WO2006025177A1 - Artificial plugging material - Google Patents

Artificial plugging material Download PDF

Info

Publication number
WO2006025177A1
WO2006025177A1 PCT/JP2005/014168 JP2005014168W WO2006025177A1 WO 2006025177 A1 WO2006025177 A1 WO 2006025177A1 JP 2005014168 W JP2005014168 W JP 2005014168W WO 2006025177 A1 WO2006025177 A1 WO 2006025177A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
tenascin
group
aneurysm
artificial
Prior art date
Application number
PCT/JP2005/014168
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Toma
Waro Taki
Kyoko Yoshida
Toshimichi Yoshida
Original Assignee
Mie Tlo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie Tlo Co., Ltd. filed Critical Mie Tlo Co., Ltd.
Priority to JP2006531502A priority Critical patent/JP4427636B2/en
Publication of WO2006025177A1 publication Critical patent/WO2006025177A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/1215Coils or wires comprising additional materials, e.g. thrombogenic, having filaments, having fibers, being coated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials

Definitions

  • the present invention relates to an artificial obturator used for endovascular treatment.
  • Cerebral aneurysm one of the vascular disorders, accounts for more than 80% of the causes of subarachnoid hemorrhage
  • Coil embolization treatment has been developed as a new minimally invasive treatment.
  • Coil embolization treatment is a treatment method in which an aneurysm is occluded by filling a platinum coil inside the aneurysm.
  • Clinical studies have reported 14% of aneurysms recurring after coil embolization treatment.
  • fibrosis in the aneurysm is delayed, so blood flows into the aneurysm and pressure is applied to the blood vessel wall, causing the aneurysm to expand or lateral aneurysm formation. It is thought to be due to.
  • a coil having a basic fibroblast growth factor (bFGF) on the coil surface has been developed (Japanese Patent Laid-Open No. 2001-299769).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-299769
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an artificial plug embolus that further enhances the embolic effect and promotes fibrosis of the blood vessel lumen.
  • Tenascin-C is known to cause intimal neovascularization and stenosis of blood vessels after atherosclerosis, vascular anastomosis, coronary angioplasty, and stent placement. Since the expression of tenascin is thought to have negative consequences for these lesions and treatments, methods to suppress the expression of this molecule would improve the above lesions, and many studies It has been made with the aim of suppressing expression. However, the present inventors perceived this effect in reverse. In other words, it was thought that a good therapeutic effect could be obtained if a vascular lesion such as an aneurysm was caused to cause neovascularization of the blood vessel and occlude the cavity. Therefore, as a result of considering that tenascin-C can be solid-phased and fixed at the site of vascular injury, the closure of the lumen can be promoted, and as a result, the present invention has been achieved.
  • the artificial obturator according to the present invention is characterized by containing tenascin-C.
  • the action of tenascin C can effectively promote the surrounding organs, reliably causing fibrosis, and reducing the vascular lumen. Narrows and closes.
  • the vascular disorder site means, for example, an aneurysm, arteriovenous malformation, arteriovenous fistula and the like. This artificial embolus can be used for embolization of a feeding artery to a tumor.
  • the artificial obturator may be composed of a metal coil body or a sponge.
  • the coil body is a material that has little reaction to living bodies and is highly flexible (for example, platinum or gold is the main material.
  • the size of the coil body is not particularly limited, but it is preferable that the coil body can be placed inside the aneurysm.
  • a wire material formed from the above material and the wire material wound in a coil shape can be used.
  • the wire material for example, one having a wire diameter of about 1 ⁇ m to about 100 ⁇ m can be used.
  • a wire having a strand diameter of about 0.03 mm to about 0.08 mm and a primary coil diameter of about 0.2 mm to about 0.4 mm can be used. Monkey.
  • Tenascin-C is a kind of extracellular matrix glycoprotein.
  • One subunit of Hitote defector C has a molecular weight 210KD ⁇ 400kD, there is TA domain sequences to make the N-terminal side Koi Rudokoiru (co il e d-coil) , continue!, EGF-like sequence Te is repeated,
  • FNIII fibronectin type III
  • a fibrinogen-like site at the C terminus, and this subunit is combined into a trimer at the coiled site near the N terminus, and these are bound by a S—S bond to form a 6-mer. It is thought to exist in the body and in the organization. Since tenascin has a heterolin binding site, it is preferable to use heparin or henoline-like active substance to fix tenascin-C.
  • a henolin-like active substance means a part of hemolin that has an action of binding to tenascin-C.
  • a first layer having tenascin binding ability is provided on the surface of the coil body, and tenascin C is fixed on the surface of the first layer.
  • the material of the first layer can be formed of a material containing, for example, henolin or a henolin-like active substance. Heparin means N-sulfuric acid, N-acetyl and O-sulfuric acid substitutes of polysaccharides that also have D-darcosamine, D-glucuronic acid, and L-iduronic acid.
  • the molecular weight is not limited, but for example, one having lxlO 3 or more can be used.
  • a second layer can be provided between the surface of the coil body and the first layer. This second layer is for fixing the first layer more strongly to the surface of the coil body. For example, it can be formed using a material such as rosin (urethane grease).
  • the present invention it is preferable to provide a first layer having tenisine binding ability between the surface of the coil body and tenascin C.
  • the coil body, the first layer, and the tenascin-C containing layer are provided.
  • the coil body, the second layer, the first layer, and the tenascin-C containing layer will be provided.
  • Tenascin C may be fixed on only part of the surface of the coil body, but it is preferable to fix it on the entire surface of the coil body! /.
  • the artificial obturator includes a metal coil body and a structure fixed to the coil body, and the tenascin C is included in at least the structure.
  • the structure for example, a material that is less irritating to a living body and a material that is formed in a fiber shape or a gel-like material can be used.
  • Tenascin C can be contained in the structure by applying tenascin C to the surface of the structure or by including tenascin C in the structure itself.
  • the coil body and the structure are to be “fixed”, (1) a structure in which a fiber material or gel-like substance is inserted into the hollow portion of the coil, or (2) a fiber material that covers the entire coil structure. There are configurations such as placing gel.
  • a heparin-fixed coil in which gold ions, alkanethiol, polyethylenethymine, and heline were bound in this order was used.
  • the heparin-fixed coil was immersed in Tenascin C solution (100 gZml in PBS) at 4 ° C for 1 hour, and Tenascin C was bound to the coil via heparin.
  • Tenascin-C was purified from the culture supernatant of human glioblastoma-derived U251MG cells (Tsunoda T, Inada H, Kalembeyi I, Imanaka-Yoshid a K, Sakakibara M, Okada R, Katsuta K, Sakakura T, Majima Y , Yoshida T. Involvement of large tenascin—C splice variants in breast cancer progression. Am J Pathol. 2003 Jun; 162 (6): 1857- 67.). The heparin-immobilized coil was immersed in a bFGF solution (100 ⁇ g Zml in PBS) for 1 hour at room temperature, and bFGF was bound to the coil via heparin.
  • bFGF solution 100 ⁇ g Zml in PBS
  • unmodified platinum coil is immersed in control group
  • heparin-fixed coil is immersed in heparin group
  • bFGF is immersed in bFGF group
  • tenascin-C is immersed in it. This was taken as the tenascin group.
  • CCA common carotid art ery
  • the aneurysm model is obtained by making the blood vessel (CCA) blind.
  • CCA blood vessel
  • Six rats in which the coil was placed were used in the control group, 6 in the heparin group, 6 in the bFGF group, and 8 in the tenascin group.
  • Coil On the 14th day after placement, these rats exposed CCA using the same procedure, and removed the CCA segment containing the coil (approximately 10 mm). The segment was placed in a 10% formaldehyde buffer solution.
  • Two animals in the tenascin group also obtained tissue on the 28th day.
  • HE hematoxylin-eosin
  • Sirius red staining a-smooth muscle actin (hereinafter referred to as “a-SMA”) Immunostaining (anti-human smooth muscle actin / HRP-EPOS, DAKO Japan, Kyoto), macrophage immunostaining (ratCD68, mouse anti-rat mononuclear phagocyte antibody, BD Biosciences, USA), endothelial cell Immunostaining (rabbit anti-von-Willebrand factor, Dako Japan, Kyoto) was performed.
  • a-SMA a-smooth muscle actin
  • a-SMA immunostaining For a-SMA immunostaining, deparaffinization, hydrogen peroxide treatment and blocking were performed. a Using the SMA antibody as it was, it was incubated at 4 ° C. DAB (3, 3'-diaminobenzidine) Z hydrogen peroxide solution was used as the chromogenic substrate.
  • Endothelial cells were immunostained with a commercially available diluted primary antibody against von Willebrand factor, treated overnight at 4 ° C, and anti-rabbit IgG peroxidase labeled antibody (manufactured by MBL)). The solution was diluted 200-fold with PBS and allowed to react for 2 hours. DABZ hydrogen peroxide was used as the chromogenic substrate. After the staining process was completed, each section was observed with a microscope. For calculation of fibrosis site and vascular cavity area, Scion Image [software available for download at Scion Corporation, US (http://www.scioncorp.com/)] is used based on the internal elastic plate. did.
  • FIG. 1 shows micrographs of sections of each group when HE-stained.
  • the hole in the vascular cavity (indicated by asterisk *) was created when the coil was pulled out, and has the same diameter in all the photographs.
  • FIG. 2 shows a section of tenascin group and bFGF group, which showed an effect on organic habits, taken with a Sirius red stain and then taken with a polarizing microscope (left: HE staining of the same site, right: polarized light). Microscopic image). Collagen fibers show reddish birefringence in this method. When the accumulation of collagen fibers in the vascular cavity was evaluated, dense accumulation of thick collagen fibers was confirmed in the tenascin group in 14 days (middle). In the tissue collected from rats on the 28th (bottom), the number of cells decreased and fibrosis progressed. On the other hand, almost no collagen fibers were formed in the bFGF group (top).
  • FIG. 3 shows a micrograph of tenascin group and bFGF group sections stained with ⁇ -SMA, macrophage marker CD68, and endothelial cell marker von Willebrand factor (von Willebrand factor; hereinafter referred to as “vWF”).
  • SMC smooth muscle cells
  • bFGF endothelial cell marker von Willebrand factor
  • vWF was positive at the interface between the thrombus and the groin area.
  • tenascin group small capillaries were positive. From these results, it was found that the cells constituting the organizing part were different between the tenascin group and the bFGF group, and that the tenascin group was mainly composed of SMC.
  • FIG. 4 shows a graph comparing the vascular cavity areas in each group.
  • the vascular cavity in the control group was the largest, followed by the heparin group, the bFGF group, and the tenascin group.
  • Tenascin group is control group (p 0.015 )
  • the heparin group (p 0.042) the blood vessel cavity was significantly reduced.
  • the average value of the blood vessel lumen area of tenascin group (0.352mm 2), compared to the average value of the blood vessel lumen area of the bFGF group (0.516mm 2), less 70% or less
  • Fig. 5 shows a graph comparing the percentage of organic matter in each group.
  • the platinum coil used in this embodiment is very soft and fits the shape and size of the aneurysm. For this reason, the coil tightly packed in the aneurysm is expected to prevent rupture and aneurysm formation by blocking the blood flow from the mother blood vessel and forming a thrombus for the aneurysm.
  • coil embolization therapy theoretically places the coil within the aneurysm to promote thrombosis, fibrosis, and ultimately endothelialization of the opening surface along the aneurysm opening. It is necessary to pack it so that there is no gap in it. Because of this need, a flexible platinum coil is ideal. However, when a platinum coil is used, the volume of the coil occupying the aneurysm (filling rate) is actually about 30% although the coil appears to be an aneurysm in the angiogram. Only.
  • thrombosis occurs in the aneurysm.
  • the thrombus is preferably finally organized and fibrotic.
  • the aneurysm force is also flowed through the gaps in the platinum coil, and there is no need to worry about re-expansion or rupture of the aneurysm.
  • blood vessels may cause thrombus formation and neointimal formation, which are considered biologically disadvantageous, and eventually fibrosis may block the aneurysm. desired.
  • Platinum is a metal with extremely low biological activity, and the absence of tissue reaction has been considered an advantage as a material for endovascular treatment.
  • VEGF Human M. Abrahams, Mark S. Forman, Sean Grady, and Scott Scott L. Diamond is used to attach growth factors and fibroblasts that express them to the coil surface.
  • Tenascin C used in the present embodiment is a kind of extracellular matrix glycoprotein and is not classified as a growth factor as described above, and the function of promoting thrombus formation is not known. Atherosclerotic lesions, vascular restenosis lesions after percutaneous transluminal coronary angioplasty G ( hereinafter referred to as “PTCA”), vascular anastomosis, stent placement, etc. Expression is seen. Tenascin C is thought to migrate SMCs such as the lining of the vascular wall to the intima, causing its proliferation and promoting the formation of neointima.
  • PTCA percutaneous transluminal coronary angioplasty G
  • tenascin-C expression and SMC proliferation in the intima occur within 1 month, followed by a PG-M proteodarican between 1 and 3 months.
  • the luminal stenosis occurs due to its quantitative effect.
  • the neointimal membrane is replaced by a more mature extracellular matrix composed of type I and type III collagen, which again causes stenosis / occlusion of blood vessels over the long term.
  • tenascin C fixed on the surface of the heparin-fixed coil can be introduced into the aneurysm, and the effect of significantly increasing connective tissue formation within the aneurysm was shown. Furthermore, it was found that the cell component of the yarn and weave was mainly SMC.
  • the Tenisin fixed coil coil blocks the blood flow from the aneurysm by filling the aneurysm with tissue formed by cells induced by the action of Tenascin C, which is not only the effect of the coil body. Also, in the long term, it was thought that fibrosis would lead to preventing the recurrence of the bleeding aneurysm. In addition, since the size of the aneurysm is narrowed, the effect of narrowing the aneurysm can be expected in the treatment of large aneurysms, and the space occupation effect of the aneurysm that causes compression of the brain parenchyma and cranial nerves is reduced. The expansion of the indication of surgery can be expected. Thus, according to the present embodiment, it is possible to provide an artificial plug embolus that further enhances the embolic effect and promotes fibrosis in the aneurysm.
  • FIG. 1 is a photomicrograph of sections of each group stained with hematoxylin-eosin. Co The photographs of the control group (Control), heparin group (Heparin), bFGF group, and tenascin group (TN-C) are shown. The arrowhead in the photograph of the tenascin group shows the blood vessel wall. The horizontal line in the figure is a scale of 100 m (the same applies to Figs. 2 and 3). The asterisk (*) indicates the location of the tissue after removal of the coil.
  • FIG. 2 is a photomicrograph of the bFGF group and tenascin (TN-C) group stained with Sirius red. Hematoxylin-eosin staining on the left and Sirius red staining on the right with a polarizing microscope. The organic anther site (org), vascular media (med), and adventitia (adv) are shown in the right column. 14d: l 4th, 28d: 28th.
  • FIG. 3 is a photomicrograph of the bFGF group and the tenascin (TN-C) group when ⁇ -SMA staining, macrophage staining (CD68), and endothelial cell staining (von Willebrand factor, vWF) are performed.
  • the arrowhead in the photograph of the tenascin group indicates the blood vessel wall.
  • HE Hematoxylin-eosin staining.
  • FIG. 4 is a graph comparing the area of the vascular cavity in each group in the tissue on the 14th day. Each data is shown as mean standard deviation (SD).
  • FIG. 5 is a graph comparing the organic content rate in each group in the tissue on day 14. Each data is shown as mean value standard deviation (SD).

Abstract

[PROBLEMS] To provide an artificial plugging material that enhances a plugging effect to thereby accelerate fibrosis of an internal cavity of blood vessel. [MEANS FOR SOLVING PROBLEMS] There is provided a coil characterized by including a coil main body of metal and, immobilized via heparin on the surface thereof, tenascin-C. By detaining this coil in the aneurysm, the inside of the dilatation is rapidly filled with smooth muscle cells (SMC) and substantially complete fibrosis occurs upon the passage of one month from the detainment.

Description

明 細 書  Specification
人工栓塞物  Artificial obturator
技術分野  Technical field
[0001] 本発明は、血管内治療に用いられる人工栓塞物に関するものである。  [0001] The present invention relates to an artificial obturator used for endovascular treatment.
背景技術  Background art
[0002] 血管障害の一つである脳動脈瘤は、くも膜下出血の原因の 80%以上を占めている [0002] Cerebral aneurysm, one of the vascular disorders, accounts for more than 80% of the causes of subarachnoid hemorrhage
。くも膜下出血を起こした場合には、そのうち約 50%が死亡すると言われている。こ のような脳動脈瘤の治療においては、現在のところ、特殊なクリップで瘤の根元部分 を挟み付けるクリッピング術が主流の治療方法とされている。クリッピング術は、確立さ れた治療法であるものの、患者が非常に重症の場合や高齢の場合などには、開頭術 による侵襲のため、手術を行えない場合がある。また、動脈瘤の部位によっては手術 が非常に難しいこともある。 . If subarachnoid hemorrhage occurs, about 50% of them are said to die. In the treatment of such cerebral aneurysms, at present, the clipping method in which the root portion of the aneurysm is sandwiched with a special clip is the mainstream treatment method. Although clipping is an established treatment, surgery may not be possible due to the invasion of craniotomy when the patient is very severe or elderly. Also, depending on the site of the aneurysm, surgery may be very difficult.
[0003] これに対して、新 、低侵襲治療としてコイル塞栓治療が発展してきて!/、る。コイル 塞栓治療とは、動脈瘤の内部にプラチナ製のコイルを詰めて、動脈瘤を閉塞する治 療方法である。臨床研究によれば、コイル塞栓治療後、 14%が動脈瘤の再発をして いると報告されている。この再発は、動脈瘤内の線維化が遅れるため、瘤内に血流が 流れ込み、血管壁に圧が力かることで、動脈瘤が拡大、あるいは瘤の横力 新たに 動脈瘤形成が起こることによるものと考えられる。このような欠点を補うため、コイル表 面に塩基性線維芽細胞増殖因子 (bFGF)を備えたコイルが開発されて ヽる(特開 2 001— 299769)。  [0003] On the other hand, coil embolization treatment has been developed as a new minimally invasive treatment! Coil embolization treatment is a treatment method in which an aneurysm is occluded by filling a platinum coil inside the aneurysm. Clinical studies have reported 14% of aneurysms recurring after coil embolization treatment. In this recurrence, fibrosis in the aneurysm is delayed, so blood flows into the aneurysm and pressure is applied to the blood vessel wall, causing the aneurysm to expand or lateral aneurysm formation. It is thought to be due to. In order to compensate for these drawbacks, a coil having a basic fibroblast growth factor (bFGF) on the coil surface has been developed (Japanese Patent Laid-Open No. 2001-299769).
特許文献 1:特開 2001— 299769号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-299769
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、上記のようなコイルに対する研究開発は、未だに十分な成果を挙げ るには至っておらず、開発途上にあるものと言える。例えば、動脈瘤内にコイルを入 れ、コラーゲンなどの安定な結合組織基質が充填されれば、瘤内への血流を妨げる ことにより、動脈瘤の再形成を防ぐことができると考えられる。つまり、コイル充填によ る動脈瘤内の線維化を意図的に行うことができれば、コイル塞栓治療は、より効果的 なものとなる。 [0004] However, research and development on the coil as described above has not yet achieved sufficient results, and it can be said that it is still under development. For example, if a coil is inserted into an aneurysm and filled with a stable connective tissue matrix such as collagen, it may be possible to prevent the aneurysm from reforming by preventing blood flow into the aneurysm. That is, by coil filling If the fibrosis within the aneurysm is intentionally performed, coil embolization treatment will be more effective.
本発明は、上記した事情に鑑みてなされたものであり、その目的は塞栓効果をより 高めて、血管内腔の線維化を促進する人工栓塞物を提供することである。  The present invention has been made in view of the above circumstances, and an object thereof is to provide an artificial plug embolus that further enhances the embolic effect and promotes fibrosis of the blood vessel lumen.
課題を解決するための手段、発明の作用、及び発明の効果  Means for solving the problems, action of the invention, and effect of the invention
[0005] 本発明者らは、鋭意検討を行った結果、動脈内にテネイシン Cを存在させることに よって、その動脈の塞栓効果を高められることを見出し、基本的には本発明を完成す るに至った。  [0005] As a result of intensive studies, the present inventors have found that the presence of tenascin C in the artery can enhance the embolic effect of the artery, and basically complete the present invention. It came to.
テネイシン Cは、動脈硬化、血管吻合部、冠動脈形成術後、ステント留置などで、内 膜の新生を引き起こし、血管の狭窄を引き起こすことが知られている。テネイシンじの 発現は、これらの病変や治療にとっては悪い結果を及ぼすと考えられているため、こ の分子の発現を抑える方法が上記の病変を改善することになると考えられ、多くの研 究は発現抑制を目指してなされてきた。ところが、本発明者らは、この作用を逆に捉 えた。すなわち、動脈瘤などの血管障害部位では、血管の内膜の新生を引き起こし、 腔を閉塞できれば、良好な治療効果が得られると考えられた。そこで、テネイシン Cを 固相化して、血管障害部位に固定することにより、内腔の閉塞を促進できるのではな いかと考えた結果、本発明に至ったものである。  Tenascin-C is known to cause intimal neovascularization and stenosis of blood vessels after atherosclerosis, vascular anastomosis, coronary angioplasty, and stent placement. Since the expression of tenascin is thought to have negative consequences for these lesions and treatments, methods to suppress the expression of this molecule would improve the above lesions, and many studies It has been made with the aim of suppressing expression. However, the present inventors perceived this effect in reverse. In other words, it was thought that a good therapeutic effect could be obtained if a vascular lesion such as an aneurysm was caused to cause neovascularization of the blood vessel and occlude the cavity. Therefore, as a result of considering that tenascin-C can be solid-phased and fixed at the site of vascular injury, the closure of the lumen can be promoted, and as a result, the present invention has been achieved.
[0006] すなわち、本発明に係る人工栓塞物は、テネイシン Cを含有することを特徴とする。  That is, the artificial obturator according to the present invention is characterized by containing tenascin-C.
本発明に係る人工栓塞物は、血管障害部位に留置することにより、テネイシン Cの作 用により周囲の器質ィ匕を効果的に促進することができ、確実に線維化を引き起こし、 血管内腔を狭小化し閉塞する。血管障害部位とは、例えば動脈瘤、動静脈奇形、動 静脈瘻等を意味している。また、この人工栓塞物は、腫瘍への栄養動脈の塞栓治療 にち用いることがでさる。  By placing the artificial obturator according to the present invention at the site of vascular injury, the action of tenascin C can effectively promote the surrounding organs, reliably causing fibrosis, and reducing the vascular lumen. Narrows and closes. The vascular disorder site means, for example, an aneurysm, arteriovenous malformation, arteriovenous fistula and the like. This artificial embolus can be used for embolization of a feeding artery to a tumor.
人工栓塞物としては、例えば金属製のコイル本体で構成する場合、或いはスポンジ で構成する場合があり得る。このうちコイル本体で構成する場合には、そのコイル本 体は、生体に対する反応が少なぐかつ柔軟性に富む材料 (例えば、プラチナ、また は金を主材料とするもの。この主材料が 100%のものを使用することができるし、主材 料に対して 5%〜20%の副材料 (例えば、タングステン)を含有させることができる)で 形成することができる。コイル本体の大きさは、特に限定されないが、動脈瘤の内部 に留置できる程度であることが好ましい。具体的には、上記材料から線素材を形成し 、その線素材をコイル状に巻き付けたものを用いることができる。線素材としては、例 えば、素線径が約 1 μ m〜約 100 μ mのものを用いることができる。また、コイル本体 は、その直径が約 O.lmm〜約 lmm、その長さが約 5mm〜約 50cmのものを用いる ことができる。 For example, the artificial obturator may be composed of a metal coil body or a sponge. Of these, when the coil body is used, the coil body is a material that has little reaction to living bodies and is highly flexible (for example, platinum or gold is the main material. Can contain 5% to 20% secondary material (eg tungsten) relative to the main material) Can be formed. The size of the coil body is not particularly limited, but it is preferable that the coil body can be placed inside the aneurysm. Specifically, a wire material formed from the above material and the wire material wound in a coil shape can be used. As the wire material, for example, one having a wire diameter of about 1 μm to about 100 μm can be used. The coil body having a diameter of about O.lmm to about lmm and a length of about 5 mm to about 50 cm can be used.
本発明の人工栓塞物を脳動脈瘤に使用する場合には、例えば、素線径が約 0.03 mm〜約 0.08mm、プライマリーコイル径が約 0.2mm〜約 0.4mmのものを用いるこ とがでさる。  When the artificial obturator of the present invention is used for a cerebral aneurysm, for example, a wire having a strand diameter of about 0.03 mm to about 0.08 mm and a primary coil diameter of about 0.2 mm to about 0.4 mm can be used. Monkey.
[0007] テネイシン C(Tenascin-C)とは、細胞外マトリックス糖タンパク質の一種である。ヒトテ ネイシン Cの 1つのサブユニットは、分子量 210kD〜400kDであり、 N末側からコィ ルドコイル(coiled-coil)を作る TAドメイン配列があり、続!、て EGF様配列が繰り返さ れ、さらにフイブロネクチンタイプ III (FNIII)繰り返し配列がある。この FNIII繰り返し配 列には、選択的スプライシングを受ける領域があり、分子量の異なる多種のバリアント をつくり出す。また、 C末端には、フイブリノ一ゲン様部位があり、このサブユニットが N 末端付近のコイル状部位でより合わさって 3量体になり、さらにこれらが S— S結合に よって結合して 6量体となり組織に存在していると考えられている。テネイシン まへ ノ リン結合部位を有していることから、テネイシン Cを固定ィ匕するためには、へパリン 若しくはへノ リン様活性物質を使用することが好ま ヽ。ここでへノ リン様活性物質と は、テネイシン Cに結合する作用を備えているへノ リンの一部分を意味している。 [0007] Tenascin-C is a kind of extracellular matrix glycoprotein. One subunit of Hitote defector C has a molecular weight 210KD~400kD, there is TA domain sequences to make the N-terminal side Koi Rudokoiru (co il e d-coil) , continue!, EGF-like sequence Te is repeated, In addition, there is a fibronectin type III (FNIII) repeat sequence. This FNIII repeat has a region that undergoes alternative splicing and creates a variety of variants with different molecular weights. In addition, there is a fibrinogen-like site at the C terminus, and this subunit is combined into a trimer at the coiled site near the N terminus, and these are bound by a S—S bond to form a 6-mer. It is thought to exist in the body and in the organization. Since tenascin has a heterolin binding site, it is preferable to use heparin or henoline-like active substance to fix tenascin-C. Here, a henolin-like active substance means a part of hemolin that has an action of binding to tenascin-C.
[0008] コイル本体の表面にテネイシン Cを固定するには、コイル本体の表面にテネイシン 結合能を備えた第 1層を設けておき、この第 1層の表面にテネイシン Cを固定する。 第 1層の材料としては、例えばへノ リン若しくはへノ リン様活性物質を含有する材料 で形成することができる。へパリンとは、 D—ダルコサミン、 D—グルクロン酸、 L—ィズ ロン酸力もなる多糖の N—硫酸、 N—ァセチルおよび O—硫酸置換体を意味する。そ の分子量については、限定されないが、例えば lxlO3以上のものを用いることができ る。また、必要な場合には、コイル本体の表面と第 1層との間に、第 2層を設けること ができる。この第 2層は、第 1層をより強くコイル本体の表面に固定するためのもので あり、例えば榭脂(ウレタン榭脂など)などの材料を用いて形成することができる。 [0008] To fix tenascin C on the surface of the coil body, a first layer having tenascin binding ability is provided on the surface of the coil body, and tenascin C is fixed on the surface of the first layer. The material of the first layer can be formed of a material containing, for example, henolin or a henolin-like active substance. Heparin means N-sulfuric acid, N-acetyl and O-sulfuric acid substitutes of polysaccharides that also have D-darcosamine, D-glucuronic acid, and L-iduronic acid. The molecular weight is not limited, but for example, one having lxlO 3 or more can be used. If necessary, a second layer can be provided between the surface of the coil body and the first layer. This second layer is for fixing the first layer more strongly to the surface of the coil body. For example, it can be formed using a material such as rosin (urethane grease).
[0009] すなわち、本発明において、前記コイル本体の表面とテネイシン Cとの間に、テネィ シン結合能を備えた第 1層を設けることが好ましい。この場合には、コイル本体、第 1 層、及びテネイシン C含有層が設けられることになる。更に、前記コイル本体の表面と 第 1層との間に、第 1層をより強くコイル本体の表面に固定する第 2層を設けることが 好ましい。この場合には、コイル本体、第 2層、第 1層、及びテネイシン C含有層が設 けられることになる。テネイシン Cの固定化は、コイル本体の表面の一部のみに設けら れてもよ 、が、コイル本体の全面に設けることが好まし!/、。  That is, in the present invention, it is preferable to provide a first layer having tenisine binding ability between the surface of the coil body and tenascin C. In this case, the coil body, the first layer, and the tenascin-C containing layer are provided. Furthermore, it is preferable to provide a second layer for fixing the first layer to the surface of the coil body more strongly between the surface of the coil body and the first layer. In this case, the coil body, the second layer, the first layer, and the tenascin-C containing layer will be provided. Tenascin C may be fixed on only part of the surface of the coil body, but it is preferable to fix it on the entire surface of the coil body! /.
また、上記発明において、前記人工栓塞物は、金属製のコイル本体と、このコイル 本体に固定された構造物とを含み、前記テネイシン Cは、少なくとも前記構造物に含 有されていることが好ましい。構造物としては、例えば生体に対して刺激性の少ない ものを材料として繊維状に構成されたものやゲル状のものを用いることができる。構 造物の表面にテネイシン Cを塗布したり、構造物そのものにテネイシン Cを含有させる ことなどにより、テネイシン Cを構造物に含有させることができる。また、コイル本体と構 造物とを「固定」する場合には、(1)コイルの中空部分に繊維材もしくはゲル状物質を 挿入する構成、或いは(2)コイル構造全体を被覆するよう繊維材ゃゲルを配置する 等の構成がある。  In the above invention, it is preferable that the artificial obturator includes a metal coil body and a structure fixed to the coil body, and the tenascin C is included in at least the structure. . As the structure, for example, a material that is less irritating to a living body and a material that is formed in a fiber shape or a gel-like material can be used. Tenascin C can be contained in the structure by applying tenascin C to the surface of the structure or by including tenascin C in the structure itself. When the coil body and the structure are to be “fixed”, (1) a structure in which a fiber material or gel-like substance is inserted into the hollow portion of the coil, or (2) a fiber material that covers the entire coil structure. There are configurations such as placing gel.
本発明によれば、塞栓効果をより高めて、血管障害部位の線維化を促進するコィ ルを提供できる。  According to the present invention, it is possible to provide a coil that further enhances the embolic effect and promotes fibrosis at the site of vascular injury.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 次に、本発明の実施形態について、図面を参照しつつ詳細に説明するが、本発明 の技術的範囲は、下記の実施形態によって限定されるものではなぐその要旨を変 更することなぐ様々に改変して実施することができる。また、本発明の技術的範囲は 、均等の範囲にまで及ぶものである。 Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the technical scope of the present invention is not limited by the following embodiments, but changes the gist thereof. Various modifications can be made. Further, the technical scope of the present invention extends to an equivalent range.
実施例  Example
[0011] 1.試験方法  [0011] 1. Test method
<コイルの準備 >  <Preparation of coil>
長さ 12.5mm、直径 0.3mmのプラチナコイル(素線径が約 50 μ mのものをコイル 状に巻き付けたもの)に、金イオンとアルカンチオール、ポリエチレンチミン、及びへ ノ リンをこの順番に結合したへパリン固定ィ匕コイルを用いた。へパリン固定ィ匕コイルを テネイシン C溶液 (PBS溶液で 100 gZml)に 4°C1時間浸漬させ、へパリンを介し てテネイシン Cをコイルに結合させた。テネイシン Cは、ヒト神経膠芽腫由来 U251M G細胞の培養上清から精製した(Tsunoda T, Inada H, Kalembeyi I, Imanaka-Yoshid a K, Sakakibara M, Okada R, Katsuta K, Sakakura T, Majima Y, Yoshida T. Involve ment of large tenascin— C splice variants in breast cancer progression. Am J Pathol. 2003 Jun;162(6):1857- 67.)。また、へパリン固定化コイルに bFGF溶液(PBS溶液で 100 μ gZmlにしたもの)に室温 1時間浸漬させ、へパリンを介して bFGFをコイルに 結合させた。 A platinum coil with a length of 12.5mm and a diameter of 0.3mm. A heparin-fixed coil in which gold ions, alkanethiol, polyethylenethymine, and heline were bound in this order was used. The heparin-fixed coil was immersed in Tenascin C solution (100 gZml in PBS) at 4 ° C for 1 hour, and Tenascin C was bound to the coil via heparin. Tenascin-C was purified from the culture supernatant of human glioblastoma-derived U251MG cells (Tsunoda T, Inada H, Kalembeyi I, Imanaka-Yoshid a K, Sakakibara M, Okada R, Katsuta K, Sakakura T, Majima Y , Yoshida T. Involvement of large tenascin—C splice variants in breast cancer progression. Am J Pathol. 2003 Jun; 162 (6): 1857- 67.). The heparin-immobilized coil was immersed in a bFGF solution (100 μg Zml in PBS) for 1 hour at room temperature, and bFGF was bound to the coil via heparin.
上記のようにして調整したコイルのうち、非修飾のプラチナコイルをコントロール群 に、へパリン固定ィ匕コイルをへパリン群に、 bFGFを浸漬させたものを bFGF群に、テ ネイシン Cを浸漬させたものをテネイシン群とした。  Of the coils prepared as described above, unmodified platinum coil is immersed in control group, heparin-fixed coil is immersed in heparin group, bFGF is immersed in bFGF group, and tenascin-C is immersed in it. This was taken as the tenascin group.
[0012] <ラット動脈瘤モデル作製 > [0012] <Rat aneurysm model creation>
体重 300g〜400gのォス SDラット 22匹につ!、て、 35mgZkgのペントバルビター ルナトリウム(sodium pentobarbital)を腹膜内注射で投与することにより麻酔した。麻 酔下ラットの下顎骨下から胸骨柄まで正中切開した。総頸動脈(Common carotid art ery (以下、「CCA」という))は、胸鎖乳突筋の前縁に沿って剥離していった。そして、 CCAを確認した後、肩甲舌骨筋を切らないように内頸静脈、迷走神経を剥離し、次 のような手順でコイルを留置した。(l) CCAの分岐部の近位で永久結紮し、盲端を 形成した。(2) CCAの起始部をクランプし、(3)小さな動脈切開を、永久結紮部位よ り 2mm近位に行い、コイルを CCAに挿入した。(4)出血防止のため、動脈切開した 部位より少し近位で結紮した。(5)血流内でコイルを固定するために、永久結紮部位 よりもさらに 3mm近位側に結紮した。 (6)クランプは血流を頸動脈内で再開通するた めに解除した。  Twenty-two male SD rats weighing 300-400 g were anesthetized by intraperitoneal injection of 35 mg Zkg of sodium pentobarbital. A midline incision was made from the submandibular bone to the sternum of the drunken rat. The common carotid art ery (hereinafter referred to as “CCA”) separated along the anterior edge of the sternocleidomastoid muscle. After confirming CCA, the internal jugular vein and vagus nerve were removed so as not to cut the scapulohyoid muscle, and the coil was placed by the following procedure. (L) Peripheral ligation near the CCA bifurcation, forming a blind end. (2) CCA origin was clamped, (3) A small arteriotomy was performed 2 mm proximal to the permanent ligation site, and the coil was inserted into the CCA. (4) To prevent bleeding, ligation was performed slightly proximal to the arteriotomy site. (5) In order to fix the coil in the bloodstream, it was ligated further 3 mm proximal than the permanent ligation site. (6) The clamp was released to resume blood flow through the carotid artery.
[0013] これで動脈瘤モデルが完成となる。以上のように、本実施形態では血管(CCA)を 盲端にすることで、動脈瘤モデルとした。コイルを留置するラットはコントロール群に 6 匹、へパリン群に 6匹、 bFGF群に 6匹、及びテネイシン群に 8匹使用した。コイルの 留置後、 14日目にこれらのラットは同様の手技で CCAを露出させ、コイルを含む CC Aセグメントを摘出した(約 10mm)。そのセグメントは、 10%ホルムアルデヒド緩衝溶 液に入れた。テネイシン群 2匹は 28日目に同様に組織を得た。 [0013] This completes the aneurysm model. As described above, in this embodiment, the aneurysm model is obtained by making the blood vessel (CCA) blind. Six rats in which the coil was placed were used in the control group, 6 in the heparin group, 6 in the bFGF group, and 8 in the tenascin group. Coil On the 14th day after placement, these rats exposed CCA using the same procedure, and removed the CCA segment containing the coil (approximately 10 mm). The segment was placed in a 10% formaldehyde buffer solution. Two animals in the tenascin group also obtained tissue on the 28th day.
[0014] <組織病理学 > [0014] <Histopathology>
ホルムアルデヒドに保存した CCAセグメントは、パラフィン包埋を行った。包埋した 後、コイルを引き抜き、ブロックから 4 mの厚さで薄切して切片を作製した。それぞ れの切片中の細胞、コラーゲンの状態を評価するために、へマトキシリンーェォジン( HE)染色と Sirius赤染色、 a - smooth muscle actin (以下、「 a—SMA」という)に対す る免疫染色 (anti- human smooth muscle actin/HRP- EPOS、 DAKO Japan, Kyoto)、 マクロファ ~~ンの免疫染色 (ratCD68, mouse anti-rat mononuclear phagocyte antibo dy, BD Biosciences, USA),内皮細胞の免疫染色(rabbit anti- von- Willebrand factor , Dako Japan, Kyoto)を行った。 a—SMAの免疫染色は、脱パラフィン後、過酸化 水素処理、ブロッキングを行い、 a SMA抗体をそのまま使用し、 4°Cでー晚インキ ュペートした。発色基質には、 DAB (3, 3'-diaminobenzidine) Z過酸化水素溶液を 用いた。  CCA segments stored in formaldehyde were embedded in paraffin. After embedding, the coil was pulled out and sliced at a thickness of 4 m from the block to prepare a section. In order to evaluate the state of cells and collagen in each section, hematoxylin-eosin (HE) staining and Sirius red staining, a-smooth muscle actin (hereinafter referred to as “a-SMA”) Immunostaining (anti-human smooth muscle actin / HRP-EPOS, DAKO Japan, Kyoto), macrophage immunostaining (ratCD68, mouse anti-rat mononuclear phagocyte antibody, BD Biosciences, USA), endothelial cell Immunostaining (rabbit anti-von-Willebrand factor, Dako Japan, Kyoto) was performed. For a-SMA immunostaining, deparaffinization, hydrogen peroxide treatment and blocking were performed. a Using the SMA antibody as it was, it was incubated at 4 ° C. DAB (3, 3'-diaminobenzidine) Z hydrogen peroxide solution was used as the chromogenic substrate.
[0015] マクロファージ免疫染色は、脱パラフィン後、過酸化水素処理、ブロッキングを行い 、一次抗体を PBS (phosphate buffer saline)で 20倍希釈し、 4°Cでー晚インキュベー トした。二次抗体には、抗マウス IgG—パーォキシダーゼ標識抗体(anti mouse IgG - Peroxidase, MBL社製))を PBSで 200倍希釈して使用し、 2時間インキュベートした 。発色基質には、 DABZ過酸化水素を用いた。内皮細胞の免疫染色は、 von Willeb rand因子に対する市販の希釈一次抗体をかけ、 4°Cで一晩処理し、二次抗体には、 抗ゥサギ IgG パーォキシダーゼ標識抗体 (MBL社製) )を PBSで 200倍希釈して 使用し、 2時間反応させた。発色基質には、 DABZ過酸化水素を用いた。染色処理 が完了後、それぞれの切片を顕微鏡で観察した。線維化部位、および血管腔の面積 計算には、内弾性板を基準にして、 Scion Image[Scion Corporation, US (http://w ww.scioncorp.com/)にてダウンロード可能なソフトウェア]を使用した。  For macrophage immunostaining, deparaffinization, hydrogen peroxide treatment and blocking were performed, and the primary antibody was diluted 20-fold with PBS (phosphate buffer saline) and incubated at 4 ° C. As a secondary antibody, an anti-mouse IgG-peroxidase-labeled antibody (anti mouse IgG-Peroxidase, manufactured by MBL) was diluted 200-fold with PBS and incubated for 2 hours. DABZ hydrogen peroxide was used as the chromogenic substrate. Endothelial cells were immunostained with a commercially available diluted primary antibody against von Willebrand factor, treated overnight at 4 ° C, and anti-rabbit IgG peroxidase labeled antibody (manufactured by MBL)). The solution was diluted 200-fold with PBS and allowed to react for 2 hours. DABZ hydrogen peroxide was used as the chromogenic substrate. After the staining process was completed, each section was observed with a microscope. For calculation of fibrosis site and vascular cavity area, Scion Image [software available for download at Scion Corporation, US (http://www.scioncorp.com/)] is used based on the internal elastic plate. did.
[0016] 2.試験結果  [0016] 2. Test results
<顕微鏡観察 > 図 1には、各群の切片を HE染色したときの顕微鏡写真図を示した。なお、血管腔 内の孔部(アスターリスク *で示されている)は、コイルを引き抜いたときできたもので あり、いずれの写真においても同等の径を備えている。 <Microscope observation> FIG. 1 shows micrographs of sections of each group when HE-stained. The hole in the vascular cavity (indicated by asterisk *) was created when the coil was pulled out, and has the same diameter in all the photographs.
写真中の血管腔内を評価すると、テネイシン群では、コイル本体の部分を除くほぼ 全体の血管腔に器質ィ匕がみられ、結合組織が形成されていた。 bFGF群では、血栓 の一部に器質ィ匕が見られた。一方、へノ リン群やコントロール群では、ほとんど器質 ィ匕は見られなかった。  When the intravascular space in the photograph was evaluated, in the tenascin group, organic folds were found in almost the entire vascular space except the coil body, and connective tissue was formed. In the bFGF group, organic hemorrhoids were found in part of the thrombus. On the other hand, almost no organic habit was seen in the HENOLINE group or the control group.
[0017] 図 2には、器質ィ匕に効果がみられたテネイシン群と bFGF群の切片を Sirius赤染色 したのち偏光顕微鏡で撮影したものを示す (左:同部位の HE染色。右:偏光顕微鏡 像)。膠原線維はこの方法では赤色調の複屈折性をしめす。血管腔内の膠原線維の 集積を評価すると、テネイシン群では、 14日で太い膠原線維の密な集積が確認でき た(中段)。 28日のラットから採取された組織 (下段)では、細胞数の減少が見られ、線 維化が進んでいた。一方、 bFGF群では、膠原線維の形成は殆ど見られなかった (上 段)。  [0017] Fig. 2 shows a section of tenascin group and bFGF group, which showed an effect on organic habits, taken with a Sirius red stain and then taken with a polarizing microscope (left: HE staining of the same site, right: polarized light). Microscopic image). Collagen fibers show reddish birefringence in this method. When the accumulation of collagen fibers in the vascular cavity was evaluated, dense accumulation of thick collagen fibers was confirmed in the tenascin group in 14 days (middle). In the tissue collected from rats on the 28th (bottom), the number of cells decreased and fibrosis progressed. On the other hand, almost no collagen fibers were formed in the bFGF group (top).
図 3には、テネイシン群と bFGF群切片を α— SMA、マクロファージのマーカーで ある CD68、内皮細胞のマーカーである von Willebrand因子(von Willebrand factor. 以下、「vWF」という)の免疫染色したものの顕微鏡写真図を示した。血管腔内の平 滑筋細胞 (smooth muscle cell (以下、「SMC」という))の集積を評価すると、テネイシ ン群では、結合組織内に多数の SMCが密に集積していた。一方、 bFGF群では、 S MCの集積は見られな力つた。マクロファージ (CD68)の免疫染色では、テネイシン 群と bFGF群のいずれでも、器質ィ匕部にマクロファージが集積していた。 vWFは、 bF GF群では血栓と器質ィ匕部の境界面で陽性であった。テネイシン群では、小型の毛 細血管で陽性であった。これらから、テネイシン群と bFGF群では、器質化部を構成 する細胞が異なっており、テネイシン群では SMCが主体であることがわかった。  Figure 3 shows a micrograph of tenascin group and bFGF group sections stained with α-SMA, macrophage marker CD68, and endothelial cell marker von Willebrand factor (von Willebrand factor; hereinafter referred to as “vWF”). A photograph is shown. When the accumulation of smooth muscle cells (hereinafter referred to as “SMC”) in the vascular cavity was evaluated, in the tenacin group, many SMCs were densely accumulated in the connective tissue. On the other hand, in the bFGF group, SMC accumulation was strong. Macrophage (CD68) immunostaining showed accumulation of macrophages in the organ groin in both the tenascin group and the bFGF group. In the bF GF group, vWF was positive at the interface between the thrombus and the groin area. In the tenascin group, small capillaries were positive. From these results, it was found that the cells constituting the organizing part were different between the tenascin group and the bFGF group, and that the tenascin group was mainly composed of SMC.
[0018] <病理評価 > [0018] <Pathological evaluation>
図 4には、各群における血管腔面積を比較したグラフを示した。血管腔面積をそれ ぞれ比較すると、コントロール群の血管腔が最も大きぐ次いでへパリン群、 bFGF群 、及びテネイシン群の順に小さくなつた。テネイシン群は、コントロール群(pく 0.015 )及びへパリン群 (pく 0.042)に対して、有意に血管腔が小さくなつた。また、有意差 は認められなかったものの、テネイシン群の血管腔面積の平均値(0.352mm2)は、 bFGF群の血管腔面積の平均値 (0.516mm2)に比べて、 70%以下に小さくなつた 図 5には、各群における器質ィ匕率を比較したグラフを示した。コントロール群 (4.84) 及びへパリン群(1.62%)では、ほとんど器質ィ匕が認められな力つた。 bFGF群では、 器質化が認められたものの、その割合は低く(17.94%)、十分な器質ィ匕は見られな かった。一方、テネイシン群では、器質化率は非常に高く (93.41%)、残りのいずれ の群に対しても有意差を示した (p< 0.0001)。 FIG. 4 shows a graph comparing the vascular cavity areas in each group. When the vascular cavity areas were compared, the vascular cavity in the control group was the largest, followed by the heparin group, the bFGF group, and the tenascin group. Tenascin group is control group (p 0.015 ) And the heparin group (p 0.042), the blood vessel cavity was significantly reduced. Further, although the difference was not significant, the average value of the blood vessel lumen area of tenascin group (0.352mm 2), compared to the average value of the blood vessel lumen area of the bFGF group (0.516mm 2), less 70% or less Fig. 5 shows a graph comparing the percentage of organic matter in each group. In the control group (4.84) and the heparin group (1.62%), almost no organic habit was observed. In the bFGF group, organization was observed, but the rate was low (17.94%), and sufficient organization was not observed. On the other hand, in the tenascin group, the organization rate was very high (93.41%), showing a significant difference from any of the remaining groups (p <0.0001).
[0019] 3.考察 [0019] 3. Discussion
本実施形態において使用したプラチナコイルは、非常に柔らかいので、動脈瘤の 形状やサイズに適合する。このため、動脈瘤内にしつ力り詰められたコイルは、動脈 瘤にとって、血流を母血管と遮断し、血栓を形成することにより、破裂や瘤の再形成 を防止する期待がもたれる。したがって、コイル塞栓治療は、理論的には、動脈瘤の 開口部に沿って起こる血栓化、線維化、そして最終的には開口部表面の内皮化を促 進するために、コイルを動脈瘤内に隙間がなくなるように詰め込むことが必要である。 この必要性から、柔軟性のあるプラチナコイルは理想的である。しかし、プラチナコィ ルを用いた場合には、血管造影像ではコイルが動脈瘤を塞 ヽで 、るように見えるもの の、コイルが動脈瘤内を占める容積 (充填率)は実際には 30%程度に過ぎない。  The platinum coil used in this embodiment is very soft and fits the shape and size of the aneurysm. For this reason, the coil tightly packed in the aneurysm is expected to prevent rupture and aneurysm formation by blocking the blood flow from the mother blood vessel and forming a thrombus for the aneurysm. Thus, coil embolization therapy theoretically places the coil within the aneurysm to promote thrombosis, fibrosis, and ultimately endothelialization of the opening surface along the aneurysm opening. It is necessary to pack it so that there is no gap in it. Because of this need, a flexible platinum coil is ideal. However, when a platinum coil is used, the volume of the coil occupying the aneurysm (filling rate) is actually about 30% although the coil appears to be an aneurysm in the angiogram. Only.
[0020] コイルの留置によって、瘤内には血栓化が起こる。この血栓は、最終的に器質化' 線維化を起こすことが好ましい。そうすれば、動脈瘤力もプラチナコイルの隙間を流 れる血流で、動脈瘤の再拡大や破裂'再出血をおこす心配がなくなるからである。動 脈瘤治療の場合には、血管では生物学的に不利益と考えられている血栓形成や血 管内膜の新生を引き起こし、最終的には線維化により、瘤内を塞いでしまうことが望ま れる。プラチナは生物活性のきわめて低い金属であり、組織反応が起こらないことが 、血管内治療を行う材料としての利点と考えられてきている。したがって、プラチナコ ィル自体に血栓形成や内膜新生を期待することは無理であり、そのような生物活性を 持つ物質を付加することができれば、コイル塞栓治療をより有効にすると考えられる。 [0021] 現在、コイル塞栓治療では、コイル表面に増殖因子やそれを発現する線維芽細胞 を付着させる方法で、 VEGF (John M. Abrahams, Mark S. Forman, Sean Grady, an d Scott L. Diamond: Delivery of Human Vascular Endothelial Growth Factor with PI atinum Coils Enhances Wall Thickening and Coil Implantation in a Rat Aneurysm Mo del. AJNR 22: 1410-1417, August 2001)や、 bFGF (Liu Hong, Susumu Miyamoto, Keisuke Yamada, Nobuo Hashimoto, Yasuhiko Tabata: Enhanced Formation of Fibr osis in a Rabbit Aneurysm by Gelatine Hydrogel Incorporating Basic Fibroblast Gro wth Factor. Neurosurgery vol.49, 954—961, 2001, David F. Kallmes, Armistead D. Williams, Harry J. Cloft, Maria— Beatriz S. Lopes, Gerald R. Hankins, Gregory A. H elm: Platinum Coil-mediated Implantation of Growth Factor-secreting Endovascular Tissue Graft: An in Vivo Study. Radiology 207: 519-523, 1998)などの効果をみる試 みがされている。 [0020] Due to the placement of the coil, thrombosis occurs in the aneurysm. The thrombus is preferably finally organized and fibrotic. By doing so, the aneurysm force is also flowed through the gaps in the platinum coil, and there is no need to worry about re-expansion or rupture of the aneurysm. In the case of arterial aneurysm treatment, blood vessels may cause thrombus formation and neointimal formation, which are considered biologically disadvantageous, and eventually fibrosis may block the aneurysm. desired. Platinum is a metal with extremely low biological activity, and the absence of tissue reaction has been considered an advantage as a material for endovascular treatment. Therefore, it is impossible to expect thrombus formation or intimal neoplasia in the platinum coil itself, and if such a biologically active substance can be added, coil embolization treatment will be more effective. [0021] Currently, in coil embolization treatment, VEGF (John M. Abrahams, Mark S. Forman, Sean Grady, and Scott Scott L. Diamond is used to attach growth factors and fibroblasts that express them to the coil surface. : Delivery of Human Vascular Endothelial Growth Factor with PI atinum Coils Enhances Wall Thickening and Coil Implantation in a Rat Aneurysm Mo del.AJNR 22: 1410-1417, August 2001), bFGF (Liu Hong, Susumu Miyamoto, Keisuke Yamada, Nobuo Hashimoto , Yasuhiko Tabata: Enhanced Formation of Fibrosis in a Rabbit Aneurysm by Gelatine Hydrogel Incorporating Basic Fibroblast Gro wth Factor.Neurosurgery vol.49, 954—961, 2001, David F. Kallmes, Armistead D. Williams, Harry J. Cloft, Maria — Beatriz S. Lopes, Gerald R. Hankins, Gregory A. Helm: Platinum Coil-mediated Implantation of Growth Factor-secreting Endovascular Tissue Graft: An in Vivo Study.Radology 207: 519-523, 1998) Tried.
[0022] 本実施形態で使用したテネイシン Cは細胞外マトリックス糖蛋白の一種で、上記の ような増殖因子に分類されるものではなぐまた、血栓形成を促進する機能は知られ ていない。動脈硬化病変、経皮経血管的動脈形成術(Percutaneous transluminal co ronary angioplastyG以下、「PTCA」という)や血管吻合術ゃステント留置術などの後 の血管の再狭窄病変で、早期にテネイシン Cの発現が見られる。テネイシン Cは血管 壁中膜などの SMCを内膜に遊走させ、その増殖を引き起こし、新生内膜の形成を促 進していると考えられている。ヒトにおける PTCA後の組織の検討では、内膜でのテ ネイシン Cの発現と SMCの増殖は 1ヶ月以内で生じ、その後、プロテオダリカンの一 種の PG— Mが 1ヶ月〜3ヶ月の間に蓄積され、その量的な効果により極度の内腔狭 窄が起きる。 3ヶ月以降になると、新生内膜は、 I型、 III型コラーゲンで構成されるより 成熟した細胞外マトリックスに置きかえられ、長期ではふたたび血管の狭窄 ·閉塞をき たす。 [0022] Tenascin C used in the present embodiment is a kind of extracellular matrix glycoprotein and is not classified as a growth factor as described above, and the function of promoting thrombus formation is not known. Atherosclerotic lesions, vascular restenosis lesions after percutaneous transluminal coronary angioplasty G ( hereinafter referred to as “PTCA”), vascular anastomosis, stent placement, etc. Expression is seen. Tenascin C is thought to migrate SMCs such as the lining of the vascular wall to the intima, causing its proliferation and promoting the formation of neointima. In post-PTCA tissue studies in humans, tenascin-C expression and SMC proliferation in the intima occur within 1 month, followed by a PG-M proteodarican between 1 and 3 months. The luminal stenosis occurs due to its quantitative effect. After 3 months, the neointimal membrane is replaced by a more mature extracellular matrix composed of type I and type III collagen, which again causes stenosis / occlusion of blood vessels over the long term.
[0023] 本実施例によれば、へパリン固定ィ匕コイルの表面に固定されたテネイシン Cを動脈 瘤内に導入でき、瘤内での結合組織形成を有意に高める効果が示された。さらに、 その糸且織の細胞成分はおもに SMCであることがわかった。これらは、 PTCAゃステ ント留置術後の 1ヶ月以内の組織と酷似している(Kyoko Imanaka-Yosida, Ritsuko M atsuura, Naoki Isaka, Takeshi Nakano, Teruyo Sakakura, and Toshimichi Yoshida:s erial extracellular matrix changes in neointimal lesions of human coronary artery afte r percutaneous transluminal coronary angioplasty : clinical significance of early tenasc in- C expression. Virchows Archiv 2001:p.pl85- 90)。また、本実施例のラットモデル では、 14日ですでに膠原線維形成がかなり進んでおり、 28日では充分に成熟した 結合組織となっており、これらから勘案すればヒトでも同様な良好な効果が期待でき る。 [0023] According to the present example, tenascin C fixed on the surface of the heparin-fixed coil can be introduced into the aneurysm, and the effect of significantly increasing connective tissue formation within the aneurysm was shown. Furthermore, it was found that the cell component of the yarn and weave was mainly SMC. These are very similar to tissues within one month after PTCA stent placement (Kyoko Imanaka-Yosida, Ritsuko M atsuura, Naoki Isaka, Takeshi Nakano, Teruyo Sakakura, and Toshimichi Yoshida: s erial extracellular matrix changes in neointimal lesions of human coronary artery afte r percutaneous transluminal coronary angioplasty: clinical significance of early tenasc in- C expression.Virchows Archiv 2001: p. pl85-90). Furthermore, in the rat model of this example, collagen fibril formation has already progressed considerably on the 14th, and the connective tissue is sufficiently matured on the 28th. Can be expected.
[0024] マクロファージの集積は、発明者らも予想していなかったテネイシン Cの働きであり、 SMCと同じように動脈瘤内の肉芽組織形成に関与していた。マクロファージは線維 芽細胞を遊走 '増殖させるさまざまな因子を分泌するので、テネイシン Cの SMCへの 作用に相加的に働き、器質化 ·線維化を促進したと考えられる。  [0024] Accumulation of macrophages was a function of tenascin C, which was not anticipated by the inventors, and was involved in granulation tissue formation within the aneurysm, similar to SMC. Since macrophages secrete various factors that cause fibroblasts to migrate and proliferate, it seems to have acted in addition to the action of tenascin-C on SMC and promoted organization and fibrosis.
また、コントロール群、へパリン群、 bFGF群及びテネイシン群の 4群を比較すると、 テネイシン群の血管腔のサイズが最も小さカゝつた。これは、 SMCが筋線維芽細胞と して働き、器質ィ匕組織を収縮したと推測できる。また、マクロファージは細胞外マトリツ タスを分解するマトリックスメタ口プロテアーゼを分泌するので、新たに作られた器質 化組織と既存の血管壁組織を、過不足のな 、量へ再構築されることを促進したため と考えられる。また、生理活性物質を導入したさまざまなコイルの報告があるが、血管 内腔の縮小を来たす効果をもつコイルは本実施例が始めてである。以上から、テネィ シン固定ィ匕コイルは、コイル本体の効果だけでなぐテネイシン Cの作用により誘導さ れた細胞で形成された組織で動脈瘤内を満たすことで、血流を瘤内から遮断し、ま た長期的には線維化を起こして出血'瘤の再発を防止することにつながるのではな いかと考えられた。また、動脈瘤のサイズを狭小化することから、大型の動脈瘤治療 において瘤の狭小化の効果が期待でき、脳実質や脳神経の圧迫を引き起こす動脈 瘤の空間占拠効果を減少させるなど、コイル塞栓術の適応の拡大が期待できる。 このように本実施形態によれば、塞栓効果をより高めて、動脈瘤内の線維化を促進 する人工栓塞物を提供することができる。  When the four groups of the control group, heparin group, bFGF group, and tenascin group were compared, the size of the blood vessel cavity of the tenascin group was the smallest. It can be inferred that SMCs acted as myofibroblasts and contracted organic tissue. Macrophages also secrete matrix meta-oral proteases that break down extracellular matrix, facilitating the reorganization of newly created organic tissues and existing vascular wall tissues into quantities without excess or deficiency. This is thought to be due to this. In addition, there have been reports of various coils into which physiologically active substances have been introduced, but this is the first coil that has the effect of reducing the lumen of blood vessels. From the above, the Tenisin fixed coil coil blocks the blood flow from the aneurysm by filling the aneurysm with tissue formed by cells induced by the action of Tenascin C, which is not only the effect of the coil body. Also, in the long term, it was thought that fibrosis would lead to preventing the recurrence of the bleeding aneurysm. In addition, since the size of the aneurysm is narrowed, the effect of narrowing the aneurysm can be expected in the treatment of large aneurysms, and the space occupation effect of the aneurysm that causes compression of the brain parenchyma and cranial nerves is reduced. The expansion of the indication of surgery can be expected. Thus, according to the present embodiment, it is possible to provide an artificial plug embolus that further enhances the embolic effect and promotes fibrosis in the aneurysm.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]各群の切片をへマトキシリン-ェォジン染色したときの顕微鏡写真図である。 コ ントロール群(Control)、へパリン群(Heparin)、 bFGF群、テネイシン群(TN— C) の写真を示す。テネイシン群の写真中の矢頭は血管壁を示す。また、図中にある横 線は 100 mのスケールである(図 2及び図 3においても同じである。 )。アスターリス ク( * )は、コイルを抜去した後の組織のな 、場所を示す。 [0025] FIG. 1 is a photomicrograph of sections of each group stained with hematoxylin-eosin. Co The photographs of the control group (Control), heparin group (Heparin), bFGF group, and tenascin group (TN-C) are shown. The arrowhead in the photograph of the tenascin group shows the blood vessel wall. The horizontal line in the figure is a scale of 100 m (the same applies to Figs. 2 and 3). The asterisk (*) indicates the location of the tissue after removal of the coil.
[図 2]bFGF群とテネイシン (TN—C)群を Sirius赤染色したときの顕微鏡写真図であ る。左はへマトキシリン-ェォジン染色、右は Sirius赤染色を偏光顕微鏡で観察した もの。器質ィ匕部位 (org)、血管中膜 (med)、血管外膜 (adv)を右欄外に示す。 14d: l 4曰目、 28d: 28曰目。  FIG. 2 is a photomicrograph of the bFGF group and tenascin (TN-C) group stained with Sirius red. Hematoxylin-eosin staining on the left and Sirius red staining on the right with a polarizing microscope. The organic anther site (org), vascular media (med), and adventitia (adv) are shown in the right column. 14d: l 4th, 28d: 28th.
[図 3]bFGF群とテネイシン(TN— C)群を α— SMA染色、マクロファージ染色(CD6 8)、内皮細胞染色 (von Willebrand因子、 vWF)したときの顕微鏡写真図である。テ ネイシン群の写真中の矢頭は血管壁を示す。 HE:へマトキシリン-ェォジン染色。  FIG. 3 is a photomicrograph of the bFGF group and the tenascin (TN-C) group when α-SMA staining, macrophage staining (CD68), and endothelial cell staining (von Willebrand factor, vWF) are performed. The arrowhead in the photograph of the tenascin group indicates the blood vessel wall. HE: Hematoxylin-eosin staining.
[図 4]14日目の組織における各群における血管腔の面積を比較したグラフである。な お、各データは、平均値士標準偏差 (SD)にて示した。 FIG. 4 is a graph comparing the area of the vascular cavity in each group in the tissue on the 14th day. Each data is shown as mean standard deviation (SD).
[図 5]14日目の組織における各群における器質ィ匕率を比較したグラフである。なお、 各データは、平均値士標準偏差 (SD)にて示した。  FIG. 5 is a graph comparing the organic content rate in each group in the tissue on day 14. Each data is shown as mean value standard deviation (SD).

Claims

請求の範囲 The scope of the claims
[1] テネイシン cを含有することを特徴とする人工栓塞物。  [1] An artificial embolus containing tenascin c.
[2] 前記人工栓塞物は、金属製のコイル本体またはコイルに付随する構造物の少なくと ¾ ヽずれか一方を含むことを特徴とする請求項 1に記載の人工栓塞物。  [2] The artificial obturator according to claim 1, wherein the artificial obturator includes at least one of a metal coil body or a structure associated with the coil.
[3] 前記人工栓塞物は、金属製のコイル本体を含み、このコイル本体の表面とテネイシン Cとの間にテネイシン C結合能を備えた第 1層もしくはテネイシン Cを含有する構造物 の少なくともいずれか一方を設けたことを特徴とする請求項 1に記載の人工栓塞物。  [3] The artificial obturator includes a metal coil body, and at least one of a first layer having tenascin C binding ability between the surface of the coil body and tenascin C or a structure containing tenascin C. 2. The artificial obturator according to claim 1, wherein one of them is provided.
[4] 前記コイル本体の表面と前記第 1層との間に、第 1層をより強くコイル本体の表面に 固定する第 2層を設けたことを特徴とする請求項 3に記載の人工栓塞物。  [4] The artificial obturator according to claim 3, wherein a second layer is provided between the surface of the coil body and the first layer to more firmly fix the first layer to the surface of the coil body. object.
[5] 前記第 1層もしくは構造物の少なくともいずれか一方には、へノリン若しくはへノリン 様活性物質が含有されていることを特徴とする請求項 3または 4に記載の人工栓塞 物。  [5] The artificial obturator according to claim 3 or 4, wherein at least one of the first layer or the structure contains a henoline or a henoline-like active substance.
[6] 前記人工栓塞物は、金属製のコイル本体と、このコイル本体に固定された構造物とを 含み、前記テネイシン Cは、少なくとも前記構造物に含有されていることを特徴とする 請求項 1に記載の人工栓塞物。  6. The artificial obturator includes a coil body made of metal and a structure fixed to the coil body, and the tenascin C is contained in at least the structure. 1. The artificial obturator according to 1.
PCT/JP2005/014168 2004-08-30 2005-08-03 Artificial plugging material WO2006025177A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531502A JP4427636B2 (en) 2004-08-30 2005-08-03 Artificial obturator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004250766 2004-08-30
JP2004-250766 2004-08-30

Publications (1)

Publication Number Publication Date
WO2006025177A1 true WO2006025177A1 (en) 2006-03-09

Family

ID=35999838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014168 WO2006025177A1 (en) 2004-08-30 2005-08-03 Artificial plugging material

Country Status (2)

Country Link
JP (1) JP4427636B2 (en)
WO (1) WO2006025177A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010763A (en) * 2010-06-29 2012-01-19 Fujifilm Corp Polarized light image measuring method and polarized light image measuring and displaying method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176249A (en) * 1997-09-01 1999-03-23 Kaneka Medics:Kk Blood embolus device
WO2001030411A1 (en) * 1999-10-26 2001-05-03 Kaken Pharmaceutical Co., Ltd. Vessel embolic material comprising hydrogel and therapy with the use thereof
JP2001299769A (en) * 2000-04-25 2001-10-30 Univ Kyoto Coil for speeding up organization used for surgery in blood vessel and indweller for coil in blood vessel
JP2004261218A (en) * 2003-02-07 2004-09-24 Yasuhiko Tabata Blood vessel blocking composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176249A (en) * 1997-09-01 1999-03-23 Kaneka Medics:Kk Blood embolus device
WO2001030411A1 (en) * 1999-10-26 2001-05-03 Kaken Pharmaceutical Co., Ltd. Vessel embolic material comprising hydrogel and therapy with the use thereof
JP2001299769A (en) * 2000-04-25 2001-10-30 Univ Kyoto Coil for speeding up organization used for surgery in blood vessel and indweller for coil in blood vessel
JP2004261218A (en) * 2003-02-07 2004-09-24 Yasuhiko Tabata Blood vessel blocking composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010763A (en) * 2010-06-29 2012-01-19 Fujifilm Corp Polarized light image measuring method and polarized light image measuring and displaying method

Also Published As

Publication number Publication date
JPWO2006025177A1 (en) 2008-05-08
JP4427636B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
Murayama et al. Bioabsorbable polymeric material coils for embolization of intracranial aneurysms: a preliminary experimental study
CA2437694C (en) Bioabsorbable polymeric implants and a method of using the same to create occlusions
US6423085B1 (en) Biodegradable polymer coils for intraluminal implants
JP4856339B2 (en) Vascular embolization material comprising hydrogel and treatment method using the same
CA2472031C (en) Medical device with coating that promotes endothelial cell adherence and differentiation
Dawson et al. Treatment of Experimental Aneurysms Using Collagen-coated Microcoils Experimental Study: 133
US8968391B2 (en) Systems and methods to reduce gel retraction
US20060135476A1 (en) Medical device with coating that promotes endothelial cell adherence and differentiation
US20070055367A1 (en) Medical device with coating that promotes endothelial cell adherence and differentiation
CA2323151C (en) Biodegradable polymer/protein based coils for intralumenal implants
Reinges et al. Bare, bio-active and hydrogel-coated coils for endovascular treatment of experimentally induced aneurysms: long-term histological and scanning electron microscopy results
Aronson et al. A novel tissue engineering approach using an endothelial progenitor cell–seeded biopolymer to treat intracranial saccular aneurysms
Rodriguez et al. Design and biocompatibility of endovascular aneurysm filling devices
JP2006068378A (en) Intravascular indwelling object
Rouchaud et al. Autologous mesenchymal stem cell endografting in experimental cerebrovascular aneurysms
JP4427636B2 (en) Artificial obturator
Ohyama et al. Vascular endothelial growth factor immobilized on platinum microcoils for the treatment of intracranial aneurysms: experimental rat model study
Ohyama et al. Immobilization of basic fibroblast growth factor on a platinum microcoil to enhance tissue organization in intracranial aneurysms
WO1999047047A1 (en) Biological modification of vaso-occlusive devices
US20060259130A1 (en) Device for blocing blood vessel
US20060099191A1 (en) Cell-seeded tissue-engineered polymers for treatment of intracranial aneurysms
Plenk et al. Cartilage and bone neoformation in rabbit carotid bifurcation aneurysms after endovascular coil embolization
Darsaut The effects of stenting and endothelial denudation on experimental aneurysm healing and gene expression following endovascular treatment
Marbacher Pathobiology of healing response after endovascular treatment of intracranial aneurysms–Paradigm shift from lumen to wall oriented therapy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531502

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase