WO2006042810A1 - Disposition de positionnement - Google Patents

Disposition de positionnement Download PDF

Info

Publication number
WO2006042810A1
WO2006042810A1 PCT/EP2005/055147 EP2005055147W WO2006042810A1 WO 2006042810 A1 WO2006042810 A1 WO 2006042810A1 EP 2005055147 W EP2005055147 W EP 2005055147W WO 2006042810 A1 WO2006042810 A1 WO 2006042810A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
signal
drift
time
clock
Prior art date
Application number
PCT/EP2005/055147
Other languages
English (en)
Inventor
Nicolas Martin
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2006042810A1 publication Critical patent/WO2006042810A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/246Acquisition or tracking or demodulation of signals transmitted by the system involving long acquisition integration times, extended snapshots of signals or methods specifically directed towards weak signal acquisition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Definitions

  • the field of the invention is that of receiving a radionavigation signal from a satellite positioning system such as the GPS system (acronym for the English expression "Global Positioning System”).
  • a satellite positioning system such as the GPS system (acronym for the English expression "Global Positioning System”).
  • GNSS receiver any type of GPS receiver, GLONASS, GALILEO, etc.
  • the difficulty lies in the fact that to integrate the received signal over a long time and retrieve information it is necessary that the apparent dynamics at the receiver is very low during this time.
  • the receiver or its antenna
  • the apparent dynamics due to the drift of the clock of the receiver.
  • FIG. 2 shows the time actually measured; is the true time at which the signal is emitted by the satellite, receiving the true time at which the signal reaches the receiver, t h this time indicated by the clock and ⁇ t h through the receiver clock.
  • ⁇ t h 0.
  • the bias ⁇ t h of the receiver clock may vary.
  • this clock drift can prevent useful signal recovery and positioning.
  • One solution is to reduce the coherent integration time of the correlation but this increases the losses due to the noise and therefore also the time required to obtain the positioning; another solution possibly combined with the previous one is to test several hypotheses of clock drifts in parallel, but this increases the computational load. Moreover, when the drift is very unstable, the task becomes very difficult, if not impossible.
  • An important object of the invention is therefore to compensate for the apparent dynamic due to the drift of the receiver clock, so as to allow a sufficiently long correlation integration time to be used to distinguish the signal from the noise, despite degraded reception conditions.
  • the invention proposes a positioning device, which comprises a local clock having a drift, and a first receiver of a radionavigation signal, mainly characterized in that it further comprises a second receiver of a radio signal from a fixed beacon which has a stable clock, the local clock being common to the first and the second second receiver, and in that it comprises connected to the first receiver, an element for calculating the drift of the local clock, from the radio signal from the fixed beacon.
  • This device thus makes it possible to compensate the clock drift of a GNSS receiver in order to integrate the received signal over a long time. We can then determine the position of the receiver in a difficult environment.
  • the second receiver is for example a mobile telecommunication device.
  • the radionavigation signal comes from a satellite positioning system and / or pseudolites.
  • the invention also relates to a method of positioning from a radionavigation signal and a local clock signal, characterized in that it comprises a step of receiving a signal from a fixed beacon which presents a stable clock, and calculating the drift of the local clock signal from the signal of the fixed beacon.
  • FIG. 1 already described schematically illustrates the operating principle of a GNSS receiver
  • FIG. 2 already described, schematically illustrates the time actually measured
  • FIG. 3 schematically represents examples of curves of time t true and time t h (t) indicated by the clock at time t true
  • FIG. 4 schematically illustrates examples of results of the correlation of the signal received with the local signal as a function of several time assumptions, ⁇ being the delay of the local code represented in FIG. 1d with respect to the received code represented in FIG.
  • FIG. 1 b, 5 schematically shows examples of change in the integration time, on the one hand the time t received (t) which is transmitted by the satellite code C (t re Cu (t)) received by the receiver to time t and for different assumptions true time t re ceived estimated (t) estimated received in the case where it does not compensate for clock drift
  • Figure 6 schematically shows a GNSS receiver according to the prior art
  • 7 schematically shows examples of change in the integration time, on the one hand the time t re Cu (t) received true and different assumptions time t re ceived estimated (t) estimated received in the case where the the clock drift is compensated
  • FIG. 8 is a schematic representation of a positioning device according to the invention
  • FIG. 9 schematically represents a non-GNSS receiver for determining the local clock drift
  • the GNSS signal emitted by the satellite is of the form:
  • th (t) t + ⁇ th (t), th being the time indicated by the receiver clock at time t.
  • ⁇ th (t) 10 -5 seconds per second for low-end clocks
  • Figure 3 shows the curves illustrating t and th (t).
  • this estimate t re ceived estimated (t) n is not precise enough to sufficiently match the local signal with the received signal.
  • the receiver tries several correlations with different bias assumptions clock estimated .DELTA.t estimated h (t) and thus time T Rec estimated u (t) offset from it by an amount T such that at least one of the hypotheses is sufficiently close to the time t re Cu (t) true for the signals are correlated, as shown in Figure 4.
  • the curves in Figure 5 represent t re ceived estimated (t) differ from each other by taking as different hypotheses for .DELTA.t h estimated (t), nT, (n + 1) T, (n + 2) T, etc. .
  • FIG. 6 shows an example of such a receiver 10.
  • a generator 11 of a local carrier of the form e ' ⁇ t a carrier demodulator 18, a correlator capable of multiplying the received signal demodulated by the local code coming from a local code generator 12 and integrating it by means of an interval integrator 13, a servocontrol device 14 for acquiring and tracking the phases of the received signals producing corrections in speed of the code loop and the carrier loop, a local clock generating a periodic pulsed signal of frequency F h , an NCO (Numerically Controlled Oscillator) code 16 and a carrier NCO 17 integrating over an interval T in tegration these speed adjustments and corrections that take into account the Doppler effect, to provide phase estimates respectively (or time) of code and carrier.
  • This figure shows the elements for a reception channel corresponding to a satellite. There is usually in a receiver several reception channels in parallel.
  • th (t) th (to) + I [th (to), th (t)] 1 d ⁇
  • a carrier NCO performs the same operation by further multiplying the result by the pulsation ⁇ .
  • the GNSS receiver 10 is associated with a receiver of a non-GNSS communication signal (designated a non-GNSS receiver) which has a high signal-to-noise ratio and which is used to identify the drift of the clock.
  • local 15 common to both receivers and compensate, as shown in Figure 8.
  • the non-GNSS signal is transmitted by a fixed beacon 30 having a clock 31 or more generally a stable time reference, typically with a lower drift in absolute value at 10 -10 seconds per second.
  • FIG. 9 shows an example of a non-GNSS receiver 20 for determining this clock drift. It comprises in particular a phase locked loop ("PLL") which conventionally comprises a carrier demodulator 22, a servo device 24 including a loop filter, an integrating NCO 27 connected to a clock 15 and a generator 21 of local carrier of the form e ' ⁇ t .
  • PLL phase locked loop
  • the output of the phase integrator NCO provides the local phase ⁇ 'iocai-
  • the recovery of the signal at the non-GNSS receiver makes it possible to estimate the drift of the local clock in the following manner.
  • ⁇ t'prop (t) being the propagation time between the fixed beacon and the non-GNSS receiver, which is constant because the receiver and the beacon are supposed to be immobile.
  • the local non-GNSS signal is the local non-GNSS signal
  • the non-GNSS receiver may for example implement a phase-locked loop ("PLL”) to recover the non-GNSS communication signal.
  • PLL phase-locked loop
  • ⁇ th (t) t h (t) - the estimated receipt (t) + ⁇ t'prop - n X 2 ⁇ / ( ⁇ '- ⁇ (t) / ( ⁇ '
  • this local clock is common to the two receivers, that is to say the GNSS receiver and the non-GNSS receiver.
  • the estimated clock drift in seconds / second is added to the speed corrections (from servocontrol and Doppler compensation) of the local GNSS signals for the correlation, namely the local code and the local carrier.
  • Figure 7 there is shown the results thus obtained that is to say the variations in the integration time on the one hand the time t re Cu (t) and different assumptions true in the case where the we compensate the clock drift. In this case when the received time hypotheses are sufficiently close, there is one which coincides with the time received true, which allows an energy detection at the output of the correlation and therefore the estimation of a received time.
  • FIG. 10 shows an exemplary positioning device according to the invention. It comprises a local clock 15, a GNSS receiver 10, a receiver 20 of a non-GNSS radio signal from a fixed beacon having a stable time reference, the local clock being common to both receivers.
  • the GNSS receiver It also includes, connected to the GNSS receiver, an element for calculating the clock drift from the non-GNSS radio signal from the fixed beacon, the calculation being for example as described above.
  • This element is connected to the NCOs (the NCOs 16 and 17 in FIG. 10) of the local GNSS signals, namely the local code and the carrier local, so as to add this instantaneous clock drift to the existing corrections.
  • This calculation element is for example a microprocessor or a circuit including an NCO to perform the integration.
  • the drift equal to -Vp L i (t) is calculated by the servocontrol device 24 of the PLL of the non-GNSS receiver.
  • the GNSS receiver 10 comprises, as in the case of FIG. 6, a local clock 15, a generator 11 of a local carrier of the form e ' ⁇ t , a carrier demodulator 18, a correlator able to multiply the signal received by the local code from a local code generator 12 and integrating it by means of an interval integrator 13, a servocontrol device 14 for acquiring and tracking the phases of the received signals producing corrections in speed of the code loop and the carrier loop, and an NCO code 16 and a carrier NCO 17 incorporating these speed corrections and corrections to take into account the Doppler effect and the clock drift, to provide estimates of phase (or time) of code and carrier.
  • the non-GNSS receiver 20 includes, as in the case of FIG. 9, a PLL which conventionally comprises a carrier demodulator 22, a servocontrol device 24 including a loop filter, an integrating NCO 27 and a generator 21. local carrier of the form e ' ⁇ t .
  • This calculation element of the clock drift (the device 24 in the figure) is connected to the corrector (the NCO 27 in the figure) of the carrier of the non-GNSS receiver, in the case where it is interesting to correct the local carrier. with this drift, as shown in the figures. It can be integrated in the non-GNSS receiver as in the example of Figure 10 or in the GNSS receiver.
  • the non-GNSS receiver is for example a mobile telecommunication device possibly comprising a transmitter.
  • the so-called GNSS signal can come from a satellite positioning system and / or pseudolites.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

L'invention concerne un dispositif de positionnement, qui comporte une horloge locale (15) présentant une dérive, et un premier récepteur (10) d'un signal de radionavigation. Il comprend en outre un deuxième récepteur (20) d'un signal radioélectrique provenant d'une balise fixe (30) qui présente une référence de temps stable, l'horloge locale (15) étant commune au premier et au deuxième récepteurs (10, 20), et relié au premier récepteur, un élément de calcul de la dérive de l'horloge locale, à partir du signal radioélectrique provenant de la balise fixe.

Description

DISPOSITIF DE POSITIONNEMENT
Le domaine de l'invention est celui de la réception d'un signal de radionavigation provenant d'un système de positionnement par satellites tel que le système GPS (acronyme de l'expression anglo-saxonne « Global Positioning System »).
Dans la suite, on désigne par le terme générique récepteur GNSS tout type de récepteur GPS, GLONASS, GALILEO, etc.
Pour bien fonctionner, les récepteurs actuels nécessitent généralement une réception à vue directe des satellites. Le positionnement se détériore rapidement notamment en termes de précision et de temps d'acquisition, lorsque la réception est perturbée comme c'est le cas à l'intérieur d'un bâtiment ou plus généralement en milieu dégradé (obstacles, multi-trajets, interférence, intérieur d'un bâtiment, etc.).
Lors de conditions de réception dégradées la récupération du signal de navigation à faible rapport signal sur bruit est possible mais nécessite un temps d'intégration plus long pour filtrer le bruit.
La difficulté réside dans le fait que pour intégrer le signal reçu sur un temps long et récupérer de l'information il faut que la dynamique apparente au niveau du récepteur soit très faible pendant ce temps. Lorsque le récepteur (ou son antenne) est fixe il n'y a plus de dynamique due au mouvement. Par contre il reste la dynamique apparente due à la dérive de l'horloge du récepteur.
On va préciser en quoi consiste cette dérive en rappelant le principe de fonctionnement d'un récepteur GNSS. On a représenté figure 1a un code émis par un satellite à témission et figure 1 b, ce code arrivant au récepteur à tréception, soit Δtprop = tréception - témission secondes plus tard, Δtprop étant le temps de propagation du signal entre le satellite et le récepteur. Ce temps de propagation multiplié par la vitesse de la lumière dans le vide donne une mesure de distance ; il est mesuré de la manière suivante. Une réplique du code émis par le satellite et représentée figure 1c peut être générée localement par le récepteur, en phase. Le décalage entre le code reçu (figure 1 b) et le code local généré (c'est-à-dire la réplique représentée figure 1c) correspond à l'écart de temps Δtprop recherché. Ce décalage représenté figure 1d est mesuré en mettant en phase le code reçu et le code local ; le critère de mise en phase correspond à la maximisation de la fonction de corrélation des deux codes. Si les horloges du satellite et du récepteur sont parfaitement synchronisées, le décalage qui maximise la fonction de corrélation des deux codes fournit le temps Δtprop-
Dans la pratique ce n'est pas le cas. On a représenté figure 2 le temps réellement mesuré ; témission est le temps vrai auquel le signal est émis par le satellite, tréception le temps vrai auquel le signal atteint le récepteur, th ce temps indiqué par l'horloge et Δth le biais de l'horloge du récepteur. Finalement le temps de propagation mesuré est : Δtprop mesuré = Δtprop + Δth. Dans le cas idéal d'une horloge parfaite, Δth = 0.
De plus lorsque le temps d'intégration de la corrélation entre le signal local et le signal reçu est long, le biais Δth de l'horloge du récepteur peut varier. En fait dans le cas des applications grand public les horloges à faible coût utilisées dans les récepteurs ont des dérives dh(t) très importantes et sont très instables. On rappelle que la dérive de l'horloge est par définition la dérivée par rapport au temps du biais d'horloge : dh(t) = d (Δt h (t)) /dt.
Pour la réception du signal à l'intérieur d'un bâtiment, cette dérive d'horloge peut empêcher la récupération du signal utile et le positionnement. Une solution consiste à réduire le temps d'intégration cohérente de la corrélation mais cela augmente les pertes dues au bruit et donc aussi le temps nécessaire pour obtenir le positionnement; une autre solution éventuellement combinée à la précédente consiste à tester plusieurs hypothèses de dérives d'horloge en parallèle, mais cela alourdit la charge de calcul. De plus lorsque la dérive est très instable la tâche devient très difficile, voire impossible.
Un but important de l'invention est donc de compenser la dynamique apparente due à la dérive de l'horloge du récepteur, de manière à permettre d'utiliser un temps d'intégration de la corrélation suffisamment long pour pouvoir distinguer le signal du bruit, malgré des conditions de réception dégradées.
Pour atteindre ce but, l'invention propose un dispositif de positionnement, qui comporte une horloge locale présentant une dérive, et un premier récepteur d'un signal de radionavigation, principalement caractérisé en ce qu'il comprend en outre un deuxième récepteur d'un signal radioélectrique provenant d'une balise fixe qui présente une horloge stable, l'horloge locale étant commune au premier et au deuxième récepteurs, et en ce qu'il comprend relié au premier récepteur, un élément de calcul de la dérive de l'horloge locale, à partir du signal radioélectrique provenant de la balise fixe.
Ce dispositif permet ainsi de compenser la dérive d'horloge d'un récepteur GNSS dans le but d'intégrer le signal reçu sur un temps long. On peut alors déterminer la position du récepteur dans un environnement difficile.
Le deuxième récepteur est par exemple un dispositif mobile de télécommunication.
Le signal de radionavigation provient d'un système de positionnement par satellites et/ou pseudolites.
L'invention concerne également un procédé de positionnement à partir d'un signal de radionavigation et d'un signal d'horloge local, caractérisé en ce qu'il comprend une étape de réception d'un signal provenant d'une balise fixe qui présente une horloge stable, et de calcul de la dérive du signal d'horloge local à partir du signal de la balise fixe.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit, faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels : la figure 1 déjà décrite, illustre schématiquement le principe de fonctionnement d'un récepteur GNSS, la figure 2 déjà décrite, illustre schématiquement le temps réellement mesuré, la figure 3 représente schématiquement des exemples de courbes du temps t vrai et du temps th(t) indiqué par l'horloge à l'instant t vrai, la figure 4 illustre schématiquement des exemples de résultats de la corrélation du signal reçu avec le signal local en fonction de plusieurs hypothèses de temps, τ étant le retard du code local représenté figure 1d par rapport au code reçu représenté figure 1 b, la figure 5 représente schématiquement des exemples de variation sur le temps d'intégration, d'une part du temps treçu(t) auquel est émis par le satellite le code C(treçu(t)) reçu par le récepteur à l'instant t vrai et des différentes hypothèses de temps treçu estimé(t) reçu estimé dans le cas où l'on ne compense pas la dérive d'horloge, la figure 6 représente schématiquement un récepteur GNSS selon l'art antérieur, la figure 7 représente schématiquement des exemples de variation sur le temps d'intégration, d'une part du temps treçu(t) reçu vrai et des différentes hypothèses de temps treçu estimé(t) reçu estimé dans le cas où l'on compense la dérive d'horloge, la figure 8 représente schématiquement un dispositif de positionnement selon l'invention, la figure 9 représente schématiquement un récepteur non GNSS permettant de déterminer la dérive d'horloge locale, la figure 10 représente schématiquement les principaux éléments d'un dispositif de positionnement selon l'invention.
On va exprimer plus en détail les temps indiqués figures 1 et 2. On a : treçu(t) = t - Δtprop(t), treçu(t) et t étant des temps vrais.
Le signal GNSS émis par le satellite est de la forme :
Sémis(t) = Code( témis(t) ) . sin( φémise(t) ) = Code( t ) . sin( ω. t ) avec témis(t) = t φémise(t) = ω. t
Le signal GNSS reçu par le récepteur est de la forme: Sreçu(t) = Code( treçu(t) ) . sin( φreÇue(t) ) avec treçu(t) = t - Δtprop(t) φreçue(t) = ω ( t - Δtprop(t) )
Par ailleurs dans la mesure où l'horloge présente un biais Δth(t), on a : th(t) = t + Δth(t), th étant le temps indiqué par l'horloge du récepteur à l'instant t. On a typiquement des dérives Δth(t) de 10"5 seconde par seconde pour des horloges bas de gamme, soit une variation du biais d'horloge de 10 microsecondes sur un intervalle de 1 seconde, c'est-à-dire 10 fois la durée d'un chip de code, ce qui est rédhibitoire. On a représenté figure 3 les courbes illustrant t et th(t).
Mais on ne connaît pas t ni par conséquent Δth(t). On a en fait :
testimé(t) = th(t) - Δth estimé(t) ( 1 )
De même, on ne connaît pas treçu(t) ni Δtprop(t). On a en fait : treçu estimé(t) = testimé(t) - Δtprop estimé(t) (2)
On a d'après (1 ) et (2), treçu estimé(t) = th(t) - Δth estimé(t) - Δtprop estimé(t) (3)
Lors de l'acquisition du signal par le récepteur, et notamment lors du calcul de corrélation du signal reçu avec le signal généré localement, le récepteur ne peut faire qu'une estimation grossière du temps : cette estimation treçu estimé(t) n'est pas assez précise pour faire suffisamment coïncider le signal local avec le signal reçu.
Pour cela le récepteur tente plusieurs corrélations avec différentes hypothèses de biais d'horloge estimés Δth estimé(t) et donc aussi de temps treÇu estimé(t) décalées entre elle d'une quantité T telle qu'au moins une des hypothèses soit suffisamment proche du temps treçu(t) vrai pour que les signaux soient corrélés, comme illustré figure 4. Le résultat de la corrélation dépend de τ avec : t = treçu(t) - treçu estimé(t)
T = ( t - testimé(t) ) " ( Δtprop(t) - Δtprop estimé(t) )
L'erreur due à l'estimation du temps de propagation est considérée comme nulle car on suppose que l'on connaît la position du satellite avec une précision suffisante. On peut donc écrire : τ ≡ Δth(t) - Δth estimé(t)
Sur la figure 5, on a représenté les variations sur le temps d'intégration, d'une part du temps treçu(t) vrai et des différentes hypothèses de treçu estimé(t) dans le cas où l'on ne compense pas la dérive d'horloge, c'est- à-dire où l'on suppose que Δth(t) et donc Δth estimé(t) sont constants.
Les courbes de la figure 5 qui représentent treçu estimé(t) diffèrent les unes des autres en prenant comme différentes hypothèses pour Δth estimé(t), nT, (n+1 ) T, (n+2) T, etc.
En raison de la dérive de l'horloge, aucune hypothèse de temps reçu estimée ne coïncide avec le temps treçu(t) vrai sur la durée d'intégration. De ce fait le récepteur est incapable de déterminer quelle est l'hypothèse qui coïncide avec le signal reçu, même en augmentant le temps d'intégration. On a représenté figure 6 un exemple d'un tel récepteur 10. Il comprend de manière classique, un générateur 11 d'une porteuse locale de la forme e'ωt, un démodulateur 18 de porteuse, un corrélateur apte à multiplier le signal reçu démodulé par le code local issu d'un générateur 12 de code local et à l'intégrer au moyen d'un intégrateur par intervalles 13, un dispositif d'asservissement 14 pour l'acquisition et la poursuite des phases des signaux reçus élaborant des corrections en vitesse de la boucle de code et de la boucle de porteuse, une horloge locale 15 générant un signal puisé périodique de fréquence Fh, un NCO (acronyme de l'expression anglo- saxonne « Numerically Controlled Oscillator ») code 16 et un NCO porteuse 17 intégrant sur un intervalle Tintégration ces corrections de vitesse et des corrections permettant de prendre en compte l'effet Doppler, pour fournir respectivement des estimées de phase (ou de temps) de code et de porteuse. On a représenté sur cette figure les éléments pour un canal de réception correspondant à un satellite. Il y a généralement dans un récepteur plusieurs canaux de réception en parallèle.
On rappelle qu'un NCO code réalise l'opération : treçu estimé(t) = th(t) - Δth estimé(t) + I[th(to), th(t)] VCOde (x) dτ avec Vcode = - Vitesse radiale du satellite / c + Correction de code en vitesse (ou en fréquence) c : vitesse de la lumière.
Le terme « - Vitesse radiale du satellite / c » correspond à la prise en compte de l'effet Doppler. On a donc d'après (3) :
J[th(to), th(t)] Vcode (τ) dτ = - Δtprop estimé(t) Selon une variante, le NCO réalise l'opération suivante : treçu estimé(t) = th(t) - Δth estimé(t) + J [th(to), th(t)] VCOde(x) dτ
On a : Δth estimé(t) = Δth estimé(to) + I[th(to), m)] dh estimée(τ) dτ par définition
Et : th(t) = th(to) + I[th(to), th(t)] 1 dτ
On obtient finalement : treçu estimé(t) = th(to) - Δth estimé(tθ) + I[th(to), th(t)] (1 " dh estimée + VCOde)(x)dτ
La mise en œuvre de cette variante est représentée figure 10. Un NCO porteuse réalise la même opération en multipliant en outre le résultat par la pulsation ω.
Selon l'invention le récepteur 10 de type GNSS est associé à un récepteur 20 d'un signal de communication non GNSS (désigné récepteur non GNSS) qui présente un rapport signal sur bruit élevé et qui est utilisé pour identifier la dérive de l'horloge locale 15 commune aux deux récepteurs et la compenser, comme représenté figure 8.
Le signal non GNSS est émis par une balise fixe 30 ayant une horloge 31 ou plus généralement une référence de temps stable, typiquement avec une dérive inférieure en valeur absolue à 10"10 seconde par seconde.
On a représenté figure 9, un exemple de récepteur 20 non GNSS permettant de déterminer cette dérive d'horloge. Il comprend notamment une boucle à verrouillage de phase (« PLL » ou Phase Lock Loop en anglais) qui comporte de manière classique un démodulateur 22 de porteuse, un dispositif d'asservissement 24 incluant un filtre de boucle, un NCO intégrateur 27 relié à une horloge 15 et un générateur 21 de porteuse locale de la forme e'ωt. La sortie du NCO intégrateur de phase fournit la phase locale φ'iocaie-
La récupération du signal au niveau du récepteur non GNSS permet d'estimer la dérive de l'horloge locale de la manière suivante. Le signal non GNSS émis démodulé est de la forme : Sémis(t) = sin( φ'émis(t) ) avec φ'émis(t) = ω'. t
Le signal non GNSS reçu : Sreçu(t) = sin( φ'reçu(t) ) avec φ'reçu(t) = ω'. ( t - Δt'ProP(t) ) (4)
Δt'prop(t) étant le temps de propagation entre la balise fixe et le récepteur non GNSS, constant car le récepteur et la balise sont censés être immobiles.
Le signal non GNSS local :
Siocal I (t) = Sin( φ'iocale(t) ) Siocal û(t) = COS( φ'bcale(t) ) avec φ'iocale(t) = φ'reçue estimée(t) = ω'. ( t'reçu estimé(t) ) (5)
Le récepteur non GNSS peut par exemple mettre en œuvre une boucle à verrouillage de phase (« PLL ») pour récupérer le signal de communication non GNSS.
Quand la PLL a convergé les phases reçue et locale coïncident, et on obtient : φ'iocaie = φ'reçue + n x 2π + ε ε « π/2 (erreur de phase) soit en vertu de (4) et (5) : t'reçu estimé(t) = t - Δt'prop + n X 2π/(θ' + ε(t) /ω' (6)
Par ailleurs on a :
Δth (t) = th(t) - t soit en vertu de (6) :
Δth(t) = th(t) - t'reçu estimé(t) + Δt'prop - n X 2π/(θ' - ε(t)/(θ'
Si on néglige l'erreur de phase ε(t) et lorsque δtprop(t) est constant car le récepteur non GNSS ne bouge pas, on obtient finalement :
Δth(t) - Δth(to) ≡ ( th(t) - th(to) ) - (t'reçu estimé(t) - t'reçu estimé(tθ))
Δth(t) - Δth(to) ≡ ( th(t) - th(to) ) - (φ'iocaie(t) /ω' - φ'iocaie(to) /ω').
On a :
Δth(t) - Δth(to) = I[to, t] dh(τ) dτ par définition, th(t) - th(to) = I[th(to), th (t)] 1 dτ par définition, φ'ι∞aie(t) /ω' - φ'iocaie(to) /ω' = Wo), m)] (1 + VpLι_(τ) ) dτ en sortie du NCO du récepteur non GNSS.
On peut donc écrire :
I[to, t] dh(τ) dτ ≡ J[th (to), th <t)] 1 dτ - Imto), th (t)] (1 + VpLι_(τ) ) dτ
D'où : d h(t) ≡ - VPLLW
Ainsi on est capable de déterminer la dérive d'horloge instantanée dh(t), à partir de la correction de porteuse en vitesse de la PLL qui est envoyée au NCO de porteuse de la PLL.
Selon l'invention, cette horloge locale est commune aux deux récepteurs c'est-à-dire au récepteur GNSS et au récepteur non GNSS. La dérive d'horloge estimée en seconde/seconde est ajoutée aux corrections en vitesse (issues de l'asservissement et de la compensation de l'effet Doppler) des signaux locaux GNSS pour la corrélation, à savoir le code local et la porteuse locale. Sur la figure 7, on a représenté des résultats ainsi obtenus c'est-à- dire les variations sur le temps d'intégration d'une part du temps treçu(t) vrai et des différentes hypothèses dans le cas où l'on compense la dérive d'horloge. Dans ce cas lorsque les hypothèses de temps reçu sont suffisamment proches, il y en a une qui coïncide avec le temps reçu vrai, ce qui permet une détection d'énergie en sortie de la corrélation et donc l'estimation d'un temps reçu.
On a représenté figure 10 un exemple de dispositif de positionnement selon l'invention. Il comprend une horloge locale 15, un récepteur GNSS 10, un récepteur 20 d'un signal radioélectrique non GNSS provenant d'une balise fixe présentant une référence de temps stable, l'horloge locale 15 étant commune aux deux récepteurs.
Il comprend également, relié au récepteur GNSS, un élément de calcul de la dérive d'horloge à partir du signal radioélectrique non GNSS provenant de la balise fixe, le calcul étant par exemple tel que décrit précédemment. Cet élément est relié aux NCO (les NCO 16 et 17 sur la figure 10) des signaux locaux GNSS, à savoir le code local et la porteuse locale, de manière à ajouter cette dérive d'horloge instantanée aux corrections existantes. Cet élément de calcul est par exemple un microprocesseur ou un circuit comprenant notamment un NCO pour effectuer l'intégration. Dans l'exemple de la figure 10, la dérive égale à -VpLι_(t) est calculée par le dispositif d'asservissement 24 de la PLL du récepteur non GNSS.
Le récepteur GNSS 10 comprend comme dans le cas de la figure 6, une horloge locale 15, un générateur 1 1 d'une porteuse locale de la forme e'ωt, un démodulateur 18 de porteuse, un corrélateur apte à multiplier le signal reçu par le code local issu d'un générateur 12 de code local et l'intégrer au moyen d'un intégrateur par intervalle 13, un dispositif d'asservissement 14 pour l'acquisition et la poursuite des phases des signaux reçus élaborant des corrections en vitesse de la boucle de code et de la boucle de porteuse, et un NCO code 16 et un NCO porteuse 17 intégrant ces corrections de vitesse et les corrections permettant de prendre en compte l'effet Doppler et la dérive d'horloge, pour fournir des estimées de phase (ou de temps) de code et de porteuse.
Le récepteur non GNSS 20 comprend notamment comme dans le cas de la figure 9, une PLL qui comporte de manière classique un démodulateur 22 de porteuse, un dispositif d'asservissement 24 incluant un filtre de boucle, un NCO intégrateur 27 et un générateur 21 de porteuse locale de la forme e'ω t. La sortie du NCO intégrateur de phase 27 fournit la mesure de la phase du signal reçu φ'reçue estimée = φ'i∞aie-
Cet élément de calcul de la dérive d'horloge (le dispositif 24 sur la figure) est relié au correcteur (le NCO 27 sur la figure) de la porteuse du récepteur non GNSS, dans le cas où il est intéressant de corriger la porteuse locale avec cette dérive, comme représenté sur les figures. Il peut être intégré dans le récepteur non GNSS comme dans l'exemple de la figure 10 ou dans le récepteur GNSS. Le récepteur non GNSS est par exemple un dispositif de télécommunication mobile comportant éventuellement un émetteur.
Le signal dit GNSS peut provenir d'un système de positionnement par satellites et/ou pseudolites.

Claims

REVENDICATIONS
1. Dispositif de positionnement, qui comporte une horloge locale (15) présentant une dérive, et un premier récepteur (10) d'un signal de radionavigation, caractérisé en ce qu'il comprend en outre un deuxième récepteur (20) d'un signal radioélectrique provenant d'une balise fixe (31) qui présente une référence de temps stable, l'horloge locale (15) étant commune au premier et au deuxième récepteurs (10, 20), et en ce qu'il comprend relié au premier récepteur (10), un élément de calcul de la dérive de l'horloge locale, à partir du signal radioélectrique provenant de la balise fixe (31 ).
2. Dispositif de positionnement selon la revendication précédente, caractérisé en ce que l'élément de calcul de la dérive d'horloge locale est intégré au deuxième récepteur.
3. Dispositif de positionnement selon la revendication précédente, caractérisé en ce que le deuxième récepteur (20) comprend une boucle à verrouillage de phase pourvue d'un dispositif d'asservissement (24) et en ce que le dispositif d'asservissement (24) est apte à calculer la dérive d'horloge locale.
4. Dispositif de positionnement selon l'une des revendications précédentes, caractérisé en ce que le deuxième récepteur (20) est un dispositif mobile de télécommunication.
5. Dispositif de positionnement selon l'une des revendications précédentes, caractérisé en ce que le signal de radionavigation provient d'un système de positionnement par satellites et/ou pseudolites
6. Procédé de positionnement à partir d'un signal de radionavigation et d'un signal d'horloge locale, caractérisé en ce qu'il comprend une étape de réception d'un signal provenant d'une balise fixe qui présente une référence de temps stable, et de calcul de la dérive du signal d'horloge locale à partir du signal de la balise fixe.
PCT/EP2005/055147 2004-10-22 2005-10-11 Disposition de positionnement WO2006042810A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0411293 2004-10-22
FR0411293A FR2877437B1 (fr) 2004-11-04 2004-11-04 Dispositif de positionnement

Publications (1)

Publication Number Publication Date
WO2006042810A1 true WO2006042810A1 (fr) 2006-04-27

Family

ID=34953939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/055147 WO2006042810A1 (fr) 2004-10-22 2005-10-11 Disposition de positionnement

Country Status (2)

Country Link
FR (1) FR2877437B1 (fr)
WO (1) WO2006042810A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2282216A2 (fr) 2009-07-24 2011-02-09 Thales Procédé et système d'anémométrie mono-particule par lidar
EP2940490A1 (fr) * 2014-04-30 2015-11-04 U-blox AG Détermination de la dérive d'horloge au moyen de signaux d'opportunité

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663735A (en) * 1996-05-20 1997-09-02 Trimble Navigation Limited GPS receiver using a radio signal for improving time to first fix
WO1999057929A1 (fr) * 1998-05-04 1999-11-11 Trimble Navigation Limited Combinaison telephone cellulaire gsm et recepteur gps
US6188351B1 (en) * 1998-08-13 2001-02-13 Ericsson Inc. Method for improving signal acquistion in a global positioning system receiver
US6424826B1 (en) * 1997-09-08 2002-07-23 Ericsson, Inc. Systems and methods for sharing reference frequency signals within a wireless mobile terminal between a wireless transceiver and a global positioning system receiver
US20030214436A1 (en) * 2002-05-17 2003-11-20 Voor Thomas E. System and method for frequency management in a communications positioning device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616888U (ja) * 1992-06-12 1994-03-04 東京コスモス電機株式会社 差動gps用固定局、移動体用gps測位機、ナビゲーション装置、及びgps測位機用ラジオ受信機
JP2904241B2 (ja) * 1992-07-01 1999-06-14 ケイディディ株式会社 ディファレンシャル・データ信号の伝送方法
WO1996022546A1 (fr) * 1995-01-17 1996-07-25 The Board Of Trustees Of The Leland Stanford Junior University Systeme et procede de reference gps differentiel longue portee
US6323803B1 (en) * 1999-08-10 2001-11-27 Ericsson Inc. System and method for incremental broadcast of GPS navigation data in a cellular network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663735A (en) * 1996-05-20 1997-09-02 Trimble Navigation Limited GPS receiver using a radio signal for improving time to first fix
US6424826B1 (en) * 1997-09-08 2002-07-23 Ericsson, Inc. Systems and methods for sharing reference frequency signals within a wireless mobile terminal between a wireless transceiver and a global positioning system receiver
WO1999057929A1 (fr) * 1998-05-04 1999-11-11 Trimble Navigation Limited Combinaison telephone cellulaire gsm et recepteur gps
US6188351B1 (en) * 1998-08-13 2001-02-13 Ericsson Inc. Method for improving signal acquistion in a global positioning system receiver
US20030214436A1 (en) * 2002-05-17 2003-11-20 Voor Thomas E. System and method for frequency management in a communications positioning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2282216A2 (fr) 2009-07-24 2011-02-09 Thales Procédé et système d'anémométrie mono-particule par lidar
EP2940490A1 (fr) * 2014-04-30 2015-11-04 U-blox AG Détermination de la dérive d'horloge au moyen de signaux d'opportunité
US9681408B2 (en) 2014-04-30 2017-06-13 U-Blox Ag Determining clock-drift using signals of opportunity

Also Published As

Publication number Publication date
FR2877437B1 (fr) 2007-04-20
FR2877437A1 (fr) 2006-05-05

Similar Documents

Publication Publication Date Title
US8593343B2 (en) Adjusting a bandwidth of GNSS receivers
Yang et al. Generalized GNSS signal carrier tracking—part II: optimization and implementation
US20100211316A1 (en) Highly integrated gps, galileo and inertial navigation system
US20060071851A1 (en) Systems and methods for acquisition and tracking of low CNR GPS signals
KR20030070612A (ko) 위성 기반 위치지정 시스템, 위성 기반 위치지정시스템에서 이용하기 위한 장치, 수신기의 정확한 위치를결정하는 방법 및 상관기 출력에서의 신호를 처리하는 방법
EP3141931B1 (fr) Poursuite de signaux avec au moins une sous-porteuse
EP1364477A2 (fr) Synchronisation temporelle d&#39;un recepteur mobile pour systeme de positionnement par satellite et d&#39;une station de base
CN107450084B (zh) 一种基于csac的高灵敏度gnss接收机及重捕获实现方法
CA2685078A1 (fr) Procede et appareil pour un traitement adaptatif de signaux recus a partir de systemes de navigation par satellites
US20170276794A1 (en) Method for Evaluating a Satellite Signal in a Global Navigation Satellite System with Respect to a Multipath Error, Receiver for a Global Navigation Satellite System and Motor Vehicle
Gao et al. A novel architecture for ultra-tight HSGPS-INS integration
EP3709058A1 (fr) Procédé de contrôle d&#39;intégrité d&#39;un signal de radionavigation par satellite et recepteur apte à implementer ce procédé
US20120319899A1 (en) Dynamic switching to bit-synchronous integration to improve gps signal detection
Soloviev et al. Decoding navigation data messages from weak GPS signals
WO2006042810A1 (fr) Disposition de positionnement
EP1697757B1 (fr) Procede de mise a jour du biais d&#39;horloge existante entre une station bts d&#39;un reseau gsm et les satellites d&#39;un systeme gps
JP5163474B2 (ja) Gnss受信装置及び測位方法
CN108107454B (zh) 一种惯性信息辅助卫星深组合环路
CN103339526B (zh) 设备和方法
CN113311455B (zh) 一种卫星信号分析方法及***
FR2918765A1 (fr) Procede de determination d&#39;une erreur d&#39;asservissement dans une boucle de poursuite d&#39;un code pseudo-aleatoire.
WO2010034948A1 (fr) Système et procédé de détermination d&#39;un récepteur et récepteur associé
EP2442137A1 (fr) Système d&#39;augmentation de la disponibilité et des performances d&#39;un système de géolocalisation par satellite
KR20030013405A (ko) 위성 기반 위치지정 시스템, 위성 기반 위치지정시스템에서 이용하기 위한 장치, 수신기의 정확한 위치를결정하는 방법 및 상관기 출력에서의 신호를 처리하는 방법
Fernández-Hernández et al. 9 Snapshot Receivers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05794786

Country of ref document: EP

Kind code of ref document: A1