditesoscillationsétant inf érieure à 180°.
6. L'organe réglant de l'une des revendications 1 à 4, dans lequel ledit mouvement du balancier est constitué par desoscillationsautour de l'axe de rotation du balancier, l'amplitude desditesoscillationsétant supérieure à 180°et de préf érence inférieure à 300°.
7. L'organe réglant de l'une des revendications 1 à 6, dans lequel ledit organe d'entraînement (2) est constitué par un échappement pour transmettre les oscillations circulairesdu balancier au reste du mouvement.
8. L'organe réglant de l'une des revendications 1 à 7, dans lequel ledit organe de rappel agit sur ledit balancier (3) sansdéf ormation de matière.
9. L'organe réglant de l'une des revendications 1 à 8, dans lequel ledit organe de rappel agit sanscontact avec ledit balancier (3).
10. L'organe réglant de l'une des revendications 1 à 9, dans lequel ledit champ magnétique est constant dans le temps
11. L'organe réglant de l'une des revendications 1 à 10, dans lequel au moins un dit aimant f ixe (40) est agencé pour repousser au moins un dit aimant mobile (30) vers ladite position d'équilibre.
12. L'organe réglant de l'une des revendications 1 à 11 , dans lequel l'interaction magnétique entre ledit au moins un aimant fixe (40) et ledit au moins un aimant mobile (30) est minimale à ladite position d'équilibre.
13. L'organe réglant de l'une des revendications 1 à 12, dans lequel ladite position d'équilibre est déterminée par l'action d'au moins deux aimants f ixes (40) agissant sur au moins un même aimant mobile (30).
14. L'organe réglant de la revendication 13, dans lequel, à la position d'équilibre, les champs magnétiques exercés par lesdeux dits aimant s fixes (40) sur ledit au moins un même aimant mobile (30) sont d'intensités égales
15. L'organe réglant de l'une des revendications 13 ou 14, dans lequel ledit aimant mobile (30) se trouve à équidistance entre deux aimants fixes (40) à ladite position d'équilibre.
16. L'organe réglant de l'une des revendications 1 à 15, dans lequel ladite position d'équilibre est déterminée par l'action d'au moins un aimant fixe (40) agissant simultanément sur au moinsdeux aimants mobiles (30).
17. L'organe réglant de l'une des revendications 1 à 16, dans lequel ladite position d'équilibre est une position d'équilibre stable dans laquelle l'attraction magnétique entre les aimants fixes et lesaimants mobiles est minimale.
18. L'organe réglant de l'une des revendications 1 à 17, comportant le même nombre d'aimants mobiles (30) que d'aimantsfixes (40).
19. L'organe réglant de l'une des revendications 1 à 18, dans lequel, à la position d'équilibre : chaque aimant f ixe (40) exerce un champ magnétique d'intensité égale sur deux aimants mobiles (30), et chaque aimant mobile (30) exerce un champ magnétique d'intensité égale sur deux aimantsf ixes (40).
20. L'organe réglant de l'une des revendications 1 à 19, dans lequel ledit ou lesditsaimants mobiles (30) sont fixes par rapport audit balancier (3).
21. L'organe réglant de la revendication 20, dans lequel ledit balancier (30) est symétrique par rapport audit axe de rotation (300).
22. L'organe réglant de l'une des revendications 20 ou 21 , dans lequel lesditsaimants mobiles (30) sont disposésde manière symétrique autour dudit axe de rotation (300).
23. L'organe réglant de l'une des revendications 2 à 22, ∞mportant des butées mécaniques et/ou magnétiques pour limiter l'amplitude des rotations possiblesdudit balancier (3).
24. L'organe réglant de l'une des revendications 1 à 23, dans lequel ledit balancier est constitué par un aimant permanent mobile (30).
25. L'organe réglant de l'une des revendications 1 à 24, dans lequel ledit au moins un aimant permanent mobile (30) est lié à l'ancre (20) qui constitue ainsi également le balancier.
26. L'organe réglant de l'une des revendications 1 à 25, dans lequel ledit au moins un aimant permanent mobile (30) est monté dans le plan du balancier et dans lequel ledit au moins un aimant permanent f ixe (40) est monté dans un plan parallèle audit balancier.
27. L'organe réglant de la revendication 26, dans lequel ledit au moins un aimant permanent fixe et ledit au moins un aimant permanent mobile sont constitués chacun par un disque comportant dessecteursde polarités alternées
28. L'organe réglant de l'une des revendications 1 à 27, comportant des moyensde compensation de la variation du champ magnétique liée à la température.
29. L'organe réglant de l'une des revendications 1 à 28, dans lequel ledit organe d'entraînement (2) est constitué par un échappement mécanique, par exemple un échappement à ancre suisse.
30. L'organe réglant de l'une des revendications 1 à 29, dans lequel ledit échappement est un échappement magnétique.
31. L'organe réglant de l'une des revendications 1 à 30, ledit balancier (30) étant maintenu par au moins un palier magnétique (410, 420).
32. L'organe réglant de l'une des revendications 1 à 31 , la position d'au moins un dit aimant (30, 40, 47) étant ajustable pour régler la f réquence des oscillationsdudit balancier (3).
33. L'organe réglant de l'une des revendications 1 à 32, au moins un dit aimant (30) agissant sur un système électronique (44, 45, 46) pour corriger ou déterminer la f réquence d'oscillation dudit balancier (3).
34. L'organe réglant de la revendication 33, ledit système électro¬ nique comportant au moins un capteur de Hall ou un capteur magnéto- résistif (44) soumisà l'action du champ magnétique d'un desaimants pour générer un signal de mesure dépendant des oscillationsdudit balancier.
35. L'organe réglant de l'une des revendications 33 ou 34, ledit système électronique comportant au moins une bobine (45) soumise à l'action du champ magnétique d'un desaimants mobiles (30) pour générer un signal dépendant des oscillationsdudit balancier (3).
36. L'organe réglant de l'une des revendications33 à 35, compor¬ tant au moins un circuit électronique alimenté par la force électromotrice générée par le déplacement d'un desdits aimants à proximité d'une bobine.
37. L'organe réglant de l'une des revendications 1 à 36, comportant au moins un pont réalisé dansun matériau non magnétique.
38. L'organe réglant de l'une des revendications 1 à 37, comportant un blindage magnétique (41 , 42) afin de protéger des éléments externesdu champ magnétique généré par lesditsaimants permanents.
39. L'organe réglant de l'une des revendications 1 à 38, dans lequel lesdéplacementsdudit balancier (30) sont contraints par une surface de guidage (43).
40. L'organe réglant de l'une des revendications 1 à 39, dans lequel la force de rappel dudit balancier (30) varie linéairement avec la position angulaire (d) du balancier (3).
41. L'organe réglant de l'une des revendications 1 à 40, dans lequel ledit balancier se déplace le long d'une trajectoire circulaire, le volume des aimants f ixes et/ou mobiles et ou leur magnétisation variant de manière continue le long de ladite trajectoire.
42. L'organe réglant de la revendication 41 , dans lequel ledit balancier (3) oscille autour d'une position d'équilibre le long d'une trajectoire circulaire, l'interaction magnétique entre lesditsaimants permanents fixes et lesdits aimants permanents mobiles augmentant lorsque le balancier s'éloigne de ladite position d'équilibre le long de ladite trajectoire, de manière à obtenir une f orce de rappel croissante.
43. L'organe réglant de l'une des revendications 1 à 42, dans lequel au moins un desdits aimants permanentsf ixes et/ou mobiles (30, 40) est magnétisé de manière non homogène.
44. L'organe réglant de l'une des revendications 1 à 43, dans lequel ledit balancier est constitué de plusieurs élémentsoscillant connectés par une chaîne cinématique et oscillant avec des f réquences variables
45. Mouvement mécanique pour montre bracelet comportant un organe réglant selon l'une des revendications 1 à 44.
46. Mouvement selon la revendication 45, dans lequel la chaîne cinématique entre ledit organe réglant et lesorganesd'affichage comporte au moins une courroie dans un matériau non magnétique.
47. Mouvement selon l'une des revendications45 à 46, dans lequel au moins une portion dudit balancier (3) est visible de l'extérieur du mouvement.
PCT/EP2005/055582 2004-10-26 2005-10-26 Organe reglant pour montre bracelet, et mouvement mecanique comportant un tel organe reglant WO2006045824A2 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT05801381T ATE481662T1 (de) 2004-10-26 2005-10-26 Armbanduhr-regulierungsglied und mechanisches uhrwerk mit einem solchen regulierungsglied
EP05801381A EP1805565B1 (fr) 2004-10-26 2005-10-26 Organe reglant pour montre bracelet, et mouvement mecanique comportant un tel organe reglant
DE602005023633T DE602005023633D1 (de) 2004-10-26 2005-10-26 Armbanduhr-regulierungsglied und mechanisches uhrwerk mit einem solchen regulierungsglied
CN2005800449626A CN101091141B (zh) 2004-10-26 2005-10-26 用于手表的调节元件以及包括这种调节元件的机械机芯
JP2007538419A JP4607966B2 (ja) 2004-10-26 2005-10-26 腕時計用の調速機構、及び、当該調速機構を有する機械式ムーブメント
US11/789,817 US7396154B2 (en) 2004-10-26 2007-04-26 Regulating element for wristwatch and mechanical movement comprising one such regulating element
HK08103991.5A HK1113830A1 (en) 2004-10-26 2008-04-09 Wristwatch regulating member and mechanical movement comprising one such regulating member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1768/04 2004-10-26
CH17682004 2004-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/789,817 Continuation US7396154B2 (en) 2004-10-26 2007-04-26 Regulating element for wristwatch and mechanical movement comprising one such regulating element

Publications (2)

Publication Number Publication Date
WO2006045824A2 true WO2006045824A2 (fr) 2006-05-04
WO2006045824A3 WO2006045824A3 (fr) 2006-08-17

Family

ID=34974327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/055582 WO2006045824A2 (fr) 2004-10-26 2005-10-26 Organe reglant pour montre bracelet, et mouvement mecanique comportant un tel organe reglant

Country Status (10)

Country Link
US (1) US7396154B2 (fr)
EP (2) EP2282240B1 (fr)
JP (1) JP4607966B2 (fr)
KR (1) KR100918186B1 (fr)
CN (1) CN101091141B (fr)
AT (2) ATE557328T1 (fr)
DE (1) DE602005023633D1 (fr)
HK (1) HK1113830A1 (fr)
RU (1) RU2356079C2 (fr)
WO (1) WO2006045824A2 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973013A1 (fr) * 2007-03-21 2008-09-24 Richemont International S.A. Balancier pour mouvement d'horlogerie
JP2009544945A (ja) * 2006-07-26 2009-12-17 デトラ・ソシエテ・アノニム 電気機械式逃がし止め装置とそのような装置を利用する時計部品
WO2011051498A1 (fr) 2009-11-02 2011-05-05 Lvmh Swiss Manufactures Sa Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant
WO2011051497A1 (fr) 2009-11-02 2011-05-05 Lvmh Swiss Manufactures Sa Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant
WO2012062524A1 (fr) 2010-11-09 2012-05-18 Montres Breguet S.A. Pivot magnétique
CH704685A1 (fr) * 2011-03-23 2012-09-28 Lvmh Swiss Mft Sa Organe réglant magnétique pour montre mécanique.
EP2551732A1 (fr) * 2011-07-29 2013-01-30 Rolex S.A. Balancier à pivotement optimisé
CH707990A1 (fr) * 2013-04-24 2014-10-31 Lvmh Swiss Mft Sa Mouvement de montre mécanique.
WO2015096974A3 (fr) * 2013-12-23 2015-09-24 Eta Sa Manufacture Horlogère Suisse Mecanisme de synchronisation d'horlogerie
EP2998799A1 (fr) * 2014-09-18 2016-03-23 Montres Breguet SA Crantage sans contact
EP3035131A1 (fr) * 2014-12-18 2016-06-22 Jeanneret, Marc Andre Oscillateur pour mouvement horloger
EP3130966A1 (fr) 2015-08-11 2017-02-15 ETA SA Manufacture Horlogère Suisse Mouvement d'horlogerie mecanique muni d'un systeme de retroaction du mouvement
EP3185083A1 (fr) * 2015-12-23 2017-06-28 Montres Breguet S.A. Mecanisme horloger mecanique avec un echappement a ancre
EP4202564A1 (fr) * 2021-12-22 2023-06-28 The Swatch Group Research and Development Ltd Mouvement mecanique horloger comprenant un balancier pivote magnetiquement

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710636A1 (fr) * 2005-04-06 2006-10-11 Daniel Rochat Echappement pour montre
NL1032149C2 (nl) * 2006-07-11 2008-01-14 Magnetic Motion Systems Mms B Uurwerk.
TWI362574B (en) * 2008-09-25 2012-04-21 Pegatron Corp Multifunction time display
EP2287683B1 (fr) * 2009-08-17 2012-10-31 The Swatch Group Research and Development Ltd. Protection magnétique d'un spiral de pièce d'horlogerie
CH702156B1 (fr) * 2009-11-13 2017-08-31 Nivarox Far Sa Résonateur balancier-spiral pour une pièce d'horlogerie.
EP2336832B1 (fr) * 2009-12-21 2020-12-02 Rolex Sa Échappement à ancre suisse
EP2565727A1 (fr) * 2011-09-05 2013-03-06 Nivarox-FAR S.A. Procédé de constitution d'un ensemble balancier-spiral d'horlogerie et d'ajustement en fréquence d'oscillation
JP5882089B2 (ja) * 2012-03-08 2016-03-09 セイコーインスツル株式会社 温度補償型てんぷ、時計用ムーブメント及び時計
JP5840043B2 (ja) * 2012-03-22 2016-01-06 セイコーインスツル株式会社 てんぷ、時計用ムーブメント、および時計
EP2831677B1 (fr) * 2012-03-29 2016-05-25 Nivarox-FAR S.A. Mécanisme d'échappement flexible à cadre mobile
EP2706416B1 (fr) * 2012-09-07 2015-11-18 The Swatch Group Research and Development Ltd Ancre flexible à force constante
RU2526561C1 (ru) * 2012-12-21 2014-08-27 Общество с ограниченной ответственностью "Часовой завод "НИКА" Наручные таинственные часы
EP2762985B1 (fr) * 2013-02-04 2018-04-04 Montres Breguet SA Pivotement magnétique ou électrostatique de mobile d'horlogerie
JP6025202B2 (ja) * 2013-02-25 2016-11-16 セイコーインスツル株式会社 温度補償型てんぷ、時計用ムーブメント、及び機械式時計
CN107505826B (zh) * 2013-02-25 2020-06-30 精工电子有限公司 温度补偿型摆轮及其制造方法、钟表用机芯、机械式钟表
JP6025203B2 (ja) * 2013-02-25 2016-11-16 セイコーインスツル株式会社 温度補償型てんぷ、時計用ムーブメント、機械式時計、及び温度補償型てんぷの製造方法
US9459590B1 (en) 2013-04-22 2016-10-04 Donald J. Lecher Methods and devices using a series of sequential timekeeping periods
US9612577B2 (en) 2013-04-22 2017-04-04 Donald J. Lecher Device displaying a series of sequential timekeeping periods
US9746829B2 (en) * 2013-12-23 2017-08-29 Nivarox-Far S.A. Contactless cylinder escapement mechanism for timepieces
EP2998801A1 (fr) * 2014-09-19 2016-03-23 The Swatch Group Research and Development Ltd. Echappement magnétique horloger et dispositif régulateur de la marche d'un mouvement horloger
EP2908188B1 (fr) * 2014-02-17 2018-06-27 The Swatch Group Research and Development Ltd. Régulation d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique
EP3001259A1 (fr) * 2014-09-26 2016-03-30 ETA SA Manufacture Horlogère Suisse Dispositif régulateur de la marche d'un mouvement horloger mécanique
CN105738034B (zh) * 2014-12-12 2018-05-22 天津海鸥表业集团有限公司 激光校正摆轮重心偏移的平衡测量方法及测量切削装置
EP3128379B1 (fr) * 2015-08-04 2019-10-02 The Swatch Group Research and Development Ltd. Echappement avec roue d'echappement avec rampes de champ et dispositif anti-retour
EP3321747B1 (fr) 2015-08-25 2020-09-30 Citizen Watch Co., Ltd. Échappement de montre
EP3182224B1 (fr) * 2015-12-18 2019-05-22 Montres Breguet S.A. Regulation de securite pour echappement d'horlogerie
JP6653181B2 (ja) * 2016-01-21 2020-02-26 セイコーインスツル株式会社 トゥールビヨン、ムーブメント及び時計
KR102597049B1 (ko) * 2016-01-27 2023-11-02 삼성디스플레이 주식회사 지시 바늘을 포함하는 표시 장치
EP3339982B1 (fr) * 2016-12-23 2021-08-25 The Swatch Group Research and Development Ltd Régulation par freinage mécanique d'un oscillateur mécanique horloger
CN106707718B (zh) * 2017-03-01 2019-01-29 谭泽华 钟表分轴冲击擒纵器
EP3489763B1 (fr) * 2017-11-22 2021-06-16 Nivarox-FAR S.A. Ancre pour echappement d'un mouvement horloger
CN108561530B (zh) * 2017-12-04 2020-12-29 安徽未来机电科技有限公司 一种减速器用的摆轮组件
JP7060988B2 (ja) * 2018-03-16 2022-04-27 セイコーインスツル株式会社 温度補償型てんぷ、ムーブメント及び時計
EP3579058B1 (fr) * 2018-06-07 2021-09-15 Montres Breguet S.A. Piece d'horlogerie comprenant un tourbillon
CH715091A2 (fr) * 2018-06-07 2019-12-30 Swatch Group Res & Dev Ltd Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est régulée par un dispositif électromécanique.
CN108953896B (zh) * 2018-08-06 2020-10-09 广州市纳祺科技有限公司 一种自动微转动全方位无死角监控支架
EP3620867B1 (fr) * 2018-09-04 2022-01-05 The Swatch Group Research and Development Ltd Pièce d'horlogerie comprenant un oscillateur mécanique dont la fréquence moyenne est synchronisée sur celle d'un oscillateur électronique de référence
EP3627242B1 (fr) * 2018-09-19 2021-07-21 The Swatch Group Research and Development Ltd Mecanisme d'echappement d'horlogerie magneto-mecanique optimise
EP3650954A1 (fr) * 2018-11-09 2020-05-13 Montres Breguet S.A. Organe reglant pour montre
KR102066047B1 (ko) * 2018-12-13 2020-01-14 오성근 시간 조절이 가능한 기계식 타이머
EP3719588B1 (fr) 2019-04-03 2021-11-03 The Swatch Group Research and Development Ltd Oscillateur horloger auto-réglable
EP3767397B1 (fr) * 2019-07-19 2022-04-20 The Swatch Group Research and Development Ltd Mouvement horloger comprenant un element tournant muni d'une structure aimantee ayant une configuration periodique
IT202000013213A1 (it) * 2020-06-04 2021-12-04 Antonio Corazza Dispositivo dotato di strutture mobili, tali per effetto dell'interagire tra i magneti integrati nelle strutture medesime
US11703807B2 (en) * 2020-08-18 2023-07-18 Kevin Farrelly Nolan Magnetically coupled dead beat escapement breakaway mechanism

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161012A (en) * 1962-08-22 1964-12-15 Ebauches Sa Driving balance-wheel for an electrical timepiece
US3665699A (en) * 1970-04-16 1972-05-30 Centre Electron Horloger Device for locking an electro-dynamically maintained balance/balance-spring
US3714773A (en) * 1971-11-01 1973-02-06 Timex Corp Amplitude control means for balance wheel oscillator
US3851461A (en) * 1971-02-10 1974-12-03 Timex Corp Balance wheel
US3921386A (en) * 1973-02-24 1975-11-25 Itt Circuit for synchronizing watches driven by a coil-magnet system
DE2424212A1 (de) * 1974-05-17 1975-11-27 Mauthe Gmbh Friedr Oszillator als gangordner fuer uhren
US3937001A (en) * 1972-11-21 1976-02-10 Berney Jean Claude Watch movement driven by a spring and regulated by an electronic circuit
GB1444627A (en) * 1972-08-04 1976-08-04 Itt Method of synchronizing mechanical vibrators for use in timepieces
US4266291A (en) * 1977-12-27 1981-05-05 Iida Sankyo Co., Ltd. Electromagnetic swing device
US20030137901A1 (en) * 2000-12-20 2003-07-24 Takeshi Tokoro Mechanical timepiece with posture detector and the posture detector
EP1521142A1 (fr) * 2003-10-01 2005-04-06 Asulab S.A. Pièce d'horlogerie ayant un mouvement mécanique associé à un régulateur électronique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524118A (en) * 1967-09-21 1970-08-11 Reich Robert W Electronic oscillating motor timepiece drive
CH519741A (fr) * 1968-09-06 1971-10-29 Far Fab Assortiments Reunies Balancier de montre
US3670492A (en) * 1969-05-28 1972-06-20 Citizen Watch Co Ltd Balance wheel assembly
JPS4912905B1 (fr) * 1970-07-27 1974-03-28
CH613594B (fr) * 1971-05-04 Ebauches Sa Procede de synchronisation a une frequence moyenne f des oscillations d'un resonateur mecanique d'instrument de mesure du temps et dispositif pour la mise en oeuvre de ce procede.
JP4003382B2 (ja) * 2000-07-14 2007-11-07 セイコーエプソン株式会社 発電機および電子制御式機械時計

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161012A (en) * 1962-08-22 1964-12-15 Ebauches Sa Driving balance-wheel for an electrical timepiece
US3665699A (en) * 1970-04-16 1972-05-30 Centre Electron Horloger Device for locking an electro-dynamically maintained balance/balance-spring
US3851461A (en) * 1971-02-10 1974-12-03 Timex Corp Balance wheel
US3714773A (en) * 1971-11-01 1973-02-06 Timex Corp Amplitude control means for balance wheel oscillator
GB1444627A (en) * 1972-08-04 1976-08-04 Itt Method of synchronizing mechanical vibrators for use in timepieces
US3937001A (en) * 1972-11-21 1976-02-10 Berney Jean Claude Watch movement driven by a spring and regulated by an electronic circuit
US3921386A (en) * 1973-02-24 1975-11-25 Itt Circuit for synchronizing watches driven by a coil-magnet system
DE2424212A1 (de) * 1974-05-17 1975-11-27 Mauthe Gmbh Friedr Oszillator als gangordner fuer uhren
US4266291A (en) * 1977-12-27 1981-05-05 Iida Sankyo Co., Ltd. Electromagnetic swing device
US20030137901A1 (en) * 2000-12-20 2003-07-24 Takeshi Tokoro Mechanical timepiece with posture detector and the posture detector
EP1521142A1 (fr) * 2003-10-01 2005-04-06 Asulab S.A. Pièce d'horlogerie ayant un mouvement mécanique associé à un régulateur électronique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1805565A2 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544945A (ja) * 2006-07-26 2009-12-17 デトラ・ソシエテ・アノニム 電気機械式逃がし止め装置とそのような装置を利用する時計部品
EP1973013A1 (fr) * 2007-03-21 2008-09-24 Richemont International S.A. Balancier pour mouvement d'horlogerie
WO2011051498A1 (fr) 2009-11-02 2011-05-05 Lvmh Swiss Manufactures Sa Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant
WO2011051497A1 (fr) 2009-11-02 2011-05-05 Lvmh Swiss Manufactures Sa Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant
CH702188A1 (fr) * 2009-11-02 2011-05-13 Lvmh Swiss Mft Sa Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant.
US8534910B2 (en) 2009-11-02 2013-09-17 Lvmh Swiss Manufactures Sa Regulating member for a wristwatch, and timepiece comprising such a regulating member
WO2012062524A1 (fr) 2010-11-09 2012-05-18 Montres Breguet S.A. Pivot magnétique
RU2602476C1 (ru) * 2010-11-09 2016-11-20 Монтр Бреге С.А. Магнитный шарнир
CH704685A1 (fr) * 2011-03-23 2012-09-28 Lvmh Swiss Mft Sa Organe réglant magnétique pour montre mécanique.
US9016933B2 (en) 2011-07-29 2015-04-28 Rolex S.A. Balance wheel assembly with optimized pivoting
EP2551732A1 (fr) * 2011-07-29 2013-01-30 Rolex S.A. Balancier à pivotement optimisé
CH707990A1 (fr) * 2013-04-24 2014-10-31 Lvmh Swiss Mft Sa Mouvement de montre mécanique.
US9772604B2 (en) 2013-12-23 2017-09-26 Eta Sa Manufacture Horlogere Suisse Timepiece synchronization mechanism
WO2015096974A3 (fr) * 2013-12-23 2015-09-24 Eta Sa Manufacture Horlogère Suisse Mecanisme de synchronisation d'horlogerie
WO2016041772A1 (fr) 2014-09-18 2016-03-24 Montres Breguet S.A. Crantage sans contact
EP2998799A1 (fr) * 2014-09-18 2016-03-23 Montres Breguet SA Crantage sans contact
EP3035131A1 (fr) * 2014-12-18 2016-06-22 Jeanneret, Marc Andre Oscillateur pour mouvement horloger
WO2016097384A1 (fr) * 2014-12-18 2016-06-23 Marc André Jeanneret Oscillateur pour mouvement horloger
US10133240B2 (en) 2014-12-18 2018-11-20 Marc André JEANNERET Oscillator for timepiece movement
EP3130966A1 (fr) 2015-08-11 2017-02-15 ETA SA Manufacture Horlogère Suisse Mouvement d'horlogerie mecanique muni d'un systeme de retroaction du mouvement
EP3185083A1 (fr) * 2015-12-23 2017-06-28 Montres Breguet S.A. Mecanisme horloger mecanique avec un echappement a ancre
US10222746B2 (en) 2015-12-23 2019-03-05 Montres Breguet S.A. Mechanical timepiece movement with a lever escapement
EP4202564A1 (fr) * 2021-12-22 2023-06-28 The Swatch Group Research and Development Ltd Mouvement mecanique horloger comprenant un balancier pivote magnetiquement

Also Published As

Publication number Publication date
ATE481662T1 (de) 2010-10-15
RU2007119565A (ru) 2008-12-10
KR20070067732A (ko) 2007-06-28
EP2282240B1 (fr) 2012-05-09
EP2282240A2 (fr) 2011-02-09
JP2008518221A (ja) 2008-05-29
CN101091141B (zh) 2012-03-21
HK1113830A1 (en) 2008-10-17
KR100918186B1 (ko) 2009-09-22
EP2282240A3 (fr) 2011-02-23
US20070201317A1 (en) 2007-08-30
EP1805565A2 (fr) 2007-07-11
JP4607966B2 (ja) 2011-01-05
RU2356079C2 (ru) 2009-05-20
WO2006045824A3 (fr) 2006-08-17
CN101091141A (zh) 2007-12-19
DE602005023633D1 (de) 2010-10-28
EP1805565B1 (fr) 2010-09-15
US7396154B2 (en) 2008-07-08
ATE557328T1 (de) 2012-05-15

Similar Documents

Publication Publication Date Title
EP1805565B1 (fr) Organe reglant pour montre bracelet, et mouvement mecanique comportant un tel organe reglant
EP2496990B1 (fr) Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant
EP2990885B1 (fr) Mouvement horloger mécanique à échappement magnétique
EP3130966B1 (fr) Mouvement d'horlogerie mecanique muni d'un systeme de retroaction du mouvement
EP0520218A1 (fr) Mouvement d'horlogerie présentant des effets esthétiques spéciaux et pièce d'horlogerie munie d'un tel mouvement
EP1521141A1 (fr) Pièce d'horlogerie ayant un mouvement mécanique associé à un régulateur électronique
EP1521142A1 (fr) Pièce d'horlogerie ayant un mouvement mécanique associé à un régulateur électronique
EP2802942B1 (fr) Piece d'horlogerie a plusieurs balanciers
EP3185083B1 (fr) Mecanisme horloger mecanique avec un echappement a ancre
WO2012084382A1 (fr) Mobile d'horlogerie a guidage peripherique
EP3265879B1 (fr) Mouvement horloger à régulateur à résonance tridimensionnelle magnétique
EP3234701B1 (fr) Oscillateur pour mouvement horloger
CH707990A1 (fr) Mouvement de montre mécanique.
WO2011051498A1 (fr) Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant
CH714600A2 (fr) Pièce d'horlogerie munie d'un tourbillon.
CH711965A2 (fr) Mouvement horloger mécanique avec un échappement à ancre.
EP3719588B1 (fr) Oscillateur horloger auto-réglable
EP3757685A1 (fr) Mobile inertiel pour resonateur d'horlogerie avec dispositif d'interaction magnetique insensible au champ magnetique externe
CH716347A2 (fr) Mobile inertiel pour résonateur d'horlogerie avec dispositif d'interaction magnétique insensible au champ magnétique externe.
EP4063973A1 (fr) Pièce d horlogerie incorporant un actuateur comprenant un dispositif électromécanique
CH718445A2 (fr) Pièce d'horlogerie incorporant un actuateur comprenant un dispositif électromécanique.
CH711408A2 (fr) Mouvement d'horlogerie mécanique muni d'un système de rétroaction du mouvement.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2937/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007538419

Country of ref document: JP

Ref document number: 2005801381

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11789817

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077011896

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007119565

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200580044962.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005801381

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11789817

Country of ref document: US