WO2006033137A1 - Electron emitting element manufacturing method, displayer manufacturing method and displayer provided with electron emitting element cleaning function - Google Patents

Electron emitting element manufacturing method, displayer manufacturing method and displayer provided with electron emitting element cleaning function Download PDF

Info

Publication number
WO2006033137A1
WO2006033137A1 PCT/JP2004/013761 JP2004013761W WO2006033137A1 WO 2006033137 A1 WO2006033137 A1 WO 2006033137A1 JP 2004013761 W JP2004013761 W JP 2004013761W WO 2006033137 A1 WO2006033137 A1 WO 2006033137A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
electrodes
voltage
manufacturing
emitting device
Prior art date
Application number
PCT/JP2004/013761
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Tokue
Takashi Sudo
Hideharu Takahashi
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to PCT/JP2004/013761 priority Critical patent/WO2006033137A1/en
Priority to EP04787944A priority patent/EP1793405A1/en
Publication of WO2006033137A1 publication Critical patent/WO2006033137A1/en
Priority to US11/677,376 priority patent/US20070138957A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/027Manufacture of electrodes or electrode systems of cold cathodes of thin film cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display

Definitions

  • the present invention relates to a method for manufacturing a surface conduction electron-emitting device, a method for manufacturing a display device including the electron-emitting device, and a display device including a cleaning function for the electron-emitting device.
  • an electron-emitting device for example, a surface conduction electron-emitting device using a phenomenon in which electrons are emitted by flowing a current through a conductive thin film formed on an insulating substrate is known.
  • a pair of electrode patterns facing each other through a certain gap are formed on an insulating substrate, and the pair of electrode patterns are connected via the gap.
  • the conductive thin film is cracked at an approximately middle position of the gap.
  • a plurality of such electron-emitting devices are formed side by side on a substrate, and further combined with a phosphor screen to constitute a display device.
  • a drive signal based on image data is given from the outside, and a potential difference is selectively given to the electrode pairs of the plurality of electron-emitting devices to emit electrons. Then, each pixel of the phosphor screen provided in one-to-one correspondence with each electron-emitting device is selectively excited and emitted to display an image.
  • the display device in order to display a high-quality image by the above-described display device including the electron-emitting device, the display device has stable life characteristics in which the characteristics of the individual electron-emitting devices are not varied, and display is performed. There is a need to emit sufficient electrons for the purpose. [0008] As a factor causing variations in the characteristics of individual electron-emitting devices, it is considered that impurities adhere to the electron-emitting devices during the manufacturing process.
  • Impurities are generated, for example, by an activation process for improving the electron emission performance of the electron-emitting device in the manufacturing process of the electron-emitting device described above.
  • the electron-emitting device in which the above-described electron-emitting portion is formed is placed in an atmosphere containing an organic substance gas, a potential difference is applied to a pair of electrodes, and carbon or a carbon compound is deposited on the electron-emitting portion.
  • an intermediate product that reaches the final product (carbon or a compound thereof) remaining at the end of the activation process becomes an impurity that causes variation in the characteristics of the electron-emitting device.
  • a rear plate having an electron-emitting device is disposed in a processing container, and processing is performed. It is known to remove impurities by irradiating the rear plate with electrons from an electron source installed in a container in a vacuum atmosphere to release surface adsorbed gas.
  • An object of the present invention is to provide a method for manufacturing an electron-emitting device that can reliably remove impurities that cause characteristic deterioration by a simple method, a method for manufacturing a display device including the electron-emitting device, and the electron-emitting device. It is intended to provide a display device having a cleaning function.
  • the method for manufacturing an electron-emitting device includes a step of forming a pair of electrodes spaced apart from each other on a substrate, and a conductive film so as to connect the pair of electrodes.
  • the emission part force has an impurity removal step of releasing electrons and removing impurities on the surface of the electron emission part.
  • the method for manufacturing an electron-emitting device includes a step of forming a pair of electrodes spaced apart from each other on a substrate, a step of forming a conductive film so as to connect the pair of electrodes, and the conductive layer.
  • an impurity removal step of emitting electrons from the electron emission portion.
  • the method for manufacturing a display device of the present invention includes a step of forming a plurality of pairs of electrodes on a back substrate, a step of forming a plurality of conductive films so as to connect the plurality of pairs of electrodes, A step of forming an electron emission portion in each of the plurality of conductive films, an activation step of carbonizing at least the plurality of electron emission portions, a baking step of heat-treating the back substrate in a vacuum atmosphere, and A voltage is applied to the plurality of pairs of electrodes to emit electrons from the plurality of electron emission sections, and a voltage having a reverse polarity is applied to the plurality of pairs of electrodes to emit the plurality of electron emission sections.
  • the display device of the present invention is provided on the opposite surface of the rear substrate and the front substrate facing each other with a predetermined gap, and a voltage corresponding to an image signal is applied to a plurality of pairs of electrodes.
  • a plurality of electron-emitting devices that selectively emit electrons when applied, and the front surface
  • an image display unit that is provided on the opposite surface of the substrate and displays an image by collision of electrons, and applies the voltage of the same polarity as when the image is displayed on the plurality of pairs of electrodes to emit the plurality of electrons.
  • an impurity attached to the electron-emitting portion can be reliably removed by applying a voltage having a polarity opposite to that during normal operation to the electrode of the electron-emitting device without requiring a dedicated processing device.
  • the timing for removing impurities may be any timing, and may be after the rear substrate and the front substrate of the display device are sealed.
  • impurities can be surely removed during the manufacture of the electron-emitting device, impurities can be removed after the display device is manufactured, and the characteristics of the electron-emitting device can be prevented from deteriorating over a long period of time, and a high-quality image can be displayed.
  • a display device having stable operating characteristics can be provided.
  • FIG. 1 is an external perspective view showing a display device including an electron-emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view for explaining the internal structure of the display device of FIG.
  • FIG. 3 is a cross-sectional view showing a partially enlarged view of the cross section of FIG.
  • FIG. 4 is a conceptual diagram showing an electron emission device in which a large number of electron emission elements are arranged on the rear substrate of the display device of FIG.
  • FIG. 5 is a plan view schematically showing an electron-emitting device according to an embodiment of the present invention.
  • FIG. 6 is a flowchart for explaining a method for manufacturing the electron-emitting device of FIG.
  • FIG. 7 is a table showing processing conditions when impurity removal processing is performed on three electron-emitting devices.
  • FIG. 8 is a graph showing a change in emission current when an electron-emitting device manufactured based on the processing conditions of FIG. 7 is driven for a long time.
  • FIG. 1 is an external perspective view of an SED (Surface-conduction Electron-emitter Display) provided with a number of surface conduction electron-emitting devices as a display device according to an embodiment of the present invention.
  • SED Surface-conduction Electron-emitter Display
  • the SED has a rear plate 10 (substrate, rear substrate) and a face plate 12 (front substrate) each made of rectangular quartz glass.
  • the plates 10 and 12 are arranged to face each other with an interval of about 1.5 to 3. Omm.
  • the rear plate 10 and the face plate 12 are joined to each other through a rectangular frame-like side wall 14 having a glass force, thereby forming a flat rectangular vacuum envelope 15.
  • a phosphor screen 16 is formed on the inner surface (opposing surface) of the face plate 12.
  • the phosphor screen 16 includes a plurality of red, blue, and green phosphor layers 16a and a black colored layer 16b positioned between the phosphor layers. These phosphor layers 16a are formed in stripes or dots. Further, on the phosphor screen 16, a metal back 17 having an aluminum isotropic force is formed. Further, a transparent conductive film or a color filter film having an ITO force, for example, may be provided between the face plate 12 and the phosphor screen 16.
  • the structure in which a plurality of layers are laminated on the face plate 12 functions as the image display unit of the present invention.
  • a number of surface-conduction electron-emitting devices 18 that emit an electron beam for exciting and emitting the phosphor layer 16a are provided on the inner surface (opposing surface) of the rear plate 10. These electron-emitting devices 18 are provided in a one-to-one correspondence for each pixel, that is, for each phosphor layer 16a, and are arranged in a plurality of columns and a plurality of rows. Details of each electron-emitting device 18 will be described later.
  • a large number of wirings for connecting a large number of electron-emitting devices 18 are provided in a matrix on the rear plate 10.
  • a structure in which a large number of electron-emitting devices 18 are wired in a matrix and arranged on the rear plate 10 functions as the electron-emitting device of the present invention.
  • Various arrangements of the electron-emitting devices 18 can be adopted. Here, an example will be described with reference to FIG.
  • the electron-emitting device has a large number of electron-emitting devices 18 aligned on the inner surface of the rear plate 10. Configured. In other words, m electron emitting elements 18 are formed in the X direction (up and down direction) and n in the Y direction (left and right direction).
  • each electron-emitting device 18 is connected by a common wiring between the electron-emitting devices 18 in the same row. This is called Y wiring. There are m Y wires from Y1 to Ym. Further, the other electrode of each electron-emitting device 18 is connected by a common wiring between the electron-emitting devices 18 in the same column. This is called X wiring. There are n X wires from XI to Xn.
  • the X wiring and the Y wiring are made of the same material as a pair of electrode films described later of each electron-emitting device 18, and are formed by the same film formation and patterning method. Also, there is an intersection between all X and Y lines. All intersections are electrically insulated by an insulating film (not shown). Examples of the insulating film include SiO formed using a vacuum deposition method, a printing method, a sputtering method, and the like.
  • a signal voltage (scanning signal) for selecting a row of the electron-emitting devices 18 arranged in the Y direction is applied to the Y wiring, and the electron-emitting devices 18 arranged in the X direction are applied to the X wiring.
  • a signal voltage (modulation signal) for modulating the current is applied. Accordingly, the drive voltage applied to each electron-emitting device 18 is supplied as a differential voltage between the scanning signal and the modulation signal applied to each electron-emitting device 18.
  • a negative threshold is applied to the wiring Y1 and a value voltage Vf [V] is applied (scanning signal is input), and 0 [V] is applied to the wiring XI, and 0 [V] or more is applied to the X2—Xn.
  • Vf [V] scanning signal is input
  • 0 [V] is applied to the wiring XI
  • 0 [V] or more is applied to the X2—Xn.
  • peripheral portions of the face plate 12 and the rear plate 10 configured as described above are connected to each other.
  • the side walls 14 to be joined are sealed to the peripheral edge of the rear plate 10 and the peripheral edge of the face plate 12 by, for example, a sealing material 20 such as low melting point glass or low melting point metal. It is joined.
  • the SED includes a spacer assembly 22 disposed between the rear plate 10 and the face plate 12.
  • the spacer assembly 22 includes a plate-like grid 24 and a plurality of columnar spacers 30 that stand integrally on both sides of the grid.
  • the grid 24 has a first surface 24 a facing the inner surface of the face plate 12 and a second surface 24 b facing the inner surface of the rear plate 10. Arranged in a row. A large number of beam passage holes 26 and a plurality of spacer openings 28 are formed in the grid 24 by etching or the like. The beam passage holes 26 are arranged to face the electron-emitting devices 18, respectively, and the spacer opening holes 28 are located between the beam passage holes and arranged at a predetermined pitch. .
  • the grid 24 is formed of, for example, an iron-nickel metal plate to a thickness of 0.1-0.25 [mm], and on its surface, an oxide film made of an element constituting the metal plate, For example, an oxide film having Fe O and NiFe 2 O force is formed.
  • the beam passage hole 26 is 0.1
  • a first spacer 30a is erected on top of each spacer opening 28, and its extended end is connected to the metal back 17 and the fluorescent light.
  • the body screen 16 is in contact with the inner surface of the face plate 12 through the black colored layer 16b.
  • a second spacer 30b is erected in a body-like manner so as to overlap each spacer opening 28, and its extending end is formed on the inner surface of the rear plate 10. It is in contact.
  • Each spacer opening 28, the first and second spacers 30 a and 30 b are aligned with each other, and the first and second spacers 30 a and 30 b pass through the spacer opening 28.
  • each of the first and second spacers 30a, 30b has a tapered shape in which the diameter gradually decreases from the grid 24 side toward the extended end thereof, that is, more specifically, a substantially truncated cone shape. Is formed.
  • each first spacer 30a has a diameter at the end on the grid 24 side of about 400 [m], a diameter at the end on the extended end side of about 280 [m], and a height of about 0 [m]. 3-0. 5 [mm], aspect ratio
  • the height (diameter of the Z grid side edge) is 0.775-1.25.
  • Each of the second spacers 30b has a diameter at the end on the grid 24 side of about 400 [m], a diameter at the extended end side of about 150 [/ ⁇ ⁇ ], and a height of about 11 mm. 1. It is 2 [mm] and the aspect ratio is 2.5-3.
  • each spacer opening 28 formed in the grid 24 is about 0.1 to 0.2 mm, and the diameter of the first spacer 30a on the grid side is And the diameter of the second spacer 30b is set to be sufficiently smaller than the diameter of the grid side end.
  • the first and second spacers 30a and 30b are coaxially aligned with the spacer opening 28 so as to be integrated with each other so that the first and second spacers can be opened. They are connected together through holes 28 and integrated with the grid 24.
  • the grid 24 of the spacer assembly 22 configured as described above is applied with a predetermined voltage from a power source (not shown) to prevent crosstalk and correspond to each beam passage hole 26.
  • the electron beam emitted from the electron emitting element 18 is converged on a desired phosphor layer.
  • the first and second spacers 30a and 30b abut against the inner surfaces of the face plate 12 and the rear plate 10 to support the atmospheric pressure load that the outer force of the vacuum envelope 15 acts on the plates 10 and 12.
  • the interval between the plates is maintained at a predetermined value.
  • the SED is manufactured by incorporating the spacer assembly 22 manufactured as described above
  • the rear plate 10 provided with the electron-emitting device 18 and having the side wall 14 bonded thereto A body plate 16 and a face plate 12 provided with a metal back 17 are prepared.
  • the spacer assembly 22 manufactured as described above positioned on the rear plate 10 the rear plate 10 and the face plate 12 are placed in a vacuum chamber (not shown).
  • the face plate 12 is joined to the rear plate 10 via the side wall 14.
  • an SED equipped with the spacer assembly 22 is manufactured.
  • FIG. 5 shows a schematic plan view of one electron-emitting device 18 in which the inner side force of the rear plate 10 is also viewed. It is.
  • the electron-emitting device 18 includes, on the inner surface of the rear plate 10, two device electrodes 31 and 32 (a pair of electrodes) spaced apart from each other, a conductive film 34 that connects a gap between the device electrodes 31 and 32, A line-shaped electron emission part 36 that divides the conductive film 3 4 into two parts and the force are also configured! RU
  • glass with reduced impurity content such as Na, blue plate glass, and blue plate glass are laminated with SiO 2 by sputtering or the like.
  • Bodies, ceramics such as alumina, and Si substrates can be used.
  • the material of the device electrodes 31, 32 a general conductor material can be used, for example, Ni, Cr, Au, Mo, W, Pt, Ti, Al, Cu, Pd, etc. It is appropriately selected from metal or alloy printed conductors, semiconductor materials and the like.
  • the device electrodes 31 and 32 are formed of Pt.
  • Each of the element electrodes 31 and 32 is formed in a square shape having a side of 55 ⁇ m, and is opposed to a position where the opposite end sides form a uniform gap of 20 m.
  • Examples of the material of the conductive film 34 include metals such as Pd, Pt, Ru, Ag, Au, Ti, In, Cu, Cr, Fe, Zn, Sn, Ta, W, and Pb, PdO, and SnO.
  • Oxide conductors such as InO, PbO, SbO
  • Borides such as HfB, ZrB, LaB, CeB, YB, GdB, TiC, ZrC, HfC, TaC, SiC
  • Carbides such as WC, nitrides such as TiN, ZrN, and HfN, semiconductors such as Si and Ge, and carbon.
  • Pd is formed by sputtering, heated in the atmosphere and oxidized, and then photolithography or dry etching is performed with a width of 50 [/ ⁇ ⁇ ] and a length of 40 [ ⁇ m]. Film 34 was formed.
  • the electron emission portion 36 is formed by a high-resistance crack formed in a part of the conductive film 34, and depends on the film thickness, film quality, material, and a method such as energization forming described later. It becomes.
  • conductive fine particles having a diameter in the range of several A to several tens of nm are present inside the electron emission portion 36.
  • the conductive fine particles contain a part or all of the elements of the material constituting the conductive film 34.
  • Carbon and a carbon compound are deposited on at least the electron emission portion 36 and the conductive film 34 in the vicinity thereof.
  • the rear plate 10 is sufficiently washed with an organic solvent, and Pt which is a material for the device electrodes 31 and 32 is formed by vacuum deposition. Thereafter, a plurality of sets of the device electrodes 31 and 32 having the above-described shape are formed on the rear plate 10 by photolithography (step 1).
  • an organic metal solution is applied to the rear plate 10 provided with the plurality of sets of element electrodes 31 and 32 as described above to form an organic metal film.
  • a solution of an organic compound containing the material of the conductive film 34 (Pd in this embodiment) as a main element can be used.
  • this organometallic film is heated and baked and patterned by lift-off, etching, laser processing, etc. to form a plurality of conductive films 34 (step 2).
  • a coating method of the organometallic solution a vacuum deposition method, a sputtering method, a chemical vapor deposition method, a dispersion coating method, a dubbing method, a spinner method, or the like can be used.
  • a forming process for forming the electron emission portion 36 is performed on each conductive film 34 (Step 3).
  • the forming process is usually performed by applying a potential difference to the pair of element electrodes 31 and 32 and energizing the conductive film 34.
  • the voltage during the forming process is preferably a pulse waveform.
  • the forming process can be terminated, for example, by measuring the current flowing by applying a voltage of about 0.1 [V], obtaining the resistance value, and indicating the resistance of 1 [ ⁇ ] or more.
  • the voltage was applied between 32 and 32.
  • the voltage waveform was a rectangular pulse, the pulse width was 0.1 [msec], the pulse interval was 16 [msec], the peak value was 10 [V], and the voltage was applied for 60 seconds.
  • an electron emission portion 36 was formed at a substantially intermediate position of the conductive film 34 in parallel with the end sides where the device electrodes 31 and 32 face each other.
  • the electron emission element 18 that has been subjected to the forming process as described above is subjected to an activation process (step 4).
  • the activation treatment is, for example, by applying a Norse voltage between the device electrodes 31 and 32 in an atmosphere containing an organic substance gas as in the forming treatment. To be implemented. This activation process significantly increases device current and emission current Ie.
  • the atmosphere containing the organic substance gas can be formed using the organic gas remaining in the atmosphere when the vacuum apparatus is exhausted using an oil diffusion pump or a rotary pump. It can also be obtained by introducing a gas of a suitable organic substance in a vacuum.
  • suitable organic substances include aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, aldehydes, ketones, amines, organic acids and the like.
  • methane is introduced at 10- 3 [Pa] stand in a vacuum apparatus which houses arranged rear plate 10 was performed the activation process.
  • the voltage applied to the device electrodes 31 and 32 was a rectangular pulse of 18 [V], the pulse width was 1 [msec], the pulse interval was 10 [msec], and the voltage was printed for 30 minutes.
  • the electron-emitting device 18 By this active treatment, carbon or a carbon compound is deposited on the electron-emitting device 18 from an organic substance present in the atmosphere, and at least the electron-emitting portion 36 is carbonized. As a result, the device current If and the emission current Ie are remarkably increased.
  • the film thickness of the deposit is preferably in the range of 50 [nm] or less, more preferably in the range of 30 [nm] or less! / ⁇
  • the electron-emitting device 18 that has been subjected to the activation process as described above is subjected to heat treatment (baking treatment) in a vacuum atmosphere (step 5).
  • the organic gas remaining in the vacuum apparatus is exhausted while heating the rear plate 10 disposed in the vacuum apparatus.
  • the vacuum exhaust device for exhausting the vacuum device it is preferable to use a device that does not use oil so that the oil generated by the device does not affect the characteristics of the electron-emitting device 18.
  • the partial pressure of the organic component in the vacuum chamber is the carbon, particularly preferably 10- 8 [Pa] or less in gesture et preferred is LCT ⁇ Pa] or less by ⁇ partial pressure such almost newly deposit carbon compound .
  • the whole vacuum device is heated so that the organic substance molecules adsorbed on the inner wall of the vacuum device and the electron-emitting device 18 can be easily exhausted.
  • an impurity removal process is performed to more reliably remove impurities that cause the characteristics of the electron-emitting device 18 to deteriorate (step 6).
  • the element current of each electron-emitting device 18 on the rear plate 10 disposed in the vacuum apparatus is determined.
  • a voltage having the same polarity as in normal driving (positive polarity in this embodiment) is applied to the poles 31 and 32 in a vacuum atmosphere, and driving is performed in a timely manner.
  • a higher voltage than in normal operation is applied to each element electrode 31 and 32 for a certain period of time in the same direction as in normal operation to stabilize the element characteristics.
  • a voltage having a reverse polarity negative polarity in the present embodiment
  • a voltage having the same polarity as that during normal operation is applied to all the device electrodes 31 and 32 for a certain period of time, and a reverse polarity voltage is applied to all the device electrodes 31 and 32.
  • impurities in the electron emission portion 36 are removed. More specifically, by applying a voltage in the positive polarity direction to all the device electrodes 31 and 32 to emit electrons from the electron emission portion 36, impurities adsorbed on the surface of the electron emission portion on the + electrode side are removed.
  • a voltage in the negative polarity direction to all the device electrodes 31 and 32 to emit electrons from the electron emission portion 36, impurities adsorbed on the surface of the electron emission portion on the pole side are removed.
  • Various waveforms such as a square wave, a sine wave, and a triangular wave can be adopted as the pulse voltage waveform, and the polarity of the pulse voltage is a positive polarity pulse, a negative polarity pulse, or a bipolar polarity.
  • What has a pulse alternately can be employ
  • the energization process is performed until the impurities adsorbed on the electron-emitting portions 36 of all the electron-emitting devices 18 that can be adjusted as appropriate are appropriately adjusted in the magnitude, pulse width, frequency, polarity, waveform, etc. of the pulse voltage. You can continue.
  • the device electrodes 31 and 32 of each electron-emitting device 18 have a polarity opposite to that during normal operation. It is adsorbed to the electron emission part 36 of the electron emitter 18 by a simple method of applying a voltage. Thus, it is possible to reliably remove the impurities, and to stabilize the characteristics of the electron-emitting device 18 for a long time.
  • FIG. 7 shows the processing conditions for the three electron-emitting devices A, B, and C at this time.
  • FIG. 8 shows the processed electron-emitting devices A, B, and C for a long time (1400 in this embodiment). Changes in emission current when driving (time) are shown as a graph.
  • FIG. 8 shows a change in emission current when the electron cleaning process of FIG. 7 is performed and the electron-emitting device is driven for a long time.
  • the voltage applied to the device electrodes 31 and 32 was a square wave pulse.
  • the pulse voltage is applied to the device electrodes 31 and 32 by changing the pulse voltage application time to 10 [min]. Voltage was applied. In other words, since the degree of gas poisoning with respect to the three electron-emitting devices A, B, and C is different, only the pulse voltage application time in the electron cleaning process is changed as a processing condition.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the spirit of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some components may be deleted from the total component force shown in the above-described embodiment.
  • the impurity removal process is performed after the baking process and before the sealing process is described.
  • the present invention is not limited to this, and impurities may be generated during the baking process or before the baking process.
  • the impurity removal treatment may be performed after the activation treatment that may be performed.
  • the impurity removal process is performed during the SED manufacturing process.
  • the present invention is not limited to this, and the impurity removal process described above is not limited to the rear plate 10 and the face plate 12. It can also be carried out after the SED has been manufactured with the edges facing each other and sealed at the periphery.
  • the emission current emitted from each electron-emitting device 18 is monitored via a detection unit (not shown), and the value of the emission current (amount of emitted electrons) is set in advance. Under the condition that it has changed beyond a certain value, the above-mentioned tallying function is activated to remove impurities.
  • the impurity removal process described above can be performed at any timing during or after the SED manufacturing process.
  • the temporal change in the emission current value of each electron-emitting device 18 of the SED can be eliminated, and stable driving characteristics can be exhibited over a long period of time.
  • impurities that cause deterioration of the characteristics of the electron-emitting device can be reliably removed by a simple method.
  • the electron-emitting device can be cleaned at a desired timing, and deterioration of characteristics due to adhesion of impurities over time can be prevented.

Abstract

A method for manufacturing an electron emitting element comprises a process (S1) of forming a pair of element electrodes on a rear plate, a process (S2) of forming a conductive film so as to connect the element electrodes and a forming process (S3) wherein an electron emitting part is formed on the conductive film by carrying electricity to the element electrodes. After making carbon adhere on the electron emitting part by an activating process (S4), a baking process (S5) is performed. Then, an impurity removing process (S6) is performed wherein voltages of a normal operation and of reverse polarity are applied on the element electrodes in a high vacuum atmosphere and impurities attracted to the electron emitting part are removed. By performing the impurity removing process (S6), the impurities adhered on the electron emitting part can be surely removed without requiring exclusive processing equipment.

Description

明 細 書  Specification
電子放出素子の製造方法、表示装置の製造方法、および電子放出素子 のクリーニング機能を備えた表示装置  Manufacturing method of electron-emitting device, manufacturing method of display device, and display device having electron-emitting device cleaning function
技術分野  Technical field
[0001] この発明は、表面伝導型の電子放出素子の製造方法、この電子放出素子を備えた 表示装置の製造方法、およびこの電子放出素子のクリーニング機能を備えた表示装 置に関する。  The present invention relates to a method for manufacturing a surface conduction electron-emitting device, a method for manufacturing a display device including the electron-emitting device, and a display device including a cleaning function for the electron-emitting device.
背景技術  Background art
[0002] 従来、電子放出素子として、例えば、絶縁性の基板上に形成された導電性薄膜に 電流を流すことにより電子を放出させる現象を利用した表面伝導型電子放出素子が 知られている。  [0002] Conventionally, as an electron-emitting device, for example, a surface conduction electron-emitting device using a phenomenon in which electrons are emitted by flowing a current through a conductive thin film formed on an insulating substrate is known.
[0003] この種の電子放出素子は、例えば、絶縁性の基板上に、一定のギャップを介して対 向した一対の電極パターンを形成し、ギャップを介して一対の電極パターンをつなぐ ように導電性の薄膜を設け、一対の電極パターン間に電位差を与えることによりギヤ ップの略中間位置で導電性の薄膜に亀裂を生じさせることにより形成される。  In this type of electron-emitting device, for example, a pair of electrode patterns facing each other through a certain gap are formed on an insulating substrate, and the pair of electrode patterns are connected via the gap. By forming a conductive thin film and applying a potential difference between the pair of electrode patterns, the conductive thin film is cracked at an approximately middle position of the gap.
[0004] そして、この電子放出素子を動作させる際、一対の電極パターン間に電位差を与 えることにより、導電性の薄膜に形成された亀裂、すなわち電子放出部から電子を放 出させる。  [0004] When the electron-emitting device is operated, a potential difference is applied between the pair of electrode patterns, whereby electrons are emitted from a crack formed in the conductive thin film, that is, an electron-emitting portion.
[0005] このような電子放出素子は、基板上に複数個並べて形成され、さらに、蛍光体スクリ ーンと組み合わされて表示装置が構成される。  [0005] A plurality of such electron-emitting devices are formed side by side on a substrate, and further combined with a phosphor screen to constitute a display device.
[0006] 表示装置の動作時には、外部から画像データに基づく駆動信号が与えられ、複数 の電子放出素子の電極対に選択的に電位差が与えられて電子が放出される。そし て、各電子放出素子に一対一で対応して設けられた蛍光体スクリーンの各画素が選 択的に励起発光されて画像が表示される。  [0006] During the operation of the display device, a drive signal based on image data is given from the outside, and a potential difference is selectively given to the electrode pairs of the plurality of electron-emitting devices to emit electrons. Then, each pixel of the phosphor screen provided in one-to-one correspondence with each electron-emitting device is selectively excited and emitted to display an image.
[0007] ところで、上述した電子放出素子を備えた表示装置により良質な画像を表示するた めには、個々の電子放出素子の特性にバラツキがなぐ安定した寿命特性を有する こと、および表示を行うための十分な電子を放出すること、が必要とされている。 [0008] 個々の電子放出素子の特性にバラツキを生じる要因として、製造工程中に電子放 出素子に不純物が付着することが考えられる。すなわち、電子放出素子に不純物が 付着すると、表示装置を長時間駆動したとき、この不純物が拡散や吸着、脱離などに より、電子放出部に付着或いは脱離し、電子放出部の動作が不安定になる。 [0007] By the way, in order to display a high-quality image by the above-described display device including the electron-emitting device, the display device has stable life characteristics in which the characteristics of the individual electron-emitting devices are not varied, and display is performed. There is a need to emit sufficient electrons for the purpose. [0008] As a factor causing variations in the characteristics of individual electron-emitting devices, it is considered that impurities adhere to the electron-emitting devices during the manufacturing process. In other words, if impurities adhere to the electron-emitting device, when the display device is driven for a long time, the impurities adhere to or desorb from the electron-emitting portion due to diffusion, adsorption, or desorption, and the operation of the electron-emitting portion is unstable. become.
[0009] 不純物は、例えば、上述した電子放出素子の製造工程において、電子放出素子の 電子放出性能を向上させるための活性ィ匕処理により発生する。活性化処理では、上 述した電子放出部を形成した状態の電子放出素子を有機物質のガスを含む雰囲気 中に配置して一対の電極に電位差を与え、炭素或いは炭素化合物を電子放出部に 堆積させる。つまり、活性ィ匕処理の終了時において残留した、最終生成物 (炭素或い はその化合物)に至る中間生成物等が、電子放出素子の特性のバラツキ要因となる 不純物となる。  [0009] Impurities are generated, for example, by an activation process for improving the electron emission performance of the electron-emitting device in the manufacturing process of the electron-emitting device described above. In the activation process, the electron-emitting device in which the above-described electron-emitting portion is formed is placed in an atmosphere containing an organic substance gas, a potential difference is applied to a pair of electrodes, and carbon or a carbon compound is deposited on the electron-emitting portion. Let In other words, an intermediate product that reaches the final product (carbon or a compound thereof) remaining at the end of the activation process becomes an impurity that causes variation in the characteristics of the electron-emitting device.
[0010] このため、従来、上述した不純物を除去する方法として、特開 2000— 315458号公 報に開示されているように、電子放出素子を有するリアプレートを処理容器内に配置 して、処理容器に設置された電子源からリアプレートに対して真空雰囲気中で電子を 照射し、表面吸着ガスを放出させる不純物除去方法が知られて 、る。  [0010] For this reason, conventionally, as a method for removing the above-described impurities, as disclosed in Japanese Laid-Open Patent Publication No. 2000-315458, a rear plate having an electron-emitting device is disposed in a processing container, and processing is performed. It is known to remove impurities by irradiating the rear plate with electrons from an electron source installed in a container in a vacuum atmosphere to release surface adsorbed gas.
発明の開示  Disclosure of the invention
[0011] しかし、上述した従来の不純物除去方法では、電子源を有する処理容器内にリア プレートを配置し、処理容器を真空雰囲気にして電子をプレート表面に照射する必 要があるため、装置が大掛りになるとともに作業が煩雑になり、表示装置の製造コスト が増大する問題があった。  However, in the conventional impurity removal method described above, since the rear plate is disposed in a processing container having an electron source, and the processing container needs to be evacuated to irradiate the surface of the plate with electrons, There is a problem that the manufacturing cost of the display device increases due to the increase in the cost and the complexity of the work.
[0012] また、上述した不純物除去方法を採用した場合、プレート表面の不純物を除去した 後、別の処理容器内にリアプレートとフェースプレート(同様に不純物を除去したもの )を配置して、真空雰囲気中で 2枚のプレートを組み合わせて周縁部を封止して表示 装置を製造することになる。このため、別の処理容器にプレートを移す際にプレート 表面に不純物が再付着する可能性がある。また、このように製造した表示装置を長 時間駆動した際、残留した不純物が経時的に拡散や吸着、脱離などにより、電子放 出部に付着或 、は脱離し、電子放出部の動作が経時的に不安定になる問題があつ [0013] この発明の目的は、簡単な方法により特性劣化の要因となる不純物を確実に除去 できる電子放出素子の製造方法、この電子放出素子を備えた表示装置の製造方法 、およびこの電子放出素子のクリーニング機能を備えた表示装置を提供することにあ る。 [0012] When the impurity removal method described above is adopted, after removing impurities on the plate surface, a rear plate and a face plate (similarly from which impurities have been removed) are placed in another processing vessel, and vacuum is applied. A display device is manufactured by combining two plates in an atmosphere and sealing the periphery. For this reason, impurities may be reattached to the plate surface when the plate is transferred to another processing vessel. In addition, when the display device manufactured in this way is driven for a long time, the remaining impurities adhere to or desorb from the electron emission portion over time due to diffusion, adsorption, desorption, etc., and the operation of the electron emission portion is caused. There is a problem that becomes unstable over time [0013] An object of the present invention is to provide a method for manufacturing an electron-emitting device that can reliably remove impurities that cause characteristic deterioration by a simple method, a method for manufacturing a display device including the electron-emitting device, and the electron-emitting device. It is intended to provide a display device having a cleaning function.
[0014] 上記目的を達成するため、本発明の電子放出素子の製造方法は、基板上に互い に離間した一対の電極を形成する工程と、上記一対の電極をつなぐように導電膜を 形成する工程と、上記導電膜に電子放出部を形成する工程と、上記一対の電極に 電圧を与えて上記電子放出部から電子を放出させ、且つ上記一対の電極に逆極性 の電圧を与えて上記電子放出部力 電子を放出させ、上記電子放出部表面の不純 物を除去する不純物除去工程と、を有する。  In order to achieve the above object, the method for manufacturing an electron-emitting device according to the present invention includes a step of forming a pair of electrodes spaced apart from each other on a substrate, and a conductive film so as to connect the pair of electrodes. A step of forming an electron-emitting portion in the conductive film; applying a voltage to the pair of electrodes to emit electrons from the electron-emitting portion; and applying a reverse polarity voltage to the pair of electrodes The emission part force has an impurity removal step of releasing electrons and removing impurities on the surface of the electron emission part.
[0015] また、本発明の電子放出素子の製造方法は、基板上に互いに離間した一対の電 極を形成する工程と、上記一対の電極をつなぐように導電膜を形成する工程と、上記 導電膜に電子放出部を形成する工程と、上記一対の電極に電圧を与えて上記電子 放出部から電子を放出させる前駆動工程と、この前駆動工程と逆極性の電圧を上記 一対の電極に与えて上記電子放出部から電子を放出させる不純物除去工程と、を 有する。  In addition, the method for manufacturing an electron-emitting device according to the present invention includes a step of forming a pair of electrodes spaced apart from each other on a substrate, a step of forming a conductive film so as to connect the pair of electrodes, and the conductive layer. A step of forming an electron-emitting portion in the film; a pre-driving step of applying a voltage to the pair of electrodes to emit electrons from the electron-emitting portion; and a voltage having a polarity opposite to that of the pre-driving step is applied to the pair of electrodes. And an impurity removal step of emitting electrons from the electron emission portion.
[0016] また、本発明の表示装置の製造方法は、背面基板上に複数対の電極を形成する 工程と、上記複数対の電極を夫々つなぐように複数の導電膜を形成する工程と、上 記複数の導電膜夫々に電子放出部を形成する工程と、少なくとも上記複数の電子放 出部を炭化する活性化工程と、真空雰囲気中で上記背面基板を熱処理するべーキ ング工程と、上記複数対の電極に電圧を与えて上記複数の電子放出部から電子を 放出させ、且つ上記複数対の電極に逆極性の電圧を与えて上記複数の電子放出部 力 電子を放出させ、上記複数の電子放出部表面の不純物を除去する不純物除去 工程と、蛍光体層を有する前面基板を上記背面基板と真空雰囲気中で組み合わせ て周縁部同士を封着する封着工程と、を有する。  [0016] In addition, the method for manufacturing a display device of the present invention includes a step of forming a plurality of pairs of electrodes on a back substrate, a step of forming a plurality of conductive films so as to connect the plurality of pairs of electrodes, A step of forming an electron emission portion in each of the plurality of conductive films, an activation step of carbonizing at least the plurality of electron emission portions, a baking step of heat-treating the back substrate in a vacuum atmosphere, and A voltage is applied to the plurality of pairs of electrodes to emit electrons from the plurality of electron emission sections, and a voltage having a reverse polarity is applied to the plurality of pairs of electrodes to emit the plurality of electron emission sections. An impurity removing step of removing impurities on the surface of the electron emission portion, and a sealing step of sealing the peripheral portions by combining the front substrate having the phosphor layer in the vacuum atmosphere with the rear substrate.
[0017] さらに、本発明の表示装置は、所定の隙間を介して対向した背面基板および前面 基板と、上記背面基板の対向面上に設けられ、複数対の電極に画像信号に応じた 電圧を与えることにより電子を選択的に放出する複数の電子放出素子と、上記前面 基板の対向面上に設けられ、電子の衝突により画像を表示する画像表示部と、を備 え、上記複数対の電極に画像を表示するときと同じ極性の電圧を与えて上記複数の 電子放出素子から電子を放出させ、且つ上記複数対の電極に逆極性の電圧を与え て上記複数の電子放出素子から電子を放出させることにより、上記複数の電子放出 素子近傍の不純物を除去するクリーニング機能を備えている。 [0017] Furthermore, the display device of the present invention is provided on the opposite surface of the rear substrate and the front substrate facing each other with a predetermined gap, and a voltage corresponding to an image signal is applied to a plurality of pairs of electrodes. A plurality of electron-emitting devices that selectively emit electrons when applied, and the front surface And an image display unit that is provided on the opposite surface of the substrate and displays an image by collision of electrons, and applies the voltage of the same polarity as when the image is displayed on the plurality of pairs of electrodes to emit the plurality of electrons. A cleaning function for removing impurities in the vicinity of the plurality of electron-emitting devices by emitting electrons from the device and applying electrons of opposite polarity to the plurality of pairs of electrodes to emit electrons from the plurality of electron-emitting devices. I have.
[0018] 上述した発明によると、専用の処理装置を必要とせず、電子放出素子の電極に通 常動作時と逆極性の電圧を与えることにより、電子放出部に付着した不純物を確実 に除去できる。また、不純物除去のタイミングはいかなるタイミングであっても良ぐ表 示装置の背面基板と前面基板を封着した後でも良い。これにより、電子放出素子の 製造時に不純物を確実に除去でき、さらに表示装置を製造した後に不純物を除去で き、長時間に亘つて電子放出素子の特性劣化を防止でき、良質な画像を表示できる 安定した動作特性を有する表示装置を提供できる。  [0018] According to the above-described invention, an impurity attached to the electron-emitting portion can be reliably removed by applying a voltage having a polarity opposite to that during normal operation to the electrode of the electron-emitting device without requiring a dedicated processing device. . The timing for removing impurities may be any timing, and may be after the rear substrate and the front substrate of the display device are sealed. As a result, impurities can be surely removed during the manufacture of the electron-emitting device, impurities can be removed after the display device is manufactured, and the characteristics of the electron-emitting device can be prevented from deteriorating over a long period of time, and a high-quality image can be displayed. A display device having stable operating characteristics can be provided.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1は、この発明の実施の形態に係る電子放出素子を備えた表示装置を示す 外観斜視図である。  FIG. 1 is an external perspective view showing a display device including an electron-emitting device according to an embodiment of the present invention.
[図 2]図 2は、図 1の表示装置の内部構造を説明するための断面図である。  FIG. 2 is a cross-sectional view for explaining the internal structure of the display device of FIG.
[図 3]図 3は、図 2の断面を部分的に拡大して示す断面図である。  FIG. 3 is a cross-sectional view showing a partially enlarged view of the cross section of FIG.
[図 4]図 4は、図 1の表示装置の背面基板に多数の電子放出素子を配列した電子放 出装置を示す概念図である。  FIG. 4 is a conceptual diagram showing an electron emission device in which a large number of electron emission elements are arranged on the rear substrate of the display device of FIG.
[図 5]図 5は、この発明の実施の形態に係る電子放出素子を概略的に示す平面図で ある。  FIG. 5 is a plan view schematically showing an electron-emitting device according to an embodiment of the present invention.
[図 6]図 6は、図 5の電子放出素子の製造方法を説明するためのフローチャートであ る。  6 is a flowchart for explaining a method for manufacturing the electron-emitting device of FIG.
[図 7]図 7は、 3つの電子放出素子に対する不純物除去処理を実施した場合における 処理条件を示す表である。  FIG. 7 is a table showing processing conditions when impurity removal processing is performed on three electron-emitting devices.
[図 8]図 8は、図 7の処理条件に基づいて製造した電子放出素子を長時間駆動した 場合のェミッション電流の変化を示すグラフである。 発明を実施するための最良の形態 [0020] 以下、図面を参照しながらこの発明の実施の形態について詳細に説明する。 FIG. 8 is a graph showing a change in emission current when an electron-emitting device manufactured based on the processing conditions of FIG. 7 is driven for a long time. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021] 図 1には、この発明の実施の形態に係る表示装置として、表面伝導型の電子放出 素子を多数備えた SED (Surface- conduction Electron-emitter Display)の外観斜視 図を示してある。 FIG. 1 is an external perspective view of an SED (Surface-conduction Electron-emitter Display) provided with a number of surface conduction electron-emitting devices as a display device according to an embodiment of the present invention.
[0022] SEDは、それぞれ矩形状の石英ガラスからなるリアプレート 10 (基板、背面基板) およびフェースプレート 12 (前面基板)を有する。これらのプレート 10、 12は、約 1. 5 一 3. Ommの間隔を置いて対向配置されている。そして、リアプレート 10およびフエ ースプレート 12は、ガラス力もなる矩形枠状の側壁 14を介して周縁部同士が接合さ れ、偏平な矩形状の真空外囲器 15を構成している。  The SED has a rear plate 10 (substrate, rear substrate) and a face plate 12 (front substrate) each made of rectangular quartz glass. The plates 10 and 12 are arranged to face each other with an interval of about 1.5 to 3. Omm. The rear plate 10 and the face plate 12 are joined to each other through a rectangular frame-like side wall 14 having a glass force, thereby forming a flat rectangular vacuum envelope 15.
[0023] 図 2および図 3に示すように、フェースプレート 12の内面(対向面)には蛍光体スクリ ーン 16が形成されている。この蛍光体スクリーン 16は、赤、青、緑の複数の蛍光体層 16a、および蛍光体層間に位置した黒色着色層 16bを並べて構成されている。これ らの蛍光体層 16aはストライプ状あるいはドット状に形成されている。また、蛍光体スク リーン 16上には、アルミニウム等力もなるメタルバック 17が形成されている。さらに、フ エースプレート 12と蛍光体スクリーン 16との間に、例えば ITO力もなる透明導電膜あ るいはカラーフィルタ膜を設けてもよい。このように、フェースプレート 12に複数の層 を積層した構造が、本発明の画像表示部として機能する。  As shown in FIGS. 2 and 3, a phosphor screen 16 is formed on the inner surface (opposing surface) of the face plate 12. The phosphor screen 16 includes a plurality of red, blue, and green phosphor layers 16a and a black colored layer 16b positioned between the phosphor layers. These phosphor layers 16a are formed in stripes or dots. Further, on the phosphor screen 16, a metal back 17 having an aluminum isotropic force is formed. Further, a transparent conductive film or a color filter film having an ITO force, for example, may be provided between the face plate 12 and the phosphor screen 16. Thus, the structure in which a plurality of layers are laminated on the face plate 12 functions as the image display unit of the present invention.
[0024] リアプレート 10の内面(対向面)には、蛍光体層 16aを励起発光させるための電子 ビームを放出する多数の表面伝導型の電子放出素子 18が設けられている。これらの 電子放出素子 18は、画素毎、すなわち蛍光体層 16a毎に一対一で対応して設けら れ、複数列および複数行に並べて配列されている。各電子放出素子 18の詳細につ いては後に詳述する。  [0024] On the inner surface (opposing surface) of the rear plate 10, a number of surface-conduction electron-emitting devices 18 that emit an electron beam for exciting and emitting the phosphor layer 16a are provided. These electron-emitting devices 18 are provided in a one-to-one correspondence for each pixel, that is, for each phosphor layer 16a, and are arranged in a plurality of columns and a plurality of rows. Details of each electron-emitting device 18 will be described later.
[0025] 図 4に示すように、リアプレート 10上には、多数の電子放出素子 18を接続する多数 本の配線がマトリックス状に設けられている。このように、多数の電子放出素子 18をマ トリックス状に配線してリアプレート 10上に配置した構造が、本発明の電子放出装置 として機能する。電子放出素子 18の配列については、種々のものを採用できるが、こ こでは、図 4を用いてその一例を説明する。  As shown in FIG. 4, a large number of wirings for connecting a large number of electron-emitting devices 18 are provided in a matrix on the rear plate 10. Thus, a structure in which a large number of electron-emitting devices 18 are wired in a matrix and arranged on the rear plate 10 functions as the electron-emitting device of the present invention. Various arrangements of the electron-emitting devices 18 can be adopted. Here, an example will be described with reference to FIG.
[0026] 電子放出装置は、リアプレート 10の内面に、多数の電子放出素子 18を整列配置し て構成される。すなわち、図中 X方向(上下方向)に m個、 Y方向(左右方向)に n個 の電子放出素子 18が形成されている。 [0026] The electron-emitting device has a large number of electron-emitting devices 18 aligned on the inner surface of the rear plate 10. Configured. In other words, m electron emitting elements 18 are formed in the X direction (up and down direction) and n in the Y direction (left and right direction).
[0027] 各電子放出素子 18の一方の電極は、それぞれ同じ行にある電子放出素子 18同士 で共通の配線により接続されている。これを Y配線と呼ぶ。 Y配線は、 Y1から Ymまで m本ある。また、各電子放出素子 18の他方の電極は、それぞれ同じ列にある電子放 出素子 18同士で共通の配線により接続されている。これを X配線と呼ぶ。 X配線は、 XIから Xnまで n本ある。  [0027] One electrode of each electron-emitting device 18 is connected by a common wiring between the electron-emitting devices 18 in the same row. This is called Y wiring. There are m Y wires from Y1 to Ym. Further, the other electrode of each electron-emitting device 18 is connected by a common wiring between the electron-emitting devices 18 in the same column. This is called X wiring. There are n X wires from XI to Xn.
[0028] X配線および Y配線は、各電子放出素子 18の後述する一対の電極膜と同様な材 料で、同様な成膜およびパターユング方法で形成される。また、全ての X配線と Y配 線との間には交差点がある力 全ての交差点は図示しない絶縁膜により、電気的に 絶縁されているものとする。この絶縁膜として、例えば、真空蒸着法、印刷 法、スパッタ法等を用いて形成される SiO等がある。  [0028] The X wiring and the Y wiring are made of the same material as a pair of electrode films described later of each electron-emitting device 18, and are formed by the same film formation and patterning method. Also, there is an intersection between all X and Y lines. All intersections are electrically insulated by an insulating film (not shown). Examples of the insulating film include SiO formed using a vacuum deposition method, a printing method, a sputtering method, and the like.
2  2
[0029] 例えば、 Y配線には、 Y方向に配列した電子放出素子 18の行を選択するための信 号電圧(走査信号)が印加され、 X配線には X方向に配列した電子放出素子 18の電 流を変調するための信号電圧 (変調信号)が印加されるようになっている。従って、各 電子放出素子 18に印加される駆動電圧は、各電子放出素子 18に印加される走査 信号と変調信号の差電圧として供給される。  [0029] For example, a signal voltage (scanning signal) for selecting a row of the electron-emitting devices 18 arranged in the Y direction is applied to the Y wiring, and the electron-emitting devices 18 arranged in the X direction are applied to the X wiring. A signal voltage (modulation signal) for modulating the current is applied. Accordingly, the drive voltage applied to each electron-emitting device 18 is supplied as a differential voltage between the scanning signal and the modulation signal applied to each electron-emitting device 18.
[0030] 例えば、特定の電子放出素子 18に着目して、 Y配線にマイナスしきい値電圧 Vf[V ]を印加し、 X配線に 0[V]を印加した場合は、素子電極間にはしきい値電圧 Vfが印 カロされること〖こなる。  [0030] For example, focusing on a specific electron-emitting device 18, when a negative threshold voltage Vf [V] is applied to the Y wiring and 0 [V] is applied to the X wiring, The threshold voltage Vf is imprinted.
[0031] 従って、例えば、配線 Y1にマイナスのしき 、値電圧 Vf[V]を印加(走査信号を入力 )し、配線 XIに 0 [V]、 X2— Xnには 0[V]以上の任意電圧 (変調信号)を印加する事 により、配線 Y1と配線 XIに配線された電子放出素子 18 (図中左上の素子)では、素 子電流は放出されず、その他の電子放出素子 18では任意の素子電流が放出される ことになる。  Therefore, for example, a negative threshold is applied to the wiring Y1 and a value voltage Vf [V] is applied (scanning signal is input), and 0 [V] is applied to the wiring XI, and 0 [V] or more is applied to the X2—Xn. By applying a voltage (modulation signal), no electron current is emitted from the electron-emitting device 18 (the upper left device in the figure) wired to the wiring Y1 and the wiring XI, and any other electron-emitting device 18 does not emit any current. The device current is released.
[0032] この様に、上記構成の電子放出装置にお!、ては、単純なマトリクス配線を用いて、 特定の電子放出素子 18を選択的に独立して駆動することが可能である。  In this way, in the electron emission device having the above-described configuration, it is possible to selectively drive specific electron emission elements 18 independently using simple matrix wiring.
[0033] また、上記のように構成されたフェースプレート 12とリアプレート 10の周縁部同士を 接合する側壁 14は、例えば、低融点ガラス、低融点金属等の封着材 20により、リア プレート 10の周縁部およびフェースプレート 12の周縁部に封着され、フェースプレー ト 12およびリアプレート 10を接合している。 [0033] Further, the peripheral portions of the face plate 12 and the rear plate 10 configured as described above are connected to each other. The side walls 14 to be joined are sealed to the peripheral edge of the rear plate 10 and the peripheral edge of the face plate 12 by, for example, a sealing material 20 such as low melting point glass or low melting point metal. It is joined.
[0034] さらに、 SEDは、リアプレート 10およびフェースプレート 12の間に配設されたスぺ ーサアッセンブリ 22を備えている。このスぺーサアッセンブリ 22は、板状のグリッド 24 と、グリッドの両面に一体的に立設された複数の柱状のスぺーサ 30と、を備えて構成 されている。 In addition, the SED includes a spacer assembly 22 disposed between the rear plate 10 and the face plate 12. The spacer assembly 22 includes a plate-like grid 24 and a plurality of columnar spacers 30 that stand integrally on both sides of the grid.
[0035] 詳細に述べると、グリッド 24はフェースプレート 12の内面に対向した第 1面 24aおよ びリアプレート 10の内面に対向した第 2面 24bを有し、これらのプレート 10、 12と平 行に配置されている。そして、グリッド 24には、エッチング等により多数のビーム通過 孔 26および複数のスぺーサ開孔 28が形成されている。ビーム通過孔 26は、それぞ れ電子放出素子 18に対向して配列されているとともに、スぺーサ開孔 28は、それぞ れビーム通過孔間に位置し所定のピッチで配列されて 、る。  More specifically, the grid 24 has a first surface 24 a facing the inner surface of the face plate 12 and a second surface 24 b facing the inner surface of the rear plate 10. Arranged in a row. A large number of beam passage holes 26 and a plurality of spacer openings 28 are formed in the grid 24 by etching or the like. The beam passage holes 26 are arranged to face the electron-emitting devices 18, respectively, and the spacer opening holes 28 are located between the beam passage holes and arranged at a predetermined pitch. .
[0036] グリッド 24は、例えば鉄 ニッケル系の金属板により厚さ 0. 1-0. 25 [mm]に形成 されているとともに、その表面には、金属板を構成する元素からなる酸化膜、例えば、 Fe O、 NiFe O力 なる酸化膜が形成されている。また、ビーム通過孔 26は、 0. 1 [0036] The grid 24 is formed of, for example, an iron-nickel metal plate to a thickness of 0.1-0.25 [mm], and on its surface, an oxide film made of an element constituting the metal plate, For example, an oxide film having Fe O and NiFe 2 O force is formed. The beam passage hole 26 is 0.1
3 4 3 4 3 4 3 4
5—0. 25 [mm] X 0. 20—0. 40 [mm]の矩形状に形成され、スぺーサ開孔 28は 直径が約 0. 1-0. 2 [mm]の略円形に形成されている。  5—0.25 [mm] X 0.20—0.40 [mm] rectangular shape, with the spacer opening 28 having a substantially circular shape with a diameter of about 0.1-0.2 [mm] Is formed.
[0037] グリッド 24の第 1面 24a上には、各スぺーサ開孔 28に重ねて第 1スぺーサ 30aがー 体的に立設され、その延出端は、メタルバック 17および蛍光体スクリーン 16の黒色 着色層 16bを介してフェースプレート 12の内面に当接している。また、グリッド 24の第 2面 24b上には、各スぺーサ開孔 28に重ねて第 2スぺーサ 30bがー体的に立設され 、その延出端は、リアプレート 10の内面に当接している。そして、各スぺーサ開孔 28 、第 1および第 2スぺーサ 30a、 30bは互いに整列して位置し、第 1および第 2スぺー サ 30a、 30bはこのスぺーサ開孔 28を介して互いに一体的に連結されている。  [0037] On the first surface 24a of the grid 24, a first spacer 30a is erected on top of each spacer opening 28, and its extended end is connected to the metal back 17 and the fluorescent light. The body screen 16 is in contact with the inner surface of the face plate 12 through the black colored layer 16b. In addition, on the second surface 24b of the grid 24, a second spacer 30b is erected in a body-like manner so as to overlap each spacer opening 28, and its extending end is formed on the inner surface of the rear plate 10. It is in contact. Each spacer opening 28, the first and second spacers 30 a and 30 b are aligned with each other, and the first and second spacers 30 a and 30 b pass through the spacer opening 28. Are integrally connected to each other.
[0038] 第 1および第 2スぺーサ 30a、 30bの各々は、グリッド 24側からその延出端に向かつ て徐々に径が小さくなるテーパ形状、すなわち、より詳細には略円錐台形状に形成さ れている。 [0039] 例えば、各第 1スぺーサ 30aは、グリッド 24側の端部の径が約 400 [ m]、延出端 側の端部の径が約 280 [ m]、高さが約 0. 3-0. 5 [mm]に形成され、アスペクト比[0038] Each of the first and second spacers 30a, 30b has a tapered shape in which the diameter gradually decreases from the grid 24 side toward the extended end thereof, that is, more specifically, a substantially truncated cone shape. Is formed. [0039] For example, each first spacer 30a has a diameter at the end on the grid 24 side of about 400 [m], a diameter at the end on the extended end side of about 280 [m], and a height of about 0 [m]. 3-0. 5 [mm], aspect ratio
(高さ Zグリッド側端の径)は 0. 75-1. 25となっている。 The height (diameter of the Z grid side edge) is 0.775-1.25.
[0040] また、各第 2スぺーサ 30bは、グリッド 24側の端部の径が約 400 [ m]、延出端側 の径が約 150 [ /ζ πι]、高さが約 1一 1. 2[mm]に形成され、アスペクト比は、 2. 5— 3 となっている。 [0040] Each of the second spacers 30b has a diameter at the end on the grid 24 side of about 400 [m], a diameter at the extended end side of about 150 [/ ζ πι], and a height of about 11 mm. 1. It is 2 [mm] and the aspect ratio is 2.5-3.
[0041] 前述したように、グリッド 24に形成された各スぺーサ開孔 28の径は約 0. 1-0. 2[ mm]であり、第 1スぺーサ 30aのグリッド側端の径、及び第 2スぺーサ 30bのグリッド 側端の径よりも十分に小さぐ設定されている。そして、第 1スぺーサ 30aおよび第 2ス ぺーサ 30bをスぺーサ開孔 28と同軸的に整列して一体的に設けることにより、第 1お よび第 2スぺーサはスぺーサ開孔 28を通して互いに一体的に連結され、グリッド 24と 一体にされる。  [0041] As described above, the diameter of each spacer opening 28 formed in the grid 24 is about 0.1 to 0.2 mm, and the diameter of the first spacer 30a on the grid side is And the diameter of the second spacer 30b is set to be sufficiently smaller than the diameter of the grid side end. The first and second spacers 30a and 30b are coaxially aligned with the spacer opening 28 so as to be integrated with each other so that the first and second spacers can be opened. They are connected together through holes 28 and integrated with the grid 24.
[0042] そして、上記のように構成されたスぺーサアッセンブリ 22のグリッド 24は、図示しな い電源から所定の電圧が印加され、クロストークを防止するとともに各ビーム通過孔 2 6により対応する電子放出素子 18から放出された電子ビームを所望の蛍光体層上に 収束する。また、第 1および第 2スぺーサ 30a、 30bは、フェースプレート 12およびリア プレート 10の内面に当接することにより、真空外囲器 15の外側力もプレート 10、 12 に作用する大気圧荷重を支持し、プレート間の間隔を所定値に維持している。  [0042] The grid 24 of the spacer assembly 22 configured as described above is applied with a predetermined voltage from a power source (not shown) to prevent crosstalk and correspond to each beam passage hole 26. The electron beam emitted from the electron emitting element 18 is converged on a desired phosphor layer. In addition, the first and second spacers 30a and 30b abut against the inner surfaces of the face plate 12 and the rear plate 10 to support the atmospheric pressure load that the outer force of the vacuum envelope 15 acts on the plates 10 and 12. In addition, the interval between the plates is maintained at a predetermined value.
[0043] さらに、上記のように製造されたスぺーサアッセンブリ 22を組み込んで SEDを製造 する場合、予め、電子放出素子 18が設けられているとともに側壁 14が接合されたリ ァプレート 10と、蛍光体スクリーン 16およびメタルバック 17の設けられたフェースプレ ート 12とを用意しておく。そして、上記のように製造されたスぺーサアッセンプリ 22を リアプレート 10上に位置決めした状態で、このリアプレート 10およびフェースプレート 12を図示しない真空チャンバ内に配置する。そして、真空チャンバ内を真空排気し た後、側壁 14を介してフェースプレート 12をリアプレート 10に接合する。これにより、 スぺーサアッセンブリ 22を備えた SEDが製造される。  [0043] Further, when the SED is manufactured by incorporating the spacer assembly 22 manufactured as described above, the rear plate 10 provided with the electron-emitting device 18 and having the side wall 14 bonded thereto, A body plate 16 and a face plate 12 provided with a metal back 17 are prepared. Then, with the spacer assembly 22 manufactured as described above positioned on the rear plate 10, the rear plate 10 and the face plate 12 are placed in a vacuum chamber (not shown). Then, after evacuating the inside of the vacuum chamber, the face plate 12 is joined to the rear plate 10 via the side wall 14. As a result, an SED equipped with the spacer assembly 22 is manufactured.
[0044] 次に、上述した電子放出素子 18について、図 5を参照してより詳細に説明する。図 5には、 1つの電子放出素子 18をリアプレート 10の内面側力も見た概略平面図を示 してある。 Next, the electron-emitting device 18 described above will be described in more detail with reference to FIG. FIG. 5 shows a schematic plan view of one electron-emitting device 18 in which the inner side force of the rear plate 10 is also viewed. It is.
[0045] 電子放出素子 18は、リアプレート 10の内面に、互いに離間した 2つの素子電極 31 、 32 (—対の電極)と、素子電極 31、 32間のギャップを繋ぐ導電膜 34と、各導電膜 3 4を 2分割したようなライン状の電子放出部 36と、力も構成されて!、る。  The electron-emitting device 18 includes, on the inner surface of the rear plate 10, two device electrodes 31 and 32 (a pair of electrodes) spaced apart from each other, a conductive film 34 that connects a gap between the device electrodes 31 and 32, A line-shaped electron emission part 36 that divides the conductive film 3 4 into two parts and the force are also configured! RU
[0046] リアプレート 10の材料として、本実施の形態で採用した石英ガラスの他に、 Na等の 不純物含有量を減少させたガラス、青板ガラス、青板ガラスにスパッタ法等により SiO を積層した積層体、アルミナ等のセラミックス及び Si基板等を用いることができる。 [0046] As a material of the rear plate 10, in addition to the quartz glass employed in the present embodiment, glass with reduced impurity content such as Na, blue plate glass, and blue plate glass are laminated with SiO 2 by sputtering or the like. Bodies, ceramics such as alumina, and Si substrates can be used.
2 2
[0047] また、素子電極 31、 32の材料としては、一般的な導体材料を用いることができ、例 えば、 Ni、 Cr、 Au、 Mo、 W、 Pt、 Ti、 Al、 Cu、 Pd等の金属、或は合金印刷導体、半 導体材料等から適宜選択される。本実施の形態では、 Ptにより素子電極 31、 32を形 成した。  [0047] As the material of the device electrodes 31, 32, a general conductor material can be used, for example, Ni, Cr, Au, Mo, W, Pt, Ti, Al, Cu, Pd, etc. It is appropriately selected from metal or alloy printed conductors, semiconductor materials and the like. In the present embodiment, the device electrodes 31 and 32 are formed of Pt.
[0048] 各素子電極 31、 32は、それぞれ 1辺が 55 μ mの正方形状に形成され、対向する 端辺同士が 20 mの均一なギャップを形成する位置に対向配置されている。  Each of the element electrodes 31 and 32 is formed in a square shape having a side of 55 μm, and is opposed to a position where the opposite end sides form a uniform gap of 20 m.
[0049] 導電膜 34の材料としては、例えば、 Pd、 Pt、 Ru、 Ag、 Au、 Ti、 In、 Cu、 Cr、 Fe、 Z n、 Sn、 Ta、 W、 Pb等の金属、 PdO、 SnO、 In O、 PbO、 Sb O等の酸化物導電体  [0049] Examples of the material of the conductive film 34 include metals such as Pd, Pt, Ru, Ag, Au, Ti, In, Cu, Cr, Fe, Zn, Sn, Ta, W, and Pb, PdO, and SnO. Oxide conductors such as InO, PbO, SbO
2 2 3 2 3  2 2 3 2 3
、 HfB、 ZrB、 LaB、 CeB、 YB、 GdB等の硼化物、 TiC、 ZrC、 HfC、 TaC、 SiC , Borides such as HfB, ZrB, LaB, CeB, YB, GdB, TiC, ZrC, HfC, TaC, SiC
2 2 6 6 4 4 2 2 6 6 4 4
、 WC等の炭化物、 TiN、 ZrN、 HfN等の窒化物、 Si、 Ge等の半導体、カーボン等 が挙げられる。本実施の形態では、 Pdをスパッタリングにより形成して大気中で加熱 して酸ィ匕させた後、フォトリソグラフィー或いはドライエッチングにより、幅 50[ /ζ πι]、 長さ 40 [ μ m]の導電膜 34を形成した。  , Carbides such as WC, nitrides such as TiN, ZrN, and HfN, semiconductors such as Si and Ge, and carbon. In this embodiment, Pd is formed by sputtering, heated in the atmosphere and oxidized, and then photolithography or dry etching is performed with a width of 50 [/ ζ πι] and a length of 40 [μm]. Film 34 was formed.
[0050] 電子放出部 36は、導電膜 34の一部に形成された高抵抗の亀裂により構成され、 導電膜 34の膜厚、膜質、材料及び後述する通電フォーミング等の手法等に依存した ものとなる。 [0050] The electron emission portion 36 is formed by a high-resistance crack formed in a part of the conductive film 34, and depends on the film thickness, film quality, material, and a method such as energization forming described later. It becomes.
[0051] 電子放出部 36の内部には、直径が数 Aから数十 nmの範囲の導電性微粒子が存 在する場合もある。この導電性微粒子は、導電膜 34を構成する材料の元素の一部、 あるいは全ての元素を含有するものとなる。また、少なくとも電子放出部 36及びその 近傍の導電膜 34には、炭素及び炭素化合物が堆積される。  [0051] There may be a case where conductive fine particles having a diameter in the range of several A to several tens of nm are present inside the electron emission portion 36. The conductive fine particles contain a part or all of the elements of the material constituting the conductive film 34. Carbon and a carbon compound are deposited on at least the electron emission portion 36 and the conductive film 34 in the vicinity thereof.
[0052] 次に、上記構造の電子放出素子 18の製造方法について、図 6に示すフローチヤ一 トを参照して説明する。 Next, a method for manufacturing the electron-emitting device 18 having the above structure will be described with reference to the flowchart shown in FIG. A description will be given with reference to FIG.
[0053] まず、リアプレート 10を有機溶剤により十分に洗浄し、真空蒸着法により素子電極 3 1、 32の材料となる Ptを成膜する。この後、フォトリソグラフィー技術により、上述した 形状の素子電極 31、 32をリアプレート 10上に複数組形成する (ステップ 1)。  [0053] First, the rear plate 10 is sufficiently washed with an organic solvent, and Pt which is a material for the device electrodes 31 and 32 is formed by vacuum deposition. Thereafter, a plurality of sets of the device electrodes 31 and 32 having the above-described shape are formed on the rear plate 10 by photolithography (step 1).
[0054] 次に、上記のように複数組の素子電極 31、 32を設けたリアプレート 10上に、有機 金属溶液を塗布して、有機金属膜を形成する。有機金属溶液には、導電膜 34の材 料 (本実施の形態では Pd)を主元素とする有機化合物の溶液を用いることができる。 そして、この有機金属膜を加熱焼成処理し、リフトオフ、エッチング、レーザ加工等に よりパター-ングし、複数の導電膜 34を形成する (ステップ 2)。尚、有機金属溶液の 塗布方法としては、真空蒸着法、スパッタ法、化学的気相堆積法、分散塗布法、ディ ッビング法、スピンナ一法等を用いることができる。  Next, an organic metal solution is applied to the rear plate 10 provided with the plurality of sets of element electrodes 31 and 32 as described above to form an organic metal film. As the organic metal solution, a solution of an organic compound containing the material of the conductive film 34 (Pd in this embodiment) as a main element can be used. Then, this organometallic film is heated and baked and patterned by lift-off, etching, laser processing, etc. to form a plurality of conductive films 34 (step 2). In addition, as a coating method of the organometallic solution, a vacuum deposition method, a sputtering method, a chemical vapor deposition method, a dispersion coating method, a dubbing method, a spinner method, or the like can be used.
[0055] さらに、各導電膜 34に電子放出部 36を形成するためのフォーミング処理を行う(ス テツプ 3)。フォーミング処理は、通常、一対の素子電極 31、 32に電位差を与えて導 電膜 34に通電することにより行う。  Further, a forming process for forming the electron emission portion 36 is performed on each conductive film 34 (Step 3). The forming process is usually performed by applying a potential difference to the pair of element electrodes 31 and 32 and energizing the conductive film 34.
[0056] つまり、素子電極 31、 32間に、電圧を印加する事により、導電膜 34内に、ジュール 熱が発生し、導電膜 34に亀裂が生じ、電子放出部 36が形成される。フォーミング処 理時における電圧は、パルス波形が望ましい。フォーミング処理の終了は、例えば、 0. 1 [V]程度の電圧印加により流れる電流を測定し、抵抗値を求めて、 1 [Μ Ω ]以 上の抵抗を示した時点とすることができる。  That is, when a voltage is applied between the device electrodes 31 and 32, Joule heat is generated in the conductive film 34, the conductive film 34 is cracked, and the electron emission portion 36 is formed. The voltage during the forming process is preferably a pulse waveform. The forming process can be terminated, for example, by measuring the current flowing by applying a voltage of about 0.1 [V], obtaining the resistance value, and indicating the resistance of 1 [ΜΩ] or more.
[0057] 本実施の形態では、素子電極 31、 32と導電膜 34を形成した状態のリアプレート 10 を図示しない真空装置内に設置し、 10— 4[Pa]台の真空中で素子電極 31、 32間に電 圧を印加した。電圧波形は矩形波パルスとし、パルス幅を 0. 1 [msec]、パルス間隔 を 16 [msec]、波高値を 10 [V]として、 60秒間電圧を印加した。この結果、素子電極 31、 32が対向する端辺と平行に、導電膜 34の略中間位置に電子放出部 36が形成 された。 [0057] In this embodiment, device electrodes 31, 32 and then placed in a vacuum device (not shown) the rear plate 10 of the state of forming a conductive film 34, 10- 4 [Pa] base of the device electrodes in a vacuum 31 The voltage was applied between 32 and 32. The voltage waveform was a rectangular pulse, the pulse width was 0.1 [msec], the pulse interval was 16 [msec], the peak value was 10 [V], and the voltage was applied for 60 seconds. As a result, an electron emission portion 36 was formed at a substantially intermediate position of the conductive film 34 in parallel with the end sides where the device electrodes 31 and 32 face each other.
[0058] 上記のようにフォーミング処理を終えた電子放出素子 18には活性ィ匕処理が施され る (ステップ 4)。活性化処理とは、例えば、有機物質のガスを含有する雰囲気下で、 フォーミング処理と同様に、素子電極 31、 32間にノ ルス状の電圧を印加することで 実施される。この活性化処理により、素子電流 および放出電流 Ieが著しく増加する [0058] The electron emission element 18 that has been subjected to the forming process as described above is subjected to an activation process (step 4). The activation treatment is, for example, by applying a Norse voltage between the device electrodes 31 and 32 in an atmosphere containing an organic substance gas as in the forming treatment. To be implemented. This activation process significantly increases device current and emission current Ie.
[0059] 有機物質のガスを含有する雰囲気は、油拡散ポンプやロータリーポンプなどを用い て真空装置内を排気した場合に雰囲気内に残留する有機ガスを利用して形成するこ とができる他、真空中に適当な有機物質のガスを導入することによつても得られる。適 当な有機物質としては、脂肪族炭化水素類、芳香族炭化水素類、アルコール類、了 ルデヒド類、ケトン類、アミン類、有機酸類等がある。 [0059] The atmosphere containing the organic substance gas can be formed using the organic gas remaining in the atmosphere when the vacuum apparatus is exhausted using an oil diffusion pump or a rotary pump. It can also be obtained by introducing a gas of a suitable organic substance in a vacuum. Suitable organic substances include aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, aldehydes, ketones, amines, organic acids and the like.
[0060] 本実施の形態では、リアプレート 10を収容配置した真空装置内にメタンを 10—3 [Pa ]台で導入し、活性化処理を実施した。素子電極 31、 32に印加する電圧は、 18 [V] の矩形パルスで、パルス幅を 1 [msec]、パルス間隔を 10 [msec]とし、 30分間電圧 を印カ卩した。 [0060] In this embodiment, methane is introduced at 10- 3 [Pa] stand in a vacuum apparatus which houses arranged rear plate 10 was performed the activation process. The voltage applied to the device electrodes 31 and 32 was a rectangular pulse of 18 [V], the pulse width was 1 [msec], the pulse interval was 10 [msec], and the voltage was printed for 30 minutes.
[0061] この活性ィヒ処理により、雰囲気中に存在する有機物質から、炭素あるいは炭素化 合物が電子放出素子 18上に堆積し、少なくとも電子放出部 36が炭化される。これに より、素子電流 If、放出電流 Ieが著しく増加するようになる。尚、堆積物の膜厚は、 50 [nm]以下の範囲とするのが好ましぐ 30 [nm]以下の範囲とすることがより好まし!/ヽ  [0061] By this active treatment, carbon or a carbon compound is deposited on the electron-emitting device 18 from an organic substance present in the atmosphere, and at least the electron-emitting portion 36 is carbonized. As a result, the device current If and the emission current Ie are remarkably increased. The film thickness of the deposit is preferably in the range of 50 [nm] or less, more preferably in the range of 30 [nm] or less! / ヽ
[0062] 上述したように活性ィ匕処理がなされた電子放出素子 18には、真空雰囲気中で熱処 理 (ベーキング処理)がなされる (ステップ 5)。言い換えると、真空装置内に配置したリ ァプレート 10を加熱しつつ真空装置内に残留した有機ガスを排気する。真空装置を 排気する真空排気装置は、当該装置力 発生するオイルが電子放出素子 18の特性 に影響を与えないように、オイルを使用しないものを用いるのが好ましい。真空装置 内の有機成分の分圧は、上記炭素ある 、は炭素化合物がほぼ新たに堆積しな ヽ分 圧で lCT^Pa]以下が好ましぐさらには 10—8[Pa]以下が特に好ましい。さらに、真空 装置内を排気するときには、真空装置全体を加熱して、真空装置内壁や、電子放出 素子 18に吸着した有機物質分子を排気しやすくする。 [0062] The electron-emitting device 18 that has been subjected to the activation process as described above is subjected to heat treatment (baking treatment) in a vacuum atmosphere (step 5). In other words, the organic gas remaining in the vacuum apparatus is exhausted while heating the rear plate 10 disposed in the vacuum apparatus. As the vacuum exhaust device for exhausting the vacuum device, it is preferable to use a device that does not use oil so that the oil generated by the device does not affect the characteristics of the electron-emitting device 18. The partial pressure of the organic component in the vacuum chamber is the carbon, particularly preferably 10- 8 [Pa] or less in gesture et preferred is LCT ^ Pa] or less byヽpartial pressure such almost newly deposit carbon compound . Further, when the inside of the vacuum device is exhausted, the whole vacuum device is heated so that the organic substance molecules adsorbed on the inner wall of the vacuum device and the electron-emitting device 18 can be easily exhausted.
[0063] そして、上述したベーキング処理の後、電子放出素子 18の特性を劣化させる要因 となる不純物をより確実に除去するための不純物除去処理を実施する (ステップ 6)。 この際、真空装置内に配置されたリアプレート 10上の各電子放出素子 18の素子電 極 31、 32に対し、真空雰囲気中で通常の駆動時と同じ極性 (本実施の形態では正 極性)の電圧を与え、適時前駆動を行なう。この前駆動では、通常動作時と同じ方向 で通常動作時より高い電圧を各素子電極 31、 32に一定時間与え、素子特性を安定 化させる。そして、この後、通常動作時と逆極性 (本実施の形態では負極性)の電圧 を各素子電極 31、 32に一定時間与える。 [0063] After the baking process described above, an impurity removal process is performed to more reliably remove impurities that cause the characteristics of the electron-emitting device 18 to deteriorate (step 6). At this time, the element current of each electron-emitting device 18 on the rear plate 10 disposed in the vacuum apparatus is determined. A voltage having the same polarity as in normal driving (positive polarity in this embodiment) is applied to the poles 31 and 32 in a vacuum atmosphere, and driving is performed in a timely manner. In this pre-driving, a higher voltage than in normal operation is applied to each element electrode 31 and 32 for a certain period of time in the same direction as in normal operation to stabilize the element characteristics. Thereafter, a voltage having a reverse polarity (negative polarity in the present embodiment) to that during normal operation is applied to each of the element electrodes 31 and 32 for a certain period of time.
[0064] つまり、この不純物除去処理では、全ての素子電極 31、 32に対して通常動作時と 同極性の電圧を一定時間与え、且つ全ての素子電極 31、 32に対して逆極性の電圧 を一定時間与えることにより、電子放出部 36の不純物を除去する。より具体的には、 全ての素子電極 31、 32に正極性方向の電圧を与えて電子放出部 36から電子を放 出させることにより +極側の電子放出部表面に吸着している不純物を除去するととも に、全ての素子電極 31、 32に負極性方向の電圧を与えて電子放出部 36から電子 を放出させることにより 極側の電子放出部表面に吸着している不純物を除去する。  That is, in this impurity removal process, a voltage having the same polarity as that during normal operation is applied to all the device electrodes 31 and 32 for a certain period of time, and a reverse polarity voltage is applied to all the device electrodes 31 and 32. By applying for a certain period of time, impurities in the electron emission portion 36 are removed. More specifically, by applying a voltage in the positive polarity direction to all the device electrodes 31 and 32 to emit electrons from the electron emission portion 36, impurities adsorbed on the surface of the electron emission portion on the + electrode side are removed. At the same time, by applying a voltage in the negative polarity direction to all the device electrodes 31 and 32 to emit electrons from the electron emission portion 36, impurities adsorbed on the surface of the electron emission portion on the pole side are removed.
[0065] 本実施の形態では、 10— 7 [Pa]以下の真空雰囲気中で全ての素子電極 31、 32に 対して正方向および逆方向のパルス電圧を交互に与え、電子放出部 36の表面に吸 着した不純物を除去するようにした。また、このとき、各電子放出素子 18から放出さ れる電子を図示しな 、検出部を介して検出してェミッション電流をモニタし、この電流 値が理想の値になるまで各素子電極 31、 32に対する通電処理を続け、各素子電極 31、 32に与えるパルス電圧の大きさ、パルス幅、周波数、および極性を適宜調整し た。 [0065] In this embodiment, 10- 7 [Pa] for the following all of the device electrodes 31 in a vacuum atmosphere, 32 gave a positive direction and reverse pulse voltage alternately, the surface of the electron emission portion 36 Impurities adsorbed on were removed. At this time, the electrons emitted from the respective electron-emitting devices 18 are not shown in the figure. The emission current is monitored by detecting them through the detection unit, and each of the device electrodes 31, until this current value becomes an ideal value. The energization process for 32 was continued, and the magnitude, pulse width, frequency, and polarity of the pulse voltage applied to the device electrodes 31 and 32 were appropriately adjusted.
[0066] パルス電圧の波形は、方形波、正弦波、三角波等、種々の波形を採用することがで き、パルス電圧の極性は、正極性のみのパルス、負極性のみのパルス、或いは両極 のパルスを交互に有するものを採用することができる。つまり、パルス電圧の大きさ、 パルス幅、周波数、極性、波形などは、適宜調整すれば良ぐ全ての電子放出素子 1 8の電子放出部 36に吸着した不純物を確実に除去するまで通電処理を続ければ良 い。  [0066] Various waveforms such as a square wave, a sine wave, and a triangular wave can be adopted as the pulse voltage waveform, and the polarity of the pulse voltage is a positive polarity pulse, a negative polarity pulse, or a bipolar polarity. What has a pulse alternately can be employ | adopted. In other words, the energization process is performed until the impurities adsorbed on the electron-emitting portions 36 of all the electron-emitting devices 18 that can be adjusted as appropriate are appropriately adjusted in the magnitude, pulse width, frequency, polarity, waveform, etc. of the pulse voltage. You can continue.
[0067] 以上のように、本実施の形態によると、不純物を除去するための専用の処理装置を 必要としないで、各電子放出素子 18の素子電極 31、 32に通常動作時と逆極性の電 圧を印加するだけの簡単な方法により、電子放出素子 18の電子放出部 36に吸着し た不純物を確実に除去でき、電子放出素子 18の特性を長時間に亘つて安定させる ことができる。 [0067] As described above, according to the present embodiment, there is no need for a dedicated processing apparatus for removing impurities, and the device electrodes 31 and 32 of each electron-emitting device 18 have a polarity opposite to that during normal operation. It is adsorbed to the electron emission part 36 of the electron emitter 18 by a simple method of applying a voltage. Thus, it is possible to reliably remove the impurities, and to stabilize the characteristics of the electron-emitting device 18 for a long time.
[0068] [実施例] [0068] [Example]
ここで、本発明の効果を検証するため、 3つの電子放出素子 A、 B、 Cに対して異な る条件で上述した不純物除去処理を実施した。このときの 3つの電子放出素子 A、 B 、 Cに対する処理条件を図 7に図示してあり、図 8には処理後の電子放出素子 A、 B、 Cを長時間(本実施の形態では 1400時間)駆動した際のェミッション電流の変化をグ ラフにして示してある。尚、比較のため、図 8には、図 7のエレクトロンクリーニング工程 を実施して 、な 、電子放出素子を長時間駆動した場合のェミッション電流の変化を 図示してある。また、このとき素子電極 31、 32に与える電圧は方形波パルスとした。  Here, in order to verify the effect of the present invention, the above-described impurity removal treatment was performed on the three electron-emitting devices A, B, and C under different conditions. The processing conditions for the three electron-emitting devices A, B, and C at this time are shown in FIG. 7, and FIG. 8 shows the processed electron-emitting devices A, B, and C for a long time (1400 in this embodiment). Changes in emission current when driving (time) are shown as a graph. For comparison, FIG. 8 shows a change in emission current when the electron cleaning process of FIG. 7 is performed and the electron-emitting device is driven for a long time. At this time, the voltage applied to the device electrodes 31 and 32 was a square wave pulse.
[0069] 電子放出素子 Aに対しては、パルス電圧 = + 17. 5 [¥]、パルス幅= 1 [1115]、パル ス割合 =6 [%]、印加時間 = l [min]で素子電極 31、 32にパルス電圧を与えて前 駆動した後、パルス電圧 =ー17. 5 [V]、パルス幅 = l [ms]、パルス割合 =6 [%]、 印加時間 = l [min]で素子電極 31、 32にパルス電圧を与えた。また、電子放出素子 Bに対しては、電子放出素子 Aに対する前駆動と同条件で前駆動した後、パルス電 圧の印加時間を 0. 5 [min]に変えて素子電極 31、 32にパルス電圧を与えた。さらに 、電子放出素子 Cに対しては、電子放出素子 Aおよび Bに対する前駆動と同条件で 前駆動した後、パルス電圧の印加時間を 10 [min]に変えて素子電極 31、 32にパル ス電圧を与えた。つまり、 3つの電子放出素子 A、 B、 Cに対するガス被毒の程度が異 なるため、処理条件として、エレクトロンクリーニング工程におけるパルス電圧の印加 時間だけを異ならせた。 [0069] For electron-emitting device A, device voltage at pulse voltage = + 17.5 [¥], pulse width = 1 [1115], pulse rate = 6 [%], application time = l [min] After pre-driving by applying pulse voltage to 31 and 32, the element with pulse voltage = -17.5 [V], pulse width = l [ms], pulse rate = 6 [%], application time = l [min] A pulse voltage was applied to the electrodes 31 and 32. For the electron-emitting device B, after pre-driving under the same conditions as the pre-driving for the electron-emitting device A, the pulse voltage is applied to the device electrodes 31 and 32 by changing the pulse voltage application time to 0.5 [min]. Voltage was applied. Further, for the electron-emitting device C, after pre-driving under the same condition as the pre-driving for the electron-emitting devices A and B, the pulse voltage is applied to the device electrodes 31 and 32 by changing the pulse voltage application time to 10 [min]. Voltage was applied. In other words, since the degree of gas poisoning with respect to the three electron-emitting devices A, B, and C is different, only the pulse voltage application time in the electron cleaning process is changed as a processing condition.
[0070] 図 8に示すように、上述した 3つの電子放出素子 A、 B、 Cを夫々有する SEDを長時 間駆動したところ、 1400時間を経過してもェミッション電流が殆ど変化せず安定して いることがわかる。これに対し、エレクトロンクリーニング工程を実施していない比較例 に関しては、時間の経過とともにェミッション電流が上昇しているのがわかる。つまり、 比較例の電子放出素子は、製造工程中にガス被毒を受けて付着した不純物が完全 に除去されておらず、駆動により発生した熱により電子放出素子表面に付着したガス が放出され、ェミッション電流が上昇して 、るものと考えられる。 [0071] なお、この発明は、上述した実施の形態そのままに限定されるものではなぐ実施 段階ではその要旨を逸脱しない範囲で構成要素を変形して具体ィ匕できる。また、上 述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種 々の発明を形成できる。例えば、上述した実施の形態に示される全構成要素力も幾 つかの構成要素を削除しても良い。 [0070] As shown in FIG. 8, when the SED having the three electron-emitting devices A, B, and C described above was driven for a long time, the emission current remained stable even after 1400 hours. You can see that In contrast, in the comparative example in which the electron cleaning process is not performed, it can be seen that the emission current increases with time. That is, in the electron-emitting device of the comparative example, the impurities attached due to gas poisoning during the manufacturing process are not completely removed, and the gas attached to the surface of the electron-emitting device is released by the heat generated by driving, The emission current is thought to increase. It should be noted that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the spirit of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some components may be deleted from the total component force shown in the above-described embodiment.
[0072] 例えば、上述した実施の形態では、ベーキング処理の後で封着処理の前に不純物 除去処理を実施した場合について説明したが、これに限らず、ベーキング処理中や ベーキング処理の前に不純物除去処理を実施しても良ぐ活性化処理の後に不純 物除去処理を実施しても良い。  [0072] For example, in the above-described embodiment, the case where the impurity removal process is performed after the baking process and before the sealing process is described. However, the present invention is not limited to this, and impurities may be generated during the baking process or before the baking process. The impurity removal treatment may be performed after the activation treatment that may be performed.
[0073] また、上述した実施の形態では、 SEDの製造工程中に不純物除去処理を実施す る場合について説明したが、これに限らず、上述した不純物除去処理は、リアプレー ト 10とフェースプレート 12を対向させて周縁部を封着して SEDを製造した後に実施 することもできる。この場合、 SEDの駆動中に、図示しない検出部を介して各電子放 出素子 18から放出されるェミッション電流をモニタし、ェミッション電流の値 (放出され る電子の量)が予め設定した一定値を超えて変化したことを条件に、上述したタリー ユング機能を働力せて不純物を除去する。つまり、本発明によると、上述した不純物 除去処理を SEDの製造工程中或いは製造後の任意のタイミングで実施することがで きる。これにより、 SEDの各電子放出素子 18のェミッション電流値の経時的な変化を 無くすことができ、長期間に亘つて安定した駆動特性を発揮できる。  In the above-described embodiment, the case where the impurity removal process is performed during the SED manufacturing process has been described. However, the present invention is not limited to this, and the impurity removal process described above is not limited to the rear plate 10 and the face plate 12. It can also be carried out after the SED has been manufactured with the edges facing each other and sealed at the periphery. In this case, during the operation of the SED, the emission current emitted from each electron-emitting device 18 is monitored via a detection unit (not shown), and the value of the emission current (amount of emitted electrons) is set in advance. Under the condition that it has changed beyond a certain value, the above-mentioned tallying function is activated to remove impurities. That is, according to the present invention, the impurity removal process described above can be performed at any timing during or after the SED manufacturing process. As a result, the temporal change in the emission current value of each electron-emitting device 18 of the SED can be eliminated, and stable driving characteristics can be exhibited over a long period of time.
産業上の利用可能性  Industrial applicability
[0074] 以上説明したように、この発明によると、簡単な方法により電子放出素子の特性劣 化の要因となる不純物を確実に除去できる。また、表示装置を製造した後、所望する タイミングで電子放出素子をクリーニングでき、経時的な不純物の付着による特性劣 化を防止できる。 [0074] As described above, according to the present invention, impurities that cause deterioration of the characteristics of the electron-emitting device can be reliably removed by a simple method. In addition, after the display device is manufactured, the electron-emitting device can be cleaned at a desired timing, and deterioration of characteristics due to adhesion of impurities over time can be prevented.

Claims

請求の範囲 The scope of the claims
[1] 基板上に互いに離間した一対の電極を形成する工程と、  [1] forming a pair of electrodes spaced apart from each other on a substrate;
上記一対の電極をつなぐように導電膜を形成する工程と、  Forming a conductive film so as to connect the pair of electrodes;
上記導電膜に電子放出部を形成する工程と、  Forming an electron emission portion in the conductive film;
上記一対の電極に電圧を与えて上記電子放出部から電子を放出させ、且つ上記 一対の電極に逆極性の電圧を与えて上記電子放出部力 電子を放出させ、上記電 子放出部の不純物を除去する不純物除去工程と、  A voltage is applied to the pair of electrodes to emit electrons from the electron emission section, and a voltage having a reverse polarity is applied to the pair of electrodes to discharge the electron emission section force electrons to remove impurities in the electron emission section. Removing impurities to be removed;
を有することを特徴とする電子放出素子の製造方法。  A method for manufacturing an electron-emitting device, comprising:
[2] 上記電子放出部を形成する工程の後で上記不純物除去工程の前に少なくとも上 記電子放出部を炭化する活性ィ匕工程をさらに有することを特徴とする請求項 1に記 載の電子放出素子の製造方法。  [2] The electron according to [1], further comprising an activation step for carbonizing at least the electron emission portion after the step of forming the electron emission portion and before the impurity removing step. A method for manufacturing an emitting device.
[3] 上記活性化工程の後で上記不純物除去工程の前に真空雰囲気中で熱処理する ベーキング工程をさらに有することを特徴とする請求項 2に記載の電子放出素子の 製造方法。  3. The method for manufacturing an electron-emitting device according to claim 2, further comprising a baking step of performing a heat treatment in a vacuum atmosphere after the activation step and before the impurity removal step.
[4] 基板上に互いに離間した一対の電極を形成する工程と、  [4] forming a pair of electrodes spaced apart from each other on the substrate;
上記一対の電極をつなぐように導電膜を形成する工程と、  Forming a conductive film so as to connect the pair of electrodes;
上記導電膜に電子放出部を形成する工程と、  Forming an electron emission portion in the conductive film;
上記一対の電極に電圧を与えて上記電子放出部から電子を放出させる前駆動ェ 程と、  A pre-driving step in which a voltage is applied to the pair of electrodes to emit electrons from the electron emission portion;
この前駆動工程と逆極性の電圧を上記一対の電極に与えて上記電子放出部から 電子を放出させる不純物除去工程と、  An impurity removal step of applying electrons having a polarity opposite to that of the previous driving step to the pair of electrodes to emit electrons from the electron emission portion;
を有することを特徴とする電子放出素子の製造方法。  A method for manufacturing an electron-emitting device, comprising:
[5] 上記電子放出部を形成する工程の後で上記前駆動工程の前に少なくとも上記電 子放出部を炭化する活性ィ匕工程をさらに有することを特徴とする請求項 4に記載の 電子放出素子の製造方法。 5. The electron emission according to claim 4, further comprising an activation step for carbonizing at least the electron emission portion after the step of forming the electron emission portion and before the pre-driving step. Device manufacturing method.
[6] 上記活性化工程の後で上記前駆動工程の前に真空雰囲気中で熱処理するべ一 キング工程をさらに有することを特徴とする請求項 5に記載の電子放出素子の製造 方法。 6. The method for manufacturing an electron-emitting device according to claim 5, further comprising a baking step in which heat treatment is performed in a vacuum atmosphere after the activation step and before the pre-driving step.
[7] 上記一対の電極に与える電圧は、方形波パルス、正弦波パルス、三角波パルスの うちいずれかのパルス電圧であることを特徴とする請求項 1または 4に記載の電子放 出素子の製造方法。 [7] The electron-emitting device according to claim 1 or 4, wherein the voltage applied to the pair of electrodes is any one of a square wave pulse, a sine wave pulse, and a triangular wave pulse. Method.
[8] 上記パルス電圧は、正極性の電圧パルスおよび負極性の電圧パルスのうち少なく とも一方を含むことを特徴とする請求項 7に記載の電子放出素子の製造方法。  8. The method of manufacturing an electron-emitting device according to claim 7, wherein the pulse voltage includes at least one of a positive voltage pulse and a negative voltage pulse.
[9] 上記不純物除去工程は、 [9] The impurity removal step includes
上記電子放出部力 放出された電子を検出する検出工程と、  A detection step of detecting the emitted electron force,
この検出工程における検出結果に基づいて、上記一対の電極に与える電圧の大き さ、パルス幅、周波数、および極性のうち少なくとも 1つを調整する調整工程と、 を有することを特徴とする請求項 7に記載の電子放出素子の製造方法。  8. An adjustment step of adjusting at least one of the magnitude, pulse width, frequency, and polarity of the voltage applied to the pair of electrodes based on the detection result in the detection step. A method for manufacturing the electron-emitting device according to the above.
[10] 背面基板上に複数対の電極を形成する工程と、 [10] forming a plurality of pairs of electrodes on the back substrate;
上記複数対の電極を夫々つなぐように複数の導電膜を形成する工程と、 上記複数の導電膜夫々に電子放出部を形成する工程と、  Forming a plurality of conductive films so as to connect the plurality of pairs of electrodes, and forming an electron-emitting portion in each of the plurality of conductive films;
少なくとも上記複数の電子放出部を炭化する活性化工程と、  An activation step of carbonizing at least the plurality of electron emission portions;
真空雰囲気中で上記背面基板を熱処理するべ一キング工程と、  A baking process for heat-treating the back substrate in a vacuum atmosphere;
上記複数対の電極に電圧を与えて上記複数の電子放出部力 電子を放出させ、 且つ上記複数対の電極に逆極性の電圧を与えて上記複数の電子放出部力 電子 を放出させ、上記複数の電子放出部の不純物を除去する不純物除去工程と、 蛍光体層を有する前面基板を上記背面基板と真空雰囲気中で組み合わせて周縁 部同士を封着する封着工程と、  A voltage is applied to the plurality of pairs of electrodes to emit the plurality of electron-emitting part force electrons, and a voltage having a reverse polarity is applied to the plurality of pairs of electrodes to emit the plurality of electron-emitting part force electrons. An impurity removing step of removing impurities in the electron emission portion, a sealing step of sealing the peripheral portions by combining the front substrate having the phosphor layer in the vacuum atmosphere with the rear substrate,
を有することを特徴とする表示装置の製造方法。  A method for manufacturing a display device, comprising:
[11] 上記不純物除去工程は、上記べ一キング工程中或いはべ一キング工程の前に行 われることを特徴とする請求項 10に記載の表示装置の製造方法。 11. The method for manufacturing a display device according to claim 10, wherein the impurity removing step is performed during the baking process or before the baking process.
[12] 上記不純物除去工程は、上記活性ィ匕処理の後に行われることを特徴とする請求項[12] The impurity removing step is performed after the activity treatment.
11に記載の表示装置の製造方法。 11. A method for manufacturing the display device according to 11.
[13] 上記不純物除去工程は、上記封着工程の後に行われることを特徴とする請求項 1[13] The impurity removing step is performed after the sealing step.
0に記載の表示装置の製造方法。 A manufacturing method of the display device according to 0.
[14] 上記不純物除去工程で上記複数対の電極に与える電圧は、方形波パルス、正弦 波パルス、三角波パルスのうち 、ずれかのパルス電圧であることを特徴とする請求項[14] The voltage applied to the plurality of pairs of electrodes in the impurity removal step is a square wave pulse, sine The pulse voltage is any one of a wave pulse and a triangular wave pulse.
10乃至 13のいずれかに記載の表示装置の製造方法。 14. A method for manufacturing a display device according to any one of 10 to 13.
[15] 上記パルス電圧は、正極性の電圧パルスおよび負極性の電圧パルスのうち少なく とも一方を含むことを特徴とする請求項 14に記載の表示装置の製造方法。 15. The method of manufacturing a display device according to claim 14, wherein the pulse voltage includes at least one of a positive voltage pulse and a negative voltage pulse.
[16] 上記不純物除去工程は、 [16] The impurity removal step includes:
上記複数の電子放出部力 放出された電子を検出する検出工程と、  A detection step of detecting the plurality of electron emission unit forces emitted;
この検出工程における検出結果に基づいて、上記複数対の電極に与える電圧の 大きさ、パルス幅、周波数、および極性のうち少なくとも 1つを調整する調整工程と、 を有することを特徴とする請求項 14に記載の表示装置の製造方法。  And an adjustment step of adjusting at least one of a magnitude, a pulse width, a frequency, and a polarity of a voltage applied to the plurality of pairs of electrodes based on a detection result in the detection step. 14. A method for manufacturing a display device according to 14.
[17] 所定の隙間を介して対向した背面基板および前面基板と、 [17] a rear substrate and a front substrate facing each other through a predetermined gap;
上記背面基板の対向面上に設けられ、複数対の電極に画像信号に応じた電圧を 与えることにより電子を選択的に放出する複数の電子放出素子と、  A plurality of electron-emitting devices which are provided on the opposite surface of the back substrate and selectively emit electrons by applying a voltage corresponding to an image signal to a plurality of pairs of electrodes;
上記前面基板の対向面上に設けられ、電子の衝突により画像を表示する画像表示 部と、を備え、  An image display unit provided on the facing surface of the front substrate and displaying an image by collision of electrons,
上記複数対の電極に画像を表示するときと同じ極性の電圧を与えて上記複数の電 子放出素子から電子を放出させ、且つ上記複数対の電極に逆極性の電圧を与えて 上記複数の電子放出素子から電子を放出させることにより、上記複数の電子放出素 子近傍の不純物を除去するクリーニング機能を備えていることを特徴とする表示装置  A voltage having the same polarity as that when displaying an image is applied to the plurality of pairs of electrodes to emit electrons from the plurality of electron-emitting devices, and a voltage having a reverse polarity is applied to the plurality of pairs of electrodes to provide the plurality of electrons. A display device having a cleaning function of removing impurities in the vicinity of the plurality of electron-emitting devices by emitting electrons from the emitting device
[18] 画像を表示しているときに上記複数の電子放出素子力 放出される電子をモニタ する検出部をさらに備え、 [18] The apparatus further includes a detection unit that monitors the electrons emitted from the plurality of electron-emitting device forces when displaying an image,
この検出部にてモニタした電子の量が一定値を超えて変化したとき、上記複数対の 電極に正逆両極性の電圧を交互に与えて不純物を除去する上記クリーニング機能 を働力せることを特徴とする請求項 17に記載の表示装置。  When the amount of electrons monitored by this detector changes beyond a certain value, the cleaning function for removing impurities by applying positive and reverse voltages alternately to the plurality of pairs of electrodes is activated. The display device according to claim 17.
PCT/JP2004/013761 2003-07-08 2004-09-21 Electron emitting element manufacturing method, displayer manufacturing method and displayer provided with electron emitting element cleaning function WO2006033137A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2004/013761 WO2006033137A1 (en) 2004-09-21 2004-09-21 Electron emitting element manufacturing method, displayer manufacturing method and displayer provided with electron emitting element cleaning function
EP04787944A EP1793405A1 (en) 2004-09-21 2004-09-21 Electron emitting element manufacturing method, displayer manufacturing method and displayer provided with electron emitting element cleaning function
US11/677,376 US20070138957A1 (en) 2003-07-08 2007-02-21 Electron emission element manufacturing method, display unit manufacturing method, and display unit with electron emission element cleaning function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013761 WO2006033137A1 (en) 2004-09-21 2004-09-21 Electron emitting element manufacturing method, displayer manufacturing method and displayer provided with electron emitting element cleaning function

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/677,376 Continuation US20070138957A1 (en) 2003-07-08 2007-02-21 Electron emission element manufacturing method, display unit manufacturing method, and display unit with electron emission element cleaning function

Publications (1)

Publication Number Publication Date
WO2006033137A1 true WO2006033137A1 (en) 2006-03-30

Family

ID=36089904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013761 WO2006033137A1 (en) 2003-07-08 2004-09-21 Electron emitting element manufacturing method, displayer manufacturing method and displayer provided with electron emitting element cleaning function

Country Status (2)

Country Link
EP (1) EP1793405A1 (en)
WO (1) WO2006033137A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243293A (en) * 1999-02-24 2000-09-08 Canon Inc Electron source manufacturing device, manufacture of the electron source, and the electron source
JP2000311596A (en) * 1999-02-25 2000-11-07 Canon Inc Manufacture of and equipment for electron emitting element, driving method and adjusting method for it
JP2002175756A (en) * 2000-09-29 2002-06-21 Canon Inc Manufacturing method for image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243293A (en) * 1999-02-24 2000-09-08 Canon Inc Electron source manufacturing device, manufacture of the electron source, and the electron source
JP2000311596A (en) * 1999-02-25 2000-11-07 Canon Inc Manufacture of and equipment for electron emitting element, driving method and adjusting method for it
JP2002175756A (en) * 2000-09-29 2002-06-21 Canon Inc Manufacturing method for image display device

Also Published As

Publication number Publication date
EP1793405A1 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
US6867537B2 (en) Image-forming apparatus having vent tube and getter
KR100709173B1 (en) Image display apparatus and method for manufacturing the same
US6512329B1 (en) Image forming apparatus having spacers joined with a soft member and method of manufacturing the same
US7230372B2 (en) Electron-emitting device, electron source, image display apparatus, and their manufacturing method
JP4323679B2 (en) Electron source forming substrate and image display device
JP4865169B2 (en) Manufacturing method of spacer
KR20000058204A (en) Electron-emitting device, electron source, and manufacture method for image-forming apparatus
WO2006033137A1 (en) Electron emitting element manufacturing method, displayer manufacturing method and displayer provided with electron emitting element cleaning function
TWI258792B (en) Manufacturing method of electron emission element, manufacturing method of display device, and display device equipped with cleaning function of electron emission device
JP3740296B2 (en) Image forming apparatus
JP3826077B2 (en) Electron beam apparatus and method for manufacturing the electron beam apparatus
JPH09245649A (en) Manufacture of flat-panel for display, flat-panel display panel and flat-panel image forming device
JP2005038619A (en) Manufacturing method of electron emitter, and display device equipped with same
JP2004055347A (en) Electron emitting element, electron emitting device, display device, and manufacturing method of electron emitting device
JP2004063103A (en) Electron emission element, electron emission device, display device, and method for manufacturing electron emission element
JP4481411B2 (en) Electron beam equipment
JP3571915B2 (en) Method for manufacturing electron-emitting device
JP3938185B2 (en) Image display device and manufacturing method thereof
JP3781400B2 (en) Image display device
JP3728099B2 (en) Antistatic film and display device
JP2005243436A (en) Electron emitting element, electron emitting device, and display device
JP2005174864A (en) Electron emitter, electron emitting device, display device, and method of manufacturing electron emitter
JPH10284284A (en) Antistatic film and display device
JP2001332194A (en) Electron beam generator and image forming device
JP3689677B2 (en) Manufacturing method of image forming apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004787944

Country of ref document: EP

Ref document number: 11677376

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2004787944

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11677376

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004787944

Country of ref document: EP