WO2006017974A1 - Tete de capteur de deformations a fibre ou a reseau de fibres et son systeme de mesure de deformations - Google Patents

Tete de capteur de deformations a fibre ou a reseau de fibres et son systeme de mesure de deformations Download PDF

Info

Publication number
WO2006017974A1
WO2006017974A1 PCT/CN2005/001106 CN2005001106W WO2006017974A1 WO 2006017974 A1 WO2006017974 A1 WO 2006017974A1 CN 2005001106 W CN2005001106 W CN 2005001106W WO 2006017974 A1 WO2006017974 A1 WO 2006017974A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
sensing head
strain
grating
fold
Prior art date
Application number
PCT/CN2005/001106
Other languages
English (en)
French (fr)
Inventor
Haitao Liu
Zhihong Xu
Siyu Zhang
Original Assignee
Beijing Jiarun Fiber Sensing Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiarun Fiber Sensing Technology Inc filed Critical Beijing Jiarun Fiber Sensing Technology Inc
Publication of WO2006017974A1 publication Critical patent/WO2006017974A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • G01M11/085Testing mechanical properties by using an optical fiber in contact with the device under test [DUT] the optical fiber being on or near the surface of the DUT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings

Definitions

  • the present invention relates to the field of sensing technology, and more particularly to a fiber grating or fiber strain sensing head, and a strain measuring system comprising the fiber grating or fiber strain sensing head.
  • the traditional strain gauges are mainly based on piezoelectric or resistive, vibration and other principles, are susceptible to electromagnetic interference, and have relatively serious zero drift, which is difficult to achieve distributed measurement.
  • fiber-optic sensors or fiber-optic strain sensors have been greatly developed.
  • the fiber-optic sensor has the following advantages: 1. It is free from electromagnetic interference; 2. The structure is small, and it is easy to be buried in the object to be measured; 3. The stability is good. Therefore, in the application of structural engineering, the replacement of traditional resistance strain sensors by fiber-optic sensors is a trend in technology development.
  • the prior art fiber-optic sensor or strain measurement system has limitations in the design structure of the fiber strain sensing head, such as a patch-type fiber strain sensing head, and the like in practical use in some complicated occasions. Technical defects inconvenience in installation.
  • the prior art fiber strain sensing head generally includes upper and lower crosspieces, and a bracket reflecting the deformation of the force in the middle, and the sensitive portion of the bracket is pasted with an optical fiber. Summary of the invention
  • the present invention is directed to the above-mentioned defects existing in the prior art, and provides a design structure that is reasonable and convenient. Installed, fiber grating or fiber strain sensing heads for a wide range of complex structural strain monitoring.
  • the present invention also provides a strain measurement system including the fiber grating or fiber strain sensing head.
  • a fiber grating or fiber strain sensing head comprising a bracket, and an optical fiber or a fiber grating, wherein: the bracket is a bent structure with a horizontal fold and a vertical fold, and the fiber grating or optical fiber is pasted in the On or on the outer surface of the vertical fold.
  • the end of the bracket is provided with a crosspiece.
  • a mounting screw hole is disposed on the crosspiece.
  • the bent structure has a convex shape, i.e., has an upper cross-fold and a lower cross-fold, and a vertical fold that aligns the two cross-folds.
  • the upper cross-fold and the lower cross-fold are each substantially parallel to the crosspiece, and the vertical fold is substantially perpendicular to the cross-fold.
  • a housing is attached to the bracket.
  • One kind of strain measurement system comprising a sensor head, wherein: the fiber optic sensor head above ⁇ : register or fiber strain sensor head.
  • the fiber grating or the fiber strain sensing head of the present invention is attached to the outer surface of the vertical folded portion or the inner surface of the vertical folded portion by the optical fiber or the optical fiber grating, it is beneficial to truly reflect the engineering structure or the stress state of the measured object. Or the corresponding amount of strain displacement, so as to achieve accurate measurement or accurate monitoring.
  • the bent structure is convex, that is, it has an upper cross-section and a lower cross-fold, and a vertical fold that connects the two cross-folds, so that the optical fiber or the fiber grating is pasted on the
  • the inner or outer surface of the vertical fold is simple and convenient 5 and the convex shape facilitates the design of the strain model.
  • the vertical fold is substantially perpendicular to the cross-fold, which is advantageous for design and mass production to ensure stable and reliable quality.
  • the crosspiece is provided with a mounting screw hole, it is possible to weld the two ends of the cross member to the surface of the steel structure, or to the steel structure or the concrete surface by screws through the mounting holes on the lateral end.
  • the strain measuring system of the present invention adopts the above fiber grating or fiber strain sensing head, the strain measuring system can also obtain the corresponding beneficial technical effects as described above.
  • FIG. 1 is a schematic structural view of a fiber grating or fiber strain sensing head according to the present invention.
  • FIG. 2 is a schematic structural view of a second embodiment of a fiber grating or fiber strain sensing head.
  • FIG 3 is a schematic structural view of a third embodiment of a fiber grating or fiber strain sensing head.
  • FIG. 4 is a schematic structural view of a fourth embodiment of a fiber grating or fiber strain sensing head.
  • FIG. 5 is a schematic structural view of a fifth embodiment of a fiber grating or fiber strain sensing head.
  • FIG. 6 is a schematic structural view of a sixth embodiment of a fiber grating or fiber strain sensing head.
  • FIG. 7 is a schematic structural view of a seventh embodiment of a fiber grating or fiber strain sensing head.
  • FIG. 8 is a schematic structural view of an eighth embodiment of a fiber grating or fiber strain sensing head.
  • markers in the figure are listed below: 1-bracket; 2-fiber; 3-upper rail; ⁇ -lower rail; 5-mounting screw hole; 6-bend-shaped structure; 7-upper cross-section; 8-lower cross-section; Folded portion; 10-shell; 11-folded outer surface; 12-vertical inner surface; 13-fiber or fiber grating. detailed description
  • the technical idea of the present invention is to provide a sensing head for strain sensing using an optical fiber or a fiber grating.
  • the sensing head basically has the following features: 1. There is a convex bracket, and one side of the bracket is adhered to an optical fiber or a fiber grating. 2. Both ends of the bracket can be installed or welded to the measured object to monitor changes in stress and displacement. 3. The outer casing is used to protect and guide the sliding rods at both ends.
  • this sensor head works as follows:
  • the fiber or fiber grating is adhered to the central convex position of the convex bracket, and both ends are fixed on the object to be measured.
  • the purpose of the crosspiece at both ends of the sensing head is to embed the sensor head in concrete or other forms of the building. When the object is deformed for some reason, pull the crosspiece to cause the sensor head to change. You can also weld the two ends to the surface of the steel structure, or through the mounting hole on the horizontal end. The screws are mounted on steel or concrete surfaces. After the fiber or fiber grating is pulled, the wavelength of the reflection changes accordingly. By monitoring the change of the reflection wavelength, the corresponding strain or displacement of the measured object can be inferred.
  • the optical fiber strain sensing head of the present invention comprises an upper rail 3, a lower rail 4 and a bracket 1 between the two rails, and an optical fiber 13 which is a bent structure 6 , fiber 13 It is adhered to the surface 12 of the vertical fold 5 of the bent structure 6, and it is obviously also possible to stick it on the outer surface 11 of the vertical fold.
  • the bent structure eliminates the situation of stress instability 3 by attaching a fiber grating or an optical fiber to the outer surface of the vertical folded portion or the inner surface of the vertical folded portion of the bent structure In the above, it is beneficial to truly reflect the engineering structure or the stress state of the measured object or the corresponding strain displacement amount 5 to achieve accurate measurement or accurate monitoring.
  • a housing 10 is provided on the periphery of the bracket 1, and the housing 10 serves as a protection.
  • FIG. 2 shows the relationship between the optical fiber 13 and strain gauge sensor head main body 3
  • grating or optical fiber may be attached to the vertical surface of the folded portion 12, may be attached to the outer surface of the vertical portion 11 folded.
  • the fiber grating or fiber is adhered to the surface of the sensing head by an adhesive.
  • FIG. 3 shows the shape configuration of the sensing head main body, including an upper crosspiece 3, a lower crosspiece 4, and a bracket 1 interposed between the two crosspieces.
  • the bracket 1 is a bent structure. 6 , in a convex shape, that is, having an upper cross-folded portion 7 and a lower cross-folded portion 8 , and a vertical folded portion 9 that is connected to the two horizontally-folded portions, so that the fiber grating or the optical fiber is pasted on the vertical fold
  • the surface of the portion 9 is convenient, and the convex shape facilitates the design of the strain model.
  • the upper cross-fold and the lower cross-fold are both substantially parallel to the crosspiece, and the vertical fold is substantially perpendicular to the cross-fold, which is advantageous for design and mass production, thereby ensuring stable and reliable quality.
  • Figure 4 shows a variation of the sensing head, with a thin waist at the ends of the rods to form a deformed area.
  • Adjusting the size of H, L, m, a can change the ratio of the induced grating to the deformation of the measured object. example.
  • adjusting the size of HL, m a can also change the ratio of the induced grating to the deformation of the measured object, which is beneficial for accurate measurement.
  • the purpose of the crosspiece at both ends of the sensor head is to pull the crosspiece when the sensor head is embedded in concrete or other forms of building, and when the object is deformed for some reason,
  • the sensor head causes a variant, and it is also possible to weld the two ends of the crosspiece to the surface of the steel structure or to the steel structure or the concrete surface by screws through the mounting holes in the crosspiece.
  • Figure 5 shows another variation of the sensing head having only one cross-fold and one vertical fold.
  • Figure 6, Figure 7, and Figure 8 show the rectangular frame structure, H-frame structure, and biconvex arc structure of the sensor head, respectively. These structural designs enable the fiber grating or fiber strain sensing head of the present invention to be used in a variety of applications.
  • the part can be applied as a component to an integral sensor such as a pressure gauge, crack gauge, etc.
  • the above fiber grating or fiber strain sensing head is used, which makes the strain measuring system also obtain the corresponding beneficial technical effects. From the specific implementation, no other technical changes have occurred.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

光纤光柵或光纤应变传感头及其应变测量*** 技术领域
本发明涉及传感技术领域, 特別是一种光纤光栅或光纤应变传感头, 以 及一种包含该光纤光栅或光纤应变传感头的应变测量***。 背景技术
传统的应变仪主要是基于压电或电阻式,振动等原理,容易受电磁干扰, 而且存在比较严重的零漂, 不易实现分布式测量。 近年来, 光纤式传感器或 者说光纤应变传感器得到了较大的发展。 光纤式传感器具有以下优点: 1.免 受电磁干扰; 2.结构小, 易埋入被测物体内; 3.稳定性好。 因此在结构工程 的应用上, 光纤式传感器取代传统的电阻应变式传感器是技术发展的趋势。 但是, 现有技术中的光纤式传感器或者说应变测量***, 由于其光纤应变传 感头的设计结构的限制, 例如贴片式光纤应变传感头等, 在某些复杂场合的 实际使用中存在着安装不便的技术缺陷。现有技术中的光纤应变传感头一般 包括上、下横挡, 中间是反映受力变形的支架, 支架的敏感部位粘贴有光纤。 发明内容
本发明针对现有技术中存在的上述缺陷, 提供一种设计结构合理, 便于 安装, 能够适用于多种复杂结构 程应变监测的光纤光栅或光纤应变传感 头。
本发明还提供一种包含该光纤光栅或光纤应变传感头的应变测量***。
本发明的技术方案如下:
光纤光栅或光纤应变传感头, 包括支架, 以及光纤或光纤光栅, 其特征 在于: 所述支架为带有横折部和竖折部的折弯形结构, 所述光纤光栅或光纤 粘贴在所述竖折部的外表面上或内表面上。
所述支架的端部设置有横挡。
所述横挡上设置有安装螺孔。
所述折弯形结构呈凸形, 即具有一个上横折部和一个下横折部, 以及一 个顺连该两个横折部的竖折部。
所述上横折部和下横折部均基本平行于所述横挡 , 所述竖折部基本垂直 于所述横折部。
所述支架上附设有壳体。
一种应变测量***, 包括传感头, 其特征在于: 所述传感头为上述光纤 光^ :册或光纤应变传感头。
本发明的技术效果如下:
由于本发明光纤光栅或光纤应变传感头,通过将光纤或光纤光栅粘贴在 该支架的竖折部外表面上或竖折部内表面上,有利于真实反映工程结构或被 测物体的受力状况或相应的应变位移量, 从而实现精准测量或精准监测。 01106 由于折弯形结构呈凸形, 即具看一个上横折部和一个下横折部, 以及一 个顺连该两个横折部的竖折部, 这样, 将光纤或光纤光栅粘贴在该竖折部的 内表面或外表面, 简单方便5 而且该凸形形状便于应变模型的设计。
由于上横折部和下横折部均基本平行于横挡, 竖折部基本垂直于横折 部, 这样有利于设计和批量生产 从而保证质量稳定可靠。
由于横挡上设置有安装螺孔,这样既可以将两端横挡焊接在钢结构的表 面, 也可以通过横端上的安装孔用螺丝安装在钢结构或混凝土表面。
由于本发明一种应变测量***, 采用了上述光纤光栅或光纤应变传感 头, 这就使得该应变测量***也同样能获得相应的上述有益的技术效果。 附图说明
图 1为本发明光纤光栅或光纤应变传感头的结构示意图。
图 2为光纤光栅或光纤应变传感头第二种实施例的结构示意图。
图 3为光纤光栅或光纤应变传感头第三种实施例的结构示意图。
图 4为光纤光栅或光纤应变传感头第四种实施例的结构示意图。
图 5为光纤光栅或光纤应变传感头第五种实施例的结构示意图。
图 6为光纤光栅或光纤应变传感头第六种实施例的结构示意图。
图 7为光纤光栅或光纤应变传感头第七种实施例的结构示意图。
图 8为光纤光栅或光纤应变传感头第八种实施例的结构示意图。
图中标记列示如下: 1-支架; 2-光纤; 3-上横挡; ί-下横挡; 5-安装螺孔; 6-折弯形结构; 7 -上横折部; 8-下横折部; 9-竖折部; 10-壳体; 11-竖折部外表面; 12-竖 折部内表面; 13 -光纤或光纤光栅。 具体实施方式
下面结合附图对本发明作进一步的详细说明。
本发明的技术构思在于提供一种利用光纤或光纤光栅进行应变传感的 传感头, 该传感头基本上具有特点如下: 1.有一个凸型支架, 支架的一面粘 贴光纤或光纤光栅。 2.支架的两端可以安装或焊接在被测物体上以监测应 力、 位移等变化。 3.—外壳, 用以保护、 并导引两端的滑杆。
—般说来, 这种传感头的工作方式如下:
光纤或光纤光栅粘于凸型支架的中央凸起的位置, 两端固定在被测物体 上,传感头的两端的横挡的目的在于当传感头埋入混凝土或其它形式的建筑 物中的时候, 当物体由于某种原因有一定变形后, 拉动横挡, 从而使传感头 引起变体, 也可以将两端横挡焊接在钢结构的表面, 或通过横端上的安装孔 用螺丝安装在钢结构或混凝土表面。 光纤或光纤光栅被拉到后, 其反射的波 长也随着作相应的变化,通过监测反射波长的变化可以推知被测物体的相应 的应变量或位移量。
如图 1所示, 本发明光纤应变传感头, 包括上横挡 3、 下横挡 4和介于 该两个横挡之间的支架 1 , 以及光纤 13 , 支架 1为折弯形结构 6 , 光纤 13 粘贴在该折弯形结构 6的竖折部内 5表面 12上, 显然也可以粘贴在竖折部外 表面 11上。 由于本发明光纤应变传感头, 因折弯形构造排除了其受力失稳 的状况出现3 通过将光纤光栅或光纤粘贴在该折弯形结构的竖折部外表面上 或竖折部内表面上,有利于真实反映工程结构或被测物体的受力状况或相应 的应变位移量 5 从而实现精准测量或精准监测。 另外, 在支架 1的***设置 有壳体 1 0 , 该壳体 10起保护作用。
如图 2所示, 图 2示出了光纤 13与应变计传感头主体的关系 3 光纤光 栅或光纤可以粘贴在竖折部内表面 12, 也可以粘贴在竖折部外表面 11。 光 纤光栅或光纤通过粘合剂粘在传感头的表面。 当传感头的两端受到拉力变形 时, 会引起所粘贴的光纤或光纤光栅变形, 探测光纤或光纤光栅的波长的变 化, 就可以知道变形量的大小。
如图 3所示, 图 3示出了传感头主体的形状构造, 包括上横挡 3、 下横 挡 4和介于该两个横挡之间的支架 1 , 支架 1为折弯形结构 6 , 呈凸形, 即 具有一个上横折部 7和一个下横折部 8 , 以及一个顺连该两个横折部的竖折 部 9 , 这样, 将光纤光栅或光纤粘贴在该竖折部 9的表面, 筒单方便, 而且 该凸形形状便于应变模型的设计。 上横折部和下横折部均基本平行于横挡, 竖折部基本垂直于横折部, 这样有利于设计和批量生产, 从而保证质量稳定 可靠。
图 4示出了传感头的一个变种, 在两端杆处设计一个细腰, 成为一个变 形区域。 调节 H、 L、 m、 a 的尺寸, 可以改变感应光栅同被测物体变形的比 例。 当然, 对于其他图示的光纤光 6栅或光纤应变传感头, 调节 H L、 m、 a 的尺寸,也同样可以改变感应光栅同被测物体变形的比例,有利于精确测量。
如图 5所示,传感头两端横挡的目的在于当传感头埋入混凝土或其它形 式的建筑物中的时候, 当物体由于某种原因有一定变形后, 拉动横挡, 从而 使传感头引起变体, 也可以将两端横挡焊接在钢结构的表面 , 或通过横挡上 的安装孔用螺丝安装在钢结构或混凝土表面。 图 5示出了传感头的另一个变 种, 只具有一个横折部和一个竖折部。
图 6、 图 7和图 8分别表示了传感头的矩形框结构、 H形框结构和双凸 弧矩形结构。这些结构设计使得本发明的光纤光栅或光纤应变传感头能够适 用多种场合。 该部件作为一个部件完全可以应用到一个整体传感器中 , 如压 力计、 裂缝计等。
对于本发明一种应变测量***而言, 采用了上述光纤光栅或光纤应变传 感头, 这就使得该应变测量***也同样能获得相应的上述有益的技术效果。 从具体实施方式来说, 其他方面并没有发生技术上的变化。
以上所述, 仅为本发明的优选实施方式。 应当指出, 对于本领域的技术 人员来说, 依据本发明同样的发明创造原理, 还可以做出许多变型和改进, 但是这些均落入本发明的保护范围。

Claims

1.光纤光栅或光纤应变传感头, 包括支架, 以及光纤或光纤光栅, 其特 征在于: 所述支架为带有横折部和竖折部的折弯形结构, 所述光纤光栅或光 纤粘贴在所述竖折部的外表面上或内表面上。
2.根据权利要求 1所述的光纤光栅或光纤应变传感头, 其特征在于: 所 述支架的端部设置有横挡。
3.根据权利要求 2所述的光纤光栅或光纤应变传感头, 其特征在于: 所 述横挡上设置有安装螺孔。
4.根据权利要求 3所述的光纤光栅或光纤应变传感头, 其特征在于: 所 述折弯形结构呈凸形, 即具有一个上横折部和一个下横折部, 以及一个顺连 该两个横折部的竖折部。
5.根据权利要求 4所述的光纤光栅或光纤应变传感头, 其特征在于: 所 述上横折部和下横折部均基本平行于所述横挡, 所述竖折部基本垂直于所述 横折部。
6.根据权利要求 5所述的光纤光栅或光纤应变传感头, 其特征在于: 所 述支架上附设有壳体。
7.—种应变测量***, 包括传感头, 其特征在于: 所述传感头为权利要 求 1-6之一所述的光纤光栅或光纤应变传感头。
PCT/CN2005/001106 2004-08-16 2005-07-22 Tete de capteur de deformations a fibre ou a reseau de fibres et son systeme de mesure de deformations WO2006017974A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200420009255.6 2004-08-16
CN 200420009255 CN2720406Y (zh) 2004-08-16 2004-08-16 光纤光栅或光纤应变传感头及其应变测量***

Publications (1)

Publication Number Publication Date
WO2006017974A1 true WO2006017974A1 (fr) 2006-02-23

Family

ID=35009365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001106 WO2006017974A1 (fr) 2004-08-16 2005-07-22 Tete de capteur de deformations a fibre ou a reseau de fibres et son systeme de mesure de deformations

Country Status (2)

Country Link
CN (1) CN2720406Y (zh)
WO (1) WO2006017974A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449369A (zh) * 2017-09-15 2017-12-08 浙江智远光电科技有限公司 安装便易的光纤光栅储能焊接式应变片
CN110057309A (zh) * 2019-05-21 2019-07-26 衢州学院 一种适用于多种工况的光纤光栅应变传感器及其安装拆卸方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104314936B (zh) * 2014-09-02 2016-07-06 广州大学 一种检测水平轴或梁应变的光纤光栅传感器快速粘贴器
CN104677302B (zh) * 2015-03-24 2017-11-24 北京航空航天大学 一种基于光纤光栅的三维传感器及其传感器主体
CN106017541B (zh) * 2016-07-29 2018-08-28 中铁第四勘察设计院集团有限公司 一种地铁接触网支架松动的在线监测装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729335A (en) * 1996-08-23 1998-03-17 Mcdonnell Douglas Corporation Optical fiber monitoring apparatus and an associated method for monitoring bending or strain on an optical fiber during installation
CN2513078Y (zh) * 2001-12-07 2002-09-25 陈伟民 光纤法珀应变测量仪
JP2002286563A (ja) * 2001-03-28 2002-10-03 Kyowa Electron Instr Co Ltd 光ファイバ式ひずみゲージ
CN2570733Y (zh) * 2002-10-10 2003-09-03 张继昌 新型光纤应变传感器
CN2646668Y (zh) * 2003-09-05 2004-10-06 刘育梁 可重复使用的光纤光栅应变传感器
CN2651704Y (zh) * 2003-11-04 2004-10-27 刘育梁 光纤光栅应变传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729335A (en) * 1996-08-23 1998-03-17 Mcdonnell Douglas Corporation Optical fiber monitoring apparatus and an associated method for monitoring bending or strain on an optical fiber during installation
JP2002286563A (ja) * 2001-03-28 2002-10-03 Kyowa Electron Instr Co Ltd 光ファイバ式ひずみゲージ
CN2513078Y (zh) * 2001-12-07 2002-09-25 陈伟民 光纤法珀应变测量仪
CN2570733Y (zh) * 2002-10-10 2003-09-03 张继昌 新型光纤应变传感器
CN2646668Y (zh) * 2003-09-05 2004-10-06 刘育梁 可重复使用的光纤光栅应变传感器
CN2651704Y (zh) * 2003-11-04 2004-10-27 刘育梁 光纤光栅应变传感器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449369A (zh) * 2017-09-15 2017-12-08 浙江智远光电科技有限公司 安装便易的光纤光栅储能焊接式应变片
CN110057309A (zh) * 2019-05-21 2019-07-26 衢州学院 一种适用于多种工况的光纤光栅应变传感器及其安装拆卸方法
CN110057309B (zh) * 2019-05-21 2024-02-09 衢州学院 一种适用于多种工况的光纤光栅应变传感器的安装拆卸方法

Also Published As

Publication number Publication date
CN2720406Y (zh) 2005-08-24

Similar Documents

Publication Publication Date Title
CN100533056C (zh) 一种光纤光栅增减敏应变传感器的封装方法
CA2839212C (en) Fiber optic cable with increased directional sensitivity
CN102162757B (zh) 一种光纤光栅土压力传感器
WO2006017974A1 (fr) Tete de capteur de deformations a fibre ou a reseau de fibres et son systeme de mesure de deformations
ATE446495T1 (de) Sensor für verschiebung, dehnung und kraft
JP5034090B2 (ja) 光ファイバー格子センサを用いた内空変位計測装置及びこれを用いた計測方法
CN101900616A (zh) 一种光纤布拉格光栅压力传感器及其相应的测量方法
TWI545270B (zh) 預設頸縮孔的光纖感測螺栓結構
CN103307995B (zh) 双向长标距光纤光栅应变传感器
CN206248252U (zh) 一种锚杆轴向测力计
CN202285022U (zh) 双光纤光栅加速度计探头
CN203100682U (zh) 灵敏度可调的光纤光栅位移传感器
CN101162157A (zh) 表面安装或焊接式应力应变测试传感装置
CN202330457U (zh) 温度补偿型光纤光栅加速度计探头
CN102261889B (zh) 双悬臂大变形应变测量传感器
CN111006603B (zh) 一种钢筋应力应变计
CN201053910Y (zh) 张力检测装置
JP2003222507A (ja) 光ファイバセンサ及びそれを利用した歪み監視システム
CN112945438B (zh) 一种光纤式土压力传感器
CN205120283U (zh) 张力仪传感器
CN105890533A (zh) 一种材料表面应变光纤光栅反向差动检测传感器件
CN202083500U (zh) 一种电阻式双法兰扭矩传感器
CN202216784U (zh) 一种带温度自补偿的光纤光栅索力传感器
CN201094033Y (zh) 表面安装或焊接式应力应变测试传感装置
CN207197707U (zh) 一种纯弯曲应变光纤光栅传感器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase