WO2006028220A1 - 受信装置および被検体内導入システム - Google Patents

受信装置および被検体内導入システム Download PDF

Info

Publication number
WO2006028220A1
WO2006028220A1 PCT/JP2005/016651 JP2005016651W WO2006028220A1 WO 2006028220 A1 WO2006028220 A1 WO 2006028220A1 JP 2005016651 W JP2005016651 W JP 2005016651W WO 2006028220 A1 WO2006028220 A1 WO 2006028220A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
data processing
signal
subject
processing
Prior art date
Application number
PCT/JP2005/016651
Other languages
English (en)
French (fr)
Inventor
Toshiaki Shigemori
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to EP05782010A priority Critical patent/EP1810607A4/en
Priority to US11/662,310 priority patent/US20080064330A1/en
Publication of WO2006028220A1 publication Critical patent/WO2006028220A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00036Means for power saving, e.g. sleeping mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof

Definitions

  • the present invention relates to a receiving apparatus that performs reception processing of a radio signal transmitted intermittently and an in-subject introduction system using the receiving apparatus.
  • a swallowable capsule endoscope has been proposed in the field of endoscopes.
  • This capsule endoscope is provided with an imaging function and a wireless communication function.
  • Capsule endoscopes are used to observe inside the body cavity, for example, the stomach, small intestine, and other organs, after being swallowed from the mouth of the subject (human body) for observation (examination) and before being spontaneously excreted. It has the function of moving in accordance with the peristaltic movement and capturing images sequentially.
  • image data imaged inside the body by the capsule endoscope is sequentially transmitted to the outside by wireless communication, received by a receiving device provided outside, and subjected to predetermined processing. Saved after being applied.
  • the receiving device with the receiving mechanism, the signal processing mechanism, and the storage mechanism in this manner while carrying the subject, the subject is swallowed after the capsule endoscope is swallowed.
  • the capsule endoscope system after the capsule endoscope is ejected, an image of the organ is displayed on the display based on the image data stored in the memory, and a diagnosis by a doctor or a nurse is performed. (For example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-19111
  • the present invention has been made in view of the above, and uses a receiving device and a receiving device in which the operation of the receiving mechanism and the operation of the signal processing mechanism are prevented from interfering with each other while avoiding an increase in size.
  • the purpose is to realize the introduction system in the subject.
  • a receiving apparatus that performs reception processing of an intermittently transmitted radio signal, and includes a receiving antenna.
  • the reception process of the radio signal received via the receiver is performed, and the reception means for extracting the original signal included in the radio signal and the reception means force the predetermined data process for the output original signal
  • the data processing by the data processing means and the reception means is stopped while the data processing by the data processing means is stopped while the data processing by the data processing means is being received.
  • a timing control means for controlling the processing to stop.
  • the timing control means is provided for controlling the period in which the receiving means performs the processing operation and the period in which the data processing means performs the processing operation to be separate periods. As a result, the noise generated by one processing operation is Can be prevented.
  • the timing control unit temporarily holds the original signal generated by the receiving unit, and the processing by the data processing unit performs the processing. It has a function of supplying an original signal to the data processing means when being read.
  • the timing control unit includes a FIFO circuit capable of temporarily holding an input signal, and a reception process by the receiving unit.
  • Write control means for controlling the FIFO circuit to hold the signal output from the receiving means, and the data processing means to output the held signal to the data processing means during the data processing.
  • a read control means for controlling the FIFO circuit.
  • the receiving unit and the data processing unit maintain an operable state even during the other processing operation
  • the write unit The control means controls the FIFO circuit so as not to hold a signal output from the receiving means during data processing by the data processing means, and the reading control means performs the receiving processing by the receiving means.
  • the FIFO circuit is controlled not to output the held signal to the data processing means.
  • the radio signal includes an original signal based on predetermined image data, and the data processing means is extracted by the receiving means. The image data is reconstructed based on the original signal.
  • the in-subject introduction system is introduced into the subject, and introduces into the subject to intermittently transmit a radio signal including an original signal corresponding to the acquired in-subject information.
  • An intra-subject introduction system comprising an apparatus and a receiving apparatus that receives a radio signal transmitted from the intra-subject introduction apparatus and performs a predetermined process, wherein the intra-subject introduction apparatus includes: In-subject information acquisition means for acquiring in-subject information, which is internal information, and transmission means for transmitting a radio signal including an original signal corresponding to the in-subject information acquired by the in-subject information acquisition means; The receiving apparatus performs reception processing of a radio signal received via a receiving antenna, and extracts an original signal included in the radio signal A receiving means, a data processing means for reconfiguring data by performing predetermined data processing on the output original signal, and the data received during the receiving process by the receiving means. And timing control means for controlling to stop the reception processing by the reception means while the data processing by the processing means is stopped and the data processing by
  • the timing control means includes a FIFO circuit capable of temporarily holding an input signal, and reception processing by the reception means.
  • the receiving means outputs a write control means for controlling the FIFO circuit so as to hold the output signal, and a signal held at the time of data processing by the data processing means to the data processing means.
  • a read control means for controlling the FIFO circuit to output.
  • the in-vivo information acquiring means has a function of acquiring an in-subject image as in-subject information.
  • the data processing means reconstructs the in-vivo image based on the input original signal.
  • the receiving apparatus and the in-subject introduction system include a timing control unit that controls a period in which the receiving unit performs the processing operation and a period in which the data processing unit performs the processing operation to be separate periods. Therefore, it is possible to prevent the noise generated by one processing operation from affecting the other processing operation.
  • FIG. 1 is a schematic diagram showing an overall configuration of an in-subject introduction system according to an embodiment.
  • FIG. 2 is a block diagram schematically showing a configuration of a capsule endoscope provided in the in-subject introduction system.
  • FIG. 3 is a block diagram schematically showing a configuration of a receiving device provided in the in-subject introduction system.
  • FIG. 4 is a schematic time chart showing processing operation timings of components included in the receiving apparatus.
  • FIG. 5 is a schematic diagram showing the operation of each component of the receiving apparatus during the image processing period.
  • FIG. 1 is a schematic diagram showing an overall configuration of an in-subject introduction system according to the present embodiment.
  • the in-subject introduction system according to the present embodiment includes a capsule endoscope 2 that is introduced into the subject 1 and moves along a passage route, and a capsule endoscope.
  • Receiving device 3 that receives a radio signal including in-subject information transmitted from 2
  • a display device 4 that displays the contents of in-subject information included in the radio signal received by receiving device 3
  • a receiving device 3 and a portable recording medium 5 for transferring information between the display device 4 and the display device 4.
  • the display device 4 is for displaying an in-vivo image captured by the capsule endoscope 2 received by the receiving device 3, and is obtained by the portable recording medium 5. It has a configuration such as a workstation that displays an image based on data. Specifically, the display device 4 may be configured to directly display an image or the like by a CRT display, a liquid crystal display, or the like, or may be configured to output an image or the like to another medium such as a printer.
  • the portable recording medium 5 is detachable from the receiving device 3 and the display device 4, and has a structure capable of outputting and recording information when the portable recording medium 5 is worn on both. Specifically, the portable recording medium 5 is used while the capsule endoscope 2 is moving in the body cavity of the subject 1. It is attached to the receiving device 3 and stores the in-subject image. Then, after the capsule endoscope 2 is discharged from the subject 1, the capsule endoscope 2 is taken out from the receiving device 3 and attached to the display device 4, and the recorded data is read out by the display device 4. When data is exchanged between the receiving device 3 and the display device 4 using a portable recording medium 5 such as a Compact Flash (registered trademark) memory, the receiving device 3 and the display device 4 are connected by wire. Unlike the case, even when the capsule endoscope 2 is moving inside the subject 1, the subject 1 can freely move.
  • a portable recording medium 5 such as a Compact Flash (registered trademark) memory
  • the receiving antennas 6a to 6h are formed using, for example, a loop antenna. Such a loop antenna is used in a state of being fixed at a predetermined position on the body surface of the subject 1, and the receiving antennas 6a to 6h are preferably provided with a fixing means for fixing the loop antenna to the body surface of the subject 1. Prepare.
  • the capsule endoscope 2 functions as an example of an in-subject introduction apparatus according to the present invention.
  • the capsule endoscope 2 captures an in-subject image and transmits a radio signal including the captured image data to the reception apparatus 3. It is for sending.
  • FIG. 2 is a schematic block diagram showing the configuration of the capsule endoscope 2.
  • the capsule endoscope 2 wirelessly transmits an in-subject information acquisition unit 8 for acquiring in-subject information and a radio signal including the in-subject information to the outside of the subject 1.
  • the in-subject information acquisition unit 8 is for acquiring an in-subject image as an image relating to a predetermined area inside the subject 1.
  • the in-subject information acquisition unit 8 includes an LED 12 that outputs illumination light, an LED drive circuit 13 that controls the drive state of the LED 12, a CCD 14 that acquires an in-subject image, and a drive state of the CCD 14. And a CCD drive circuit 15 to be controlled.
  • the transmission unit 9 performs wireless transmission after performing necessary processing such as modulation on the data of the in-vivo image acquired by the in-subject information acquisition unit 8. Specifically The transmission unit 9 generates an original signal based on input data, generates a radio signal by performing processing such as modulation on the original signal, and a radio signal output from the transmission circuit 16 And a transmission antenna 17 for transmitting.
  • the transmission unit 9 intermittently repeats a transmission period and a stop period, which are not always! It is configured to transmit radio signals. That is, from the viewpoint of reducing the power consumption of the capsule endoscope 2, in this embodiment, in order to reduce the data amount of the image acquired by the in-subject information acquisition unit 8, the imaging interval is set to 0.5 seconds. It is about. This means that the amount of data to be transmitted is reduced, and the transmission unit 9 takes about 0.28 seconds to transmit individual image data acquired at intervals of 0.5 seconds. The transmission operation is performed, and the remaining period of about 0.22 seconds is a stop period when no transmission operation is performed.
  • the control unit 10 is for controlling the driving state and the like of the in-vivo information acquiring unit 8 provided in the capsule endoscope 2. Specifically, the control unit 10 has a function of performing general control over these components, and also drives the in-vivo information acquisition unit 8 and the transmission unit 9 in synchronization with each other. It has a function to make it.
  • control unit 10 has a function of controlling the imaging rate of the in-subject image by the in-subject information acquisition unit 8. It is preferable that the capsule endoscope 2 continues to capture and transmit the in-vivo image for several hours, for example, about 8 hours by the power supplied from the power supply unit 11. In this embodiment, in order to realize long-time driving by reducing the power consumption of the capsule endoscope 2, the control unit 10 sets the imaging interval of the in-vivo image by the in-subject information acquisition unit 8 to 0. Control it so that it takes about 5 seconds.
  • the power supply unit 11 is for supplying drive power to the in-vivo information acquiring unit 8, the transmission unit 9, and the control unit 10.
  • the power supply unit 11 may be configured by a rechargeable battery that is configured by a primary battery, or adopts a configuration that stores electric power that is wirelessly fed from the outside. Also good.
  • the capsule endoscope 2 is introduced by the in-subject information acquisition unit 8 after being introduced through the oral cavity of the subject 1 until it is discharged from the body again.
  • Subject 1 An in-subject image, which is an internal image, is acquired and the image data acquired by the transmitter 9 is acquired. Wireless signals including data are intermittently transmitted to the outside.
  • the adverse effect due to the noise of the processing operation inside the receiver 3 is eliminated by utilizing the intermittent transmission of radio signals. ing.
  • the receiving device 3 is for receiving a radio signal transmitted from the capsule endoscope 2 and reconstructing data relating to the in-vivo image included in the radio signal.
  • FIG. 3 is a schematic block diagram showing the configuration of the receiving device 3.
  • the receiving device 3 selects an antenna selection unit 21 that selects a plurality of reception antennas 6a to 6h that are suitable for reception of a radio signal, and a reception selected by the antenna selection unit 21.
  • a receiving circuit 22 that performs processing such as demodulation on a radio signal received through one of the antennas 66a to 6h, and an original signal extracted by the receiving circuit 22 (before being modulated by the transmitting unit 9)
  • a binarization circuit 23 for converting the received signal into a binary digital signal
  • an AZD conversion unit 24 for converting the received intensity signal output from the reception circuit 22 into a predetermined digital signal.
  • the receiving device 3 is binarized by a binary key circuit 23, and includes an image processing unit 26 for reconstructing in-vivo image data based on an original signal via a bridge circuit 25, and an image processing unit 26. And a storage unit 27 for storing the image data reconstructed by. Furthermore, the receiving device 3 in this embodiment includes a timing control unit 28 that adjusts the timing of the receiving process by the receiving circuit 22 and the timing of the image processing by the image processing unit 26 described later, and each component of the receiving device 3. On the other hand, a power supply unit 29 for supplying drive power is provided.
  • the antenna selection unit 21 selects the medium power of the plurality of reception antennas 6a to 6h that is most suitable for reception, and outputs a radio signal received via the selected reception antenna to the reception circuit 22. Is for. Specifically, the antenna selection unit 21 receives radio signals by sequentially switching, for example, each of the reception antennas 6 a to 6 h in advance, and outputs the received radio signals to the reception circuit 22.
  • the reception circuit 22 has a function of outputting an analog signal of RSSKReceivedSignalStrength Indicator (received signal strength indication signal) to the AZD conversion unit 24.
  • the AZD conversion unit 24 decodes the analog signal input from the reception circuit 22. It is converted into a digital signal and output to the antenna selector 21.
  • the unit 21 selects a reception antenna having the highest strength of the RSSI digital signal input from the AZD conversion unit 24, and outputs the reception of the radio signal received through the selected reception antenna to the reception circuit 22. .
  • the antenna selection operation by the antenna selection unit 21 is preferably performed a plurality of times.
  • the receiving circuit 22 is for extracting an original signal by performing processing such as demodulation on the received radio signal.
  • the receiving circuit 22 extracts and outputs the original signal in the state of an analog signal, and the extracted original signal is converted into a digital signal by the binary signal circuit 2 3 for timing control. It is output to part 28.
  • the image processing unit 26 is for reconstructing image data regarding the in-vivo image based on the original signal output from the binarization circuit 23.
  • the image processing unit 26 includes, for example, an arithmetic processing mechanism such as a CPU (Central Processing Unit) that performs predetermined arithmetic processing and a memory mechanism such as SDRAM (Synchronous Dynamic Random Access Memory) that temporarily holds data. .
  • an arithmetic processing mechanism such as a CPU (Central Processing Unit) that performs predetermined arithmetic processing
  • a memory mechanism such as SDRAM (Synchronous Dynamic Random Access Memory) that temporarily holds data.
  • the timing control unit 28 controls the processing timing in the receiving circuit 22 and the image processing unit 26, so that the noise generated in each of the receiving circuit 22 and the image processing unit 26 affects the other operation. It is for avoiding.
  • the receiving circuit 22 and the image processing unit 26 always maintain the driving state, while being processed by the receiving circuit 22 and the image processing unit 26. By controlling the data input / output timing, it is possible to avoid both processing operations simultaneously.
  • the timing control unit 28 temporarily holds the original signal extracted by the receiving circuit 22 (to be precise, the signal obtained by binarizing the original signal, the same applies hereinafter).
  • a FIFO circuit 30, a write control unit 31 for controlling the timing of data writing to the FIFO circuit 30, and a read control unit 32 for controlling the timing of reading data stored in the FIFO circuit 30 are provided.
  • the timing control unit 28 is controlled by the receiving circuit 22.
  • the extracted original signal can be temporarily held before being supplied to the image processing unit 26.
  • the receiving circuit 22 and the image processing unit 26 can perform processing operations simultaneously by appropriately controlling the data writing timing and the reading timing with respect to the FIFO circuit 30 by the writing control unit 31 and the reading control unit 32. This prevents the noise generated by one processing operation from adversely affecting the other processing operation.
  • FIG. 4 is a time chart showing the operation timing of the components included in the receiving device 3. As shown in FIG. 4, the operation timing of each component is roughly divided into a reception processing period and an image processing period. In each period, reception processing for extracting an original signal from a radio signal and image data based on the original signal are performed. Reconfiguration has been performed.
  • the receiving circuit 22 and the binary key circuit 23 perform processing operations and the write control unit 31 outputs a write command to the FIFO circuit 30 during the reception processing period.
  • the reception device 3 extracts the original signal from the radio signal received via any of the reception antennas 6a to 6h in the form of the analog signal by the reception circuit 22 in the reception processing period.
  • the signal is digitized by the binary key circuit 23 and temporarily stored in the digitized original signal force SFIFO circuit 30.
  • the read control unit 32 does not output a read instruction to the FIFO circuit 30 during the reception processing period.
  • the original signal written to the FIFO circuit 30 is
  • the bridge circuit 25 and the image processing unit 26 that are not output to the bridge circuit 25 do not perform processing. From the above, in the reception processing period, only the reception circuit 22, the binary signal circuit 23, and the write control unit 31 perform the respective processes, and the original signal writing process to the FIFO circuit 30 is performed.
  • the reception processing period is set in accordance with the transmission timing of the radio signal by the transmission unit 9 provided in the capsule endoscope 2.
  • the in-subject information acquisition unit 8 included in the capsule endoscope 2 captures the in-subject image at a cycle of about 0.5 seconds, and the transmission unit 9 acquires at the cycle. It has a function to sequentially transmit wireless signals including in-subject images. Then, the transmission unit 9 performs the transmission operation during the entire period of the 0.5 second period.
  • the radio signal transmission operation is performed for about half of the time spent on the network, for example, about 280 ms.
  • the reception processing period shown in FIG. 4 is set in accordance with the transmission timing of the radio signal by the powerful transmission unit 9, and more precisely, the reception processing period is transmitted from the transmission unit 9.
  • the wireless signal is set to include at least a period during which the wireless signal is received via the receiving antenna 6.
  • the reception apparatus 3 has a separate mechanism for setting the reception processing period so as to match the transmission period of the radio signal of the transmission unit 9 at the start of driving of the capsule endoscope 2, etc. It is also good.
  • the reception circuit 22 is maintained in a state in which reception processing can be performed over both the reception processing period and the image processing period rather than being driven only during the reception processing period. OK.
  • a period during which the strength of the radio signal received by the receiving circuit 22 exceeds a predetermined threshold is set as a reception processing period, and the write control unit 31 performs It is also good to instruct.
  • the image processing period is set in a period excluding the reception processing period in the imaging cycle in the in-vivo information acquiring unit 8 provided in the capsule endoscope 2 described above.
  • the read control unit 32 issues a read instruction to the FIFO circuit 30.
  • the digital data of the original signal written to the FIFO circuit 30 during the reception processing period is output to the bridge circuit 25.
  • the image processing by the image processing unit 26 is performed.
  • the image processing unit 26 performs a series of processing within the image processing period to reconstruct image data related to the in-vivo image based on the original signal and to output the obtained image data to the storage unit 27. ing.
  • the intra-subject introduction system which is useful in this embodiment, adopts a configuration in which the reception process 3 and the image process are performed in different periods in the reception device 3, so that the operation of the reception circuit 22 and the image processing unit 26 In the operation, the noise force generated by one operation has the advantage that it can suppress adverse effects on the other operation.
  • the wireless signal from the capsule endoscope 2 is not continuously transmitted. It has a configuration that transmits intermittently.
  • the receiving circuit 22 and the like do not need to continuously process the received radio signal for every period corresponding to the imaging cycle, and perform the receiving process only during the period when the radio signal arrives. It can be configured. Therefore, regarding the processing of the receiving device 3, it is possible to set a reception processing period for extracting the radio signal power original signal and an image processing period for reconstructing image data based on the original signal.
  • the receiving device 3 causes the reception circuit 22 (and the binary key circuit 23, the write control unit 31) to operate in the reception processing period by the action of the timing control unit 28.
  • the image processing unit 26 (and the bridge circuit 25 and the read control unit 32) is set to perform processing only during the image processing period. Therefore, even if noise is generated by one processing operation, the other does not perform processing operation at that time, and the noise generated on one side is prevented from affecting the other processing. Is possible.
  • the receiving apparatus does not increase in size.
  • the FIFO circuit 30 and the like can be sufficiently downsized by using existing technology. Therefore, in the in-vivo introduction system that works with this embodiment, the receiving circuit is suppressed while suppressing the increase in size. There is an advantage that it is possible to prevent an adverse effect due to noise between the image processing unit 22 and the image processing unit 26.
  • the timing control unit 28 includes the FIFO circuit 30, and the write control unit 31 and the read control unit 32 perform the write operation and the read operation of the FIFO circuit 30.
  • the system adopts a configuration in which the timing of reception processing and image processing is shifted by controlling the timing of this.
  • the in-subject introduction system that works according to the present embodiment can suppress an increase in power consumption of the receiving device 3 while suppressing the noise generated on one side from affecting the other process. Has the advantage.
  • the capsule endoscope 2 has a configuration in which a radio signal is intermittently transmitted at an imaging interval of about 0.5 seconds. Receiving The communication processing period and the image processing period are sequentially repeated with a period of about 0.5 seconds. It is not appropriate from the viewpoint of reduction of power consumption and stability of operation to repeat ON / OFF of the receiving circuit 22 and the image processing unit 26 corresponding to a powerful short cycle. Therefore, in the present embodiment, the receiving circuit 22 and the like maintain the processable state because the driving power is supplied even during the image processing period when the processing operation is not performed. The same applies to the image processing unit 26 and the like, and the drive power is supplied not only during the image processing period but also during the reception processing period when the processing operation is not performed, and the state in which the input signal can be processed is maintained. To do.
  • the timing control unit 28 includes a FIFO circuit. 30 is provided, and the influence of noise is eliminated by appropriately controlling the FIFO circuit 30.
  • FIG. 5 is a schematic diagram showing the state of each component during the image processing period.
  • the image processing unit 26 performs image data reconstruction based on the original signal S2 output from the FIFO circuit 30 by the read control signal output from the read control unit 32.
  • the noise is generated with the processing operation.
  • the generated noise is received by, for example, the receiving antenna 6 and input to the receiving circuit 22.
  • the receiving circuit 22 is supplied with driving power even during the image processing period and maintains a state in which the input wireless signal can be received. Therefore, the noise generated in the image processing unit 26 is received. In this case, reception processing is performed, and the processed signal S3 is output from the reception circuit 22.
  • the control signal S4 indicating that writing is not performed to the FIFO circuit 30 is supplied from the writing control unit 31 during the image processing period.
  • the FIFO circuit 30 does not hold the input signal. Therefore, even when the signal S3 resulting from the noise generated by the processing operation of the image processing unit 26 is output from the receiving circuit 22, the signal S3 is a noise that is not held in the FIFO circuit 30. The resulting signal S3 never reaches the image processing unit 26.
  • the intra-subject introduction system that works on the present embodiment includes the FIFO circuit 30.
  • the receiving circuit 22 and the image processing unit 26 it is possible to suppress the noise generated on one side from affecting the other in spite of maintaining the drivable state throughout the reception processing period and the image processing period. Is possible. Therefore, the receiving device 3 suppresses an increase in power consumption and ensures the operational stability of each component, while the noise generated in one of the receiving circuit 22 and the image processing unit 26 affects the other processing operation. If it is possible to avoid exerting, it has an advantage.
  • the wireless signal transmitted from the capsule endoscope 2 includes an original signal corresponding to the image data
  • the receiving device 3 includes an image processing unit 26 that reconstructs the image data based on the original signal. It is said.
  • the present invention can be applied to a receiving apparatus that receives an original signal corresponding to data other than image data.
  • a general apparatus can be used instead of the image processing unit 26. It is also possible to configure a receiving device including a signal processing unit.
  • the timing control unit 28 includes the FIFO circuit 30
  • the timing control unit 28 is configured using a shift register, a stack, and the like instead of the FIFO circuit 30. It's also good. Even when such a configuration is adopted, it is possible to enjoy the same advantages as when the FIFO circuit 30 is provided by combining other circuits as necessary.
  • the timing control unit 28 adopts a configuration that avoids simultaneous processing operations by controlling the timing of data input / output for each component.
  • the drive timing of each component may be controlled. That is, even when the timing control unit 28 controls the power supply and the like so that the reception circuit 22 is driven only during the reception period and the image processing unit 26 is driven only during the image processing period, both are processed simultaneously. Since it is possible to avoid performing an operation, it is possible to enjoy the advantage that it is possible to avoid that one noise affects the other operation.
  • the receiving apparatus according to the present invention and the in-subject introduction system using the receiving apparatus are useful for a medical observation apparatus that is introduced into the human body and observes a test site. Therefore, it is suitable for suppressing interference between the operation of the receiving mechanism and the operation of the signal processing mechanism while avoiding an increase in size.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Endoscopes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 受信装置3は、受信アンテナ6a~6hのいずれかを介して受信された無線信号に対して復調等の受信処理を行う受信回路22と、受信処理によって得られた原信号に基づき画像データを再構成する画像処理部26と、受信回路22の処理動作タイミングと、画像処理部26の処理動作タイミングとが重ならないよう制御するタイミング制御部28とを備える。受信回路22の処理動作タイミングと画像処理部26の処理動作タイミングとが重ならないよう制御することによって、一方の処理動作によって生じたノイズが、他方の処理動作に影響を及ぼすことを防止することが可能である。これにより、大型化を回避しつつ受信機構の動作と信号処理機構の動作とが互いに干渉することを抑制した。

Description

明 細 書
受信装置および被検体内導入システム
技術分野
[0001] 本発明は、間欠的に送信された無線信号の受信処理を行う受信装置および受信 装置を用いた被検体内導入システムに関するものである。
背景技術
[0002] 近年、内視鏡の分野にお!、ては、飲込み型のカプセル型内視鏡が提案されて 、る 。このカプセル型内視鏡には、撮像機能と無線通信機能とが設けられている。カプセ ル型内視鏡は、観察 (検査)のために被検体 (人体)の口から飲込まれた後、自然排 出されるまでの間、体腔内、例えば胃、小腸などの臓器の内部をその蠕動運動に従 つて移動し、順次撮像する機能を有する。
[0003] 体腔内を移動する間、カプセル型内視鏡によって体内で撮像された画像データは 、順次無線通信により外部に送信され、外部に設けられた受信装置によって受信さ れ、所定の処理が施された上で保存される。このように受信機構、信号処理機構およ び記憶機構を備えた受信装置を携帯した状態で使用することにより、被検体は、カブ セル型内視鏡を飲み込んだ後、排出されるまでの間に渡って、自由に行動できる。 そして、従来のカプセル型内視鏡システムでは、カプセル型内視鏡が排出された後 、メモリに蓄積された画像データに基づいて臓器の画像をディスプレイに表示させて 医者もしくは看護士による診断が行われることとなる (例えば、特許文献 1参照)。
[0004] 特許文献 1 :特開 2003— 19111号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、従来のカプセル型内視鏡システムに備わる受信装置では、受信機構 の動作と信号処理機構の動作とが互いに干渉するという課題が存在する。具体的に は、従来のカプセル型内視鏡システムに備わる受信装置において、一方の動作によ つて生じたノイズが他方の動作に影響を及ぼすという課題が存在する。
[0006] 力かる課題を解決するために、従来は、例えば受信装置内において、受信機構と 信号処理機構とを別体の基板上に形成し、互!ヽの間を所定距離だけ離隔した構成 が提案されている。しかしながら、カゝかる構成を採用した場合には、受信装置に内蔵 される基板数が増加することとなり、受信装置が大型化するという課題が新たに生じ ることとなる。特に、カプセル型内視鏡システムでは、カプセル型内視鏡を体内に導 入している間における患者等の負担を軽減することが好ましいことから、患者等に携 帯される受信装置が大型化することは妥当ではない。
[0007] また、別の提案として、受信機構および信号処理機構のそれぞれを電磁波遮蔽部 材によって覆う構成も提案されている。すなわち、それぞれの機構を電磁波遮蔽部 材によって覆うことによって、発生したノイズが他方に到達することを防止し、動作の 干渉が生じることを防止することとしている。し力しながら、力かる構成を採用した場合 には構造が複雑化する他、本来的に受信機構と信号処理機構とは電気的に接続さ れていることから、それぞれを他方に対して完全に遮蔽することは困難であり、かかる 構成によってノイズの混入を完全に防止することは容易ではない。
[0008] 本発明は、上記に鑑みてなされたものであって、大型化を回避しつつ受信機構の 動作と信号処理機構の動作とが互いに干渉することを抑制した受信装置および受信 装置を用いた被検体内導入システムを実現することを目的とする。
課題を解決するための手段
[0009] 上述した課題を解決し、目的を達成するために、請求項 1にカゝかる受信装置は、間 欠的に送信された無線信号の受信処理を行う受信装置であって、受信アンテナを介 して受信された無線信号の受信処理を行 ヽ、前記無線信号に含まれる原信号を抽 出する受信手段と、前記受信手段力 出力された原信号に対して所定のデータ処理 を行うデータ処理手段と、前記受信手段による受信処理が行われている間、前記デ ータ処理手段によるデータ処理を停止し、前記データ処理手段によるデータ処理が 行われている間、前記受信手段による受信処理が停止するよう制御するタイミング制 御手段とを備えたことを特徴とする。
[0010] この請求項 1の発明によれば、受信手段が処理動作を行う期間と、データ処理手段 が処理動作を行う期間とがそれぞれ別個の期間となるよう制御するタイミング制御手 段を備えたこととしたため、一方の処理動作によって生じるノイズが他方の処理動作 に影響を及ぼすことを防止することが可能である。
[0011] また、請求項 2にかかる受信装置は、上記の発明において、前記タイミング制御手 段は、前記受信手段によって生成された原信号を一時的に保持し、前記データ処理 手段による処理が行われる際に前記データ処理手段に対して原信号を供給する機 能を有することを特徴とする。
[0012] また、請求項 3にかかる受信装置は、上記の発明において、前記タイミング制御手 段は、入力信号を一時的に保持可能な FIFO回路と、前記受信手段による受信処理 の際に、前記受信手段から出力される信号を保持するよう前記 FIFO回路を制御す る書込制御手段と、前記データ処理手段によるデータ処理の際に、保持した信号を 前記データ処理手段に対して出力するよう前記 FIFO回路を制御する読込制御手段 とを備えたことを特徴とする。
[0013] また、請求項 4にかかる受信装置は、上記の発明において、前記受信手段および 前記データ処理手段は、他方の処理動作時にお!、ても動作可能な状態を維持し、 前記書込制御手段は、前記データ処理手段によるデータ処理の際に、前記受信手 段から出力される信号を保持しないよう前記 FIFO回路を制御し、前記読込制御手 段は、前記受信手段による受信処理の際に、前記データ処理手段に対して保持した 信号を出力しないよう前記 FIFO回路を制御することを特徴とする。
[0014] また、請求項 5にかかる受信装置は、上記の発明において、前記無線信号は、所 定の画像データに基づく原信号を含み、前記データ処理手段は、前記受信手段に よって抽出された原信号に基づき画像データを再構成することを特徴とする。
[0015] また、請求項 6にかかる被検体内導入システムは、被検体内に導入され、取得した 被検体内情報に対応した原信号を含む無線信号を間欠的に送信する被検体内導 入装置と、該被検体内導入装置から送信された無線信号を受信し、所定の処理を行 う受信装置とを備えた被検体内導入システムであって、前記被検体内導入装置は、 被検体内部の情報である被検体内情報を取得する被検体内情報取得手段と、前記 被検体内情報取得手段によって取得された被検体内情報に対応した原信号を含む 無線信号を送信する送信手段とを備え、前記受信装置は、受信アンテナを介して受 信された無線信号の受信処理を行 ヽ、前記無線信号に含まれる原信号を抽出する 受信手段と、前記受信手段力 出力された原信号に対して所定のデータ処理を行う ことによって、データを再構成するデータ処理手段と、前記受信手段による受信処理 が行われている間、前記データ処理手段によるデータ処理を停止し、前記データ処 理手段によるデータ処理が行われている間、前記受信手段による受信処理が停止 するよう制御するタイミング制御手段とを備えたことを特徴とする。
[0016] また、請求項 7にかかる被検体内導入システムは、上記の発明において、前記タイ ミング制御手段は、入力信号を一時的に保持可能な FIFO回路と、前記受信手段に よる受信処理の際に、前記受信手段力 出力される信号を保持するよう前記 FIFO 回路を制御する書込制御手段と、前記データ処理手段によるデータ処理の際に、保 持した信号を前記データ処理手段に対して出力するよう前記 FIFO回路を制御する 読込制御手段とを備えたことを特徴とする。
[0017] また、請求項 8にかかる被検体内導入システムは、上記の発明にお 、て、前記被検 体内情報取得手段は、被検体内情報として被検体内画像を取得する機能を有し、前 記データ処理手段は、入力された原信号に基づき前記被検体内画像を再構成する ことを特徴とする。
発明の効果
[0018] 本発明にかかる受信装置および被検体内導入システムは、受信手段が処理動作 を行う期間と、データ処理手段が処理動作を行う期間とがそれぞれ別個の期間となる よう制御するタイミング制御手段を備えたこととしたため、一方の処理動作によって生 じるノイズが他方の処理動作に影響を及ぼすことを防止することが可能であるという 効果を奏する。
図面の簡単な説明
[0019] [図 1]図 1は、実施例にカゝかる被検体内導入システムの全体構成を示す模式図である
[図 2]図 2は、被検体内導入システムに備わるカプセル型内視鏡の構成を模式的に 示すブロック図である。
[図 3]図 3は、被検体内導入システムに備わる受信装置の構成を模式的に示すブロッ ク図である。 [図 4]図 4は、受信装置に備わる構成要素の処理動作タイミングを示す模式的なタイ ムチャートである。
[図 5]図 5は、画像処理期間における受信装置の各構成要素の動作を示す模式図で ある。
符号の説明
1 被検体
2 カプセル型内視鏡
3 受信装置
4 表示装置
5 携帯型記録媒体
6a〜6h 受信アンテナ
8 被検体内画像取得部
9 送信部
10 制御部
11 電力供給部
12 LED
13 LED駆動回路
14 CCD
15 CCD駆動回路
16 送信回路
17 送信アンテナ
21 アンテナ選択部
22 受信回路
23 2値化回路
24 AZD変換部
25 ブリッジ回路
26 画像処理部 28 タイミング制御部
29 電力供給部
30 FIFO回路
31 書込制御部
32 読込制御部
発明を実施するための最良の形態
[0021] 以下、この発明を実施するための最良の形態である被検体内導入装置および被検 体内導入システムについて説明する。なお、図面は模式的なものであり、各部分の 厚みと幅との関係、それぞれの部分の厚みの比率などは現実のものとは異なることに 留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分 が含まれて!/、ることはもちろんである。
実施例 1
[0022] 図 1は、本実施例にカゝかる被検体内導入システムの全体構成を示す模式図である 。図 1に示すように、本実施例にカゝかる被検体内導入システムは、被検体 1の内部に 導入されて通過経路に沿って移動するカプセル型内視鏡 2と、カプセル型内視鏡 2 から送信された、被検体内情報を含む無線信号を受信する受信装置 3と、受信装置 3によって受信された無線信号に含まれる被検体内情報の内容を表示する表示装置 4と、受信装置 3と表示装置 4との間の情報の受け渡しを行うための携帯型記録媒体 5とを備える。
[0023] 表示装置 4は、受信装置 3によって受信された、カプセル型内視鏡 2によって撮像さ れた被検体内画像等を表示するためのものであり、携帯型記録媒体 5によって得ら れるデータに基づいて画像表示を行うワークステーション等のような構成を有する。 具体的には、表示装置 4は、 CRTディスプレイ、液晶ディスプレイ等によって直接画 像等を表示する構成としても良いし、プリンタ等のように、他の媒体に画像等を出力 する構成としても良い。
[0024] 携帯型記録媒体 5は、受信装置 3および表示装置 4に対して着脱可能であって、両 者に対する装着時に情報の出力および記録が可能な構造を有する。具体的には、 携帯型記録媒体 5は、カプセル型内視鏡 2が被検体 1の体腔内を移動している間は 受信装置 3に装着されて被検体内画像を記憶する。そして、カプセル型内視鏡 2が 被検体 1から排出された後に、受信装置 3から取り出されて表示装置 4に装着され、 記録したデータが表示装置 4によって読み出される構成を有する。受信装置 3と表示 装置 4との間のデータの受け渡しをコンパクトフラッシュ (登録商標)メモリ等の携帯型 記録媒体 5によって行うことで、受信装置 3と表示装置 4との間が有線接続された場 合と異なり、カプセル型内視鏡 2が被検体 1内部を移動中であっても、被検体 1が自 由に行動することが可能となる。
[0025] 受信アンテナ 6a〜6hは、例えばループアンテナを用いて形成される。かかるルー プアンテナは、被検体 1の体表面の所定の位置に固定された状態で使用され、受信 アンテナ 6a〜6hは、好ましくはループアンテナを被検体 1の体表面に固定するため の固定手段を備える。
[0026] 次に、カプセル型内視鏡 2について説明する。カプセル型内視鏡 2は、本発明にお ける被検体内導入装置の一例として機能するものであって、被検体内画像を撮像し 、撮像した画像データを含む無線信号を受信装置 3に対して送信するためのもので ある。
[0027] 図 2は、カプセル型内視鏡 2の構成を示す模式的なブロック図である。図 2に示すよ うに、カプセル型内視鏡 2は、被検体内情報を取得するための被検体内情報取得部 8と、被検体内情報を含む無線信号を被検体 1外部に無線送信する送信部 9と、被 検体内情報取得部 8および送信部 9の駆動状態を制御する制御部 10と、カプセル 型内視鏡 2に備わる構成要素に対して駆動電力を供給する電力供給部 11とを備え る。
[0028] 被検体内情報取得部 8は、被検体 1内部の所定領域に関する画像として被検体内 画像を取得するためのものである。具体的には、被検体内情報取得部 8は、照明光 を出力する LED12と、 LED12の駆動状態を制御する LED駆動回路 13と、被検体 内画像を取得する CCD14と、 CCD14の駆動状態を制御する CCD駆動回路 15とを 備える。
[0029] 送信部 9は、被検体内情報取得部 8によって取得された被検体内画像のデータ〖こ 対して変調等の必要な処理を施した上で無線送信するためのものである。具体的に は、送信部 9は、入力データに基づき原信号を生成し、原信号に対して変調等の処 理を行うことによって無線信号を生成する送信回路 16と、送信回路 16から出力され た無線信号を送信するための送信アンテナ 17とを備える。
[0030] なお、本実施例にお!ヽて、送信部 9は、常に無線信号の送信動作を行って!/ヽるの ではなぐ送信期間と停止期間を交互に繰り返すことによって、間欠的に無線信号を 送信するよう構成されている。すなわち、カプセル型内視鏡 2の消費電力を低減する 観点から、本実施例では、被検体内情報取得部 8によって取得される画像のデータ 量を低減するために、撮像間隔を 0. 5秒程度としている。このことは送信されるデー タ量が低減されることを意味し、送信部 9は、 0. 5秒間隔で取得される個々の画像デ ータを送信するために 0. 28秒程度に渡って送信動作を行い、残りの 0. 22秒程度 の期間は送信動作を行わな 、停止期間となる。
[0031] 制御部 10は、カプセル型内視鏡 2に備わる被検体内情報取得部 8等の駆動状態 等を制御するためのものである。具体的には、制御部 10は、これらの構成要素に対 して一般的な制御を行う機能を有する他、被検体内情報取得部 8と送信部 9とを互 ヽ に同期した状態で駆動させる機能を有する。
[0032] また、制御部 10は、被検体内情報取得部 8による被検体内画像の撮像レートを制 御する機能を有する。カプセル型内視鏡 2は、電力供給部 11によって供給される電 力によって数時間、例えば 8時間程度に渡って被検体内画像の撮像 ·送信を継続す ることが好ましい。本実施例では、カプセル型内視鏡 2の消費電力を低減することに よって長時間駆動を実現するため、制御部 10は被検体内情報取得部 8による被検 体内画像の撮像間隔が 0. 5秒程度となるよう制御を行って 、る。
[0033] 電力供給部 11は、被検体内情報取得部 8、送信部 9および制御部 10の駆動電力 を供給するためのものである。本実施例では、電力供給部 11は、一次バッテリーによ つて構成されることとする力 充電池によって構成されることとしても良いし、外部から 無線給電された電力を蓄電する構成を採用しても良 ヽ。
[0034] 以上の構成を有することにより、カプセル型内視鏡 2は被検体 1の口腔部を介して 導入された後、再び体外に排出されるまでの間、被検体内情報取得部 8によって被 検体 1内部の画像たる被検体内画像を取得し、送信部 9によって取得した画像デー タを含む無線信号を間欠的に外部に送信する。後述するように、本実施例にかかる 被検体内導入システムでは、間欠的に無線信号が送信されることを利用することによ つて、受信装置 3の内部における処理動作のノイズによる悪影響を排除している。
[0035] 次に、受信装置 3について説明する。受信装置 3は、カプセル型内視鏡 2から送信 された無線信号を受信し、無線信号に含まれる被検体内画像に関するデータを再構 成するためのものである。
[0036] 図 3は、受信装置 3の構成を示す模式的なブロック図である。図 3に示すように、受 信装置 3は、複数存在する受信アンテナ 6a〜6hの中から無線信号の受信に適した ものを選択するアンテナ選択部 21と、アンテナ選択部 21によって選択された受信ァ ンテナ 66a〜6hの ヽずれかを介して受信された無線信号に対して、復調等の処理を 行う受信回路 22と、受信回路 22によって抽出された原信号 (送信部 9によって変調 される前の信号)を 2値化されたディジタル信号に変換する 2値化回路 23と、受信回 路 22から出力された受信強度信号を所定のディジタル信号に変換する AZD変換 部 24とを備える。また、受信装置 3は、 2値ィ匕回路 23によって 2値ィ匕され、ブリッジ回 路 25を経由した原信号に基づき被検体内画像データを再構成する画像処理部 26と 、画像処理部 26によって再構成された画像データを記憶する記憶部 27とを備える。 さらに、本実施例における受信装置 3は、受信回路 22による受信処理のタイミングと 、後述する画像処理部 26による画像処理のタイミングとを調整するタイミング制御部 28と、受信装置 3の各構成要素に対して駆動電力を供給する電力供給部 29を備え る。
[0037] アンテナ選択部 21は、複数の受信アンテナ 6a〜6hの中力も最も受信に適したもの を選択し、選択した受信アンテナを介して受信された無線信号を受信回路 22に対し て出力するためのものである。具体的には、アンテナ選択部 21は、例えばあらかじめ 受信アンテナ 6a〜6hのそれぞれを順次切り替えて無線信号を受信し、受信した無 線信号を受信回路 22に出力する。受信回路 22は、 RSSKReceivedSignalStrengthln dicator:受信信号強度表示信号)のアナログ信号を AZD変換部 24に対して出力す る機能を有し、 AZD変換部 24は、受信回路 22から入力されたアナログ信号をディ ジタル信号に変換してアンテナ選択部 21に対して出力する。そして、アンテナ選択 部 21は、 AZD変換部 24から入力された RSSIディジタル信号の強度が最も高くなる 受信アンテナを選択し、選択した受信アンテナを介して受信された無線信号の受信 を受信回路 22に対して出力する。なお、カプセル型内視鏡 2が被検体 1内を移動す ることによって、時間の経過に伴い受信に適した受信アンテナは変化する。従って、 アンテナ選択部 21によるアンテナ選択動作は、複数回行うことが好ましい。
[0038] 受信回路 22は、受信した無線信号に対して復調等の処理を行うことによって原信 号を抽出するためのものである。なお、本実施例において、受信回路 22は、アナログ 信号の状態で原信号を抽出、出力するものとし、抽出された原信号は、 2値ィ匕回路 2 3によってディジタル信号に変換され、タイミング制御部 28に対して出力されることと する。
[0039] 画像処理部 26は、 2値化回路 23から出力される原信号に基づき被検体内画像に 関する画像データを再構成するためのものである。具体的には、画像処理部 26は、 例えば、所定の演算処理を行う CPU (CentralProcessingUnit)等の演算処理機構と、 データを一時的に保持する SDRAM (SynchronousDynamicRandomAccessMemory) 等のメモリ機構とによって構成される。
[0040] タイミング制御部 28は、受信回路 22および画像処理部 26における処理タイミング を制御することによって、受信回路 22と画像処理部 26のそれぞれにおいて生じるノ ィズが他方の動作に影響を及ぼすことを回避するためのものである。タイミング制御 の手法としては様々なものが考えられる力 本実施例においては、受信回路 22およ び画像処理部 26は常に駆動状態を維持する一方で、受信回路 22および画像処理 部 26によって処理されるデータの入出力タイミングを制御することによって、両者が 同時に処理動作を行うことを回避している。
[0041] また、具体的な構成としては、タイミング制御部 28は、受信回路 22によって抽出さ れた原信号 (正確には原信号を 2値化した信号、以下同じ)を一時的に保持する FIF O回路 30と、 FIFO回路 30に対するデータ書込のタイミングを制御する書込制御部 3 1と、 FIFO回路 30に記憶されたデータの読込のタイミングを制御する読込制御部 32 とを備える。
[0042] 力かる構成を採用することによって、タイミング制御部 28は、受信回路 22によって 抽出された原信号を、画像処理部 26に供給する前に一時的に保持することが可能 である。そして、書込制御部 31および読込制御部 32によって FIFO回路 30に対する データの書込タイミングおよび読込タイミングを適切に制御することによって、受信回 路 22と画像処理部 26とが同時に処理動作を行うことを防止し、一方の処理動作にお V、て生じるノイズが他方の処理動作に悪影響を及ぼすことを抑制して 、る。
[0043] 次に、タイミング制御部 28によって制御される受信回路 22および画像処理部 26の 処理動作のタイミングについて説明する。図 4は、受信装置 3に備わる構成要素の動 作タイミングを示すタイムチャートである。図 4に示すように、各構成要素の動作タイミ ングは、受信処理期間および画像処理期間に大別され、それぞれの期間において 無線信号から原信号を抽出する受信処理と、原信号に基づく画像データの再構成 が行われている。
[0044] 本実施例では、かかる受信処理期間において、受信回路 22、 2値ィ匕回路 23が処 理動作を行うと共に、書込制御部 31は書込指令を FIFO回路 30に対して出力する。 この結果、受信装置 3は、受信処理期間において、受信アンテナ 6a〜6hのいずれか を介して受信された無線信号は、受信回路 22によって原信号がアナログ信号の形で 抽出され、抽出された原信号が 2値ィ匕回路 23によってディジタルィ匕され、ディジタル 化された原信号力 SFIFO回路 30に一時的に記憶される。
[0045] 一方で、図 4からも明らかなように、読込制御部 32は、受信処理期間において FIF O回路 30に対して読込指示を出力することはなぐ FIFO回路 30に書き込まれた原 信号は、ブリッジ回路 25に対して出力されることはなぐブリッジ回路 25および画像 処理部 26が処理を行うことはない。以上のことから、受信処理期間においては、受信 回路 22、 2値ィ匕回路 23、書込制御部 31のみがそれぞれの処理を行い、 FIFO回路 30に対する原信号の書込処理が行われる。
[0046] なお、受信処理期間は、カプセル型内視鏡 2に備わる送信部 9による無線信号の 送信タイミングに合わせて設定されている。上述したように、カプセル型内視鏡 2に備 わる被検体内情報取得部 8は、 0. 5秒程度の周期で被検体内画像を撮像し、送信 部 9は、かかる周期で取得される被検体内画像を含む無線信号を順次送信する機能 を有する。そして、送信部 9は、かかる 0. 5秒の周期のうちすベての期間を送信動作 に費やすのではなぐ半分程度の時間、例えば 280ms程度の時間に渡って無線信 号の送信動作を行って ヽる。
[0047] 従って、図 4に示す受信処理期間は、力かる送信部 9による無線信号の送信タイミ ングに合わせて設定されており、より正確には、受信処理期間は、送信部 9から送信 された無線信号が受信アンテナ 6を介して受信される期間を少なくとも含むよう設定さ れている。具体的な設定手法としては、受信装置 3がカプセル型内視鏡 2の駆動開 始時等に送信部 9の無線信号の送信期間に適合するよう受信処理期間を設定する 機構を別途備えた構成としても良い。また、本実施例において受信回路 22は受信処 理期間の間のみ駆動するのではなぐ受信処理期間および画像処理期間の双方に 渡って受信処理が可能な状態に維持されて 、ることを利用しても良 、。具体的には、 例えば受信回路 22によって受信される無線信号の強度が所定の閾値を超えている 間を受信処理期間として設定し、書込制御部 31は力かる期間に FIFO回路 30に対 して指示することとしても良 、。
[0048] 次に、画像処理期間における処理について説明する。画像処理期間は、上述した カプセル型内視鏡 2に備わる被検体内情報取得部 8における撮像周期のうち、受信 処理期間を除く期間において設定されている。図 4に示すように、書込制御部 31お よび受信回路 22の処理は停止する一方で、 FIFO回路 30に対して読込制御部 32 による読込指示が行われる。この結果、受信処理期間において FIFO回路 30に書き 込まれた原信号のディジタルデータがブリッジ回路 25に対して出力される。そして、 出力された原信号がブリッジ回路 25を経由して画像処理部 26に入力することによつ て、画像処理部 26による画像処理が行われる。具体的には、画像処理部 26は、原 信号に基づき被検体内画像に関する画像データを再構成し、得られた画像データを 記憶部 27に出力するという一連の処理を画像処理期間内に行っている。
[0049] 次に、本実施例に力かる被検体内導入システムの利点にっ 、て説明する。本実施 例に力かる被検体内導入システムは、受信装置 3において、受信処理と画像処理と を異なる期間に行う構成を採用することによって、受信回路 22等の動作と、画像処理 部 26等の動作とにおいて、一方の動作によって生じるノイズ力 他方の動作に悪影 響を及ぼすことを抑制できると 、う利点を有する。 [0050] 上述したように、本実施例では、カプセル型内視鏡 2の消費電力の低減等の観点 から、カプセル型内視鏡 2からの無線信号は、継続的に送信されるのではなく間欠的 に送信される構成を有する。このため、受信装置 3においても、受信回路 22等は継 続的に受信した無線信号の処理を行う必要はなぐ撮像周期に対応した期間ごと〖こ 、無線信号が到達する期間のみ受信処理を行う構成とすることが可能である。従って 、受信装置 3の処理に関して、無線信号力 原信号を抽出するための受信処理期間 と、原信号に基づき画像データの再構成を行うための画像処理期間とを設定すること が可能である。
[0051] すなわち、図 4にも示したように、受信装置 3は、タイミング制御部 28の作用により、 受信回路 22 (および 2値ィ匕回路 23、書込制御部 31)は、受信処理期間内のみに処 理を行うよう設定され、画像処理部 26 (およびブリッジ回路 25、読込制御部 32)は、 画像処理期間内のみに処理を行うよう設定されている。従って、一方が処理動作を 行うことによってノイズが生じた場合であっても、その時点において他方は処理動作 を行わな 、こととなり、一方で生じたノイズが他方の処理に影響を及ぼすことを抑制 することが可能である。
[0052] し力も、タイミング制御部 28として FIFO回路 30等を新たに備えることとしても、受信 装置が大型化することはない。すなわち、 FIFO回路 30等は既存の技術を用いること で充分な小型化を実現することが可能であることから、本実施例に力かる被検体内 導入システムでは、大型化を抑制しつつ受信回路 22と画像処理部 26の間でノイズ による悪影響が生じることを防止できるという利点を有する。
[0053] また、本実施例に力かる被検体内導入システムでは、タイミング制御部 28が FIFO 回路 30を備え、書込制御部 31および読込制御部 32によって FIFO回路 30の書込 動作、読込動作のタイミングを制御することによって受信処理および画像処理のタイ ミングをずらす構成を採用している。カゝかる構成を採用することによって、本実施例に 力かる被検体内導入システムは、受信装置 3の消費電力の増加を抑制しつつ一方で 生じるノイズが他方の処理に影響することを抑制できるという利点を有する。
[0054] 上述したように本実施例では、カプセル型内視鏡 2は、 0. 5秒程度の撮像間隔にあ わせて間欠的に無線信号を送信する構成を有することから、受信装置 3における受 信処理期間と画像処理期間とは、ほぼ 0. 5秒程度の周期で順次繰り返されることと なる。力かる短い周期に対応して受信回路 22および画像処理部 26のオン'オフを繰 り返すことは、消費電力の低減および動作の安定ィ匕の観点からは妥当ではない。従 つて、本実施例では、受信回路 22等は、処理動作を行わない画像処理期間におい ても駆動電力が供給されていて処理可能な状態を維持している。このことは画像処 理部 26等に関しても同様であって、画像処理期間のみならず、処理動作を行わない 受信処理期間においても駆動電力が供給され、入力信号に対する処理が可能な状 態を維持することとしている。
[0055] 一方で、力かる構成を採用した場合には処理期間の設定にかかわらずノイズの影 響を完全に排除することは容易ではないため、本実施例では、タイミング制御部 28 に FIFO回路 30を備えることとし、 FIFO回路 30を適切に制御することによってノイズ の影響を排除することとして 、る。
[0056] 図 5は、画像処理期間における各構成要素の状態について示す模式図である。図 5に示すように、画像処理期間において、画像処理部 26は、読込制御部 32から出力 された読込制御信号によって FIFO回路 30から出力される原信号 S2に基づき画像 データの再構成を行うため、カゝかる処理動作に伴いノイズが発生する。そして、発生 したノイズは、例えば受信アンテナ 6に受信され、受信回路 22に入力することとなる。 上述のように受信回路 22は、画像処理期間においても駆動電力が供給され、入力さ れる無線信号の受信処理が可能な状態を維持することから、画像処理部 26におい て発生したノイズが受信された場合、受信処理を行うこととなり、処理した信号 S3が 受信回路 22から出力されることとなる。
[0057] し力しながら、本実施例では、画像処理期間において、書込制御部 31から FIFO 回路 30に対して書込を行わない旨の制御信号 S4が供給されており、画像処理期間 中には、 FIFO回路 30が入力信号を保持することはない。従って、画像処理部 26の 処理動作に伴って生じたノイズに起因した信号 S3が受信回路 22から出力された場 合であっても、信号 S3は FIFO回路 30に保持されることがなぐノイズに起因した信 号 S3が画像処理部 26に到達することはない。
[0058] このように、本実施例に力かる被検体内導入システムは、 FIFO回路 30を備えること によって、受信回路 22および画像処理部 26に関して、受信処理期間および画像処 理期間を通じて駆動可能な状態を維持するにもかかわらず一方で生じたノイズが他 方に影響を及ぼすことを抑制することが可能である。従って、受信装置 3は、消費電 力の増加を抑制し、各構成要素の動作安定性を確保しつつ、受信回路 22と画像処 理部 26の一方で生じたノイズが他方の処理動作に影響を及ぼすことを回避すること が可能であると 、う利点を有する。
[0059] 以上、実施例を用いて本発明について説明したが、本発明は上記の実施例に限 定して解釈するべきではなぐ当業者であれば様々な実施例、変形例に想到すること が可能である。例えば、実施例ではカプセル型内視鏡 2から送信される無線信号は、 画像データに対応した原信号を含み、受信装置 3は原信号に基づき画像データを再 構成する画像処理部 26を備えることとしている。しカゝしながら、画像データ以外のデ ータに対応した原信号を受信する受信装置に関しても本発明を適用可能であること は明らかであり、例えば、画像処理部 26の代わりに一般的な信号処理部を備えた受 信装置を構成することも可能である。
[0060] また、実施例においては、タイミング制御部 28が FIFO回路 30を備える構成を採用 しているが、 FIFO回路 30の代わりにシフトレジスタ、スタック等を用いてタイミング制 御部 28を構成することとしても良い。カゝかる構成を採用した場合であっても、必要に 応じて他の回路等を組み合わせることによって FIFO回路 30を備えた場合と同様の 利点を享受することが可能である。
[0061] さらに、実施例においては、タイミング制御部 28は、各構成要素に対してデータの 入出力のタイミングを制御することによって同時に処理動作が行われることを回避す る構成を採用している力 この他にも、各構成要素の駆動タイミングを制御することと しても良い。すなわち、タイミング制御部 28が受信回路 22は受信期間にのみ駆動し 、画像処理部 26は画像処理期間にのみ駆動するよう電力供給等を制御することとし た場合であっても、両者が同時に処理動作を行うことを回避できるため、一方のノィ ズが他方の動作に影響を及ぼすことを回避できるという利点を享受することが可能で ある。
産業上の利用可能性 以上のように、本発明に力かる受信装置および受信装置を用いた被検体内導入シ ステムは、人体の内部に導入されて、被検部位を観察する医療用観察装置に有用で あり、特に、大型化を回避しつつ受信機構の動作と信号処理機構の動作とが互いに 干渉することを抑制するのに適して 、る。

Claims

請求の範囲
[1] 間欠的に送信された無線信号の受信処理を行う受信装置であって、
受信アンテナを介して受信された無線信号の受信処理を行!ヽ、前記無線信号に含 まれる原信号を抽出する受信手段と、
前記受信手段から出力された原信号に対して所定のデータ処理を行うデータ処理 手段と、
前記受信手段による受信処理が行われている間、前記データ処理手段によるデー タ処理を停止し、前記データ処理手段によるデータ処理が行われている間、前記受 信手段による受信処理が停止するよう制御するタイミング制御手段と、
を備えたことを特徴とする受信装置。
[2] 前記タイミング制御手段は、前記受信手段によって生成された原信号を一時的に 保持し、前記データ処理手段による処理が行われる際に前記データ処理手段に対し て原信号を供給する機能を有することを特徴とする請求項 1に記載の受信装置。
[3] 前記タイミング制御手段は、
入力信号を一時的に保持可能な FIFO回路と、
前記受信手段による受信処理の際に、前記受信手段から出力される信号を保持す るよう前記 FIFO回路を制御する書込制御手段と、
前記データ処理手段によるデータ処理の際に、保持した信号を前記データ処理手 段に対して出力するよう前記 FIFO回路を制御する読込制御手段と、
を備えたことを特徴とする請求項 1または 2に記載の受信装置。
[4] 前記受信手段および前記データ処理手段は、他方の処理動作時においても動作 可能な状態を維持し、
前記書込制御手段は、前記データ処理手段によるデータ処理の際に、前記受信手 段から出力される信号を保持しないよう前記 FIFO回路を制御し、
前記読込制御手段は、前記受信手段による受信処理の際に、前記データ処理手 段に対して保持した信号を出力しないよう前記 FIFO回路を制御することを特徴とす る請求項 3に記載の受信装置。
[5] 前記無線信号は、所定の画像データに基づく原信号を含み、前記データ処理手段 は、前記受信手段によって抽出された原信号に基づき画像データを再構成すること を特徴とする請求項 1〜4のいずれか一つに記載の受信装置。
[6] 被検体内に導入され、取得した被検体内情報に対応した原信号を含む無線信号 を間欠的に送信する被検体内導入装置と、該被検体内導入装置から送信された無 線信号を受信し、所定の処理を行う受信装置とを備えた被検体内導入システムであ つて、
前記被検体内導入装置は、
被検体内部の情報である被検体内情報を取得する被検体内情報取得手段と、 前記被検体内情報取得手段によって取得された被検体内情報に対応した原信号 を含む無線信号を送信する送信手段と、
を備え、
前記受信装置は、
受信アンテナを介して受信された無線信号の受信処理を行!ヽ、前記無線信号に含 まれる原信号を抽出する受信手段と、
前記受信手段力 出力された原信号に対して所定のデータ処理を行うことによって 、データを再構成するデータ処理手段と、
前記受信手段による受信処理が行われている間、前記データ処理手段によるデー タ処理を停止し、前記データ処理手段によるデータ処理が行われている間、前記受 信手段による受信処理が停止するよう制御するタイミング制御手段と、
を備えたことを特徴とする被検体内導入システム。
[7] 前記タイミング制御手段は、
入力信号を一時的に保持可能な FIFO回路と、
前記受信手段による受信処理の際に、前記受信手段から出力される信号を保持す るよう前記 FIFO回路を制御する書込制御手段と、
前記データ処理手段によるデータ処理の際に、保持した信号を前記データ処理手 段に対して出力するよう前記 FIFO回路を制御する読込制御手段と、
を備えたことを特徴とする請求項 6に記載の被検体内導入システム。
[8] 前記被検体内情報取得手段は、被検体内情報として被検体内画像を取得する機 能を有し、
前記データ処理手段は、入力された原信号に基づき前記被検体内画像を再構成 することを特徴とする請求項 6または 7に記載の被検体内導入システム。
PCT/JP2005/016651 2004-09-09 2005-09-09 受信装置および被検体内導入システム WO2006028220A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05782010A EP1810607A4 (en) 2004-09-09 2005-09-09 RECEIVING DEVICE AND INTRODUCING SYSTEM IN A SPECIMEN UNDER TEST
US11/662,310 US20080064330A1 (en) 2004-09-09 2005-09-09 Receiving Apparatus and Body Insertable System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-263002 2004-09-09
JP2004263002A JP2006075365A (ja) 2004-09-09 2004-09-09 受信装置および被検体内導入システム

Publications (1)

Publication Number Publication Date
WO2006028220A1 true WO2006028220A1 (ja) 2006-03-16

Family

ID=36036502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016651 WO2006028220A1 (ja) 2004-09-09 2005-09-09 受信装置および被検体内導入システム

Country Status (5)

Country Link
US (1) US20080064330A1 (ja)
EP (1) EP1810607A4 (ja)
JP (1) JP2006075365A (ja)
CN (1) CN101014279A (ja)
WO (1) WO2006028220A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340566B2 (ja) 2007-07-24 2013-11-13 オリンパスメディカルシステムズ株式会社 受信装置
TWI384364B (zh) * 2007-11-16 2013-02-01 Mstar Semiconductor Inc 資料存取裝置及方法
WO2018230153A1 (ja) * 2017-06-13 2018-12-20 オリンパス株式会社 アンテナホルダ及びアンテナユニット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019111A (ja) * 2001-05-20 2003-01-21 Given Imaging Ltd 生体内信号源の位置を探知するアレーシステム及び方法
JP2004201222A (ja) * 2002-12-20 2004-07-15 Matsushita Electric Ind Co Ltd 折り畳み式携帯電話装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258834A (en) * 1991-02-13 1993-11-02 Olympus Optical Co., Ltd. Electronic endoscope for producing a color image by extracting a plurality of field picture images in one field period without changing a horizontal clock rate
IL108352A (en) * 1994-01-17 2000-02-29 Given Imaging Ltd In vivo video camera system
AU2003228236A1 (en) * 2002-03-01 2003-09-16 Telepulse Technologies Corporation Dynamic time metered delivery
JP2004179861A (ja) * 2002-11-26 2004-06-24 Nec Access Technica Ltd 携帯電話装置
JP2004193951A (ja) * 2002-12-11 2004-07-08 Nec Saitama Ltd 携帯電話装置および携帯電話装置における受信感度劣化防止方法並びにプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019111A (ja) * 2001-05-20 2003-01-21 Given Imaging Ltd 生体内信号源の位置を探知するアレーシステム及び方法
JP2004201222A (ja) * 2002-12-20 2004-07-15 Matsushita Electric Ind Co Ltd 折り畳み式携帯電話装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1810607A4 *

Also Published As

Publication number Publication date
EP1810607A4 (en) 2009-11-11
JP2006075365A (ja) 2006-03-23
US20080064330A1 (en) 2008-03-13
EP1810607A1 (en) 2007-07-25
CN101014279A (zh) 2007-08-08

Similar Documents

Publication Publication Date Title
KR100953562B1 (ko) 인체 통신 시스템 및 방법
US7837617B2 (en) Intrabody introduced device
US20110285835A1 (en) Receiver system
JP4847075B2 (ja) 受信装置
WO2005065525A1 (ja) 受信装置、送信装置および送受信システム
EP2011430B1 (en) Antenna unit and receiving system
JP2009136431A (ja) 被検体内導入装置および被検体内情報取得システム
JP4891668B2 (ja) カプセル型内視鏡
WO2006030772A1 (ja) 被検体内導入システム、受信装置および被検体内導入装置
EP1864604A1 (en) Wireless device for acquiring information on inside of subject and wireless system for acquiring information on inside of subject
US20080068453A1 (en) In-Vivo Information Acquiring Apparatus
US20080103382A1 (en) Image Display Apparatus
WO2006028220A1 (ja) 受信装置および被検体内導入システム
US7860471B2 (en) Body-insertable apparatus
JP4526315B2 (ja) 被検体内導入装置および被検体内情報取得システム
JP4804831B2 (ja) 被検体内情報取得システム
WO2007091556A1 (ja) 中継ユニット
JP2005334080A (ja) 被検体内導入装置および医療装置
JP4656825B2 (ja) 被検体内導入装置および無線型被検体内情報取得システム
JP5185991B2 (ja) 無線型被検体内情報取得装置および無線型被検体内情報取得システム
JP2005110867A (ja) 無線型被検体内情報取得装置および無線型被検体内情報取得システム
JP2006320649A (ja) 受信装置および受信システム
JP2005260750A (ja) 受信装置
JP2006075366A (ja) 受信装置および送信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580030345.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005782010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11662310

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005782010

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11662310

Country of ref document: US