WO2006019091A1 - Solar cell hybrid module - Google Patents

Solar cell hybrid module Download PDF

Info

Publication number
WO2006019091A1
WO2006019091A1 PCT/JP2005/014940 JP2005014940W WO2006019091A1 WO 2006019091 A1 WO2006019091 A1 WO 2006019091A1 JP 2005014940 W JP2005014940 W JP 2005014940W WO 2006019091 A1 WO2006019091 A1 WO 2006019091A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
heat
solar
flow pipe
module
Prior art date
Application number
PCT/JP2005/014940
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Shimakawa
Motohiro Suzuki
Takuya Satoh
Takayuki Negami
Yasuhito Takahashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE112005000132T priority Critical patent/DE112005000132T5/en
Priority to JP2006515439A priority patent/JPWO2006019091A1/en
Publication of WO2006019091A1 publication Critical patent/WO2006019091A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S10/755Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations the conduits being otherwise bent, e.g. zig-zag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to a solar cell hybrid module that can extract not only solar energy power but also electric power as well as heat for hot water supply.
  • thermal energy obtained from solar energy power has already been used.
  • the most common method of using this heat energy is to attach a heat collecting device equipped with a flow tube through which the heat exchange medium flows to the roof of a house, etc., and supply heat from the heat exchange medium heated by solar heat. It is used for hot water facilities and air conditioning facilities.
  • a solar cell hybrid in which a heat collecting plate and a solar cell module are sequentially provided on the flow pipe, and heat absorbed by the solar cell module is transmitted to the heat exchange medium to use thermal energy. Modules have also been proposed (see, for example, Patent Document 1). According to this solar cell hybrid module, it is possible to use both the light energy obtained by solar power and the heat energy.
  • the solar cell hybrid module is desirable for suppressing a decrease in photoelectric conversion efficiency since the heat is taken away by the heat collecting plate and the flow pipe.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-103087
  • the conventional solar cell hybrid module since the heat exchange medium flows through the uniformly arranged flow tubes, the solar cells located on the inlet side of the flow tubes It cools rather than the photovoltaic cell located in the exit side. As a result, a temperature difference occurs between the solar battery cells, so that a difference in photoelectric conversion efficiency occurs between the solar battery cells. Therefore, in the conventional solar cell hybrid module, there is a problem that the optimum power generation voltage between the solar cells is different and a power generation loss occurs.
  • the present invention leveles the temperature of each solar battery cell, thereby reducing power generation loss and reducing the difference in photoelectric conversion efficiency between the solar battery cells.
  • the solar cell hybrid module of the present invention comprises:
  • a solar cell module including a plurality of solar cells, a heat collecting plate disposed on a surface opposite to a sunlight incident surface in the solar cell module, and the solar cell module side in the heat collecting plate
  • a solar cell hybrid module including a flow pipe capable of flowing a heat exchange medium, disposed on an opposite surface
  • the thermal resistance between the solar battery cell and the heat exchange medium flowing in the flow tube is configured so that the inlet side force of the flow tube decreases toward the outlet side of the flow tube. It is characterized by that.
  • FIG. 1 is an exploded perspective view showing a structure of a solar cell hybrid module according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view showing the structure of a solar cell hybrid module according to Embodiment 2 of the present invention.
  • FIG. 3 is an exploded perspective view showing the structure of a solar cell hybrid module according to Embodiment 3 of the present invention.
  • a solar cell hybrid module of the present invention includes a solar cell module including a plurality of solar cells, a heat collecting plate disposed on a surface of the solar cell module opposite to the sunlight incident surface, A flow pipe arranged on the surface of the heat collecting plate opposite to the solar cell module side and capable of flowing a heat exchange medium.
  • the solar cell module and the heat collecting plate may not be in direct contact with each other as long as they can conduct heat between them.
  • the solar cell module and the You may arrange
  • the thermal resistance between the solar cell and the heat exchange medium flowing in the flow tube is such that the flow tube from the inlet side of the flow tube. It is comprised so that it may become small toward the exit side. As a result, it is possible to suppress variations between the heat transfer amount from the solar cell on the inlet side to the heat exchange medium and the heat transfer amount from the solar cell on the outlet side to the heat exchange medium. Solar cell temperature can be leveled. Therefore, a solar cell hybrid module with little power generation loss can be provided.
  • the above-mentioned “thermal resistance” means, for example, the temperature difference between the two required to transfer a 1 W heat flow to one solar cell power heat exchange medium.
  • the thermal resistance may be continuously reduced from the inlet side to the outlet side, and may be reduced intermittently without being necessary.
  • At least one of a contact area between the solar cell module and the heat collecting plate and a contact area between the heat collecting plate and the flow pipe is from the inlet side to the outlet.
  • the thermal resistance may be reduced from the inlet side toward the outlet side by increasing the size toward the side.
  • the contact area on the inlet side is 100%, the contact area on the outlet side may be in the range of 300% to 700%.
  • the thermal resistance may be reduced by directing from the inlet side to the outlet side.
  • the thickness or thickness on the inlet side is 100%, the thickness or thickness on the outlet side may be in the range of 14% to 33%.
  • the thermal conductivity of at least one constituent material of the heat collecting plate and the flow pipe is increased from the inlet side toward the outlet side.
  • the thermal resistance may be reduced by directing the inlet side force toward the outlet side.
  • the thermal conductivity may be in the range of 300% to 700% on the outlet side, for example, where the inlet side is 100%.
  • the heat transfer of the constituent material of the heat collecting plate When changing the conductivity, iron may be used as the constituent material of the inlet-side heat collecting plate, and aluminum may be used as the constituent material of the outlet-side heat collecting plate.
  • stainless steel is used as the material for the flow tube on the inlet side, and copper is used as the material for the flow tube on the outlet side. That's fine.
  • the solar cell may be a thin film solar cell. Since the thin film solar cell has high heat dissipation, by having the above-described configuration of the present invention, it is possible to effectively suppress the temperature variation between the solar cells.
  • the thin film solar cell is a solar cell in which a light absorption layer or the like is provided on a single glass substrate, for example, and has a thickness of about 0.5 to 50 m.
  • the solar cell hybrid module of the present invention includes a plurality of the solar cell modules
  • the plurality of solar cell module forces may be arranged in parallel from the inlet side to the outlet side.
  • Figure 1 shows an exploded perspective view.
  • the solar cell hybrid module 10 shown in FIG. 1 includes, for example, a solar cell module 11 formed in a size of 90 cm in length and 60 cm in width, and a glass substrate 12 that protects the sunlight incident surface 11a of the solar cell module 11.
  • the solar collector module 11 is disposed in contact with the surface opposite to the solar incident surface 1 la, and the heat collector 13 is disposed in contact with the surface opposite to the solar cell module 11 in the heat collector 13.
  • a flow pipe 14 through which a heat exchange medium can flow.
  • the solar cell module 11 is formed by sealing a plurality of solar cells 15 with a translucent resin (not shown) such as ethylene-vinyl acetate copolymer resin.
  • a translucent resin such as ethylene-vinyl acetate copolymer resin.
  • the solar cell 15 for example, a thin film solar cell can be used.
  • the thin film solar cell include silicon solar cells such as microcrystalline silicon solar cells, thin film polycrystalline silicon solar cells, and amorphous silicon solar cells, CuInSe, CdTe, and GaAs.
  • Compound semiconductor solar cells using compound semiconductors such as
  • the heat collecting plate 13 is made of a metal such as aluminum.
  • the thickness is, for example, about 1 to 50 mm.
  • the flow pipe 14 is made of a metal such as copper, for example, and heat absorbed by the heat collecting plate 13 can be taken out by flowing a heat exchange medium such as water.
  • the inner diameter is, for example, about 1 to 80 mm, and the wall thickness is, for example, about 1 to 50 mm.
  • the flow pipe 14 is in contact with the heat collecting plate 13 and is spread over the entire back surface of the solar cell module 11. In addition, by increasing the number of bent portions 14c of the flow pipe 14 toward the inlet 14a side of the flow pipe 14 toward the outlet 14b side of the flow pipe 14, contact between the heat collecting plate 13 and the flow pipe 14 is achieved.
  • the area is increased from the inlet 14a side to the outlet 14b side.
  • the contact area on the inlet 14a side is 100%
  • the contact area on the outlet 14b side may be in the range of 300% to 700%.
  • the inlet 14a and outlet 14b can be connected to other solar cell hybrid modules such as a hot water supply system.
  • the solar cell module 11 absorbs sunlight and generates power
  • the solar cell module 11 is heated by solar heat.
  • the heat absorbed by the solar cell module 11 is absorbed by the heat exchange medium flowing in the flow pipe 14 through the heat collecting plate 13.
  • the photoelectric conversion efficiency of the solar cell module 11 can be prevented from decreasing.
  • the contact area between the heat collecting plate 13 and the flow pipe 14 is uniform from the inlet 14a side to the outlet 14b side, the heat exchange medium that has absorbed heat at the inlet 14a side reaches the outlet 14b side.
  • the amount of heat transferred from the solar cells 15 on the outlet 14b side to the heat exchange medium is smaller than that on the inlet 14a side.
  • a temperature difference occurs between the solar cells 15 on the inlet 14a side and the solar cells 15 on the outlet 14b side, and a power generation loss due to temperature variations between the solar cells 15 occurs. Therefore, in the solar cell hybrid module 10, the contact area between the heat collecting plate 13 and the flow pipe 14 is increased from the inlet 14 a side to the outlet 14 b side, thereby suppressing the variation in the heat transfer amount. .
  • each solar power The temperature of the pond cell 15 is leveled and power generation loss can be suppressed.
  • the heat exchange medium for example, water or the like can be used. In cold regions, an antifreeze such as ethylene glycol may be used.
  • the temperature of the heat exchange medium rises as it flows from the inlet 14a side to the outlet 14b side.
  • the heat exchange medium flowing out from the outlet 14b of the flow pipe 14 is sent to a hot water storage tank (not shown) through a pipe (not shown), where heat is given to, for example, tap water.
  • the heat exchange medium whose temperature has been lowered by this heat exchange is sent again to the flow pipe 14 via the pipe by a pump or the like.
  • Such a circulation of the heat exchange medium suppresses the temperature rise of the solar cell module 11.
  • the tap water heated in the hot water storage tank is supplied to a hot water supply facility in a kitchen or a bathroom as needed, and is also supplied to a hot water floor heating facility in winter. This makes it possible to realize an energy efficient house.
  • the heat exchange medium flowing out from the outlet 14b may be sent to a heat pump, and heat energy may be circulated by applying heat to the tap water using this heat pump.
  • the solar cell hybrid module according to Embodiment 1 of the present invention has been described above, but the present invention is not limited to the above embodiment.
  • the force S described in the example in which only one solar cell hybrid module is used, and a plurality of solar cell hybrid modules may be connected and used.
  • FIG. 2 shows an exploded perspective view.
  • the solar cell hybrid module 20 has three solar cell hybrid modules similar to those of the first embodiment connected to each other.
  • a common pipe is used for the flow pipe 14, and three solar cell modules 11 are arranged side by side from the inlet 14a side to the outlet 14b side of the flow pipe 14.
  • the contact area between the heat collecting plate 13 (13a, 13b, 13c) and the flow pipe 14 is uniform from the inlet 14a side to the outlet 14b side, and each of the heat collecting plates 13a, 13b, 13c has a thickness. It is different.
  • the heat absorbed by each solar cell module 11 is absorbed by the heat exchange medium flowing in the flow pipe 14 through the heat collecting plates 13a, 13b, 13c. Is done. If the thickness of the heat collecting plates 13a, 13b, 13c corresponding to each solar cell module 11 is the same, when the heat exchange medium that has absorbed heat on the inlet 14a side reaches the outlet 14b side, Since the temperature of the heat exchange medium has already risen, the amount of heat transferred from the solar cell module 11 on the outlet 14b side to the heat exchange medium is smaller than that on the inlet 14a side.
  • the solar cell hybrid module 20 uses the heat collecting plates 13a, 13b, and 13c having different thicknesses for each solar cell module 11 to suppress the variation in the heat transfer amount.
  • the thickness of the heat collecting plate 13a on the inlet 14a side is 100%, for example, the thickness of the central heat collecting plate 13b is about 57% to 66%, and the heat collecting plate 13c on the outlet 14b side is By setting the thickness to about 14% to 33%, the temperature of each solar cell module 11 is leveled and power generation loss is suppressed.
  • aluminum or the like can be used as the material of the heat collecting plates 13a, 13b, 13c.
  • Fig. 3 shows an exploded perspective view thereof.
  • the solar cell module 11 includes a plurality of solar cells 15 arranged in a lattice pattern and a short circuit between the solar cells 15.
  • Insulating layer l ib for preventing As the solar battery cell 15, for example, a single crystal silicon solar battery, a polycrystalline silicon solar battery, or the like can be used.
  • the insulating layer l ib for example, ethylene-vinyl acetate copolymer resin can be used.
  • the heat collecting plates 13a, 13b, and 13c have different force constituent materials having the same thickness. Others are the same as those of the above-described solar cell hybrid module 20 (see FIG. 2).
  • the heat absorbed by each solar cell module 11 is absorbed by the heat exchange medium flowing in the flow pipe 14 through the heat collecting plates 13a, 13b, 13c.
  • the constituent materials of the heat collecting plates 13a, 13b, 13c corresponding to each solar cell module 11 are the same, when the heat exchange medium that has absorbed heat on the inlet 14a side reaches the outlet 14b side, Since the temperature of the heat exchange medium has already increased, the outlet 14b The amount of heat transferred from the solar cell module 11 on the side to the heat exchange medium is less than that on the inlet 14a side.
  • the variation in the heat transfer amount is suppressed by using the heat collecting plates 13a, 13b, and 13c of different constituent materials for each of the solar cell modules 11.
  • iron is used as the constituent material of the heat collecting plate 13a on the inlet 14a side
  • aluminum is used as the constituent material of the central heat collecting plate 13b
  • copper is used as the constituent material of the heat collecting plate 13c on the outlet 14b side.
  • a hard resin substrate for example, a polyimide substrate
  • the solar battery cell may be any solar battery such as a single crystal silicon solar battery, a polycrystalline silicon solar battery, an amorphous silicon solar battery, a microcrystalline silicon solar battery, a compound semiconductor solar battery, or an organic semiconductor solar battery.
  • the resin for sealing the solar battery cell is not limited to the above-mentioned ethylene acetate butyl copolymer resin, but may be a material such as polyvinyl butyral, polyethylene terephthalate, butadiene resin, or vinyl fluoride resin. Good.
  • the material of the heat collecting plate is not limited to a metal such as aluminum, but an inorganic material or the like can be used as long as it has a high thermal conductivity and excellent weather resistance. Further, as a heat exchange medium, a gas such as alternative chlorofluorocarbon or carbon dioxide may be used. Further, the flow pipe may be a pipe having a polygonal cross section formed only by a circular pipe. Industrial applicability
  • a solar cell hybrid module that can reduce power generation loss and efficiently use thermal energy can be obtained.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A solar cell hybrid module in which power generation loss is reduced and difference between photoelectric conversion efficiencies of respective solar cells is decreased by equalizing the temperatures of respective solar cells. A solar cell hybrid module (10) comprises a solar cell module (11) including a plurality of solar cells (15), a heat collecting plate (13) arranged on a side of the solar cell module (11) opposite to the solar light incident surface (11a), and a conduction pipe (14) which is arranged on a side of the heat collecting plate (13) opposite to the solar cell module (11) and capable of passing a heat exchange medium. It is so designed that the heat resistance between the solar cells (15) and the conduction pipe (14) decreases from the inlet (14a) side toward the outlet (14b) side of the conduction pipe (14).

Description

明 細 書  Specification
太陽電池ハイブリッドモジュール  Solar cell hybrid module
技術分野  Technical field
[0001] 本発明は、太陽エネルギー力も電力のみならず給湯用等の熱も取り出すことができ る太陽電池ハイブリッドモジュールに関する。  TECHNICAL FIELD [0001] The present invention relates to a solar cell hybrid module that can extract not only solar energy power but also electric power as well as heat for hot water supply.
背景技術  Background art
[0002] 近年、二酸ィヒ炭素の増大に伴う地球温暖化問題等の環境問題やエネルギー枯渴 の問題から、住宅等の屋根の上に複数個の太陽電池セルを含む太陽電池モジユー ルを設置し、太陽光発電により電力を供給するシステムが普及し始めている。  [0002] In recent years, due to environmental problems such as global warming due to an increase in carbon dioxide and problems of energy depletion, a solar battery module including a plurality of solar cells on a roof of a house or the like has been developed. Systems that are installed and powered by solar power are becoming popular.
[0003] また、太陽エネルギー力 得られる熱エネルギーも既に利用されている。この熱ェ ネルギーを利用する最も一般的な方法は、熱交換用媒体が流れる通流管を備えた 集熱装置を住宅等の屋根に取り付け、太陽熱で加熱された熱交換用媒体の熱を給 湯設備や冷暖房設備等に利用するものである。  [0003] Further, thermal energy obtained from solar energy power has already been used. The most common method of using this heat energy is to attach a heat collecting device equipped with a flow tube through which the heat exchange medium flows to the roof of a house, etc., and supply heat from the heat exchange medium heated by solar heat. It is used for hot water facilities and air conditioning facilities.
[0004] さらに、上記通流管上に集熱板及び太陽電池モジュールを順次設けて、太陽電池 モジュールに吸収された熱を上記熱交換用媒体へ伝達して熱エネルギーを利用す る太陽電池ハイブリッドモジュールも提案されている(例えば、特許文献 1参照)。この 太陽電池ハイブリッドモジュールによれば、太陽光力 得られる光エネルギーと熱ェ ネルギ一の両方のエネルギーを利用することができる。  [0004] Further, a solar cell hybrid in which a heat collecting plate and a solar cell module are sequentially provided on the flow pipe, and heat absorbed by the solar cell module is transmitted to the heat exchange medium to use thermal energy. Modules have also been proposed (see, for example, Patent Document 1). According to this solar cell hybrid module, it is possible to use both the light energy obtained by solar power and the heat energy.
[0005] 太陽電池モジュールは温度が上昇すると光電変換効率が低下するため、できる限 り太陽電池モジュールの温度上昇を抑えることが望ましい。それゆえ、上記太陽電池 ハイブリッドモジュールは、上記集熱板及び上記通流管によってその熱を奪うこととな るので、光電変換効率の低下を抑制するためにも望ま 、と言える。  [0005] Since the solar cell module rises in temperature, the photoelectric conversion efficiency decreases, so it is desirable to suppress the temperature rise of the solar cell module as much as possible. Therefore, it can be said that the solar cell hybrid module is desirable for suppressing a decrease in photoelectric conversion efficiency since the heat is taken away by the heat collecting plate and the flow pipe.
特許文献 1:特開平 11― 103087号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-103087
[0006] しかし、従来の太陽電池ハイブリッドモジュールでは、均一に配置された通流管に 熱交換用媒体を流す構成であるため、通流管の入口側に位置する太陽電池セルは 、通流管の出口側に位置する太陽電池セルよりも冷却される。その結果、各太陽電 池セル間に温度差が生じるため、各太陽電池セル間に光電変換効率の差が生じる。 それ故、従来の太陽電池ハイブリッドモジュールでは、各太陽電池セル間の最適発 電電圧が相違し、発電ロスが発生すると ヽぅ課題があった。 However, in the conventional solar cell hybrid module, since the heat exchange medium flows through the uniformly arranged flow tubes, the solar cells located on the inlet side of the flow tubes It cools rather than the photovoltaic cell located in the exit side. As a result, a temperature difference occurs between the solar battery cells, so that a difference in photoelectric conversion efficiency occurs between the solar battery cells. Therefore, in the conventional solar cell hybrid module, there is a problem that the optimum power generation voltage between the solar cells is different and a power generation loss occurs.
発明の開示  Disclosure of the invention
[0007] 本発明は、上述の課題を鑑みて、各太陽電池セルの温度を平準化することで、発 電ロスが少なく、各太陽電池セル間にお 、て光電変換効率の差が少な 、太陽電池 ハイブリッドモジュールを提供する。  [0007] In view of the above-mentioned problems, the present invention leveles the temperature of each solar battery cell, thereby reducing power generation loss and reducing the difference in photoelectric conversion efficiency between the solar battery cells. Provide solar cell hybrid module.
[0008] 本発明の太陽電池ハイブリッドモジュールは、  [0008] The solar cell hybrid module of the present invention comprises:
複数の太陽電池セルを含む太陽電池モジュールと、前記太陽電池モジュールにお ける太陽光入射面とは反対側の面に配置された集熱板と、前記集熱板における前記 太陽電池モジュール側とは反対側の面に配置された、熱交換用媒体を流すことが可 能な通流管とを含む太陽電池ハイブリッドモジュールであって、  A solar cell module including a plurality of solar cells, a heat collecting plate disposed on a surface opposite to a sunlight incident surface in the solar cell module, and the solar cell module side in the heat collecting plate A solar cell hybrid module including a flow pipe capable of flowing a heat exchange medium, disposed on an opposite surface,
前記太陽電池セルと前記通流管に流れる前記熱交換用媒体との間の熱抵抗が、 前記通流管の入口側力 前記通流管の出口側に向かって小さくなるように構成され ていることを特徴とする。  The thermal resistance between the solar battery cell and the heat exchange medium flowing in the flow tube is configured so that the inlet side force of the flow tube decreases toward the outlet side of the flow tube. It is characterized by that.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、本発明の実施形態 1に係る太陽電池ハイブリッドモジュールの構造を示 す分解斜視図である。  FIG. 1 is an exploded perspective view showing a structure of a solar cell hybrid module according to Embodiment 1 of the present invention.
[図 2]図 2は、本発明の実施形態 2に係る太陽電池ハイブリッドモジュールの構造を示 す分解斜視図である。  FIG. 2 is an exploded perspective view showing the structure of a solar cell hybrid module according to Embodiment 2 of the present invention.
[図 3]図 3は、本発明の実施形態 3に係る太陽電池ハイブリッドモジュールの構造を示 す分解斜視図である。  FIG. 3 is an exploded perspective view showing the structure of a solar cell hybrid module according to Embodiment 3 of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明の太陽電池ハイブリッドモジュールは、複数の太陽電池セルを含む太陽電 池モジュールと、この太陽電池モジュールにおける太陽光入射面とは反対側の面に 配置された集熱板と、この集熱板における上記太陽電池モジュール側とは反対側の 面に配置された、熱交換用媒体を流すことが可能な通流管とを含む。なお、上記太 陽電池モジュールと上記集熱板は、両者の間で熱伝導可能であれば直に接触して いなくてもよい。例えば、集熱効率を上げるため、上記太陽電池モジュールと上記集 熱板との間にカーボン系材料力もなる層を配置してもよい。上記集熱板と上記通流 管との間につ 、ても同様である。 [0010] A solar cell hybrid module of the present invention includes a solar cell module including a plurality of solar cells, a heat collecting plate disposed on a surface of the solar cell module opposite to the sunlight incident surface, A flow pipe arranged on the surface of the heat collecting plate opposite to the solar cell module side and capable of flowing a heat exchange medium. Note that the solar cell module and the heat collecting plate may not be in direct contact with each other as long as they can conduct heat between them. For example, in order to increase the heat collection efficiency, the solar cell module and the You may arrange | position the layer which also has a carbon-type material force between hot plates. The same applies to the space between the heat collecting plate and the flow pipe.
[0011] そして、本発明の太陽電池ハイブリッドモジュールは、上記太陽電池セルと上記通 流管に流れる上記熱交換用媒体との間の熱抵抗が、上記通流管の入口側から上記 通流管の出口側に向かって小さくなるように構成されている。これにより、上記入口側 の太陽電池セルから熱交換用媒体への伝熱量と、上記出口側の太陽電池セルから 熱交換用媒体への伝熱量との間のばらつきを抑えることができるため、各太陽電池 セルの温度を平準化させることができる。よって、発電ロスが少ない太陽電池ハイプリ ッドモジュールを提供することができる。ここで、上記「熱抵抗」とは、例えば 1つの太 陽電池セル力 熱交換用媒体へ 1Wの熱流を伝達するのに必要な両者の温度差を いう。なお、上記熱抵抗は、上記入口側から上記出口側に向力つて連続的に小さく なって 、る必要は無ぐ断続的に小さくなつて 、てもよ 、。  [0011] And, in the solar cell hybrid module of the present invention, the thermal resistance between the solar cell and the heat exchange medium flowing in the flow tube is such that the flow tube from the inlet side of the flow tube. It is comprised so that it may become small toward the exit side. As a result, it is possible to suppress variations between the heat transfer amount from the solar cell on the inlet side to the heat exchange medium and the heat transfer amount from the solar cell on the outlet side to the heat exchange medium. Solar cell temperature can be leveled. Therefore, a solar cell hybrid module with little power generation loss can be provided. Here, the above-mentioned “thermal resistance” means, for example, the temperature difference between the two required to transfer a 1 W heat flow to one solar cell power heat exchange medium. The thermal resistance may be continuously reduced from the inlet side to the outlet side, and may be reduced intermittently without being necessary.
[0012] 本発明の太陽電池ハイブリッドモジュールでは、上記太陽電池モジュールと上記集 熱板との接触面積及び上記集熱板と上記通流管との接触面積の少なくとも一方が、 上記入口側から上記出口側に向かって大きくなるように構成することで、上記熱抵抗 を上記入口側から上記出口側に向力 て小さくしてもよい。例えば、上記入口側の 接触面積を 100%としたとき、上記出口側の接触面積を 300%〜700%の範囲とす ればよい。  [0012] In the solar cell hybrid module of the present invention, at least one of a contact area between the solar cell module and the heat collecting plate and a contact area between the heat collecting plate and the flow pipe is from the inlet side to the outlet. The thermal resistance may be reduced from the inlet side toward the outlet side by increasing the size toward the side. For example, when the contact area on the inlet side is 100%, the contact area on the outlet side may be in the range of 300% to 700%.
[0013] 本発明の太陽電池ハイブリッドモジュールでは、上記集熱板の厚み及び上記通流 管の肉厚の少なくとも一方が、上記入口側から上記出口側に向かって薄くなるように 構成することで、上記熱抵抗を上記入口側から上記出口側に向力つて小さくしてもよ い。例えば、上記入口側の厚み又は肉厚を 100%としたとき、上記出口側の厚み又 は肉厚を 14%〜33%の範囲とすればよい。  [0013] In the solar cell hybrid module of the present invention, by configuring at least one of the thickness of the heat collecting plate and the thickness of the flow pipe to be thinner from the inlet side toward the outlet side, The thermal resistance may be reduced by directing from the inlet side to the outlet side. For example, when the thickness or thickness on the inlet side is 100%, the thickness or thickness on the outlet side may be in the range of 14% to 33%.
[0014] 本発明の太陽電池ハイブリッドモジュールでは、上記集熱板及び上記通流管の少 なくとも一方の構成材料の熱伝導率が、上記入口側から上記出口側に向かって大き くなるように構成することで、上記熱抵抗を上記入口側力も上記出口側に向力つて小 さくしてもよい。上記熱伝導率は、例えば上記入口側を 100%としたとき、上記出口 側を 300%〜700%の範囲とすればよい。例えば、上記集熱板の構成材料の熱伝 導率を変化させる場合は、上記入口側の集熱板の構成材料として鉄を用い、上記出 口側の集熱板の構成材料としてアルミニウムを用いればよい。例えば、上記通流管 の構成材料の熱伝導率を変化させる場合は、上記入口側の通流管の構成材料とし てステンレス鋼を用い、上記出口側の通流管の構成材料として銅を用いればよい。 [0014] In the solar cell hybrid module of the present invention, the thermal conductivity of at least one constituent material of the heat collecting plate and the flow pipe is increased from the inlet side toward the outlet side. By configuring, the thermal resistance may be reduced by directing the inlet side force toward the outlet side. The thermal conductivity may be in the range of 300% to 700% on the outlet side, for example, where the inlet side is 100%. For example, the heat transfer of the constituent material of the heat collecting plate When changing the conductivity, iron may be used as the constituent material of the inlet-side heat collecting plate, and aluminum may be used as the constituent material of the outlet-side heat collecting plate. For example, when changing the thermal conductivity of the material constituting the flow tube, stainless steel is used as the material for the flow tube on the inlet side, and copper is used as the material for the flow tube on the outlet side. That's fine.
[0015] また、本発明の太陽電池ハイブリッドモジュールでは、上記太陽電池セルが薄膜太 陽電池であってもよい。薄膜太陽電池は放熱性が高いため、上述した本発明の構成 を有することにより、各太陽電池セル間の温度のばらつきを効果的に抑制することが できる。なお、薄膜太陽電池とは、例えば 1枚のガラス基板上に光吸収層等を設けた 太陽電池であって、その厚みが例えば 0. 5〜50 m程度のものをいう。  In the solar cell hybrid module of the present invention, the solar cell may be a thin film solar cell. Since the thin film solar cell has high heat dissipation, by having the above-described configuration of the present invention, it is possible to effectively suppress the temperature variation between the solar cells. The thin film solar cell is a solar cell in which a light absorption layer or the like is provided on a single glass substrate, for example, and has a thickness of about 0.5 to 50 m.
[0016] また、本発明の太陽電池ハイブリッドモジュールが上記太陽電池モジュールを複数 含む場合は、上記複数の太陽電池モジュール力 上記入口側から上記出口側に向 力つて並設されていてもよい。発電量を向上させることができる上、太陽電池モジュ ール間の温度のばらつきを抑制することができるため、発電ロスが少ない太陽電池ハ イブリツドモジュールを提供することができる力もである。  [0016] When the solar cell hybrid module of the present invention includes a plurality of the solar cell modules, the plurality of solar cell module forces may be arranged in parallel from the inlet side to the outlet side. In addition to improving the amount of power generation, it is also possible to provide a solar cell hybrid module with low power generation loss because it can suppress variations in temperature between solar cell modules.
[0017] 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実 施形態において、同一の部分については同一の符号を付して重複する説明を省略 する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same portions are denoted by the same reference numerals, and redundant description is omitted.
[0018] (実施形態 1)  [0018] (Embodiment 1)
まず、本発明の実施形態 1に係る太陽電池ハイブリッドモジュールにつ 、て説明す る。図 1にその分解斜視図を示す。  First, the solar cell hybrid module according to Embodiment 1 of the present invention will be described. Figure 1 shows an exploded perspective view.
[0019] まず全体構成から述べる。図 1に示す太陽電池ハイブリッドモジュール 10は、例え ば縦: 90cm、横: 60cmの大きさに形成された太陽電池モジュール 11と、太陽電池 モジュール 11の太陽光入射面 11aを保護するガラス基板 12と、太陽電池モジュール 11における太陽光入射面 1 laとは反対側の面に接触して配置された集熱板 13と、 集熱板 13における太陽電池モジュール 11側とは反対側の面に接触して配置された 、熱交換用媒体を流すことが可能な通流管 14とを含む。  First, the overall configuration will be described. The solar cell hybrid module 10 shown in FIG. 1 includes, for example, a solar cell module 11 formed in a size of 90 cm in length and 60 cm in width, and a glass substrate 12 that protects the sunlight incident surface 11a of the solar cell module 11. The solar collector module 11 is disposed in contact with the surface opposite to the solar incident surface 1 la, and the heat collector 13 is disposed in contact with the surface opposite to the solar cell module 11 in the heat collector 13. And a flow pipe 14 through which a heat exchange medium can flow.
[0020] 次に、各部について説明する。太陽電池モジュール 11は、例えば複数の太陽電池 セル 15を、エチレン—酢酸ビニル共重合榭脂等の透光性榭脂(図示せず)で封止し た構造を有する。太陽電池セル 15には、例えば薄膜太陽電池が使用できる。上記 薄膜太陽電池としては、例えば微結晶シリコン太陽電池、薄膜多結晶シリコン太陽電 池、アモルファスシリコン太陽電池等のシリコン系太陽電池や、 CuInSe、 CdTe、 GaAs [0020] Next, each unit will be described. For example, the solar cell module 11 is formed by sealing a plurality of solar cells 15 with a translucent resin (not shown) such as ethylene-vinyl acetate copolymer resin. Has a structure. As the solar cell 15, for example, a thin film solar cell can be used. Examples of the thin film solar cell include silicon solar cells such as microcrystalline silicon solar cells, thin film polycrystalline silicon solar cells, and amorphous silicon solar cells, CuInSe, CdTe, and GaAs.
2  2
等の化合物半導体を用いた化合物半導体太陽電池等が挙げられる。  Compound semiconductor solar cells using compound semiconductors such as
[0021] 集熱板 13は、例えばアルミニウム等の金属で構成されている。その厚みは、例えば l〜50mm程度である。通流管 14は、例えば銅等の金属で構成されており、その中 に水等の熱交換用媒体を流すことで集熱板 13に吸収された熱を取り出すことができ る。その内径は、例えば l〜80mm程度であり、その肉厚は、例えば l〜50mm程度 である。通流管 14は、集熱板 13に接触して太陽電池モジュール 11の裏面全域に展 開されている。また、通流管 14の屈曲部 14cの数を、通流管 14の入口 14a側力 通 流管 14の出口 14b側に向かって増やすことで、集熱板 13と通流管 14との接触面積 を、入口 14a側から出口 14b側に向かって増大させている。例えば、入口 14a側の上 記接触面積を 100%としたときに、出口 14b側の上記接触面積が 300%〜700%の 範囲であればよい。なお、入口 14aと出口 14bは、他の太陽電池ハイブリッドモジュ ールゃ給湯システム等と接続可能になって 、る。  [0021] The heat collecting plate 13 is made of a metal such as aluminum. The thickness is, for example, about 1 to 50 mm. The flow pipe 14 is made of a metal such as copper, for example, and heat absorbed by the heat collecting plate 13 can be taken out by flowing a heat exchange medium such as water. The inner diameter is, for example, about 1 to 80 mm, and the wall thickness is, for example, about 1 to 50 mm. The flow pipe 14 is in contact with the heat collecting plate 13 and is spread over the entire back surface of the solar cell module 11. In addition, by increasing the number of bent portions 14c of the flow pipe 14 toward the inlet 14a side of the flow pipe 14 toward the outlet 14b side of the flow pipe 14, contact between the heat collecting plate 13 and the flow pipe 14 is achieved. The area is increased from the inlet 14a side to the outlet 14b side. For example, when the contact area on the inlet 14a side is 100%, the contact area on the outlet 14b side may be in the range of 300% to 700%. The inlet 14a and outlet 14b can be connected to other solar cell hybrid modules such as a hot water supply system.
[0022] 上記の構成において、太陽電池モジュール 11が太陽光を吸収して発電を行う間、 太陽電池モジュール 11が太陽熱によって加熱される。太陽電池モジュール 11で吸 収された熱は、集熱板 13を通じて通流管 14に流れる熱交換用媒体に吸収される。こ れにより、太陽電池モジュール 11の温度上昇が抑制されるため、太陽電池モジユー ル 11の光電変換効率の低下を防止できる。ここで、仮に集熱板 13と通流管 14との 接触面積が入口 14a側から出口 14b側まで均一であるとすると、入口 14a側で熱を 吸収した熱交換用媒体が出口 14b側に到達した時点において、既に熱交換用媒体 の温度が上昇しているため、出口 14b側の太陽電池セル 15から熱交換用媒体への 伝熱量が入口 14a側に比べ少なくなる。その結果、入口 14a側の太陽電池セル 15と 出口 14b側の太陽電池セル 15との間で温度差が生じ、各太陽電池セル 15間の温 度ばらつきによる発電ロスが発生する。そのため、太陽電池ハイブリッドモジュール 1 0では、集熱板 13と通流管 14との接触面積を、入口 14a側から出口 14b側に向かつ て増大させることにより、上記伝熱量のばらつきを抑えている。これにより、各太陽電 池セル 15の温度が平準化し、発電ロスを抑制できる。 [0022] In the above configuration, while the solar cell module 11 absorbs sunlight and generates power, the solar cell module 11 is heated by solar heat. The heat absorbed by the solar cell module 11 is absorbed by the heat exchange medium flowing in the flow pipe 14 through the heat collecting plate 13. Thereby, since the temperature rise of the solar cell module 11 is suppressed, the photoelectric conversion efficiency of the solar cell module 11 can be prevented from decreasing. Here, assuming that the contact area between the heat collecting plate 13 and the flow pipe 14 is uniform from the inlet 14a side to the outlet 14b side, the heat exchange medium that has absorbed heat at the inlet 14a side reaches the outlet 14b side. At that time, since the temperature of the heat exchange medium has already risen, the amount of heat transferred from the solar cells 15 on the outlet 14b side to the heat exchange medium is smaller than that on the inlet 14a side. As a result, a temperature difference occurs between the solar cells 15 on the inlet 14a side and the solar cells 15 on the outlet 14b side, and a power generation loss due to temperature variations between the solar cells 15 occurs. Therefore, in the solar cell hybrid module 10, the contact area between the heat collecting plate 13 and the flow pipe 14 is increased from the inlet 14 a side to the outlet 14 b side, thereby suppressing the variation in the heat transfer amount. . As a result, each solar power The temperature of the pond cell 15 is leveled and power generation loss can be suppressed.
[0023] なお、熱交換用媒体としては、例えば水等が使用できる。また、寒冷地ではェチレ ングリコール等の不凍液を使用してもよい。この熱交換用媒体は、入口 14a側から出 口 14b側に流れるに従い温度が上昇する。そして、通流管 14の出口 14bから流れ出 た熱交換用媒体は、配管(図示せず)を通じて地上の貯湯槽 (図示せず)に送られて 、そこで例えば水道水に熱を与える。この熱交換によって温度が下がった熱交換用 媒体は、ポンプ等によって再び配管を経由して通流管 14に送り込まれる。このような 熱交換用媒体の循環によって太陽電池モジュール 11の温度上昇が抑制される。  [0023] As the heat exchange medium, for example, water or the like can be used. In cold regions, an antifreeze such as ethylene glycol may be used. The temperature of the heat exchange medium rises as it flows from the inlet 14a side to the outlet 14b side. The heat exchange medium flowing out from the outlet 14b of the flow pipe 14 is sent to a hot water storage tank (not shown) through a pipe (not shown), where heat is given to, for example, tap water. The heat exchange medium whose temperature has been lowered by this heat exchange is sent again to the flow pipe 14 via the pipe by a pump or the like. Such a circulation of the heat exchange medium suppresses the temperature rise of the solar cell module 11.
[0024] また、上記貯湯槽で温められた水道水は、必要に応じてキッチンや浴室の給湯設 備に供給され、冬季には温水床暖房設備にも供給される。これにより、エネルギー効 率のよい住宅が実現可能となる。なお、上述した貯湯槽を用いずに、出口 14bから流 れ出た熱交換用媒体をヒートポンプに送り、このヒートポンプにより水道水に熱を与え て熱エネルギーを循環させてもょ 、。  [0024] Further, the tap water heated in the hot water storage tank is supplied to a hot water supply facility in a kitchen or a bathroom as needed, and is also supplied to a hot water floor heating facility in winter. This makes it possible to realize an energy efficient house. Instead of using the hot water tank described above, the heat exchange medium flowing out from the outlet 14b may be sent to a heat pump, and heat energy may be circulated by applying heat to the tap water using this heat pump.
[0025] 以上、本発明の実施形態 1に係る太陽電池ハイブリッドモジュールについて説明し たが、本発明は上記実施形態に限定されない。例えば、上記実施形態では、太陽電 池ハイブリッドモジュールを 1つだけ使用した例について説明した力 S、複数個の太陽 電池ハイブリッドモジュールを連結して使用してもよい。  The solar cell hybrid module according to Embodiment 1 of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, in the above embodiment, the force S described in the example in which only one solar cell hybrid module is used, and a plurality of solar cell hybrid modules may be connected and used.
[0026] (実施形態 2)  (Embodiment 2)
次に、本発明の実施形態 2に係る太陽電池ハイブリッドモジュールについて説明す る。図 2に、その分解斜視図を示す。  Next, a solar cell hybrid module according to Embodiment 2 of the present invention will be described. Figure 2 shows an exploded perspective view.
[0027] 図 2に示すように、実施形態 2に係る太陽電池ハイブリッドモジュール 20は、上述し た実施形態 1と同様の太陽電池ハイブリッドモジュールを 3個連結させている。但し、 通流管 14については共通のものを使用しており、この通流管 14の入口 14a側から出 口 14b側に向力つて、 3個の太陽電池モジュール 11が並設されている。また、集熱板 13 (13a, 13b, 13c)と通流管 14との接触面積は、入口 14a側から出口 14b側まで 均一であり、それぞれの集熱板 13a, 13b, 13cは、厚みが相違している。  As shown in FIG. 2, the solar cell hybrid module 20 according to the second embodiment has three solar cell hybrid modules similar to those of the first embodiment connected to each other. However, a common pipe is used for the flow pipe 14, and three solar cell modules 11 are arranged side by side from the inlet 14a side to the outlet 14b side of the flow pipe 14. Further, the contact area between the heat collecting plate 13 (13a, 13b, 13c) and the flow pipe 14 is uniform from the inlet 14a side to the outlet 14b side, and each of the heat collecting plates 13a, 13b, 13c has a thickness. It is different.
[0028] 太陽電池ハイブリッドモジュール 20において、各太陽電池モジュール 11で吸収さ れた熱は、集熱板 13a, 13b, 13cを通じて通流管 14に流れる熱交換用媒体に吸収 される。仮に、各太陽電池モジュール 11に対応する集熱板 13a, 13b, 13cの厚み が同一であるとすると、入口 14a側で熱を吸収した熱交換用媒体が出口 14b側に到 達した時点において、既に熱交換用媒体の温度が上昇しているため、出口 14b側の 太陽電池モジュール 11から熱交換用媒体への伝熱量が入口 14a側に比べ少なくな る。その結果、入口 14a側の太陽電池モジュール 11と出口 14b側の太陽電池モジュ ール 11との間で温度差が生じ、各太陽電池モジュール 11間の温度ばらつきによる 発電ロスが発生する。そのため、太陽電池ハイブリッドモジュール 20では、太陽電池 モジュール 11毎に異なる厚みの集熱板 13a, 13b, 13cを用いることで、上記伝熱量 のばらつきを抑えている。具体的には、入口 14a側の集熱板 13aの厚みを 100%とし たときに、例えば中央の集熱板 13bの厚みを 57%〜66%程度とし、出口 14b側の集 熱板 13cの厚みを 14%〜33%程度とすることで、各太陽電池モジュール 11の温度 を平準化し、発電ロスの抑制を行っている。なお、集熱板 13a, 13b, 13cの材料とし てはアルミニウム等を使用できる。 [0028] In the solar cell hybrid module 20, the heat absorbed by each solar cell module 11 is absorbed by the heat exchange medium flowing in the flow pipe 14 through the heat collecting plates 13a, 13b, 13c. Is done. If the thickness of the heat collecting plates 13a, 13b, 13c corresponding to each solar cell module 11 is the same, when the heat exchange medium that has absorbed heat on the inlet 14a side reaches the outlet 14b side, Since the temperature of the heat exchange medium has already risen, the amount of heat transferred from the solar cell module 11 on the outlet 14b side to the heat exchange medium is smaller than that on the inlet 14a side. As a result, a temperature difference occurs between the solar cell module 11 on the inlet 14a side and the solar cell module 11 on the outlet 14b side, and a power generation loss due to temperature variation between the solar cell modules 11 occurs. Therefore, the solar cell hybrid module 20 uses the heat collecting plates 13a, 13b, and 13c having different thicknesses for each solar cell module 11 to suppress the variation in the heat transfer amount. Specifically, when the thickness of the heat collecting plate 13a on the inlet 14a side is 100%, for example, the thickness of the central heat collecting plate 13b is about 57% to 66%, and the heat collecting plate 13c on the outlet 14b side is By setting the thickness to about 14% to 33%, the temperature of each solar cell module 11 is leveled and power generation loss is suppressed. Note that aluminum or the like can be used as the material of the heat collecting plates 13a, 13b, 13c.
[0029] (実施形態 3)  [Embodiment 3]
次に、本発明の実施形態 3に係る太陽電池ハイブリッドモジュールについて説明す る。図 3に、その分解斜視図を示す。  Next, a solar cell hybrid module according to Embodiment 3 of the present invention will be described. Fig. 3 shows an exploded perspective view thereof.
[0030] 図 3に示すように、実施形態 3に係る太陽電池ハイブリッドモジュール 30では、太陽 電池モジュール 11が、格子状に配置された複数の太陽電池セル 15と、各太陽電池 セル 15間の短絡を防止する絶縁層 l ibとを含む。太陽電池セル 15としては、例えば 、単結晶シリコン太陽電池や多結晶シリコン太陽電池等が使用できる。絶縁層 l ibと しては、例えばエチレン—酢酸ビニル共重合榭脂等が使用できる。また、集熱板 13a , 13b, 13cについては、厚みは同一である力 構成材料が相違している。その他は 、上述した太陽電池ハイブリッドモジュール 20 (図 2参照)と同様である。  As shown in FIG. 3, in the solar cell hybrid module 30 according to the third embodiment, the solar cell module 11 includes a plurality of solar cells 15 arranged in a lattice pattern and a short circuit between the solar cells 15. Insulating layer l ib for preventing As the solar battery cell 15, for example, a single crystal silicon solar battery, a polycrystalline silicon solar battery, or the like can be used. As the insulating layer l ib, for example, ethylene-vinyl acetate copolymer resin can be used. Further, the heat collecting plates 13a, 13b, and 13c have different force constituent materials having the same thickness. Others are the same as those of the above-described solar cell hybrid module 20 (see FIG. 2).
[0031] 太陽電池ハイブリッドモジュール 30において、各太陽電池モジュール 11で吸収さ れた熱は、集熱板 13a, 13b, 13cを通じて通流管 14に流れる熱交換用媒体に吸収 される。仮に、各太陽電池モジュール 11に対応する集熱板 13a, 13b, 13cの構成 材料が同一であるとすると、入口 14a側で熱を吸収した熱交換用媒体が出口 14b側 に到達した時点において、既に熱交換用媒体の温度が上昇しているため、出口 14b 側の太陽電池モジュール 11から熱交換用媒体への伝熱量が入口 14a側に比べ少 なくなる。その結果、入口 14a側の太陽電池モジュール 11と出口 14b側の太陽電池 モジュール 11との間で温度差が生じ、各太陽電池モジュール 11間の温度ばらつき による発電ロスが発生する。そのため、太陽電池ハイブリッドモジュール 30では、太 陽電池モジュール 11毎に異なる構成材料の集熱板 13a, 13b, 13cを用いることで、 上記伝熱量のばらつきを抑えている。例えば、入口 14a側の集熱板 13aの構成材料 として鉄を用い、中央の集熱板 13bの構成材料としてアルミニウムを用い、出口 14b 側の集熱板 13cの構成材料として銅を用いて、集熱板 13の熱伝導率が入口 14a側 力も出口 14b側に向かって大きくなるように構成することで、各太陽電池モジュール 1 1の温度を平準化し、発電ロスの抑制を行っている。 [0031] In the solar cell hybrid module 30, the heat absorbed by each solar cell module 11 is absorbed by the heat exchange medium flowing in the flow pipe 14 through the heat collecting plates 13a, 13b, 13c. Assuming that the constituent materials of the heat collecting plates 13a, 13b, 13c corresponding to each solar cell module 11 are the same, when the heat exchange medium that has absorbed heat on the inlet 14a side reaches the outlet 14b side, Since the temperature of the heat exchange medium has already increased, the outlet 14b The amount of heat transferred from the solar cell module 11 on the side to the heat exchange medium is less than that on the inlet 14a side. As a result, a temperature difference occurs between the solar cell module 11 on the inlet 14a side and the solar cell module 11 on the outlet 14b side, and a power generation loss due to temperature variation between the solar cell modules 11 occurs. Therefore, in the solar cell hybrid module 30, the variation in the heat transfer amount is suppressed by using the heat collecting plates 13a, 13b, and 13c of different constituent materials for each of the solar cell modules 11. For example, iron is used as the constituent material of the heat collecting plate 13a on the inlet 14a side, aluminum is used as the constituent material of the central heat collecting plate 13b, and copper is used as the constituent material of the heat collecting plate 13c on the outlet 14b side. By configuring the heat conductivity of the hot plate 13 so that the force on the inlet 14a side increases toward the outlet 14b side, the temperature of each solar cell module 11 is leveled, and the power generation loss is suppressed.
[0032] 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定さ れない。例えば、上記実施形態では太陽電池モジュールの太陽光入射面にガラス 基板を配置した力 ガラス基板の代わりに、波長が 450nm以上の光を透過する硬質 榭脂基板 (例えばポリイミド基板等)を配置してもよい。また太陽電池セルは、単結晶 シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、微結晶 シリコン太陽電池、化合物半導体太陽電池、有機半導体太陽電池等のいずれの太 陽電池であってもよい。 [0032] The embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, in the above embodiment, a hard resin substrate (for example, a polyimide substrate) that transmits light having a wavelength of 450 nm or more is disposed instead of the force glass substrate disposed on the solar light incident surface of the solar cell module. Also good. The solar battery cell may be any solar battery such as a single crystal silicon solar battery, a polycrystalline silicon solar battery, an amorphous silicon solar battery, a microcrystalline silicon solar battery, a compound semiconductor solar battery, or an organic semiconductor solar battery. .
[0033] また、太陽電池セルを封止する榭脂としては、前述のエチレン 酢酸ビュル共重合 榭脂に限らず、ポリビニルブチラール、ポリエチレンテレフタレート、ブタジエン系榭 脂、弗化ビニル榭脂等の材料でもよい。また、集熱板の材料としては、アルミニウム等 の金属に限らず、熱伝導率が高ぐ耐候性に優れたものである限り、榭脂ゃ無機材 等を使用することもできる。また、熱交換用媒体として、代替フロンや二酸化炭素等の 気体を用いてもよい。また、通流管は円管だけでなぐ断面が多角形の管でもよい。 産業上の利用可能性  [0033] The resin for sealing the solar battery cell is not limited to the above-mentioned ethylene acetate butyl copolymer resin, but may be a material such as polyvinyl butyral, polyethylene terephthalate, butadiene resin, or vinyl fluoride resin. Good. The material of the heat collecting plate is not limited to a metal such as aluminum, but an inorganic material or the like can be used as long as it has a high thermal conductivity and excellent weather resistance. Further, as a heat exchange medium, a gas such as alternative chlorofluorocarbon or carbon dioxide may be used. Further, the flow pipe may be a pipe having a polygonal cross section formed only by a circular pipe. Industrial applicability
[0034] 本発明によれば、発電ロスを低減できる上、熱エネルギーを効率よく利用できる太 陽電池ハイブリッドモジュールが得られる。 According to the present invention, a solar cell hybrid module that can reduce power generation loss and efficiently use thermal energy can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 複数の太陽電池セルを含む太陽電池モジュールと、前記太陽電池モジュールにお ける太陽光入射面とは反対側の面に配置された集熱板と、前記集熱板における前記 太陽電池モジュール側とは反対側の面に配置された、熱交換用媒体を流すことが可 能な通流管とを含む太陽電池ハイブリッドモジュールであって、  [1] A solar cell module including a plurality of solar cells, a heat collecting plate disposed on a surface opposite to a sunlight incident surface in the solar cell module, and the solar cell module in the heat collecting plate A solar cell hybrid module including a flow pipe capable of flowing a heat exchange medium, disposed on a surface opposite to the side,
前記太陽電池セルと前記通流管に流れる前記熱交換用媒体との間の熱抵抗が、 前記通流管の入口側力 前記通流管の出口側に向かって小さくなるように構成され ていることを特徴とする太陽電池ハイブリッドモジュール。  The thermal resistance between the solar battery cell and the heat exchange medium flowing in the flow tube is configured so that the inlet side force of the flow tube decreases toward the outlet side of the flow tube. A solar cell hybrid module.
[2] 前記太陽電池モジュールと前記集熱板との接触面積及び前記集熱板と前記通流 管との接触面積の少なくとも一方が、前記通流管の入口側から前記通流管の出口側 に向力つて大きくなるように構成されて 、る請求項 1に記載の太陽電池ノ、イブリツドモ ジュール。  [2] At least one of the contact area between the solar cell module and the heat collecting plate and the contact area between the heat collecting plate and the flow pipe is from the inlet side of the flow pipe to the outlet side of the flow pipe. 2. The solar cell module and the hybrid module according to claim 1, wherein the solar cell module is configured so as to increase in size.
[3] 前記集熱板の厚み及び前記通流管の肉厚の少なくとも一方が、前記通流管の入 口側から前記通流管の出口側に向力つて薄くなるように構成されている請求項 1に記 載の太陽電池ハイブリッドモジュール。  [3] At least one of the thickness of the heat collecting plate and the thickness of the flow pipe is configured so as to become thinner from the inlet side of the flow pipe toward the outlet side of the flow pipe. The solar cell hybrid module according to claim 1.
[4] 前記集熱板及び前記通流管の少なくとも一方の構成材料の熱伝導率が、前記通 流管の入口側から前記通流管の出口側に向かって大きくなるように構成されて!、る 請求項 1に記載の太陽電池ハイブリッドモジュール。 [4] The heat conductivity of at least one constituent material of the heat collecting plate and the flow pipe is configured to increase from the inlet side of the flow pipe toward the outlet side of the flow pipe! The solar cell hybrid module according to claim 1.
[5] 前記太陽電池セルは、薄膜太陽電池である請求項 1に記載の太陽電池ハイブリツ ドモジユーノレ。 5. The solar cell hybrid module according to claim 1, wherein the solar cell is a thin film solar cell.
[6] 前記太陽電池ノ、イブリツドモジュールは、前記太陽電池モジュールを複数含み、 前記複数の太陽電池モジュールは、前記通流管の入口側から前記通流管の出口 側に向力つて並設されている請求項 1に記載の太陽電池ハイブリッドモジュール。  [6] The solar cell module and the hybrid module include a plurality of the solar cell modules, and the plurality of solar cell modules are arranged side by side from the inlet side of the flow tube toward the outlet side of the flow tube. The solar cell hybrid module according to claim 1.
PCT/JP2005/014940 2004-08-19 2005-08-16 Solar cell hybrid module WO2006019091A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112005000132T DE112005000132T5 (en) 2004-08-19 2005-08-16 Solar hybrid module
JP2006515439A JPWO2006019091A1 (en) 2004-08-19 2005-08-16 Solar cell hybrid module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-239818 2004-08-19
JP2004239818 2004-08-19

Publications (1)

Publication Number Publication Date
WO2006019091A1 true WO2006019091A1 (en) 2006-02-23

Family

ID=35907478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014940 WO2006019091A1 (en) 2004-08-19 2005-08-16 Solar cell hybrid module

Country Status (3)

Country Link
JP (1) JPWO2006019091A1 (en)
DE (1) DE112005000132T5 (en)
WO (1) WO2006019091A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020179A (en) * 2006-07-14 2008-01-31 National Science & Technology Development Agency Solar battery/water heating plate assembly, and solar battery heat collector
JP2009222990A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Temperature controlling device for manufacturing electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor using the same, and the electrophotographic photoreceptor
JP2009283640A (en) * 2008-05-22 2009-12-03 Kenji Umetsu Solar photovoltaic power generation module with heat sink
WO2012130429A3 (en) * 2011-03-25 2013-01-31 Peter Reimann Device and method for converting solar radiation energy to electrical power and/or to heat
EP2458648A3 (en) * 2010-11-25 2013-05-22 Sunsail Energy GmbH & Co. Kg Hybrid collector
WO2014000895A1 (en) 2012-06-29 2014-01-03 Gpc International S.A. Device for receiving solar energy and method for producing electricity and heating a fluid simultaneously
JP2014190669A (en) * 2013-03-28 2014-10-06 Mitsubishi Electric Corp Solar light/heat hybrid panel and solar system
JP2015211619A (en) * 2014-04-30 2015-11-24 久明 金山 Solar panel cooling/heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103087A (en) * 1997-09-26 1999-04-13 Sekisui Chem Co Ltd Optical thermal hybrid panel
JP2001102612A (en) * 1999-10-01 2001-04-13 Bridgestone Corp Substrate for solar cell, and solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103087A (en) * 1997-09-26 1999-04-13 Sekisui Chem Co Ltd Optical thermal hybrid panel
JP2001102612A (en) * 1999-10-01 2001-04-13 Bridgestone Corp Substrate for solar cell, and solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020179A (en) * 2006-07-14 2008-01-31 National Science & Technology Development Agency Solar battery/water heating plate assembly, and solar battery heat collector
JP2009222990A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Temperature controlling device for manufacturing electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor using the same, and the electrophotographic photoreceptor
JP2009283640A (en) * 2008-05-22 2009-12-03 Kenji Umetsu Solar photovoltaic power generation module with heat sink
EP2458648A3 (en) * 2010-11-25 2013-05-22 Sunsail Energy GmbH & Co. Kg Hybrid collector
WO2012130429A3 (en) * 2011-03-25 2013-01-31 Peter Reimann Device and method for converting solar radiation energy to electrical power and/or to heat
WO2014000895A1 (en) 2012-06-29 2014-01-03 Gpc International S.A. Device for receiving solar energy and method for producing electricity and heating a fluid simultaneously
JP2014190669A (en) * 2013-03-28 2014-10-06 Mitsubishi Electric Corp Solar light/heat hybrid panel and solar system
JP2015211619A (en) * 2014-04-30 2015-11-24 久明 金山 Solar panel cooling/heating device

Also Published As

Publication number Publication date
JPWO2006019091A1 (en) 2008-05-08
DE112005000132T5 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
Sultan et al. Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications
Herrando et al. A review of solar hybrid photovoltaic-thermal (PV-T) collectors and systems
Hasan et al. Photovoltaic thermal module concepts and their performance analysis: a review
WO2006019091A1 (en) Solar cell hybrid module
CN102208475B (en) Solar photovoltaic thermoelectric heating module and photovoltaic thermoelectric hot water system
CN202025783U (en) Solar photovoltaic thermoelectric heating module and photovoltaic thermoelectric hot water system
WO2011076107A1 (en) Solar photovoltaic cell high efficiency radiating device and combination heat power system
CN102487255A (en) Solar energy comprehensive utilization apparatus
JP2010258031A (en) Power generation system
US11885509B2 (en) Thermal solar assisted water heating system
WO2020156598A1 (en) Device for a utilization of waste heat from solar photovoltaic panels
JP2011190991A (en) Heat collector integral type solar cell module
US20150027509A1 (en) Supporting structure for photovoltaic panel
CN108599720A (en) A kind of solid matter CPV assembly radiating devices
JP4148325B1 (en) Solar cogeneration system
JP2006332535A (en) Convergent solar cell module
CN102080431B (en) Photovoltaic photo-thermal combined hollow glass
US20030196652A1 (en) Solar energy collector system
JP2006064203A (en) Solar battery module
CN207320145U (en) A kind of concentrating photovoltaic photo-thermal component and array for being disposed with double side photovoltaic battery piece
JP5626323B2 (en) Solar thermal hybrid panel and solar system
JP2001349028A (en) Solar battery mounting member
JP2012069720A (en) Solar module system utilizing reflection light for cooling
JP2004317117A (en) Solar heat collector with solar power generation function
KR20120056648A (en) Electro-generation system with function for heating of water using solar cell and thermo-electric device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006515439

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050001326

Country of ref document: DE

122 Ep: pct application non-entry in european phase