WO2006035693A1 - 湾曲制御装置 - Google Patents

湾曲制御装置 Download PDF

Info

Publication number
WO2006035693A1
WO2006035693A1 PCT/JP2005/017593 JP2005017593W WO2006035693A1 WO 2006035693 A1 WO2006035693 A1 WO 2006035693A1 JP 2005017593 W JP2005017593 W JP 2005017593W WO 2006035693 A1 WO2006035693 A1 WO 2006035693A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
image
unit
distal end
bending control
Prior art date
Application number
PCT/JP2005/017593
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Tsuji
Akira Taniguchi
Original Assignee
Olympus Corporation
Olympus Medical Systems Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation, Olympus Medical Systems Corp. filed Critical Olympus Corporation
Priority to EP05785722.9A priority Critical patent/EP1800593B1/en
Publication of WO2006035693A1 publication Critical patent/WO2006035693A1/ja
Priority to US11/728,875 priority patent/US8038605B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00039Operational features of endoscopes provided with input arrangements for the user
    • A61B1/00042Operational features of endoscopes provided with input arrangements for the user for mechanical operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/0016Holding or positioning arrangements using motor drive units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0052Constructional details of control elements, e.g. handles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device

Definitions

  • the present invention relates to a bending control device that controls bending of a bending portion provided in an insertion portion of an endoscope that is inserted into a body cavity.
  • the insertion portion of the endoscope is provided with a curved portion near the proximal end of the distal end portion so that it can be smoothly inserted into a bent body cavity.
  • the bending operation knob provided on the operation portion or the like, or electric bending disclosed in Japanese Patent Laid-Open No. 2003-245246 is disclosed.
  • the joystick is bent.
  • the bending portion when the bending portion is bent, it is performed according to the observation result of the endoscopic image captured by the imaging element or the like provided at the distal end portion of the insertion portion. That is, the direction in which the bending portion is bent is determined depending on the direction in which the image portion showing the lumen portion such as the digestive tract in the endoscopic image is present.
  • An image sensor is attached to the distal end in a predetermined direction.
  • a display means such as a monitor
  • the upward direction of the endoscopic image is curved.
  • the display is made to coincide with the upper direction in the vertical and horizontal directions.
  • the direction in which the bending portion is bent is determined by confirming whether the darkly displayed image portion indicating the lumen portion is in the up-down direction or the left-right direction in the endoscopic image.
  • the insertion shape of the insertion portion inserted into the body cavity may be displayed.
  • Japanese Unexamined Patent Publication No. 2000-79087 discloses an endoscope system that displays an endoscopic image and an insertion shape.
  • Japanese Patent Application Laid-Open No. 2000-79087 displays an endoscopic image and an insertion shape image.
  • an endoscope is used when the bending portion is curved. Based on image Then, the bending operation is performed, and the image of the insertion shape is used as an auxiliary image.
  • the bending operation and the bending portion corresponding to the bending operation are performed based on another display image such as an insertion shape image. If bending control can be performed, it becomes easier to perform operations such as insertion, which is very convenient.
  • the relationship between the displayed image such as the insertion shape and the direction of the distal end side of the insertion portion is not divided, so the insertion is performed on the deep side of the lumen based on the displayed image. For this reason, bending the bending portion, for example, has been performed with substantially no power.
  • the present invention has been made in view of the above points, and in addition to bending control corresponding to an endoscopic image, bending control capable of performing bending control corresponding to another image showing the distal end side of the insertion portion.
  • the purpose is to provide equipment.
  • the bending control device of the present invention performs a curve instruction operation for performing a bending instruction operation on the bending portion in an endoscope having an insertion portion provided with an imaging portion that performs imaging on the distal end side and a bendable bending portion.
  • a bending control unit that performs bending control of the bending unit in response to a bending instruction operation by the bending instruction operation unit;
  • a first bending control mode for performing bending control corresponding to the first image imaged by the imaging unit
  • a second bending control mode for performing bending control corresponding to the second image displaying the distal end side of the insertion portion.
  • FIG. 1 is an overall configuration diagram of an endoscope apparatus provided with Example 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view showing the configuration of the distal end side of the insertion portion of the endoscope.
  • FIG. 3 is a block diagram illustrating a configuration of a bending control device according to the first embodiment.
  • FIG. 4 is an external view showing the configuration around the operation unit.
  • FIG. 5 is a diagram showing two images displayed on a high-definition monitor.
  • FIG. 6 is a view showing a state of an insertion portion of an endoscope inserted into a body cavity.
  • FIG. 7 is an enlarged schematic view of the vicinity of the tip of FIG.
  • FIG. 8 is a diagram showing an endoscopic image in the insertion state of FIG.
  • FIG. 9 is a view showing a state where the distal end portion of the insertion portion of FIG. 7 is rotated 90 ° clockwise.
  • FIG. 10 is a diagram showing an endoscopic image in the insertion state of FIG. 9.
  • FIG. 11 is a view showing a state in which the distal end of the insertion portion of FIG. 9 is further rotated 90 ° clockwise.
  • FIG. 12 is a flowchart showing a bending control procedure in the first embodiment.
  • FIG. 13 is a block diagram showing a part of the configuration of the endoscope apparatus of the first modification.
  • FIG. 14 is a block diagram showing a part of the configuration of an endoscope apparatus according to a second modification.
  • FIG. 15A is a diagram showing a display example displayed along with the bending index in the third modification.
  • FIG. 15B is a diagram showing a display example of the bending index of the modified example in FIG. 15A.
  • FIG. 16 is a view showing a display example displayed with a bending index in the fourth modified example.
  • FIG. 17 is a view showing a display example displayed with a bending index in the fifth modified example.
  • FIG. 18 is a configuration diagram showing an endoscope apparatus provided with Embodiment 2 of the present invention.
  • FIG. 19 is a diagram showing a configuration of a direction sensor.
  • FIG. 20 is a configuration diagram showing an outline of an endoscope apparatus provided with Embodiment 3 of the present invention.
  • FIG. 21 is a flowchart showing an operation content in a bending mode corresponding to a CT image by the bending control device.
  • FIG. 22 is a flow chart showing an operation content of obtaining image display parameters in FIG. [FIG. 23A]
  • FIG. 23A is a flowchart showing an operation content for performing bending control by detecting a rotation amount such as twisting of the insertion portion.
  • FIG. 23B is an explanatory diagram of the positional relationship between the operator and the remote controller on which the bending instruction operation is performed by the operator.
  • an endoscope apparatus 1 including Example 1 of the present invention includes an endoscope 2 that is inserted into a body cavity and the like, a light source unit 3 that supplies illumination light to the endoscope 2, A signal processor 4 that performs signal processing on imaging means built in the endoscope 2 and a video processor 6 that incorporates a bending control device 5 that performs bending control of the bending portion of the endoscope 2 and the like.
  • the endoscope apparatus 1 further includes a UPD coil unit 7 for detecting the position of an insertion shape detection coil (hereinafter abbreviated as UPD coil) provided in the endoscope 2 and a detection signal from the UPD coil unit 7.
  • UPD coil an insertion shape detection coil
  • An insertion shape detection device (UPD device) 8 that generates an image of an insertion shape of the endoscope 2, an endoscope image captured by the imaging means, and an insertion shape detection image (UPD image) by the UPD device 8
  • a high-definition monitor 10 such as a high-definition monitor that displays two images mixed by the image mixer 9 at an aspect ratio of 16: 9.
  • the endoscope 2 includes an elongated insertion portion 11 that is inserted into a body cavity, an operation portion 12 that is provided at the rear end of the insertion portion 11, and a universal cord 13 that extends from the operation portion 12.
  • the connector 14 at the rear end of the universal cord 13 is detachably connected to the video processor 6.
  • the insertion portion 11 is also operated with a hard distal end portion 15 provided at the distal end, a bending portion 16 provided so as to be bent adjacent to the rear end of the distal end portion 15, and a rear end force of the bending portion 16.
  • a flexible tube portion 17 having flexibility extending to the front end of the portion 12.
  • the operation unit 12 includes a bending joystick 18 for instructing a bending direction and a bending angle of the bending unit 16, and a bending mode selection switch 19 for selecting (switching) a bending mode.
  • a scope switch 20 for performing an instruction operation such as still image display is provided.
  • a light guide 21 that transmits illumination light is inserted into the insertion portion 11 of the endoscope 2, and the rear end of the light guide 21 protrudes from the connector 14 and is an incident end surface of illumination light.
  • the illumination light from the lamp 22 built in the light source unit 3 is incident on the incident end face through the diaphragm 23 and the collecting lens 24.
  • the lamp 22 is lit by a lamp driving power source supplied from the lamp driving circuit 25 to generate illumination light.
  • the aperture 23 controls the aperture amount (aperture amount) through which illumination light passes by the aperture control circuit 26.
  • Illumination light transmitted by the light guide 21 is emitted to the outside through the illumination lens 27 (see FIG. 7) attached to the illumination window from the distal end surface of the light guide fixed to the distal end portion 15 of the insertion portion 11. Illuminate the affected area in the body cavity.
  • the distal end portion 15 is provided with an observation window (adjacent to the illumination window), and an imaging unit 31 is attached to the observation window.
  • the imaging unit 31 includes an objective lens 32 attached to a lens frame, a charge-coupled device (abbreviated as CCD) 33 as an imaging device in which an imaging surface is disposed at an image formation position by the objective lens 32, And a circuit board 34 on which an electronic element forming an amplifier or the like is mounted.
  • CCD charge-coupled device
  • the cable 35 whose front end side is connected to the circuit board 34 and the like is passed through the insertion portion 11 and the like, and its rear end side constitutes the signal processing portion 4 through the electrical contacts of the connector 14 as shown in FIG. Connected to the CCD drive circuit 36 and the video processing circuit 37.
  • the CCD drive circuit 36 generates a CCD drive signal and applies the CCD drive signal to the CCD 33.
  • the CCD 33 photoelectrically converts the optical image formed on the imaging surface by applying a CCD drive signal and outputs it as a CCD output signal.
  • This CCD output signal is input to the video processing circuit 37, and the video processing circuit 37 generates a video signal of an endoscopic image captured by the CCD 33. Then, this video signal is output to the high-definition monitor 10 through the image mixer 9, and the endoscopic image la is displayed on the display screen of the high-definition monitor 10 as shown in FIG.
  • the video signal is input to the aperture control circuit 26, and the aperture control circuit 26 calculates the average brightness by, for example, integrating the luminance signal component of the video signal at a predetermined period.
  • the diaphragm control circuit 26 applies a difference signal obtained by subtracting the reference value corresponding to the appropriate brightness to the signal power of the average brightness to the diaphragm 23 as a diaphragm control signal, and the aperture amount of the diaphragm 23 Adjust. Then, the light is automatically adjusted so that the amount of illumination light passing through the aperture 23 becomes the reference value.
  • a treatment instrument channel 38 is provided in the insertion section 11, and a treatment instrument insertion provided near the front end of the operation section 12 is arranged on the rear end side of the treatment instrument channel 38. It communicates with mouth 3 9.
  • UPD coils 41 are arranged, for example, at predetermined intervals in the insertion portion 11, and the signal line 42 connected to the UPD coils 41 passes through the electrical contacts of the connector 14 as shown in FIG.
  • the UPD coil drive circuit 43 provided in 6 is connected.
  • the UPD coil drive circuit 43 sequentially applies an AC drive signal to each UPD coil 41 via the signal line 42 to generate an AC magnetic field around each UPD coil 41.
  • an UPD coil unit 7 including a plurality of UPD coils 44 is arranged at a predetermined position in a peripheral portion of a bed where a patient (not shown) on which the insertion portion 11 is inserted lies. Then, the magnetic field generated by the UPD coil 41 disposed in the insertion portion 11 is detected by the plurality of UPD coils 44.
  • the detection signal from the UPD coil 44 is amplified by an amplifier 45 in the UPD device 8 and then input to the UPD coil position calculation circuit 46.
  • the UPD coil position calculation circuit 46 calculates the position of each UPD coil 41 from the amplitude value and the phase value in the signal detected by the UPD coil 44.
  • the position information calculated by the UPD coil position calculation circuit 46 is input to the insertion shape calculation Z display processing circuit 47.
  • the insertion shape calculation Z display processing circuit 47 estimates the insertion shape of the insertion portion 11 from the shape obtained by connecting the calculated positions of the UPD coils 41, and models the estimated insertion shape and displays it as a UPD image lb. Signal processing.
  • the video signal of the UPD image lb output from the insertion shape calculation Z display processing circuit 47 is input to the high-definition monitor 10 via the image mixer 9, and the UPD image lb is displayed on the display screen. For example, it is displayed as shown on the right side of the screen in FIG.
  • the information on the UPD image lb output from the insertion shape calculation Z display processing circuit 47 is input to the auxiliary image generation circuit 48.
  • the auxiliary image generation circuit 48 generates a corresponding body cavity shape image as an auxiliary image from the information of the input UPD image lb. Then, the video signal of this auxiliary image is output to the image mixer 9, and the image mixer 9 superimposes this auxiliary image on the UPD image lb and outputs it to the high-definition monitor 10.
  • the actual UPD image is indicated by reference numeral 1
  • the reference lb indicates the auxiliary image of the corresponding digestive tract, etc. That is, the normal UPD image is indicated by reference numeral 1.
  • the auxiliary image generation circuit 48 is provided in the body cavity into which the insertion portion 11 corresponding to the information column of the UPD image lb ′ is actually inserted. Generate an auxiliary image lb "of approximate shape.
  • the UPD image 1 and the auxiliary image lb are displayed on the high-definition monitor 10 at the same time.
  • This auxiliary image lb is generated by reading out an auxiliary image corresponding to the actual UP blue information lb 'from a database of information such as the digestive tract, and this auxiliary image. Ib ⁇ is superimposed on UPD image 1, as shown in Fig. 5. In the following, the symbol lb is simply used as the UPD image.
  • an UPD coil 41 is also attached in the tip portion 15. Specifically, two UPD coils 41 are spaced apart from each other along the direction (eg, the vertical direction) orthogonal to the longitudinal direction of the insertion portion 11 at the distal end portion 15.
  • the UPD coil position calculation circuit 46 is configured so that, for example, in addition to the position of the tip part 15 from the position of the two UPD coils 41 attached to the tip part 15, the circumferential direction around the tip part 15 in the axial direction.
  • the direction (a specific direction in the direction such as up and down, left and right) is calculated.
  • the UPD coil position calculation circuit 46 also detects and displays information in the longitudinal direction (axial direction) near the tip 15.
  • the bending control device 5 From the position and direction information, the bending control device 5 is in which direction the tip 15 is actually oriented! You can know the power to rush.
  • the insertion shape calculation Z display processing circuit (UPD calculation Z display processing circuit) 47 Information about the display direction (viewing direction for display) when displaying the image lb is output to the bending control device 5.
  • the display direction information includes axial direction information on the distal end side of the insertion portion 11 in the UPD image lb.
  • an explanation will be given of an example in which when displaying the UPD image lb, the axial direction at the distal end portion of the insertion portion is displayed so as to be substantially upward.
  • the bending control device 5 is configured such that when the bending mode selection switch 19 (selection unit) selects a bending control mode (hereinafter, abbreviated as a bending mode) corresponding to the endoscopic image Ia, Normal curve control is performed.
  • a bending control mode hereinafter, abbreviated as a bending mode
  • the bending control device 5 performs the bending control so as to perform the bending control corresponding to the UPD image lb. Change the contents. That is, the bending control device 5 of the present embodiment has a function (two bending control means or two bending control methods) for performing two different bending controls corresponding to two different images Ia and lb, respectively. Yes.
  • an index indicating which bending mode is selected is displayed on the endoscopic image la or the UPD image lb. For example, when the bending mode corresponding to the UPD image lb is selected, for example, the index E of Angle is displayed in the UPD image lb on the right side of FIG. RU
  • the bending mode selection signal from the bending mode selection switch 19 is input to the bending control device 5 and also input to the image processing circuit 37 to display the index E from the selection signal.
  • the video processing circuit 37 displays, for example, an Angle index E in the endoscopic image la or the UPD image lb in accordance with the selection state of the bending mode.
  • a bending portion 16 as shown in FIG. 2 is provided in the insertion portion 11 of the endoscope 2 in this embodiment, and the bending control device 5 for controlling the bending of the bending portion 16 is shown in FIG.
  • the configuration is as shown.
  • the flexible tube portion 17 has a structure in which a spiral tube 51 is fitted with a blade tube 52 and the outer side is covered with an outer skin 53.
  • the spiral tube 51 is formed in a cylindrical shape by winding a strip-shaped metal plate in a spiral shape
  • the blade tube 52 is formed in a cylindrical shape by braiding many metal strands.
  • the bending portion 16 has a plurality of bending pieces 54 arranged in the longitudinal axis direction of the insertion portion 11, and is adjacent to the insertion portion 11.
  • a tubular bending tube portion 56 that can be bent in the longitudinal direction is formed.
  • the outer periphery of the curved pipe portion 56 is fitted with a cylindrical blade, and the outer periphery thereof is covered with an outer skin 58.
  • Each bending piece 54 is a force that determines the bending direction depending on the position where the rivet 55 is provided. It can be bent vertically and horizontally.
  • the bending tube portion 56 constitutes a bending mechanism 60 that bends to the side pulled by the angle wire 59.
  • the inner surfaces of the bending pieces 54 other than the bending piece 54 located at the foremost end and the bending piece 54 located at the rearmost end are arranged at positions corresponding to the angle wires 59 arranged vertically and horizontally.
  • ring-shaped wire guides 61 are inserted by brazing or the like so that the respective angle wires 59 are individually inserted and guided so as to advance and retreat.
  • each angle wire 59 is fixed to the state-of-the-art bending piece or the body member of the tip 15 by brazing or the like. Therefore, when any one of the angle wires 59 is selected and pulled, the bending portion 16 can be bent in the direction of the selected angle wire 59.
  • the flexible tube portion 17 and the bending portion 16 of the insertion portion 11 are connected by a metal connecting tube 62.
  • the leading end portions of the spiral tube 51 and the blade tube 52 in the flexible tube portion 17 are fitted into the rear end portion of the connection tube 62 and fixed by brazing or the like.
  • the rear end portion of the bending piece 54 located at the end of the bending tube portion 56 of the bending portion 16 is fitted on the outer periphery of the distal end portion of the connection tube 62 and fixed by brazing or screwing.
  • the blade 16 of the bending portion 16 and the rear end side portion of the outer skin 58 extend beyond the bending piece 54 located at the rearmost end to the outer peripheral portion of the connection pipe 62, cover the outer periphery of the connection pipe 62, and braze It is fixed by etc.
  • the outer skin 53 of the flexible tube portion 17 and the outer skin 58 of the bending portion 16 are abutted, and the outer peripheral portion is fastened with a tightly wound thread winding portion across the both ends of the contact, and is adhered to the outer periphery of the winding portion.
  • the abutting part is liquid-tightly sealed by applying an agent.
  • the connection part of such a flexible pipe part 17 and the bending part 16 is a part of a comparatively hard area
  • Each angle wire 59 is individually inserted into the respective guide sheath 63 through the flexible tube portion 17 and guided into the operation portion 12.
  • the guide sheath 63 is made of, for example, a coil sheath formed by tightly coiling stainless steel (SUS) coil strands, and each of the coil sheaths has a respective andal wire 59 individually. Is inserted.
  • SUS stainless steel
  • the distal end of the coil sheath is fixedly attached to the inner surface of the connecting pipe 62 by brazing.
  • the rear end side of the coil sheath is disposed in a free state in the flexible tube portion 17 of the insertion portion 11, and is led into the operation portion 12 together with other built-in items.
  • a pulley 66b equipped with wires is installed.
  • the pulleys 66a and 66bi can be rotated by electric motors 67a and 67b.
  • the electric motors 67a and 67b are driven by a motor drive unit 69 controlled by a control unit 68.
  • an actuator for rotating the pulleys 66a and 66b by the electric motors 67a and 67b to drive the bending portion 16 through the angle wire 59 is configured.
  • the driving position of the actuator is detected by an actuator position detecting means.
  • the actuator position detection means here is composed of rotary encoders 71a and 71b attached to the shafts of the electric motors 67a and 67b, and the bending mechanism 60 is based on the output signals of the rotary encoders 71a and 7 lb. The bending angle is detected.
  • the control unit 68 controls the bending operation amount by the actuator based on the position detection signal of the actuator position detecting means so as to bend the bending portion 16 to a predetermined bending angle.
  • the operation unit 12 is provided with a joystick 18 as a bending instruction operation means.
  • the joystick 18 instructs an arbitrary bending direction (up / down, left / right), and issues a command for the bending operation amount (bending angle).
  • the directional joystick motor 73a and the left / right joystick motor 73b rotate.
  • the rotation angle that is, the bending operation amount is detected by the rotary encoders 74a and 74b, and the detection signals of the rotary encoders 74a and 74b are input to the control unit 68 via the input driver 75.
  • a tension sensor 76 such as a strain sensor is fixed to the distal end portion 15 of the insertion portion 11 corresponding to each angle wire 59, and the tip of the angle wire 59 is attached to the tension sensor 76. The ends are connected and the tension of the angle wire 59 is detected.
  • the signal line 77 of the tension sensor 76 is connected to the control unit 68 through the insertion unit 11 via the tension sensor amplifier 78 and the AZD converter 79 in the operation unit 2.
  • a displacement sensor 80 such as a magnetic induction sensor or a laser displacement sensor is fixed to the inside of the connecting tube 62 between the distal end portion of the flexible tube portion 17 and the rear end portion of the bending portion 16 in correspondence with the andal wire 59, The displacement of the angle wire 59 in the axial direction is detected.
  • the displacement sensor 80 is configured to be incorporated in a coil sheath portion through which the angle wire 59 is guided.
  • a signal line 81 is connected to the displacement sensor 80, and the signal line 81 is connected to the control unit 68 through the insertion unit 11, the displacement sensor amplifier 83 in the operation unit 12, and the AZD converter 84.
  • the relationship between the tension measured by the tension sensor 76 and the displacement measured by the displacement sensor 80 is the tension against the displacement as indicated by a certain curve. rises. However, the curved portion 16 is observed while being bent, or during the treatment, the relationship between the tension measured by the tension sensor 76 and the displacement measured by the displacement sensor 80 deviates from the characteristic force by an external force. become.
  • the displacement amount of the angle wire 59 is measured by the displacement sensor 80, and the measurement result is the displacement
  • the signal is input to the control unit 68 via the sensor amplifier 83 and the AZD converter 84.
  • the tension sensor 76 measures the tension.
  • the measurement results are controlled via tension sensor amplifier 78 and AZD converter 79. Input to part 68.
  • the control unit 68 calculates the difference in tension, and operates the input driver 75 so as to feed back the amount of force corresponding to the difference to the joystick 18. Therefore, it can be seen that the distal end portion 15 of the insertion portion 11 has received an external force with the sensation of the hand of the operator who operates the joystick 18.
  • the displacement sensor 80 that measures the amount of displacement of the angle wire 59 is installed in the insertion portion 11, so that even if the shape of the insertion portion 11 changes, the control to eliminate the so-called angle down is ensured. To be able to do.
  • the tension sensor 76 measures the tension. Measure by.
  • the control unit 68 calculates the difference in tension, and feeds back the amount of force corresponding to the magnitude of the tension difference to the joystick 18, so that the insertion unit 11 can be sensed by the operator's hand operating the joystick 18. Since the tip 15 of the arm is subjected to external force, the joystick 18 can be used to perform operations such as returning the bending portion 16 and changing the bending direction, thereby improving operability. .
  • the bending control device 5 uses the UPD image lb in addition to the normal bending mode (first bending mode) for performing the bending control corresponding to the normal endoscopic image la.
  • the bending control can be performed in the bending mode corresponding to (second bending mode).
  • the CCD 33 is fixed in the distal end portion 15, and the upward direction of the image captured by the CCD 33 coincides with a predetermined bending direction of the bending portion 16, for example, the upper bending direction.
  • the upper direction of the endoscopic image la is always upward. Is displayed on the high-definition monitor 10.
  • the other directions of the endoscopic image la on the high-definition monitor 10 that is, the lower, left and right directions are displayed in a fixed state.
  • the UPD image lb and the bending portion 16 or the joystick 18 can be operated so that the operator can perform a bending instruction operation by looking at the UP D image lb. Are associated with each other in a predetermined relationship.
  • control unit 68 of the bending control device 5 captures the direction information of the tip 15 by the UPD device 8 and the display direction information (of the UPD image lb) at predetermined time intervals. And stored in an internal memory or the like.
  • the direction correction circuit 29 provided in the control unit 68 determines the predetermined direction of the tip 15 in the UPD image lb (specifically, on the display image of the tip 15 and its The amount of direction deviation (direction deviation angle), which is how much the displayed part (up and down, left and right directions) deviates from the actual direction, is calculated as the direction correction amount.
  • the axial direction of the tip 15 in the UPD image lb (the axis does not change with respect to the rotation of the tip 15 as described later)
  • the predetermined direction of the joystick 18 is made to correspond on the operation (both are easy to operate). That is, the bending instruction direction when judging by looking at the UPD image lb is associated with the bending instruction direction by the joystick 18 serving as a bending instruction operating means for instructing the bending portion 16 to bend. Specifically, when displaying the UPD image lb, it is displayed so that the axial direction of the tip 15 is always up and down, for example, and the tip of the tip 15 is up.
  • the direction of the operation instruction by the joystick 18 is corrected by the amount of deviation calculated by the direction correction circuit 29, and the bending portion 16 is moved. Drive to bend.
  • the operator simply looks at the UPD image lb and wants to bend the bending portion 16 from the UPD image lb.
  • the bending instruction operation for tilting the joystick 18 in the direction may be performed.
  • the control unit 68 performs bending control according to the tilting operation of the joystick 18 by a known method, but when the second bending mode corresponding to the UPD image lb is selected, The joystick 18 can be tilted by the direction correction circuit 29 inside the control unit 68. Curvature control is performed using the corrected direction.
  • the connector 14 of the endoscope 2 is connected to the video processor 6, and the insertion portion 11 of the endoscope 2 is inserted into, for example, the bent gastrointestinal tract a of the patient.
  • Figure 6 shows the insertion part 11 inserted into the digestive tract a.
  • FIG. 7 shows an enlarged schematic view of the vicinity of the tip 15 in this state.
  • the force that the objective lens 32 is actually placed in front of the CCD 33 is omitted here for simplicity.
  • the upward force of the CCD 33 built in the tip 15 is, for example, the direction indicated by the arrow Du.
  • the a in the digestive tract is bent to the left.
  • the insertion portion 11 can be smoothly inserted into the deep side of the bent gastrointestinal tract a (as described later, UPD image In lb, the bending instruction operation to bend like that is performed).
  • the endoscopic image la captured by the CCD 33 is as shown in FIG.
  • the endoscopic image la is displayed so that the upward force on the CCD 33 is always upward.
  • the dark part in the digestive tract a corresponds to the direction of the lumen (the reflected light from the direction along the lumen is weak) Therefore, the image of the direction of travel of the lumen becomes dark).
  • the insertion portion 11 is twisted 90 degrees clockwise, and the upward direction of the CCD 33 may be the right direction indicated by the arrow Du as shown in FIG.
  • An endoscopic image la taken by the CCD 33 in this state is as shown in FIG.
  • FIG. 10 shows an image obtained by rotating the endoscopic image la in FIG. 8 by 90 °.
  • the endoscopic image la is observed and the distal end portion 15 of the insertion portion 11 is to be smoothly inserted into the bent digestive tract a, the bending portion 16 is placed below the dark image portion. To bend, the operator tilts the joystick 18 downward.
  • the operator can smoothly insert the bent portion 16 in the bent gastrointestinal tract a by bending the bent portion 16 in the direction indicated by the arrow W. .
  • the insertion part 11 is twisted 90 degrees clockwise, so that the upward direction of the CCD 33 as shown in FIG. 11 may be the downward direction of the paper as indicated by the arrow Du.
  • the operator may operate the bending mode selection switch 19 to set the bending mode corresponding to the UPD image Ib.
  • the UPD image lb is displayed as shown on the right side of the screen in FIG.
  • the state of the distal end portion 15 of the insertion portion 11 corresponds to which state shown in FIGS.
  • the control unit 6 8 captures the direction information of the tip 15 by the UPD coil 41 and the display direction information for actually displaying the UPD image lb, so that the UPD image lb in FIG.
  • the relationship between the predetermined direction of the tip 15 and the actual direction of the tip 15 (or the bending direction of the joystick 18) can be grasped.
  • the predetermined direction in the image of the tip 15 in the UPD image lb Operation is associated with a predetermined bending direction of the tick 18 and bending control is performed in consideration of a deviation in both directions during actual bending driving.
  • the upward direction perpendicular to the paper surface and the upward direction of the joystick 18 curve instruction are operated.
  • the display direction of the UPD image lb is set so that the axial direction force display screen near the tip in the UPD image lb is oriented upward.
  • the operator can set the upward direction perpendicular to the paper surface as the upward direction of the joystick 18 so that the operator
  • the control unit 68 responds to the operation of tilting to the left by performing the operation of pushing the insertion unit 11 while performing the operation of tilting the joystick 18 to the left.
  • the direction deviation from the actual upward direction of the bending portion 16 is corrected by the direction correction circuit 29, and the bending control is performed so as to be bent in the direction indicated in the UPD image lb.
  • the direction correction circuit 29 does not correct the direction.
  • the control unit 68 actually seems to have been instructed to curve downward. The direction is corrected and bending control is performed.
  • the curved portion 16 at the proximal end of the distal end portion 15 is actually bent. Even when the bending direction of the bending portion 16 does not coincide with the direction, the bending portion 16 in the UPD image lb can be bent in the direction by the direction correction by the direction correction circuit 29 in the control unit 68. it can.
  • FIG. 12 shows a schematic operation content in the present embodiment. State set as shown in Figure 1 Then insert the insertion part 11 of the endoscope 2 into the digestive tract a etc.
  • the CPU 68a constituting the control unit 68 of the bending control device 5 determines whether the normal bending mode is selected by the bending mode selection switch 19 as shown in step S1.
  • step S2 the CPU 68a of the control unit 68 determines whether or not the joystick 18 is bent as shown in step S2. If there is no bending operation, return to step S1.
  • the CPU 68a drives the electric motor 67a or 67b to bend the bending portion 16 in the bending instruction direction of the joystick 18 as shown in step S3. Then, the process returns to step S1.
  • step S1 if the normal bending mode is not set, the bending mode corresponding to the UPD image lb is set, so as shown in step S4, the CPU 68a determines the direction information of the tip 15 and the UPD image lb. And display direction information.
  • the CPU 68a calculates information (angle) on the direction deviation between the predetermined direction of the front end and the actual direction in the UPD image lb from these pieces of information.
  • step S6 the CPU 68a determines whether the joystick 18 is bent. If there is no bending operation, return to step S1.
  • the CPU 68a drives the electric motor 67a or 67b so as to bend the bending portion 16 by correcting the direction deviation with respect to the bending instruction direction of the joystick 18 as shown in step S7. To do. Then, the process returns to step S1.
  • steps S4 and S5 may be performed after step S6. Since each step is performed in a closed loop in a short time, the operation is substantially the same even if the order is changed.
  • the present embodiment having such an action has the following effects.
  • the surgeon can set the bending mode corresponding to the image that is easy to perform the bending operation in the two images la and lb shown in FIG. Work can be performed more smoothly.
  • a direction display section such as a marker Ma or Mb may be displayed. If it does in this way, it will become easier to bend by an operator.
  • the direction to be bent by the bending operation is displayed in the UPD image lb or the like as the marker Mc or Md. It is also possible to display the part. This makes it easier for the surgeon to perform bending.
  • a reference direction when performing a bending operation with the joystick 18, for example, an upward direction, a left direction, or a right direction may be displayed by a marker, an arrow, or the like. good.
  • the display direction When displaying the UPD image lb, the display direction may be specified and the UPD image may be displayed in the specified display direction, or a plate for specifying the display direction may be used.
  • the longitudinal direction of 15 is the display surface (included in the display surface)
  • the UPD image lb has been described in the case of a display state in which the axial direction of the distal end portion of the insertion portion 11 extends substantially upward as shown on the right side of FIG. It may be displayed so that the axial direction of the axis extends in different directions.
  • the display state force in FIG. 5 also displays the UPD image lb so that the axial direction of the distal end portion of the insertion section 11 extends to the left by rotating the UPD image lb counterclockwise by, for example, about 90 degrees.
  • the direction in which the distal end side of the insertion portion 11 extends in the UPD image lb is a directional force that is close to either the top, bottom, left, or right. Since it becomes easier, it is preferable to use the other intermediate direction.
  • the configuration in which the insertion shape of the insertion portion 11 is displayed using the UPD coil 41 or the like has been described.
  • at least the distal end side of the insertion portion 11 is utilized by using other position detection means. It may be possible to perform position detection or direction detection.
  • position detection or direction detection For example, high frequency IC tag (RF tag) It is also possible to detect the direction near the tip 15 by using and to display an image near the tip 15.
  • RF tag radio frequency IC tag
  • control unit 68 constituting the bending control device 5 shown in FIG. 5 is configured by the CPU 68a or the like, the processing content shown in FIG. 12 is performed by the CPU 68a in software according to the program stored in the memory or the like.
  • a bending control method for performing bending control in accordance with the processing content shown in FIG. 12 may be adopted.
  • the images of the video processor 6 and the UPD device 8 are combined by the image mixer 9 and, for example, one of the forces displayed and simultaneously displayed on the high-definition monitor 10 is selected and displayed. May be.
  • each image of the video processor 6 and the UPD device 8 may be selected and output to the monitor 10B via the switch 30 as in the endoscope apparatus 1B of the first modification shown in FIG. good.
  • the images of the video processor 6 and the UPD apparatus 8 may be displayed on separate monitors 10B and IOC, respectively. .
  • the force configured to display the endoscopic image la and the UP D image lb on the display surface of the high-definition monitor 10 In this modified example, as shown in FIG. The index F for music is displayed.
  • the bending index F associated with at least the axial direction of the distal end side in the UPD image Ib (Il) is displayed. Like you do.
  • the bending index F is displayed in the lower display frame W of the display area of the endoscopic image la.
  • a display example for displaying the bending index F it may be displayed in a simplified manner as shown in Fig. 15A, or more specifically as shown in Fig. 15B.
  • the direction that coincides with the axial direction near the distal end of the insertion portion 11 is modeled and shown on the proximal end side of the arrow 86a, for example, in any of the up, down, left, and right directions.
  • the bending portion 16 is actually bent up, down, left, Arrows with U, D, R, and L indicating the right bending direction are shown.
  • FIG. 15B a scope model 86b having a cylindrical shape close to the shape of the insertion portion 11 is displayed, and when the bending operation is performed on the proximal end side, the bending portion 16 is actually bent. Arrows with U, D, R, and L indicating the downward, left, and right bending directions are shown.
  • the tip of the scope model 86b is displayed with a tip mark 86c displayed by changing the color of the scope model 86b with other portions.
  • the video processing circuit 37 of the video processor 6 in FIG. 1 or the insertion shape calculation Z display processing circuit 47 of the UPD device 8 is Processing to display the image of the index F for use.
  • the bending index F is displayed in this way, even when the bending operation is performed with reference to the display on the UPD image lb side, it is easy to perform the bending operation in a desired direction. That is, in this bending index F, an arrow 86a, a scope model 86b, etc. are displayed in a direction that coincides with the axial direction of the tip in the UPD image Ib that is actually displayed, and with respect to the axial direction. When the bending operation is performed, the bending direction in which the bending is actually performed is displayed. By referring to the bending index F, the operator can easily bend in the desired direction.
  • the bending index F may be displayed only when the bending mode corresponding to the UPD image lb is selected.
  • the display is performed as in the fourth modification shown in FIG. Also good.
  • a bending index G indicating the direction of bending up and down and left and right when a bending operation is performed is displayed on the periphery of the tip on the UPD image Ib (Il).
  • a display as in the fifth modified example shown in FIG. 17 may be performed.
  • the bed 88 on which the patient lies is displayed below the UPD image lb
  • the coordinate system XYZ set according to the direction of the bed 88 is displayed
  • the UPD image lb is displayed.
  • the viewpoint direction is indicated by an arrow 88a.
  • the curve index H is displayed together with the coordinate system XYZ.
  • the endoscope image Ia, the UPD image lb, the bending index F and the like are displayed on a common screen.
  • Image la side display screen 89a and UPD image lb side display screen 89b may be displayed separately, or may be displayed separately on a separate motor, etc.
  • the bending mode selection switch 19 as a selection unit is provided in the endoscope 2, but it may be provided in the video processor 6 or the like other than the endoscope 2. Further, a display screen selection unit that selectively displays either the endoscopic image la or the UPD image lb may be provided. Then, the bending control device 5 may control the bending control mode so as to switch between the first bending mode and the second bending mode in accordance with the selection of the display screen selection unit.
  • FIG. 18 shows an endoscope apparatus 1D provided with the second embodiment.
  • the endoscope apparatus 1D employs an X-ray apparatus 90 in place of the UPD coil unit 7 and the UPD apparatus 8 in FIG.
  • the X-ray apparatus 90 is supported so that an X-ray generation unit 91a and a detection unit 91b that detects the transmitted X-rays are opposed to each other by a support member 91c, and a patient can lie therebetween.
  • the signal converted into the electric signal by the detection unit 91b is input to the X-ray processor 92, and converted into a video signal corresponding to the X-ray image by the video processing circuit 92a therein.
  • a parent-child image generation circuit (PinP image generation circuit) 93 is built in the video processor 6B, the image from the video processing circuit 37 is used as a parent image, and an X-ray from the X-ray processor 92 is used. Generate a PinP image video signal with the line image as the child image, and output it to the monitor 10B.
  • Endoscopic image la and X-ray image Ic are displayed as PinP images on monitor 10B.
  • the PinP image generation circuit 93 displays the images of the parent and child by swapping them by operating the scope switch 20, or displays only one of the images, or displays both of them adjacent to each other with the same size. You can also select.
  • the endoscope 2B in the present embodiment has a structure that does not include the UPD coil 41 in the endoscope 2 in the first embodiment.
  • a direction sensor 95 (see FIG. 19) for detecting in which direction the tip 15 is located is provided in the tip 15 so that the bending control can be performed in a bending mode corresponding to the X-ray image Ic.
  • This direction sensor 95 is connected to a direction detection circuit 96 in the video processor 6B via a signal line for direction detection, and becomes information indicating the direction of the tip 15 by the direction detection circuit 96. Input to device 5 (control section).
  • the control unit performs direction correction processing as in the first embodiment using this information.
  • the X-ray apparatus 90 in this embodiment is based on the assumption that the X-ray generation unit 91a and the detection unit 91b are used in the vertical direction (vertical direction) as shown in FIG. In X-ray image Ic, the imaging direction is fixed to the vertical direction.
  • the display direction is set so that the bending instruction direction by the bending operation means and the bending instruction direction determined from the screen are matched by the control from the bending control device 5. Be changed. More specifically, for example, rotation control of the X-ray image Ic is performed by control from the bending control device 5.
  • the display direction of the X-ray image Ic is video so that the axial direction on the leading end side of the insertion portion in the image is substantially upward.
  • Image rotation processing is performed by an image rotation processing circuit in the processing circuit 92a.
  • the X-ray image Ic input to the video processor 6B may be rotated in the video processor 6B.
  • FIG. 19 shows the structure of the direction sensor 95.
  • the distal end portion 15 is formed with an annular storage portion 95a formed of an insulating member, and a conductive fluid 95b such as salt water is stored therein.
  • electrodes Tl, T2, ⁇ , ⁇ 12 are provided at predetermined intervals in the circumferential direction on the inner peripheral surface of the storage portion 95a, and each electrode Ti is connected to a direction detection circuit 96 via a signal line. Connected. In the direction detection circuit 96, the information force of the contact point conducted by the conductive fluid 95b becomes detection information indicating which position in the top and bottom, left and right in the tip portion 15 is in the gravity direction (downward position in the vertical direction).
  • the surgeon can perform the bending operation in the bending mode corresponding to the endoscopic image la, and can also perform the bending operation in the bending mode corresponding to the X-ray image Ic.
  • MRI images from magnetic resonance imaging devices (MRI devices) and ultrasonic images of external forces can be used to control the curve in the bending mode corresponding to those images. Also good.
  • bending control may be performed in a bending mode corresponding to an image by a computer tomography apparatus (CT apparatus).
  • CT apparatus computer tomography apparatus
  • an CT main body 101a including an X-ray generation unit 91a and a detection unit 91b supported so as to face each other. Can be rotated by motor 106 (CT body 101a is schematically shown in a semi-cylindrical shape in Fig. 20). X-ray images from different directions can be obtained and CT images of X-rays of any cross-section can be obtained.
  • a CT device 101 capable of generating Id is used.
  • the display surface on the distal end side of the insertion portion 11 includes the axial direction on the distal end side of the insertion portion 11, and therefore travels in the lumen through which the distal end side is inserted. Control that automatically sets the direction to be included is performed to improve the operability associated with the curve operation in the insertion work.
  • FIG. 20 schematically shows the configuration of the endoscope system 1E including the third embodiment.
  • the operator 103 lies on the bed 102 in the lateral position and faces one side of the bed 102.
  • the insertion part 11 of the endoscope 2C is inserted into the body of the patient 103, and an endoscopic examination is performed.
  • the universal cord 13 of the endoscope 2C is connected to the video processor 6C. Further, a monitor 10B is arranged so as to face the other side surface of the bed 102, and an endoscopic image la and an X-ray CT image Id are displayed adjacent to each other on the monitor 10B.
  • the CT processor 1 Olb which is connected to the CT main body 101a and performs image processing for generating a CT image Id, generates a CT image Id of an arbitrary cross section from images of different directional forces.
  • the CT image Id is input to the video processor 6C.
  • the video processor 6C generates an endoscopic image la from a signal imaged by the CCD, and synthesizes the endoscopic image la and the CT image Id. Output to monitor 10B.
  • the video processor 6C of the second embodiment the output signal of the X-ray processor 92 is input, but in this video processor 6C, the output signal of the CT processor 101b is input. That is, the video processor 6C has a configuration similar to that of the video processor 6B.
  • the display direction of the UP D image lb and the predetermined direction of the joystick 18 as the bending operation means are handled in an easy-to-operate relationship.
  • the bending amount is corrected so that the bending can be controlled.
  • a sensor (107) for detecting the axial direction of the tip 15 is also provided in the tip 15 and the like.
  • a display (see the CT image Id in FIG. 20) including the axial direction of the distal end side of the insertion portion 11 and the lumen traveling direction in the display surface is performed.
  • the direction is made to coincide with the bending instruction direction of the bending operation means to facilitate the bending control.
  • the CPU 68a forming the control unit 68 in the bending control device 5 sets initial parameters for bending control.
  • initial value of a parameter corresponding to the bending amount is set.
  • the CPU 68a acquires image display parameters.
  • the processing in FIG. 22 is performed.
  • the displayed image is, for example, the force when the patient 103 is viewed in any direction force, the force in the circumferential direction of the distal end portion 15 of the insertion portion 11
  • the position is vertical
  • the CPU 68a refers to the information in step S12, the bending instruction direction by the bending operation means such as the joystick 18 or the trackball, and the bending instruction direction in which the force on the actual display image is determined. Set (match) to match.
  • the operator such as the operator 104 looks at the CT image Id of the monitor 10B, and from the CT image Id, the distal end side of the insertion portion 11 Tilt the joystick 18 in the direction you want to bend and perform the bending direction operation. Then, the CPU 68a of the control unit 68 performs bending control so that the bending unit 16 is actually bent in the direction of the instruction determined by the CT image Id.
  • step S13 the CPU 68a also performs a setting process for matching the lumen travel direction display with the bending instruction direction.
  • the lumen shape is displayed as an auxiliary image on the X-ray transmission image.
  • the lumen traveling direction is also displayed substantially along the direction in which the distal end side of the insertion portion 11 is inserted (of course, at a position close to the distal end portion 15, (If the lumen portion on the deep side where the distal end portion 15 is to be inserted is bent, the lumen traveling direction is away from the direction of the distal end side of the insertion portion 11 at that portion.) .
  • an auxiliary image may be displayed as in the UPD image lb.
  • step S14 the CPU 68a determines whether or not to change (necessary) according to the setting in step S13. If the up / down and left / right directions of the bending direction indicating means are not changed, the process returns to step S12.
  • the up / down and left / right directions of the bending direction instruction means are not changed, the up / down and left / right directions do not always change with respect to the operation unit or the like provided with the bending direction instruction means.
  • right-handed and left-handed In the case of providing a unique setting method for holding operation means such as a combined operation unit, the bending instruction direction is not erroneously input.
  • step S16 when changing the up / down and left / right directions of the bending direction indicating means, the process goes to step S16. As shown, the control parameter is changed according to the change.
  • a bending operation means such as a trackball provided on the operation panel or arranged at an arbitrary position (described later) is suitable. .
  • step S12 the process of step S12 will be described with reference to FIG.
  • the CPU automatically outputs information on the display direction of the reference CT image Id from the CT device 101 (the CT processor 101b). Make a decision.
  • the output format when the CT apparatus 101 automatically outputs the information of the image display direction for example, AP (the front force of the patient 103 is also in the back direction), LR (the left force of the patient 103 is also the patient 103) (When looking at the body), RR (when looking at the body of patient 103 from the right side of patient 103), PA (when looking at the body of patient 103 from the back of patient 103), etc.
  • Output information such as 30 degrees clockwise rotation.
  • the operator manually inputs the display direction as shown in step S22.
  • the input format is AP, L_R, R_R, PA, etc., or the respective reference force, for example, 30 degree clockwise rotation, etc. ,.
  • step S23 the CPU determines whether there is an output of the patient position direction information from the CT apparatus 101.
  • step S25 If the patient position information is output, the process proceeds to step S25. If the patient position information is not output, the patient position information is manually input in step S24. Move on. In step S25, the CPU acquires the information on the image display direction on the motor 10B and the patient position information through the processing from step S21 to step S24.
  • step S23 in the normal CT apparatus 101, the display direction can be output in real time with respect to the change in the patient's position when the insertion unit 11 is inserted, so that the control unit 68 is configured.
  • the CPU 68a can easily link the bending control near the tip 15.
  • the operation unit 12 of the endoscope 2 is provided with a bending operation means such as the joystick 18 mainly described.
  • the bending operation means is the video processor 6C or the bending control device.
  • the operation panel 5 There may be a case where it is provided on the operation panel 5 or a remote control type bending operation means.
  • FIG. 23A shows an overview of the control process in this case.
  • the CPU detects the amount of rotation of the insertion portion 11 of the endoscope 2 (for example, detected by the output of the direction sensor 95). Then, based on the detection information, the CPU 68a calculates the correction amount in the bending direction as shown in step S32, and in the next step S33, changes the correction amount parameter to be corrected by the calculated correction amount. Go to step S31. In this way, the endoscope 2 Even if the insertion portion 11 is rotated (twisted), good bending operation and bending control can be performed without being affected by the insertion portion 11.
  • the operator such as the operator 104
  • assigns the bending instruction direction when giving an instruction of the bending direction the operator may use and easily set it.
  • the assignment may be as follows.
  • centering on the position of the operator such as the operator 104 for example, the center axis of the line connecting the bending instruction operation means by the remote control 112 provided with the track ball 111 and the position of the operator as the central axis Distributing the up / down direction on the axis and the left / right operation in an axial direction approximately perpendicular to the central axis is the best match for human operation.
  • the bending instruction operating means When the bending instruction operating means is arranged at the position where the arm is extended most, the general arc on the power with the arm extended corresponds to the horizontal direction, but the operation with the arm extended is In order to force an extremely unreasonable posture from an ergonomic point of view, it is desirable that the bending instruction operation means exist within a range where the arm can be reached in a slightly bent state.
  • the line connecting the user's position and the operation input means is used as the basic axis, and the axial force is separated from the center in the left / right direction of the bending instruction, and the approximate direction is the bending direction. It may be arranged in the vertical direction.
  • the distance between the bending instruction operation means and the operator is only about the distance of the arm in consideration of the operation.
  • the position of the monitor 10B can be substituted for the position of the operator and the monitor 10B.
  • the axis connecting the bending instruction operation means and the monitor is projected with the ground as a horizontal plane, and the projected axis is the vertical bending axis on the image.
  • a direction perpendicular to the projected axis can be set as a left-right operation axis.
  • the axis connecting the bending instruction operating means and the monitor 10B is considered the ground as a horizontal plane, If it is not so inclined, instead of using the axis projected on the horizontal plane, the axis connecting the bending instruction operation means and the monitor 10B is turned into the vertical bending on the display image, and the bending instruction operation means and the monitor 10B are If the axis in the horizontal plane that is perpendicular to the tied axis is allocated to the left and right curve, you can adopt the method.
  • the operator may arbitrarily switch and set the assignment of these two types of control directions.
  • the operation of inserting the insertion portion 11 of the endoscope 2 into a bent body cavity can be smoothly performed as in the first embodiment.
  • a bending instruction operation can be performed in a state that is easy to use depending on the preference of the operator, and a system that is easier to use can be realized.
  • the present invention may be applied to the case where another device such as the force UPD device 8 described in the case of the CT device 101 is used.
  • an existing curve control device that performs normal curve control is provided with a curve control means for performing curve control corresponding to the second image such as the UPD image lb described in the present embodiment, or a curve curve control.
  • a curve control means for performing curve control corresponding to the second image such as the UPD image lb described in the present embodiment, or a curve curve control.
  • Those adopting the method also belong to the present invention. It is also possible to provide a plurality of bending control means and operate one of them in actual use.
  • UPD image that displays at least the distal end side of the insertion portion in addition to normal bending control for observing an endoscope image and bending the bending portion
  • the second bending control is performed so that the bending portion can be bent in the bending direction to be bent.
  • the insertion part can be inserted more smoothly even in a bent body cavity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

内視鏡の挿入部の先端側には撮像を行う撮像部と湾曲自在の湾曲部とが設けられており、湾曲指示操作部は湾曲部に対する湾曲指示操作を行う。湾曲指示操作部による湾曲指示操作に応じて湾曲制御部は前記湾曲部の湾曲制御を行う。湾曲制御部による湾曲制御の動作を行う湾曲制御モードとして、撮像部により撮像された第1の画像に対応した湾曲制御を行う第1の湾曲制御モードと、挿入部の先端側を表示する第2の画像に対応した湾曲制御を行う第2の湾曲制御モードとを具備している。

Description

明 細 書
湾曲制御装置
技術分野
[0001] 本発明は、体腔内に挿入される内視鏡の挿入部に設けられた湾曲部を湾曲制御 する湾曲制御装置に関する。
背景技術
[0002] 近年、内視鏡は、医療用分野その他において広く採用されるようになった。また、内 視鏡の挿入部には、屈曲した体腔内にも円滑に挿入できるように、先端部の基端付 近に湾曲部が設けてある。そして、術者は、湾曲部を湾曲させる方向を操作する場 合には、操作部等に設けられた湾曲操作ノブや、日本国特開 2003— 245246号公 報に開示されて 、る電動湾曲方式の内視鏡の場合にはジョイスティック等を湾曲操 作する。
従来例においては、湾曲部を湾曲する場合、挿入部の先端部に設けられた撮像素 子等により撮像された内視鏡画像の観察結果に応じて行う。つまり、内視鏡画像にお ける消化管等の管腔部分を示す画像部分がどの方向に有るかにより、湾曲部を湾曲 する方向を決定している。
[0003] 先端部には撮像素子が所定方向に取り付けられており、撮像素子により撮像され た内視鏡画像をモニタ等の表示手段に表示する場合には、内視鏡画像の上方向を 湾曲部の上下、左右方向における上方向に一致させて表示する。
従って、管腔部分を示す暗く表示される画像部分が内視鏡画像中において、上下 、左右のどの方向に有るかを確認して、湾曲部を湾曲させる方向を決定する。
一方、内視鏡の挿入部をより円滑に挿入するために、体腔内に挿入された挿入部 の挿入形状を表示する場合がある。
例えば、日本国特開 2000— 79087号公報には、内視鏡画像と、挿入形状とを表 示する内視鏡システムが開示されている。
[0004] 日本国特開 2000— 79087号公報には、内視鏡画像と、挿入形状の画像とが表示 されているが、この従来例においては、湾曲部を湾曲する場合には内視鏡画像に基 づいて湾曲操作を行うものであり、挿入形状の画像は、その補助的な画像として利用 するものであった。
[0005] 一方、内視鏡画像において管腔の方向が分力 ないような場合には、挿入形状の 画像等、他の表示画像に基づ 、て湾曲操作及びその湾曲操作に対応した湾曲部の 湾曲制御が行えると、挿入等の作業をより行い易くなり、非常に便利である。
しかし、従来例においては、例えば挿入形状等の表示される画像と、挿入部の先端 側の方向との関係が分力 ないため、表示される画像に基づいて管腔の深部側に挿 入するため等に湾曲部を湾曲を行うことは実質的に行えな力つた。
[0006] 本発明は、上述した点に鑑みてなされたもので、内視鏡画像に対応した湾曲制御 の他に、挿入部の先端側を示す他の画像に対応した湾曲制御も行える湾曲制御装 置を提供することを目的とする。
発明の開示
課題を解決するための手段
[0007] 本発明湾曲制御装置は、先端側に撮像を行う撮像部と湾曲自在の湾曲部とが設け られた挿入部を有する内視鏡における前記湾曲部に対する湾曲指示操作を行う湾 曲指示操作部と、
前記湾曲指示操作部による湾曲指示操作に応じて前記湾曲部の湾曲制御を行う 湾曲制御部と、
を備え、
前記湾曲制御部による湾曲制御の動作を行う湾曲制御モードとして、
前記撮像部により撮像された第 1の画像に対応した湾曲制御を行う第 1の湾曲制御 モードと、
前記挿入部の先端側を表示する第 2の画像に対応した湾曲制御を行う第 2の湾曲 制御モードとを具備することを特徴とする。
[0008] 上記構成により、撮像部により撮像された内視鏡画像に相当する第 1の画像による 第 1の湾曲制御モードの他に、少なくとも挿入部の先端側を表示する X線透視画像 や、挿入形状表示画像等の第 2の画像に対応した第 2の湾曲制御モードでも湾曲制 御を行うことができ、操作性を向上している。 図面の簡単な説明
[図 1]図 1は、本発明の実施例 1を備えた内視鏡装置の全体構成図。
[図 2]図 2は、内視鏡の挿入部の先端側の構成を示す縦断面図。
[図 3]図 3は、実施例 1の湾曲制御装置の構成を示すブロック図。
[図 4]図 4は、操作部周辺の構成を示す外観図。
[図 5]図 5は、高精細モニタに表示される 2つの画像を示す図。
圆 6]図 6は、体腔内に挿入された内視鏡の挿入部の状態を示す図。
[図 7]図 7は、図 6の先端部付近を拡大した概略図。
[図 8]図 8は、図 7の挿入状態での内視鏡画像を示す図。
[図 9]図 9は、図 7の挿入部の先端部を右回りに 90° 回転した状態を示す図。
[図 10]図 10は、図 9の挿入状態での内視鏡画像を示す図。
[図 11]図 11は、図 9の挿入部の先端部をさらに右回りに 90° 回転した状態を示す図
[図 12]図 12は、実施例 1における湾曲制御の手順を示すフローチャート。
圆 13]図 13は、第 1変形例の内視鏡装置の構成の一部を示すブロック図。
[図 14]図 14は、第 2変形例の内視鏡装置の構成の一部を示すブロック図。
圆 15A]図 15Aは、第 3変形例における湾曲用指標を伴って表示する表示例を示す 図。
[図 15B]図 15Bは、図 15Aにおける変形例の湾曲用指標の表示例を示す図。
[図 16]図 16は、第 4変形例における湾曲用指標を伴って表示する表示例を示す図。
[図 17]図 17は、第 5変形例における湾曲用指標を伴って表示する表示例を示す図。
[図 18]図 18は、本発明の実施例 2を備えた内視鏡装置を示す構成図。
[図 19]図 19は、方向センサの構成を示す図。
[図 20]図 20は、本発明の実施例 3を備えた内視鏡装置の概略を示す構成図。
[図 21]図 21は、湾曲制御装置による CT画像に対応した湾曲モード時の動作内容を 示すフローチャート。
[図 22]図 22は、図 21における画像表示パラメータの取得の動作内容を示すフロー チャート。 [図 23A]図 23Aは、挿入部の捻れ等の回転量を検出して湾曲制御を行う動作内容を 示すフローチャート。
[図 23B]図 23Bは、術者とこの術者により湾曲指示操作が行われるリモコンとの位置 関係の説明図。
発明を実施するための最良の形態
[0010] 以下、図面を参照して本発明の各実施例を説明する。
(実施例 1)
図 1から図 14を参照して本発明の実施例 1を説明する。
図 1に示すように本発明の実施例 1を備えた内視鏡装置 1は、体腔内等に挿入され る内視鏡 2と、この内視鏡 2に照明光を供給する光源部 3、内視鏡 2に内蔵された撮 像手段に対する信号処理を行う信号処理部 4、内視鏡 2の湾曲部の湾曲制御を行う 湾曲制御装置 5等を内蔵した映像プロセッサ 6とを有する。
この内視鏡装置 1は、さらに内視鏡 2に設けられた挿入形状検出コイル (以下 UPD コイルと略記)の位置検出を行う UPDコイルユニット 7と、この UPDコイルユニット 7か らの検出信号により、内視鏡 2の挿入形状の画像を生成する挿入形状検出装置 (UP D装置) 8と、撮像手段により撮像された内視鏡画像と UPD装置 8による挿入形状検 出画像 (UPD画像)とを混合する画像ミキサ 9と、この画像ミキサ 9により混合された 2 つの画像を 16: 9のアスペクト比で表示するハイビジョンモニタ等の高精細モニタ 10 とを有する。
[0011] 内視鏡 2は、体腔内に挿入される細長の挿入部 11と、この挿入部 11の後端に設け られた操作部 12と、この操作部 12から延出されたユニバーサルコード 13とを有し、こ のユニバーサルコード 13の後端のコネクタ 14は、映像プロセッサ 6に着脱自在に接 続される。
また、挿入部 11は、先端に設けられた硬質の先端部 15と、この先端部 15の後端に 隣接して湾曲自在に設けられた湾曲部 16と、この湾曲部 16の後端力も操作部 12の 前端にまで延びる可撓性を有する可撓管部 17とを有する。
操作部 12には、前記湾曲部 16を湾曲方向及び湾曲角度の指示操作を行う湾曲 用ジョイスティック 18と、湾曲モードの選択 (切替)を行う湾曲モード選択スィッチ 19と 、静止画表示等の指示操作を行うスコープスィッチ 20とが設けてある。
[0012] この内視鏡 2の挿入部 11内等には、照明光を伝送するライトガイド 21が挿通されて おり、このライトガイド 21の後端は、コネクタ 14から突出して照明光の入射端面となる この入射端面には、光源部 3に内蔵されたランプ 22による照明光が絞り 23及び集 光レンズ 24を経て入射される。なお、ランプ 22はランプ駆動回路 25から供給されるラ ンプ駆動電源により点灯して、照明光を発生する。
また、絞り 23は、絞り制御回路 26により、照明光を通過する開口量 (絞り量)が制御 される。
ライトガイド 21により伝送された照明光は、挿入部 11の先端部 15に固定されたライ トガイド先端面からさらに照明窓に取り付けられた照明レンズ 27 (図 7参照)を経て外 部に出射され、体腔内の患部等を照明する。
[0013] 図 2に示すように先端部 15には、(照明窓に隣接して)観察窓が設けてあり、この観 察窓には、撮像ユニット 31が取り付けられて 、る。
この撮像ユニット 31は、レンズ枠に取り付けられた対物レンズ 32と、この対物レンズ 32による結像位置にその撮像面が配置された撮像素子としての電荷結合素子 (CC Dと略記) 33と、この CCD33の背面側に配置されアンプ等を形成する電子素子が実 装された回路基板 34とを有する。
そして、回路基板 34等に先端側が接続されたケーブル 35は、挿入部 11内等を揷 通され、その後端側は図 1に示すようにコネクタ 14の電気接点を経て信号処理部 4を 構成する CCD駆動回路 36及び映像処理回路 37に接続される。
[0014] CCD駆動回路 36は、 CCD駆動信号を発生し、この CCD駆動信号を CCD33に印 加する。 CCD33は、 CCD駆動信号の印加により、撮像面に結像された光学像を光 電変換して、 CCD出力信号として出力する。
この CCD出力信号は、映像処理回路 37に入力され、映像処理回路 37は、 CCD3 3により撮像した内視鏡画像の映像信号を生成する。そして、この映像信号は、画像 ミキサ 9を経て高精細モニタ 10に出力され、高精細モニタ 10の表示画面に内視鏡画 像 laが、例えば図 5に示すように表示される。 また、この映像信号は、絞り制御回路 26に入力され、この絞り制御回路 26はこの映 像信号の輝度信号成分を所定周期で積分する等して平均の明るさを算出する。また 、この絞り制御回路 26は、この平均の明るさの信号力も適切な明るさに相当する基準 値を引き算した差分の信号を絞り制御信号として絞り 23に印加し、この絞り 23の開 口量を調整する。そして、絞り 23を通過する照明光量が基準値となるように自動調光 する。
[0015] 図 2に示すように挿入部 11内には処置具用チャンネル 38が設けてあり、この処置 具用チャンネル 38の後端側は、操作部 12の前端付近に設けられた処置具挿入口 3 9と連通している。
また、この挿入部 11内には、 UPDコイル 41が例えば所定間隔で配置されており、 UPDコイル 41に接続された信号線 42は、図 1に示すようにコネクタ 14の電気接点を 経て映像プロセッサ 6内に設けた UPDコイル駆動回路 43と接続されている。
この UPDコイル駆動回路 43は、信号線 42を経て各 UPDコイル 41に交流の駆動 信号を順次印加し、各 UPDコイル 41の周囲に交流磁場を発生させる。
また、挿入部 11が挿入される図示しない患者が横たわるベッドの周辺部などにお ける所定位置には、複数の UPDコイル 44からなる UPDコイルユニット 7が配置される 。そして、複数の UPDコイル 44により、揷入部 11内に配置された UPDコイル 41によ り発生される磁場を検出する。
[0016] そして、 UPDコイル 44による検出信号は、 UPD装置 8内のアンプ 45により増幅さ れた後、 UPDコイル位置算出回路 46に入力される。そして、この UPDコイル位置算 出回路 46は、 UPDコイル 44により検出された信号における振幅値及び位相値から 各 UPDコイル 41の位置を算出する。
この UPDコイル位置算出回路 46により算出された位置情報は、挿入形状算出 Z 表示処理回路 47に入力される。挿入形状算出 Z表示処理回路 47は、算出された各 UPDコイル 41の位置を連結した形状から挿入部 11の挿入形状を推定する処理と、 推定された挿入形状をモデル化して UPD画像 lbとして表示する信号処理とを行う。
この挿入形状算出 Z表示処理回路 47から出力される UPD画像 lbの映像信号は 、画像ミキサ 9を経て高精細モニタ 10に入力され、その表示画面に UPD画像 lbが、 例えば図 5の画面における右側に示すように表示される。
[0017] また、挿入形状算出 Z表示処理回路 47から出力される UPD画像 lbの情報は、補 助画像生成回路 48に入力される。この補助画像生成回路 48は、入力される UPD画 像 lbの情報から、対応する体腔内形状画像を補助画像として生成する。そして、この 補助画像の映像信号を画像ミキサ 9に出力し、画像ミキサ 9は、この補助画像を UPD 画像 lbに重畳して高精細モニタ 10に出力する。
図 5の画面右側の UPD画像 lbにおいて、実際の UPD画像は符号 1 で示すもの であり、また符号 lb" が対応する消化管等の補助画像を示す。つまり、通常の UPD 画像は、符号 1 で示すものであり、本実施例では、挿入操作をより行い易くために 、補助画像生成回路 48は、 UPD画像 lb' の情報カゝら対応する挿入部 11が実際に 挿入される体腔内の概略の形状の補助画像 lb"を生成する。そして、高精細モニタ 10に UPD画像 1 と補助画像 lb とが同時に表示されるようにしている。
[0018] この補助画像 lb" は、消化管などの情報をデータベース化したものから、実際の U Pひ f青報 lb' に対応する補助画像を読み出したもので生成される。そして、この補助 画像 Ib〃 は、図 5に示すように UPD画像 1 に重畳表示される。なお、以下では、 単に UPD画像として符号 lbを用いる。
なお、図 2に示すように、先端部 15内にも、 UPDコイル 41が取り付けてある。具体 的には、先端部 15には、挿入部 11の長手方向と直交する方向(例えば上下方向)に 沿って 2つの UPDコイル 41が離間して配置されている。
[0019] そして、 UPDコイル位置算出回路 46は、先端部 15に取り付けられた例えば 2つの U PDコイル 41の位置から先端部 15の位置の他に、先端部 15の軸方向の回りの周方 向(上下、左右などの方向における特定の方向)を算出する。なお、 UPDコイル位置 算出回路 46は、先端部 15付近の長手方向(軸方向)の情報も検出し、表示する際に 利用する。
[0020] そして、その位置及び方向(軸方向及び周方向)の情報を湾曲制御装置 5に出力 する。位置及び方向の情報から湾曲制御装置 5は、先端部 15が実際にどの方向を 向!ヽて 、る力を知ることができる。
[0021] また、挿入形状算出 Z表示処理回路 (UPD算出 Z表示処理回路) 47は、 UPD画 像 lbを表示する際の表示方向(表示を行う視点方向)の情報を湾曲制御装置 5に出 力する。この表示方向の情報として、 UPD画像 lbにおける挿入部 11の先端側の軸 方向の情報を含む。本実施例では、簡単化のため、 UPD画像 lbを表示する際に、 挿入部の先端側部分におけるその軸方向が表示画面の概ね上方向となるように表 示する例で説明する。
[0022] また、湾曲制御装置 5は、湾曲モード選択スィッチ 19 (選択部)により、内視鏡画像 I aに対応した湾曲制御モード (以下、湾曲モードと略記)が選択された場合には、通 常の湾曲制御を行う。
[0023] 一方、湾曲モード選択スィッチ 19により、 UPD画像 lbに対応した湾曲モードが選 択された場合には、湾曲制御装置 5は、 UPD画像 lbに対応した湾曲制御を行うよう に湾曲制御の内容を変更する。つまり、本実施例の湾曲制御装置 5は、互いに異な る 2つの画像 Ia、 lbにそれぞれ対応した互いに異なる 2つの湾曲制御を行う機能(2 つの湾曲制御手段或いは 2つの湾曲制御方法)を備えている。
また、本実施例では、いずれの湾曲モードが選択されたかを示す指標を内視鏡画 像 la或いは UPD画像 lbに表示する構成にしている。例えば、 UPD画像 lbに対応し た湾曲モードが選択された場合には、図 5の右側の UPD画像 lb中に例えば Angle の指標 Eが表示されるようにし、操作者に分力り易くして 、る。
つまり、図 1において、湾曲モード選択スィッチ 19からの湾曲モードの選択信号は、 湾曲制御装置 5に入力されると共に、その選択信号から指標 Eを表示するために映 像処理回路 37にも入力され、映像処理回路 37は、湾曲モードの選択状態に対応し て、内視鏡画像 la中或いは UPD画像 lb中に例えば Angleの指標 Eを表示する。
[0024] 本実施例における内視鏡 2の挿入部 11内には図 2に示すような湾曲部 16が設けて あり、またこの湾曲部 16を湾曲制御する湾曲制御装置 5は、図 3に示すような構成と なっている。 図 2に示すように、前記可撓管部 17は、螺旋管 51をブレード管 52で被 嵌し、さらに外側を外皮 53で被覆した構造にしている。螺旋管 51は、帯状の金属板 を螺旋状に巻いて円筒状に形成したものであり、また、ブレード管 52は、多数の金属 素線を編組して円筒状に形成したものである。
また湾曲部 16は、挿入部 11の長手軸方向に並べた複数の湾曲駒 54を有し、隣接 する湾曲駒 54同士をリベット 55により回転自在に連設することにより長手方向に湾曲 自在な管状の湾曲管部 56を構成している。この湾曲管部 56の外周は、筒状のブレ 一ドで被嵌され、その外周は外皮 58で被覆されて 、る。
[0025] 個々の湾曲駒 54は、リベット 55を設ける位置によって湾曲する方向が定まる力 こ こではリベット 55は、左右位置と上下位置に交互または適宜周期毎に配置して湾曲 管部 56を全体的に上下、左右方向に湾曲可能なものとしている。そして、前記湾曲 管部 56は、アングルワイヤ 59により牽引される側に湾曲する湾曲機構 60を構成して いる。
[0026] また、最先端に位置する湾曲駒 54と最後端に位置する湾曲駒 54を除く他の湾曲駒 54の内面には上下 '左右にそれぞれ配置したアングルワイヤ 59に対応した位置に おいて、それぞれのアングルワイヤ 59を個別的に挿通して進退自在に案内するため のリング状のワイヤガイド 61がろう付け等により取着されている。
[0027] 最先端の湾曲駒または先端部 15の本体部材には各アングルワイヤ 59の先端がろ う付け等によりそれぞれ固定されている。そこで、各アングルワイヤ 59のいずれかを 選択して、それを牽引すると、その選んだアングルワイヤ 59の方向に湾曲部 16を湾 曲することができる。
[0028] 前記挿入部 11の可撓管部 17と湾曲部 16は、金属製の接続管 62によって連結さ れている。可撓管部 17における螺旋管 51及びブレード管 52の積層先端部分が接 続管 62の後端部内に嵌合し、ろう付け等により固定されている。また前記湾曲部 16 の湾曲管部 56における最後に位置する湾曲駒 54の後端部は前記接続管 62の先端 部外周に被嵌し、ろう付けまたはネジ止め等により固定されて 、る。
[0029] 湾曲部 16のブレード及び外皮 58の後端側部分は、最後端に位置する湾曲駒 54 を越えて前記接続管 62の外周部分まで至り、その接続管 62の外周を覆い、ろう付け 等により固定されている。
可撓管部 17の外皮 53と湾曲部 16の外皮 58は突き当てられ、その突き当てた両端 部分にわたりその外周部分は密に卷付けた糸巻き部で締結され、その糸巻き部の外 周に接着剤を塗布して突当て部を液密的に封止している。そして、このような可撓管 部 17と湾曲部 16の接続部分は通常、比較的硬質な領域の部分になっている。 各アングルワイヤ 59は前記可撓管部 17内にぉ 、てそれぞれのガイドシース 63内 に個別的に挿通され、前記操作部 12内に導かれて 、る。
[0030] このガイドシース 63としては例えば、ステンレス鋼(SUS)製のコイル素線を密にコ ィル状に卷 、て形成したコイルシースからなり、各コイルシースにはそれぞれのアン ダルワイヤ 59が個別的に挿通されている。
コイルシースの先端は、前記接続管 62の内面にろう付けして固定的に取着されて いる。コイルシースの後端側は挿入部 11の可撓管部 17内にフリーな状態で配置さ れ、他の内蔵物と共に操作部 12内まで導かれている。
一方、図 3で示すように、操作部 12内には上、下の各アングルワイヤ 59を両端に連 結したワイヤを卷装したプーリ 66aと、左、右の各アングルワイヤ 59を両端に連結した ワイヤを卷装したプーリ 66bが設置されて 、る。
前記プーリ 66a, 66biま電動モータ 67a, 67b【こより正逆自在【こ回転させられる。電 動モータ 67a, 67bは制御部 68によって制御されるモータ駆動部 69により駆動させ られる。
[0031] そして、電動モータ 67a, 67bによりプーリ 66a, 66bを回転し、前記アングルワイヤ 59を介して湾曲部 16を湾曲駆動するァクチユエータを構成して 、る。
前記ァクチユエータの駆動位置は、ァクチユエータ位置検出手段により検出される 。ここでのァクチユエータ位置検出手段は、前記電動モータ 67a, 67bのシャフト部に 取り付けられているロータリーエンコーダ 71a, 71bによって構成され、ロータリーェン コーダ 71a, 7 lbの出力信号を基に前記湾曲機構 60の湾曲角を検出するようになつ ている。
前記制御部 68は、そのァクチユエータ位置検出手段の位置検出信号を基にァクチ ユエータによる湾曲操作量を制御し、前記湾曲部 16を所定の湾曲角度まで湾曲する ようになっている。
[0032] すなわち、操作部 12には湾曲指示操作手段としてのジョイスティック 18が設けられ ている。このジョイスティック 18によって上下、左右の任意の湾曲方向を指示すると共 にその湾曲操作量 (湾曲角)の指令を出す。
上下、左右等の湾曲する方向の指示と湾曲操作量の指令を行うことにより、上下方 向ジョイスティックモータ 73a及び左右方向ジョイスティックモータ 73bが回転する。そ の回転角、つまり湾曲操作量は、ロータリエンコーダ 74a, 74bが検知し、このロータリ エンコーダ 74a, 74bの検知信号は、入力ドライバ 75を介して制御部 68に入力され る。
次に、前記湾曲部 16の状態を検知する手段について説明する。
[0033] 図 2に示すように、挿入部 11の先端部 15には各アングルワイヤ 59に対応して歪セ ンサ等の張力センサ 76が固定され、この張力センサ 76にはアングルワイヤ 59の先 端部が連結され、アングルワイヤ 59の張力を検知するようになっている。
張力センサ 76の信号線 77は、挿入部 11を通じて操作部 2内の張力センサアンプ 7 8、 AZD変換器 79を介して制御部 68に接続されて!ヽる。
さらに、可撓管部 17の先端部と湾曲部 16の後端部との接続管 62の内側にはアン ダルワイヤ 59に対応して磁気誘導センサ、レーザ変位センサ等の変位センサ 80が 固定され、アングルワイヤ 59の軸方向の変位量を検知するようになっている。
[0034] 変位センサ 80は、アングルワイヤ 59を揷通案内するコイルシースの部分に組み込 んで構成されている。変位センサ 80は信号線 81が接続され、この信号線 81は、挿 入部 11を通じて操作部 12内の変位センサアンプ 83、 AZD変換器 84を介して制御 部 68に接続されている。
そして、湾曲部 16に外力が加わっていない場合には、張力センサ 76で測定した張 力と、変位センサ 80で測定した変位の関係は、ある曲線で示されるように、変位に対 して張力が上昇する。ところが、湾曲部 16を湾曲して観察したり、処置中に、張力セ ンサ 76で測定した張力と、変位センサ 80で測定した変位の関係は、外力が加わって Vヽな 、特性力 ずれることになる。
[0035] 図 3に示すように、挿入部 11を例えば消化管内 aに挿入し、湾曲部 16を湾曲した場 合、アングルワイヤ 59の変位量が変位センサ 80によって測定され、その測定結果は 変位センサアンプ 83、 AZD変換器 84を介して制御部 68に入力される。
また、湾曲部 16を湾曲したとき、先端部 15が管壁 bに当たってさらに湾曲させた場 合、あるいは管壁 bから矢印 c方向の外力が加わった場合、張力センサ 76がその張 力を測定し、その測定結果は、張力センサアンプ 78、 AZD変換器 79を介して制御 部 68に入力される。
そして、通常の湾曲モードの場合には、制御部 68は、張力の差を算出し、その差 分の大きさだけの力量をジョイスティック 18にフィードバックするように入力ドライバ 75 を作動させる。従って、ジョイスティック 18を操作する操作者の手の感覚で、挿入部 1 1の先端部 15が外力を受けたことが判るようにしている。
[0036] このように、揷入部 11内にアングルワイヤ 59の変位量を測定する変位センサ 80を 設置して、挿入部 11の形状が変化しても、いわゆるアングルダウンを解消する制御を 確実に行うことができるようにしている。また、アングルワイヤ 59の張力を測定する張 力センサ 76を設置することによって湾曲部 16を湾曲したときに先端部 15が管壁 b等 に当たって外力 cを受けたときに、その張力を張力センサ 76によって測定する。 そして、その張力の差を制御部 68が算出し、張力差の分の大きさだけの力量をジョ ィスティック 18にフィードバックすることにより、ジョイスティック 18を操作する操作者の 手の感覚で挿入部 11の先端部 15が外力を受けたことが判るため、ジョイスティック 1 8によって湾曲部 16の湾曲を戻したり、湾曲方向を変更するなどの操作を行うことが でき、操作性を向上できるようにしている。
[0037] また、本実施例においては、湾曲制御装置 5は、通常の内視鏡画像 laに対応して 湾曲制御を行う通常の湾曲モード (第 1の湾曲モード)の他に、 UPD画像 lbに対応し た湾曲モード (第 2の湾曲モード)で湾曲制御を行うことができるようにしている。
[0038] この場合、通常の湾曲モードにおける内視鏡画像 laと湾曲部 16或いはジョイスティ ック 18の湾曲方向の関係は以下のようになつている。
[0039] CCD33は、先端部 15内に固定されており、 CCD33により撮像される画像の上方 向は、湾曲部 16の所定の湾曲方向、例えば上の湾曲方向と一致している。また、 C CD33により撮像された画像が信号処理され、画像表示装置としての高精細モニタ 1 0に内視鏡画像 laとして表示される場合、この内視鏡画像 laの上方向が常に上方向 となる状態で高精細モニタ 10上で表示される。この場合、高精細モニタ 10における 内視鏡画像 laの他の方向、つまり下、左右の方向も固定された状態で表示される。 そして、湾曲部 16或いはジョイスティック 18における 1つの湾曲方向と内視鏡画像 la における 1つの方向とがー致すると、全ての方向がそれぞれ対応することになる。こ れは、既存の内視鏡装置により実現されている公知の機能でもある。
[0040] これに対して、本実施例の特徴となる第 2の湾曲モードにおいては、操作者が UP D画像 lbを見て湾曲指示操作できるように UPD画像 lbと湾曲部 16或いはジョイステ イツク 18とを所定の関係で対応付けて 、る。
[0041] このために、上述したように UPD装置 8による先端部 15の方向情報と、(UPD画像 lbの)表示方向の情報とを湾曲制御装置 5の制御部 68は、所定時間間隔で取り込み 、内部のメモリ等に格納する。
後述するようにこれらの情報から、制御部 68内に設けた方向補正回路 29は、 UPD 画像 lb中における先端部 15の所定方向(具体的には先端部 15の表示画像にぉ 、 て、その表示されている部分の上下、左右の方向)が実際の方向とどれだけずれて いるかの方向ずれ量 (方向ずれの角度)を、方向の補正量として算出する。
[0042] また、この湾曲モードにおいては、 UPD画像 lb中における先端部 15の軸方向(後 述するようにこの軸は先端部 15の軸回りの回転に対して変化しない)を、湾曲部 16 若しくはジョイスティック 18の所定方向とを (操作し易!ヽように両者を)操作上にお!ヽ ては、対応付けるようにする。つまり UPD画像 lbを見て判断する場合の湾曲指示方 向と、湾曲部 16を湾曲指示操作する湾曲指示操作手段としてのジョイスティック 18に よる湾曲指示方向とを対応つける。具体的には、 UPD画像 lbを表示する場合、先端 部 15の軸方向を例えば常時上下方向として、先端部 15の先端側を上方向とするよう に表示する。
また、ジョイスティック 18による上下方向も定義されている力 ジョイスティック 18が 操作された場合には、方向補正回路 29により算出されたずれ量だけジョイスティック 18による操作指示の方向を補正して、湾曲部 16を湾曲するように駆動する。
[0043] このような構成にすることにより、 UPD画像 lbによる第 2の湾曲モードの場合には、 術者は、単に UPD画像 lbを見て、その UPD画像 lbから湾曲部 16を湾曲させたい方 向に、ジョイスティック 18を傾ける湾曲指示操作を行えばよいようにしている。 制御 部 68は、通常の湾曲モードの場合には、公知の方法でジョイスティック 18の傾動操 作に従って湾曲制御を行うが、 UPD画像 lbに対応した第 2の湾曲モードが選択され た場合には、制御部 68の内部の方向補正回路 29により、ジョイスティック 18の傾動 方向を補正したものを用いて湾曲制御を行う。
[0044] このため、術者等の操作者は、 UPD画像 lbを見て、その UPD画像 lb中における 湾曲したい方向に、ジョイスティック 18を単に傾動する操作することにより、湾曲制御 装置 5は、 UPD画像 lb中における湾曲したい方向に、湾曲部 16を湾曲制御するよう にして!/、ることが特徴となって!/、る。
このような構成による本実施例の作用を具体的に説明する。
図 1に示すように内視鏡 2のコネクタ 14を映像プロセッサ 6に接続して、内視鏡 2の 挿入部 11を患者の屈曲した例えば消化管内 aに挿入する。挿入部 11を消化管内 a に挿入した様子を図 6に示す。
[0045] また、この状態における先端部 15付近の拡大概略図を図 7に示す。なお、図 7にお いて、実際には、 CCD33の前に対物レンズ 32が配置されている力 ここでは簡単ィ匕 のため省略している。
図 7に示すように、先端部 15内に内蔵された CCD33の上方向力 例えば矢印 Du で示す方向であるとする。また、図 7においては、消化管内 aは、左側に屈曲しており
、従って湾曲部 16を矢印 Wで示す方向に湾曲させながら挿入部 11を押し込むこと で、挿入部 11を屈曲した消化管内 aの深部側に円滑に挿入できることになる (後述す るように UPD画像 lbにおいては、そのように湾曲させる湾曲指示操作を行うことにな る)。
この場合のように、 CCD33の上方向力 矢印 Duで示す方向であると、 CCD33に より撮像された内視鏡画像 laは、図 8のようになる。なお、内視鏡画像 laは、 CCD33 における上方向力 常に上となるようにして表示される。
[0046] 図 8に示すように、表示された内視鏡画像 la中において、消化管 aにおける暗い部 分が管腔の方向に対応する (管腔に沿った方向からの反射光は、弱くなり、従って管 腔の走行方向の画像は暗くなる)。
従って、操作者は、図 8のような内視鏡画像 laを観察して、挿入部 11の先端部 15 を屈曲した消化管内 aの深部側に円滑に挿入しょうとする場合には、湾曲部 16を暗 V、画像部分がある左側に湾曲させるために、ジョイスティック 18を左方向に傾ける。 また、一般に、屈曲した体腔内に挿入部 11を挿入する場合、操作者は、挿入を円 滑に行うために、挿入部 11を捻る等の操作をしばしば行う。
[0047] 例えば、図 7において、挿入部 11が右回りに 90度捻られて、図 9に示すように CCD 33の上方向が、矢印 Duで示す右方向になる場合がある。この状態において CCD3 3により撮像された内視鏡画像 laは、図 10のようになる。
図 10は、図 8における内視鏡画像 laを 90° 回転した画像となっている。そして、こ の内視鏡画像 laを観察して、挿入部 11の先端部 15を屈曲した消化管内 aに円滑に 挿入しょうとする場合には、湾曲部 16を暗い画像部分がある下側に湾曲させるため に、操作者はジョイスティック 18を下方向に傾ける。
また、図 9に示す挿入状態の場合には、操作者は湾曲部 16を矢印 Wで示す方向 に湾曲させて挿入することにより、屈曲した消化管内 aの深部側に円滑に挿入できる ことになる。
[0048] さらに図 9において、揷入部 11が右回りに 90度捻られて、図 11に示すように CCD 33の上方向が、矢印 Duで示すように紙面下方向となる場合がある。
この状態の場合にも、対応する図示しない内視鏡画像 laを観察することにより、上 述した場合と同様の操作を行うことで容易に消化管内 aの深部側に挿入することがで きる。また、図 11に示す挿入状態の場合にも、操作者は湾曲部 16を矢印 Wで示す 方向に湾曲させて挿入することにより、屈曲した消化管内 aの深部側に円滑に挿入で きることになる。 一方、例えば先端部 15が例えば消化管内 aの壁面に近接し過ぎた 場合のように、内視鏡画像 laからは管腔の方向が分力り難い場合がある。
そのような場合には、操作者は湾曲モード選択スィッチ 19を操作して、 UPD画像 I bに対応した湾曲モードに設定すると良い。
[0049] UPD画像 lbは、図 5の画面の右側に示すような表示である。この場合、挿入部 11 の先端部 15の状態は、図 7、図 9、図 11等に示したどの状態に対応するものである かが従来例では分力もな力つた。これに対して、本実施例では UPDコイル 41による 先端部 15の方向情報と、実際に UPD画像 lbを表示する表示方向の情報を制御部 6 8は取り込むことにより、図 5の UPD画像 lbにおける先端部 15の所定方向と実際の 先端部 15の方向(或いはジョイスティック 18の湾曲方向)との関係を把握できる。 本実施例では、 UPD画像 lbにおける先端部 15の画像中での所定方向をジョイス ティック 18の所定の湾曲方向に操作上では対応付け、実際の湾曲駆動の際には、 両者の方向のずれを考慮して湾曲制御を行う。
具体的には、 UPD画像 lbにおける先端部 15の軸に沿って先端側に向く軸回りの 上下、左右の方向において、例えば紙面垂直な上方向と、ジョイスティック 18の湾曲 指示の上方向とを操作上では、一致させるように設定する。さらに UPD画像 lb中に おける先端部付近の軸方向力 表示画面の上方向に近い向きとなるように UPD画 像 lbの表示方向の設定が行われる。
[0050] 図 7、図 9、図 11のいずれの場合においても、紙面に垂直な上方向をジョイステイツ ク 18の湾曲指示の上方向と設定することにより、操作者は、図 7、図 9、図 11のいず れの場合においても、ジョイスティック 18を左方向に傾ける操作を行いながら、挿入 部 11を押し込む操作を行うことにより、制御部 68は、その左方向に傾ける操作に対 応して、実際の湾曲部 16の上方向との方向ずれを方向補正回路 29により補正して、 UPD画像 lb中で指示された方向に湾曲されるように湾曲駆動するように制御する。 例えば、図 7の状態の場合には、方向補正回路 29により方向の補正は行わない。 これに対して、図 9の場合には、制御部 68は、方向補正回路 29により、左方向の湾 曲指示が行われた場合には、実際には下方向に湾曲指示がされたように方向補正 を行って、湾曲制御を行う。
[0051] この場合、他の方向に関しても説明すると、下方向の湾曲指示が行われた場合に は、実際には右方向に湾曲指示がされたように方向補正、右方向の湾曲指示が行わ れた場合には、実際には上方向に湾曲指示がされたように方向補正、上方向の湾曲 指示が行われた場合には、実際には左方向に湾曲指示がされたように方向補正を 行う。
このように操作上においては、操作者は、単に UPD画像 lb中において、先端部 15 の基端の湾曲部 16を湾曲させた 、方向と思う方向にジョイスティック 18を湾曲させれ ば、実際には湾曲部 16の湾曲方向はその方向に一致しない場合においても、制御 部 68内での方向補正回路 29による方向補正により、 UPD画像 lb中における湾曲部 16を湾曲させた 、方向に湾曲させることができる。
[0052] 図 12は、本実施例における概略の動作内容を示す。図 1のように設定された状態 で内視鏡 2の挿入部 11を消化管内 a等に挿入する。湾曲制御装置 5の制御部 68を 構成する CPU68aは、ステップ S1に示すように、湾曲モード選択スィッチ 19により通 常の湾曲モードが選択されているかの判断を行う。
通常の湾曲モードが選択されている場合には、制御部 68の CPU68aは、ステップ S2に示すようにジョイスティック 18の湾曲操作が有るかの判断を行う。湾曲操作無し の場合には、ステップ S1に戻る。
湾曲操作有りの場合には、ステップ S3に示すように CPU68aは、ジョイスティック 18 の湾曲指示方向に湾曲部 16を湾曲させるように電動モータ 67a或いは 67bを駆動 する。そして、ステップ S1に戻る。
[0053] ステップ S1において、通常の湾曲モードでない場合には、 UPD画像 lbに対応した 湾曲モードに設定されるので、ステップ S4に示すように CPU68aは、先端部 15の方 向情報と UPD画像 lbの表示方向の情報とを取り込む。
次のステップ S5において CPU68aは、これらの情報から、 UPD画像 lb中における 先端部の所定方向と実際の方向との方向ずれの情報 (角度)を算出する。
また、次のステップ S6において CPU68aは、ジョイスティック 18の湾曲操作が有り かの判断を行う。湾曲操作なしの場合には、ステップ S1に戻る。
湾曲操作有りの場合には、ステップ S7に示すように CPU68aは、ジョイスティック 18 の湾曲指示方向に対して、方向ずれの補正を行って、湾曲部 16を湾曲させるように 電動モータ 67a或いは 67bを駆動する。そして、ステップ S1に戻る。
[0054] なお、図 12において、ステップ S4及び S5は、ステップ S6の後で行うようにしても良 い。短い時間で閉ループ的に各ステップを行うので、順序を変えても実質的に殆ど 同じ動作となる。
このような作用を有する本実施例は、以下の効果を有する。
本実施例によれば、術者は、図 5に示される 2つの画像 la, lbにおいて、湾曲操作 を行い易い画像に対応した方の湾曲モードに設定することにより、従来例よりも挿入 等の作業をより円滑に行うことができる。
[0055] なお、例えば図 5に示すように内視鏡画像 laに対応した湾曲モードで湾曲する場合 、ジョイスティック 18により湾曲操作された場合、その湾曲操作により湾曲される方向 を内視鏡画像 la中に、マーカ Ma或いは Mb等の方向表示部を表示するようにしても 良い。このようにすると、術者によってより湾曲を行い易くなる。
また、同様に UPD画像 lbに対応した湾曲モードで湾曲する場合、ジョイスティック 1 8により湾曲操作された場合、その湾曲操作により湾曲される方向を UPD画像 lb中 等にマーカ Mc或いは Md等の方向表示部を表示するようにしても良 、。このようにす ると、術者による湾曲をより行い易くできる。
[0056] また、図 5に示す UPD画像 lb中において、ジョイスティック 18により湾曲操作を行う 場合の基準となる方向、例えば上方向や左或いは右方向をマーカや矢印などで表 示するようにしても良い。
なお、 UPD画像 lbを表示する場合、表示方向を指定して、その指定された表示方 向で UPD画像を表示したり、表示方向を指定するプレートなどを用 、る場合もあるが 、先端部 15の長手方向が表示面となる(表示面に含まれる)ような表示方法を採用す ると、湾曲方向の指示及びその湾曲指示に対応する湾曲制御等をより精度良く行え る。
なお、 UPD画像 lbとしては、図 5の右側に示すように挿入部 11の先端側部分の軸 方向が略上方向に延びるような表示状態の場合で説明したが、挿入部 11の先端側 部分の軸方向が異なる方向に延びるように表示しても良 、。
[0057] 例えば、図 5の表示状態力も UPD画像 lbを例えば 90度程度、反時計回り方向に 回転して、挿入部 11の先端側部分の軸方向が左側に延びるように UPD画像 lbを表 示する場合には、実際の湾曲駆動の際に、その表示方向が 90度ずれた方向に設定 された場合を考慮して湾曲制御を行うようにすれば良 ヽ。
なお、 UPD画像 lbにおける挿入部 11の先端側が延びる方向としては、上下、左右 のいずれかに近い方向力 この UPD画像 lbを見て湾曲指示の方向を判断する場合 に、その方向の判断が行い易くなるので、他の中間的な方向とする場合よりも望まし い。
[0058] なお、実施例 1では UPDコイル 41等を用いて挿入部 11の挿入形状を表示する構 成を説明したが、この他の位置検出手段を利用して、少なくとも挿入部 11の先端側 の位置検出或いは方向検出を行うようにしても良 、。例えば高周波 ICタグ (RFタグ) を利用して、先端部 15付近の方向を検出し、その先端部 15付近の画像を表示する 場合にも利用できる。
なお、図 5に示した湾曲制御装置 5を構成する制御部 68を CPU68aなどにより構 成する場合、図 12に示す処理内容を、メモリ等に格納したプログラムに従って、 CPU 68aがソフトウェア的に行うようにしても良い。
[0059] また、図 12に示す処理内容に沿って湾曲制御を行う湾曲制御方法を採用しても良 い。 上述した実施例 1では、映像プロセッサ 6と UPD装置 8との各画像を画像ミキサ 9で合成して、例えば高精細モニタ 10に出力して同時に表示している力 一方を選 択して表示しても良い。
また、図 13に示す第 1変形例の内視鏡装置 1Bのように映像プロセッサ 6と UPD装 置 8との各画像を切替スィッチ 30を介してモニタ 10Bに選択して出力するようにして も良い。
[0060] また、図 14に示す第 2変形例の内視鏡装置 1Cのように映像プロセッサ 6と UPD装 置 8との各画像をそれぞれ別々のモニタ 10B、 IOCに表示するようにしても良い。
[0061] 次に本実施例の第 3変形例を図 15A及び図 15Bを参照して説明する。
実施例 1では、図 5に示したように高精細モニタ 10の表示面に内視鏡画像 laと UP D画像 lbとを表示する構成にしていた力 本変形例では図 15Aに示すようにさらに湾 曲用指標 Fを表示するようにして 、る。
本変形例では、 UPD画像 lb (より正確には 11 )における湾曲操作を行い易くする ために、この UPD画像 Ib (Il )における少なくとも先端側の軸方向と対応付けられ た湾曲用指標 Fを表示するようにして 、る。
図 15Aの例では、内視鏡画像 laの表示エリアの下側の表示枠 Wに湾曲用指標 Fを 表示するようにしている。
[0062] この湾曲用指標 Fを表示する表示例としては、図 15Aのように簡略ィ匕して表示して も良いし、図 15Bに示すようにより具体的に表示しても良!、。
図15八では1^0画像¾ (11 )における挿入部 11の先端部付近の軸方向と一致 する方向をモデルィ匕して示す矢印 86aの基端側に、例えば上下左右のいずれかの 方向に湾曲させる湾曲操作を行う場合に実際に湾曲部 16が湾曲される上、下、左、 右の湾曲方向を示す U、 D、 R、 Lを付した矢印を示している。
また、図 15Bではより具体的に挿入部 11の形状に近い円柱形状にしたスコープモ デル 86bを表示し、その基端側に湾曲操作を行った際に実際に湾曲部 16が湾曲さ れる上、下、左、右の湾曲方向を示す U、 D、 R、 Lを付した矢印を示している。
また、図 15Bにおいては、スコープモデル 86bの先端部を他の部分と色を変える等 して表示する先端マーク 86cを付けて表示して 、る。
[0063] なお、上記湾曲用指標 Fを表示するために、本変形例では、図 1の映像プロセッサ 6の映像処理回路 37或いは UPD装置 8の挿入形状算出 Z表示処理回路 47は、上 記湾曲用指標 Fの画像を表示する処理を行う。
本変形例では、このように湾曲用指標 Fを表示するため、仮に UPD画像 lb側の表 示を参照して湾曲操作を行う場合においても、所望とする方向への湾曲操作を行い 易くなる。 つまり、この湾曲用指標 Fにおいては、実際に表示されている UPD画像 I bにおける先端部の軸方向と一致する方向に矢印 86a、スコープモデル 86b等が表 示され、かつその軸方向に対して湾曲操作を行う場合に、実際に湾曲される湾曲方 向が表示されているので、この湾曲用指標 Fを参照することにより、操作者は、所望と する方向に容易に湾曲することができる。
なお、 UPD画像 lbに対応した湾曲モードを選択した場合にのみ、湾曲用指標 Fを 表示するようにしても良い。
[0064] 図 15A、図 15Bに示す第 3変形例のように内視鏡画像 laの表示領域側に湾曲用 指標 Fを表示する代わりに図 16に示す第 4変形例のように表示しても良 、。図 16の 場合には、例えば UPD画像 Ib (Il )上における先端部周辺部に、湾曲操作を行つ た場合に上下、左右に湾曲される方向を表す湾曲用指標 Gを表示するようにしてい る。
このように湾曲用指標 Gを表示した場合にも、操作者は、この UPD画像 lb (lb' )の 表示から所望とする方向に湾曲操作することが簡単にできるようになる。
[0065] また、図 17に示す第 5変形例のような表示を行うようにしても良い。図 17において は、例えば UPD画像 lbの下側に患者が横たわるベッド 88が表示され、そのベッド 88 の方向に対応して設定された座標系 XYZが表示され、かつ UPD画像 lbを表示する 視点方向を矢印 88aで示すようにしている。
また、内視鏡画像 laの例えば下側の表示エリアには、上記座標系 XYZと共に、湾 曲用指標 Hを表示するようにして 、る。
このように表示することにより、第 3変形例のように所望の方向に湾曲し易くできると 共に、さらに患者の身体の方向に関して、挿入部の先端部付近の方向も把握するこ とができるようになる。
[0066] なお、図 15A等では、内視鏡画像 Ia、 UPD画像 lb及び湾曲用指標 F等を共通の 画面上で表示するようにして 、るが、例えば図 17に示すように内視鏡画像 la側の表 示画面 89aと UPD画像 lb側の表示画面 89bに分けて表示しても良いし、別体のモ- タ等に分けて表示しても良 、。
また、本実施例では選択部としての湾曲モード選択スィッチ 19を内視鏡 2に設けて いるが、内視鏡 2以外の映像プロセッサ 6等に設けるようにしても良い。また、内視鏡 画像 laと UPD画像 lbとのいずれかを選択的に表示する表示画面選択部を設けても よい。 そして、この表示画面選択部の選択に応じ、湾曲制御装置 5は、湾曲制御モ 一ドを第 1の湾曲モードと第 2の湾曲モードとを切り換えるよう制御しても良い。
[0067] (実施例 2)
次に図 18を参照して本発明の実施例 2を説明する。図 18は実施例 2を備えた内視 鏡装置 1Dを示す。この内視鏡装置 1Dは、図 1において、 UPDコイルユニット 7及び UPD装置 8の代わりに X線装置 90を採用して 、る。
この X線装置 90は、 X線発生部 91a及びその透過 X線を検出する検出部 91bとが 支持部材 91cにより対向するように支持され、その間に患者が横たわることができるよ うにしている。
そして、検出部 91bにより電気信号に変換された信号は、 X線プロセッサ 92に入力 され、その内部の映像処理回路 92aにより、 X線画像に対応する映像信号に変換さ れる。 また、この内視鏡装置 1Dでは、例えば映像プロセッサ 6B内に親子画像生成 回路 (PinP画像生成回路) 93を内蔵し、映像処理回路 37からの画像を親画像とし、 X線プロセッサ 92からの X線画像を子画像とする PinP画像の映像信号を生成し、モ ニタ 10Bに出力する。 [0068] そして、モニタ 10Bには、内視鏡画像 laと X線画像 Icが PinP画像で表示される。
[0069] なお、 PinP画像生成回路 93は、例えばスコープスィッチ 20の操作により、親子の 画像を入れ替えて表示したり、一方の画像のみを表示したり、両方を同じサイズで隣 接して表示する等の選択も行えるようにして 、る。
[0070] また、本実施例における内視鏡 2Bは、実施例 1における内視鏡 2において、 UPD コイル 41を有しない構造である。また、 X線画像 Icに対応した湾曲モードで湾曲制御 ができるように、先端部 15がどの方向にあるかを検出する方向センサ 95 (図 19参照) が先端部 15内に設けてある。
この方向センサ 95は、方向検出用の信号線を介して、映像プロセッサ 6B内の方向 検出回路 96と接続され、方向検出回路 96により先端部 15の方向を示す情報となり、 この情報は、湾曲制御装置 5 (の制御部)に入力される。
そして、この制御部は、 X線画像 Icに対応した湾曲モードが選択された場合には、 この情報を用いて実施例 1のように方向補正処理を行う。なお、本実施例における X 線装置 90においては、図 18に示すように X線発生部 91aと検出部 91bとが上下方向 (鉛直方向)となる状態で使用することを前提としており、この場合には X線画像 Icの 撮像方向は、鉛直方向に決まっている。
[0071] しかし、 X線画像 Icを表示する場合、湾曲制御装置 5からの制御により、湾曲操作 手段による湾曲指示方向と画面上から判断される湾曲指示方向とがー致するように 表示方向が変更される。より具体的には、湾曲制御装置 5からの制御により、例えば X線画像 Icの回転制御が行われる。
そして、図 18の X線画像 Icに示してあるように、例えばその画像中での挿入部の先 端側の軸方向が、略上方向となるように X線画像 Icの表示の方向が映像処理回路 9 2a内の画像回転処理回路により画像回転処理が行われる。なお、映像プロセッサ 6 Bに入力される X線画像 Icをこの映像プロセッサ 6B内で回転処理するようにしても良 い。
図 19は、上記方向センサ 95の構造を示す。先端部 15にはその横断面が図 19に 示すように円環形状の収納部 95aが絶縁部材により形成され、その内部には塩水等 の導電性流体 95bが収納されて 、る。 [0072] また収納部 95aの内周面にはその周方向に所定間隔で電極 Tl, T2, · '·、Τ12が 設けてあり、各電極 Tiは、それぞれ信号線を介して方向検出回路 96と接続される。 方向検出回路 96は、導電性流体 95bにより導通する接点の情報力も先端部 15にお ける上下、左右のどの位置が重力方向(鉛直方向の下方位置)にあるかの検出情報 となる。
本実施例においても、術者は、内視鏡画像 laに対応した湾曲モードで湾曲操作が できると共に、 X線画像 Icに対応した湾曲モードで湾曲操作を行うこともできる。 なお、 X線画像 Icの他に、磁気共鳴映像装置 (MRI装置)による MRI画像や体外 力 の超音波画像を利用したりして同様にそれらの画像に対応した湾曲モードで湾 曲制御しても良い。また、以下に説明するようにコンピュータトモグラフィー装置 (CT 装置)による画像に対応した湾曲モードで湾曲制御しても良い。
[0073] (実施例 3)
次に図 20を参照して本発明の実施例 3を説明する。本実施例は、例えば実施例 2 において、一定方向の X線画像 Icを得る X線装置 90の代わりに、対向するように支持 された X線発生部 91a及び検出部 91bを備えた CT本体 101aを、モータ 106により 回転可能にしており(図 20では CT本体 101aを半円筒形で模式的に示した)、異な る方向からの X線画像を得て、任意の断面の X線による CT画像 Idを生成できる CT 装置 101を用いている。
そして、モニタ 10Bには、 CT画像 Idを表示する場合、挿入部 11の先端側の表示 面が、挿入部 11の先端側の軸方向を含み、従ってその先端側が挿通されている管 腔の走行方向を含むように自動設定する制御を行うようにして、挿入作業における湾 曲操作を伴う操作性を向上するものである。
[0074] 図 20は、実施例 3を備えた内視鏡システム 1Eの構成を模式的に示し、ベッド 102 には側臥位で患者 103が横たわり、ベッド 102の一方の側面に対向する術者 104は 、内視鏡 2Cの挿入部 11を患者 103の体内に挿入し、内視鏡検査を行う。
この内視鏡 2Cのユニバーサルコード 13は、映像プロセッサ 6Cに接続される。また 、ベッド 102における他方の側面に対向するようにモニタ 10Bが配置され、このモニタ 10Bには内視鏡画像 laと X線による CT画像 Idとが左右に隣接して表示される。 ま た、 CT本体 101aに接続され、 CT画像 Idを生成する画像処理を行う CTプロセッサ 1 Olbは、異なる方向力 の画像から任意の断面の CT画像 Idを生成する。
[0075] この CT画像 Idは映像プロセッサ 6Cに入力され、この映像プロセッサ 6Cは、 CCDで 撮像された信号から内視鏡画像 laを生成し、この内視鏡画像 laと CT画像 Idを合成し てモニタ 10Bに出力する。
[0076] なお、実施例 2の映像プロセッサ 6Bでは、 X線プロセッサ 92の出力信号が入力され ていたが、この映像プロセッサ 6Cでは CTプロセッサ 101bの出力信号が入力される 。つまりこの映像プロセッサ 6Cは、映像プロセッサ 6Bと類似の機能を備えた構成で ある。 実施例 1で説明したように、 UPD画像 lbによる湾曲制御を行う場合には、 UP D画像 lbの表示方向と湾曲操作手段としてのジョイスティック 18の所定方向とを操作 上、操作し易い関係に対応付け、挿入部 11が捻られる等した場合には、そのねじれ 量を補正して湾曲制御できるようにして 、た。
これと類似して、 CT装置 101の場合においても、挿入部 11の先端部 15内に配置 した方向センサ 95の出力を利用して先端部 15が実際に (周方向の)どの方向にある かを検出できるようにすると共に、本実施例では先端部 15の軸方向を検出するセン サ(107とする)も先端部 15内等に設けている。
そして、図 21に示すような処理により、挿入部 11の先端側の軸方向と管腔走行方 向を表示面内に含むような表示(図 20の CT画像 Id参照)を行うと共に、その表示方 向を湾曲操作手段の湾曲指示方向と一致させて湾曲制御を行い易くしている。次に 本実施例の作用を説明する。なお、実施例 1或いは実施例 2で説明した構成要素に 介しては同じ符号を用いて説明する。
[0077] 電源が投入されると、図 21のステップ S11に示すように湾曲制御装置 5内の制御部 68を形成する CPU68aは、湾曲制御の初期パラメータの設定を行う。ここで、最初は 、湾曲がされていないとして、湾曲量に対応するパラメータの初期値を設定する。 次のステップ S12において CPU68aは、画像表示パラメータの取得を行う。この画 像表示パラメータの取得を行うために図 22の処理を行う。後述するように図 22の処 理を行うことにより、表示される画像が、例えば患者 103をどの方向力も見た場合の 画像となっている力、挿入部 11の先端部 15の周方向のどの位置が鉛直方向である か及び先端部 15の軸方向が物理的に鉛直方向に対してどれだけ傾 ヽて 、るかに関 する情報などが得られる。
[0078] 次のステップ S13において CPU68aは、ステップ S 12の情報を参照して、ジョイステ イツク 18やトラックボール等による湾曲操作手段による湾曲指示方向と実際の表示画 像上力 判断される湾曲指示方向とを一致させる (対応付ける)設定を行う。
具体的には、この設定により、実施例 1で説明したのと同様に、術者 104等の操作 者は、モニタ 10Bの CT画像 Idを見て、その CT画像 Idから挿入部 11の先端側を湾 曲したい方向にジョイスティック 18を傾動して湾曲方向の指示操作を行う。すると、そ の CT画像 Idで判断される指示の方向に、実際に湾曲部 16が湾曲されるように制御 部 68の CPU68aは、湾曲制御する。
また、このステップ S13において、 CPU68aにより管腔走行方向表示を湾曲指示方 向に一致させる設定処理も行われる。
[0079] CT装置 101の場合には、 UPD画像 lbの場合における補助画像生成回路 48を有 しない場合にも、 X線による透過画像上に管腔形状が補助画像的に付随して表示さ れる。この場合には、ステップ S13のように設定するのみで、管腔走行方向も挿入部 11の先端側が挿入されている方向に概ね沿って表示される(勿論、先端部 15に近 い位置で、先端部 15がこれから挿入される深部側となる管腔部分が屈曲している場 合には、その部分ではその管腔走行方向は挿入部 11の先端側の方向から外れた方 向となる)。なお、管腔形状の輪郭が分かりにくい場合には、 UPD画像 lbの場合のよ うに補助画像を表示しても良 、。
次のステップ S14において CPU68aは、ステップ S13による設定による変更を行う( 必要ある)か否かの判断を行う。湾曲方向指示手段の上下、左右方向を変更しない 場合には、ステップ S12に戻る。
[0080] 湾曲方向指示手段の上下、左右方向を変更しない場合には、湾曲方向指示手段 が設けられている操作部等に対して常に上下、左右方向が変わらないため、例えば 右利き、左利きに合わせた操作部などの操作手段の保持の仕方を一意に設定して 提供する場合に、湾曲指示方向を誤って入力することがない。
一方、湾曲方向指示手段の上下、左右方向を変更する場合には、ステップ S16に 示すように、その変更に応じて制御パラメータを変更する。
湾曲方向指示手段の上下、左右方向を変更する場合には、例えば操作パネル上 に設けた、もしくは任意の位置に配置することが可能なトラックボールのような湾曲操 作手段等 (後述)が適する。
[0081] このような湾曲制御を行うことにより、患者***の変更などが有っても、常時 CT画像 Idから判断される湾曲した 、方向にジョイスティック 18等の湾曲操作手段を操作する ことにより、その CT画像 Idから判断される湾曲したい方向に実際に湾曲部 16を湾曲 駆動する湾曲制御ができるようになる。
次にステップ S12の処理を図 22により説明する。この画像表示パラメータの取得の 処理が開始すると、ステップ S21に示すように CPUは、基準となる CT画像 Idの表示 方向の情報を、 CT装置 101 (の CTプロセッサ 101b)が自動的に出力するかの判断 を行う。
[0082] CT装置 101が画像表示方向の情報を自動的に出力する場合の出力の形式として は、例えば、 A-P (患者 103の正面力も背中方向)、 L-R (患者 103の左側力も患者 1 03の体を見た場合)、 R-R (患者 103の右側から患者 103の体を見た場合)、 P-A (患 者 103の背中から患者 103の体を見た場合)など、もしくはそれぞれの基準力も例え ば 30度時計方向に回転したなどの情報を出力すればょ 、。
一方、 CT装置 101が表示方向の情報を自動的に出力しない場合には、ステップ S 22に示すように操作者が表示方向を手動で入力する。
この手動入力の場合における入力の形式は例えば、 A-P、 L_R、 R_R、 P-Aなど、も しくはそれぞれの基準力 例えば 30度時計方向に回転したなどの情報を湾曲制御 手段に対して入力すればょ 、。
[0083] 患者***の変更と連動させた方が良いので、ステップ S21或いは S22の後、ステツ プ S23において、 CPUは CT装置 101から患者***の方向の情報の出力が有るか の判断を行う。
そして、患者***の方向の情報が出力される場合には、ステップ S25に移り、患者 ***の方向の情報が出力されない場合には、ステップ S24による患者***の情報の 手動入力の処理を経てステップ S25に移る。 ステップ S25において、 CPUは、ステップ S21からステップ S24の処理を経てモ- タ 10B上の画像表示方向の情報と患者***情報との取得を行うことになる。
[0084] ステップ S23の場合、通常の CT装置 101においては、挿入部 11の挿入の際の患 者***の変化に対して表示方向をリアルタイムに出力が可能であるため、制御部 68 を構成する CPU68aは、その情報を利用することにより、先端部 15付近の湾曲制御 を連動させることが容易にできる。
術者 104等の操作者が、湾曲方向の指示を与える場合は、図 20に示すように、操 作者は内視鏡画像 Ia、もしくは CT画像 Idが表示されて 、るモニタ 10Bを観察して ヽ るため、操作者の位置と観察用のモニタ 1 OBの方向を結んだ軸に概平行な軸の方 向を表示されて!、る画面上の天地方向(上下方向)、前記軸と垂直な略水平方向(軸 と離間する方向)を画面上の左右方向として割り付けることが考えられる。
[0085] この場合、操作者は、モニタ 10Bの CT画像 Idにおける腸の走行、挿入部 11の先 端側の形状に着目して湾曲操作を (CT画像 Idの湾曲モードで)行う場合、挿入部 11 がどれだけ捻れていても、(図 20の CT画像 Idの部分拡大図に示すように、上方向を 向いている挿入部 11の先端部 15に対して、管腔 107は、先端部 15の近くで左側に 屈曲して!/、るので)この CT画像 Idを見た感覚としては左方向に湾曲操作をすること が最も違和感なく操作できる。
なお、上述の場合には、内視鏡 2の操作部 12にジョイスティック 18等の湾曲操作手 段が設けられている場合を主に説明したが、例えば湾曲操作手段が映像プロセッサ 6C或いは湾曲制御装置 5の操作パネル等に設けられている場合や、リモコンタイプ の湾曲操作手段の場合もあり得る。
[0086] そのため、内視鏡の挿入部 11がどれだけ回転しているかを検出し、上記の湾曲方 向制御の出力制御値を補正するようにしても良い。
図 23Aは、この場合の制御処理の概要を示す。ステップ S31において CPUは、内 視鏡 2の挿入部 11の回転量を検出(例えば方向センサ 95の出力で検出)する。そし て、その検出情報により、ステップ S32に示すように CPU68aは、湾曲方向の補正量 を算出し、さらに次のステップ S33において、算出された補正量により補正すべき補 正量パラメータの変更設定を行って、ステップ S31に戻る。このようにして、内視鏡 2 の挿入部 11が回転されても (捻られても)、それに影響されることなく良好な湾曲操作 及び湾曲制御ができる。
[0087] 術者 104等の操作者が、湾曲方向の指示を与える場合の湾曲指示方向の割り付 けの設定する場合、操作者が使 、易 、ように設定すると良 、。
この場合、前述したようにモニタ画面と対応付けた割り付けの他に以下のように割り 付けても良い。
図 23Bに示すように術者 104等の操作者の位置を中心として、例えばトラックボー ル 111を設けたリモコン 112による湾曲指示操作手段と操作者の位置を結んだ線を 中心軸としてその概中心軸上に上下方向の指示を、中心軸に対して概垂直な軸方 向に左右方向の操作を配分することが人間の操作感覚に最も合致する。
[0088] 腕を最も伸ばした位置に湾曲指示操作手段を配置する場合には、腕を伸ばした状 態で動力せる概円弧上が左右方向に対応するが、腕を伸ばした状態での操作は、 人間工学的に考えて非常に無理な姿勢を強いるため、腕は軽く曲げた程度の状態 で届く範囲に湾曲指示操作手段が存在することが望ましい。
このように操作者にとって自分の位置と操作入力手段を結ぶ線を基本の軸として中 心としてその軸力 離れる方向を湾曲指示の左右方向、概中心軸上で離れる、近づ く方向を湾曲指示の上下方向に割り付けるようにしても良い。
操作者の位置を常に検出することは困難であるが、湾曲指示操作手段と操作者の 距離は操作を考えると腕の距離程度しか離れて 、な 、ため、概湾曲指示操作入力 手段の位置とモニタ 10Bの位置を、操作者とモニタ 10Bの位置の代用とすることが可 能である。
[0089] モニタ 10Bの位置と湾曲指示操作手段が配置されている位置とは、実際に同じ高 さに配置されていることは非常に稀である。
よって、より厳密に鉛直方向、水平方向を合わせる場合には、湾曲指示操作手段と モニタを結んだ軸を、地面を水平面として投影して、その投影した軸を画像上の上下 方向の湾曲の軸とし、またその投影した軸に対して垂直な方向を左右方向の操作軸 として設定することができる。
しかし、湾曲指示操作手段とモニタ 10Bを結んだ軸が地面を水平面として考えた場 合にさほど傾斜していない場合には水平面に投影した軸の代わりに湾曲指示操作 手段とモニタ 10Bを結んだ軸そのものを表示画像上の上下方向の湾曲に、湾曲指 示操作手段とモニタ 10Bを結んだ軸と垂直で水平面内の軸を左右方向の湾曲に割 り振ると 、う方法を採用してもよ 、。
また、これら二種類の制御方向の割り付けを操作者が任意に切り替えて設定できる ようにしてもよい。
[0090] 本実施例によれば、実施例 1等と同様に屈曲した体腔内へ内視鏡 2の挿入部 11を 挿入する作業を円滑に行うことができる。また、操作者の好み等により、使い勝手が 良い状態で、湾曲指示操作を行うことができ、より使い易いシステムを実現できる。 なお、本実施例では、 CT装置 101の場合で説明した力 UPD装置 8等の他の装 置を用 、た場合に適用しても良 、。
また、通常の湾曲制御を行う既存の湾曲制御装置に対して、本実施例で説明した UPD画像 lb等の第 2の画像に対応して湾曲制御を行う湾曲制御手段を設けたり、湾 曲制御方法を採用するものも本発明に属する。また、複数の湾曲制御手段を設け、 実際に使用する場合には一方を動作させるようにしても良 ヽ。
[0091] このように本発明によれば、挿入部 11の挿入時等における湾曲操作の操作性を向 上することができる効果を有する。
なお、上述した実施例等を部分的に組み合わせる等して構成される実施例等も本 発明に属する。
産業上の利用可能性
[0092] 内視鏡の挿入部を体腔内に挿入する場合、内視鏡画像を観察して湾曲部を湾曲 する通常の湾曲制御の他に、少なくとも挿入部の先端側の表示を行う UPD画像等 の第 2の画像が表示される場合には、第 2の画像中の挿入部の先端側の表示力ゝら湾 曲すべき湾曲方向に湾曲部を湾曲できるように第 2の湾曲制御を行えるようにして、 屈曲した体腔内の場合にも、挿入部の挿入をより円滑に行えるようにした。

Claims

請求の範囲
[1] 先端側に撮像を行う撮像部と湾曲自在の湾曲部とが設けられた挿入部を有する内 視鏡における前記湾曲部に対する湾曲指示操作を行う湾曲指示操作部と、 前記湾曲指示操作部による湾曲指示操作に応じて前記湾曲部の湾曲制御を行う 湾曲制御部と、
を備え、
前記湾曲制御部による湾曲制御の動作を行う湾曲制御モードとして、
前記撮像部により撮像された第 1の画像に対応した湾曲制御を行う第 1の湾曲制御 モードと、
前記挿入部の先端側を表示する第 2の画像に対応した湾曲制御を行う第 2の湾曲 制御モードとを具備することを特徴とする湾曲制御装置。
[2] 前記第 1及び第 2の湾曲制御モードの一方を選択する選択装置を有することを特 徴とする請求項 1に記載の湾曲制御装置。
[3] 前記選択装置による選択された情報を表示するための情報表示装置を有すること を特徴とする請求項 2に記載の湾曲制御装置。
[4] 前記第 1の画像及び第 2の画像の少なくとも一方の画像中において、前記湾曲指 示操作部による湾曲指示操作された場合に前記湾曲部が湾曲される方向を表示す る方向表示部を有することを特徴とする請求項 1に記載の湾曲制御装置。
[5] 少なくとも前記第 2の湾曲制御モードが選択された場合には、前記第 2の画像にお ける前記挿入部の先端側の表示と対応した湾曲方向を表す湾曲用指標の表示部を 有することを特徴とする請求項 1に記載の湾曲制御装置。
[6] 前記撮像部は、前記挿入部の先端部に、前記湾曲部の湾曲方向と所定の関係と なる状態で固定されており、前記撮像部により撮像され、画像表示装置に表示される 前記第 1の画像は、前記第 1の画像の上方向が常時上方向となるように表示され、か つ前記第 1の画像の上方向が前記湾曲部の上の湾曲方向に対応することを特徴と する請求項 1に記載の湾曲制御装置。
[7] 前記湾曲制御部は、前記第 1の画像の上方向と、前記湾曲部の上の湾曲方向とが 対応付けられ、かつ他の方向もそれぞれ対応付けられた前記湾曲部に対して、前記 湾曲指示操作部による湾曲指示操作の方向に前記湾曲部を湾曲させるように湾曲 制御することを特徴とする請求項 6に記載の湾曲制御装置。
[8] 画像表示装置に表示される前記第 2の画像は、前記第 2の画像中における前記挿 入部の先端部の軸方向が前記画像表示装置における所定方向となるように表示さ れることを特徴とする請求項 1に記載の湾曲制御装置。
[9] 前記所定方向は、前記先端部の軸方向が上下方向で、かつ前記先端部の先端側 が上側となるように前記画像表示装置に表示されることを特徴とする請求項 8に記載 の湾曲制御装置。
[10] 前記先端部の軸方向及び前記軸方向の回りの周方向を検出する方向検出装置を 有することを特徴とする請求項 1に記載の湾曲制御装置。
[11] 前記先端部の軸方向及び前記軸方向の回りの周方向を検出する方向検出装置を 有し、前記湾曲制御部は前記方向検出装置により検出された前記先端部の軸方向 及び周方向の検出結果を参照して、前記湾曲指示操作部による湾曲指示操作の方 向に、前記湾曲部を湾曲させるように湾曲制御することを特徴とする請求項 8に記載 の湾曲制御装置。
[12] 前記第 2の画像に対応して、前記挿入部が挿入される体腔内の補助画像を表示す る補助画像表示部を有することを特徴とする請求項 1に記載の湾曲制御装置。
[13] 前記第 2の湾曲制御モードの選択に対応して、前記第 2の画像における前記挿入 部の先端側の表示画像における所定方向と、実際の挿入部の先端側における所定 方向とのずれ量を算出する算出部を有し、前記湾曲制御部は、前記湾曲部を湾曲 する場合には前記ずれ量により補正を行って湾曲駆動することを特徴とする請求項 1 に記載の湾曲制御装置。
[14] 前記第 2の画像における前記挿入部の先端側の表示画像における所定方向は、 実際の挿入部の先端側のその中心軸の回りの回転に不変であり、前記第 1の画像に おいては、実際の挿入部の先端側のその中心軸の回りの回転量に応じて、前記第 1 の画像の表示方向が変化することを特徴とする請求項 13に記載の湾曲制御装置。
[15] 前記第 2の画像は、前記挿入部に内蔵された位置検出用素子による検出結果を利 用して前記挿入部における少なくとも先端側の形状を表示する画像であることを特徴 とする請求項 1に記載の湾曲制御装置。
[16] 前記第 2の画像は、 X線による透過により、前記挿入部の先端側を含む画像を表示 する X線画像であることを特徴とする請求項 1に記載の湾曲制御装置。
[17] 前記第 2の画像は、前記挿入部の先端側の軸方向を概ね表示面内に含むと共に、 前記先端部付近が挿入されている管腔部分の走行方向もその走行方向が概ね表示 面内に含まれるように表示することを特徴とする請求項 1に記載の湾曲制御装置。
[18] 前記第 1の画像と前記第 2の画像とを同時に表示する画像表示装置を有することを 特徴とする請求項 1に記載の湾曲制御装置。
[19] 前記湾曲用指標の表示部は、前記挿入部の先端側の軸方向と共に該軸方向が湾 曲される方向を表示することを特徴とする請求項 5に記載の湾曲制御装置。
[20] 湾曲指示操作部による湾曲指示に応じて内視鏡の挿入部に設けられた湾曲部の 湾曲方向の制御を行う湾曲制御部と、
前記挿入部の先端部に設けられた撮像部により撮像された第 1の画像と、 少なくとも前記挿入部の先端側の表示に関係する第 2の画像とをそれぞれ表示する 画像表示装置とを備え、
前記第 1の画像及び前記第 2の画像にそれぞれ対応した前記湾曲制御部による湾 曲制御を選択的に行うことを特徴とする湾曲制御装置。
[21] 挿入部に撮像素子と湾曲部とを備えた内視鏡の前記湾曲部の湾曲方向の制御を 行う湾曲制御部と、
前記湾曲部を湾曲させる方向の湾曲指示操作を行う湾曲指示操作部とを備え、 前記湾曲制御部は、前記撮像素子によって得られた第 1の観察画像に対応して、 前記湾曲指示操作部によって前記湾曲部を上下方向に湾曲させるように定義された 第 1の湾曲制御モードと、
前記挿入部の先端の状態を表示した第 2の観察画像に対して、前記湾曲指示操 作部によって前記湾曲部を上下方向に湾曲されるように定義された第 2の湾曲制御 モードと、
を切り換えて前記湾曲部の湾曲制御を行うことを特徴とする湾曲制御装置。
[22] 操作者により操作され、前記第 1の湾曲制御モードと前記第 2の湾曲制御モードの ヽずれかを選択する選択部を更に備え、
前記湾曲制御部は、前記選択部の選択に応じて前記第 1の湾曲制御モードと、前 記第 2の湾曲制御モードとのいずれかによつて前記湾曲部の湾曲制御を行うことを 特徴とする請求項 21に記載の湾曲制御装置。
PCT/JP2005/017593 2004-09-27 2005-09-26 湾曲制御装置 WO2006035693A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05785722.9A EP1800593B1 (en) 2004-09-27 2005-09-26 Curve control device
US11/728,875 US8038605B2 (en) 2004-09-27 2007-03-27 Bending control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-280080 2004-09-27
JP2004280080 2004-09-27
JP2005092600A JP4695420B2 (ja) 2004-09-27 2005-03-28 湾曲制御装置
JP2005-092600 2005-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/728,875 Continuation US8038605B2 (en) 2004-09-27 2007-03-27 Bending control device

Publications (1)

Publication Number Publication Date
WO2006035693A1 true WO2006035693A1 (ja) 2006-04-06

Family

ID=36118839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017593 WO2006035693A1 (ja) 2004-09-27 2005-09-26 湾曲制御装置

Country Status (4)

Country Link
US (1) US8038605B2 (ja)
EP (1) EP1800593B1 (ja)
JP (1) JP4695420B2 (ja)
WO (1) WO2006035693A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136618A (ja) * 2007-12-10 2009-06-25 Olympus Medical Systems Corp 内視鏡システム
JP2009178416A (ja) * 2008-01-31 2009-08-13 Olympus Medical Systems Corp 医療器具
WO2011040104A1 (ja) * 2009-09-30 2011-04-07 オリンパスメディカルシステムズ株式会社 内視鏡装置及び湾曲駆動制御方法
WO2012014532A1 (ja) * 2010-07-28 2012-02-02 オリンパスメディカルシステムズ株式会社 内視鏡と、この内視鏡の挿通湾曲方法
US11801105B2 (en) 2017-12-06 2023-10-31 Auris Health, Inc. Systems and methods to correct for uncommanded instrument roll

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820244B2 (ja) * 2003-10-29 2006-09-13 オリンパス株式会社 挿入支援システム
US20070161857A1 (en) 2005-11-22 2007-07-12 Neoguide Systems, Inc. Method of determining the shape of a bendable instrument
JP2007319622A (ja) * 2006-06-05 2007-12-13 Olympus Corp 内視鏡装置
US8672836B2 (en) * 2007-01-31 2014-03-18 The Penn State Research Foundation Method and apparatus for continuous guidance of endoscopy
WO2008155828A1 (ja) * 2007-06-20 2008-12-24 Olympus Medical Systems Corp. 内視鏡システム、撮像システム及び画像処理装置
EP2039284B1 (en) * 2007-09-19 2011-05-25 FUJIFILM Corporation Endoscope
JP2009119062A (ja) * 2007-11-15 2009-06-04 Olympus Medical Systems Corp 動作システム
JP4580973B2 (ja) * 2007-11-29 2010-11-17 オリンパスメディカルシステムズ株式会社 処置具システム
JP5137540B2 (ja) * 2007-11-29 2013-02-06 オリンパスメディカルシステムズ株式会社 内視鏡システム
EP2215960B1 (en) * 2007-11-29 2017-12-27 Olympus Corporation Endoscope curve control apparatus
JP5085662B2 (ja) 2007-11-29 2012-11-28 オリンパスメディカルシステムズ株式会社 内視鏡システム
WO2009102984A2 (en) * 2008-02-15 2009-08-20 The Research Foundation Of The State University Of New York System and method for virtually augmented endoscopy
US20090259099A1 (en) * 2008-04-10 2009-10-15 Georgia Tech Research Corporation Image-based control systems
US8932207B2 (en) * 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
JP2010035768A (ja) * 2008-08-04 2010-02-18 Olympus Medical Systems Corp 能動駆動式医療機器
JP2010102196A (ja) * 2008-10-24 2010-05-06 Olympus Corp 顕微鏡画像の自動調整方法、顕微鏡システム
JP4585048B2 (ja) * 2009-01-15 2010-11-24 オリンパスメディカルシステムズ株式会社 内視鏡システム
WO2010085656A1 (en) * 2009-01-23 2010-07-29 Zimmer, Inc. Posterior stabilized total knee prosthesis
EP2382909A4 (en) * 2009-01-29 2012-11-28 Olympus Medical Systems Corp ENDOSCOPIC SYSTEM
US10004387B2 (en) 2009-03-26 2018-06-26 Intuitive Surgical Operations, Inc. Method and system for assisting an operator in endoscopic navigation
US8337397B2 (en) 2009-03-26 2012-12-25 Intuitive Surgical Operations, Inc. Method and system for providing visual guidance to an operator for steering a tip of an endoscopic device toward one or more landmarks in a patient
RU2544807C2 (ru) 2009-06-29 2015-03-20 Конинклейке Филипс Электроникс Н.В. Способ и устройство для отслеживания при медицинской процедуре
JP4896264B2 (ja) * 2009-08-26 2012-03-14 オリンパスメディカルシステムズ株式会社 内視鏡装置
CN102711586B (zh) * 2010-02-11 2015-06-17 直观外科手术操作公司 在机器人内窥镜的远侧尖端自动维持操作者选择的滚动取向的方法和***
EP2457491B1 (en) * 2010-03-15 2014-10-15 Olympus Medical Systems Corp. Endoscope
JP5048158B2 (ja) * 2010-03-17 2012-10-17 オリンパスメディカルシステムズ株式会社 内視鏡システム
US8591401B2 (en) * 2010-08-18 2013-11-26 Olympus Corporation Endoscope apparatus displaying information indicating gravity direction on screen
US20150011830A1 (en) * 2010-08-27 2015-01-08 Massachusetts Institute Of Technology Tip actuated disposable endoscope
CN103068297B (zh) * 2011-03-30 2015-12-02 奥林巴斯株式会社 内窥镜***
WO2012156861A1 (en) * 2011-05-13 2012-11-22 Koninklijke Philips Electronics N.V. Orientation reference system for medical imaging
JP5977497B2 (ja) * 2011-09-22 2016-08-24 オリンパス株式会社 内視鏡装置、作動方法およびプログラム
US20130303944A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Off-axis electromagnetic sensor
JP6012950B2 (ja) * 2011-10-14 2016-10-25 オリンパス株式会社 湾曲動作システム
US9452276B2 (en) 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US10238837B2 (en) 2011-10-14 2019-03-26 Intuitive Surgical Operations, Inc. Catheters with control modes for interchangeable probes
US9387048B2 (en) 2011-10-14 2016-07-12 Intuitive Surgical Operations, Inc. Catheter sensor systems
EP2822445B1 (en) * 2012-03-07 2021-05-05 TransEnterix Europe Sàrl Overall endoscopic control system
JP6146981B2 (ja) * 2012-10-16 2017-06-14 オリンパス株式会社 観察装置、観察支援装置及びプログラム
JP6128792B2 (ja) * 2012-10-16 2017-05-17 オリンパス株式会社 観察装置、観察支援装置、観察装置の作動方法及びプログラム
JP6221166B2 (ja) * 2012-10-22 2017-11-01 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 表示装置、医用装置、およびプログラム
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
EP2950738A4 (en) * 2013-01-29 2016-10-26 Olympus Corp MEDICAL DEVICE
US9566414B2 (en) 2013-03-13 2017-02-14 Hansen Medical, Inc. Integrated catheter and guide wire controller
US9283046B2 (en) 2013-03-15 2016-03-15 Hansen Medical, Inc. User interface for active drive apparatus with finite range of motion
US10849702B2 (en) 2013-03-15 2020-12-01 Auris Health, Inc. User input devices for controlling manipulation of guidewires and catheters
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
EP2923669B1 (en) * 2014-03-24 2017-06-28 Hansen Medical, Inc. Systems and devices for catheter driving instinctiveness
US10743750B2 (en) 2014-04-28 2020-08-18 Massachusetts Institute Of Technology Multi-link modular continuum robotic endoscope system
EP3200718A4 (en) 2014-09-30 2018-04-25 Auris Surgical Robotics, Inc Configurable robotic surgical system with virtual rail and flexible endoscope
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
EP3305161A4 (en) * 2015-05-28 2019-01-09 Olympus Corporation ENDOSCOPE SYSTEM
WO2017003468A1 (en) 2015-06-30 2017-01-05 Canon U.S.A., Inc. Method and apparatus for controlling manipulator
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US11037464B2 (en) 2016-07-21 2021-06-15 Auris Health, Inc. System with emulator movement tracking for controlling medical devices
US20180028052A1 (en) * 2016-07-27 2018-02-01 Olympus Corporation Endoscope system
US9931025B1 (en) 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
WO2018208994A1 (en) 2017-05-12 2018-11-15 Auris Health, Inc. Biopsy apparatus and system
KR102391591B1 (ko) * 2017-05-16 2022-04-27 박연호 가요성 연성부 형태 추정 장치 및 이를 포함하는 내시경 시스템
JP7130682B2 (ja) 2017-06-28 2022-09-05 オーリス ヘルス インコーポレイテッド 器具挿入補償
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
WO2019070696A1 (en) * 2017-10-02 2019-04-11 The Regents Of The University Of California FLEXIBLE CATHETER-ORIENTABLE ROBOTIC SYSTEM FOR USE WITH ENDOSCOPES
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
KR20200099138A (ko) 2017-12-08 2020-08-21 아우리스 헬스, 인코포레이티드 의료 기구 항행 및 표적 선정을 위한 시스템 및 방법
CN110869173B (zh) 2017-12-14 2023-11-17 奥瑞斯健康公司 用于估计器械定位的***与方法
MX2020008464A (es) 2018-02-13 2020-12-07 Auris Health Inc Sistema y metodo para accionar instrumento medico.
KR20210010871A (ko) 2018-05-18 2021-01-28 아우리스 헬스, 인코포레이티드 로봇식 원격작동 시스템을 위한 제어기
US20190365487A1 (en) * 2018-06-04 2019-12-05 Epica International, Inc. Articulated apparatus for surgery
AU2019347767A1 (en) 2018-09-28 2021-04-08 Auris Health, Inc. Systems and methods for docking medical instruments
DE102019111101A1 (de) * 2019-04-30 2020-11-05 Karl Storz Se & Co. Kg Endoskopische Vorrichtung
WO2020264418A1 (en) 2019-06-28 2020-12-30 Auris Health, Inc. Console overlay and methods of using same
EP4084721A4 (en) 2019-12-31 2024-01-03 Auris Health, Inc. IDENTIFICATION OF AN ANATOMIC FEATURE AND AIMING
KR20220123076A (ko) 2019-12-31 2022-09-05 아우리스 헬스, 인코포레이티드 경피 접근을 위한 정렬 기법
JP7497440B2 (ja) 2019-12-31 2024-06-10 オーリス ヘルス インコーポレイテッド 経皮的アクセスのための位置合わせインターフェース
CN113301227B (zh) * 2021-05-11 2022-12-09 吉林建筑科技学院 一种用于图像处理的采集设备和方法
US20230270323A1 (en) * 2022-02-28 2023-08-31 Covidien Lp Dynamic input controls on a drive-by-wire endoscope

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334207A (en) 1993-03-25 1994-08-02 Allen E. Coles Laser angioplasty device with magnetic direction control
WO1997044089A1 (en) 1996-05-17 1997-11-27 Biosense Inc. Self-aligning catheter
JP2000079088A (ja) * 1998-09-04 2000-03-21 Olympus Optical Co Ltd 内視鏡形状検出装置
JP2000083889A (ja) * 1998-09-09 2000-03-28 Olympus Optical Co Ltd 内視鏡形状検出システム
WO2000060996A1 (en) 1999-04-14 2000-10-19 Stereotaxis, Inc. Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
JP2001046332A (ja) * 1999-08-05 2001-02-20 Olympus Optical Co Ltd 内視鏡装置
WO2003028547A2 (en) 2001-10-02 2003-04-10 Neoguide Systems, Inc. Steerable segmented endoscope and method of insertion
JP2003245246A (ja) * 2002-02-25 2003-09-02 Olympus Optical Co Ltd 電動湾曲内視鏡装置
JP2003275168A (ja) * 2002-03-22 2003-09-30 Olympus Optical Co Ltd 電動湾曲内視鏡装置
WO2003086190A1 (en) 2002-04-10 2003-10-23 Stereotaxis, Inc. Systems and methods for interventional medicine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3734979A1 (de) * 1986-10-16 1988-04-28 Olympus Optical Co Endoskop
US4982725A (en) * 1989-07-04 1991-01-08 Olympus Optical Co., Ltd. Endoscope apparatus
US5400769A (en) * 1991-02-18 1995-03-28 Olympus Optical Co., Ltd. Electrically bendable endoscope apparatus having controlled fixed bending speed
US5417210A (en) * 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5482029A (en) * 1992-06-26 1996-01-09 Kabushiki Kaisha Toshiba Variable flexibility endoscope system
US5373317B1 (en) 1993-05-28 2000-11-21 Welch Allyn Inc Control and display section for borescope or endoscope
US5492131A (en) * 1994-09-06 1996-02-20 Guided Medical Systems, Inc. Servo-catheter
US5728044A (en) * 1995-03-10 1998-03-17 Shan; Yansong Sensor device for spacial imaging of endoscopes
US20020087048A1 (en) * 1998-02-24 2002-07-04 Brock David L. Flexible instrument
JP3548430B2 (ja) 1998-09-03 2004-07-28 オリンパス株式会社 内視鏡形状検出装置
US6773393B1 (en) * 1999-08-05 2004-08-10 Olympus Optical Co., Ltd. Apparatus and method for detecting and displaying form of insertion part of endoscope
US6846286B2 (en) * 2001-05-22 2005-01-25 Pentax Corporation Endoscope system
US6663559B2 (en) * 2001-12-14 2003-12-16 Endactive, Inc. Interface for a variable direction of view endoscope
US20040186376A1 (en) * 2002-09-30 2004-09-23 Hogg Bevil J. Method and apparatus for improved surgical navigation employing electronic identification with automatically actuated flexible medical devices

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334207A (en) 1993-03-25 1994-08-02 Allen E. Coles Laser angioplasty device with magnetic direction control
WO1997044089A1 (en) 1996-05-17 1997-11-27 Biosense Inc. Self-aligning catheter
JP2000079088A (ja) * 1998-09-04 2000-03-21 Olympus Optical Co Ltd 内視鏡形状検出装置
JP2000083889A (ja) * 1998-09-09 2000-03-28 Olympus Optical Co Ltd 内視鏡形状検出システム
WO2000060996A1 (en) 1999-04-14 2000-10-19 Stereotaxis, Inc. Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
JP2001046332A (ja) * 1999-08-05 2001-02-20 Olympus Optical Co Ltd 内視鏡装置
WO2003028547A2 (en) 2001-10-02 2003-04-10 Neoguide Systems, Inc. Steerable segmented endoscope and method of insertion
JP2003245246A (ja) * 2002-02-25 2003-09-02 Olympus Optical Co Ltd 電動湾曲内視鏡装置
JP2003275168A (ja) * 2002-03-22 2003-09-30 Olympus Optical Co Ltd 電動湾曲内視鏡装置
WO2003086190A1 (en) 2002-04-10 2003-10-23 Stereotaxis, Inc. Systems and methods for interventional medicine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1800593A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136618A (ja) * 2007-12-10 2009-06-25 Olympus Medical Systems Corp 内視鏡システム
JP2009178416A (ja) * 2008-01-31 2009-08-13 Olympus Medical Systems Corp 医療器具
US8591400B2 (en) 2008-01-31 2013-11-26 Olympus Medical Systems Corp. Medical instrument
WO2011040104A1 (ja) * 2009-09-30 2011-04-07 オリンパスメディカルシステムズ株式会社 内視鏡装置及び湾曲駆動制御方法
JPWO2011040104A1 (ja) * 2009-09-30 2013-02-21 オリンパスメディカルシステムズ株式会社 内視鏡装置及び湾曲駆動制御方法
US8454497B2 (en) 2009-09-30 2013-06-04 Olympus Medical Systems Corp. Endoscope apparatus and bending drive control method
WO2012014532A1 (ja) * 2010-07-28 2012-02-02 オリンパスメディカルシステムズ株式会社 内視鏡と、この内視鏡の挿通湾曲方法
US11801105B2 (en) 2017-12-06 2023-10-31 Auris Health, Inc. Systems and methods to correct for uncommanded instrument roll

Also Published As

Publication number Publication date
US8038605B2 (en) 2011-10-18
EP1800593B1 (en) 2017-11-01
JP2006116289A (ja) 2006-05-11
EP1800593A1 (en) 2007-06-27
JP4695420B2 (ja) 2011-06-08
EP1800593A4 (en) 2009-01-21
US20070173694A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4695420B2 (ja) 湾曲制御装置
US20230371797A1 (en) Method and system for assisting an operator in endoscopic navigation
CN100525699C (zh) 弯曲控制装置
JP4961475B2 (ja) 内視鏡システム
JP4914574B2 (ja) 内視鏡形状検出装置
JP4896264B2 (ja) 内視鏡装置
US6902528B1 (en) Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
US8708892B2 (en) Endoscope with controlled bending sections
US8454497B2 (en) Endoscope apparatus and bending drive control method
JP4724262B2 (ja) 内視鏡装置
EP2332459A1 (en) Medical treatment system
WO2011062035A1 (ja) 生検支援システム
JP2006288775A (ja) 内視鏡手術支援システム
WO2009084345A1 (ja) 医療機器システム
CN113543692A (zh) 具有取向控制的多功能可视化仪器
JP3290153B2 (ja) 内視鏡挿入形状検出装置
WO2019012602A1 (ja) 内視鏡システム、画像診断システム
JP3548430B2 (ja) 内視鏡形状検出装置
JP3458060B2 (ja) 内視鏡形状検出装置及び内視鏡形状表示制御方法
JP5396178B2 (ja) 内視鏡装置及び内視鏡システム
JP2002058629A (ja) 電子内視鏡
JP4789490B2 (ja) 内視鏡装置
US10806326B2 (en) Method for observing the branch portion of the hole and method for operating the endoscope system
JP4590189B2 (ja) バーチャル画像表示装置
CN116940298A (zh) 来自单个感应拾取线圈传感器的六个自由度

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2005785722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005785722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580032480.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11728875

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005785722

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11728875

Country of ref document: US