WO2006041070A1 - 超電導ケーブルの接続構造 - Google Patents

超電導ケーブルの接続構造 Download PDF

Info

Publication number
WO2006041070A1
WO2006041070A1 PCT/JP2005/018748 JP2005018748W WO2006041070A1 WO 2006041070 A1 WO2006041070 A1 WO 2006041070A1 JP 2005018748 W JP2005018748 W JP 2005018748W WO 2006041070 A1 WO2006041070 A1 WO 2006041070A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
superconducting
insulating layer
winding
conductor
Prior art date
Application number
PCT/JP2005/018748
Other languages
English (en)
French (fr)
Inventor
Masayuki Hirose
Yuuichi Ashibe
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US11/665,180 priority Critical patent/US20090025979A1/en
Priority to MX2007004486A priority patent/MX2007004486A/es
Priority to CA002580813A priority patent/CA2580813A1/en
Priority to EP05793136A priority patent/EP1804337A1/en
Publication of WO2006041070A1 publication Critical patent/WO2006041070A1/ja
Priority to NO20071752A priority patent/NO20071752L/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting cable connection structure.
  • the present invention relates to a superconducting cable connection structure that can suppress buckling of the superconducting layer, which is likely to occur when the superconducting layer and the outer peripheral layer located outside thereof are relatively displaced in the longitudinal direction.
  • FIG. 4 A single-core superconducting cable shown in FIG. 4 has been proposed as a superconducting cable.
  • Figure 4 is a cross-sectional view of this superconducting cable.
  • the superconducting cable 100 has a configuration in which a single cable core 110 is housed in a heat insulating tube 120.
  • the cable core 110 includes a former 10, a conductor layer 30, an insulating layer 50, a shield layer 60, and a protective layer 70 in order from the center.
  • the conductor layer 30 is formed by winding a superconducting wire on the former 10 in a spiral manner in multiple layers.
  • a superconducting wire is used in the form of a tape in which a plurality of filaments made of an oxide superconducting material are arranged in a matrix such as a silver sheath.
  • the insulating layer 50 is formed by winding insulating paper such as semi-synthetic insulating paper.
  • the shield layer 60 is formed by spirally winding a superconducting wire similar to the conductor layer 30 on the insulating layer 50. Insulating paper or the like is used for the protective layer 70.
  • the heat insulating pipe 120 has a configuration in which a heat insulating material (not shown) is disposed between the double pipes composed of the inner pipe 121 and the outer pipe 122, and the inside of the double pipe is evacuated.
  • An anticorrosion layer 130 is formed outside the heat insulating tube 120. Then, the space formed in the former 10 or between the inner tube 121 and the core 110 is filled and circulated with a refrigerant such as liquid nitrogen, and the insulating layer 50 is used in a state of being impregnated with the refrigerant.
  • connection sleeve 210 As an intermediate connection part of such a superconducting cable, the technique of Fig. 5 is known (as a similar technique, for example, Patent Document 1).
  • this connection portion first, the layers are stripped off at the end of each cable to be connected to expose the conductor layer 30 and the former 10, and the former 10 is inserted into the connection sleeve 210 and crimped. To do.
  • This connection sleeve 210 has a former insertion hole at the middle and a conductor insertion with a larger inner diameter than the former insertion hole at both ends. It is a metal cylinder having a hole.
  • the crimping connection of the former 10 is performed by compressing the former insertion hole, and the conductor layer 30 exposed in stages is not inserted into the former insertion hole but is inserted into the conductor insertion hole with a gap.
  • the reason why the conductor layer 30 is not crimped is that the superconducting characteristics deteriorate when the superconducting wire is compressed. Therefore, the conductor layer 30 and the connection sleeve 210 are connected by pouring the solder 240 into the gap between the conductor insertion hole and the conductor layer 30.
  • the solder 240 is poured into the connection sleeve 210, it is necessary to heat the entire connection sleeve so that the solder 240 can reach the conductor layer 30 without excess or deficiency.
  • a space S is usually provided between the end of the connection sleeve 210 and the end of the insulating layer 50.
  • the insulating layer 50 of the superconducting cable for example, semi-synthetic paper laminated with polypropylene and insulating paper is used. Without the spacing S, the end of the insulating layer 50 is in contact with or close to the solder 240, and the total amount of heat of the connection sleeve 210 including the solder 240 is large. As a result, the insulation performance may be degraded.
  • connection sleeve 210 After the connection of the former 10 and the conductor layer 30 by the connection sleeve 210 is completed, from the vicinity of the outer periphery of the connection sleeve 210, that is, from the end of the insulating layer of one cable to the end of the insulating layer of the other cable
  • the insulating insulating layer 230 is formed by wrapping an insulating tape such as semi-synthetic paper over the above category.
  • Patent Document 1 Japanese Published Patent: Japanese Patent Laid-Open No. 11-121059 (FIG. 9)
  • the superconducting wire may be buckled due to thermal expansion and contraction of the cable.
  • a superconducting cable thermally contracts when the superconducting wire is cooled with a refrigerant, and stretches when returned to room temperature. At that time, the layers constituting the cable are discontinuously configured in the radial direction with different constituent materials. Therefore, due to the difference in thermal shrinkage of the constituent materials, the relative layers in the longitudinal direction between the layers are different. Movement may occur. For example, when a superconducting cable is cooled, the superconducting wire that is wound in a spiral shape and constitutes a conductor layer contracts and is subjected to a tensile stress, and moves in a direction in which the twist is tightened, that is, in a direction in which the diameter is reduced.
  • the end of the insulating layer 50 moves so as to approach the connection sleeve 210 side (movement from the broken line to the solid line) or in the opposite direction. Movement may occur.
  • the distance S (see FIG. 5) provided between the end of the connection sleeve 210 and the end of the insulating layer 50 repeatedly narrows and widens, and the gap between the superconducting layer and the insulating layer is repeated.
  • the superconducting wire positioned at the interval S may buckle due to the formation of a space or wrinkling of the superconducting wire.
  • the electrical and mechanical properties of the superconducting wire are expected to deteriorate, and in the worst case, the superconducting wire is expected to break.
  • the present invention has been made in view of the above circumstances, and the main object of the present invention is to provide a seat for the superconducting layer that is likely to occur when the superconducting layer and the outer peripheral layer positioned on the outer side thereof are relatively displaced in the longitudinal direction.
  • An object of the present invention is to provide a superconducting cable connection structure capable of suppressing bending.
  • the present invention suppresses the buckling by suppressing the buckling by covering the superconducting layer between the connecting member such as the connecting sleeve and the outer peripheral layer such as the insulating layer of the cable core in the connecting portion. Achieving the above objectives.
  • the present invention is a connection structure for a superconducting cable formed at an end of a superconducting cable having a superconducting layer and an outer peripheral layer thereof.
  • the superconducting layer is covered by the relative movement between the superconducting layer and the outer peripheral layer by covering the superconducting layer between the connecting member connected to the superconducting layer and the end of the connecting member and the end of the outer peripheral layer. It has a presser member that prevents buckling.
  • a superconducting layer such as a conductor layer
  • an outer peripheral layer such as an insulating layer.
  • the above interval is reduced.
  • the superconducting layer buckles by spreading or spreading.
  • the superconducting layer located at the space is covered with the pressing member, so that even if the superconducting layer and the outer peripheral layer move relatively, the superconducting layer is It forms a state of being pressed to the inner peripheral layer side immediately below.
  • the superconducting cable used in the connection structure of the present invention typically has a basic configuration having a superconducting layer, an insulating layer, and a heat insulation tube.
  • a former, shield layer, and protective layer are usually provided.
  • the superconducting layer is a layer constituted by using a superconducting wire, and is typically a conductor layer.
  • the shield layer is also composed of a superconducting wire, the shield layer is also included in the superconducting layer.
  • the former retains the conductor layer in a predetermined shape, and a pipe-shaped or stranded wire structure can be used.
  • the material is preferably a nonmagnetic metal material such as copper or aluminum.
  • the inside of the former can be used as a refrigerant flow path.
  • the conductor layer is formed by, for example, winding a wire made of a superconducting material spirally on a former.
  • the superconducting wire include a tape-like one in which a plurality of filaments made of 2223 oxide superconducting material are arranged in a matrix such as a silver sheath.
  • the winding of the superconducting wire may be a single layer or a multilayer.
  • an interlayer insulating layer may be provided.
  • the interlayer insulation layer can be kraft paper or PPLP (Sumitomo Electric Industries, Ltd.
  • a semi-synthetic insulating paper such as a registered trademark is available.
  • the insulating layer is preferably formed by winding semi-synthetic paper such as PPLP (registered trademark of Sumitomo Electric Industries, Ltd.) laminated with polypropylene and kraft paper, or insulating paper such as kraft paper.
  • a semiconductive layer may be formed between at least one of the inner and outer circumferences of the insulating layer, that is, between the conductor layer and the insulating layer, or between the insulating layer and the shield layer.
  • the shield layer is preferably formed by winding a superconducting wire similar to the conductor layer, which is made of a conductive material, outside the insulating layer.
  • a protective layer is preferably provided outside the shield layer.
  • the protective layer mainly covers the shield layer to mainly protect the shield layer mechanically.
  • a protective layer can be formed by winding an insulating paper such as kraft paper on the shield layer.
  • a cushion layer may be interposed between the former and the conductor layer.
  • the cushion layer avoids direct metal-to-metal contact between the foam and superconducting wire and prevents damage to the superconducting wire.
  • the cushion layer also has a function of making the former surface smoother.
  • insulating paper or strong paper can be suitably used as a specific material for the cushion layer.
  • the heat insulating pipe includes a configuration in which a heat insulating material is disposed between a double pipe composed of an outer pipe and an inner pipe, and the inner pipe and the outer pipe are evacuated.
  • the inner tube contains at least a conductor layer and is filled with a refrigerant such as liquid nitrogen that cools the superconducting layer.
  • connection structure of the present invention is a connection structure in which a superconducting layer is connected through a connection member.
  • a typical example is a configuration in which the conductor layer exposed by stripping is connected via a connecting member, and the periphery of the connecting member is covered with a reinforcing insulating layer.
  • connection member As an example of the connection member, a connection sleeve is used. More specifically, a foamer insertion hole is provided at the intermediate part, and a conductor insertion hole having a larger inner diameter than the former insertion hole at both ends. A metal cylinder is used as a connection sleeve, and the former and conductor layer are connected using the connection sleeve. Using this connection sleeve, the former is inserted into the former insertion hole in a butted state and compression-connected. On the other hand, the conductor layer may be inserted into the conductor insertion hole and connected with solder without being inserted into the former insertion hole.
  • a braided material can be suitably used as the connection member.
  • connection portion When forming the connection portion, by stepping off the end portion of the superconducting cable, a gap is formed between the end portion of the connection sleeve in which the conductor layer is inserted and the end portion of the insulating layer, The conductor layer is exposed at that interval. Alternatively, an interval is formed between the end of the braided material to which the shield layer is connected and the end of the protective layer, and the shield layer is exposed at the interval. Therefore, this exposed portion is covered with a pressing member.
  • a resin wire or a tape material can be suitably used.
  • FRP F3 ⁇ 4er Reinforced Plastics
  • a semiconductive tape material is wound around the exposed area, or a metal wire or tape material, or a metal wire and tape material It is possible to wind both.
  • FRP can be made of various materials in which fiber material is mixed with base resin.
  • Examples of the base resin include epoxy resin and polyester resin.
  • a thermosetting resin having a curing temperature lower than the melting point of the material for forming the insulating layer (for example, polypropylene) is suitable in order not to damage the insulating layer when the pressing member is formed.
  • the fiber material carbon fiber, glass fiber and the like are suitable.
  • Examples of the semiconductive tape material include carbon roll paper and crepe carbon roll paper.
  • the metal wire a copper wire, an aluminum wire, or the like can be used.
  • the tape material grease tape or metal tape can be used.
  • the exposed portion is wound with the metal wire or the metal tape, and then fixed to the exposed conductor layer with solder, thereby effectively suppressing the buckling of the conductor layer.
  • solder it is preferable to use a low melting point solder in order to reduce deterioration of the insulating layer due to heat conduction.
  • low melting point solder typically having a melting point lower than the melting point (165 ° C to 176 ° C) of polypropylene constituting PPLP.
  • a melting point of about The holding member is fixed to the conductor layer using a low melting point solder (79 ° C, chemical component Sn: 17.0% by mass, In: 26.0% by mass, Bi: 57.0% by mass).
  • Silver tape has good adhesiveness with solder and excellent flexibility.
  • the tape having low adhesiveness to the solder is preferably subjected to, for example, silver plating or tin plating in order to improve the adhesiveness to the solder. Since the tape material can tighten the wound portion, the superconducting layer can be pressed to the inner peripheral side, and the buckling can be effectively suppressed.
  • a metal wire or a metal tape is used for the holding member, it is preferable to interpose a tack layer between the holding member and the superconducting layer. By interposing the cushion layer, contact between metals is avoided and damage to the superconducting wire is suppressed.
  • the pressing member is formed of a metal wire or a metal tape
  • a metal tape winding structure or a metal wire winding structure may be used.
  • a two-layer structure of a metal tape winding structure and a metal wire winding structure may be used.
  • a step (for example, a step having a right angle corner) may be formed between the connection sleeve and the conductor layer protruding with the same sleeve force. Concentration of the electric field occurs at this step, and the insulation of the step is destroyed accordingly, which may become a weak point of insulation.
  • the presser member in a tapered shape (tapered shape) by directing the sleeve force toward the outer peripheral layer.
  • the surface of the wound structure formed in a tapered shape is preferably smooth.
  • the end portion of the insulating layer is formed in a tapered shape with a tapered connection member (sleeve) side.
  • the pressing member may be formed of a metal tape! /, Or may be formed of only a metal wire! /.
  • the surface of the winding structure is stepped, and it is difficult to smoothly form the surface of the winding structure.
  • the surface of the tapered wound structure can be formed smoothly, but the number of windings increases and workability is poor. Therefore, in consideration of workability and formability, for example, after holding the metal tape on the conductor layer, the holding member is smaller than the thickness of the metal tape and the thickness of the step due to the number of metal tapes. Winding a metal wire with a diameter It is preferable to form a two-layer structure.
  • the portion covered with the holding member is a portion of the superconducting layer where buckling is likely to occur due to relative movement between the superconducting layer and its outer peripheral layer in the connection structure.
  • the presser member may cover a wider range, for example, a portion of the conductor layer that is inserted into the conductor insertion hole of the connection sleeve.
  • the pressing member may be formed to extend to the end of the insulating layer, at least the end of the connection sleeve, or both surfaces.
  • a reinforcing insulating layer is formed so as to cover the end portions of the connecting sleeve, the pressing member, and the insulating layer.
  • the reinforcing insulating layer may be formed by winding insulating paper around the connecting member, for example, from the vicinity of the insulating layer end of one cable to the vicinity of the insulating layer end of the other cable.
  • the pressing member is extended under the end of the outer peripheral layer. May be formed. Specifically, in a superconducting cable having only an insulating layer, if the electrical stress resulting from the step of forming the pressing member and the structure of the insulating layer after the pressing member is within an allowable range, the pressing member is placed below the insulating layer. Is formed by extending a part.
  • the insulating layer has a wound structure
  • a part of the insulating layer is rewound to remove the pressing member. Extend to form.
  • a holding member is formed below the internal semiconductor layer. More specifically, when the internal semiconductor layer has a wound structure, a part of the internal semiconductor layer is rewound and the pressing member is extended.
  • the pressing member forming step and the insulating layer after the pressing member is formed If the electrical stress resulting from this structure is within an allowable range, the insulating layer may be partially rewound together with the internal semiconductor layer, and the pressing member may be extended.
  • the connecting portion of the present invention can be applied not only to the connection of a single-core cable but also to the connection of each core in a multi-core cable.
  • application to a single-core cable is suitable.
  • a multi-core cable for example, a three-core cable, is configured such that the cores of each core are gently twisted and the core itself behaves by contraction during cooling. Therefore, the problem of buckling of the superconducting layer due to relative movement between the superconducting layer and the outer peripheral layer is more likely to occur with a single-core cable.
  • the present invention can be applied to any connection portion of an AC superconducting cable or a DC superconducting cable.
  • an interval is formed between the end portion of the connection member and the end portion of the outer peripheral layer, and the superconducting layer is formed in the interval. Any configuration that is positioned is applicable.
  • FIG. 1 is a cross-sectional view of a superconducting cable used in the connection structure of the present invention.
  • FIG. 2 is a cross-sectional view of the core of the superconducting cable of FIG.
  • FIG. 3 is a partial schematic cross-sectional view of the connection structure of the present invention.
  • FIG. 4 is a cross-sectional view of a superconducting cable.
  • FIG. 5 is a schematic partial sectional view showing a connection structure of a conventional superconducting cable.
  • Fig. 6 is an explanatory view showing the relative movement between the conductor layer and the insulating layer.
  • FIG. 7 is a partial schematic cross-sectional view of Embodiment 2 of the present invention.
  • FIG. 8 is a partial schematic cross-sectional view of Embodiment 3 of the present invention. Size
  • FIG. 9 is a partial schematic cross-sectional view of Embodiment 4 of the present invention.
  • FIG. 10 is a partial schematic cross-sectional view of Embodiment 5 of the present invention.
  • the cable 100 includes a single core 110 and a heat insulation tube 120 that houses the core 110.
  • the core 110 includes, in order from the center, the former 10, the cushion layer 20, the conductor layer 30, the inner semiconductive layer 41, the insulating layer 50, the outer semiconductive layer 42, the shield layer 60, It has a protective layer 70.
  • superconducting wires are used for the conductor layer 30 and the shield layer 60.
  • the superconducting wire constituting the core 110 is maintained in a superconducting state by circulating a refrigerant (for example, liquid nitrogen) in the space between the heat insulating tube and the core.
  • a refrigerant for example, liquid nitrogen
  • former 10 For former 10, a plurality of copper strands twisted together was used. By using a stranded wire structure, it is possible to simultaneously reduce AC loss and suppress temperature rise due to overcurrent. Further, in this example, the outer strand is made thinner than the center strand, and the unevenness due to the groove is made as small as possible on the outer circumference of the former 10.
  • a cushion layer 20 is provided on the former 10.
  • the cushion layer 20 was formed by spirally winding carbon paper on the form 10.
  • the cushion layer 20 can smooth the surface of the former 10 and can reduce damage caused by direct contact between the former 10 and the conductor layer 30.
  • a Bi2223-based Ag-Mn sheath tape wire having a thickness of 0.24 mm and a width of 3.8 mm was used for the conductor layer 30.
  • the tape wire is wound in multiple layers on the cushion layer 20 to form the conductor layer 30.
  • the twist pitch of the superconducting wire is different in each layer. Power!
  • the inner semiconductive layer 41, the insulating layer 50, and the outer semiconductive layer 42 is formed on the outer periphery of the conductor layer 30, in order from the inside.
  • the inner / outer semiconductive layers 41 and 42 suppress the generation of minute voids at the interface between the conductor layer 30 and the insulating layer 50 or the interface between the insulating layer 50 and the shield layer 60, and the portion in the gap Prevent discharge.
  • carbon paper can be used for these semiconductive layers 41 and 42.
  • the insulating layer 50 is made of, for example, semi-synthetic paper (PPLP: registered trademark, manufactured by Sumitomo Electric Industries, Ltd.) obtained by laminating kraft paper and a resin film such as polypropylene. Can be configured by turning.
  • PPLP semi-synthetic paper
  • a shield layer 60 is provided on the outer semiconductive layer 42 described above.
  • the shield layer 60 is formed by winding a superconducting wire similar to that used for the conductor layer 30.
  • the shield layer 60 substantially cancels out the magnetic field generated by the force of the conductor layer 30 by inducing a current in the reverse direction with approximately the same magnitude as the conductor layer 30 and prevents leakage of the magnetic field to the outside. be able to.
  • kraft paper is wound around the shield layer 60 to form the protective layer 70.
  • This protective layer 70 mechanically protects the shield layer 60 and insulates it from the heat insulating pipe.
  • the heat insulating pipe 120 has a double-pipe structure made of stainless steel having a corrugated inner pipe 121 and a corrugated outer pipe 122.
  • a space is formed between the corrugated inner tube 121 and the corrugated outer tube 122, and the space is evacuated.
  • a super insulation serving as a heat insulating material (not shown) is arranged to reflect radiant heat.
  • An anticorrosion layer 130 is formed outside the corrugated outer tube 122.
  • FIG. 3 shows the connection structure using the above superconducting cable.
  • This connection structure includes a pair of superconducting cables 100 arranged in a butted state, a connection sleeve 210 connecting both cables 100, and an end of the connection sleeve 210 and an end of the insulating layer 50.
  • the holding member 220 covers the exposed conductor layer 30 and the reinforcing insulating layer 230 covers the periphery of the connection sleeve.
  • connection sleeve 210 is a metal cylinder having a former insertion hole 211 in the middle and a conductor insertion hole 212 having a larger inner diameter in the former insertion hole 21 at both ends.
  • the former 10 is inserted up to the open end of the connecting sleeve 210 and the former forming hole 211.
  • the conductor layer 30 is inserted into the conductor insertion hole 212 with a gap, but is not inserted into the former insertion hole 211. Further, the end of the connection sleeve 210 and the end of the insulating layer 50 are spaced from each other, and the conductor layer 30 is exposed at the distance S.
  • connection sleeve 210 corresponding to the former insertion hole 211 is compressed, and the former 10 and the connection sleeve 210 are compressed and connected. Subsequently, the conductor layer 30 and the connection sleeve 210 are connected. This connection is performed by pouring the solder 240 into a gap formed between the conductor layer 30 and the conductor insertion hole 212 and curing it. By connecting the conductor layer 30 and the connection sleeve 210 by soldering without compression, mechanical damage to the superconducting wire constituting the conductor layer 30 is prevented.
  • the conductor layer 30 exposed between the end portion of the connection sleeve 210 and the end portion of the insulating layer 50 is covered with a pressing member 220.
  • a mixed material of epoxy resin, which is a base resin, and short glass fibers is left in a molten state, and the mixed material is applied to the outer periphery of the exposed conductor layer 30 and cured to be pressed.
  • the member 220 may be mentioned.
  • the holding member 220 may be formed in the same manner by winding a glass fiber tape around the exposed conductor layer 30 and applying and curing a molten base resin thereon. If the FRP pressing member 220 is formed by winding the tape material, the conductor layer 30 can be securely pressed to the inner peripheral side. In either case, the entire circumference of the exposed conductor layer 30 is covered with the pressing member 220.
  • the shield layers 60 of both cables are connected via a braided material. Then, insulating paper is wound around the connection sleeve 210, that is, near the insulating layer end of one cable, to form the reinforcing insulating layer 230.
  • This reinforcing insulating layer 230 covers not only the connection sleeve 210 but also the pressing member 220 so that sufficient insulation can be secured in the V-connection structure.
  • the conductor layer 30 located between the end of the connection sleeve 210 and the end of the insulating layer 50 is Since the holding member 220 is holding down, even if thermal expansion or contraction occurs in the cape, such as shrinkage during cooling, the conductor layer 30 is buckled by the relative movement of the conductor layer 30 and the insulating layer 50. It can be suppressed.
  • FIG. 7 is a partial schematic cross-sectional view showing the connection structure in the second embodiment.
  • differences from the first embodiment will be mainly described, and the rest of the configuration is the same as that of the first embodiment, and the description thereof will be omitted.
  • the holding member 220 of the present example has a two-layer structure in which a metal tape winding layer 221 is formed on the conductor layer 30, and a metal wire winding layer 222 is further formed thereon. It is formed into a tapered shape that becomes lower (outer diameter becomes smaller) as it goes away from the end face of the sleeve 210 !.
  • the metal tape winding layer 221 is formed by winding a metal tape around the conductor layer 30.
  • the metal tape winding layer includes a cylindrical portion having a substantially constant outer diameter on the connecting sleeve 210 side, and a tapered portion having a diameter decreasing toward the conductor layer 30 on the side away from the connecting sleeve 210 force. It is configured.
  • the cylindrical portion and the tapered portion are integrally formed continuously.
  • the presser member 220 is formed by stacking metal tapes and sequentially shifting the folding position. For example, the side force of the connection sleeve 210 is also wound with metal tape to form a first layer, and then folded back at a location adjacent to the end of the insulating layer 50 to form a second layer.
  • connection sleeve 210 when folding from the third layer to the fourth layer, the folding position is shifted to the connection sleeve 210 side and winding is performed.
  • a metal tape winding layer 221 in which a part of the outer peripheral surface becomes a substantially conical surface is formed.
  • the metal tape winding layer 221 is formed so as to cover the entire gap formed between the end surface of the connection sleeve 210 and the end portion of the insulating layer 50.
  • a metal wire winding layer 222 is formed on the cylindrical portion of the metal tape winding layer 221.
  • the metal wire wound layer 222 is formed by winding a thin metal wire on a cylindrical portion.
  • a silver-plated copper wire was used as the metal wire.
  • the metal wire winding layer 222 is configured so that the outer peripheral surface of the metal wire winding layer 221 is substantially a conical surface.
  • the outer peripheral surface of the metal wire winding layer 222 has a continuous inclination with the outer peripheral surface of the taper portion of the metal tape winding layer 221, and when viewed as the entire holding member 220, the outer periphery formed of a continuous conical surface. Constructed on the face!
  • the metal tape winding layer 221 and the metal wire winding layer 222 are fixed by solder.
  • low-melting-point solder was used in order to reduce the possibility of deterioration of the insulating layer due to heat generated during solder melting.
  • the solder for fixing each winding layer is a solder with a higher melting point (melting point 190 ° C)
  • the metal tape winding layer 221 located in the lower layer is fixed with solder, and then the metal wire winding layer 222 located in the upper layer is fixed with solder. By fixing with the solder, both the metal tape winding layer 222 and the metal wire winding layer 222 can be separated.
  • the conductor layer 30 can be effectively pressed by winding the metal tape and the metal wire.
  • the pressing member 220 is configured in a tapered shape, there is substantially no corner portion, and electric field concentration around the pressing member 220 can be reduced.
  • the metal wire wound layer 222 can easily form an outer peripheral surface having a smooth taper surface force by using a thin metal wire.
  • FIG. 8 is a partial schematic cross-sectional view showing the connection structure in the third embodiment.
  • differences from the first and second embodiments will be mainly described, and the remaining portions are the same as those in the first and second embodiments, so that the description thereof is omitted.
  • the insulating layer 50 and the front end of the pressing member 220 of this example were formed by penciling, and the insulating layer front end 55 and the pressing member front end 225 were formed, respectively.
  • the pencil forming means that the end of each member is formed in a tapered shape having a conical outer peripheral surface, and the outer peripheral surface of the end of the tapered end is formed by about 10 layers. Forming a cylindrical shape with a rotating structure means.
  • the holding member 220 of this example has a two-layer structure in which a metal tape winding layer 221 is formed on the conductor layer 30, and a metal wire winding layer 222 is further formed on the conductor layer 30.
  • a pressing member tip end portion 225 formed by penetrating the end surface force of the sleeve 210 toward the insulating layer 50 is partially extended below the penetrating insulating layer tip portion 55.
  • the insulating layer front end portion 55 has, for example, a 10-layer winding structure.
  • An end portion 225 of the presser member of the presser member 220 formed by extension is formed in a cylindrical shape having a substantially constant outer diameter.
  • the insulating layer 50 is formed by winding an insulating tape (typically PPLP (registered trademark of Sumitomo Electric Industries, Ltd.)). Part of the insulating layer tip 55 formed by the penciling of the insulating layer 50 is manually turned back.
  • the pressing member front end portion 225 is formed so as to extend partially toward the insulating layer front end portion 55 side with respect to the width of the conductor layer 30 exposed when the superconducting cable is connected.
  • the insulating layer front end 55 is formed by forming the presser member 220 including the presser member tip 225 and then rewinding the rewound insulating tape so as to overlap the presser member tip 225. Further, the wound insulating layer front end portion 55 is also formed in a cylindrical shape having a substantially constant outer diameter.
  • the width of the presser member 220 is exposed when the superconducting cable is connected. More than the interval S.
  • the thermal expansion and contraction after the connection portion is formed causes a relative shift between the conductor layer 30 and the insulating layer 50, and the conductor layer 30 is not exposed even if the initial gap S may be increased.
  • the possibility can be suppressed. Therefore, the possibility of buckling of the conductor layer 30 due to the relative displacement between the conductor layer 30 and the insulating layer 50 due to the thermal expansion and contraction of the cable can be reduced.
  • the pressing member 220 can be fixed more firmly.
  • FIG. 9 is a partial cross-sectional view of the connection structure in the fourth embodiment.
  • differences from Embodiments 1 to 3 will be mainly described, and the remaining portions are the same as those in Embodiments 1 to 3, and the description thereof is omitted.
  • a metal tape winding layer 221 is formed on the conductor layer 30, and further It has a two-layer structure in which a metal wire winding layer 222 is formed thereon, and is formed in a tapered shape that becomes lower (outer diameter becomes smaller) as it goes away from the end face of the connection sleeve 210.
  • the metal tape winding layer 221 is formed by winding a metal tape on the conductor layer 30.
  • the metal tape winding layer 221 is configured in a stepped manner with a plurality of steps so that the side away from the connection sleeve 210 is directed toward the conductor layer 30 to reduce the diameter.
  • step difference is comprised integrally.
  • the metal tape winding layer 221 is formed by overlappingly winding metal tapes and sequentially shifting the folding position of the winding.
  • the metal tape winding layer 221 is formed in a step-down manner in the direction toward the insulating layer 50 in consideration of the longitudinal cross-sectional force in consideration of forming the holding member 220 in a tapered shape.
  • the taper wound layer surface of the metal tape wound layer 221 can be formed smoothly by reducing the number of metal tapes stacked per step of each step.
  • the metal wire winding layer 222 is wound so as to make up the stepped step formed by the metal tape winding layer 221.
  • the metal wire winding layer 222 is formed so as to cover the entire gap S formed between the end face of the connection sleeve 210 and the end of the insulating layer 50. When the entire holding member 220 is viewed, it is formed on the outer peripheral surface composed of a continuous conical surface.
  • the metal tape winding layer 221 forms an approximate taper shape, thereby greatly reducing the number of windings of the metal wire winding layer 222 and improving work efficiency. The rate can be improved.
  • the holding member 220 and the insulating layer 50 may be formed by penciling and extending below the insulating layer 50 as shown in the third embodiment.
  • FIG. 10 is a partial cross-sectional view showing the connection structure in the fifth embodiment.
  • differences from Embodiments 1 to 3 are mainly described, and the remaining configuration is common to Embodiments 1 to 3, and thus the description thereof is omitted.
  • the holding member 220 of this example has a two-layer structure in which a metal tape winding layer 221 is formed on the conductor layer 30, and a metal wire winding layer 222 is further formed thereon. As the distance from the end face of the sleeve 210 increases, it becomes lower (outer diameter becomes smaller) and is formed into a tapered shape!
  • the metal tape winding layer 221 is formed by winding a metal tape on the conductor layer 30. More specifically, metal tapes are laminated in a state where there is no deviation in the radial direction, and formed into a cylindrical shape having a substantially constant outer diameter.
  • the metal wire winding layer 222 is formed so as to cover the cylindrical metal tape winding layer 221.
  • the amount of the metal wire wound on the cylindrical portion of the metal tape winding layer 221 in the radial direction on the connecting sleeve 210 side is increased, and the metal tape winding layer 221 is wound in the corner direction. Wind so that the winding amount decreases sequentially.
  • the outer peripheral surface of the metal wire wound layer 222 forms a smooth taper shape.
  • the metal wire winding layer 222 may be formed separately from the upper portion and the side portion of the metal tape winding layer 221 by directing the connection sleeve 210 side toward the insulating layer 50, or may be formed continuously. Also good. When the entire presser member 220 is viewed, it is constituted by an outer peripheral surface composed of a continuous conical surface.
  • the metal tape winding layer 221 is formed in a cylindrical shape, thereby facilitating winding of the metal tape. Further, since the taper-shaped end portion with a small number of metal tapes is not formed, the metal tape winding layer 221 is not easily scattered.
  • the holding member 220 and the insulating layer 50 may be formed by penciling, and as shown in the third embodiment, the pressing member 220 and the insulating layer 50 may be formed by extending partly below the insulating layer 50.
  • the present invention can be effectively used as a connection structure for superconducting cables used for power transportation means and the like.
  • the superconducting cable may be either single-core or multi-core, or AC / DC! Or misaligned! / ⁇ .

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

  超電導層とその外側に位置する外周層が長手方向に相対的にずれた際に生じやすい超電導層の座屈を抑制できる超電導ケーブルの接続構造を提供する。   超電導層とその外周層とを有する超電導ケーブルの端部に形成される超電導ケーブルの接続構造である。この超電導層(導体層30)は接続部材(接続スリーブ210)に接続される。その際、接続部材の端部と外周層(絶縁層50)の端部との間において、押え部材220で超電導層を覆う。押え部材が超電導層を押え付けることで、超電導層の外側に位置する外周層と超電導層との相対的移動が生じても、超電導層が直接外周層に接した状態で長手方向に押されることが抑制できる。そのため超電導層の座屈を防止できる。

Description

明 細 書
超電導ケーブルの接続構造
技術分野
[0001] 本発明は、超電導ケーブルの接続構造に関するものである。特に、超電導層とそ の外側に位置する外周層が長手方向に相対的にずれた際に生じやすい超電導層 の座屈を抑制できる超電導ケーブルの接続構造に関するものである。
背景技術
[0002] 超電導ケーブルとして、図 4に記載の単心超電導ケーブルが提案されている。図 4 は、この超電導ケーブルの断面図である。この超電導ケーブル 100は、 1本のケープ ルコア 110を断熱管 120内に収納した構成である。
[0003] ケーブルコア 110は、中心から順にフォーマ 10、導体層 30、絶縁層 50、シールド層 6 0、保護層 70を具えている。導体層 30は、フォーマ 10上に超電導線材を多層に螺旋 状に卷回して構成される。通常、超電導線材には、酸化物超電導材料からなる複数 本のフィラメントが銀シースなどのマトリクス中に配されたテープ状のものが用いられる 。絶縁層 50は半合成絶縁紙などの絶縁紙を卷回して構成される。シールド層 60は、 絶縁層 50上に導体層 30と同様の超電導線材を螺旋状に卷回して構成する。そして、 保護層 70には絶縁紙などが用いられる。
[0004] 一方、断熱管 120は、内管 121と外管 122とからなる二重管の間に断熱材 (図示せず) が配置され、かつ二重管内が真空引きされた構成である。断熱管 120の外側には、 防食層 130が形成されている。そして、フォーマ 10内や内管 121とコア 110の間に形成 される空間に液体窒素などの冷媒を充填 *循環し、絶縁層 50に冷媒が含浸された状 態で使用状態とされる。
[0005] このような超電導ケーブルの中間接続部として、図 5の技術が知られている (類似の 技術として、例えば特許文献 1)。この接続部では、まず、突き合わせて接続する各ケ 一ブル端部において各層を段剥ぎして導体層 30及びフォーマ 10を段階的に露出さ せ、フォーマ 10同士を接続スリーブ 210に挿入して圧着する。この接続スリーブ 210は 、中間部にフォーマ挿入孔を、両端部にフォーマ挿入孔よりも内径の大きい導体挿 入孔を有する金属筒である。フォーマ 10の圧着接続はフォーマ挿入孔を圧縮するこ とで行われ、段階的に露出されている導体層 30はフォーマ挿入孔には入らず、導体 挿入孔内に隙間を持って挿入される。導体層 30を圧着接続しないのは、超電導線材 を圧縮すると超電導特性が低下するためである。そのため、導体層 30と接続スリーブ 210とは、導体挿入孔と導体層 30との隙間に半田 240を流し込んで接続する。接続ス リーブ 210中に半田 240を流し込む場合、半田 240が過不足なく導体層 30にいきわた るように接続スリーブ全体を加熱する必要がある。
[0006] また、この半田付け作業を行う必要上、接続スリーブ 210の端部と絶縁層 50の端部 の間には、通常、間隔 Sを設けておく。超電導ケーブルの絶縁層 50には、例えばポリ プロピレンと絶縁紙をラミネートした半合成紙が用いられる。上記の間隔 Sがなければ 、絶縁層 50の端部が半田 240と接触あるいは近接し、半田 240を含む接続スリーブ 21 0の全熱量が大きいために、半田 240の融解熱によりポリプロピレンが溶けるなどして 、絶縁性能を劣化させるおそれがある。
[0007] そして、接続スリーブ 210によるフォーマ 10 ·導体層 30の接続を終えたら、接続スリー ブ 210の外周付近、つまり一方のケーブルの絶縁層端部付近から他方のケーブルの 絶縁層端部付近までの範隨こかけて半合成紙などの絶縁テープを巻き付け、補強 絶縁層 230を形成する。
[0008] 特許文献 1 :日本公開特許:特開平 11-121059号公報 (図 9)
発明の開示
発明が解決しょうとする課題
[0009] しかし、上記の接続構造では、ケーブルの熱伸縮により超電導線材が座屈する場 合がある。
[0010] 超電導ケーブルは超電導線材が冷媒で冷却された際に熱収縮し、常温に戻す際 に伸びが生じる。その際、ケーブルを構成する各層は、構成材料が異なって径方向 に不連続に構成されていることから、各構成材料の熱収縮量の違いにより、各層の間 で長手方向への相対的な移動が生じることがある。例えば、超電導ケーブルを冷却 すると、螺旋状に卷回されて導体層を構成する超電導線材は収縮して引っ張り応力 が作用し、撚りが締まる方向、つまり径カ 、さくなる方向に移動する。逆に、超電導ケ 一ブルが常温に戻される場合は、超電導線材の撚りが緩む方向に移動する。一方、 導体層の外側に形成される絶縁層は、超電導線材に比べて温度変化による伸縮度 合いが小さい。そのため、超電導ケーブルに対して極低温への冷却と常温への復帰 が繰り返されるうちに、徐々に導体層と絶縁層との間に長手方向への相対的移動が 生じてしまう。また、導体層は補強絶縁層により内周側に押さえつけられている力 絶 縁層と同様の理由により導体層と一体となって移動しない。従って、補強絶縁層は、 相対的移動を抑制する働きに欠ける。
[0011] 特に、超電導ケーブルの接続部では、図 6において、絶縁層 50の端部が接続スリ ーブ 210側に接近するような移動 (破線から実線への移動)や、その逆方向への移動 が生じることがある。その過程で、接続スリーブ 210の端部と絶縁層 50の端部との間に 設けられた間隔 S (図 5参照)が狭まったり広がったりすることを繰り返し、超電導層と 絶縁層との間に空間が形成されたり、超電導線材にしわがよるなどして、間隔 Sに位 置する超電導線材が座屈してしまうことがある。その結果、超電導線材の電気的'機 械的特性が低下したり、最悪の場合は超電導線材が破断にいたることが予想される
[0012] 本発明は上記の事情に鑑みてなされたもので、その主目的は、超電導層とその外 側に位置する外周層が長手方向に相対的にずれた際に生じやすい超電導層の座 屈を抑制できる超電導ケーブルの接続構造を提供することにある。
課題を解決するための手段
[0013] 本発明は、接続部において、接続スリーブなどの接続部材とケーブルコアの絶縁 層などの外周層との間における超電導層を覆うことで超電導層を押え、その座屈を 抑制することで上記の目的を達成する。
[0014] 本発明は、超電導層とその外周層とを有する超電導ケーブルの端部に形成される 超電導ケーブルの接続構造である。そして、超電導層に接続される接続部材と、接 続部材の端部と外周層の端部との間において、超電導層を覆うことで超電導層と外 周層との相対的移動により超電導層が座屈することを防止する押え部材とを有するこ とを特徴とする。
[0015] 導体層などの超電導層と、絶縁層などの外周層を有する超電導ケーブルで接続部 を形成する際、超電導層と外周層の各端部には間隔があけられているが、熱収縮な どにより、超電導層と外周層の相対的移動が生じた場合、上記の間隔が狭められた り拡げられたりして超電導層の座屈を生じることは既に述べた通りである。本発明接 続構造では、この間隔が開けられた箇所に位置する超電導層を押え部材で覆うこと により、超電導層と外周層との相対的移動が生じても、押え部材により超電導層は、 その直下の内周層側に押し付けられた状態を形成する。そのため、超電導層が径方 向に挙動するスペースが小さぐ超電導層が内周層から浮き上がったり、内周層の上 でしわが寄ったりして、屈曲することを抑制できる。もちろん、間隔が開けられた箇所 に位置する超電導層を押え部材で覆っていても、さらに熱伸縮が加わることで超電 導層が押え部材に覆われずに露出した箇所が形成される場合があり得る。その場合 でも、全く押え部材がない場合に比べれば、超電導層が露出される範囲を極力小さ くすることができ、超電導層の座屈防止に効果的である。
[0016] 以下、本発明の接続構造をより詳しく説明する。
[0017] まず、本発明構造により接続される超電導ケーブルの構成から説明する。
本発明接続構造に用いる超電導ケーブルは、代表的には、超電導層、絶縁層、断 熱管を有することを基本構成とする。その他、通常は、フォーマ、シールド層、保護層 も設けられる。本発明において、超電導層は、超電導線材を用いて構成された層の ことで、代表的には導体層のことである。さらに、シールド層も超電導線材で構成した 場合は、シールド層も超電導層に含まれる。
[0018] 上記のケーブルにおいて、フォーマは、導体層を所定形状に保形するもので、パイ プ状のものや撚り線構造のものが利用できる。材質には、銅やアルミニウムなどの非 磁性の金属材料が好適である。フォーマをパイプ状のものとした場合、フォーマ内を 冷媒の流路とできる。
[0019] 導体層は、例えば、超電導材料カゝらなる線材をフォーマ上に螺旋状に卷回すること で形成する。超電導線材の具体例としては、 ΒΪ2223系酸化物超電導材料からなる複 数本のフィラメントが銀シースなどのマトリクス中に配されたテープ状のものが挙げら れる。超電導線材の卷回は単層でも多層でもよい。多層とする場合、層間絶縁層を 設けてもよい。層間絶縁層は、クラフト紙などの絶縁紙や PPLP (住友電気工業株式会 社製、登録商標)などの半合成絶縁紙を卷回して設けることが挙げられる。
[0020] 絶縁層は、ポリプロピレンとクラフト紙をラミネートした PPLP (住友電気工業株式会社 の登録商標)などの半合成紙やクラフト紙などの絶縁紙を卷回して形成することが好 ましい。また、絶縁層の内外周の少なくとも一方、つまり導体層と絶縁層との間や、絶 縁層とシールド層との間に半導電層を形成しても良い。前者の内部半導電層、後者 の外部半導電層を形成することで、導体層と絶縁層の間あるいは絶縁層とシールド 層の間での密着性を高め、部分放電の発生などに伴う劣化を抑制する。
[0021] また、絶縁層の外側には、シールド層を設けることが好ま ヽ。シールド層を設ける ことで、導体層を流れる交流の磁場が外部に漏洩するのを抑制することができる。シ 一ルド層は導電材料で構成すればよぐ導体層と同様の超電導線材を絶縁層の外 側に卷回して構成することが好適である。
[0022] そして、シールド層の外側には保護層を設けることが好ましい。保護層は、シールド 層を覆うことで、主としてシールド層の機械的保護を図る。例えば、クラフト紙などの 絶縁紙をシールド層の上に卷回して保護層を形成すれば良 ヽ。
[0023] その他、フォーマと導体層との間にクッション層を介在してもよい。クッション層は、フ ォーマと超電導線材間における金属同士の直接接触を回避し、超電導線材の損傷 を防止する。特に、フォーマを撚り線構造とした場合、クッション層はフォーマ表面を より平滑な面にする機能も有する。クッション層の具体的材質としては、絶縁紙や力 一ボン紙が好適に利用できる。
[0024] 一方、断熱管は、例えば、外管と内管とからなる二重管の間に断熱材を配置し、内 管と外管間を真空引きする構成が挙げられる。内管内には、少なくとも導体層が収納 されると共に、超電導層を冷却する液体窒素などの冷媒が充填される。
[0025] 次に、上記のような超電導ケーブルを接続する接続構造を説明する。
本発明接続構造は、接続部材を介して超電導層を接続する接続構造である。代表 的には、段剥ぎして露出された導体層を、接続部材を介して接続し、その接続部材 の周辺を補強絶縁層で覆う構成が挙げられる。
[0026] 接続部材の一例としては、接続スリーブが用いられる。より特定的には、中間部にフ ォーマ挿入孔を、両端部にフォーマ挿入孔よりも内径の大きい導体挿入孔を有する 金属筒を接続スリーブとし、その接続スリーブを利用してフォーマと導体層の接続を 行う。この接続スリーブを用いて、フォーマ挿入孔にはフォーマを突き合せた状態に 挿入して圧縮接続する。一方、導体層はフォーマ挿入孔には挿入せず、導体挿入孔 に挿入して半田にて接続すればよい。シールド層の接続を行う場合、接続部材として は、編組材が好適に利用できる。
[0027] 接続部を形成する際、超電導ケーブルの端部を段剥ぎすることにより、導体層が挿 入された接続スリーブの端部と絶縁層の端部との間には間隔が形成され、その間隔 において導体層が露出した状態となっている。あるいは、シールド層が接続された編 組材の端部と保護層の端部との間には間隔が形成され、その間隔においてシールド 層が露出した状態となっている。そこで、この露出箇所を押え部材で覆う。
[0028] 押え部材には、榭脂ゃ金属線やテープ材が好適に利用できる。例えば、上記の露 出箇所に FRP(F¾er Reinforced Plastics)を配して硬化させることや、露出箇所に半 導電性テープ材を卷回することや、金属線またはテープ材、あるいは金属線および テープ材の両方を卷回することが挙げられる。 FRPはベース樹脂に繊維材を混合し た各種材料が利用できる。
[0029] ベース榭脂には、エポキシ榭脂ゃポリエステル榭脂が挙げられる。特に、押え部材 を形成する際に絶縁層を損傷させな 、ために、絶縁層の形成材料 (例えばポリプロ ピレン)の融点よりも低い硬化温度を有する熱硬化性榭脂が好適である。繊維材には 、カーボンファイバ、ガラスファイバなどが好適である。
[0030] 半導電性テープ材には、例えばカーボンロール紙やクレープカーボンロール紙な どが挙げられる。
[0031] 金属線には銅線、アルミ線などが利用できる。テープ材には榭脂テープや金属テ ープが利用できる。金属線あるいは金属テープを利用する場合、露出箇所を金属線 あるいは金属テープで卷回した後、露出した導体層に半田で固定することにより導体 層の座屈を効果的に抑制することができる。半田は、熱伝導による絶縁層の劣化を 低減するために低融点半田を使用することが好ましい。例えば、絶縁層に PPLP (住 友電気工業株式会社の登録商標)を使用する場合、 PPLPを構成するポリプロピレン の融点(165°C〜176°C)よりも低い融点を有する低融点半田(代表的には、融点が約 79°C、化学成分が、 Sn: 17.0質量%、 In: 26.0質量%、 Bi: 57.0質量%である低融点半 田)を用 、て押え部材を導体層に固定する。
金属テープの場合、銀テープ、銅テープ、アルミテープ、ステンレステープなどが好 ましい。銀テープは、半田との接着性が良ぐまた可撓性に優れている。半田との接 着性が低いテープは、半田との接着性を高めるために、例えば銀メツキまたは錫メッ キを施すことが好ましい。テープ材は、卷回した箇所を締め付けることができるため、 超電導層を内周側に押え付けることができ、その座屈を効果的に抑制できる。押え 部材に金属線あるいは金属テープを用いた場合、押え部材と超電導層との間にタツ シヨン層を介在させることが好ましい。クッション層の介在により、金属同士の接触を 回避し、超電導線材の損傷を抑制する。
[0032] 押え部材を金属線または金属テープで形成する場合、金属テープ卷回構造として も良いし、金属線卷回構造としても良い。また、金属テープ卷回構造および金属線卷 回構造の 2層構造としても良い。
[0033] 接続部を形成する際、接続スリーブと同スリーブ力 突出した導体層との間に段差 ( 例えば、直角の角部を有する段差)が形成される恐れがある。この段差部分において 電界の集中が起こり、それに伴って段差部分の絶縁が破壊され、絶縁の弱点となる 可能性がある。この段差部分の電界集中を緩和すべく押え部材はスリーブ力 外周 層に向力つて先細りの形状 (テーパ状)に形成することが好ましい。テーパ状に形成 した卷回構造の表面は滑らかであることが好ましい。また、同様に電界集中の緩和の ために絶縁層の端部は接続部材 (スリーブ)側が先細りのテーパ状に形成することが 好ましい。
[0034] 押え部材を金属テープある!/、は金属線のみで形成してもよ!/、が、金属テープのみ で形成した場合、金属テープの厚さおよび金属テープの卷回しによって、テーパ状 の卷回構造の表面は階段状となり、卷回構造の表面を滑らかに形成することが難し い。また、金属線のみで形成した場合、テーパ状の卷回構造の表面を滑らかに形成 しやすいが、巻き数が多くなり作業性が悪い。従って、作業性および成形性を考慮し て、例えば、押え部材は導体層上に金属テープを卷回した後、金属テープの厚さお よび金属テープの卷数に起因する段差の厚さよりも小さい径を有する金属線を卷回 す 2層構造に形成することが好ま ヽ。
[0035] 押え部材で覆う箇所は、接続部構造において、超電導層のうち、超電導層とその外 周層の相対的移動により座屈が生じやすい箇所とする。通常、接続部材の端部と外 周層端部との間において露出している超電導層のみを押え部材で覆えば十分であ る。さらに、より広い範囲、例えば導体層のうち、接続スリーブの導体挿入孔に挿入さ れる箇所も押え部材で覆ってもよい。その場合、接続スリーブと押え部材を半田付け するため、押え部材は金属テープを用いることが好適である。その他、押え部材が絶 縁層の端部あるいは接続スリーブの少なくとも端部、またはその両方の表面にまで延 長して形成しても良い。
[0036] 接続部材により超電導層の接続を行った後、接続スリーブ、押え部材および絶縁 層の端部を覆うように補強絶縁層の形成を行う。補強絶縁層は、接続部材の周辺、 例えば一方のケーブルの絶縁層端部付近から他方のケーブルの絶縁層端部付近 にかけてまでに絶縁紙を卷回することにより形成すればよい。補強絶縁層の形成に より、接続部材周辺の絶縁を十分に確保する。その際、補強絶縁層と接続スリーブと の間に、各構成材料の熱収縮量の違いに起因する相対的なずれが生じることで導体 層の露出部分が拡大し、露出した導体層が座屈をおこす可能性がある。
[0037] そこで、導体層と絶縁層との間、および導体層と補強絶縁層との間の相対的なずれ による座屈を抑制する目的で、外周層の端部の下に押え部材を延長して形成しても 良い。具体的には、絶縁層のみを具える超電導ケーブルにおいて、押え部材の形成 工程および押え部材の形成後の絶縁層の構造に起因する電気ストレスが許容範囲 であれば、絶縁層の下部に押え部材を一部延長して形成する。絶縁層が卷回構造 である場合、押え部材の形成工程および押え部材の形成後の絶縁層の構造に起因 する電気ストレスが許容範囲であれば、絶縁層の一部を巻戻して押え部材を延長し て形成する。絶縁層の下部に内部半導体層を具える超電導ケーブルにおいては、 内部半導体層の下部に押え部材を形成する。より具体的には、内部半導体層が卷 回構造である場合は、内部半導体層を一部巻戻して、押え部材を延長して形成する 。さらに、超電導ケーブルが、内部半導体層を具え、且つ絶縁層および内部半導体 層が卷回構造である場合、押え部材の形成工程および押え部材の形成後の絶縁層 の構造に起因する電気ストレスが許容範囲であれば、内部半導体層と併せて絶縁層 も一部巻戻して、押え部材を延長して形成しても良い。
[0038] 本発明の接続部は、単心ケーブルの接続はもちろん、多心ケーブルにおける各心 の接続のいずれにも適用できる。特に、単心ケーブルへの適用が好適である。通常 、多心ケーブル、例えば三心ケーブルなどでは、各心のコアを緩やかに撚り合わせ ておき、冷却時の収縮によりコア自体が挙動するように構成されている。そのため、超 電導層とその外周層との相対的な移動による超電導層の座屈という問題は、単心ケ 一ブルの方が生じやすい。その他、 AC超電導ケーブル、 DC超電導ケーブルのいず れの接続部であっても本発明を適用することができる。
[0039] また、本発明構造は、中間接続部のみならず、終端接続部においても、接続部材の 端部と外周層の端部との間に間隔が形成されて、その間隔に超電導層が位置する 構成であれば適用可能である。
発明の効果
[0040] 本発明超電導ケーブルの接続構造によれば、次の効果を奏することができる。
[0041] (1)押え部材により超電導層を押えることで、超電導層の外側に位置する外周層(例 えば絶縁層)と超電導層との相対的移動が生じても、超電導層が径方向に挙動する スペースを小さくすることができる。そのため、超電導層が内周層から浮き上がったり 、内周層の上でしわが寄ったりすることを抑制し、超電導層の座屈を防止することが できる。
図面の簡単な説明
[0042] [図 1]図 1は、本発明接続構造に用いる超電導ケーブルの横断面図である。
[図 2]図 2は、図 1の超電導ケーブルのコアの断面図である。
[図 3]図 3は、本発明接続構造の部分模式断面図である。
[図 4]図 4は、超電導ケーブルの横断面図である。
[図 5]図 5は、従来の超電導ケーブルの接続構造を示す模式部分断面図である。
[図 6]図 6は、導体層と絶縁層との相対的移動を示す説明図である。
[図 7]図 7は、本発明の実施の形態 2の部分模式断面図である。
[図 8]図 8は、本発明の実施の形態 3の部分模式断面図である。 寸
[図 9]図 9は、本発明の実施の形態 4の部分模式断面図である。
[図 10]図 10は、本発明の実施の形態 5の部分模式断面図である。
o
符号の説明
超電導ケーブル
110 コア
10 フォーマ
30 導体層
50 絶縁層
60 シーノレド層
70 保護層
20 クッション層
41 内部半導電層
42 外部半導電層
55 絶縁層先端部
120 断熱管
121 コルゲート内管
122 コルゲート外管
130 防食層
210 接続スリーブ
211 フォーマ揷入孔
212 導体挿入孔
220 押え部材
221 金属テープ卷回層
222 金属線卷回層
225 押え部材先端部
230 補強絶縁層
240 半田
発明を実施するための最良の形態 [0044] 以下、本発明の実施の形態を説明する。ここでは、超電導ケーブルの中間接続部 を例として説明する。まず、本発明接続構造の説明に先立って、接続対象の超電導 ケーブルの構成を説明する。
[0045] <超電導ケーブルの構成 >
本発明接続構造に用いる超電導ケーブルの一例として、交流用単心超電導ケー ブルを作製した。その断面図を図 1に、同ケーブルを構成するコアの断面図を図 2〖こ 示す。
[0046] このケーブル 100は、図 1に示すように、 1心のコア 110と、このコア 110を収納する断 熱管 120とを有する。
[0047] コア 110は、図 2に示すように、中心から順に、フォーマ 10、クッション層 20、導体層 3 0、内部半導電層 41、絶縁層 50、外部半導電層 42、シールド層 60、保護層 70を有して いる。これらの各層のうち、導体層 30とシールド層 60には超電導線材が用いられる。 このコア 110を構成する超電導線材は、断熱管内とコアの間の空間に冷媒 (例えば液 体窒素)を流通させて、超電導状態に保持される。
[0048] フォーマ 10には、複数の銅素線を撚り合わせたものを用いた。撚り線構造のフォー マとすることで、交流損失の低減と過電流での温度上昇抑制を同時に実現できる。ま た、本例では、中心側の素線よりも外周側の素線を細くし、フォーマ 10の外周面に現 れるより溝による凹凸を極力小さくしている。
[0049] このフォーマ 10上にクッション層 20を設けている。クッション層 20は、カーボン紙をフ ォーマ 10上にらせん状に巻きつけることで形成した。このクッション層 20により、フォー マ 10表面を平滑ィ匕することができ、フォーマ 10と導体層 30の直接接触による損傷を 軽減することができる。
[0050] 導体層 30には、厚さ 0.24mm、幅 3.8mmの Bi2223系 Ag- Mnシーステープ線材を用い た。このテープ線材をクッション層 20の上に多層に卷回して導体層 30を構成する。こ の導体層 30は、各層で超電導線材の撚りピッチが異なっている。力!]えて、各層ごと又 は複数層ごとに巻き方向を変えることで、各層に流れる電流の均流化を図ることがで きる。
[0051] 導体層 30の外周には、内側から順に、内部半導電層 41、絶縁層 50、外部半導電層 42が形成されている。内部 ·外部半導電層 41,42は、導体層 30と絶縁層 50との界面ま たは絶縁層 50とシールド層 60との界面に微小な空隙が生じることを抑制し、その空隙 での部分放電を防止する。これらの半導電層 41,42は、カーボン紙を用いることがで きる。また、絶縁層 50は、例えばクラフト紙とポリプロピレンなどの榭脂フィルムとをラミ ネートした半合成紙 (住友電気工業株式会社製 PPLP:登録商標)を用い、内部半導 電層 41の外周に卷回して構成することができる。
[0052] 上記の外部半導電層 42の上にシールド層 60を設ける。シールド層 60は、導体層 30 に用いたものと同様の超電導線材を卷回して形成される。このシールド層 60には、導 体層 30とほぼ同じ大きさで逆方向の電流が誘導されることで導体層 30力 生じる磁 場を実質的に相殺し、外部への磁場の漏洩を防止することができる。
[0053] そして、シールド層 60の上に、クラフト紙を巻き付けて保護層 70を形成して 、る。こ の保護層 70は、シールド層 60を機械的に保護すると共に、断熱管との間を絶縁させ るものである。
[0054] 一方、断熱管 120は、図 1に示すように、コルゲート内管 121とコルゲート外管 122とを 有するステンレス製の二重管構造である。通常、コルゲート内管 121とコルゲート外管 122との間は空間が形成され、その空間は真空引きされている。真空引きされる空間 内には、断熱材(図示せず)となるスーパーインシュレーションが配置され、輻射熱の 反射が行なわれる。また、コルゲート外管 122の外側には、防食層 130が形成されて いる。
[0055] <接続構造 >
(実施の形態 1)
上記の超電導ケーブルを用いた接続構造を図 3に示す。この接続構造は、突き合 せた状態に配される一対の超電導ケーブル 100と、両ケーブル 100を接続する接続ス リーブ 210と、接続スリーブ 210の端部と絶縁層 50の端部との間に露出する導体層 30 を覆う押え部材 220と、接続スリーブ周辺を覆う補強絶縁層 230とを有する。
[0056] この接続部を形成する場合、まず上記ケーブルの端部を段剥ぎしてフォーマ 10、導 体層 30、絶縁層 50 (ここでは内外半導電層 41,42も含む)、シールド層 60 (図示せず) を段階的に露出する。 [0057] 露出されたフォーマ 10と導体層 30を接続スリーブ 210にて接続する。接続スリーブ 2 10は、中間部にフォーマ揷入孔 211を、両端部にフォーマ揷入孔 21はりも内径の大 きい導体挿入孔 212を有する金属筒である。フォーマ 10は接続スリーブ 210の両端開 ロカ フォーマ挿入孔 211にまで挿入される。その際、導体層 30は導体挿入孔 212に 隙間を持って挿入されるが、フォーマ挿入孔 211には挿入されない。また、接続スリー ブ 210の端部と絶縁層 50の端部とは間隔 Sが開けられ、その間隔 Sにおいて導体層 30 が露出した状態となって!/、る。
[0058] その状態でフォーマ挿入孔 211に対応する接続スリーブ 210の外周位置を圧縮し、 フォーマ 10と接続スリーブ 210とを圧縮接続する。続いて、導体層 30と接続スリーブ 21 0とを接続する。この接続は、導体層 30と導体挿入孔 212の間に形成された隙間に半 田 240を流し込んで硬化させることにより行う。圧縮ではなぐ半田付けにより導体層 3 0と接続スリーブ 210の接続を行うことで、導体層 30を構成する超電導線材の機械的 損傷を防止する。
[0059] 次に、接続スリーブ 210の端部と絶縁層 50の端部との間に露出する導体層 30を押え 部材 220で覆う。例えば、ベース榭脂であるエポキシ榭脂とガラス短繊維の混合材料 を、ベース榭脂が溶融した状態にしておき、その混合材料を露出した導体層 30の外 周に塗布して硬化させて押え部材 220とすることが挙げられる。その他、ガラス繊維テ ープを、露出する導体層 30に巻き付け、その上に溶融したベース榭脂の塗布と硬化 を行って同様に押え部材 220を形成してもよい。テープ材の巻き付けにより FRPの押 ぇ部材 220を形成すれば、導体層 30を内周側により確実に押え付けることができる。 また、上記いずれの場合も、露出した導体層 30の全周を押え部材 220で覆うことが挙 げられる。
[0060] さらに、図示していないが、両ケーブルのシールド層 60を編組材を介して接続する 。そして、接続スリーブ 210の周辺、つまり一方のケーブルの絶縁層端部付近力も他 方のケーブルの絶縁層端部付近にかけて絶縁紙を巻き付け、補強絶縁層 230を形 成する。この補強絶縁層 230は、接続スリーブ 210上はもちろん押え部材 220の上も覆 Vヽ接続構造における十分な絶縁を確保できるようにする。
[0061] このように、接続スリーブ 210の端部と絶縁層 50の端部の間に位置する導体層 30は 、押え部材 220により押え付けられているため、冷却時の収縮など、熱伸縮がケープ ルに発生した場合でも導体層 30と絶縁層 50の相対的移動により、導体層 30が座屈す ることを抑 ff¾できる。
[0062] (実施の形態 2)
次に、テーパ状に形成した押え部材を用いた本発明実施形態を図 7に基づいて説 明する。図 7は、実施の形態 2における接続構造を示す部分模式断面図である。ここ では、主として実施の形態 1との相違点を説明し、残りの構成については実施の形態 1と共通するため、その説明は省略する。
[0063] 本例の押え部材 220は、導体層 30の上に金属テープ卷回層 221を形成し、さらにそ の上に金属線卷回層 222を形成した 2層構造となっており、接続スリーブ 210の端面 から離れるに従って低くなる (外径が小さくなる)テーパ状に成形されて!、る。
[0064] 金属テープ卷回層 221は、金属テープを導体層 30上に巻き付けることで形成する。
ここでは金属テープとして銀メツキ銅テープを用いた。この金属テープ卷回層は、より 具体的には、接続スリーブ 210側がほぼ一定の外径となる円筒部と、接続スリーブ 210 力も離れた側が導体層 30に向かって径が小さくなるテーパ部とから構成されている。 円筒部とテーパ部は一体に連続して成形される。代表的には、金属テープを重ね卷 きして、卷回の折り返し位置を順次ずらすことで押え部材 220を形成する。例えば、接 続スリーブ 210側力も金属テープを重ね巻きして第 1層を形成し、絶縁層 50の端部に 隣接する箇所で折り返して第 2層を形成する。同様に第 3層から第 4層に折り返す際 、折り返し位置を接続スリーブ 210側にずらして卷回を行う。順次、同様に外周側へ金 属テープの卷回を繰り返すことで、外周面の一部がほぼ円錐面となる金属テープ卷 回層 221を構成する。この金属テープ卷回層 221は、接続スリーブ 210の端面と絶縁 層 50の端部との間に形成される間隔の全体を覆うように形成する。
[0065] 一方、金属テープ卷回層 221における円筒部の上には金属線卷回層 222が形成さ れている。この金属線卷回層 222は円筒部の上に細径の金属線を巻き付けることで 構成している。ここでは、金属線として銀メツキ銅線を用いた。この金属線の巻き付け 時、金属テープのテーパ部の成形と同様に、接続スリーブ 210側の径方向への巻き 付け量を多くし、接続スリーブ 210から離れた側の径方向への巻き付け量を順次少な くして、金属線卷回層 221の外周面がほぼ円錐面となるように金属線卷回層 222を構 成する。この金属線卷回層 222の外周面は、金属テープ卷回層 221におけるテーパ 部の外周面と連続した傾斜を持っており、押え部材 220全体として見た場合、連続す る円錐面からなる外周面に構成されて!ヽる。
[0066] これら金属テープ卷回層 221および金属線卷回層 222は、半田により固定される。こ こでは、半田溶融時の熱で絶縁層が劣化する可能性を低減するために低融点半田 を用いた。なお、各卷回層を固定する半田をより融点が高い半田(融点 190°C)として も、 200°C程度に加熱した半田ゴテ等で加熱する場合には、半田の熱容量が小さくま た、加熱時間が一時的であるために絶縁層 50の劣化は起こらないことが検証済みで ある。下層に位置する金属テープ卷回層 221を半田で固定し、次に上層に位置する 金属線卷回層 222を半田で固定する。この半田での固定により、金属テープ卷回層 2 21、金属線卷回層 222の双方をばらけな 、ようにすることができる。
[0067] 本例の押え部材 220によれば、金属テープおよび金属線の巻き付けにより、効果的 に導体層 30を押えることができる。また、押え部材 220がテーパ状に構成されているた め実質的に角部がなく、押え部材 220周辺における電界集中を緩和することができる 。その他、金属テープと金属線を複合して用いることで、押え部材 220の全てを金属 線だけで構成する場合に比べて、巻き付け作業時間の短縮ィ匕を図ることができる。 特に、金属線卷回層 222は、細径の金属線を用いることで円滑なテーパ面力 なる外 周面を容易に形成することができる。
[0068] (実施の形態 3)
テーパ状に形成した押え部材を用いた本発明の別の実施形態を図 8に基づいて 説明する。図 8は、実施の形態 3における接続構造を示す部分模式断面図である。こ こでは、主として実施の形態 1〜2との相違点を説明し、残りの部分については実施 の形態 1〜2と共通するため、その説明は省略する。
[0069] 本例の絶縁層 50および押え部材 220の各先端部はペンシリング形成し、それぞれ 絶縁層先端部 55および押え部材先端部 225を形成した。ここで、ペンシリング形成と は、各部材の端部を外周面が円錐形の先細り状に形成し、且つ、先細り状端部にお いて、その端部の外周面を、 10層程度の卷回構造を有する円筒形に形成することを 意味する。
[0070] 本例の押え部材 220は、導体層 30の上に金属テープ卷回層 221を形成し、さらにそ の上に金属線卷回層 222を形成した 2層構造となっており、接続スリーブ 210の端面 力も絶縁層 50に向力つてペンシリング形成される押え部材先端部 225が、ペンシリン グ形成された絶縁層先端部 55の下部に一部延長して形成されて 、る。絶縁層先端 部 55は、例えば、 10層の卷回構造である。延長して形成される押え部材 220の押え部 材先端部 225は、ほぼ一定の外径の円筒形に形成されている。
[0071] 絶縁層 50は、絶縁テープ (代表的には、 PPLP (住友電気工業株式会社の登録商標 ) )の卷回しにより構成される。絶縁層 50のペンシリング形成された絶縁層先端部 55を 手作業によって一部卷戻す。押え部材先端部 225は、超電導ケーブルの接続時に露 出される導体層 30の幅よりも絶縁層先端部 55側に一部延長して形成する。絶縁層先 端部 55は、押え部材先端部 225を含む押え部材 220を形成した後、巻戻しておいた 絶縁テープを押え部材先端部 225に重なるように卷きなおして形成する。また、巻き なおした絶縁層先端部 55もほぼ一定の外径の円筒状に形成する。
[0072] 本例の押え部材 220の押え部材先端部 225を絶縁層先端部 55の下部に一部延長し て形成することにより、押え部材 220の幅を超電導ケーブル接続時に露出される導体 層 30の間隔 Sよりも多くとることができる。このような構成となすことにより、接続部形成 後の熱伸縮によって導体層 30と絶縁層 50との相対的なずれが生じ、当初の間隔 Sが 広がることがあっても導体層 30の露出の可能性を抑制することができる。従って、ケ 一ブルの熱伸縮による導体層 30と絶縁層 50との相対的ずれに起因する導体層 30の 座屈の可能性を低減することができる。また、押え部材 220の固定をより強固にするこ とがでさる。
[0073] (実施の形態 4)
テーパ状に形成した押え部材を用いた本発明の別の実施形態を図 9に基づいて 説明する。図 9は、実施の形態 4における接続構造の部分摸式断面図である。ここで は、主として実施の形態 1〜3との相違点を説明し、残りの部分については実施の形 態 1〜3と共通するため、その説明は省略する。
[0074] 本例の押え部材 220は、導体層 30の上に金属テープ卷回層 221を形成し、さらにそ の上に金属線卷回層 222を形成した 2層構造となっており、接続スリーブ 210の端面 から離れるに従って低くなる (外径が小さくなる)テーパ状に形成されて!、る。
[0075] 金属テープ卷回層 221は、金属テープを導体層 30上に巻き付けることで形成する。
この金属テープ卷回層 221は、より具体的には、接続スリーブ 210から離れた側が導 体層 30に向力つて径が小さくなるように複数の段差により階段状に構成されている。 隣接する各段差は一体に構成されている。代表的には、金属テープを重ね巻きして 、卷回の折り返し位置を順次ずらすことで金属テープ卷回層 221を形成する。金属テ 一プ卷回層 221は、押え部材 220をテーパ状に形成することを考慮に入れて、縦断面 力も見て絶縁層 50に方向に下り階段状に形成する。また、金属テープ卷回層 221の テーパ状卷回層表面を、各段差の一段当たりの金属テープ積層数を少なくすること で滑らかに形成することができる。
[0076] 金属線卷回層 222は、金属テープ卷回層 221の形成する階段状段差を埋め合わせ るように卷回される。この金属線卷回層 222は、接続スリーブ 210の端面と絶縁層 50の 端部との間に形成される間隔 Sの全体を覆うように形成する。押え部材 220全体を見 た場合、連続する円錐面からなる外周面に構成されて 、る。
[0077] 本例の押え部材 220によれば、金属テープ卷回層 221により、テーパ状のおおよそ の形状を形成することによって、金属線卷回層 222の卷数を大幅に減少させ、作業効 率の向上を図ることができる。なお、押え部材 220および絶縁層 50を、実施の形態 3 に示すようにペンシリング形成して絶縁層 50の下部に延長して形成しても良い。
[0078] (実施の形態 5)
テーパ状に形成した押え部材を用いた本発明の別の実施形態を図 10に基づいて 説明する。図 10は、実施の形態 5における接続構造を示す部分摸式断面図である。 ここでは、主として実施の形態 1〜3との相違点を説明し、残りの構成については実 施の形態 1〜3と共通するため、その説明は省略する。
[0079] 本例の押え部材 220は、導体層 30の上に金属テープ卷回層 221を形成し、さらにそ の上に金属線卷回層 222を形成した 2層構造となっており、接続スリーブ 210の端面 から離れるに従って低くなる (外径が小さくなる)テーパ状に形成されて!、る。
[0080] 金属テープ卷回層 221は、金属テープを導体層 30上に巻き付けることで形成する。 より具体的には、金属テープを径方向にずれがない状態で積層して、ほぼ一定の外 径となる円筒形に形成する。
[0081] 一方、金属線卷回層 222は、円筒形の金属テープ卷回層 221を覆うように形成され ている。この金属線の巻き付け時、金属線を金属テープ卷回層 221の円筒部の上に 、接続スリーブ 210側の径方向への巻き付け量を多くし、金属テープ卷回層 221の角 部方向への巻き付け量を順次少なくするように卷回する。次に、金属線を導体層 30 の上に、金属テープ卷回層 221の角部側の径方向への巻き付け量を多くし、絶縁層 5 0側の径方向への巻き付け量を順次少なくするように卷回する。金属線卷回層 222の 外周面は、滑らかなテーパ状を形成する。なお、金属線卷回層 222は、接続スリーブ 210側から絶縁層 50に向力つて、金属テープ卷回層 221の上部と側部を別々に形成 しても良いし、連続的に形成しても良い。押え部材 220全体を見た場合、連続する円 錐面からなる外周面に構成されて 、る。
[0082] 本発明の押え部材 220によれば、金属テープ卷回層 221を円筒形に形成することに より、金属テープの卷回しを容易する。また、金属テープの卷数の少ないテーパ状端 部が形成されないことから、金属テープ卷回層 221のばらけが生じにくい。なお、押え 部材 220および絶縁層 50をペンシリング形成して、実施の形態 3に示すようにペンシリ ング形成して絶縁層 50の下部に一部延長して形成しても良い。
[0083] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
[0084] 本出願は 2004年 10月 14日出願の日本特許出願(特願 2004— 300573)及び 2 004年 12月 7日出願の日本特許出願 (特願 2004— 354692)に基づくものであり、 その内容はここに参照として取り込まれる。
産業上の利用可能性
[0085] 本発明は、電力輸送手段などに用いる超電導ケーブルの接続構造として有効利用 することができる。その際、超電導ケーブルは単心 '多心のいずれであってもよいし、 AC · DCの!、ずれであってもよ!/ヽ。

Claims

請求の範囲
[1] 超電導層とその外周層とを有する超電導ケーブルの端部に形成される超電導ケー ブルの接続構造であって、
前記超電導層に接続される接続部材と、
前記接続部材の端部と外周層の端部との間において、超電導層を覆うことで前記 超電導層と前記外周層との相対的移動により前記超電導層が座屈することを防止す る押え部材とを有することを特徴とする超電導ケーブルの接続構造。
[2] 前記押え部材が FRP、金属線または金属テープで形成されていることを特徴とする 請求項 1に記載の超電導ケーブルの接続構造。
[3] 前記押え部材が、金属線および金属テープの少なくとも一方の卷回構造であること を特徴とする請求項 1に記載の超電導ケーブルの接続構造。
[4] 前記押え部材の外周面が、テーパ状であることを特徴とする請求項 1に記載の超電 導ケーブルの接続構造。
[5] 前記押え部材が、半田によって超電導層に固定されてなることを特徴とする請求項
1に記載の超電導ケーブルの接続構造。
[6] 前記外周層の端部の下に押え部材が延長して形成されてなることを特徴とする請 求項 1に記載の超電導ケーブルの接続構造。
PCT/JP2005/018748 2004-10-14 2005-10-12 超電導ケーブルの接続構造 WO2006041070A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/665,180 US20090025979A1 (en) 2004-10-14 2005-10-12 Coupling structure of superconducting cable
MX2007004486A MX2007004486A (es) 2004-10-14 2005-10-12 Estructura de acoplamiento de un cable superconductor.
CA002580813A CA2580813A1 (en) 2004-10-14 2005-10-12 Coupling structure of superconducting cable
EP05793136A EP1804337A1 (en) 2004-10-14 2005-10-12 Superconducting cable connection structure
NO20071752A NO20071752L (no) 2004-10-14 2007-04-02 Koblingsstruktur for superledende kabel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-300573 2004-10-14
JP2004300573 2004-10-14
JP2004354692A JP2006141186A (ja) 2004-10-14 2004-12-07 超電導ケーブルの接続構造
JP2004-354692 2004-12-07

Publications (1)

Publication Number Publication Date
WO2006041070A1 true WO2006041070A1 (ja) 2006-04-20

Family

ID=36148358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018748 WO2006041070A1 (ja) 2004-10-14 2005-10-12 超電導ケーブルの接続構造

Country Status (10)

Country Link
US (1) US20090025979A1 (ja)
EP (1) EP1804337A1 (ja)
JP (1) JP2006141186A (ja)
KR (1) KR20070053341A (ja)
CA (1) CA2580813A1 (ja)
MX (1) MX2007004486A (ja)
NO (1) NO20071752L (ja)
RU (1) RU2007117712A (ja)
TW (1) TW200623156A (ja)
WO (1) WO2006041070A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967750B2 (ja) * 2007-03-28 2012-07-04 住友電気工業株式会社 超電導ケーブルの接続構造および超電導ケーブルの接続方法
FR2930378B1 (fr) 2008-04-16 2010-05-14 Nexans Agencement de connexion de deux cables supraconducteurs
JP2012064709A (ja) 2010-09-15 2012-03-29 Sony Corp 固体撮像装置及び電子機器
JP6103603B2 (ja) * 2012-04-03 2017-04-05 学校法人中部大学 超伝導ケーブルと設置方法
FR3010847B1 (fr) * 2013-09-19 2017-12-29 Nexans Jonction de cables supraconducteurs
TWI461686B (zh) * 2013-10-25 2014-11-21 Univ Nat Taiwan 輸電線路熱容量預測方法
DE102017206810A1 (de) * 2017-04-24 2018-10-25 Siemens Aktiengesellschaft Leiterelement mit supraleitendem Bandleiter sowie Spuleneinrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084793U (ja) * 1973-12-07 1975-07-19
JPH05242917A (ja) * 1992-02-26 1993-09-21 Mitsubishi Electric Corp 超電導線の接続方法および接続構造
JPH07320564A (ja) * 1994-05-25 1995-12-08 Sumitomo Electric Ind Ltd 超電導ケーブル
JPH11313435A (ja) * 1998-04-28 1999-11-09 Sumitomo Electric Ind Ltd 固体絶縁電力ケーブルの導体接続部とその製造方法
JP2002010464A (ja) * 2000-06-22 2002-01-11 Showa Electric Wire & Cable Co Ltd ケーブル接続部
JP2002027651A (ja) * 2000-07-05 2002-01-25 Fujikura Ltd 電力ケーブルの接続部

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084793U (ja) * 1973-12-07 1975-07-19
JPH05242917A (ja) * 1992-02-26 1993-09-21 Mitsubishi Electric Corp 超電導線の接続方法および接続構造
JPH07320564A (ja) * 1994-05-25 1995-12-08 Sumitomo Electric Ind Ltd 超電導ケーブル
JPH11313435A (ja) * 1998-04-28 1999-11-09 Sumitomo Electric Ind Ltd 固体絶縁電力ケーブルの導体接続部とその製造方法
JP2002010464A (ja) * 2000-06-22 2002-01-11 Showa Electric Wire & Cable Co Ltd ケーブル接続部
JP2002027651A (ja) * 2000-07-05 2002-01-25 Fujikura Ltd 電力ケーブルの接続部

Also Published As

Publication number Publication date
CA2580813A1 (en) 2006-04-20
EP1804337A1 (en) 2007-07-04
TW200623156A (en) 2006-07-01
NO20071752L (no) 2007-07-13
KR20070053341A (ko) 2007-05-23
RU2007117712A (ru) 2008-11-20
US20090025979A1 (en) 2009-01-29
JP2006141186A (ja) 2006-06-01
MX2007004486A (es) 2007-05-08

Similar Documents

Publication Publication Date Title
JP5738440B2 (ja) 超電導ケーブル及びその製造方法
US7094973B2 (en) Superconducting cable joint structure
US7498519B2 (en) Joint for superconducting cable
WO2006041070A1 (ja) 超電導ケーブルの接続構造
JP5053466B2 (ja) 超電導ケーブル導体の端末構造
JP2007287388A (ja) 超電導ケーブルコアおよび超電導ケーブル
JP2011045169A (ja) 超電導ケーブルの中間接続構造
US7763806B2 (en) Superconducting cable
JP2006059695A (ja) 超電導ケーブル
JP4720976B2 (ja) 超電導ケーブル
KR101163811B1 (ko) 직류 초전도 케이블의 설계 시스템
JP4716160B2 (ja) 超電導ケーブル
JP4751424B2 (ja) 超電導ケーブルコアの接続構造
JP5003942B2 (ja) 超電導ケーブル、および超電導ケーブルの接続部
TW200805837A (en) Cable joint of superconducting cable
JP4927794B2 (ja) 超電導ケーブル用フォーマの接続方法、および超電導ケーブル用フォーマの接続構造
JP2006320115A (ja) 超電導ケーブルの接続部
JP5348511B2 (ja) 超電導ケーブル、および超電導ケーブルの接続部
JP5100245B2 (ja) 電力用直流同軸ケーブル接続部
JP2007258192A (ja) 超電導ケーブルの中間接続部

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2580813

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005793136

Country of ref document: EP

Ref document number: 11665180

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/004486

Country of ref document: MX

Ref document number: 1020077008496

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580035259.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007117712

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005793136

Country of ref document: EP