WO2006038335A1 - Electrochemical deposition method, electrochemical deposition apparatus and microstructure - Google Patents

Electrochemical deposition method, electrochemical deposition apparatus and microstructure Download PDF

Info

Publication number
WO2006038335A1
WO2006038335A1 PCT/JP2005/008038 JP2005008038W WO2006038335A1 WO 2006038335 A1 WO2006038335 A1 WO 2006038335A1 JP 2005008038 W JP2005008038 W JP 2005008038W WO 2006038335 A1 WO2006038335 A1 WO 2006038335A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical
potential
electrochemical deposition
working electrode
current
Prior art date
Application number
PCT/JP2005/008038
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Nakato
Shuji Nakanishi
Kazuhiro Fukami
Toshio Tada
Sho-Ichiro Sakai
Tomoyuki Nagai
Original Assignee
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University filed Critical Osaka University
Priority to JP2006539150A priority Critical patent/JPWO2006038335A1/en
Publication of WO2006038335A1 publication Critical patent/WO2006038335A1/en
Priority to US11/731,242 priority patent/US20070240993A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00126Static structures not provided for in groups B81C1/00031 - B81C1/00119
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/0038Processes for creating layers of materials not provided for in groups B81C1/00357 - B81C1/00373
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/0033D structures, e.g. superposed patterned layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0197Processes for making multi-layered devices not provided for in groups B81C2201/0176 - B81C2201/0192

Definitions

  • Electrochemical deposition method electrochemical deposition apparatus and microstructure
  • the present invention provides a surface of a working electrode by applying a voltage or passing a current between a plurality of electrodes immersed in a solution dissolved in a material force ion state capable of electrochemical deposition such as metal.
  • the present invention relates to an electrochemical deposition method, an electrochemical deposition apparatus, and a lattice having a scale of several tens to several hundreds of micrometers.
  • nano-periodic structures such as metals, semiconductors, and conductive polymers have been actively researched in various fields due to various functions based on their periodic structures, such as giant magnetoresistance, tunneling magnetoresistance, and photonics. It is going on.
  • a thin film forming method such as a vapor deposition method has been established as a method for producing a nano-periodic structure. These are multi-step methods in which the target substances are alternately stacked.
  • the structure formed by the former is a thermal equilibrium structure, that is, a static ordered structure. , Determined by the principles of intermolecular forces (atomic forces) and equilibrium thermodynamics.
  • the structure formed by the latter is a pattern formed spontaneously in the flow of energy, that is, in a non-equilibrium system. This is an ordered structure that has various temporal and spatial structures.
  • Dynamic self-organization has features such as the appearance of pull-in phenomenon, self-repair function, and long-range interaction that are not found in static self-organization, and controls dynamic self-organization. If it is possible, a microstructure having a desired structure can be manufactured.
  • Patent Document 1 a conductive support is immersed in an aqueous solution containing metal ions, the potential of the conductive support is vibrated using the conductive support as an electrode, and a metal layer is formed on the conductive support. And a method for producing a laminated film by alternately depositing metal oxide layers.
  • Patent Document 1 JP 2002-129374 A
  • the present inventor has produced a microstructure using electrochemical vibration (current vibration or potential vibration). Based on the electrochemical oscillation waveform (period, amplitude, etc.), the knowledge that the structure to be constructed is determined was obtained. Electrochemical reactions are easy to control, and even when energy is interrupted, the structure is accumulated as a history (precipitate), immobilizing and remembering traces of dynamic spatiotemporal order Therefore, the constructed structure will not be lost.
  • the present inventor is able to control the autocatalytic process of the waveform of electrochemical vibration by the type of substance that is electrochemically deposited (for example, electrolytic deposition), the potential of the working electrode, and the current. Obtained knowledge.
  • the present invention has been made on the basis of the above-mentioned knowledge, and electrochemical analysis such as metal is performed.
  • Material force that can be released Electrochemistry is performed by applying a voltage or applying a current between multiple electrodes immersed in a solution dissolved in the S ion state, and controlling the potential or current of one electrode (called the working electrode) with respect to the solution.
  • the purpose is to provide an electrochemical deposition method that determines the structure of a substance deposited on the surface of a working electrode based on the waveform of electrochemical vibration by generating vibration, that is, current vibration or potential vibration. To do.
  • the present invention mixes reaction-inhibiting species, and controls electrochemical vibrations by causing an autocatalytic process by coupling negative differential resistance induced by the reaction-inhibiting species with a potential drop in the solution. It is an object of the present invention to provide an electrochemical deposition method.
  • the present invention determines the structure of the substance deposited on the surface of the working electrode by adjusting the concentration of the reaction-inhibiting species to control the potential or current of the working electrode where electrochemical oscillation occurs. It is an object to provide an electrochemical deposition method.
  • the present invention uses a cationic surfactant having a carbon chain of 10 or more as a reaction-inhibiting species, and adjusts the carbon chain to control the potential or current at which electrochemical vibrations occur, thereby controlling the working electrode.
  • the purpose is to provide an electrochemical deposition method that determines the structure of the material deposited on the surface.
  • Another object of the present invention is to provide an electrochemical deposition method that determines the structure of a substance deposited on the surface of a working electrode by controlling the waveform of electrochemical vibration by adjusting the concentration of the substance.
  • the composition ratio of a structure having a plurality of substance forces is determined by controlling a waveform of electrochemical vibration.
  • the purpose is to provide a deposition method.
  • the thickness of each layer of the multilayer structure and the Z or Z is controlled by controlling the waveform of the electrochemical vibration. Is intended to provide an electrochemical deposition method for determining the composition ratio of each layer.
  • the present invention controls the potential or current of the working electrode so that the electrochemical deposition proceeds to be diffusion-dominated to generate the electrochemical vibration, and thereby the action based on the waveform of the electrochemical vibration.
  • the purpose is to provide an electrochemical deposition method for determining the structure of the material deposited on the electrode surface.
  • the present invention detects the upper end potential or the lower end potential for each oscillation of the electrochemical vibration, and controls the current of the working electrode based on the detected fluctuation of the upper end potential or the lower end potential, thereby gradually increasing the current density. It is an object of the present invention to provide an electrochemical deposition method and an electrochemical deposition apparatus capable of preventing the spontaneous vibration from stopping from being out of the region where the spontaneous vibration occurs when it becomes small.
  • the shape of the fine structure grown on the surface of the working electrode is made uniform and uniform. It is an object of the present invention to provide an electrochemical deposition method capable of obtaining a fine lattice structure with excellent properties.
  • the present invention is configured to control the current of the working electrode so that the current density at which spontaneous vibration occurs is generated, so that the region force at which spontaneous vibration occurs is also reduced as the current density gradually decreases.
  • the purpose of the present invention is to provide an electrochemical deposition apparatus that can continue the spontaneous vibration without stopping the spontaneous vibration.
  • the present invention uses a substance deposited by each of the electrochemical deposition methods described above as a three-dimensional basic skeleton, and deposits another substance on the surface of the substance, for example, crystallographically stable. It is an object of the present invention to provide a microstructure that can be used as an electrode having a very large surface area with high strength and exposed surface.
  • the present invention provides a microstructure having a porous structure formed therein by polymerizing another substance on the surface of the substance deposited by each of the electrochemical deposition methods described above and removing the deposited substance. For the purpose of provision.
  • the electrochemical deposition method according to the first invention is a method in which a voltage is applied or a current is applied between a plurality of electrodes immersed in a solution in which a substance capable of electrochemical deposition is dissolved in an ionic state, and the surface of the working electrode.
  • the potential or current of the working electrode with respect to the solution is controlled to generate electrochemical vibration, and based on the waveform of the electrochemical vibration, It is characterized by determining the structure of the substance.
  • a plurality of electrodes are immersed in a solution in which a substance capable of electrochemical deposition (such as a metal, a semiconductor, and a conductive polymer) is dissolved in an ionic state, and an electrode is interposed between the plurality of electrodes.
  • a substance capable of electrochemical deposition such as a metal, a semiconductor, and a conductive polymer
  • an electrode is interposed between the plurality of electrodes.
  • the dissolved substance is electrochemically deposited on the surface of one of the electrodes (working electrode).
  • spontaneous electrochemical oscillation is generated by controlling the potential or current of the working electrode with respect to the solution.
  • the waveform (for example, period) of the electrochemical vibration can be controlled, so that the structure of the substance deposited on the surface of the working electrode can be determined according to the waveform of the electrochemical vibration. Can be determined. Since the structure is self-assembled by the self-organized vibration phenomenon, the structure to be constructed is sequentially laminated to reflect the history of the vibration phenomenon. Therefore, since the structure is accumulated as a history and the trace of the dynamic spatiotemporal order can be fixed and stored, the constructed structure is not lost.
  • the electrochemical deposition method according to the second invention is the method according to the first invention, wherein a reaction inhibiting species is mixed into the solution, and the reaction inhibiting species adheres to the surface of the working electrode! In this case, a state of / slipping and a state of adhesion / lessness is generated alternately and spontaneously, and the electric potential or current of the working electrode in which the electrochemical vibration is generated is controlled.
  • reaction-inhibiting species by mixing a reaction inhibiting species into the solution, an autocatalytic process is caused by the coupling between the negative differential resistance induced by the reaction inhibiting species and the potential drop in the solution, In other words, a state in which reaction-inhibiting species are attached to the surface of the working electrode and a state in which the reaction-inhibiting species is not attached are spontaneously and alternately generated to control the potential or current of the working electrode in which electrochemical oscillation occurs.
  • This reaction-inhibiting species can be mixed as appropriate depending on the chemical reaction system, and the potential or current region of the working electrode where electrochemical vibration occurs can be adjusted.
  • the potential or current of the working electrode at which the electrochemical oscillation occurs is adjusted by adjusting the concentration of the reaction-inhibiting species. It is characterized by controlling.
  • the potential or current of the working electrode where electrochemical oscillation occurs can be controlled.
  • current oscillation which is a form of electrochemical oscillation
  • the potential of the negative differential resistance (the potential of the working electrode at which the current flowing to the working electrode decreases rapidly) is adjusted to the concentration of the reaction-inhibiting species mixed into the solution. By doing so, it can be moved to the positive side or the negative side. Specifically, the potential at which current oscillation occurs can be shifted to the positive side by increasing the concentration of the reaction-inhibiting species.
  • the reaction-inhibiting species is a cationic surfactant having 10 or more carbon chains, and the carbon chain By adjusting the electric potential or current of the working electrode in which the electrochemical vibration occurs.
  • the potential of the working electrode that causes electrochemical vibration or the like by adjusting the carbon chain or The current can be controlled.
  • the potential of the negative differential resistance can be moved to the positive side or the negative side by adjusting the carbon chain.
  • the potential at which current oscillation occurs can be shifted to the positive side. Therefore, when the same type of reaction-inhibiting species is used, the potential at which current oscillation occurs can be controlled by adjusting the carbon chain, and the structure of the substance deposited on the surface of the working electrode can be determined.
  • the electrochemical deposition method according to the fifth invention is characterized in that, in any one of the first invention to the fourth invention, the waveform of the electrochemical vibration is controlled by adjusting the concentration of the substance.
  • the potential or current of the working electrode can be controlled, that is, the waveform of the electrochemical vibration can be controlled.
  • the structure of can be determined.
  • the electrochemical deposition method according to a sixth aspect of the present invention is the method according to any one of the first to fifth aspects, wherein a plurality of substances are dissolved in an ionic state in the solution.
  • the composition ratio of the structure composed of the plurality of substances is determined by controlling the waveform.
  • the composition ratio of the structure having a plurality of substance forces can be determined by controlling the waveform of electrochemical vibration. it can.
  • each substance The amount of precipitation with respect to the potential of the working electrode varies depending on the difference in the degree of ON tendency.
  • the waveform of the electrochemical vibration can be controlled by controlling the potential of the working electrode, the composition ratio of the structure can be determined (controlled) by controlling the amount of precipitation of each substance.
  • the composition ratio can be changed.
  • the electrochemical deposition method according to a seventh aspect of the present invention is the method according to any one of the first to sixth aspects, wherein the structure of the substance determined based on the waveform of the electrochemical vibration is a multilayer structure. It is characterized by being.
  • a substance having a multilayer structure can be deposited on the surface of the working electrode by the above-described electrochemical deposition method.
  • the electrochemical deposition method according to the eighth invention is the method according to the seventh invention, wherein the electrochemical oscillation waveform is controlled to determine the film thickness and Z of each layer of the multilayer structure or the composition ratio of each layer. It is characterized by that.
  • the potential or current of the working electrode can be controlled, that is, the waveform of the electrochemical vibration can be controlled.
  • the amount of precipitation can be controlled.
  • the deposition amount of each substance can be adjusted, so that the film thickness of each layer and the composition ratio of Z or each layer can be determined.
  • the film thickness of each layer can be determined by adjusting the concentration of each substance while maintaining the concentration ratio of each substance constant.
  • An electrochemical deposition method is characterized in that, in any one of the first to eighth inventions, the substance is a metal.
  • the metal can be deposited on the surface of the working electrode by the electrochemical deposition method described above.
  • the electrochemical deposition method according to a tenth aspect of the present invention is the method according to the first aspect of the present invention, wherein the potential or current of the working electrode is controlled so that the electrochemical deposition is governed by diffusion to generate electrochemical vibrations. It is characterized by the fact that
  • electrochemical oscillation is generated by controlling the potential or current of the working electrode so that electrochemical deposition advances to the diffusion control. Electrochemical phenomena occur due to a combination of autocatalytic crystal growth in a specific orientation and autocatalytic surface deactivation on the thermodynamically stable surface. Reflecting this, a fine regular structure grown in the vertical direction of the working electrode is formed. Therefore, the structure is accumulated as a history, and the trace of the dynamic spatiotemporal order can be fixed and stored, so that the constructed structure is not lost.
  • the electrochemical deposition method according to the eleventh aspect of the present invention is the method according to the tenth aspect, wherein the upper end potential or the lower end potential for each oscillation of the electrochemical vibration is detected and the detected upper end potential or lower end potential is changed. The current of the working electrode is controlled.
  • the upper end potential or the lower end potential for each vibration of the electrochemical vibration is detected, and the current of the working electrode is controlled based on the detected fluctuation of the upper end potential or the lower end potential.
  • the oscillation phenomenon starts spontaneous oscillation at the boundary of the current density that becomes the threshold for transition from the reaction-controlled process to the diffusion-controlled process.
  • the effective electrode area of the working electrode gradually increases, and when the current density is gradually reduced, the vibration is separated from the region where the spontaneous vibration occurs. Will stop. Therefore, spontaneous vibration can be continued by controlling the current of the working electrode.
  • the electrochemical deposition method according to the twelfth invention is characterized in that, in the eleventh invention, the effective current density of the working electrode with respect to the solution is controlled to be substantially constant.
  • the shape of the fine structure grown on the surface of the working electrode for example, the lattice spacing
  • a fine lattice structure with excellent uniformity can be obtained.
  • the waveform of the electrochemical vibration is controlled by adjusting the concentration of the substance. It is characterized by.
  • the potential or current of the working electrode can be controlled, that is, the waveform of the electrochemical vibration can be controlled.
  • the structure of the material to be released can be determined. For example, by increasing the ion concentration of a substance, the individual structure of the periodic structure of the substance can be increased.
  • the electrochemical deposition apparatus causes an electric current to flow between a plurality of electrodes immersed in a solution in which a substance capable of electrochemical deposition is dissolved in an ionic state, thereby generating electrochemical vibrations.
  • An electrochemical deposition apparatus for depositing the substance on the surface of the working electrode, the detection means for detecting the upper end potential or the lower end potential for each vibration of the electrochemical vibration, and the upper end detected by the detection means And a control means for controlling a current of the working electrode with respect to the solution based on a potential or a lower end potential.
  • a plurality of electrodes are immersed in a solution in which a substance capable of electrochemical deposition (metal, semiconductor, conductive polymer, etc.) is dissolved in an ionic state, and the detection means is electrochemical.
  • the upper end potential or lower end potential for each vibration is detected, and the control means controls the current of the working electrode with respect to the solution based on the detected upper end potential or lower end potential.
  • the control means controls the current of the working electrode with respect to the solution based on the detected upper end potential or lower end potential.
  • An electrochemical deposition apparatus is characterized in that, in the fourteenth invention, the control means controls the current density to generate spontaneous vibration.
  • the present invention by controlling the current of the working electrode so as to obtain a current density at which spontaneous vibrations occur, the region force that causes spontaneous vibrations as the current density gradually decreases is eliminated.
  • the spontaneous vibration can be continued without stopping the spontaneous vibration.
  • the microstructure according to the sixteenth invention is characterized in that the substance deposited by each of the electrochemical deposition methods described above is used as a three-dimensional basic skeleton, and other substances are deposited on the surface of the substance.
  • a fine structure for example, a fine lattice structure
  • another substance such as platinum is applied to the surface of the fine structure.
  • an electrode having a high strength and an extremely large surface area can be obtained. It also has the advantage that a crystallographically stable surface is exposed.
  • a porous structure is formed inside by polymerizing another substance on the surface of the substance deposited by each of the electrochemical deposition methods described above and removing the deposited substance. It is characterized by that.
  • a fine structure in which the fine structure has a blank pattern can be realized using the fine structure (for example, a fine lattice structure) as a three-dimensional template.
  • a fine regular structure is self-assembled vertically from the substrate by a self-organized vibration phenomenon.
  • the structures to be constructed are sequentially stacked to reflect the history of vibration phenomena.
  • the electrochemical vibration phenomenon itself is controlled, the resulting regular structure can be controlled.
  • the current at the working electrode so that the current density at which spontaneous vibration occurs is generated, the current density gradually decreases, and the spontaneous vibration stops outside the region where the spontaneous vibration occurs.
  • the obtained regular structure itself is used as a template, it is possible to construct a three-dimensional regular structure such as metal, semiconductor and conductive polymer. Furthermore, in principle, it can be applied to the electrochemical deposition reaction of a desired substance by appropriately selecting the reaction-inhibiting species, and therefore, it is expected to be applied to the formation of various functional materials. In addition, since the configuration of the apparatus for that purpose is extremely simple, it is possible to produce a predetermined fine structure at an extremely low cost, and thus an excellent effect can be obtained.
  • FIG. 1 is an explanatory diagram for explaining an electrochemical deposition method according to Embodiment 1 of the present invention.
  • FIG. 2 is a graph showing current oscillation.
  • FIG. 3 is an explanatory diagram for explaining a thin film evaluation method.
  • FIG. 4 shows an electron micrograph and an Auger spectroscopic result showing an evaluation result of a multilayer film formed by the electrochemical deposition method according to Embodiment 1 of the present invention.
  • FIG. 5 is a graph showing the deposition current of Cu and Sn with respect to the potential of the working electrode.
  • FIG. 6 is a graph showing the correspondence between the waveform of electrical vibration and the composition ratio of precipitates.
  • FIG. 8 is a graph showing the deposition current with respect to the working electrode potential when C12TAC is used.
  • FIG. 9 is an explanatory diagram for explaining the electrochemical deposition method according to the second embodiment of the present invention.
  • FIG. 11 is an electron micrograph showing an example of a microstructure formed by the electrochemical deposition method according to Embodiment 2 of the present invention.
  • FIG. 12 is an explanatory diagram for explaining a periodic structural change synchronized with the potential oscillation of Sn.
  • FIG. 13 is an explanatory diagram for explaining a periodic structural change synchronized with the potential oscillation of Sn.
  • FIG. 14 is a graph showing potential oscillation in Sn.
  • FIG. 15 is an electron micrograph showing a microstructure constructed by changing the current value of the working electrode.
  • FIG. 16 is a graph showing potential oscillation in Zn.
  • FIG. 17 is an electron micrograph showing a microstructure that is constructed when the Zn ion concentration is changed.
  • FIG. 18 is a graph showing the relationship between potential and current density.
  • FIG. 20 is an electron micrograph at points A and B in FIG. 19 (a).
  • FIG. 22 is an explanatory diagram for explaining control of a current value by a control unit.
  • FIG. 23 is a graph showing an example of current value control by the control unit.
  • FIG. 1 is an explanatory diagram for explaining an electrochemical deposition method according to Embodiment 1 of the present invention.
  • the case where the current oscillation as one form of the electrochemical oscillation is controlled will be described.
  • solution t an electrolytic (acidic) solution (hereinafter referred to as solution t) dissolved in a force ion state of a plurality of substances (herein referred to as Cu and Sn) with the anode 1 and the cathode 2 which are conductive metal substrates facing each other.
  • solution t an electrolytic (acidic) solution
  • Cu and Sn a force ion state of a plurality of substances
  • reaction inhibiting species are mixed in Solution 4, and spontaneous electrochemical vibration (here, current oscillation) is generated in the electrochemical deposition reaction of Cu and Sn in the presence of the reaction inhibiting species.
  • the reaction-inhibiting species is, for example, a cationic surfactant, such as Amiet—320 (Chemical Formula 1), C H N (CH) CI (Chemical Formula
  • TritonX-100 (Chemical Formula 3) can be used.
  • citrate as a smoothing agent in solution 4
  • Solution 4 is considered to be a conductor
  • a strong electric field is applied to each ion on the surface of Cathode 2, which causes dehydration, and each ion receives electrons from Cathode 2 and is adsorbed.
  • the adsorbed atoms diffuse on the cathode surface and reach the formation point of the crystal lattice to form crystals. Attachment and desorption of reaction-inhibiting species to cathode 2 occur alternately and spontaneously, and a vibration phenomenon appears with the attachment and desorption of reaction-inhibiting species.
  • the cathode 2 functions as a working electrode, and a thin film having excellent smoothness composed of Cu and Sn is deposited on the cathode 2 on the surface of the cathode 2 based on the waveform of the vibration phenomenon that appears.
  • the smoothness is attributed to the incorporation of citrate, and in the absence of citrate, irregularities remain on the film surface.
  • FIG. 3 is an explanatory diagram for explaining the thin film evaluation method.
  • the thin film 21 processed in this way was also observed with an electron microscope on the upper surface force, and as shown in FIG. 4 (a), the presence of concentric contrast (brightness ratio) was confirmed.
  • the grown thin film had a multilayer structure.
  • the side surface of the multilayer film was analyzed by scanning Auge spectroscopy, and as a result, the composition ratio changed periodically as shown in Fig. 4 (b). And confirmed that.
  • the multilayer film grows on the surface of the cathode 2, for example, by making the shape of the cathode 2 cylindrical, a multilayer film having excellent smoothness can be formed inside the cylinder.
  • Electrochemical deposition methods can grow precipitates on the surface without depending on the shape of the electrode, so a multilayer film with excellent smoothness can be formed on the surface of any shape of electrode. Can be formed.
  • a multilayer film having a desired shape can be formed on the surface of the electrode by applying the electrochemical deposition method of the present invention using an electrode previously processed into a desired shape.
  • the multilayer film is a thin film (an alloy of Cu and Sn) deposited by the occurrence of current oscillation.
  • the composition ratio, film thickness, and number of layers (lamination of layers) The number of times is controlled as follows.
  • the potential of the cathode (working electrode) where current oscillation occurs has a range, and by adjusting the potential of the working electrode, the waveform of the current oscillation is controlled to adjust the composition ratio of the multilayer film and the film thickness of each layer. Can be adjusted. In other words, the potential of the working electrode may be adjusted in order to obtain a multilayer film having a desired composition ratio.
  • the potential of the working electrode can be set to a desired value by changing the voltage applied between the anode 1 and the cathode 2.
  • FIG. 5 is a graph showing Cu and Sn deposition currents with respect to the potential of the working electrode.
  • Cu and Sn if the potential of the working electrode is lowered (when the potential is made more negative), the deposition current increases. However, Sn also causes a deposition current with a more negative potential than Cu. Therefore, if the potential of the working electrode is high and current oscillation is set to occur in the state, the amount of Sn precipitation can be reduced compared to the amount of Cu precipitation, that is, the Cu composition ratio (CuZ (Cu + Sn )) Can be increased. On the contrary, current oscillation is generated with the working electrode at a low potential. If set to, the composition ratio of Cu can be reduced. In other words, the composition ratio of the precipitate can be controlled by adjusting the potential of the cathode according to the difference in ionization tendency of substances contained in the solution. For example, Cu Sn / Cu Sn force ⁇ multilayered as unit structure
  • a film can be formed.
  • the film thickness of each layer can be adjusted by controlling the waveform (for example, the period) of current oscillation. For example, the film thickness of each layer can be increased by lowering the potential of the working electrode, and conversely, the film thickness can be decreased by increasing and decreasing the potential.
  • the composition ratio can be determined (controlled) by adjusting the deposition amount of each substance.
  • the Cu composition ratio can be increased by increasing the Cu concentration.
  • each layer can be adjusted by adjusting the concentrations of Cu and Sn in conjunction with the concentration ratio of Sn and Cu kept constant.
  • Fig. 6 is a graph showing the correspondence between the waveform of electrical vibration and the yield ratio of the precipitates.
  • Figures (a) and (b) show CuSO and SnSO.
  • the concentration of 4 4 is 0.15M and 0.10M, respectively.
  • the period of vibration can be shortened, and a multilayer film corresponding to the period of vibration can be deposited.
  • the concentration is 0.15M
  • the thickness of each layer is 90 nm
  • the thickness of each layer is 38 nm.
  • reaction-inhibiting species When reaction-inhibiting species are attached to a single location on the substrate due to fluctuations, the autocatalytic function of the reaction-inhibiting species spreads over the entire surface of the cathode in phase, so that precipitates are deposited on the entire surface of the cathode.
  • the cathode potential at which reaction-inhibiting species are attached is determined by the type and concentration of the reaction-inhibiting species, the potential at which current oscillation occurs is controlled by the type and concentration of the reaction-inhibiting species. That is, the waveform of current oscillation can be controlled.
  • Figure 7 shows the deposition current versus the potential of the working electrode when C H N (CH) C1 is used.
  • (A) shows C10TAC
  • (b) shows C12TAC
  • (c) shows C16TAC mixed in the solution as reaction-inhibiting species. Since current oscillation occurs at the negative differential resistance potential, when using the same type of reaction-inhibiting species, the potential at which current oscillation occurs is shifted to the positive side by using a reaction-inhibiting species with a long carbon chain. be able to. Therefore, by adjusting the carbon chain of the reaction-inhibiting species, the potential at which current oscillation occurs can be controlled, that is, the waveform of the current oscillation can be controlled, so that a multilayer film having a structure corresponding to the current oscillation can be formed.
  • Fig. 8 is a graph showing the deposition current versus the working electrode potential when C12TAC is used.
  • Fig. 8 (a) shows the concentration of C12TAC at 2 mM
  • Fig. 8 (b) shows the concentration of C12TAC at 3 mM
  • C shows the case of C12TAC concentration power mM. Since the current oscillation occurs at the potential of the negative differential resistance, when the same reaction-inhibiting species is used, the potential at which the current oscillation occurs can be shifted to the positive side by increasing its concentration.
  • the potential at which current oscillation occurs can be controlled, that is, the waveform of current oscillation can be controlled, so that a multilayer film having a structure corresponding to the current oscillation can be formed.
  • a multilayer film can be formed on the entire surface of the working electrode in one step and at a low cost.
  • reaction-inhibiting species appropriately, not only metals but also semiconductors (for example, Cu 2 O) and conductors can be used.
  • reaction-inhibiting species are mixed in a solution, and dissolved in a force solution that causes a vibration phenomenon by coupling negative differential resistance induced by the reaction-inhibiting species with a potential drop in the solution.
  • the potential or current of the working electrode may be controlled so that the deposition of the material on the surface of the working electrode proceeds to the diffusion control of the material.
  • FIG. 9 is an explanatory diagram for explaining the electrochemical deposition method according to the second embodiment of the present invention.
  • the case where the potential vibration as one form of the electrochemical vibration is controlled will be described.
  • an electrolytic solution (hereinafter referred to as a solution) dissolved in a force ion state of a substance (here, a metal such as Sn or Zn) with an anode 11 and a cathode 12 which are conductive metal substrates facing each other.
  • a substance here, a metal such as Sn or Zn
  • 14 is placed in a liquid tank 15 containing a predetermined current flowing between the cathode 12 and the anode 11.
  • a constant current source is connected between the cathode 12 and the anode 11.
  • the output current value from the constant current source can be set as appropriate.
  • the reference electrode 13 is placed in the liquid tank 15 and the potential between the reference electrode 13 and the cathode 12 is measured.
  • solution 14 Since solution 14 is considered a conductor, the potential V2 of cathode 12 with respect to solution 14 can be determined. .
  • the current is controlled so as to proceed to diffusion control under the diffusion-controlled condition of the substance, thereby generating a spontaneous electrochemical oscillation (here, a potential oscillation).
  • a solution 14 in which 0.2 M Sn 2+ and 4 M NaOH were mixed was used.
  • the vibration phenomenon occurs due to a combination of autocatalytic crystal growth in a specific orientation and self-catalytic surface deactivation in a thermodynamically stable plane, and thus the surface of the cathode 12 functioning as a working electrode.
  • a fine regular structure that grows in the vertical direction of the working electrode is formed, reflecting the history of potential oscillation.
  • the material is Sn or Zn, as shown in FIGS. 11 (a) and 11 (b), a lattice structure and a structure in which hexagonal plates are overlapped are constructed.
  • the type of material is not limited.
  • a three-dimensionally stretched fine network structure is constructed.
  • the deposited structure depends on the crystal structure of the deposited substance itself.
  • the cathode 12 (working electrode) is pulled up from the solution 14 at each potential of the potential oscillation, and the surface of the working electrode is observed with an electron microscope. Observation was performed using a microscope and an optical microscope.
  • FIGS. 12 and 13 are explanatory diagrams for explaining the periodic structural change synchronized with the potential oscillation of Sn.
  • FIG. 12 (a) shows the waveform of the potential oscillation of Sn
  • FIG. 12 (b) The crystal plane and orientation of Sn are shown.
  • Figs. 13 (a), (b), and (c) show the electron microscope (SEM) of the cathode surface at the potentials A, B, and C in Fig. 12 (a). It is a photograph, an optical microscope (OM) photograph, and a schematic diagram.
  • the constant current source was set so that a current density of ⁇ 36 mAZcm 2 would flow between the cathode 12 and the anode 11.
  • Fig. 14 is a graph showing the potential oscillation in Sn.
  • the horizontal axis shows the passage of time and the vertical axis shows the potential.
  • a constant current of 12 mA flows between the working electrode, that is, the cathode 12 and the anode 11 until 62 seconds
  • a constant current of 20 mA flows between the cathode 12 and the anode 11 after 62 seconds.
  • the structure constructed by changing the current value of the working electrode can control the structural parameters of the formed lattice, as shown in FIG.
  • the lattice spacing can be changed by changing the current value.
  • the fact that the spacing of the crystal C-force lattice at the time when the current value was changed changed.
  • the current value at which the potential oscillation occurs has a range, and by adjusting the current value, the waveform of the potential oscillation is controlled to control the structural parameters of the structure to be formed.
  • Fig. 16 is a graph showing the potential oscillation in Zn, and the horizontal axis shows the passage of time.
  • (A), (b), and (c) show the Zn ion concentrations of 0.1M and 0.2M, respectively. , 0.5 M, respectively. The period of oscillation can be lengthened by increasing the ion concentration of Zn.
  • Fig. 17 is an electron micrograph showing the microstructure constructed when the ion concentration of Zn is changed.
  • Figures (a), (b), and (c) show the ion concentrations of 0.1 M and 0, respectively. 2M and 0.5M are shown, and it can be seen that the size of the hexagonal plate formed can be increased according to the ion concentration.
  • the waveform of the potential oscillation can also be controlled by adjusting the concentration of the substance contained in the solution, the structural parameter of the structure to be formed is controlled in the same manner as described above. be able to.
  • a microstructure unique to the deposited substance is formed on the entire surface of the working electrode in one step and at a low cost. can do.
  • a predetermined microstructure can be manufactured at a very low cost.
  • the potential oscillation is described as one form of the electrochemical oscillation.
  • the potential vibration starts to spontaneously vibrate with the current density as a boundary at a threshold jdl (approximately ⁇ 25 mAZcm 2 ).
  • the threshold jdl at which electrochemical oscillation does not occur when the current density is small can be said to be a boundary that shifts to the reaction-controlled process force.
  • FIG. 19 is a graph showing changes in potential oscillation with time, with the horizontal axis indicating the passage of time and the vertical axis indicating the potential.
  • Fig. 19 (a) shows the case where a constant current is applied between the working electrode (ie, cathode 12) and anode 11, and when approximately 250 seconds (approximately 75 times in terms of number of vibrations) have elapsed, the potential oscillation is reduced. It will stop. This is because a fine structure grows on the surface of the working electrode, so that the effective electrode area of the working electrode gradually increases, and as the current density gradually decreases, the region force that generates spontaneous vibration is also removed. is there. In addition, as shown in FIG.
  • Damaged. 20A and 20B are electron micrographs at points A and B in FIG. 19A, respectively.
  • an effective increase in the electrode area is taken into consideration, and the effect of the increased calorie is offset between the working electrode (ie, cathode 12) and anode 11.
  • Current to It is preferable to control (increase gradually) and continue the spontaneous vibration so that the effective current density does not change.
  • FIG. 21 is an explanatory diagram for explaining the configuration of the electrochemical deposition apparatus according to Embodiment 3 of the present invention. In this example, the case of controlling the potential oscillation as one form of the electrochemical oscillation will be described.
  • a dissolved electrolytic solution (hereinafter referred to as a solution) 14 is placed in a liquid tank 15 containing a solution, and current is passed between the cathode 12 and the anode 11.
  • the reference electrode 13 is placed in the liquid tank 15 in place of the two electrodes 11 and 12 described above, the potential between the reference electrode 13 and the cathode 12 is measured, and the upper end potential for each vibration of the electrochemical vibration or A detection unit 16 that detects the lower end potential and a control unit 10 that controls the current of the working electrode with respect to the solution based on the upper end potential or the lower end potential detected by the detection unit 16 are provided. Since the solution 14 is considered to be a conductor, the potential V2 of the cathode 12 with respect to the solution 14 is obtained, and the control unit 10 controls the current flowing between the cathode 12 and the anode 11 based on the potential V2.
  • a constant current source is connected between the cathode 12 and the anode 11, and the control unit 10 controls the output current value.
  • the upper end potential is an extreme value (maximum value) in the positive direction of vibration
  • the lower end potential is an extreme value (minimum value) in the negative direction of vibration.
  • FIG. 22 is an explanatory diagram for explaining the control of the current value by the control unit.
  • (A) shows the potential waveform when potential oscillation occurs, where A is the nth oscillation waveform, B is the n + 1st oscillation waveform, and C is the n + 2nd oscillation waveform.
  • the solution resistance is R, according to Ohm's law, when current I flows, a potential loss of IXR occurs.
  • FIG. 5B in the growth process from the nth generation to the (n + 1) th generation, a potential loss corresponding to an increase in electrode area ⁇ A occurs.
  • k X R is a parameter that depends on the experimental system, such as electrode arrangement and concentration, and is a constant value. Therefore, ⁇ is detected, and ⁇ is calculated from Equation (3) based on this ⁇ , the current value flowing between cathode 12 and anode 11 is controlled, and the waveform of potential oscillation in the next generation is controlled. .
  • FIG. 23 is a graph showing an example of current value control by the control unit, where the horizontal axis indicates the passage of time, and the vertical axis indicates the current value flowing between the working electrode (ie, cathode 12) and anode 11. .
  • the current value flowing between the working electrode (that is, the cathode 12) and the anode 11 increases with time. This is because the effective current density is gradually increased to account for the increase in effective electrode area over time and to offset the effect of the increase.
  • Spontaneous vibration can be continued without change. Therefore, even if approximately 250 seconds elapse, the potential oscillation does not stop. In this example, it was confirmed that the potential oscillation continued even after more than about 2000 seconds (about 600 times in terms of vibrations).
  • a Balta material with a microscopic microstructure was obtained.
  • a fine structure for example, a fine lattice structure
  • a conductor such as platinum is plated on the surface of the fine structure.
  • copper oxide can be considered other than platinum, which can be selected according to the application.
  • a fine structure in which the fine structure has a blank pattern can be manufactured using the fine structure (for example, a fine lattice structure) as a three-dimensional template.
  • the fine structure for example, a fine lattice structure
  • Sn is removed (etched) with an etching solution such as hydrochloric acid, so that the shape of the microstructure is hollow (a A high molecular polymer having a nest-like shape can be produced. Since such a high molecular polymer has a porous structure, it can be expected to be used as a filter.
  • the lattice spacing can be adjusted by controlling the waveform of electrochemical vibration, it is possible to form a plurality of structures with different spacings in the polymer.
  • the upper end potential or the lower end potential for each oscillation of the electrochemical vibration is detected, and the current that the control unit 10 passes between the cathode 12 and the anode 11 based on the upper end potential or the lower end potential is detected.
  • the upper electrode potential or the lower electrode potential force is controlled, and the period for each vibration of the electrochemical vibration is calculated. Based on the calculated period, the working electrode with respect to the solution is obtained so that the current density at which spontaneous vibration occurs is obtained. You may want to control the current.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

An electrochemical deposition method and apparatus for determining the structure of a substance deposited on the surface of a working electrode, and a microstructure. A positive electrode (1) and a negative electrode (2) functioning as a working electrode are arranged oppositely in a liquid tank (5) containing electrolytic (acid) solution (hereinafter, referred to as solution) (4) where a plurality of substances are dissolved in an ion state, and then a predetermined voltage is applied between the positive electrode (1) and the negative electrode (2). A reference electrode (3) is also arranged in the liquid tank (5) and the potential between the negative electrode (2) and the reference electrode (3) is measured. Since the solution (4) can be considered as a conductor, the potential V1 of the negative electrode (2) to the solution (4) can be determined. Furthermore, a reaction inhibitor species is admixed in the liquid tank (5), and spontaneous electrochemical oscillation (current oscillation in this case) is generated in the electrochemical deposition reaction of a substance in the presence of the reaction inhibitor species. The waveform of the electrochemical oscillation is controlled by regulating the potential V1 of the negative electrode, the concentration of the substance in the solution, and the kind and concentration of the reaction inhibitor species, thus determining the structure of a substance deposited on the surface of the working electrode.

Description

明 細 書  Specification
電気化学的析出方法、電気化学的析出装置及び微細構造体  Electrochemical deposition method, electrochemical deposition apparatus and microstructure
技術分野  Technical field
[0001] 本発明は、金属のような電気化学的な析出が可能な物質力イオン状態で溶解した 溶液に浸漬した複数の電極間に電圧を印加又は電流を流すことにより、作用極の表 面に物質を析出する電気化学的析出方法、電気化学的析出装置及び格子 1個が数 十〜数百マイクロメートルスケールのような微細構造体に関する。  The present invention provides a surface of a working electrode by applying a voltage or passing a current between a plurality of electrodes immersed in a solution dissolved in a material force ion state capable of electrochemical deposition such as metal. The present invention relates to an electrochemical deposition method, an electrochemical deposition apparatus, and a lattice having a scale of several tens to several hundreds of micrometers.
背景技術  Background art
[0002] 微細加工技術の進展によって、集積度の向上に加えてナノスケールの微小デバィ スけノデバイス)が提案されている。例えば、金属、半導体及び導電性ポリマーなど のナノ周期構造は、巨大磁気抵抗、トンネル磁気抵抗及びフォトニックなど、その周 期構造に基づいた色々な機能が現れることから様々な分野で活発に研究が進めら れている。現在、ナノ周期構造の製造方法としては、蒸着法のような薄膜形成法が確 立されている。これらはいずれも目的とする物質を交互に積層させていくというマルチ ステップ的な手法である。  [0002] Advances in microfabrication technologies have proposed nanoscale microdevices (in addition to improved integration). For example, nano-periodic structures such as metals, semiconductors, and conductive polymers have been actively researched in various fields due to various functions based on their periodic structures, such as giant magnetoresistance, tunneling magnetoresistance, and photonics. It is going on. Currently, a thin film forming method such as a vapor deposition method has been established as a method for producing a nano-periodic structure. These are multi-step methods in which the target substances are alternately stacked.
[0003] し力しながら、上述したような従来の手法は、マルチステップ的であるが故に、生産 性の低下及びコストの上昇が避けられないという問題がある。また、製造するための 装置は、構成の大嵩化が避けられず、この点でも高コストィ匕を増長させることになつて いる。  [0003] However, since the conventional methods as described above are multi-step, there is a problem that a decrease in productivity and an increase in cost are unavoidable. Also, the apparatus for manufacturing cannot avoid increasing the size of the structure, and this also increases the cost.
[0004] そこで、上述した問題を解決する技術として、非線形ィ匕学ダイナミクスによる構造形 成と呼ばれる自己組織ィ匕による微細加工技術が考案されている。これは、一種のボト ムアップ的アプローチであり、未発達の段階にある力 これまでの手法に大きなパラ ダイム変化を与える技術として期待されて 、る。  [0004] Therefore, as a technique for solving the above-described problem, a microfabrication technique based on self-organization called a structure formation based on nonlinear dynamics has been devised. This is a kind of bottom-up approach, and is an undeveloped force. It is expected to be a technology that will give a major paradigm change to previous methods.
[0005] 自己組織ィ匕には、静的な自己組織化と動的な自己組織化とがあるが、前者によつ て形成される構造は、熱平衡構造、つまり静的な秩序構造であり、分子間力 (原子間 力)及び平衡熱力学の原理によって決定される。一方、後者によって形成される構造 は、エネルギーの流れの中で自発的に形成されるパターン、つまり非平衡系のなか に現れる秩序構造であり、時間的及び空間的に多様な構造を有する。動的な自己組 織化には、静的な自己組織化にはない引き込み現象の発現、自己修復機能、及び 長距離相互作用などの特徴があり、動的な自己組織ィ匕を制御することができれば、 所望する構造を有する微細構造体を製造することが可能となる。 [0005] There are two types of self-organization: static self-organization and dynamic self-organization. The structure formed by the former is a thermal equilibrium structure, that is, a static ordered structure. , Determined by the principles of intermolecular forces (atomic forces) and equilibrium thermodynamics. On the other hand, the structure formed by the latter is a pattern formed spontaneously in the flow of energy, that is, in a non-equilibrium system. This is an ordered structure that has various temporal and spatial structures. Dynamic self-organization has features such as the appearance of pull-in phenomenon, self-repair function, and long-range interaction that are not found in static self-organization, and controls dynamic self-organization. If it is possible, a microstructure having a desired structure can be manufactured.
[0006] 特許文献 1には、金属イオンを含む水溶液中に導電性支持体を浸漬させ、導電性 支持体を電極として導電性支持体の電位を振動させ、導電性支持体に対して金属 層及び金属酸ィ匕物層を交互に析出させることによる積層膜の製造方法が開示されて いる。  [0006] In Patent Document 1, a conductive support is immersed in an aqueous solution containing metal ions, the potential of the conductive support is vibrated using the conductive support as an electrode, and a metal layer is formed on the conductive support. And a method for producing a laminated film by alternately depositing metal oxide layers.
特許文献 1 :特開 2002— 129374号公報  Patent Document 1: JP 2002-129374 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、動的な自己組織ィ匕のメカニズムは未確立であり、何を制御すれば、 自己組織ィ匕を制御することができるの力確立されていないため、所望の構造を有す る微細構造体を製造することは不可能であった。換言すれば、従来は、製造条件を 変更した結果として微細構造体を製造することができたが、所望の構造にすることは 不可能であった。また、動的な自己組織ィ匕は、エネルギーの流れの中で存在するの で、外部力 供給されるエネルギーが遮断されると構造が消失してしまうという問題が めつに。 [0007] However, the dynamic self-organization mechanism is unestablished, but what can be controlled to control the self-organization is not established. It was impossible to produce a microstructure with In other words, conventionally, a fine structure could be manufactured as a result of changing manufacturing conditions, but it was impossible to obtain a desired structure. In addition, since dynamic self-organization exists in the flow of energy, the problem is that the structure disappears when the energy supplied by external force is cut off.
[0008] 本発明者は、電気化学反応系における動的な自己組織ィ匕について鋭意研究を行 つた結果、電気化学振動 (電流振動又は電位振動)を利用して微細構造体を製造す る場合、電気化学振動の波形 (周期及び振幅など)に基づいて、構築される構造が 決定されるとの知見を得た。電気化学反応は、その反応の制御が容易であるとともに 、エネルギーを遮断した場合であっても、構造が履歴 (析出物)として蓄積され、動的 な時空間秩序の痕跡を固定化'記憶することができるため、構築された構造が消失さ れることはない。また、本発明者は、電気化学振動の波形を、電気化学的析出 (例え ば電解析出)する物質の種類、作用極の電位及び電流によって、自己触媒過程を制 御することができるとの知見を得た。  [0008] As a result of earnest research on dynamic self-organization in an electrochemical reaction system, the present inventor has produced a microstructure using electrochemical vibration (current vibration or potential vibration). Based on the electrochemical oscillation waveform (period, amplitude, etc.), the knowledge that the structure to be constructed is determined was obtained. Electrochemical reactions are easy to control, and even when energy is interrupted, the structure is accumulated as a history (precipitate), immobilizing and remembering traces of dynamic spatiotemporal order Therefore, the constructed structure will not be lost. In addition, the present inventor is able to control the autocatalytic process of the waveform of electrochemical vibration by the type of substance that is electrochemically deposited (for example, electrolytic deposition), the potential of the working electrode, and the current. Obtained knowledge.
[0009] 本発明は、上述した知見を得てなされたものであり、金属のような電気化学的な析 出が可能な物質力 Sイオン状態で溶解した溶液に浸漬した複数の電極間に電圧を印 加又は電流を流し、溶液に対する一の電極 (作用極という)の電位又は電流を制御し て電気化学振動、つまり電流振動又は電位振動を生じさせることにより、電気化学振 動の波形に基づ 、て、作用極の表面に析出される物質の構造を決定する電気化学 的析出方法の提供を目的とする。 [0009] The present invention has been made on the basis of the above-mentioned knowledge, and electrochemical analysis such as metal is performed. Material force that can be released Electrochemistry is performed by applying a voltage or applying a current between multiple electrodes immersed in a solution dissolved in the S ion state, and controlling the potential or current of one electrode (called the working electrode) with respect to the solution. The purpose is to provide an electrochemical deposition method that determines the structure of a substance deposited on the surface of a working electrode based on the waveform of electrochemical vibration by generating vibration, that is, current vibration or potential vibration. To do.
[0010] また本発明は、反応阻害種を混入し、反応阻害種により誘起される負性微分抵抗と 溶液中の電位降下とのカップリングにより自己触媒過程を生じさせて、電気化学振動 を制御する電気化学的析出方法の提供を目的とする。  [0010] In addition, the present invention mixes reaction-inhibiting species, and controls electrochemical vibrations by causing an autocatalytic process by coupling negative differential resistance induced by the reaction-inhibiting species with a potential drop in the solution. It is an object of the present invention to provide an electrochemical deposition method.
[0011] また本発明は、反応阻害種の濃度を調整することにより、電気化学振動が生じる作 用極の電位又は電流を制御して、作用極の表面に析出される物質の構造を決定す る電気化学的析出方法の提供を目的とする。  [0011] Further, the present invention determines the structure of the substance deposited on the surface of the working electrode by adjusting the concentration of the reaction-inhibiting species to control the potential or current of the working electrode where electrochemical oscillation occurs. It is an object to provide an electrochemical deposition method.
[0012] また本発明は、カーボン鎖が 10以上のカチオン性界面活性剤を反応阻害種として 用い、カーボン鎖を調整することにより、電気化学振動が生じる電位又は電流を制御 して、作用極の表面に析出される物質の構造を決定する電気化学的析出方法の提 供を目的とする。  [0012] In addition, the present invention uses a cationic surfactant having a carbon chain of 10 or more as a reaction-inhibiting species, and adjusts the carbon chain to control the potential or current at which electrochemical vibrations occur, thereby controlling the working electrode. The purpose is to provide an electrochemical deposition method that determines the structure of the material deposited on the surface.
[0013] また本発明は、物質の濃度を調整することにより、電気化学振動の波形を制御して 、作用極の表面に析出される物質の構造を決定する電気化学的析出方法の提供を 目的とする。  Another object of the present invention is to provide an electrochemical deposition method that determines the structure of a substance deposited on the surface of a working electrode by controlling the waveform of electrochemical vibration by adjusting the concentration of the substance. And
[0014] また本発明は、複数の物質がイオン状態で溶液に溶解している場合、電気化学振 動の波形を制御することにより、複数の物質力 なる構造の組成比を決定する電気 化学的析出方法の提供を目的とする。  [0014] Further, according to the present invention, when a plurality of substances are dissolved in a solution in an ionic state, the composition ratio of a structure having a plurality of substance forces is determined by controlling a waveform of electrochemical vibration. The purpose is to provide a deposition method.
[0015] また本発明は、電気化学振動の波形に基づいて決定される物質の構造が多層構 造である場合、電気化学振動の波形を制御して、多層構造の各層の膜厚及び Z又 は各層の組成比を決定する電気化学的析出方法の提供を目的とする。  [0015] Further, according to the present invention, when the structure of the substance determined based on the waveform of the electrochemical vibration is a multilayer structure, the thickness of each layer of the multilayer structure and the Z or Z is controlled by controlling the waveform of the electrochemical vibration. Is intended to provide an electrochemical deposition method for determining the composition ratio of each layer.
[0016] また本発明は、作用極の電位又は電流を、電気化学的析出が拡散支配に進むよう に制御して、電気化学振動を生じさせることにより、電気化学振動の波形に基づいて 、作用極の表面に析出される物質の構造を決定する電気化学的析出方法の提供を 目的とする。 [0017] また本発明は、電気化学振動の振動毎の上端電位又は下端電位を検出し、検出 した上端電位又は下端電位の変動に基づいて作用極の電流を制御することにより、 電流密度が次第に小さくなつて自発的振動が発生する領域から外れて自発的振動 が停止してしまうことを防止することができる電気化学的析出方法及び電気化学的析 出装置の提供を目的とする。 [0016] Further, the present invention controls the potential or current of the working electrode so that the electrochemical deposition proceeds to be diffusion-dominated to generate the electrochemical vibration, and thereby the action based on the waveform of the electrochemical vibration. The purpose is to provide an electrochemical deposition method for determining the structure of the material deposited on the electrode surface. [0017] Further, the present invention detects the upper end potential or the lower end potential for each oscillation of the electrochemical vibration, and controls the current of the working electrode based on the detected fluctuation of the upper end potential or the lower end potential, thereby gradually increasing the current density. It is an object of the present invention to provide an electrochemical deposition method and an electrochemical deposition apparatus capable of preventing the spontaneous vibration from stopping from being out of the region where the spontaneous vibration occurs when it becomes small.
[0018] また本発明は、溶液に対する作用極の実効的な電流密度が略一定となるように制 御することにより、作用極の表面に成長する微細構造体の形状が一定となって、均一 性が優れた微細格子構造を得ることができる電気化学的析出方法の提供を目的とす る。  [0018] Further, according to the present invention, by controlling the effective current density of the working electrode with respect to the solution to be substantially constant, the shape of the fine structure grown on the surface of the working electrode is made uniform and uniform. It is an object of the present invention to provide an electrochemical deposition method capable of obtaining a fine lattice structure with excellent properties.
[0019] また本発明は、自発的振動が発生する電流密度となるように作用極の電流を制御 する構成とすることにより、電流密度が次第に小さくなつて自発的振動が発生する領 域力も外れて自発的振動が停止してしまうことはなぐ自発的振動を継続することが できる電気化学的析出装置の提供を目的とする。  [0019] In addition, the present invention is configured to control the current of the working electrode so that the current density at which spontaneous vibration occurs is generated, so that the region force at which spontaneous vibration occurs is also reduced as the current density gradually decreases. The purpose of the present invention is to provide an electrochemical deposition apparatus that can continue the spontaneous vibration without stopping the spontaneous vibration.
[0020] また本発明は、上述した各電気化学的析出方法により析出した物質を 3次元の基 本骨格として、該物質の表面に他の物質を堆積することにより、例えば結晶学的に安 定した面が露出された高強度の極めて広い表面積の電極とすることができる微細構 造体の提供を目的とする。  [0020] In addition, the present invention uses a substance deposited by each of the electrochemical deposition methods described above as a three-dimensional basic skeleton, and deposits another substance on the surface of the substance, for example, crystallographically stable. It is an object of the present invention to provide a microstructure that can be used as an electrode having a very large surface area with high strength and exposed surface.
[0021] また本発明は、上述した各電気化学的析出方法により析出した物質の表面に他の 物質を重合させ、析出した物質を除去することによって内部に多孔構造が形成され た微細構造体の提供を目的とする。  [0021] Further, the present invention provides a microstructure having a porous structure formed therein by polymerizing another substance on the surface of the substance deposited by each of the electrochemical deposition methods described above and removing the deposited substance. For the purpose of provision.
課題を解決するための手段  Means for solving the problem
[0022] 第 1発明に係る電気化学的析出方法は、電気化学的析出が可能な物質がイオン 状態で溶解した溶液に浸漬した複数の電極間に電圧を印加又は電流を流し、作用 極の表面に前記物質を析出する電気化学的析出方法において、前記溶液に対する 前記作用極の電位又は電流を制御して、電気化学振動を生じさせ、該電気化学振 動の波形に基づ!ヽて、前記物質の構造を決定することを特徴とする。  [0022] The electrochemical deposition method according to the first invention is a method in which a voltage is applied or a current is applied between a plurality of electrodes immersed in a solution in which a substance capable of electrochemical deposition is dissolved in an ionic state, and the surface of the working electrode. In the electrochemical deposition method for depositing the substance on the substrate, the potential or current of the working electrode with respect to the solution is controlled to generate electrochemical vibration, and based on the waveform of the electrochemical vibration, It is characterized by determining the structure of the substance.
[0023] 本発明にあっては、電気化学的析出が可能な物質 (金属、半導体及び導電性ポリ マーなど)がイオン状態で溶解した溶液に複数の電極を浸漬し、複数の電極間に電 圧を印加又は電流を流すことにより、複数の電極のうちの一の電極 (作用極)の表面 に、溶解していた物質が電気化学的に析出される。電気化学的析出の際、溶液に対 する作用極の電位又は電流を制御することによって自発的な電気化学振動を生じさ せる。作用極の電位又は電流を制御することで、電気化学振動の波形 (例えば周期) を制御することができるので、電気化学振動の波形に応じて、作用極の表面に析出 される物質の構造を決定することができる。自己組織的な振動現象によって自己構 築されるので、構築される構造は、振動現象の履歴を反映して順次積層される。よつ て、構造が履歴として蓄積され、動的な時空間秩序の痕跡を固定化'記憶することが できるため、構築された構造が消失されることはない。 [0023] In the present invention, a plurality of electrodes are immersed in a solution in which a substance capable of electrochemical deposition (such as a metal, a semiconductor, and a conductive polymer) is dissolved in an ionic state, and an electrode is interposed between the plurality of electrodes. By applying pressure or flowing current, the dissolved substance is electrochemically deposited on the surface of one of the electrodes (working electrode). During electrochemical deposition, spontaneous electrochemical oscillation is generated by controlling the potential or current of the working electrode with respect to the solution. By controlling the potential or current of the working electrode, the waveform (for example, period) of the electrochemical vibration can be controlled, so that the structure of the substance deposited on the surface of the working electrode can be determined according to the waveform of the electrochemical vibration. Can be determined. Since the structure is self-assembled by the self-organized vibration phenomenon, the structure to be constructed is sequentially laminated to reflect the history of the vibration phenomenon. Therefore, since the structure is accumulated as a history and the trace of the dynamic spatiotemporal order can be fixed and stored, the constructed structure is not lost.
[0024] 第 2発明に係る電気化学的析出方法は、第 1発明において、前記溶液に反応阻害 種を混入し、該反応阻害種が前記作用極の表面に付着して!/ヽる状態と付着して!/ヽな い状態とを自発的に交互に生じさせ、前記電気化学振動が生じる前記作用極の電 位又は電流を制御することを特徴とする。  [0024] The electrochemical deposition method according to the second invention is the method according to the first invention, wherein a reaction inhibiting species is mixed into the solution, and the reaction inhibiting species adheres to the surface of the working electrode! In this case, a state of / slipping and a state of adhesion / lessness is generated alternately and spontaneously, and the electric potential or current of the working electrode in which the electrochemical vibration is generated is controlled.
[0025] 本発明にあっては、溶液に反応阻害種を混入することによって、反応阻害種により 誘起される負性微分抵抗と溶液中の電位降下とのカップリングにより自己触媒過程 を生じさせ、つまり反応阻害種が作用極の表面に付着している状態と付着していな い状態とを自発的に交互に生じさせ、電気化学振動が生じる作用極の電位又は電 流を制御する。この反応阻害種は、化学反応系に応じて適宜混入することができ、電 気化学振動が生じる作用極の電位又は電流の領域を調整することができる。  [0025] In the present invention, by mixing a reaction inhibiting species into the solution, an autocatalytic process is caused by the coupling between the negative differential resistance induced by the reaction inhibiting species and the potential drop in the solution, In other words, a state in which reaction-inhibiting species are attached to the surface of the working electrode and a state in which the reaction-inhibiting species is not attached are spontaneously and alternately generated to control the potential or current of the working electrode in which electrochemical oscillation occurs. This reaction-inhibiting species can be mixed as appropriate depending on the chemical reaction system, and the potential or current region of the working electrode where electrochemical vibration occurs can be adjusted.
[0026] 第 3発明に係る電気化学的析出方法は、第 2発明にお 、て、前記反応阻害種の濃 度を調整することにより、前記電気化学振動が生じる前記作用極の電位又は電流を 制御することを特徴とする。  [0026] In the electrochemical deposition method according to the third aspect of the invention, in the second aspect of the invention, the potential or current of the working electrode at which the electrochemical oscillation occurs is adjusted by adjusting the concentration of the reaction-inhibiting species. It is characterized by controlling.
[0027] 本発明にあっては、反応阻害種の濃度を調整することにより、電気化学振動が生じ る作用極の電位又は電流を制御することができる。例えば、電気化学振動の一形態 である電流振動において、負性微分抵抗の電位 (作用極に流れる電流が急激に減 少する作用極の電位)を、溶液に混入する反応阻害種の濃度を調整することによつ て、正側又は負側に移動させることができる。具体的には、反応阻害種の濃度を高く することにより、電流振動が生じる電位を正側にシフトすることができる。電流振動は 負性微分抵抗の電位にて生じることから、同一の反応阻害種を用いた場合、反応阻 害種の濃度を調整することで電流振動が生じる電位を制御することができ、作用極の 表面に析出される物質の構造を決定することができる。 In the present invention, by adjusting the concentration of the reaction-inhibiting species, the potential or current of the working electrode where electrochemical oscillation occurs can be controlled. For example, in current oscillation, which is a form of electrochemical oscillation, the potential of the negative differential resistance (the potential of the working electrode at which the current flowing to the working electrode decreases rapidly) is adjusted to the concentration of the reaction-inhibiting species mixed into the solution. By doing so, it can be moved to the positive side or the negative side. Specifically, the potential at which current oscillation occurs can be shifted to the positive side by increasing the concentration of the reaction-inhibiting species. Current oscillation is Since this occurs at the potential of negative differential resistance, when the same reaction-inhibiting species is used, the potential at which current oscillation occurs can be controlled by adjusting the concentration of the reaction-inhibiting species, and the surface of the working electrode can be controlled. The structure of the deposited material can be determined.
[0028] 第 4発明に係る電気化学的析出方法は、第 2発明又は第 3発明にお 、て、前記反 応阻害種は、カーボン鎖が 10以上のカチオン性界面活性剤であり、カーボン鎖を調 整することにより、前記電気化学振動が生じる前記作用極の電位又は電流を制御す ることを特徴とする。  [0028] In the electrochemical deposition method according to the fourth invention, in the second or third invention, the reaction-inhibiting species is a cationic surfactant having 10 or more carbon chains, and the carbon chain By adjusting the electric potential or current of the working electrode in which the electrochemical vibration occurs.
[0029] 本発明にあっては、カーボン鎖が 10以上のカチオン性界面活性剤を反応阻害種と して用いた場合、カーボン鎖を調整することにより、電気化学振動が生じる作用極の 電位又は電流を制御することができる。例えば、負性微分抵抗の電位を、カーボン鎖 を調整することによって、正側又は負側に移動させることができる。具体的には、カー ボン鎖を長くすることにより、電流振動が生じる電位を正側にシフトすることができる。 したがって、同系列の反応阻害種を用いた場合、カーボン鎖を調整することで電流 振動が生じる電位を制御することができ、作用極の表面に析出される物質の構造を 決定することができる。  [0029] In the present invention, when a cationic surfactant having a carbon chain of 10 or more is used as a reaction-inhibiting species, the potential of the working electrode that causes electrochemical vibration or the like by adjusting the carbon chain or The current can be controlled. For example, the potential of the negative differential resistance can be moved to the positive side or the negative side by adjusting the carbon chain. Specifically, by making the carbon chain longer, the potential at which current oscillation occurs can be shifted to the positive side. Therefore, when the same type of reaction-inhibiting species is used, the potential at which current oscillation occurs can be controlled by adjusting the carbon chain, and the structure of the substance deposited on the surface of the working electrode can be determined.
[0030] 第 5発明に係る電気化学的析出方法は、第 1発明乃至第 4発明のいずれかにおい て、前記物質の濃度を調整することにより、前記電気化学振動の波形を制御すること を特徴とする。  [0030] The electrochemical deposition method according to the fifth invention is characterized in that, in any one of the first invention to the fourth invention, the waveform of the electrochemical vibration is controlled by adjusting the concentration of the substance. And
[0031] 本発明にあっては、溶液に含まれる物質の濃度を調整することによって、作用極の 電位又は電流を制御、つまり電気化学振動の波形を制御することができるので、析 出される物質の構造を決定することができる。  [0031] In the present invention, by adjusting the concentration of the substance contained in the solution, the potential or current of the working electrode can be controlled, that is, the waveform of the electrochemical vibration can be controlled. The structure of can be determined.
[0032] 第 6発明に係る電気化学的析出方法は、第 1発明乃至第 5発明のいずれかにおい て、前記溶液には、複数の物質がイオン状態で溶解しており、前記電気化学振動の 波形を制御して、前記複数の物質からなる構造の組成比を決定することを特徴とする  [0032] The electrochemical deposition method according to a sixth aspect of the present invention is the method according to any one of the first to fifth aspects, wherein a plurality of substances are dissolved in an ionic state in the solution. The composition ratio of the structure composed of the plurality of substances is determined by controlling the waveform.
[0033] 本発明にあっては、複数の物質をイオン状態で溶液に溶解されて ヽる場合、電気 化学振動の波形を制御して、複数の物質力 なる構造の組成比を決定することがで きる。例えば、複数の物質からなる構造体を析出する場合、各物質は、それぞれのィ オン化傾向度合の相違に応じて、作用極の電位に対する析出量が相違する。また、 作用極の電位を制御すれば、電気化学振動の波形を制御することができるので、各 物質の析出量を制御して、構造の組成比を決定 (制御)することができる。例えば、物 質が金属である場合、作用極の電位を低くすれば (より負の電位にすれば)、析出電 流が大きくなる、つまり析出量が大きくなる特性があるが、金属のイオン化傾向度合 の相違に応じて電位に対する析出量の割合が異なるので、組成比を変えることがで きる。 [0033] In the present invention, when a plurality of substances are dissolved in a solution in an ionic state, the composition ratio of the structure having a plurality of substance forces can be determined by controlling the waveform of electrochemical vibration. it can. For example, when depositing a structure consisting of a plurality of substances, each substance The amount of precipitation with respect to the potential of the working electrode varies depending on the difference in the degree of ON tendency. In addition, since the waveform of the electrochemical vibration can be controlled by controlling the potential of the working electrode, the composition ratio of the structure can be determined (controlled) by controlling the amount of precipitation of each substance. For example, when the substance is a metal, if the potential of the working electrode is lowered (a more negative potential), the precipitation current increases, that is, the amount of precipitation increases. Since the ratio of the amount of precipitation to the potential varies depending on the degree of difference, the composition ratio can be changed.
[0034] 第 7発明に係る電気化学的析出方法は、第 1発明乃至第 6発明のいずれかにおい て、前記電気化学振動の波形に基づ 、て決定される前記物質の構造が多層構造で あることを特徴とする。  [0034] The electrochemical deposition method according to a seventh aspect of the present invention is the method according to any one of the first to sixth aspects, wherein the structure of the substance determined based on the waveform of the electrochemical vibration is a multilayer structure. It is characterized by being.
[0035] 本発明にあっては、上述した電気化学的析出方法によって、多層構造を有する物 質を作用極の表面に析出させることができる。  In the present invention, a substance having a multilayer structure can be deposited on the surface of the working electrode by the above-described electrochemical deposition method.
[0036] 第 8発明に係る電気化学的析出方法は、第 7発明にお 、て、前記電気化学振動の 波形を制御し、前記多層構造の各層の膜厚及び Z又は各層の組成比を決定するこ とを特徴とする。 [0036] The electrochemical deposition method according to the eighth invention is the method according to the seventh invention, wherein the electrochemical oscillation waveform is controlled to determine the film thickness and Z of each layer of the multilayer structure or the composition ratio of each layer. It is characterized by that.
[0037] 本発明にあっては、例えば、溶液に含まれる物質の濃度を調整することによって、 作用極の電位又は電流を制御、つまり電気化学振動の波形を制御することができる ので、物質の析出量を制御することができる。複数の物質からなる多層構造の構造 体を生成する場合には、各物質の析出量を調整できるので、各層の膜厚及び Z又 は各層の組成比を決定することができる。具体的には、各物質の濃度比を一定に維 持した状態で、各物質の濃度を連動して調整することにより、各層の膜厚を決定する ことができる。  In the present invention, for example, by adjusting the concentration of the substance contained in the solution, the potential or current of the working electrode can be controlled, that is, the waveform of the electrochemical vibration can be controlled. The amount of precipitation can be controlled. In the case of generating a multilayer structure composed of a plurality of substances, the deposition amount of each substance can be adjusted, so that the film thickness of each layer and the composition ratio of Z or each layer can be determined. Specifically, the film thickness of each layer can be determined by adjusting the concentration of each substance while maintaining the concentration ratio of each substance constant.
[0038] 第 9発明に係る電気化学的析出方法は、第 1発明乃至第 8発明のいずれかにおい て、前記物質が金属であることを特徴とする。  [0038] An electrochemical deposition method according to a ninth invention is characterized in that, in any one of the first to eighth inventions, the substance is a metal.
[0039] 本発明にあっては、上述した電気化学的析出方法によって、金属を作用極の表面 に析出させることができる。 [0039] In the present invention, the metal can be deposited on the surface of the working electrode by the electrochemical deposition method described above.
[0040] 第 10発明に係る電気化学的析出方法は、第 1発明において、前記作用極の電位 又は電流を、電気化学的析出が拡散支配に進むように制御して、電気化学振動を生 じさせることを特徴とする。 [0040] The electrochemical deposition method according to a tenth aspect of the present invention is the method according to the first aspect of the present invention, wherein the potential or current of the working electrode is controlled so that the electrochemical deposition is governed by diffusion to generate electrochemical vibrations. It is characterized by the fact that
[0041] 本発明にあっては、作用極の電位又は電流を、電気化学的析出が拡散支配に進 むように制御することによって、電気化学振動を生じさせる。電気化学現象は、特定 方位への自己触媒的結晶成長と、熱力学的安定面における自己触媒的表面不活 性化との兼ね合いにより生じることから、作用極の表面には、電気化学振動の履歴を 反映し、作用極の垂直方向に成長した微細な規則的構造体が形成される。よって、 構造が履歴として蓄積され、動的な時空間秩序の痕跡を固定化'記憶することができ るため、構築された構造が消失されることはない。  [0041] In the present invention, electrochemical oscillation is generated by controlling the potential or current of the working electrode so that electrochemical deposition advances to the diffusion control. Electrochemical phenomena occur due to a combination of autocatalytic crystal growth in a specific orientation and autocatalytic surface deactivation on the thermodynamically stable surface. Reflecting this, a fine regular structure grown in the vertical direction of the working electrode is formed. Therefore, the structure is accumulated as a history, and the trace of the dynamic spatiotemporal order can be fixed and stored, so that the constructed structure is not lost.
[0042] 第 11発明に係る電気化学的析出方法は、第 10発明において、前記電気化学振 動の振動毎の上端電位又は下端電位を検出し、検出した上端電位又は下端電位の 変動に基づいて前記作用極の電流を制御することを特徴とする。  [0042] The electrochemical deposition method according to the eleventh aspect of the present invention is the method according to the tenth aspect, wherein the upper end potential or the lower end potential for each oscillation of the electrochemical vibration is detected and the detected upper end potential or lower end potential is changed. The current of the working electrode is controlled.
[0043] 本発明にあっては、電気化学振動の振動毎の上端電位又は下端電位を検出し、 検出した上端電位又は下端電位の変動に基づいて作用極の電流を制御する。振動 現象は、反応律速過程から拡散律速過程へ移る閾値となる電流密度を境界にして 自発的振動を始める。ところで、作用極の表面に微細構造体が成長することから、作 用極の実効的な電極面積が次第に増加し、電流密度が次第に小さくなつて自発的 振動が発生する領域から外れて自発的振動が停止してしまう。そこで、作用極の電 流を制御することで自発的振動を継続することができる。  In the present invention, the upper end potential or the lower end potential for each vibration of the electrochemical vibration is detected, and the current of the working electrode is controlled based on the detected fluctuation of the upper end potential or the lower end potential. The oscillation phenomenon starts spontaneous oscillation at the boundary of the current density that becomes the threshold for transition from the reaction-controlled process to the diffusion-controlled process. By the way, since a fine structure grows on the surface of the working electrode, the effective electrode area of the working electrode gradually increases, and when the current density is gradually reduced, the vibration is separated from the region where the spontaneous vibration occurs. Will stop. Therefore, spontaneous vibration can be continued by controlling the current of the working electrode.
[0044] 第 12発明に係る電気化学的析出方法は、第 11発明において、前記溶液に対する 前記作用極の実効的な電流密度が略一定となるように制御することを特徴とする。  [0044] The electrochemical deposition method according to the twelfth invention is characterized in that, in the eleventh invention, the effective current density of the working electrode with respect to the solution is controlled to be substantially constant.
[0045] 本発明にあっては、溶液に対する作用極の実効的な電流密度が略一定となるよう に制御することにより、作用極の表面に成長する微細構造体の形状 (例えば格子間 隔)が一定となって、均一性が優れた微細格子構造を得ることができる。  [0045] In the present invention, by controlling the effective current density of the working electrode with respect to the solution to be substantially constant, the shape of the fine structure grown on the surface of the working electrode (for example, the lattice spacing) And a fine lattice structure with excellent uniformity can be obtained.
[0046] 第 13発明に係る電気化学的析出方法は、第 10発明乃至第 12発明のいずれかに おいて、前記物質の濃度を調整することにより、前記電気化学振動の波形を制御す ることを特徴とする。  [0046] In the electrochemical deposition method according to the thirteenth aspect of the invention, in any one of the tenth to twelfth aspects of the invention, the waveform of the electrochemical vibration is controlled by adjusting the concentration of the substance. It is characterized by.
[0047] 本発明にあっては、溶液に含まれる物質の濃度を調整することによって、作用極の 電位又は電流を制御、つまり電気化学振動の波形を制御することができるので、析 出される物質の構造を決定することができる。例えば、物質のイオン濃度を高くするこ とによって、物質の周期構造の個々の構造を大きくすることができる。 In the present invention, by adjusting the concentration of the substance contained in the solution, the potential or current of the working electrode can be controlled, that is, the waveform of the electrochemical vibration can be controlled. The structure of the material to be released can be determined. For example, by increasing the ion concentration of a substance, the individual structure of the periodic structure of the substance can be increased.
[0048] 第 14発明に係る電気化学的析出装置は、電気化学的析出が可能な物質がイオン 状態で溶解した溶液に浸漬した複数の電極間に電流を流し、電気化学振動を生じさ せ、作用極の表面に前記物質を析出するための電気化学的析出装置であって、前 記電気化学振動の振動毎の上端電位又は下端電位を検出する検出手段と、該検出 手段にて検出した上端電位又は下端電位に基づいて、前記溶液に対する前記作用 極の電流を制御する制御手段とを備えることを特徴とする。  [0048] The electrochemical deposition apparatus according to the fourteenth aspect of the invention causes an electric current to flow between a plurality of electrodes immersed in a solution in which a substance capable of electrochemical deposition is dissolved in an ionic state, thereby generating electrochemical vibrations. An electrochemical deposition apparatus for depositing the substance on the surface of the working electrode, the detection means for detecting the upper end potential or the lower end potential for each vibration of the electrochemical vibration, and the upper end detected by the detection means And a control means for controlling a current of the working electrode with respect to the solution based on a potential or a lower end potential.
[0049] 本発明にあっては、電気化学的析出が可能な物質 (金属、半導体及び導電性ポリ マーなど)がイオン状態で溶解した溶液に複数の電極を浸漬し、検出手段が電気化 学振動の振動毎の上端電位又は下端電位を検出し、検出した上端電位又は下端電 位に基づいて、制御手段が溶液に対する作用極の電流を制御する。複数の電極間 に電流を流すことにより、自発的な電気化学振動を生じさせて複数の電極のうちの一 の電極 (作用極)の表面に、溶解していた物質が電気化学的に析出される。作用極 に流す電流を制御することで、析出される物質の構造を制御することができる。  [0049] In the present invention, a plurality of electrodes are immersed in a solution in which a substance capable of electrochemical deposition (metal, semiconductor, conductive polymer, etc.) is dissolved in an ionic state, and the detection means is electrochemical. The upper end potential or lower end potential for each vibration is detected, and the control means controls the current of the working electrode with respect to the solution based on the detected upper end potential or lower end potential. By causing a current to flow between the plurality of electrodes, spontaneous electrochemical vibration is generated, and the dissolved substance is electrochemically deposited on the surface of one electrode (working electrode) of the plurality of electrodes. The By controlling the current flowing through the working electrode, the structure of the deposited material can be controlled.
[0050] 第 15発明に係る電気化学的析出装置は、第 14発明において、前記制御手段は、 自発的振動が発生する電流密度となるように制御するようにしてあることを特徴とする  [0050] An electrochemical deposition apparatus according to a fifteenth invention is characterized in that, in the fourteenth invention, the control means controls the current density to generate spontaneous vibration.
[0051] 本発明にあっては、自発的振動が発生する電流密度となるように作用極の電流を 制御することで、電流密度が次第に小さくなつて自発的振動が発生する領域力 外 れて自発的振動が停止してしまうことはなぐ自発的振動を継続することができる。 [0051] In the present invention, by controlling the current of the working electrode so as to obtain a current density at which spontaneous vibrations occur, the region force that causes spontaneous vibrations as the current density gradually decreases is eliminated. The spontaneous vibration can be continued without stopping the spontaneous vibration.
[0052] 第 16発明に係る微細構造体は、上述した各電気化学的析出方法により析出した 物質を 3次元の基本骨格として、該物質の表面に他の物質が堆積していることを特 徴とする。  [0052] The microstructure according to the sixteenth invention is characterized in that the substance deposited by each of the electrochemical deposition methods described above is used as a three-dimensional basic skeleton, and other substances are deposited on the surface of the substance. And
[0053] 本発明にあっては、微細構造体 (例えば微細格子構造)を 3次元の基本骨格 (テン プレート)として、例えば白金のような他の物質 (導電体)を微細構造体の表面に堆積 することによって、高強度の極めて広い表面積の電極とすることができる。また、結晶 学的に安定した面が露出されて 、ると 、う利点も有して 、る。 [0054] 第 17発明に係る微細構造体は、上述した各電気化学的析出方法により析出した 物質の表面に他の物質を重合させ、前記析出した物質を除去することによって内部 に多孔構造が形成されて 、ることを特徴とする。 In the present invention, a fine structure (for example, a fine lattice structure) is used as a three-dimensional basic skeleton (template), and another substance (conductor) such as platinum is applied to the surface of the fine structure. By depositing, an electrode having a high strength and an extremely large surface area can be obtained. It also has the advantage that a crystallographically stable surface is exposed. [0054] In the microstructure according to the seventeenth invention, a porous structure is formed inside by polymerizing another substance on the surface of the substance deposited by each of the electrochemical deposition methods described above and removing the deposited substance. It is characterized by that.
[0055] 本発明にあっては、微細構造体 (例えば微細格子構造)を 3次元のテンプレートとし て、微細構造体が抜きパターンとなった微細構造体を実現することができる。 In the present invention, a fine structure in which the fine structure has a blank pattern can be realized using the fine structure (for example, a fine lattice structure) as a three-dimensional template.
発明の効果  The invention's effect
[0056] 本発明によれば、自己組織的な振動現象によって微細な規則的構造が基板から 垂直に自己構築される。また、構築される構造は、振動現象の履歴を反映して順次 積層される。本発明では、電気化学振動現象自体を制御することにしたので、得られ る規則的構造を制御することができる。さらに、単純な周期構造から、より複雑な 3次 元規則構造及び種々の微細格子構造を 1ステップかつ安価に、電極の表面全体に 構築することが可能となる。さらにまた、自発的振動が発生する電流密度となるように 作用極の電流を制御することによって、電流密度が次第に小さくなつて自発的振動 が発生する領域から外れて自発的振動が停止してしまうことはなぐ自発的振動を継 続することができ、ミリメートル〜センチメートルスケールの金属微細格子集合体を得 ることができる。また、得られる規則的構造自体をテンプレートとして活用するようにす れば、金属、半導体及び導電性ポリマーなどの 3次元の規則的構造の構築も可能で ある。さらに、原理上、反応阻害種を適宜選択することで、所望の物質の電気化学的 析出反応に適用できるため、様々な機能性材料形成への応用が期待される。またさ らに、そのための装置の構成が極めて簡単であるため、極めて低コストで所定の微細 構造体を製造することができる等、優れた効果を奏する。  [0056] According to the present invention, a fine regular structure is self-assembled vertically from the substrate by a self-organized vibration phenomenon. In addition, the structures to be constructed are sequentially stacked to reflect the history of vibration phenomena. In the present invention, since the electrochemical vibration phenomenon itself is controlled, the resulting regular structure can be controlled. Furthermore, it is possible to construct a more complex three-dimensional ordered structure and various fine lattice structures from a simple periodic structure on the entire surface of the electrode in one step and at a low cost. Furthermore, by controlling the current at the working electrode so that the current density at which spontaneous vibration occurs is generated, the current density gradually decreases, and the spontaneous vibration stops outside the region where the spontaneous vibration occurs. In addition, it is possible to continue the spontaneous vibration and obtain a metal fine lattice aggregate of millimeter to centimeter scale. In addition, if the obtained regular structure itself is used as a template, it is possible to construct a three-dimensional regular structure such as metal, semiconductor and conductive polymer. Furthermore, in principle, it can be applied to the electrochemical deposition reaction of a desired substance by appropriately selecting the reaction-inhibiting species, and therefore, it is expected to be applied to the formation of various functional materials. In addition, since the configuration of the apparatus for that purpose is extremely simple, it is possible to produce a predetermined fine structure at an extremely low cost, and thus an excellent effect can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0057] [図 1]本発明の実施の形態 1に係る電気化学的析出方法を説明するための説明図で ある。  FIG. 1 is an explanatory diagram for explaining an electrochemical deposition method according to Embodiment 1 of the present invention.
[図 2]電流振動を示すグラフである。  FIG. 2 is a graph showing current oscillation.
[図 3]薄膜の評価方法を説明するための説明図である。  FIG. 3 is an explanatory diagram for explaining a thin film evaluation method.
[図 4]本発明の実施の形態 1に係る電気化学的析出方法により形成した多層膜の評 価結果を示す電子顕微鏡写真及びオージ 分光結果である。 [図 5]作用極の電位に対する Cu及び Snの析出電流を示すグラフである。 FIG. 4 shows an electron micrograph and an Auger spectroscopic result showing an evaluation result of a multilayer film formed by the electrochemical deposition method according to Embodiment 1 of the present invention. FIG. 5 is a graph showing the deposition current of Cu and Sn with respect to the potential of the working electrode.
[図 6]電気振動の波形と析出物の組成比との対応を示すグラフである。  FIG. 6 is a graph showing the correspondence between the waveform of electrical vibration and the composition ratio of precipitates.
[図 7]C H N (CH ) CIを用いた場合における作用極の電位に対する析出電流 [Fig.7] Deposition current versus working electrode potential when C H N (CH) CI is used.
X 2X-1 3 3 X 2X-1 3 3
を示すグラフである。 It is a graph which shows.
[図 8]C12TACを用いた場合における作用極の電位に対する析出電流を示すグラフ である。  FIG. 8 is a graph showing the deposition current with respect to the working electrode potential when C12TAC is used.
圆 9]本発明の実施の形態 2に係る電気化学的析出方法を説明するための説明図で ある。 [9] FIG. 9 is an explanatory diagram for explaining the electrochemical deposition method according to the second embodiment of the present invention.
圆 10]電位振動を示すグラフである。 [10] This is a graph showing potential oscillation.
[図 11]本発明の実施の形態 2に係る電気化学的析出方法により形成した微細構造 体の一例を示す電子顕微鏡写真である。  FIG. 11 is an electron micrograph showing an example of a microstructure formed by the electrochemical deposition method according to Embodiment 2 of the present invention.
圆 12]Snの電位振動と同期した周期的な構造変化を説明するための説明図である。 圆 13]Snの電位振動と同期した周期的な構造変化を説明するための説明図である。 [12] FIG. 12 is an explanatory diagram for explaining a periodic structural change synchronized with the potential oscillation of Sn. [13] FIG. 13 is an explanatory diagram for explaining a periodic structural change synchronized with the potential oscillation of Sn.
[図 14]Snにおける電位振動を示すグラフである。 FIG. 14 is a graph showing potential oscillation in Sn.
[図 15]作用極の電流値を変更することによって構築される微細構造体を示す電子顕 微鏡写真である。  FIG. 15 is an electron micrograph showing a microstructure constructed by changing the current value of the working electrode.
[図 16]Znにおける電位振動を示すグラフである。  FIG. 16 is a graph showing potential oscillation in Zn.
[図 17]Znのイオン濃度を変更した場合に構築される微細構造体を示す電子顕微鏡 写真である。  FIG. 17 is an electron micrograph showing a microstructure that is constructed when the Zn ion concentration is changed.
[図 18]電位と電流密度との関係を示すグラフである。  FIG. 18 is a graph showing the relationship between potential and current density.
圆 19]電位振動の時間変化を示すグラフである。 [19] It is a graph showing the time change of potential oscillation.
[図 20]図 19 (a)の A点、 B点における電子顕微鏡写真である。  FIG. 20 is an electron micrograph at points A and B in FIG. 19 (a).
圆 21]本発明の実施の形態 3に係る電気化学的析出装置の構成を説明するための 説明図である。 21] An explanatory diagram for explaining the configuration of the electrochemical deposition apparatus according to the third embodiment of the present invention.
[図 22]制御部による電流値の制御を説明するための説明図である。  FIG. 22 is an explanatory diagram for explaining control of a current value by a control unit.
[図 23]制御部による電流値の制御の一例を示すグラフである。  FIG. 23 is a graph showing an example of current value control by the control unit.
圆 24]本発明の実施の形態 3に係る電気化学的析出装置を用いて形成した微細構 造体の一例を示す光学顕微鏡写真である。 符号の説明 24] An optical micrograph showing an example of a microstructure formed using the electrochemical deposition apparatus according to Embodiment 3 of the present invention. Explanation of symbols
[0058] 1, 11 陽極  [0058] 1, 11 anode
2, 12 陰極 (作用極)  2, 12 Cathode (working electrode)
3, 13 参照電極  3, 13 Reference electrode
4, 14 溶液  4, 14 solution
5, 15 液槽  5, 15 Liquid tank
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0059] 以下、本発明をその実施の形態を示す図面に基づいて詳述する。  Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
[0060] (実施の形態 1)  [0060] (Embodiment 1)
図 1は本発明の実施の形態 1に係る電気化学的析出方法を説明するための説明 図である。なお、本例では、電気化学振動の一形態としての電流振動を制御する場 合にっ 、て説明することとする。  FIG. 1 is an explanatory diagram for explaining an electrochemical deposition method according to Embodiment 1 of the present invention. In this example, the case where the current oscillation as one form of the electrochemical oscillation is controlled will be described.
同図において、導電性の金属基板である陽極 1及び陰極 2を対向して、複数の物 質 (ここでは Cu及び Snとする)力イオン状態で溶解した電解 (酸性)溶液 (以下、溶液 t ヽぅ) 4を容れた液槽 5内に配置し、陽極 1と陰極 2との間に所定の電圧を印加する。 また、上述した 2つの電極 1, 2に加えて、参照電極 3を液槽 5内に配置し、陰極 2,参 照電極 3間の電位を計測する。溶液 4は導体と考えられるので、陰極 2の溶液 4に対 する電位 VIを求めることができる。さらに、溶液 4には、反応阻害種が混入されており 、反応阻害種の存在下における Cu及び Snの電気化学的析出反応において、自発 的な電気化学振動 (ここでは、電流振動)を生じさせる。反応阻害種は、例えば、カチ オン性界面活性剤であり、 Amiet—320 (化学式 1)、C H N (CH ) CI (化学式  In this figure, an electrolytic (acidic) solution (hereinafter referred to as solution t) dissolved in a force ion state of a plurality of substances (herein referred to as Cu and Sn) with the anode 1 and the cathode 2 which are conductive metal substrates facing each other. Ii) Place 4 in the liquid tank 5 containing it, and apply a predetermined voltage between the anode 1 and the cathode 2. In addition to the two electrodes 1 and 2 described above, the reference electrode 3 is placed in the liquid tank 5 and the potential between the cathode 2 and the reference electrode 3 is measured. Since Solution 4 is considered a conductor, the potential VI of Cathode 2 with respect to Solution 4 can be determined. Furthermore, reaction inhibiting species are mixed in Solution 4, and spontaneous electrochemical vibration (here, current oscillation) is generated in the electrochemical deposition reaction of Cu and Sn in the presence of the reaction inhibiting species. . The reaction-inhibiting species is, for example, a cationic surfactant, such as Amiet—320 (Chemical Formula 1), C H N (CH) CI (Chemical Formula
X 2X-1 3 3  X 2X-1 3 3
2)、 TritonX— 100 (化学式 3)などを用いることができる。なお、平滑剤としてクェン 酸を溶液 4に混入することが好ましぐ本例では、 0. 15Mの CuSO 、 0. 15Mの Sn  2) TritonX-100 (Chemical Formula 3) can be used. In this example, where it is preferable to mix citrate as a smoothing agent in solution 4, 0.15M CuSO, 0.15M Sn
4  Four
SO 、0. 6Mの H SO 、0. 5Mのクェン酸、及び 0. 5mMの Amiet— 320が混合さ SO, 0.6M H 2 SO 4, 0.5M citrate, and 0.5 mM Amiet-320
4 2 4 4 2 4
れた溶液 4を用いた。 [0061] [化 1]
Figure imgf000015_0001
Solution 4 was used. [0061] [Chemical 1]
Figure imgf000015_0001
C18 H37-N 化学式 1  C18 H37-N Chemical formula 1
\(CH2CH2〇)ioH  \ (CH2CH2〇) ioH
CH3 CH3
CH3(CH2)x- N+- CH3 化学式 2 CH 3 (CH2) x- N +-CH3 Chemical formula 2
CH3 CH 3
CeHi (OCH2CH2)ioOH ■ ■ ·化学式 3CeHi (OCH 2 CH 2 ) ioOH ■ ■ Chemical Formula 3
Figure imgf000015_0002
Figure imgf000015_0002
[0062] 溶液 4に反応阻害種を混入することによって、反応阻害種により誘起される負性微 分抵抗と溶液中の電位降下とのカップリングにより自己触媒過程が生じ、陰極 2の電 位 VIが所定の範囲内である場合に、微小なゆらぎ (濃度や温度など)が自己触媒過 程により増幅されて、図 2に示すような、巨視的かつ周期的な振動となる電流振動が 発現する。 [0062] By mixing the reaction-inhibiting species with the solution 4, an autocatalytic process occurs due to the coupling between the negative minute resistance induced by the reaction-inhibiting species and the potential drop in the solution, and the potential of the cathode 2 VI When the value is within the specified range, minute fluctuations (concentration, temperature, etc.) are amplified by the autocatalytic process, and macroscopic and periodic vibration as shown in Fig. 2 appears. .
[0063] より詳述すれば、溶液 4は導体と考えられるので、陰極 2の表面では各イオンに強 い電界が加わり、その影響で脱水和が起こり、各イオンは陰極 2から電子を受け取り 吸着原子となる。吸着原子は陰極表面上を拡散し結晶格子の形成点に達し、結晶が 形成される。反応阻害種の陰極 2への付着と脱離とが交互に自発的に生じ、反応阻 害種の付着及び脱離に伴って振動現象が現れる。本例では、陰極 2が作用極として 機能し、発現した振動現象の波形に基づいて、陰極 2の表面に Cu及び Snからなる 平滑性に優れた薄膜が陰極 2に析出する。なお、平滑性はクェン酸を混入したことに 起因しており、クェン酸を混入しない場合には膜表面に凹凸が残存する。  More specifically, since Solution 4 is considered to be a conductor, a strong electric field is applied to each ion on the surface of Cathode 2, which causes dehydration, and each ion receives electrons from Cathode 2 and is adsorbed. Become an atom. The adsorbed atoms diffuse on the cathode surface and reach the formation point of the crystal lattice to form crystals. Attachment and desorption of reaction-inhibiting species to cathode 2 occur alternately and spontaneously, and a vibration phenomenon appears with the attachment and desorption of reaction-inhibiting species. In this example, the cathode 2 functions as a working electrode, and a thin film having excellent smoothness composed of Cu and Sn is deposited on the cathode 2 on the surface of the cathode 2 based on the waveform of the vibration phenomenon that appears. The smoothness is attributed to the incorporation of citrate, and in the absence of citrate, irregularities remain on the film surface.
[0064] 次に、成長させた薄膜について評価した。図 3は薄膜の評価方法を説明するため の説明図である。まず、薄膜 21を成長させたサンプル 20を回転させながら、薄膜表 面を Arエッチング処理し(図 3 (a) )、薄膜 21にすり鉢状の穴を形成する(図 3 (b) )。 このように加工した薄膜 21を上面力も電子顕微鏡にて観察して、図 4 (a)に示すよう に、同心円状のコントラスト(明暗比)の存在を確認した。つまり、成長させた薄膜が多 層構造を有することを確認した。さらに、薄膜 (多層膜)の組成比を評価するために、 多層膜の側面を走査オージュ分光法によって解析を行った結果、図 4 (b)に示すよう に、組成比が周期的に変化して 、ることを確認した。 [0064] Next, the grown thin film was evaluated. FIG. 3 is an explanatory diagram for explaining the thin film evaluation method. First, while rotating the sample 20 on which the thin film 21 was grown, The surface is subjected to Ar etching treatment (FIG. 3 (a)), and a mortar-like hole is formed in the thin film 21 (FIG. 3 (b)). The thin film 21 processed in this way was also observed with an electron microscope on the upper surface force, and as shown in FIG. 4 (a), the presence of concentric contrast (brightness ratio) was confirmed. In other words, it was confirmed that the grown thin film had a multilayer structure. Furthermore, in order to evaluate the composition ratio of the thin film (multilayer film), the side surface of the multilayer film was analyzed by scanning Auge spectroscopy, and as a result, the composition ratio changed periodically as shown in Fig. 4 (b). And confirmed that.
[0065] 多層膜は陰極 2の表面に成長することから、例えば、陰極 2の形状を円筒形にする ことにより、円筒の内側に、平滑性に優れた多層膜を形成することができる。電気化 学的析出方法は、電極の形状に依存することなぐその表面に析出物を成長させるこ とができるので、いかなる形状の電極に対しても、その表面に平滑性に優れた多層 膜を形成することができる。換言すれば、所望の形状に予め加工した電極を用いて、 本発明の電気化学的析出方法を適用すれば、所望の形状を有する多層膜を電極の 表面に形成することができる。  Since the multilayer film grows on the surface of the cathode 2, for example, by making the shape of the cathode 2 cylindrical, a multilayer film having excellent smoothness can be formed inside the cylinder. Electrochemical deposition methods can grow precipitates on the surface without depending on the shape of the electrode, so a multilayer film with excellent smoothness can be formed on the surface of any shape of electrode. Can be formed. In other words, a multilayer film having a desired shape can be formed on the surface of the electrode by applying the electrochemical deposition method of the present invention using an electrode previously processed into a desired shape.
[0066] 多層膜は、電流振動が生じることによって析出された薄膜 (Cuと Snとの合金)であ るが、本発明では、この多層膜の組成比、膜厚、及び層の数 (積層回数)を以下のよ うにして制御する。  [0066] The multilayer film is a thin film (an alloy of Cu and Sn) deposited by the occurrence of current oscillation. In the present invention, the composition ratio, film thickness, and number of layers (lamination of layers) The number of times is controlled as follows.
[0067] < 1、陰極の電位 >  [0067] <1, cathode potential>
電流振動が生じる陰極 (作用極)の電位は幅を持っており、作用極の電位を調整す ることによって、電流振動の波形を制御して、多層膜の組成比及び各層の膜厚を調 整することができる。換言すれば、所望の組成比を有する多層膜となるようにするに は、作用極の電位を調整すればよい。作用極の電位は、陽極 1,陰極 2間に印加す る電圧を変更することにより所望の値にすることができる。  The potential of the cathode (working electrode) where current oscillation occurs has a range, and by adjusting the potential of the working electrode, the waveform of the current oscillation is controlled to adjust the composition ratio of the multilayer film and the film thickness of each layer. Can be adjusted. In other words, the potential of the working electrode may be adjusted in order to obtain a multilayer film having a desired composition ratio. The potential of the working electrode can be set to a desired value by changing the voltage applied between the anode 1 and the cathode 2.
[0068] 図 5は作用極の電位に対する Cu及び Snの析出電流を示すグラフである。 Cu及び Snは、それぞれ、作用極の電位を低くすれば (より負の電位にすれば)、析出電流が 大きくなるが、 Snは Cuよりも、より負の電位力も析出電流が生じる。したがって、作用 極の電位が高 、状態で電流振動を生じさせるように設定すれば、 Snの析出量力Cu の析出量に比べて少なくすることができる、つまり Cuの組成比(CuZ (Cu+Sn) )を 大きくすることができる。逆に、作用極の電位が低い状態で電流振動を生じさせるよう に設定すれば、 Cuの組成比を小さくすることができる。つまり、溶液に含まれる物質 のイオン化傾向度合の相違に応じて、陰極の電位を調整して析出物の組成比を制 御することができる。例えば、 Cu Sn /Cu Sn力^単位構造として積層された多層 FIG. 5 is a graph showing Cu and Sn deposition currents with respect to the potential of the working electrode. For Cu and Sn, if the potential of the working electrode is lowered (when the potential is made more negative), the deposition current increases. However, Sn also causes a deposition current with a more negative potential than Cu. Therefore, if the potential of the working electrode is high and current oscillation is set to occur in the state, the amount of Sn precipitation can be reduced compared to the amount of Cu precipitation, that is, the Cu composition ratio (CuZ (Cu + Sn )) Can be increased. On the contrary, current oscillation is generated with the working electrode at a low potential. If set to, the composition ratio of Cu can be reduced. In other words, the composition ratio of the precipitate can be controlled by adjusting the potential of the cathode according to the difference in ionization tendency of substances contained in the solution. For example, Cu Sn / Cu Sn force ^ multilayered as unit structure
2 8 7 3  2 8 7 3
膜を形成することができる。  A film can be formed.
[0069] また、作用極の電位を調整することによって、電流振動の波形 (例えば周期)を制 御して、各層の膜厚を調整することができる。例えば、作用極の電位を低くすることに より、各層の膜厚を厚くすることができ、逆に、電位を高く小さくすることにより、膜厚を 薄くすることができる。  [0069] Further, by adjusting the potential of the working electrode, the film thickness of each layer can be adjusted by controlling the waveform (for example, the period) of current oscillation. For example, the film thickness of each layer can be increased by lowering the potential of the working electrode, and conversely, the film thickness can be decreased by increasing and decreasing the potential.
[0070] < 2、溶液中の物質の濃度 >  [0070] <2, Concentration of substance in solution>
溶液に含まれる各物質の濃度を調整することによって、析出電流を調整することが できるので、各物質の析出量を調整して組成比を決定 (制御)することができる。例え ば、 Cuの濃度を高くすることによって、 Cuの組成比を大きくすることができる。  Since the deposition current can be adjusted by adjusting the concentration of each substance contained in the solution, the composition ratio can be determined (controlled) by adjusting the deposition amount of each substance. For example, the Cu composition ratio can be increased by increasing the Cu concentration.
[0071] また、 Snと Cuとの濃度比を一定に維持した状態で、 Cu及び Snの濃度を連動して 調整することにより、各層の膜厚を調整することができる。図 6は電気振動の波形と析 出物の糸且成比との対応を示すグラフであり、同図(a) , (b)は、 CuSO及び SnSO  [0071] Further, the film thickness of each layer can be adjusted by adjusting the concentrations of Cu and Sn in conjunction with the concentration ratio of Sn and Cu kept constant. Fig. 6 is a graph showing the correspondence between the waveform of electrical vibration and the yield ratio of the precipitates. Figures (a) and (b) show CuSO and SnSO.
4 4 の濃度がそれぞれ 0. 15M, 0. 10Mである場合を示す。濃度を低くすることによって 振動の周期を短くすることができ、その振動の周期に応じた多層膜を析出することが できる。例えば、本例において、濃度が 0. 15Mである場合は各層の膜厚が 90nmと なり、 0. 10Mである場合は各層の膜厚が 38nmとなる。  The case where the concentration of 4 4 is 0.15M and 0.10M, respectively. By reducing the concentration, the period of vibration can be shortened, and a multilayer film corresponding to the period of vibration can be deposited. For example, in this example, when the concentration is 0.15M, the thickness of each layer is 90 nm, and when it is 0.10M, the thickness of each layer is 38 nm.
[0072] < 3、反応阻害種の種類及び濃度 >  [0072] <3. Kind and concentration of reaction-inhibiting species>
反応阻害種がゆらぎによって基板の 1ケ所に付着された場合、反応阻害種の有す る自己触媒機能により、位相を揃えて陰極の表面全体に広がるので、陰極の表面全 体に析出物が析出されるが、反応阻害種の付着が生じる陰極の電位は、反応阻害 種の種類及び濃度によって決定されることから、反応阻害種の種類及び濃度によつ て、電流振動が生じる電位を制御、つまり電流振動の波形を制御することができる。  When reaction-inhibiting species are attached to a single location on the substrate due to fluctuations, the autocatalytic function of the reaction-inhibiting species spreads over the entire surface of the cathode in phase, so that precipitates are deposited on the entire surface of the cathode. However, since the cathode potential at which reaction-inhibiting species are attached is determined by the type and concentration of the reaction-inhibiting species, the potential at which current oscillation occurs is controlled by the type and concentration of the reaction-inhibiting species. That is, the waveform of current oscillation can be controlled.
[0073] C H N (CH ) C1を用いた場合、カーボン鎖が 10 (C10)以上でれば反応阻害  [0073] When C H N (CH) C1 is used, reaction inhibition is observed if the carbon chain is 10 (C10) or more.
X 2X-1 3 3  X 2X-1 3 3
種として機能し、組成パラメータ が10 (じ10丁八 、 12 (C12TAC)及び 16 (C16T AC)において、反応阻害種として機能することを確認した。 [0074] 0. 15Mの CuSO 、 0. 15Mの SnSO 、 0. 5Mの H SO、及び 0. 5Mのクェン酸 It functioned as a seed, and it was confirmed that it functions as a reaction-inhibiting species when the composition parameters are 10 (10-chome 8, 12 (C12TAC) and 16 (C16TAC). [0074] 0.15 M CuSO, 0.15 M SnSO, 0.5 M H 2 SO, and 0.5 M citrate
4 4 2 4  4 4 2 4
に、 5mMのカーボン鎖の異なる C H N (CH ) C1を混合した溶液 4を用いて、反  Using solution 4 in which 5 mM of C H N (CH) C1 with different carbon chains was mixed,
X 2X-1 3 3  X 2X-1 3 3
応阻害種の種類と電流振動が生じる電位との関係について評価した。  The relationship between the kind of response-inhibiting species and the potential at which current oscillation occurs was evaluated.
図 7は C H N (CH ) C1を用いた場合における作用極の電位に対する析出電 Figure 7 shows the deposition current versus the potential of the working electrode when C H N (CH) C1 is used.
X 2X-1 3 3 X 2X-1 3 3
流を示すグラフであり、同図(a)は C10TACを、同図(b)は C12TACを、同図(c)は C16TACを、それぞれ反応阻害種として溶液に混合した場合を示す。電流振動は 負性微分抵抗の電位にて生じることから、同系列の反応阻害種を用いた場合、カー ボン鎖が長い反応阻害種を用いることにより、電流振動が生じる電位を正側にシフト することができる。したがって、反応阻害種のカーボン鎖を調整することで電流振動 が生じる電位を制御、つまり電流振動の波形を制御することができるので、電流振動 に応じた構造の多層膜を形成することができる。  (A) shows C10TAC, (b) shows C12TAC, and (c) shows C16TAC mixed in the solution as reaction-inhibiting species. Since current oscillation occurs at the negative differential resistance potential, when using the same type of reaction-inhibiting species, the potential at which current oscillation occurs is shifted to the positive side by using a reaction-inhibiting species with a long carbon chain. be able to. Therefore, by adjusting the carbon chain of the reaction-inhibiting species, the potential at which current oscillation occurs can be controlled, that is, the waveform of the current oscillation can be controlled, so that a multilayer film having a structure corresponding to the current oscillation can be formed.
[0075] 0. 15Mの CuSO 、 0. 15Mの SnSO 、 0. 25Mの H SO、及び 0. 5Mのクェン [0075] 0.15M CuSO, 0.15M SnSO, 0.25M H 2 SO, and 0.5M Quen
4 4 2 4  4 4 2 4
酸に、濃度を変更した C12TACを混合した溶液 4を用いて、反応阻害種の濃度と電 流振動が生じる電位との関係について評価した。  Using a solution 4 in which acid was mixed with C12TAC with different concentrations, the relationship between the concentration of reaction-inhibiting species and the potential at which current oscillations occurred was evaluated.
図 8は C12TACを用いた場合における作用極の電位に対する析出電流を示すグ ラフであり、同図(a)は C12TACの濃度が 2mM、同図(b)は C12TACの濃度が 3m M、同図(c)は C12TACの濃度力 mMである場合を示す。電流振動は負性微分抵 抗の電位にて生じることから、同一の反応阻害種を用いた場合、その濃度を高くする ことにより、電流振動が生じる電位を正側にシフトすることができる。したがって、反応 阻害種の濃度を調整することで電流振動が生じる電位を制御、つまり電流振動の波 形を制御することができるので、電流振動に応じた構造の多層膜を形成することがで きる。  Fig. 8 is a graph showing the deposition current versus the working electrode potential when C12TAC is used. Fig. 8 (a) shows the concentration of C12TAC at 2 mM, and Fig. 8 (b) shows the concentration of C12TAC at 3 mM. (C) shows the case of C12TAC concentration power mM. Since the current oscillation occurs at the potential of the negative differential resistance, when the same reaction-inhibiting species is used, the potential at which the current oscillation occurs can be shifted to the positive side by increasing its concentration. Therefore, by adjusting the concentration of the reaction-inhibiting species, the potential at which current oscillation occurs can be controlled, that is, the waveform of current oscillation can be controlled, so that a multilayer film having a structure corresponding to the current oscillation can be formed. .
[0076] 以上詳述したように、実施の形態 1に係る電気化学的析出方法によれば、 1ステツ プかつ安価に、作用極の表面全体に多層膜を形成することができる。また原理上、 反応阻害種を適宜選択することで、金属のみならず、半導体 (例えば Cu O)及び導  [0076] As described in detail above, according to the electrochemical deposition method according to Embodiment 1, a multilayer film can be formed on the entire surface of the working electrode in one step and at a low cost. In principle, by selecting reaction-inhibiting species appropriately, not only metals but also semiconductors (for example, Cu 2 O) and conductors can be used.
2 電性ポリマー(例えばポリア-リン)などの電気化学的析出反応に応用できるため、様 々な機能性材料形成への応用が期待される。また、そのための装置の構成が極めて 簡単であるため、極めて低コストで所定の微細構造体を製造することができる。 [0077] なお、本実施の形態では、 CuZSnの混合溶液力も CuZSnの合金を製造する場 合について説明したが、その材料について限定されるものではなぐ反応阻害種とし て作用するフエナントレン (C H )が混合された溶液中における Cuの電気化学的析 2 Since it can be applied to electrochemical deposition reactions of electroconductive polymers (eg polyaline), it is expected to be applied to various functional materials. In addition, since the configuration of the apparatus for that purpose is very simple, a predetermined microstructure can be manufactured at a very low cost. [0077] In the present embodiment, the CuZSn mixed solution force has been described for the case of producing a CuZSn alloy. Electrochemical deposition of Cu in mixed solutions.
14 10  14 10
出反応、及び次亜リン酸 (H PO (OH) )が混合された溶液中における Niの電気化  Ni electrolysis in solution mixed with hypophosphorous acid (H PO (OH))
2  2
学的析出反応などにおいても多層膜が形成され、電流振動が生じる反応系に対して 有効である。したがって、所望の材料力 容易に高品質の多層構造を構築することが できる。例えば、巨大磁気抵抗及びトンネル磁気抵抗など、多層構造に基づいた機 能を有するデバイスを容易かつ低コストで製造することが可能となる。  It is also effective for reaction systems in which multilayer films are formed in the chemical precipitation reaction, etc., and current oscillation occurs. Therefore, it is possible to easily construct a high-quality multilayer structure with a desired material force. For example, devices having functions based on a multilayer structure such as giant magnetoresistance and tunneling magnetoresistance can be manufactured easily and at low cost.
[0078] また、本実施の形態では、電気化学振動の一形態として電流振動について説明し たが、作用極の電位が振動する電位振動においても同様であり、作用極の電流を制 御して振動現象を生じさせるようにしてもよ!ヽことは言うまでもな!/ヽ。  [0078] In the present embodiment, current oscillation has been described as one form of electrochemical oscillation. However, the same applies to potential oscillation in which the potential of the working electrode oscillates, and the current of the working electrode is controlled. You can cause vibrations! Needless to say! / 言 う.
[0079] (実施の形態 2)  [0079] (Embodiment 2)
実施の形態 1では、溶液に反応阻害種を混合し、反応阻害種により誘起される負性 微分抵抗と溶液中の電位降下とのカップリングにより振動現象を生じさせるようにした 力 溶液に溶解させた物質の作用極表面への析出が物質の拡散支配に進むように 、作用極の電位又は電流を制御してもよぐこのようにしたものが実施の形態 2である 。以下、電位振動を制御して、格子構造を作用極の表面に形成する方法について説 明する。  In Embodiment 1, reaction-inhibiting species are mixed in a solution, and dissolved in a force solution that causes a vibration phenomenon by coupling negative differential resistance induced by the reaction-inhibiting species with a potential drop in the solution. In the second embodiment, the potential or current of the working electrode may be controlled so that the deposition of the material on the surface of the working electrode proceeds to the diffusion control of the material. Hereinafter, a method for controlling the potential oscillation to form a lattice structure on the surface of the working electrode will be described.
[0080] 図 9は本発明の実施の形態 2に係る電気化学的析出方法を説明するための説明 図である。なお、本例では、電気化学振動の一形態としての電位振動を制御する場 合にっ 、て説明することとする。  FIG. 9 is an explanatory diagram for explaining the electrochemical deposition method according to the second embodiment of the present invention. In this example, the case where the potential vibration as one form of the electrochemical vibration is controlled will be described.
同図において、導電性の金属基板である陽極 11及び陰極 12を対向して、物質 (こ こでは Sn、 Znなどの金属とする)力イオン状態で溶解した電解溶液 (以下、溶液とい う) 14を容れた液槽 15内に配置し、陰極 12と陽極 11と間に所定の電流を流す。つま り、陰極 12,陽極 11間に定電流源を接続する。なお、定電流源による出力電流値を 適宜設定することができるものとする。また、上述した 2つの電極 11, 12にカ卩えて、参 照電極 13を液槽 15内に配置し、参照電極 13,陰極 12間の電位を計測する。溶液 1 4は導体と考えられるので、陰極 12の溶液 14に対する電位 V2を求めることができる 。物質の電気化学的析出反応において、物質の拡散律速条件において、拡散支配 に進むように電流を制御して、自発的な電気化学振動 (ここでは、電位振動)を生じさ せる。なお、本例では、 0. 2Mの Sn2+及び 4Mの NaOHが混合された溶液 14を用い た。 In this figure, an electrolytic solution (hereinafter referred to as a solution) dissolved in a force ion state of a substance (here, a metal such as Sn or Zn) with an anode 11 and a cathode 12 which are conductive metal substrates facing each other. 14 is placed in a liquid tank 15 containing a predetermined current flowing between the cathode 12 and the anode 11. In other words, a constant current source is connected between the cathode 12 and the anode 11. It should be noted that the output current value from the constant current source can be set as appropriate. In addition to the two electrodes 11 and 12 described above, the reference electrode 13 is placed in the liquid tank 15 and the potential between the reference electrode 13 and the cathode 12 is measured. Since solution 14 is considered a conductor, the potential V2 of cathode 12 with respect to solution 14 can be determined. . In the electrochemical deposition reaction of a substance, the current is controlled so as to proceed to diffusion control under the diffusion-controlled condition of the substance, thereby generating a spontaneous electrochemical oscillation (here, a potential oscillation). In this example, a solution 14 in which 0.2 M Sn 2+ and 4 M NaOH were mixed was used.
[0081] 拡散支配に進むように電流を制御することによって自己触媒過程が生じ、陰極 12, 陽極 11間の電流値が所定の範囲内である場合に、微小なゆらぎが自己触媒過程に より増幅されて、図 10に示すような、巨視的かつ周期的な振動となる電位振動が発 現する。  [0081] By controlling the current so as to proceed to diffusion control, a self-catalytic process occurs, and when the current value between the cathode 12 and the anode 11 is within a predetermined range, a minute fluctuation is amplified by the autocatalytic process. As a result, the potential oscillation that is macroscopic and periodic oscillation as shown in Fig. 10 appears.
[0082] 振動現象は、特定方位への自己触媒的結晶成長と、熱力学的安定面における自 己触媒的表面不活性化との兼ね合いにより生じることから、作用極として機能する陰 極 12の表面には、電位振動の履歴を反映し、作用極の垂直方向に成長した微細な 規則的構造体が形成される。物質が Sn, Znの場合には、それぞれ、図 11 (a) , (b) に示すように、格子構造、六角形プレートが重なり合った構造が構築される。もちろん 、物質の種類については限定されるものではなぐ例えば Pbの場合には、 3次元的 に張り巡らされた微細ネットワーク構造が構築される。このように、析出される構造は、 析出される物質の結晶構造自体に依存する。  [0082] The vibration phenomenon occurs due to a combination of autocatalytic crystal growth in a specific orientation and self-catalytic surface deactivation in a thermodynamically stable plane, and thus the surface of the cathode 12 functioning as a working electrode. A fine regular structure that grows in the vertical direction of the working electrode is formed, reflecting the history of potential oscillation. When the material is Sn or Zn, as shown in FIGS. 11 (a) and 11 (b), a lattice structure and a structure in which hexagonal plates are overlapped are constructed. Of course, the type of material is not limited. For example, in the case of Pb, a three-dimensionally stretched fine network structure is constructed. Thus, the deposited structure depends on the crystal structure of the deposited substance itself.
[0083] 電位振動の波形がどのように格子構造に反映されるのかを評価するため、電位振 動の各電位で陰極 12 (作用極)を溶液 14から引き上げて、作用極の表面を電子顕 微鏡及び光学顕微鏡を用いて観察した。  [0083] In order to evaluate how the waveform of the potential oscillation is reflected in the lattice structure, the cathode 12 (working electrode) is pulled up from the solution 14 at each potential of the potential oscillation, and the surface of the working electrode is observed with an electron microscope. Observation was performed using a microscope and an optical microscope.
[0084] 図 12、図 13は Snの電位振動と同期した周期的な構造変化を説明するための説明 図であり、図 12 (a)は Snの電位振動の波形、図 12 (b)は Snの結晶面及び方位を示 し、図 13 (a) , (b) , (c)は、図 12 (a)の電位 A, B, Cの各点における陰極表面の電 子顕微鏡 (SEM)写真、光学顕微鏡 (OM)写真及び模式図である。なお、陰極 12, 陽極 11間に― 36mAZcm2の電流密度が流れるように定電流源を設定した。 FIGS. 12 and 13 are explanatory diagrams for explaining the periodic structural change synchronized with the potential oscillation of Sn. FIG. 12 (a) shows the waveform of the potential oscillation of Sn, and FIG. 12 (b) The crystal plane and orientation of Sn are shown.Figs. 13 (a), (b), and (c) show the electron microscope (SEM) of the cathode surface at the potentials A, B, and C in Fig. 12 (a). It is a photograph, an optical microscope (OM) photograph, and a schematic diagram. The constant current source was set so that a current density of −36 mAZcm 2 would flow between the cathode 12 and the anode 11.
[0085] 電位振動の負端(図 12 (a)電位 A)では、角張った Snの結晶が見られ、その 1つ 1 つは熱力学的に安定な方位面である(110)面や (011)面が露出して 、ることが観察 された(図 13 (a) )。電位が負力も正へとシフトしたとき(図 12 (a)電位 B)には、角張つ た Snの結晶の角からく 101 >方向への針状の Snが析出していることが観察された( 図 13 (b) )。また、正端の電位(図 12 (a)電位 C)では、針状の Snの先端が再び熱力 学的な安定面を露出し、結晶化を開始していることが観測された (図 13 (c) )。この観 察結果から、電位振動の波形を制御することができれば、形成される格子構造を所 望の形状にすることが可能であることが分かった。 [0085] At the negative end of the potential oscillation (Fig. 12 (a) potential A), angular Sn crystals are observed, one of which is the (110) plane, which is the thermodynamically stable orientation plane, and ( It was observed that the (011) plane was exposed (Fig. 13 (a)). When the potential shifts to a positive force (Fig. 12 (a) Potential B), it is observed that needle-like Sn is deposited in the 101> direction from the corner of the angular Sn crystal. ( Figure 13 (b)). At the positive end potential (Fig. 12 (a) potential C), it was observed that the tip of the needle-shaped Sn again exposed the thermodynamically stable surface and started crystallization (Fig. 13). (c)). From this observation result, it was found that if the waveform of the potential oscillation can be controlled, the formed lattice structure can be formed into the desired shape.
[0086] 次に、いかにして電位振動の波形を制御するかについて説明する。  Next, how to control the waveform of the potential oscillation will be described.
< 1、作用極の電流値 >  <1, Working electrode current value>
図 14は Snにおける電位振動を示すグラフであり、横軸は時間の経過を、縦軸は電 位をそれぞれ示す。同図においては、 62秒までは、作用極、すなわち陰極 12,陽極 11間に— 12mAの定電流を流し、 62秒以後は陰極 12,陽極 11間に— 20mAの定 電流を流した場合の電位振動を示す。電流値を変更したことによって、 62秒を境界 にして電位振動の波形が変化していることが分かる。なお、 42秒までは反応が不安 定であるために、電位振動が不安定であることを示して 、る。  Fig. 14 is a graph showing the potential oscillation in Sn. The horizontal axis shows the passage of time and the vertical axis shows the potential. In this figure, a constant current of 12 mA flows between the working electrode, that is, the cathode 12 and the anode 11 until 62 seconds, and a constant current of 20 mA flows between the cathode 12 and the anode 11 after 62 seconds. Shows potential oscillation. It can be seen that by changing the current value, the waveform of the potential oscillation changes around 62 seconds. The response is unstable until 42 seconds, indicating that the potential oscillation is unstable.
[0087] このように、作用極の電流値を変更することによって構築される構造は、図 15に示 すように、形成される格子の構造パラメータを制御することができる。つまり、本例の S nを析出する場合、電流値を変更することによって、格子の間隔を変えることができる 。本例では、結晶成長の途中で電流値を変更したので、電流値を変更した時点にお ける結晶 C力 格子の間隔が変化したことが分力る。  As described above, the structure constructed by changing the current value of the working electrode can control the structural parameters of the formed lattice, as shown in FIG. In other words, when depositing Sn in this example, the lattice spacing can be changed by changing the current value. In this example, since the current value was changed during the crystal growth, the fact that the spacing of the crystal C-force lattice at the time when the current value was changed changed.
[0088] つまり、電位振動が生じる電流値は幅を持っており、その電流値を調整することによ つて、電位振動の波形を制御して、形成される構造体の構造パラメータを制御するこ とがでさる。  That is, the current value at which the potential oscillation occurs has a range, and by adjusting the current value, the waveform of the potential oscillation is controlled to control the structural parameters of the structure to be formed. Togashi.
[0089] < 2、溶液中の物質の濃度 >  [0089] <2, Concentration of substance in solution>
濃度を変更した Zn2+及び 4Mの NaOHが混合された溶液 14を用いて、物質の濃度 と電位振動の波形との関係にっ 、て評価した。 Using a solution 14 in which Zn 2+ and 4M NaOH mixed in different concentrations were mixed, the relationship between the concentration of the substance and the waveform of potential oscillation was evaluated.
図 16は Znにおける電位振動を示すグラフであり、横軸は時間の経過を示し、同図 (a) , (b) , (c)は、 Znのイオン濃度がそれぞれ 0. 1M, 0. 2M, 0. 5Mである場合の 電位をそれぞれ示す。 Znのイオン濃度を高くすることによって振動の周期を長くする ことができる。図 17は Znのイオン濃度を変更した場合に構築される微細構造体を示 す電子顕微鏡写真である。同図(a) , (b) , (c)は、イオン濃度をそれぞれ 0. 1M, 0 . 2M, 0. 5Mとした場合を示し、形成される六角形プレートの大きさを、イオン濃度 に応じて大きくすることができることが分かる。 Fig. 16 is a graph showing the potential oscillation in Zn, and the horizontal axis shows the passage of time. (A), (b), and (c) show the Zn ion concentrations of 0.1M and 0.2M, respectively. , 0.5 M, respectively. The period of oscillation can be lengthened by increasing the ion concentration of Zn. Fig. 17 is an electron micrograph showing the microstructure constructed when the ion concentration of Zn is changed. Figures (a), (b), and (c) show the ion concentrations of 0.1 M and 0, respectively. 2M and 0.5M are shown, and it can be seen that the size of the hexagonal plate formed can be increased according to the ion concentration.
[0090] つまり、溶液に含まれる物質の濃度を調整することによつても、電位振動の波形を 制御することができるので、上述と同様に、形成される構造体の構造パラメータを制 御することができる。 That is, since the waveform of the potential oscillation can also be controlled by adjusting the concentration of the substance contained in the solution, the structural parameter of the structure to be formed is controlled in the same manner as described above. be able to.
[0091] 以上詳述したように、実施の形態 2に係る電気化学的析出方法によれば、 1ステツ プかつ安価に、作用極の表面全体に、析出する物質に固有の微細構造体を形成す ることができる。また、そのための装置の構成が極めて簡単であるため、極めて低コス トで所定の微細構造体を製造することができる。  [0091] As described above in detail, according to the electrochemical deposition method according to the second embodiment, a microstructure unique to the deposited substance is formed on the entire surface of the working electrode in one step and at a low cost. can do. In addition, since the configuration of the apparatus for that purpose is very simple, a predetermined microstructure can be manufactured at a very low cost.
[0092] なお、本実施の形態では、電気化学振動の一形態として電位振動について説明し たが、作用極の電流が振動する電流振動においても同様であり、作用極の電位を制 御して振動現象を生じさせるようにしてもよ!ヽことは言うまでもな!/ヽ。  In this embodiment, the potential oscillation is described as one form of the electrochemical oscillation. However, the same applies to the current oscillation in which the working electrode current oscillates, and the potential of the working electrode is controlled. You can cause vibrations! Needless to say! / 言 う.
[0093] ところで、電気化学振動の一形態として電位振動は、図 18に示すように、電流密度 が閾値 jdl (略— 25mAZcm2 )を境界にして電位が自発的に振動を始める。換言す れば、電流密度が少ないときは電気化学振動が生じることはなぐ閾値 jdlは反応律 速過程力 拡散律速過程へ移る境界であると言える。つまり、電位振動を継続するに は、電流密度を制御して拡散律速過程を維持することが極めて重要である。 By the way, as one form of electrochemical vibration, as shown in FIG. 18, the potential vibration starts to spontaneously vibrate with the current density as a boundary at a threshold jdl (approximately −25 mAZcm 2 ). In other words, the threshold jdl at which electrochemical oscillation does not occur when the current density is small can be said to be a boundary that shifts to the reaction-controlled process force. In other words, it is extremely important to maintain the diffusion-controlled process by controlling the current density in order to continue the potential oscillation.
[0094] 図 19は電位振動の時間変化を示すグラフであり、横軸は時間の経過を、縦軸は電 位をそれぞれ示す。図 19 (a)は作用極 (すなわち陰極 12) ,陽極 11間に定電流を印 カロした場合であり、略 250秒 (振動回数に換算すると略 75回)を経過してしまうと電位 振動が停止してしまう。これは、作用極の表面に微細構造体が成長することから、作 用極の実効的な電極面積が次第に増加して、電流密度が次第に小さくなつて自発 的振動が発生する領域力も外れるためである。また、図 20に示すように、成長を繰り 返す毎に電流密度が小さくなることから、作用極の表面に成長する微細構造体の格 子間隔が徐々に小さくなり、微細構造体の均一性が損なわれる。なお、図 20 (a)、 (b )は、それぞれ図 19 (a)の A点、 B点における電子顕微鏡写真である。  FIG. 19 is a graph showing changes in potential oscillation with time, with the horizontal axis indicating the passage of time and the vertical axis indicating the potential. Fig. 19 (a) shows the case where a constant current is applied between the working electrode (ie, cathode 12) and anode 11, and when approximately 250 seconds (approximately 75 times in terms of number of vibrations) have elapsed, the potential oscillation is reduced. It will stop. This is because a fine structure grows on the surface of the working electrode, so that the effective electrode area of the working electrode gradually increases, and as the current density gradually decreases, the region force that generates spontaneous vibration is also removed. is there. In addition, as shown in FIG. 20, the current density decreases as the growth is repeated, so that the distance between the fine structures growing on the surface of the working electrode gradually decreases, and the uniformity of the fine structures is improved. Damaged. 20A and 20B are electron micrographs at points A and B in FIG. 19A, respectively.
[0095] したがって、図 19 (b)に示すように、実効的な電極面積の増加を考慮し、その増カロ の効果を相殺するように、作用極 (すなわち陰極 12) ,陽極 11間に印加する電流を 制御 (徐々に増加)して、実効的な電流密度が変化しないようにして自発的振動を継 続することが好ましい。 Therefore, as shown in FIG. 19 (b), an effective increase in the electrode area is taken into consideration, and the effect of the increased calorie is offset between the working electrode (ie, cathode 12) and anode 11. Current to It is preferable to control (increase gradually) and continue the spontaneous vibration so that the effective current density does not change.
[0096] (実施の形態 3)  [Embodiment 3]
図 21は本発明の実施の形態 3に係る電気化学的析出装置の構成を説明するため の説明図である。なお、本例では、電気化学振動の一形態としての電位振動を制御 する場合につ ヽて説明することとする。  FIG. 21 is an explanatory diagram for explaining the configuration of the electrochemical deposition apparatus according to Embodiment 3 of the present invention. In this example, the case of controlling the potential oscillation as one form of the electrochemical oscillation will be described.
本発明の実施の形態 3に係る電気化学的析出装置は、導電性の金属基板である 陽極 11及び陰極 12を対向して、物質 (ここでは Sn、 Znなどの金属とする)がイオン 状態で溶解した電解溶液 (以下、溶液という) 14を容れた液槽 15内に配置し、陰極 1 2と陽極 11との間に電流を流すように構成されている。また、上述した 2つの電極 11 , 12にカ卩えて、参照電極 13を液槽 15内に配置し、参照電極 13,陰極 12間の電位 を計測し、電気化学振動の振動毎の上端電位又は下端電位を検出する検出部 16と 、検出部 16にて検出した上端電位又は下端電位に基づいて、溶液に対する作用極 の電流を制御する制御部 10とを備える。溶液 14は導体と考えられるので、陰極 12の 溶液 14に対する電位 V2を求め、制御部 10が電位 V2に基づいて陰極 12,陽極 11 間に流す電流を制御する。具体的には、陰極 12,陽極 11間に定電流源を接続し、 その出力電流値を制御部 10が制御する。ここで、上端電位とは振動の正方向の極 値 (極大値)であり、下端電位とは振動の負方向の極値 (極小値)である。  In the electrochemical deposition apparatus according to Embodiment 3 of the present invention, the anode 11 and the cathode 12, which are conductive metal substrates, face each other, and the substance (here, a metal such as Sn or Zn) is in an ionic state. A dissolved electrolytic solution (hereinafter referred to as a solution) 14 is placed in a liquid tank 15 containing a solution, and current is passed between the cathode 12 and the anode 11. In addition, the reference electrode 13 is placed in the liquid tank 15 in place of the two electrodes 11 and 12 described above, the potential between the reference electrode 13 and the cathode 12 is measured, and the upper end potential for each vibration of the electrochemical vibration or A detection unit 16 that detects the lower end potential and a control unit 10 that controls the current of the working electrode with respect to the solution based on the upper end potential or the lower end potential detected by the detection unit 16 are provided. Since the solution 14 is considered to be a conductor, the potential V2 of the cathode 12 with respect to the solution 14 is obtained, and the control unit 10 controls the current flowing between the cathode 12 and the anode 11 based on the potential V2. Specifically, a constant current source is connected between the cathode 12 and the anode 11, and the control unit 10 controls the output current value. Here, the upper end potential is an extreme value (maximum value) in the positive direction of vibration, and the lower end potential is an extreme value (minimum value) in the negative direction of vibration.
[0097] 図 22は制御部による電流値の制御を説明するための説明図である。 FIG. 22 is an explanatory diagram for explaining the control of the current value by the control unit.
同図(a)は、電位振動が生じているときの電位波形を示しており、 Aは n番目の振動 波形、 Bは n+ 1番目の振動波形、 Cは n+ 2番目の振動波形である。上述したように 、電位振動によって作用極に微細構造体が成長することから、実効的な電極面積が 増加し、電位振動の上端電位及び下端電位は 1振動毎に負の方向に変位する。ま た、溶液抵抗を Rとすると、オームの法則により、電流 Iが流れた場合、 I X R分の電位 損失が生じる。すなわち、同図 (b)に示すように、第 n世代から第 n+ 1世代への成長 過程では、電極面積の増加 Δ A分の電位損失が生じる。電流 Iは面積 Aに比例する ので、 I=k XAと表すことができ、電位損失の増加は、(k X ΔΑ) XRとなる。ここで、 電位振動の上端電位及び下端電位 (以下、上端電位とする)の変位量 Δ ΙΙは、 A U = (k X ΔΑ) X R…(式(1) )で表すことができる。 (A) shows the potential waveform when potential oscillation occurs, where A is the nth oscillation waveform, B is the n + 1st oscillation waveform, and C is the n + 2nd oscillation waveform. As described above, since the fine structure grows on the working electrode due to the potential oscillation, the effective electrode area increases, and the upper end potential and the lower end potential of the potential oscillation are displaced in the negative direction for each oscillation. Also, assuming that the solution resistance is R, according to Ohm's law, when current I flows, a potential loss of IXR occurs. In other words, as shown in FIG. 5B, in the growth process from the nth generation to the (n + 1) th generation, a potential loss corresponding to an increase in electrode area ΔA occurs. Since the current I is proportional to the area A, it can be expressed as I = k XA, and the increase in potential loss is (k X ΔΑ) XR. Here, the amount of displacement Δ の of the upper and lower potentials (hereinafter referred to as the upper potential) of the potential oscillation is AU = (k X ΔΑ) XR (Expression (1)).
[0098] 一方、電流密度 jは、 j =lZA(I:電流値, A:実効電極面積)と定義することができる 。第 n世代では jn=InZAn、第 n+ 1世代では jn+ l = (Ιη+ Δΐ) / (Αη+ ΔΑ)と すると、本実施の形態では、 jn=jn+ lとなるように ΔΙを制御するので、 InZAn= (I η+ Δΐ) Ζ (Αη+ ΔΑ)となり、 Δΐ=ΙηΖΑηΧ Δ Α··· (式(2) )となる。  On the other hand, the current density j can be defined as j = lZA (I: current value, A: effective electrode area). Assuming that jn = InZAn in the nth generation and jn + l = (Ιη + Δΐ) / (Αη + ΔΑ) in the n + 1th generation, in this embodiment, ΔΙ is controlled so that jn = jn + l. InZAn = (I η + Δΐ) Ζ (Αη + ΔΑ), and Δΐ = ΙηΖΑηΧ Δ Α (Equation (2)).
[0099] 式(1)及び式(2)から、 Al=jnX ( AUZ (kXR) )が導かれ、さらに jO=jl =〜=j nであるから、 Δ I = jO X ( Δ UZ (k X R) )…(式(3) )となる。ここで、 k X Rは、電極の 配置及び濃度などの実験系に依存するパラメータで一定値である。したがって、 ΔΙΙ を検出して、この Δυに基づいて、式(3)から ΔΙを算出して、陰極 12,陽極 11間に 流す電流値を制御し、次世代での電位振動における波形を制御する。  [0099] From equation (1) and equation (2), Al = jnX (AUZ (kXR)) is derived, and further jO = jl = ˜ = jn, so Δ I = jO X (Δ UZ (k XR )) ... (Formula (3)). Here, k X R is a parameter that depends on the experimental system, such as electrode arrangement and concentration, and is a constant value. Therefore, ΔΙΙ is detected, and ΔΙ is calculated from Equation (3) based on this Δυ, the current value flowing between cathode 12 and anode 11 is controlled, and the waveform of potential oscillation in the next generation is controlled. .
[0100] 図 23は制御部による電流値の制御の一例を示すグラフであり、横軸は時間の経過 を、縦軸は作用極 (すなわち陰極 12) ,陽極 11間に流す電流値をそれぞれ示す。同 図から明らかなように、時間の経過とともに、作用極 (すなわち陰極 12) ,陽極 11間に 流す電流値を大きくしていることが分かる。これは、時間の経過とともに実効的な電極 面積の増加を考慮し、その増加の効果を相殺するように電流値を徐々に増加したか らであり、これによつて、実効的な電流密度が変化せず自発的振動を継続することが できる。したがって、略 250秒を経過した場合であっても電位振動が停止してしまうこ とはない。本例では、略 2000秒 (振動回数に換算すると略 600回)以上を経過しても 電位振動が継続して ヽることを確認した。  FIG. 23 is a graph showing an example of current value control by the control unit, where the horizontal axis indicates the passage of time, and the vertical axis indicates the current value flowing between the working electrode (ie, cathode 12) and anode 11. . As can be seen from the figure, the current value flowing between the working electrode (that is, the cathode 12) and the anode 11 increases with time. This is because the effective current density is gradually increased to account for the increase in effective electrode area over time and to offset the effect of the increase. Spontaneous vibration can be continued without change. Therefore, even if approximately 250 seconds elapse, the potential oscillation does not stop. In this example, it was confirmed that the potential oscillation continued even after more than about 2000 seconds (about 600 times in terms of vibrations).
[0101] また、電位振動が繰り返された場合であっても、電流密度が変わることがないので、 作用極の表面に成長する微細構造体の格子間隔は振動の開始時点のピッチを維持 でき、均一性が優れた微細格子構造となる。このように、時間の経過とともに実効的 な電極面積の増加を考慮し、その増加の効果を相殺するように電流値を徐々に増加 することによって、格子間隔の均一な微細格子構造体を安価かつ大量に製造するこ とが可能となる。また、格子 1個は数十〜数百マイクロメートルスケールである力 本 実施の形態に係る電気化学的析出方法を用いれば、図 24に示すように、ミリメートル 〜センチメートルスケールの金属微細格子集合体を得ることができる。  [0101] In addition, even when potential oscillation is repeated, the current density does not change, so the lattice spacing of the fine structure grown on the surface of the working electrode can maintain the pitch at the start of oscillation, A fine lattice structure with excellent uniformity is obtained. In this way, considering the effective increase in electrode area over time and gradually increasing the current value so as to offset the effect of the increase, a fine lattice structure with a uniform lattice spacing can be made inexpensively. It can be manufactured in large quantities. In addition, a force of one grid having a scale of several tens to several hundreds of micrometers. If the electrochemical deposition method according to the present embodiment is used, as shown in FIG. Can be obtained.
[0102] これにより、ミクロな微細構造を持つバルタ材料が得られ、新 ヽ電極バルタ材料と しての利用が可能となる。 Snの微細格子構造自体には用途が限定されるが、微細構 造体 (例えば微細格子構造)を 3次元の基本骨格 (テンプレート)として、白金のような 導電体を微細構造体の表面にメツキすることによって、高強度の極めて広 、表面積 の電極とすることができる。また、結晶学的に安定した面が露出されているという利点 も有している。もちろん、微細構造体に被覆する材料については、用途に応じて選択 すればよぐ白金以外では酸化銅が考えられる。 [0102] As a result, a Balta material with a microscopic microstructure was obtained. Can be used. Although the use of the Sn fine lattice structure itself is limited, a fine structure (for example, a fine lattice structure) is used as a three-dimensional basic skeleton (template), and a conductor such as platinum is plated on the surface of the fine structure. By doing so, it is possible to obtain a high-strength and extremely wide surface area electrode. It also has the advantage that a crystallographically stable surface is exposed. Of course, as the material for coating the microstructure, copper oxide can be considered other than platinum, which can be selected according to the application.
[0103] 逆に、微細構造体 (例えば微細格子構造)を 3次元のテンプレートとして、微細構造 体が抜きパターンとなった微細構造体を製造することができる。例えば、製造した微 細構造体を高分子ポリマーの溶液中に入れて重合した後に、塩酸のようなエツチン グ液で Snを除去 (エッチング)して、微細構造体の形状が空洞 (ァリの巣のような形状 )となった高分子ポリマーを製造することができる。このような高分子ポリマーは多孔 構造となることから、フィルタとしての用途として期待することができる。また、電気化 学振動の波形を制御して格子間隔を調整することができるので、高分子ポリマー内 に間隔の異なる複数の構造を形成することも可能である。  [0103] On the contrary, a fine structure in which the fine structure has a blank pattern can be manufactured using the fine structure (for example, a fine lattice structure) as a three-dimensional template. For example, after the manufactured microstructure is placed in a polymer solution and polymerized, Sn is removed (etched) with an etching solution such as hydrochloric acid, so that the shape of the microstructure is hollow (a A high molecular polymer having a nest-like shape can be produced. Since such a high molecular polymer has a porous structure, it can be expected to be used as a filter. In addition, since the lattice spacing can be adjusted by controlling the waveform of electrochemical vibration, it is possible to form a plurality of structures with different spacings in the polymer.
[0104] なお、本実施の形態では、電気化学振動の振動毎の上端電位又は下端電位を検 出し、制御部 10が上端電位又は下端電位に基づいて陰極 12,陽極 11間に流す電 流を制御するようにしたが、上端電位又は下端電位力 電気化学振動の振動毎の周 期を算出し、算出した周期に基づいて、自発的振動が発生する電流密度となるように 、溶液に対する作用極の電流を制御するようにしてもょ ヽ。  In the present embodiment, the upper end potential or the lower end potential for each oscillation of the electrochemical vibration is detected, and the current that the control unit 10 passes between the cathode 12 and the anode 11 based on the upper end potential or the lower end potential is detected. The upper electrode potential or the lower electrode potential force is controlled, and the period for each vibration of the electrochemical vibration is calculated. Based on the calculated period, the working electrode with respect to the solution is obtained so that the current density at which spontaneous vibration occurs is obtained. You may want to control the current.
[0105] 以上、本発明に係る電気化学的析出方法につ!ヽて、具体的な実施の形態を示して 説明したが、本発明はこれらに限定されるものではない。当業者であれば、本発明の 要旨を逸脱しない範囲内において、上述した実施の形態に係る発明の構成及び機 能に様々な変更又は改良を加えることが可能である。  [0105] While the electrochemical deposition method according to the present invention has been described with reference to specific embodiments, the present invention is not limited to these. A person skilled in the art can add various changes or improvements to the configuration and functions of the invention according to the above-described embodiment without departing from the gist of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 電気化学的析出が可能な物質がイオン状態で溶解した溶液に浸潰した複数の電 極間に電圧を印加又は電流を流し、作用極の表面に前記物質を析出する電気化学 的析出方法において、  [1] Electrochemical deposition in which a substance capable of electrochemical deposition is applied to a plurality of electrodes immersed in a solution dissolved in an ionic state, or a current is applied to deposit the substance on the surface of the working electrode. In the method
前記溶液に対する前記作用極の電位又は電流を制御して、電気化学振動を生じさ せ、  Controlling the potential or current of the working electrode with respect to the solution to cause electrochemical vibration;
該電気化学振動の波形に基づ 、て、前記物質の構造を決定すること  Determining the structure of the substance based on the waveform of the electrochemical vibration;
を特徴とする電気化学的析出方法。  An electrochemical deposition method characterized by the following.
[2] 前記溶液に反応阻害種を混入し、  [2] A reaction-inhibiting species is mixed in the solution,
該反応阻害種が前記作用極の表面に付着して 、る状態と付着して 、な 、状態とを 自発的に交互に生じさせ、  The reaction-inhibiting species adheres to the surface of the working electrode, and causes the state and the state to spontaneously and alternately occur,
前記電気化学振動が生じる前記作用極の電位又は電流を制御すること を特徴とする請求項 1に記載の電気化学的析出方法。  2. The electrochemical deposition method according to claim 1, wherein the potential or current of the working electrode in which the electrochemical vibration occurs is controlled.
[3] 前記反応阻害種の濃度を調整することにより、前記電気化学振動が生じる前記作 用極の電位又は電流を制御すること [3] Controlling the potential or current of the working electrode where the electrochemical oscillation occurs by adjusting the concentration of the reaction-inhibiting species.
を特徴とする請求項 2に記載の電気化学的析出方法。  The electrochemical deposition method according to claim 2, wherein:
[4] 前記反応阻害種は、カーボン鎖が 10以上のカチオン性界面活性剤であり、 [4] The reaction-inhibiting species is a cationic surfactant having a carbon chain of 10 or more,
カーボン鎖を調整することにより、前記電気化学振動が生じる前記作用極の電位又 は電流を制御すること  By adjusting the carbon chain, the potential or current of the working electrode where the electrochemical vibration occurs is controlled.
を特徴とする請求項 2又は請求項 3に記載の電気化学的析出方法。  The electrochemical deposition method according to claim 2 or claim 3, wherein:
[5] 前記物質の濃度を調整することにより、前記電気化学振動の波形を制御すること を特徴とする請求項 1乃至請求項 4のいずれかに記載の電気化学的析出方法。 [5] The electrochemical deposition method according to any one of [1] to [4], wherein a waveform of the electrochemical vibration is controlled by adjusting a concentration of the substance.
[6] 前記溶液には、複数の物質がイオン状態で溶解しており、 [6] In the solution, a plurality of substances are dissolved in an ionic state,
前記電気化学振動の波形を制御して、前記複数の物質力 なる構造の組成比を 決定すること  Controlling a waveform of the electrochemical vibration to determine a composition ratio of the plurality of material force structures;
を特徴とする請求項 1乃至請求項 5のいずれかに記載の電気化学的析出方法。  6. The electrochemical deposition method according to any one of claims 1 to 5, wherein:
[7] 前記電気化学振動の波形に基づ!、て決定される前記物質の構造が多層構造であ ること を特徴とする請求項 1乃至請求項 6のいずれかに記載の電気化学的析出方法。 [7] The structure of the substance determined based on the waveform of the electrochemical vibration is a multilayer structure. 7. The electrochemical deposition method according to any one of claims 1 to 6, wherein:
[8] 前記電気化学振動の波形を制御して、前記多層構造の各層の膜厚及び Z又は各 層の組成比を決定すること [8] Controlling the waveform of the electrochemical vibration to determine the film thickness and Z of each layer of the multilayer structure or the composition ratio of each layer
を特徴とする請求項 7に記載の電気化学的析出方法。  The electrochemical deposition method according to claim 7, wherein:
[9] 前記物質が金属であること [9] The substance is a metal
を特徴とする請求項 1乃至請求項 8のいずれかに記載の電気化学的析出方法。  9. The electrochemical deposition method according to any one of claims 1 to 8, wherein:
[10] 前記作用極の電位又は電流を、電気化学的析出が拡散支配に進むように制御し て、電気化学振動を生じさせること [10] To control the potential or current of the working electrode so that electrochemical deposition proceeds to be diffusion-dominated to generate electrochemical vibrations.
を特徴とする請求項 1に記載の電気化学的析出方法。  The electrochemical deposition method according to claim 1, wherein:
[11] 前記電気化学振動の振動毎の上端電位又は下端電位を検出し、 [11] Detecting an upper end potential or a lower end potential for each vibration of the electrochemical vibration,
検出した上端電位又は下端電位の変動に基づいて前記作用極の電流を制御する こと  Controlling the current of the working electrode based on the detected variation of the upper end potential or the lower end potential.
を特徴とする請求項 10に記載の電気化学的析出方法。  The electrochemical deposition method according to claim 10, wherein:
[12] 前記溶液に対する前記作用極の実効的な電流密度が略一定となるように制御する こと [12] Control so that the effective current density of the working electrode with respect to the solution is substantially constant.
を特徴とする請求項 11に記載の電気化学的析出方法。  The electrochemical deposition method according to claim 11, wherein:
[13] 前記物質の濃度を調整することにより、前記電気化学振動の波形を制御すること を特徴とする請求項 10乃至請求項 12のいずれかに記載の電気化学的析出方法。 [13] The electrochemical deposition method according to any one of [10] to [12], wherein a waveform of the electrochemical vibration is controlled by adjusting a concentration of the substance.
[14] 電気化学的析出が可能な物質がイオン状態で溶解した溶液に浸漬した複数の電 極間に電流を流し、電気化学振動を生じさせ、作用極の表面に前記物質を析出する ための電気化学的析出装置であって、 [14] For depositing the substance on the surface of the working electrode by causing an electric current to flow between a plurality of electrodes immersed in a solution in which a substance capable of electrochemical deposition is dissolved in an ionic state. An electrochemical deposition apparatus comprising:
前記電気化学振動の振動毎の上端電位又は下端電位を検出する検出手段と、 該検出手段にて検出した上端電位又は下端電位に基づいて、前記溶液に対する 前記作用極の電流を制御する制御手段と  Detecting means for detecting an upper end potential or a lower end potential for each vibration of the electrochemical vibration; and a control means for controlling the current of the working electrode with respect to the solution based on the upper end potential or the lower end potential detected by the detecting means;
を備えることを特徴とする電気化学的析出装置。  An electrochemical deposition apparatus comprising:
[15] 前記制御手段は、自発的振動が発生する電流密度となるように制御するようにして あること [15] The control means controls the current density to generate spontaneous vibrations.
を特徴とする請求項 14に記載の電気化学的析出装置。 The electrochemical deposition apparatus according to claim 14, wherein:
[16] 請求項 1乃至請求項 13のいずれかに記載の電気化学的析出方法により析出した 物質を 3次元の基本骨格として、該物質の表面に他の物質が堆積していることを特 徴とする微細構造体。 [16] The substance deposited by the electrochemical deposition method according to any one of claims 1 to 13 is used as a three-dimensional basic skeleton, and other substances are deposited on the surface of the substance. A fine structure.
[17] 請求項 1乃至請求項 13のいずれかに記載の電気化学的析出方法により析出した 物質の表面に他の物質を重合させ、前記析出した物質を除去することによって内部 に多孔構造が形成されていることを特徴とする微細構造体。  [17] A porous structure is formed inside by polymerizing another substance on the surface of the substance deposited by the electrochemical deposition method according to any one of claims 1 to 13, and removing the deposited substance. A fine structure characterized by being made.
PCT/JP2005/008038 2004-10-01 2005-04-27 Electrochemical deposition method, electrochemical deposition apparatus and microstructure WO2006038335A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006539150A JPWO2006038335A1 (en) 2004-10-01 2005-04-27 Electrochemical deposition method, electrochemical deposition apparatus and microstructure
US11/731,242 US20070240993A1 (en) 2004-10-01 2007-03-30 Electrochemical deposition method, electrochemical deposition apparatus, and microstructure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004290637 2004-10-01
JP2004-290637 2004-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/731,242 Continuation US20070240993A1 (en) 2004-10-01 2007-03-30 Electrochemical deposition method, electrochemical deposition apparatus, and microstructure

Publications (1)

Publication Number Publication Date
WO2006038335A1 true WO2006038335A1 (en) 2006-04-13

Family

ID=36142423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008038 WO2006038335A1 (en) 2004-10-01 2005-04-27 Electrochemical deposition method, electrochemical deposition apparatus and microstructure

Country Status (3)

Country Link
US (1) US20070240993A1 (en)
JP (1) JPWO2006038335A1 (en)
WO (1) WO2006038335A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137224A (en) * 2009-12-03 2011-07-14 Hitachi Chem Co Ltd Method and apparatus for evaluating filling property of copper plating liquid, and substrate and electrode group for evaluating filling property, and its re-utilizing method
AP3463A (en) * 2008-10-30 2015-11-30 Gaudfrin Device for extracting cakes resulting from pressurised disc filtration, and associated extraction method.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658506B (en) * 2016-07-13 2019-05-01 美商英奧創公司 Electrochemical methods, devices and compositions
CN111579621B (en) * 2020-05-27 2023-07-14 四川国康药业有限公司 Method for detecting astragalus membranaceus slices by chemical oscillation fingerprint
CN114894860B (en) * 2022-04-14 2024-03-22 哈尔滨理工大学 Electrochemical-based metal micro-component operation-oriented process monitoring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234196A (en) * 1999-02-15 2000-08-29 Japan Steel Works Ltd:The Corrosion resistant, wear resistant chromium plating and its production
JP2002129374A (en) * 2000-10-23 2002-05-09 Seiichiro Nakabayashi Method for manufacturing laminated film, and multilayered film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039142A (en) * 2003-07-18 2005-02-10 Nec Electronics Corp Manufacturing method for semiconductor device
US7736474B2 (en) * 2004-01-29 2010-06-15 Ebara Corporation Plating apparatus and plating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234196A (en) * 1999-02-15 2000-08-29 Japan Steel Works Ltd:The Corrosion resistant, wear resistant chromium plating and its production
JP2002129374A (en) * 2000-10-23 2002-05-09 Seiichiro Nakabayashi Method for manufacturing laminated film, and multilayered film

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEOPOLD S. ET AL: "Spontaneous Potential Oscillations in the CU(II)Tartrate and Lactate Systems, Aspects of Mechanism and Film Deposition.", J.ELECTROCHEM.SOC., vol. 148, no. 8, 2001, pages C513 - C517, XP002989894 *
NAKANISHI S. ET AL: "New Autocatalytic Mechanism for Metal Electrodeposition Leading to Oscillations and Fern-Leaf-Shaped Deposits.", CHEMISTRY LETTERS., 2002, pages 636 - 637, XP002989896 *
SAKAI S. ET AL: "Oscilation-Induced Layer-by-Layer Electrodeposition Producting Alternate Metal and Metal-Alloy Multilayers on a Nanometer Scale.", CHEMISTRY LETTERS., 2002, pages 640 - 641, XP002989895 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP3463A (en) * 2008-10-30 2015-11-30 Gaudfrin Device for extracting cakes resulting from pressurised disc filtration, and associated extraction method.
JP2011137224A (en) * 2009-12-03 2011-07-14 Hitachi Chem Co Ltd Method and apparatus for evaluating filling property of copper plating liquid, and substrate and electrode group for evaluating filling property, and its re-utilizing method

Also Published As

Publication number Publication date
JPWO2006038335A1 (en) 2008-05-15
US20070240993A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
Karim et al. Synthesis of gold nanowires with controlled crystallographic characteristics
Kowalik et al. Electrodeposition of ZnSe
CN102016127A (en) Nanowire structural element
EP2229472B1 (en) Device and method for the electrochemical deposition of chemical compounds and alloys with controlled composition and/or stoichiometry
JP2004193524A (en) Columnar structure, electrode having columnar structure, and their manufacturing method
WO2006038335A1 (en) Electrochemical deposition method, electrochemical deposition apparatus and microstructure
Prună et al. Influence of deposition potential on structure of ZnO nanowires synthesized in track-etched membranes
Wu et al. A simple and efficient combined AC–DC electrodeposition method for fabrication of highly ordered Au nanowires in AAO template
Kim et al. A continuous process for Si nanowires with prescribed lengths
Yu et al. Electrochemical synthesis of palladium nanostructures with controllable morphology
Teller et al. Morphological study of branched Sn structure formed under selected electrochemical conditions
Leopold et al. Electrochemical deposition of cylindrical Cu/Cu2O microstructures
Liu et al. Structure and mechanical properties of iron foil electrodeposited in super gravity field
JW Cheng et al. Electrodeposited copper micropillar surfaces with pulse reverse voltammetry for enhanced heat dissipation
Yu et al. Patterned tailored hydrophobic films designed by synergy effect of electrochemical deposition and chemical deposition
Tang et al. Selective etching of ZnO films on an ITO substrate using a scanning electrochemical microscope
Karim et al. Tuning the characteristics of electrochemically fabricated gold nanowires
JP3098022B2 (en) Local deposition film formation method
KR100821740B1 (en) Pd nanowire hydrogen sensors and its manufacturing method
Tada et al. Tuning of the spacing and thickness of metal latticeworks by modulation of self-organized potential oscillations in tin (Sn) electrodeposition
KR101349744B1 (en) Nano structure and method of manufacturing the same
Debnath et al. Investigation into generation of micro features by localised electrochemical deposition
Kruglikov et al. Analyzing the Conditions for the Electrolytic Formation of Ensembles from Metal Nanowires in the Pores of Track Membranes
Tang et al. Fabrication of Pyramid-Like Structured Cu Coatings by Pulse-Reverse Current Electrodeposition
Bounor et al. Nanostructured MnO2 Films for 3D Micro‐Supercapacitors: From New Insights of the Growth Mechanism to the Fine Tuning of Areal Capacitance Values

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539150

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11731242

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11731242

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05736671

Country of ref document: EP

Kind code of ref document: A1