WO2006037695A1 - Sensor for detecting the direction of a magnetic field - Google Patents

Sensor for detecting the direction of a magnetic field Download PDF

Info

Publication number
WO2006037695A1
WO2006037695A1 PCT/EP2005/054205 EP2005054205W WO2006037695A1 WO 2006037695 A1 WO2006037695 A1 WO 2006037695A1 EP 2005054205 W EP2005054205 W EP 2005054205W WO 2006037695 A1 WO2006037695 A1 WO 2006037695A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
semiconductor chip
circuit board
field concentrator
sensor according
Prior art date
Application number
PCT/EP2005/054205
Other languages
German (de)
French (fr)
Inventor
Friedrich Wendel
Thomas Klotzbuecher
Reiner Schweinfurth
Harald Kazmierczak
Bernd Koeberle
Matthias Zeh
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2006037695A1 publication Critical patent/WO2006037695A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/106Detection of demand or actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/105Details of the valve housing having a throttle position sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices

Definitions

  • the invention relates to a sensor for detecting the direction of a magnetic field, comprising at least two Hall elements integrated in or arranged on a semiconductor chip having signal processing electronics, at least one magnet and at least one associated with the semiconductor chip Magnetic field concentrator with a flat shape, according to the preamble of claim 1. Furthermore, the invention relates to a throttle valve actuator for a driven by an internal combustion engine vehicle, mounted in a housing with a throttle shaft, which is driven via a transmission by a servomotor, according to the preamble of claim 8.
  • the Hall effect belongs to the galvanomagnetic "effects and is evaluated primarily by means of thin semiconductor wafers.
  • Such a current-carrying semiconductor chip passes perpendicularly through a magnetic field, a voltage proportional to the magnetic field can be tapped transversely to the current direction.
  • signal processing electronics In the case of silicon as the base material, it is possible at the same time to integrate signal processing electronics on the semiconductor chip, making such sensors very cost-effective.
  • integrated HaII ICs are primarily suitable for measuring angles and paths by detecting the fluctuating field strength of the magnet connected to a moving component.
  • a generic sensor is known from EP 1 182 461 A2, wherein the magnetic field concentrator changes in its environment the course of the field lines of the magnetic field generated by the magnet and causes the field lines, which, in the absence of the magnetic field concentrator, would run parallel to the surface of the Hall elements, penetrating the Hall elements approximately perpendicular to their surface.
  • diametrically opposite Hall elements each form a pair for generating an output signal, the strength of which depends on the direction of the magnetic field, which in turn is defined by the momentary position of the magnet, which is non-rotatably connected to a rotor of an electric motor, for example the Stahlsig ⁇ nals the angle of rotation of the rotor can be determined.
  • the magnetic field concentrator used in the prior art consists of ferromagnetic material, for example permalloy or mumetal or a metal glass, which is available as a film of about 15 .mu.m to 30 .mu.m thickness. After the application of this film on the semiconductor chip, a large part of it is removed by etching in order to bring it to a shape and size adapted to the semiconductor chip, for example a disk with a diameter of about 200 ⁇ m. Due to the compulsory adaptation to the shape and size of the semiconductor chip, the behavior of the sensor with respect to offset and linearity is not optimal. On the one hand, the order of the film on the semiconductor chip is difficult, on the other hand, the etching process is negative for the environment and in view of the high rejection share of up to 99% less efficient.
  • the magnetic field concentrator By arranging the magnetic field concentrator and the semiconductor chip without direct connection to one another on a carrier body, the magnetic field concentrator no longer needs to be adapted to the semiconductor chips, but offers more variable possibilities in terms of shape, size and location, in particular an optimal measurement characteristic with regard to offset and Linearity can be achieved. Furthermore, on the previous elaborate and little efficient etching process can be dispensed with. Rather, the magnetic field concentrator can be brought to the support body in a simple manner, for example, with a sucker to the placement and glued there.
  • the carrier body is formed by a printed circuit board, on which conductor tracks are formed, which electrically connect the semiconductor chip, for example with a driver, which transmits the sensor signals to a control unit, or with an electronics, the foreign influences in terms of elektro ⁇ magnetic compatibility (EMC) eliminated.
  • EMC elektro ⁇ magnetic compatibility
  • the magnetic field concentrator is then bonded to the printed circuit board, for example, by adhesive bonding, preferably by gluing, spattering or vapor deposition.
  • the semiconductor chip with the main elements is arranged on a side of the printed circuit board facing the magnet and the magnetic field concentrator is arranged on the other side of the printed circuit board.
  • the semiconductor chip can contact the printed circuit board directly.
  • the semiconductor chip can also be integrated in ei ⁇ nem spaced from the circuit board housing with contact feet, which are soldered to the circuit board.
  • the semiconductor chip with the Hall elements and the magnetic field concentrator can be arranged on a side of the printed circuit board facing the magnet and the magnetic field concentrator can be interposed between the semiconductor chip and the printed circuit board.
  • the sensor according to claim 8 it may be provided for detecting the angle of rotation of a throttle valve shaft mounted in a housing of a throttle valve actuator, which is driven by a servomotor via a transmission. Then, for example, the circuit board with the Magnetic field concentrator, the semiconductor chip and the Hall elements held in a De ⁇ ckel of the housing of the throttle valve actuator, parallel to a supported by a gear of the gear plate-shaped magnet. As a result of this arrangement, the printed circuit board and the plate-shaped magnet are located in parallel, mutually slightly spaced planes.
  • FIG. 1 shows a side view of a sensor according to a preferred embodiment
  • Fig. 2 is a plan view of the sensor of Fig. 1;
  • FIG. 3 shows a side view of a sensor according to another embodiment
  • Figure 4 is a plan view of the sensor of Figure 3;
  • FIG. 5 shows a side view of a sensor according to a further embodiment
  • Fig. 6 is a plan view of the sensor of Fig. 5; 7 shows the sensor of FIG. 1 with a field line course of the magnetic field; 8 shows a cross-sectional view of a throttle valve actuator which is equipped with a sensor according to the invention.
  • a sensor 1 for detecting the direction of a magnetic field shown in FIG. 1 is intended for the measurement of angles, in particular for measuring the operating angle of an electronic accelerator pedal or a brake pedal of an electronic brake system, not shown for reasons of scale. For this purpose, it detects the fluctuating field strength or field direction of a permanent magnet 2 which is connected non-rotatably to the pedal and processes the measurement signals of a signal processing electronics 3 not explicitly shown.
  • the senor 1 comprises, for example, four Hall elements 4, 6, 8, 10, which are preferably integrated in a semiconductor chip 12 made of silicon, in which the signal processing electronics 3 are realized.
  • the Hall ⁇ elements 4, 6, 8, 10 may be arranged on the semiconductor chip 12, as indicated schematically in the figures.
  • the semiconductor chip 12 is associated with at least one magnetic field concentrator 14 having a planar shape, wherein the term flat shape means that its extension in the plane is far greater than its thickness.
  • the magnetic field concentrator 14 and the semiconductor chip 12 are arranged on a carrier body 16 without being directly connected to one another or separately from one another.
  • the carrier body is formed by a printed circuit board 16, on which conductor tracks are formed, which electrically connect the semiconductor chip 12, for example, with a driver, which transmits the sensor signals to a control unit, or with electronics that keeps the voltage constant or foreign influences in the sense of electro- magnetic compatibility (EMC) eliminated.
  • the carrier body could also consist of a plate 16 of any desired material, for example of a ceramic material, as long as it does not or only insignificantly influences the magnetic field of the permanent magnet 2.
  • the flat magnetic field concentrator 14 is connected to the printed circuit board 16 in a material-locking manner, preferably by gluing, spattering or vapor deposition over a mask or by applying prefabricated MFK by means of pick and place, after having been brought to the place of placement, for example with a vacuum cleaner.
  • the magnetic field concentrator is designed as a circular disk 14, which projects beyond the edge of the preferably rectangular semiconductor chip 12 on two sides. At this time, the semiconductor chip 12 and the magnetic field concentrator 14 are centered with each other, that is, the respective centroids of the area overlap.
  • the Hall elements 4, 6, 8, 10 are sensitive to the component of the magnetic field, which impinges perpendicular to its surface, as already discussed above.
  • the magnetic field concentrator 14 changes in its environment the course of the field lines of the magnetic field generated by the permanent magnet 2 and acts that the field lines, which would be parallel to the surface of the Hall elements 4, 6, 8, 10 in the absence of the magnetic field concentrator 14, the HaII- 4, 6, 8, 10 penetrate approximately perpendicular to its surface, ie in a direction in which they are sensitive, as Figure 7 shows.
  • two diametrically opposed Hall elements 4, 6 and 8, 10 each form a pair for generating an output signal, whose strength depends on the direction of the magnetic field, which in turn is defined by the instantaneous rotational position of the permanent magnet 2, so that due to the output signal of the instantaneous angle of rotation of the permanent magnet 2 by means of Signalverarbei ⁇ processing electronics 3 can be determined, as indicated by the arrow in the figures. If the permanent magnet 2 rotatably connected to the pedal, can the output signal of the Hall elements 4, 6, 8, 10 whose rotational angle position er ⁇ be expected.
  • the mode of operation and interconnection of such Hall elements 4, 6, 8, 10 is adequately described, for example, in EP 1 182 461 A2, which is why it should not be discussed further here.
  • the semiconductor chip 12 with the Hall elements 4, 6, 8, 10 is arranged on a side of the printed circuit board 16 facing the permanent magnet 2 and the magnetic field concentrator 14 is arranged on the other side of the printed circuit board 16.
  • the semiconductor chip 12 contacts the conductor plate 16 directly or is connected to the printed circuit board 16 with one of its side surfaces, with electrical contacts being made with the conductor tracks of the conductor plate 16.
  • the semiconductor chip 12 can, however, also be held in a SO8 housing 18 with contact feet 20, which is at a distance from the printed circuit board 16. Then connect the contact feet 20 of the SO8 housing 18, the semiconductor chip 12 with traces of the circuit board 16 via respective solder joints 22nd
  • the semiconductor chip 12 with the Hall elements 4, 6, 8, 10 can be arranged on the side of the printed circuit board 16 facing the permanent magnet 2 and the magnetic field concentrator 14 on the other side of the printed circuit board 16.
  • the magnetic field concentrator 14 can be arranged concentrically with the semiconductor chip 12 by covering a middle section 24 of the magnetic field concentrator 14 with the semiconductor chip 12 and two tapered end sections 26 laterally project beyond the semiconductor chip 12, as best seen in FIG.
  • the semiconductor chip 12 may be arranged with the Hall elements 4, 6, 8, 10 and also the magnetic field concentrator 14 on the side facing the permanent magnet 2 side of the circuit board 16 and the magnetic field concentrator 14 the semiconductor chip 12 and the circuit board 16 may be interposed, as shown in FIG and Fig.6 shows. Size and shape of the magnetic field concentrator 14 then preferably correspond to those of the rectangular semiconductor chip 12, while covering the centroids of the area.
  • the invention is not limited to sensors 1 for measuring angles of rotation, but the inventive principle of the spatial separation of the semicon terchips 12 from the magnetic field concentrator 14 in any type of sensors with Hall elements 4, 6, 8, 10 is applicable.
  • the sensor 1 it may be provided for detecting the angle of rotation of a throttle shaft 34 mounted in a housing 30 of a throttle valve actuator 32 closed by a cover 28, which is driven via a gear 36 by a servomotor not shown for reasons of scale, such as Fig. 8 shows.
  • the printed circuit board 16 with the magnetic field concentrator 14, the semiconductor chip 12 and the Hall elements 4, 6, 8, 10 is held in the cover 28 of the housing 30 of the throttle valve actuator 32, parallel to that of a gear wheel 38 or of a
  • the semiconductor chip 12 is preferably located on the side facing away from the magnet 2 side of the circuit board 16, while the magnetic field concentrator 14 faces the magnet.
  • the magnet 2 is arranged on the gear 38, for example coaxially with the throttle shaft 34.

Abstract

The invention relates to a sensor (1) for detecting the direction of a magnetic field, said sensor comprising at least two Hall elements (4, 6, 8, 10) which are integrated into a semiconductor chip (12) comprising an electronic signal processing system (3), or arranged on the same, at least one magnet (2), and at least one flat magnetic field concentrator (14) associated with the semiconductor chip (12). According to the invention, the magnetic field concentrator (14) and the semiconductor chip (12) are arranged on a carrier body (16) without any direct connection.

Description

Sensor zur Detektion der Richtung eines Magnetfeldes Sensor for detecting the direction of a magnetic field
Beschreibung Stand der Technik Die Erfindung betrifft einen Sensor zur Detektion der Richtung eines Magnetfel¬ des, umfassend wenigstens zwei Hallelemente, welche in einem eine Signalver¬ arbeitungselektronik aufweisenden Halbleiterchip integriert oder auf diesem an¬ geordnet sind, wenigstens einen Magneten sowie wenigstens einen dem Halbleiterchip zugeordneten Magnetfeldkonzentrator mit einer flächigen Form, gemäß dem Oberbegriff von Anspruch 1. Weiterhin betrifft die Erfindung einen Drosselklappensteller für ein von einer Brennkraftmaschine angetriebenes Fahrzeug, mit einer in einem Gehäuse gelagerten Drosselklappenwelle, welche über ein Getriebe durch einen Stellmotor angetrieben ist, gemäß dem Oberbegriff von Anspruch 8. Der Halleffekt gehört zu den galvanomagnetischen „Effekten und wird vor allem mittels dünner Halbleiterplättchen ausgewertet. Wird ein solches stromdurchflos- senes Halbleiterplättchen senkrecht von einem Magnetfeld durchsetzt, kann quer zur Stromrichtung eine zum Magnetfeld proportionale Spannung abgegriffen wer¬ den. Im Falle von Silizium als Grundmaterial kann man gleichzeitig eine Signal- Verarbeitungselektronik auf dem Halbleiterplättchen integrieren, wodurch solche Sensoren sehr kostengünstig werden. Solche integrierten HaII-ICs eignen sich vorwiegend für die Messung von Winkeln und Wegen, indem sie die schwanken¬ de Feldstärke des mit einem bewegten Bauteil verbundenen Magneten erfassen.The invention relates to a sensor for detecting the direction of a magnetic field, comprising at least two Hall elements integrated in or arranged on a semiconductor chip having signal processing electronics, at least one magnet and at least one associated with the semiconductor chip Magnetic field concentrator with a flat shape, according to the preamble of claim 1. Furthermore, the invention relates to a throttle valve actuator for a driven by an internal combustion engine vehicle, mounted in a housing with a throttle shaft, which is driven via a transmission by a servomotor, according to the preamble of claim 8. The Hall effect belongs to the galvanomagnetic "effects and is evaluated primarily by means of thin semiconductor wafers. If such a current-carrying semiconductor chip passes perpendicularly through a magnetic field, a voltage proportional to the magnetic field can be tapped transversely to the current direction. In the case of silicon as the base material, it is possible at the same time to integrate signal processing electronics on the semiconductor chip, making such sensors very cost-effective. Such integrated HaII ICs are primarily suitable for measuring angles and paths by detecting the fluctuating field strength of the magnet connected to a moving component.
Ein gattungsgemäßer Sensor ist aus der EP 1 182 461 A2 bekannt, wobei der Magnetfeldkonzentrator in seinem Umfeld den Verlauf der Feldlinien des vom Magneten erzeugten Magnetfeldes verändert und bewirkt, dass die Feldlinien, welche bei Abwesenheit des Magnetfeldkonzentrators parallel zur Oberfläche der Hallelemente verlaufen würden, die Hallelemente annähernd senkrecht zu ihrer Oberfläche durchdringen. Dabei bilden einander diametral gegenüberliegende Hallelemente je ein Paar zur Erzeugung eines Ausgangssignals, dessen Stärke von der Richtung des Magnetfeldes abhängt, welches wiederum durch die mo¬ mentane Lage des Magneten definiert wird, der beispielsweise mit einem Läufer eines Elektromotors drehfest verbunden ist, so dass aufgrund des Ausgangssig¬ nals der Drehwinkel des Läufers bestimmt werden kann.A generic sensor is known from EP 1 182 461 A2, wherein the magnetic field concentrator changes in its environment the course of the field lines of the magnetic field generated by the magnet and causes the field lines, which, in the absence of the magnetic field concentrator, would run parallel to the surface of the Hall elements, penetrating the Hall elements approximately perpendicular to their surface. In this case, diametrically opposite Hall elements each form a pair for generating an output signal, the strength of which depends on the direction of the magnetic field, which in turn is defined by the momentary position of the magnet, which is non-rotatably connected to a rotor of an electric motor, for example the Ausgangssig¬ nals the angle of rotation of the rotor can be determined.
Der beim Stand der Technik verwendete Magnetfeldkonzentrator besteht aus fer- romagnetischem Material, beispielsweise aus Permalloy oder Mumetall oder ei¬ nem Metallglas, welches als Folie von etwa 15 μm bis 30 μm Dicke erhältlich ist. Nach dem Aufbringen dieser Folie auf dem Halbleiterchip wird ein großer Teil von ihr durch Ätzung entfernt, um sie auf eine an den Halbleiterchip angepasste Form und Größe zu bringen, beispielsweise eine Scheibe mit einem Durchmesser von ca. 200 μm. Aufgrund der zwanghaften Anpassung an die Form und Größe des Halbleiterchips ist das Verhalten des Sensors hinsichtlich Offset und Linearität nicht optimal. Im weiteren gestaltet sich zum einen der Auftrag der Folie auf dem Halbleiterchip schwierig, zum andern ist das Ätzverfahren negativ für die Umwelt und angesichts des hohen Ausschussanteils von bis zu 99% wenig effizient.The magnetic field concentrator used in the prior art consists of ferromagnetic material, for example permalloy or mumetal or a metal glass, which is available as a film of about 15 .mu.m to 30 .mu.m thickness. After the application of this film on the semiconductor chip, a large part of it is removed by etching in order to bring it to a shape and size adapted to the semiconductor chip, for example a disk with a diameter of about 200 μm. Due to the compulsory adaptation to the shape and size of the semiconductor chip, the behavior of the sensor with respect to offset and linearity is not optimal. On the one hand, the order of the film on the semiconductor chip is difficult, on the other hand, the etching process is negative for the environment and in view of the high rejection share of up to 99% less efficient.
Vorteile der ErfindungAdvantages of the invention
Indem der Magnetfeldkonzentrator und der Halbleiterchip ohne unmittelbare Ver¬ bindung zueinander auf einem Trägerkörper angeordnet sind, braucht der Magnetfeldkonzentrator nicht mehr an den Halbleiterchips angepasst werden, sondern bietet hinsichtlich Form, Größe und Platzierungsort variablere Möglich¬ keiten, insbesondere kann eine optimale Messcharakteristik hinsichtlich Offset und Linearität erzielt werden. Weiterhin kann auf das bisherige aufwendige und wenig effiziente Ätzverfahren verzichtet werden. Vielmehr kann der Magnetfeld- konzentrator auf den Trägerkörper auf einfache Weise beispielsweise mit einem Sauger an den Platzierungsort herangeführt und dort aufgeklebt werden.By arranging the magnetic field concentrator and the semiconductor chip without direct connection to one another on a carrier body, the magnetic field concentrator no longer needs to be adapted to the semiconductor chips, but offers more variable possibilities in terms of shape, size and location, in particular an optimal measurement characteristic with regard to offset and Linearity can be achieved. Furthermore, on the previous elaborate and little efficient etching process can be dispensed with. Rather, the magnetic field concentrator can be brought to the support body in a simple manner, for example, with a sucker to the placement and glued there.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Patentanspruch 1 angegebenen Er¬ findung möglich.The measures listed in the dependent claims advantageous refinements and improvements of the claim 1 Er¬ invention are possible.
Besonders bevorzugt wird der Trägerkörper durch eine Leiterplatte gebildet, auf welcher Leiterbahnen ausgebildet sind, die den Halbleiterchip beispielsweise mit einem Treiber elektrisch verbinden, der die Sensorsignale einem Steuergerät übermittelt, oder mit einer Elektronik, die Fremdeinflüsse im Sinne der elektro¬ magnetischen Verträglichkeit (EMV) eliminiert. Der Magnetfeldkonzentrator wird dann beispielsweise stoffschlüssig mit der Leiterplatte verbunden, vorzugsweise durch Kleben, Spattem oder Aufdampfen.Particularly preferably, the carrier body is formed by a printed circuit board, on which conductor tracks are formed, which electrically connect the semiconductor chip, for example with a driver, which transmits the sensor signals to a control unit, or with an electronics, the foreign influences in terms of elektro¬ magnetic compatibility (EMC) eliminated. The magnetic field concentrator is then bonded to the printed circuit board, for example, by adhesive bonding, preferably by gluing, spattering or vapor deposition.
Gemäß einer bevorzugten Ausführungsform ist der Halbleiterchip mit den HaII- elementen auf einer dem Magneten zugewandten Seite der Leiterplatte und der Magnetfeldkonzentrator auf der anderen Seite der Leiterplatte angeordnet. Dabei kann der Halbleiterchip die Leiterplatte direkt kontaktieren.According to a preferred embodiment, the semiconductor chip with the main elements is arranged on a side of the printed circuit board facing the magnet and the magnetic field concentrator is arranged on the other side of the printed circuit board. In this case, the semiconductor chip can contact the printed circuit board directly.
Gemäß einer weiteren Ausführungsform kann der Halbleiterchip aber auch in ei¬ nem von der Leiterplatte beabstandeten Gehäuse mit Kontaktfüßen integriert sein, welche mit der Leiterplatte verlötet sind. In diesem Fall kann der Halbleiter¬ chip mit den Hallelementen und der Magnetfeldkonzentrator auf einer dem Mag¬ neten zugewandten Seite der Leiterplatte angeordnet und der Magnetfeldkon¬ zentrator dem Halbleiterchip und der Leiterplatte zwischengeordnet sein.According to a further embodiment, however, the semiconductor chip can also be integrated in ei¬ nem spaced from the circuit board housing with contact feet, which are soldered to the circuit board. In this case, the semiconductor chip with the Hall elements and the magnetic field concentrator can be arranged on a side of the printed circuit board facing the magnet and the magnetic field concentrator can be interposed between the semiconductor chip and the printed circuit board.
Gemäß einer bevorzugten Anwendung des Sensors nach Anspruch 8 kann er zur Detektion des Drehwinkels einer in einem Gehäuse eines Drosselklappenstellers gelagerten Drosselklappenwelle vorgesehen sein, welche über ein Getriebe durch einen Stellmotor angetrieben ist. Dann ist beispielsweise die Leiterplatte mit dem Magnetfeldkonzentrator, dem Halbleiterchip und den Hallelementen in einem De¬ ckel des Gehäuses des Drosselklappenstellers gehalten, parallel zu einem von einem Zahnrad des Getriebes getragenen plattenförmigen Magneten. Durch diese Anordnung befinden sich die Leiterplatte und der plattenförmige Magnet in paral- lelen, zueinander gering beabstandeten Ebenen. Dann ist es möglich, anstatt des erfindungsgemäßen, nach dem Hall-Prinzip arbeitenden Sensors auch Sensoren, welche nach einem anderen physikalischen Prinzip arbeiten, beispielsweise In¬ duktivsensoren oder auch Potentiometer, in dem Gehäuse des Drosselklap¬ penstellers zu verbauen. Die genaue Aufbau des Sensors wird anhand der folgenden Beschreibung von Ausführungsbeispielen klar.According to a preferred application of the sensor according to claim 8, it may be provided for detecting the angle of rotation of a throttle valve shaft mounted in a housing of a throttle valve actuator, which is driven by a servomotor via a transmission. Then, for example, the circuit board with the Magnetic field concentrator, the semiconductor chip and the Hall elements held in a De¬ ckel of the housing of the throttle valve actuator, parallel to a supported by a gear of the gear plate-shaped magnet. As a result of this arrangement, the printed circuit board and the plate-shaped magnet are located in parallel, mutually slightly spaced planes. It is then possible, instead of the sensor according to the invention operating according to the Hall principle, to use sensors which operate according to another physical principle, for example inertial sensors or also potentiometers, in the housing of the throttle valve actuator. The detailed structure of the sensor will become clear from the following description of embodiments.
Zeichnungendrawings
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. In der Zeichnung zeigtEmbodiments of the invention are illustrated in the drawings and explained in more detail in the following description. In the drawing shows
Fig.1 eine Seitendarstellung eines Sensors gemäß einer bevorzugten Aus¬ führungsform;1 shows a side view of a sensor according to a preferred embodiment;
Fig.2 eine Draufsicht auf den Sensor von Fig.1 ;Fig. 2 is a plan view of the sensor of Fig. 1;
Fig.3 eine Seitendarstellung eines Sensors gemäß einer weiteren Ausfüh- rungsform;3 shows a side view of a sensor according to another embodiment;
Fig.4 eine Draufsicht auf den Sensor von Fig.3;Figure 4 is a plan view of the sensor of Figure 3;
Fig.5 eine Seitendarstellung eines Sensors gemäß einer weiteren Ausfüh¬ rungsform;5 shows a side view of a sensor according to a further embodiment;
Fig.6 eine Draufsicht auf den Sensor von Fig.5; Fig.7 den Sensor von Fig.1 mit Feldlinienverlauf des Magnetfelds; Fig.8 eine Querschnittsdarstellung eines Drosselklappenstellers, der mit ei¬ nem Sensor gemäß der Erfindung bestückt ist.Fig. 6 is a plan view of the sensor of Fig. 5; 7 shows the sensor of FIG. 1 with a field line course of the magnetic field; 8 shows a cross-sectional view of a throttle valve actuator which is equipped with a sensor according to the invention.
Beschreibung der Ausführungsbeispiele Das in der Fig. 1 dargestellte bevorzugte Ausführungsbeispiel eines Sensors 1 zur Detektion der Richtung eines Magnetfeldes ist für die Messung von Winkeln vorgesehen, insbesondere zur Messung des Betätigungswinkels eines aus Ma߬ stabsgründen nicht gezeigten elektronischen Fahrpedals oder eines Bremspedals eines elektronischen Bremssystems. Hierzu erfasst er die schwankende Feldstär- ke bzw. Feldrichtung eines mit dem Pedal drehfest verbundenen Permanentmag¬ neten 2 und verarbeitet die Messsignale einer nicht explizit dargestellten Signal¬ verarbeitungselektronik 3.DESCRIPTION OF THE EXEMPLARY EMBODIMENTS The preferred exemplary embodiment of a sensor 1 for detecting the direction of a magnetic field shown in FIG. 1 is intended for the measurement of angles, in particular for measuring the operating angle of an electronic accelerator pedal or a brake pedal of an electronic brake system, not shown for reasons of scale. For this purpose, it detects the fluctuating field strength or field direction of a permanent magnet 2 which is connected non-rotatably to the pedal and processes the measurement signals of a signal processing electronics 3 not explicitly shown.
Im einzelnen umfasst der Sensor 1 beispielsweise vier Hallelemente 4, 6, 8, 10, die vorzugsweise in einem Halbleiterchip 12 aus Silizium integriert sind, in wel- ehern die Signalverarbeitungselektronik 3 realisiert ist. Alternativ können die Hall¬ elemente 4, 6, 8, 10 auch auf dem Halbleiterchip 12 angeordnet sein, wie in den Figuren schematisch angedeutet ist. Dem Halbleiterchip 12 ist wenigstens ein Magnetfeldkonzentrator 14 mit einer flächigen Form zugeordnet, wobei der Begriff flächige Form bedeutet, dass seine Erstreckung in der Ebene weit größer ist als seine Dicke.In detail, the sensor 1 comprises, for example, four Hall elements 4, 6, 8, 10, which are preferably integrated in a semiconductor chip 12 made of silicon, in which the signal processing electronics 3 are realized. Alternatively, the Hall¬ elements 4, 6, 8, 10 may be arranged on the semiconductor chip 12, as indicated schematically in the figures. The semiconductor chip 12 is associated with at least one magnetic field concentrator 14 having a planar shape, wherein the term flat shape means that its extension in the plane is far greater than its thickness.
Erfindungsgemäß sind der Magnetfeldkonzentrator 14 und der Halbleiterchip 12 ohne unmittelbare Verbindung untereinander oder getrennt voneinander auf ei¬ nem Trägerkörper 16 angeordnet. Besonders bevorzugt wird der Trägerkörper durch eine Leiterplatte 16 gebildet, auf welcher Leiterbahnen ausgebildet sind, die den Halbleiterchip 12 beispielsweise mit einem Treiber elektrisch verbinden, der die Sensorsignale einem Steuergerät übermittelt, oder mit einer Elektronik, welche die Spannung konstant hält oder Fremdeinflüsse im Sinne der elektro- magnetischen Verträglichkeit (EMV) eliminiert. Alternativ könnte der Trägerkörper auch aus einer Platte 16 aus beliebigem Material bestehen, beispielsweise aus einem keramischen Material, solange dieses das Magnetfeld des Permanentmag¬ neten 2 nicht oder nur unwesentlich beeinflusst. Der flächige Magnetfeldkon- zentrator 14 wird stoffschlüssig mit der Leiterplatte 16 verbunden, vorzugsweise durch Kleben, Spattem oder Aufdampfen über eine Maske bzw. durch Applizieren von vorfabrizierten MFK mittels pick and place, nachdem er zuvor beispielsweise mit einem Sauger an den Platzierungsort herangeführt wurde.According to the invention, the magnetic field concentrator 14 and the semiconductor chip 12 are arranged on a carrier body 16 without being directly connected to one another or separately from one another. Particularly preferably, the carrier body is formed by a printed circuit board 16, on which conductor tracks are formed, which electrically connect the semiconductor chip 12, for example, with a driver, which transmits the sensor signals to a control unit, or with electronics that keeps the voltage constant or foreign influences in the sense of electro- magnetic compatibility (EMC) eliminated. Alternatively, the carrier body could also consist of a plate 16 of any desired material, for example of a ceramic material, as long as it does not or only insignificantly influences the magnetic field of the permanent magnet 2. The flat magnetic field concentrator 14 is connected to the printed circuit board 16 in a material-locking manner, preferably by gluing, spattering or vapor deposition over a mask or by applying prefabricated MFK by means of pick and place, after having been brought to the place of placement, for example with a vacuum cleaner.
Gemäß der bevorzugten Ausführungsform von Fig.2 ist der Magnetfeldkonzentra- tor als kreisrunde Scheibe 14 ausgebildet, welche den Rand des vorzugsweise rechteckförmigen Halbleiterchips 12 an zwei Seiten überragt. Dabei sind der Halbleiterchip 12 und der Magnetfeldkonzentrator 14 zueinander zentriert, d.h., dass sich die jeweiligen Flächenschwerpunkte überdecken.According to the preferred embodiment of FIG. 2, the magnetic field concentrator is designed as a circular disk 14, which projects beyond the edge of the preferably rectangular semiconductor chip 12 on two sides. At this time, the semiconductor chip 12 and the magnetic field concentrator 14 are centered with each other, that is, the respective centroids of the area overlap.
Die Hallelemente 4, 6, 8, 10 sind empfindlich auf die Komponente des Magnetfel- des, die senkrecht auf ihre Oberfläche auftrifft, wie eingangs bereits diskutiert wurde. Der Magnetfeldkonzentrator 14 verändert in seinem Umfeld den Verlauf der Feldlinien des vom Permanentmagneten 2 erzeugten Magnetfeldes und be¬ wirkt, dass die Feldlinien, welche bei Abwesenheit des Magnetfeldkonzentrators 14 parallel zur Oberfläche der Hallelemente 4, 6, 8, 10 verlaufen würden, die HaII- elemente 4, 6, 8, 10 annähernd senkrecht zu ihrer Oberfläche durchdringen, also in einer Richtung, in welcher diese empfindlich sind, wie Fig.7 zeigt. Dabei bilden zwei einander diametral gegenüberliegende Hallelemente 4, 6 bzw. 8, 10 je ein Paar zur Erzeugung eines Ausgangssignals, dessen Stärke von der Richtung des Magnetfeldes abhängt, welches wiederum durch die momentane Drehlage des Permanentmagneten 2 definiert wird, so dass aufgrund des Ausgangssignals der momentane Drehwinkel des Permanentmagneten 2 mit Hilfe der Signalverarbei¬ tungselektronik 3 bestimmt werden kann, wie der Pfeil in den Figuren andeutet. Wenn der Permanentmagnet 2 drehfest mit dem Pedal verbunden ist, kann aus dem Ausgangssignal der Hallelemente 4, 6, 8, 10 dessen Drehwinkelstellung er¬ rechnet werden. Die Funktionsweise und Verschaltung solcher Hallelemente 4, 6, 8, 10 ist beispielsweise in der EP 1 182 461 A2 hinreichend beschrieben, weshalb hier nicht weiter darauf eingegangen werden soll. Gemäß der bevorzugten Ausführungsform von Fig.1 ist der Halbleiterchip 12 mit den Hallelementen 4, 6, 8, 10 auf einer dem Permanentmagneten 2 zugewandten Seite der Leiterplatte 16 und der Magnetfeldkonzentrator 14 auf der anderen Sei¬ te der Leiterplatte 16 angeordnet. Dabei kontaktiert der Halbleiterchip 12 die Lei¬ terplatte 16 direkt bzw. ist mit einer seiner Seitenflächen mit der Leiterplatte 16 verbunden, unter Herstellung elektrischer Kontakte mit den Leiterbahnen der Lei¬ terplatte 16.The Hall elements 4, 6, 8, 10 are sensitive to the component of the magnetic field, which impinges perpendicular to its surface, as already discussed above. The magnetic field concentrator 14 changes in its environment the course of the field lines of the magnetic field generated by the permanent magnet 2 and acts that the field lines, which would be parallel to the surface of the Hall elements 4, 6, 8, 10 in the absence of the magnetic field concentrator 14, the HaII- 4, 6, 8, 10 penetrate approximately perpendicular to its surface, ie in a direction in which they are sensitive, as Figure 7 shows. In this case, two diametrically opposed Hall elements 4, 6 and 8, 10 each form a pair for generating an output signal, whose strength depends on the direction of the magnetic field, which in turn is defined by the instantaneous rotational position of the permanent magnet 2, so that due to the output signal of the instantaneous angle of rotation of the permanent magnet 2 by means of Signalverarbei¬ processing electronics 3 can be determined, as indicated by the arrow in the figures. If the permanent magnet 2 rotatably connected to the pedal, can the output signal of the Hall elements 4, 6, 8, 10 whose rotational angle position er¬ be expected. The mode of operation and interconnection of such Hall elements 4, 6, 8, 10 is adequately described, for example, in EP 1 182 461 A2, which is why it should not be discussed further here. According to the preferred embodiment of FIG. 1, the semiconductor chip 12 with the Hall elements 4, 6, 8, 10 is arranged on a side of the printed circuit board 16 facing the permanent magnet 2 and the magnetic field concentrator 14 is arranged on the other side of the printed circuit board 16. In this case, the semiconductor chip 12 contacts the conductor plate 16 directly or is connected to the printed circuit board 16 with one of its side surfaces, with electrical contacts being made with the conductor tracks of the conductor plate 16.
Gemäß den weiteren Ausführungsformen nach Fig.3 und Fig.5 kann der Halblei¬ terchip 12 aber auch in einem von der Leiterplatte 16 beabstandeten SO8- Gehäuse 18 mit Kontaktfüßen 20 gehalten sein. Dann verbinden die Kontaktfüße 20 des SO8-Gehäuses 18 den Halbleiterchip 12 mit Leiterbahnen der Leiterplatte 16 über entsprechende Lötstellen 22.According to the further embodiments according to FIGS. 3 and 5, the semiconductor chip 12 can, however, also be held in a SO8 housing 18 with contact feet 20, which is at a distance from the printed circuit board 16. Then connect the contact feet 20 of the SO8 housing 18, the semiconductor chip 12 with traces of the circuit board 16 via respective solder joints 22nd
Gemäß der Ausführungsform von Fig.3 kann der Halbleiterchip 12 mit den Hall¬ elementen 4, 6, 8, 10 auf der dem Permanentmagneten 2 zugewandten Seite der Leiterplatte 16 und der Magnetfeldkonzentrator 14 auf der anderen Seite der Lei- terplatte 16 angeordnet sein. Der Magnetfeldkonzentrator 14 kann dabei mit dem Halbleiterchip 12 konzentrisch angeordnet sein, indem sich ein Mittelabschnitt 24 des Magnetfeldkonzentrators 14 mit dem Halbleiterchip 12 überdeckt und zwei spitz zulaufende Endabschnitte 26 den Halbleiterchip 12 seitlich überragen, wie am besten anhand von Fig.4 zu sehen ist. Alternativ kann der Halbleiterchip 12 mit den Hallelementen 4, 6, 8, 10 und auch der Magnetfeldkonzentrator 14 auf der dem Permanentmagneten 2 zugewandten Seite der Leiterplatte 16 angeordnet und der Magnetfeldkonzentrator 14 dem Halbleiterchip 12 und der Leiterplatte 16 zwischengeordnet sein, wie aus Fig.5 und Fig.6 hervorgeht. Größe und Form des Magnetfeldkonzentrators 14 entspre¬ chen dann vorzugsweise denen des rechteckförmigen Halbleiterchips 12, unter Überdeckung der Flächenschwerpunkte.According to the embodiment of FIG. 3, the semiconductor chip 12 with the Hall elements 4, 6, 8, 10 can be arranged on the side of the printed circuit board 16 facing the permanent magnet 2 and the magnetic field concentrator 14 on the other side of the printed circuit board 16. The magnetic field concentrator 14 can be arranged concentrically with the semiconductor chip 12 by covering a middle section 24 of the magnetic field concentrator 14 with the semiconductor chip 12 and two tapered end sections 26 laterally project beyond the semiconductor chip 12, as best seen in FIG. Alternatively, the semiconductor chip 12 may be arranged with the Hall elements 4, 6, 8, 10 and also the magnetic field concentrator 14 on the side facing the permanent magnet 2 side of the circuit board 16 and the magnetic field concentrator 14 the semiconductor chip 12 and the circuit board 16 may be interposed, as shown in FIG and Fig.6 shows. Size and shape of the magnetic field concentrator 14 then preferably correspond to those of the rectangular semiconductor chip 12, while covering the centroids of the area.
Die Erfindung ist nicht auf Sensoren 1 zur Messung von Drehwinkeln beschränkt, vielmehr ist das erfindungsgemäße Prinzip der räumlichen Trennung des Halblei¬ terchips 12 vom Magnetfeldkonzentrator 14 bei jeglicher Art von Sensoren mit Hallelementen 4, 6, 8, 10 anwendbar.The invention is not limited to sensors 1 for measuring angles of rotation, but the inventive principle of the spatial separation of the semicon terchips 12 from the magnetic field concentrator 14 in any type of sensors with Hall elements 4, 6, 8, 10 is applicable.
Gemäß einer weiteren Anwendung des Sensors 1 kann er zur Detektion des Drehwinkels einer in einem durch einen Deckel 28 verschlossenen Gehäuse 30 eines Drosselklappenstellers 32 gelagerten Drosselklappenwelle 34 vorgesehen sein, welche über ein Getriebe 36 durch einen aus Maßstabsgründen nicht ge¬ zeigten Stellmotor angetrieben ist, wie Fig. 8 zeigt. Dann ist beispielsweise die Leiterplatte 16 mit dem Magnetfeldkonzentrator 14, dem Halbleiterchip 12 und den Hallelementen 4, 6, 8, 10 in dem Deckel 28 des Gehäuses 30 des Drossel- klappenstellers 32 gehalten, parallel zu dem von einem Zahnrad 38 bzw. von ein- nem Zahnradsegment 38 des Getriebes 36 getragenen plattenförmigen Magneten 2. Der Halbleiterchip 12 befindet sich vorzugsweise auf der vom Magneten 2 weg weisenden Seite der Leiterplatte 16, während der Magnetfeldkonzentrator 14 dem Magneten zugewandt ist. Der Magnet 2 ist auf dem Zahnrad 38 beispielsweise koaxial zur Drosselklappenwelle 34 angeordnet. Durch diese Anordnung befinden sich die Leiterplatte 16 und der plattenförmige Magnet 2 in parallelen, vorzugs¬ weise zueinander gering beabstandeten Ebenen. According to a further application of the sensor 1, it may be provided for detecting the angle of rotation of a throttle shaft 34 mounted in a housing 30 of a throttle valve actuator 32 closed by a cover 28, which is driven via a gear 36 by a servomotor not shown for reasons of scale, such as Fig. 8 shows. Then, for example, the printed circuit board 16 with the magnetic field concentrator 14, the semiconductor chip 12 and the Hall elements 4, 6, 8, 10 is held in the cover 28 of the housing 30 of the throttle valve actuator 32, parallel to that of a gear wheel 38 or of a The semiconductor chip 12 is preferably located on the side facing away from the magnet 2 side of the circuit board 16, while the magnetic field concentrator 14 faces the magnet. The magnet 2 is arranged on the gear 38, for example coaxially with the throttle shaft 34. By this arrangement, the circuit board 16 and the plate-shaped magnet 2 are in parallel, preferably to each other slightly spaced planes.

Claims

Patentansprüche 1. Sensor (1 ) zur Detektion der Richtung eines Magnetfeldes, umfassend wenigstens zwei Hallelemente (4, 6, 8, 10), welche in einem eine Sig¬ nalverarbeitungselektronik (3) aufweisenden Halbleiterchip (12) integ¬ riert oder auf diesem angeordnet sind, wenigstens einen Magneten (2) sowie wenigstens einen dem Halbleiterchip (12) zugeordneten Magnet- feldkonzentrator (14) mit einer flächigen Form, dadurch gekennzeich¬ net, dass der Magnetfeldkonzentrator (14) und der Halbleiterchip (12) ohne unmittelbare Verbindung untereinander auf einem Trägerkörper (16) angeordnet sind.1. Sensor (1) for detecting the direction of a magnetic field, comprising at least two Hall elements (4, 6, 8, 10) which in a Sig¬ nalverarbeitungselektronik (3) having semiconductor chip (12) integ¬ ration or arranged on this are at least one magnet (2) and at least one of the semiconductor chip (12) associated magnetic field concentrator (14) with a flat shape, gekennzeich¬ net that the magnetic field concentrator (14) and the semiconductor chip (12) without direct connection with each other a carrier body (16) are arranged.
2. Sensor nach Anspruch 1 , dadurch gekennzeichnet, dass der Träger¬ körper durch eine Leiterplatte (16) gebildet wird.2. Sensor according to claim 1, characterized in that the Träger¬ body by a printed circuit board (16) is formed.
3. Sensor nach Anspruch 2, dadurch gekennzeichnet, dass der Halblei¬ terchip (12) mit den Hallelementen (4, 6, 8, 10) auf einer dem Magne- ten (2) zugewandten Seite der Leiterplatte (16) und der Magnetfeld¬ konzentrator (14) auf der anderen Seite der Leiterplatte (16) angeord¬ net ist.3. Sensor according to claim 2, characterized in that the semiconductor chip (12) with the Hall elements (4, 6, 8, 10) on a magnet (2) side facing the printed circuit board (16) and the Magnetfeld¬ Concentrator (14) on the other side of the circuit board (16) angeord¬ net is.
4. Sensor nach wenigstens einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass der Halbleiterchip (12) in einem von der4. Sensor according to at least one of the preceding claims, character- ized in that the semiconductor chip (12) in one of the
Leiterplatte (16) beabstandeten Gehäuse (18) mit Kontaktfüßen (20) in¬ tegriert ist, welche mit der Leiterplatte (16) elektrisch verbunden sind. Printed circuit board (16) spaced housing (18) with contact feet (20) in¬ tegriert which are electrically connected to the circuit board (16).
5. Sensor nach den Ansprüchen 2 und 4, dadurch gekennzeichnet, dass der Halbleiterchip (12) mit den Hallelementen (4, 6, 8, 10) und der Magnetfeldkonzentrator (14) auf einer dem Magneten (2) zugewandten Seite der Leiterplatte (16) angeordnet sind und der Magnetfeldkon- zentrator (14) dem Halbleiterchip (12) und der Leiterplatte (16) zwi¬ schengeordnet ist.5. Sensor according to claims 2 and 4, characterized in that the semiconductor chip (12) with the Hall elements (4, 6, 8, 10) and the magnetic field concentrator (14) on a magnet (2) facing side of the circuit board (16 ) and the magnetic field concentrator (14) is arranged between the semiconductor chip (12) and the printed circuit board (16).
6. Sensor nach wenigstens einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, dass sich die Flächenschwerpunkte des HaIb- leiterchips (12)und des Magnetfeldkonzentrators (14) überdecken.6. Sensor according to at least one of the preceding claims, da¬ characterized in that cover the centroids of HaIb- conductor chip (12) and the magnetic field concentrator (14).
7. Sensor nach wenigstens einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, dass der Magnetfeldkonzentrator (14) mit der Leiterplatte (16) stoffschlüssig verbunden ist.7. Sensor according to at least one of the preceding claims, da¬ characterized in that the magnetic field concentrator (14) with the circuit board (16) is integrally connected.
8. Drosselklappensteller (32) für ein von einer Brennkraftmaschine ange¬ triebenes Fahrzeug, mit einer in einem Gehäuse (30) gelagerten Dros¬ selklappenwelle (34), welche über ein Getriebe (36) durch einen Stell¬ motor angetrieben ist, dadurch gekennzeichnet, dass er wenigstens einen Sensor nach wenigstens einem der vorhergehenden Ansprüche beinhaltet.8. Throttle valve actuator (32) for a driven by an internal combustion engine vehicle, with a in a housing (30) mounted Dros¬ selklappenwelle (34) which is driven via a gear (36) by a Stell¬ motor, characterized that it includes at least one sensor according to at least one of the preceding claims.
9. Drosselklappensteller nach Anspruch 8, dadurch gekennzeichnet, dass die Leiterplatte (16) mit dem Magnetfeldkonzentrator (14), dem Halbleiterchip (12) und den Hallelementen (4, 6, 8, 10) in einem Deckel9. throttle valve actuator according to claim 8, characterized in that the circuit board (16) with the magnetic field concentrator (14), the semiconductor chip (12) and the Hall elements (4, 6, 8, 10) in a lid
(28) des Gehäuses (30) des Drosselklappenstellers (32) gehalten ist, parallel zu dem von einem Zahnrad (38) des Getriebes (36) getragenen plattenförmigen Magneten (2). (28) of the housing (30) of the throttle actuator (32) is held parallel to the plate-shaped magnet (2) carried by a gear (38) of the transmission (36).
PCT/EP2005/054205 2004-10-01 2005-08-26 Sensor for detecting the direction of a magnetic field WO2006037695A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410047784 DE102004047784A1 (en) 2004-10-01 2004-10-01 Sensor for detecting the direction of a magnetic field
DE102004047784.1 2004-10-01

Publications (1)

Publication Number Publication Date
WO2006037695A1 true WO2006037695A1 (en) 2006-04-13

Family

ID=35781314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/054205 WO2006037695A1 (en) 2004-10-01 2005-08-26 Sensor for detecting the direction of a magnetic field

Country Status (2)

Country Link
DE (1) DE102004047784A1 (en)
WO (1) WO2006037695A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100188078A1 (en) * 2009-01-28 2010-07-29 Andrea Foletto Magnetic sensor with concentrator for increased sensing range
US7956604B2 (en) 2008-07-09 2011-06-07 Infineon Technologies, Ag Integrated sensor and magnetic field concentrator devices
US20110199073A1 (en) * 2004-09-17 2011-08-18 Nve Corporation Inverted magnetic isolator
DE102011107703A1 (en) 2011-07-13 2013-01-17 Micronas Gmbh Integrated current sensor
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9620705B2 (en) 2012-01-16 2017-04-11 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10921391B2 (en) 2018-08-06 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor with spacer
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11313920B2 (en) 2016-07-15 2022-04-26 Tdk Corporation Sensor unit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007016133A1 (en) 2007-03-29 2008-10-02 Robert Bosch Gmbh Measuring device for non-contact detection of a rotation angle with arranged in a recess of the magnet magnetically sensitive element
DE202011002402U1 (en) 2011-02-04 2012-05-07 Dr. Fritz Faulhaber Gmbh & Co. Kg Electric micromotor
DE102012002204B4 (en) 2012-01-27 2019-06-13 Avago Technologies International Sales Pte. Limited magnetic field sensor
DE102012212272A1 (en) 2012-07-13 2014-01-16 Robert Bosch Gmbh Hall sensor
WO2018119025A1 (en) * 2016-12-21 2018-06-28 Segway, Inc. Rotating shaft position encoder system
EP3627575B1 (en) 2018-09-19 2021-01-06 Melexis Technologies NV Integrated magnetic concentrator and connection
DE102019216839A1 (en) * 2019-10-31 2021-05-06 Infineon Technologies Ag DETERMINING AN ANGLE OF ROTATION OF A SHAFT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041780A (en) * 1988-09-13 1991-08-20 California Institute Of Technology Integrable current sensors
US5883567A (en) * 1997-10-10 1999-03-16 Analog Devices, Inc. Packaged integrated circuit with magnetic flux concentrator
US6184679B1 (en) * 1995-10-30 2001-02-06 Sentron Ag Magnetic field sensor comprising two hall elements
EP1096234A1 (en) * 1999-10-27 2001-05-02 Denso Corporation Rotational angle detector using linear converter
US20020021124A1 (en) * 2000-08-21 2002-02-21 Christian Schott Sensor for the detection of the direction of a magnetic field

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041780A (en) * 1988-09-13 1991-08-20 California Institute Of Technology Integrable current sensors
US6184679B1 (en) * 1995-10-30 2001-02-06 Sentron Ag Magnetic field sensor comprising two hall elements
US5883567A (en) * 1997-10-10 1999-03-16 Analog Devices, Inc. Packaged integrated circuit with magnetic flux concentrator
EP1096234A1 (en) * 1999-10-27 2001-05-02 Denso Corporation Rotational angle detector using linear converter
US20020021124A1 (en) * 2000-08-21 2002-02-21 Christian Schott Sensor for the detection of the direction of a magnetic field

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110199073A1 (en) * 2004-09-17 2011-08-18 Nve Corporation Inverted magnetic isolator
US8884606B2 (en) * 2004-09-17 2014-11-11 Nve Corporation Inverted magnetic isolator
US7956604B2 (en) 2008-07-09 2011-06-07 Infineon Technologies, Ag Integrated sensor and magnetic field concentrator devices
US9091702B2 (en) 2008-07-09 2015-07-28 Infineon Technologies Ag Integrated sensor and magnetic field concentrator devices
US20100188078A1 (en) * 2009-01-28 2010-07-29 Andrea Foletto Magnetic sensor with concentrator for increased sensing range
DE102011107703A1 (en) 2011-07-13 2013-01-17 Micronas Gmbh Integrated current sensor
US8957668B2 (en) 2011-07-13 2015-02-17 Micronas Gmbh Integrated current sensor
US9620705B2 (en) 2012-01-16 2017-04-11 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US10333055B2 (en) 2012-01-16 2019-06-25 Allegro Microsystems, Llc Methods for magnetic sensor having non-conductive die paddle
US10230006B2 (en) 2012-03-20 2019-03-12 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an electromagnetic suppressor
US11444209B2 (en) 2012-03-20 2022-09-13 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil enclosed with a semiconductor die by a mold material
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US11961920B2 (en) 2012-03-20 2024-04-16 Allegro Microsystems, Llc Integrated circuit package with magnet having a channel
US10916665B2 (en) 2012-03-20 2021-02-09 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil
US11828819B2 (en) 2012-03-20 2023-11-28 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US11677032B2 (en) 2012-03-20 2023-06-13 Allegro Microsystems, Llc Sensor integrated circuit with integrated coil and element in central region of mold material
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US11313920B2 (en) 2016-07-15 2022-04-26 Tdk Corporation Sensor unit
US11630165B2 (en) 2016-07-15 2023-04-18 Tdk Corporation Sensor unit
US11959979B2 (en) 2016-07-15 2024-04-16 Tdk Corporation Sensor unit
US10921391B2 (en) 2018-08-06 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor with spacer
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile

Also Published As

Publication number Publication date
DE102004047784A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
WO2006037695A1 (en) Sensor for detecting the direction of a magnetic field
DE102006022336B4 (en) Magnetic field sensor and Sensoranordenung with the same
EP0736183B1 (en) Device for detecting rotary or angular movements
DE102005060713A1 (en) Magnetic field sensor arrangement and method for non-contact measurement of a magnetic field
WO2006122945A1 (en) System for intrinsically safe detection of a wheel rotational speed
EP1226089A1 (en) Electromechanical component and method for producing said component
EP1975569A2 (en) Measuring device for contactless recording of the rotation angle with a magnet sensitive element fitted into a recess of the magnet
EP0188435B1 (en) Magnetoresistive device for measuring magnetic field variations and method for fabricating the same
WO2001063210A1 (en) Electronic control circuit
EP3167253B1 (en) Vibration decoupling of sensors
DE4219907C2 (en) Magnetic sensor
EP1816440B1 (en) Electronic assembly
DE102017218893A1 (en) Sensor arrangement for determining at least one parameter of a fluid flowing through a measuring channel
DE102007024867A1 (en) Measuring device for non-contact detection of a rotation angle with radially polarized magnet
EP3942260A1 (en) Angle detection device
DE10213381B4 (en) Magnetic sensor arrangement and a method for its production
EP3250893B1 (en) Sensor with symetrically embedded sensor elements
DE102007052160A1 (en) Measuring device for detecting rotation angle/linear path in e.g. accelerator pedal value sensor of accelerator pedal module in motor vehicle, has springs with windings made of conducting material, where part of windings forms primary coils
DE102006057970B4 (en) Semiconductor component with a magnetic field sensor and method of manufacture
DE102012219146A1 (en) Non-contact angle measurement with a ferrite magnet
DE10134646A1 (en) sensor element
DE102006057307B4 (en) Level measuring device for a fuel tank
DE112016003915B4 (en) Magnetic field detection device
EP3250892B1 (en) Adapter with embedded filter components for sensors
DE8604291U1 (en) Electrical position encoder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 05786952

Country of ref document: EP

Kind code of ref document: A1