WO2006008878A1 - Coil component - Google Patents

Coil component Download PDF

Info

Publication number
WO2006008878A1
WO2006008878A1 PCT/JP2005/010333 JP2005010333W WO2006008878A1 WO 2006008878 A1 WO2006008878 A1 WO 2006008878A1 JP 2005010333 W JP2005010333 W JP 2005010333W WO 2006008878 A1 WO2006008878 A1 WO 2006008878A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
electrode
pattern
electrodes
pattern electrode
Prior art date
Application number
PCT/JP2005/010333
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuji Matsuta
Masahiko Kawaguchi
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2006528447A priority Critical patent/JP4367487B2/en
Priority to TW094118977A priority patent/TWI303836B/en
Publication of WO2006008878A1 publication Critical patent/WO2006008878A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers

Definitions

  • the present invention relates to a coil component, and more particularly to a coil component that can be suitably used as, for example, a common mode choke coil.
  • Patent Document 1 proposes a coil component that can be used as a common mode choke coil or the like.
  • This coil component is a common mode coil having a nonmagnetic layer sandwiched between upper and lower magnetic substrates and a pair of coil electrodes formed in the nonmagnetic layer.
  • a pair of coil electrodes are stacked opposite each other with an insulating layer in the thickness direction! RU
  • Each coil electrode is composed of two layers of parallel spiral electrodes.
  • the spiral electrode can efficiently obtain a large common mode impedance, and the magnetic flux concentrates to obtain a high degree of coupling. Therefore, the common mode choke coil having such a configuration can obtain a large common mode impedance, a high coupling between the coils, and a low normal mode impedance.
  • each coil is constituted by two layers of parallel spiral electrodes, the cross-sectional area of the electrode can be doubled compared to a single layer electrode, and the DC resistance of the coil can be kept low.
  • Patent Document 2 proposes a common mode choke coil for suppressing electromagnetic interference radiated mainly by a digital circuit having a high-speed signal transmission system.
  • this common mode choke coil an electrode pattern consisting of a pair of meander-shaped parallel flat plate electrodes is arranged opposite to each other through an insulating layer in a magnetic circuit including a magnetic core, and differential inductance in a minute section of a balanced line is detected. The characteristic impedance is adjusted with the capacitance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-133135
  • Patent Document 2 JP 2000-277335 A
  • the conventional coil component described in Patent Document 1 has the following problems. That is, when it is necessary to reduce the capacitance between the coils in order to obtain the desired characteristic impedance, it is necessary to increase the distance between the force coils that make the opposing coil wire width narrower. However, simply reducing the coil wire width is not preferable because the DC resistance increases, and simply increasing the distance between the coils increases the distance between the magnetic substrates, reducing the impedance acquisition efficiency and reducing the coupling degree. descend. Conversely, when it is necessary to increase the capacitance between the coils in order to obtain the desired characteristic impedance, it is necessary to increase the width of the opposing coil wires or reduce the distance between the coils. However, simply increasing the coil wire width limits the space and cannot provide the required inductance, and it is difficult to ensure insulation between the magnetic substrates simply by reducing the distance between the coils. There is a limit in terms of sex.
  • the conventional common mode choke coil described in Patent Document 2 has the following problems.
  • uniform characteristic impedance can be obtained by arranging meander-shaped parallel plate electrodes facing each other at a predetermined interval.
  • meander shape large impedance cannot be obtained efficiently, and high and coupling cannot be obtained.
  • the mode impedance increases, which is not preferable.
  • a desired characteristic impedance is to be obtained, the same problem as in the technique of Patent Document 1 occurs when adjusting the capacitance between the coils.
  • the present invention has been made to solve the above-described problems, and can promote downsizing and reduction in height, and increase the coupling between coils that expands the range of acquired impedance with low resistance.
  • the purpose is to provide a coil component that can increase the degree of freedom in designing characteristic impedance!
  • the coil component according to claim 1 of the present invention includes a pair of upper and lower magnetic substrates, a nonmagnetic layer interposed between these magnetic substrates, and a vertical direction within the nonmagnetic layer.
  • a coil component including a pair of first and second coil electrodes that are spaced apart from each other and disposed opposite to each other, wherein the first and second coil electrodes are spaced apart from each other. It has at least two layers of spiral first and second pattern electrodes, and each of the first and second coil electrodes is arranged on the innermost side in the vertical direction and faces each other.
  • the area of each of the first pattern electrodes is larger / smaller than that of the second pattern electrodes arranged on the outer side of each first pattern electrode.
  • the coil component according to claim 2 of the present invention is the coil component according to claim 1, wherein each of the first and second coil electrodes is a two-layer spiral pattern electrode. It is characterized by having.
  • the line width of the first pattern electrode is equal to the line width of the second pattern electrode. It is characterized by being different.
  • the coil component according to claim 4 of the present invention is the invention according to any one of claims 1 to 3, wherein the number of coils of the first pattern electrode is the first number. It differs from the number of coils in the two-pattern electrode.
  • FIG. 1 is a view showing an embodiment of a coil component of the present invention, in which (a) is a perspective view showing an appearance thereof,
  • (b) is a sectional view taken along the line BB of (a).
  • FIG. 2 is a view showing the coil electrodes extracted from the coil component shown in FIG. 1, wherein (a) is a plan view showing the first and second non-turn electrodes, and (b) is a connection of the first and second pattern electrodes. It is explanatory drawing which shows a state.
  • FIG. 3 is an exploded perspective view showing the coil component shown in FIG. 1 in an exploded manner.
  • FIG. 4 is an exploded perspective view showing another embodiment of the coil component of the present invention.
  • the coil component 10 of the present embodiment includes, for example, as shown in FIGS. 1 to 3, upper and lower magnetic substrates 11 and 12 and a plurality of insulating substrates interposed between these magnetic substrates 11 and 12.
  • an adhesive layer 18 is provided between the upper magnetic substrate 12 and the nonmagnetic layer 13 to bond them together.
  • a plurality of coil components 10 can be simultaneously formed on a mother substrate.
  • Internal wiring such as the first and second coil electrodes 14 and 15 can be formed by photolithography technology.
  • the coil component body including the upper and lower magnetic substrates 11 and 12, the nonmagnetic layer 13 and the first and second coil electrodes 14 and 15 will be referred to as a coil component body 10A as necessary.
  • the magnetic substrates 11 and 12 are not particularly limited as long as they are made of a magnetic material.
  • a magnetic material for example, a ferrite material excellent in high-frequency characteristics is preferably used.
  • the bonding surface is polished to a surface roughness Ra of 0.5 m or less.
  • the nonmagnetic material layer 13 is formed by laminating a plurality of insulating layers 13A and 13B. As shown in FIG. 3, the third and fourth insulating layers 13B from the top of the non-magnetic layer 13 are interposed between the first coil electrode 14 and the second coil electrode 15 to provide coil components. This is a layer that sets 10 characteristic impedances.
  • a method for forming these insulating layers 13A and 13B is not particularly limited, and for example, a spin coating method or the like can be used.
  • the insulating layers 13A and 13B are not particularly limited as long as they are formed of a non-magnetic insulating material. Examples of the insulating material include thermosetting such as polyimide resin, epoxy resin, and benzocyclobutene resin. Preferably used for synthetic resin, glass such as SiO, glass ceramic
  • a photosensitive resin material imparted with photosensitivity can be used alone or in combination with each of the above materials as necessary.
  • the insulating layers 13A and 13B which also serve as a photosensitive resin material, are used when via holes are formed in the insulating layers 13A and 13B. When forming via holes, the insulating layers 13A and 13B are masked with a photomask, and then the insulating layers 13A and 13B are exposed and developed to form via holes.
  • the thickness of the insulating layer 13A is preferably in the range of, for example, 1 to 3 / ⁇ ⁇ .
  • the thickness of the insulating layer 13B is preferably in the range of 5 to 30 m in view of defining the characteristic impedance.
  • a thermosetting resin such as polyimide resin can be used as an adhesive used for the adhesive layer 18.
  • the first and second coil electrodes 14 and 15 are arranged to face each other so as to be symmetrical with each other in the vertical direction, and have a positional relationship overlapping each other. ing.
  • Each of the coil electrodes 14 and 15 has first and second pattern electrodes formed in a spiral shape having substantially the same size, as will be described later. The first and second pattern electrodes are respectively drawn.
  • the first external electrodes 16A and 16B and the second external electrodes 17A and 17B are connected via the lead-out electrodes. Since the first and second coil electrodes 14 and 15 are each formed in a spiral shape, a wide range of impedances can be obtained, and a reduction in the size and height of the coil component 10 can be promoted.
  • the first pattern electrodes of the first and second coil electrodes 14, 15 are arranged to face each other via an insulating layer 13B having a thickness of 5 to 30 ⁇ m, and are arranged on the outer sides of the first pattern electrodes. It has a different area from the second pattern electrode.
  • the coil component 10 has a common mode in which the capacitance between the first and second coil electrodes 14 and 15 is adjusted according to the size of the area of the first pattern electrodes 14 and 15 that face each other. The characteristic impedance is adjusted without causing a drop in impedance or a reduction in coupling.
  • the characteristic impedance of the coil component 10 can be set high by making the area of the first pattern electrode of each of the first and second coil electrodes 14 and 15 smaller than the area of the second pattern electrode. Conversely, the area of the upper and lower first pattern electrodes is larger than the area of the second pattern electrodes. Thus, the characteristic impedance of the coil component 10 can be set low.
  • the first and second coil electrodes 14 and 15 have substantially the same structure except that the first and second pattern electrodes have a vertically symmetrical structure in which only the size relationship of the areas of the first and second pattern electrodes is reversed. Therefore, the first coil electrode 14 will be mainly described.
  • the first coil electrode 14 is positioned above the second coil electrode 15 via the insulating layer 13B as shown in FIGS. As shown in FIG. 3, the first coil electrode 14 includes two layers of spiral first and second pattern electrodes 141A and 141B that are arranged above and below each other and connected in parallel via an insulating layer 13A. 1.
  • Each of the second pattern electrodes 141A, 141B has a pair of lead electrodes 142A, 142B, 143A, 143B drawn from both ends of the second pattern electrodes 141A, 141B to the first external electrodes 16A, 16B, respectively.
  • the first coil electrode 14 is constructed by connecting the first and second pattern electrodes 141A and 141B in two upper and lower layers in parallel via the first external electrodes 16A and 16B. Resistance is getting low.
  • the first pattern electrode 141A is positioned on the inner side (lower side) in the vertical direction
  • the second pattern electrode 141B is positioned on the outer side (upper side) in the vertical direction
  • the first pattern electrode 151A is positioned on the inner side (upper side) in the vertical direction
  • the second pattern electrode 151B is positioned on the outer side (lower side) in the vertical direction.
  • the line widths of the first pattern electrodes 141A and 151A are formed as small areas smaller than the line widths of the second pattern electrodes 141B and 151B, respectively.
  • the common mode impedance can be reduced between the coils 14 and 15 without reducing the coupling degree.
  • the characteristic impedance of the coil component 10 can be increased. Even if the line width of the first pattern electrodes 141A and 151A is narrow, increasing the line width of the second pattern electrodes 141B and 151B can increase the DC resistance of the first and second coil electrodes 14 and 15. It can be avoided.
  • the first pattern electrode 141A is indicated by a broken line.
  • the In (b) and (c) of FIG. 2 the first pattern electrode 141A having a narrow line width is indicated by a thin line, the second pattern electrode 141B having a large line width is indicated by a thick line, and the direction of current is indicated by an arrow.
  • the first electrode pattern 141A has a rectangular spiral drawn clockwise from one lead electrode 142A, and is substantially at the center of the insulating layer 13B. Is the end point. Since the other lead electrode 142B of the first electrode pattern 141A is located outside the first pattern electrode 141A on the insulating layer 13B, the other lead electrode 142B and the end point of the first pattern electrode 141A are connected to the insulating layer 13B. As shown in FIG. 3, the end point of the first electrode pattern 141A and the other lead electrode 142B cannot be directly connected as shown in FIG. As shown, the lead wire of the second pattern electrode 141B takes over.
  • the second pattern electrode 141B is insulated by drawing a spiral in the clockwise direction starting from one lead electrode 143A, as in the case of the first pattern electrode 141A.
  • the approximate center of layer 13A is the end point.
  • This end point and the other bow I lead electrode 143B arranged outside the second pattern electrode 141B are connected to each other by the lead wire 144 on the insulating layer 13A, and the lead wire 144 is connected to the first pattern electrode 141A.
  • the lead wiring is used as a shoulder so that the current of the first pattern electrode 141A is merged with the second pattern electrode 141B through the lead wiring 144.
  • the end point of the first pattern electrode 141A and the end point of the second pattern electrode 141B are the central part of the insulating layer 13A.
  • the first pattern electrode 141A uses the lead-out wiring 144 of the second pattern electrode 141B.
  • the via hole conductor 145A passes through the first pattern electrode 141A.
  • the other end of the lead wire 144 positioned outside the second pattern electrode 141B is connected to the lead electrode 142B of the first pattern electrode 141A via a via-hole conductor (not shown) that also penetrates the insulating layer 13A.
  • a via-hole conductor not shown
  • the second pattern electrode 141B the portion through which the lead-out wiring 144 passes is shown in FIG. Since it is divided as shown in FIG. 3, the first pattern electrode 141A replaces this portion.
  • the dividing points of the second pattern electrode 141B facing each other on both sides of the lead-out wiring 144 are via via-hole conductors 145B and 145C that penetrate the insulating layer 13A, as shown in FIG. It is electrically connected to the first pattern electrode 141A.
  • the current of the second pattern electrode 141B merges with the current of the first pattern electrode 141A at the via hole conductor 145B, and returns to the second pattern electrode 141B via the via hole conductor 145C.
  • the second coil electrode 15 also includes first and second pattern electrodes 151A, 15IB and respective extraction electrodes 152A, 152B, 153A, 153B. 1 Constructed according to coil electrode 14 However, the first pattern electrode 151A is located on the upper side as described above, and the second pattern electrode 151B is located on the lower side.
  • the conductive material for the first and second coil electrodes 14, 15 and the via-hole conductor is not particularly limited as long as it is a metal having excellent conductivity.
  • a metal having excellent conductivity examples include Ag, Pd, and Cu.
  • A1 can be used.
  • an insulating layer is formed using a spin coating method, and a coil electrode is formed on the insulating layer using a sputtering method.
  • photolithography technology and etching technology are used to form and laminate each layer.
  • an insulating material for example, polyimide resin
  • a photosensitive resist material is applied on the conductive layer, and the resist material layer is exposed and developed through a photomask. Is etched to form the second pattern electrode 151B of the second coil electrode 15, and then the resist is peeled off.
  • a photosensitive insulating material for example, a polyimide resin imparted with photosensitivity
  • a photosensitive insulating material is applied and dried to form an insulating layer 13A, which is exposed and developed through a photomask, and then has a predetermined pattern.
  • a via hole is formed by heating and curing.
  • a photosensitive resist material is applied onto the conductive layer, the resist material layer is exposed and developed through a photomask, and then the conductive layer is etched.
  • First pattern of second coil electrode 15 After forming the thin electrode 151A, the resist is removed. As a result, the first and second pattern electrodes 151A and 15IB of the second coil electrode 15 are electrically connected via the via-hole conductor.
  • the first pattern electrode 141A of the first coil electrode 14 is formed as the insulating layer.
  • a second pattern electrode 141B is sequentially formed on the insulating layer 13A on 13B, and further, the uppermost insulating layer 13A is formed, and a circuit laminate is formed on the magnetic substrate 11.
  • the magnetic substrate 12 is heated and pressed to adhere to the upper surface of the circuit laminate via the adhesive layer 18 in an inert gas atmosphere or under vacuum, and a plurality of coil components are bonded. Make the main body 10A in a batch. Next, after cutting and dividing into individual coil component bodies 10A by performing a cutting process such as dicing, the first external electrodes 16A and 16B and the second external electrodes 17A and 17B are provided to obtain the coil component 10.
  • 14 and 15 are spaced apart from each other via an insulating layer 13A and have two layers of spiral first and second pattern electrodes 141A and 141B and first and second pattern electrodes 151A and 151B.
  • first and second coil electrodes 14 and 15 are arranged on the innermost side in the vertical direction and the first pattern electrodes 141A and 151A facing each other have line widths other than Since it is smaller than the line width of the pattern electrodes 141B and 151B, it is possible to reduce the size and height, and to obtain the acquired impedance. Wide range of coupling between coils, high direct current resistance, low characteristic impedance.
  • the coil component 10 of the present embodiment includes a pair of upper and lower magnetic substrates as shown in FIG. 4, for example. 11 and 12, a nonmagnetic layer 13 interposed between the magnetic substrates 11 and 12, and a space formed in the nonmagnetic layer 13 so as to be spaced apart from each other with an insulating layer 13B therebetween.
  • a pair of first and second coil electrodes 14 and 15 arranged, and each of the first and second coil electrodes 14 and 15 are spaced apart from each other via an insulating layer 13B.
  • the line widths of the first pattern electrodes 141A and 151A facing each other of the first and second coil electrodes 14 and 15 are set wider than the line widths of the second pattern electrodes 141B and 151B, respectively.
  • the areas of the pattern electrodes 141A and 151A are formed larger than the areas of the second pattern electrodes 141B and 151B. Therefore, the capacitance between the first pattern electrodes 151A and 151A can be increased, and the characteristic impedance of the coil component 10 can be set low.
  • the first and second pattern electrodes 141A and 141B may be connected in parallel as in the above embodiment. In the present embodiment, as shown in FIG.
  • the first pattern electrodes 141A and 151A and the second pattern electrodes 141B and 151B are connected in series, and the number of the second pattern electrodes 141B and 151B is set to the first pattern electrode 14 1A.
  • the required inductance value is obtained by increasing it from 151A.
  • the lead electrode that is the starting point (outer end) of the first pattern electrode 141A 142A is located on one side of the magnetic substrates 11 and 12, and its end point (inner end) is located inside the first pattern electrode 141A.
  • the start point (inner end) of the second pattern electrode 141B is located immediately above the inner end of the first pattern electrode 141A, and the end point (outer end) of the extraction electrode 143B is one of the magnetic substrates 11 and 12. Located on the side facing the side.
  • the first and second pattern electrodes 141A and 141B are connected to each other at their inner ends via via-hole conductors 145.
  • the second coil electrode 15 is also connected in series according to the first coil electrode 14.
  • reference numeral 155 denotes the first pattern electrode 151A of the second coil electrode 15 and the first pattern electrode 151A. 2 pattern electrode 15 Via hole conductor to connect IB.
  • the line widths of the first pattern electrodes 141A and 151A of the first and second coil electrodes 14 and 15 facing each other are set to the respective second pattern electrodes 141 B. Since the area is made larger than the line width of 151B, the capacitance between the first and second coil electrodes 14 and 15 is increased, and the characteristic impedance can be set low. Further, even if the area of the first pattern electrodes 141A and 151A is increased and the number of the respective patterns is reduced, the number of the second pattern electrodes 141B and 151B connected in series to each of the pattern electrodes 141A and 151A is reduced. A necessary impedance value can be secured by increasing the number. In this embodiment, the operational effect can be expected in the same manner as in the above embodiment except that the characteristic impedance can be lowered.
  • each pattern electrode may have three or more layers.
  • the force described in the case where the first pattern electrode 141A of the first coil electrode 14 is the lower layer and the second pattern electrode 141B is the upper layer is described.
  • the first pattern electrode 141A is the upper layer and the second pattern electrode 141B. May be a lower layer.
  • the second pattern electrode 141B of the first coil electrode 14 and the first pattern electrode 151A of the second coil electrode 15 face each other.
  • the area force of the pattern electrodes of the first and second coil electrodes facing each other directly differs from the area of the other pattern electrodes. If so, good.
  • the present invention can be widely used for coil parts that can be suitably used as a common mode choke coil for a high-speed operation transmission line of digital equipment such as a Nosocon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A coil component (10) comprises a pair of upper and lower magnetic substrates (11, 12), a nonmagnetic layer (13) interposed between them, and a first and a second coil electrode (14, 15) formed in the nonmagnetic layer (13) to be spaced apart from each other in the vertical direction so as to oppose each other. The first and the second coil electrode (14, 15) have a first and a second spiral pattern electrode, respectively. The first and the second pattern electrode (141A, 151A) of the first and the second coil electrode (14, 15) are arranged on the innermost side in the vertical direction while facing each other, and the area of the first pattern electrode (141A, 151A) is larger or smaller than the area of the second pattern electrode (141B, 151B) arranged on the outside thereof.

Description

明 細 書  Specification
コイル部品  Coil parts
技術分野  Technical field
[0001] 本発明は、コイル部品に関し、更に詳しくは、例えばコモンモードチョークコイル等と して好適に使用することができるコイル部品に関するものである。  [0001] The present invention relates to a coil component, and more particularly to a coil component that can be suitably used as, for example, a common mode choke coil.
背景技術  Background art
[0002] 例えば特許文献 1にはコモンモードチョークコイル等として使用することができるコィ ル部品が提案されている。このコイル部品は、上下の磁性体基板で挟持した非磁性 体層と、この非磁性体層内に形成された一対のコイル電極とを備えたコモンモードチ ヨークコイルである。一対のコイル電極は、厚み方向に絶縁層を介して積層して対向 配置されて!、る。各コイル電極はそれぞれ二層の並列スパイラル状電極によって構 成されている。スパイラル状電極は、大きなコモンモードインピーダンスを効率良く得 ることができると共に、磁束が集中して高い結合度が得られる。従って、このような構 成を備えたコモンモードチョークコイルは、大きなコモンモードインピーダンスが得ら れると共に、コイル間の高い結合が得られ、ノーマルモードインピーダンスを低く抑え ることができる。更に、各コイルはそれぞれ二層の並列スノィラル状電極によって構 成されているため、一層の電極と比べて電極の断面積を二倍にでき、コイルの直流 抵抗を低く抑えることができる。  For example, Patent Document 1 proposes a coil component that can be used as a common mode choke coil or the like. This coil component is a common mode coil having a nonmagnetic layer sandwiched between upper and lower magnetic substrates and a pair of coil electrodes formed in the nonmagnetic layer. A pair of coil electrodes are stacked opposite each other with an insulating layer in the thickness direction! RU Each coil electrode is composed of two layers of parallel spiral electrodes. The spiral electrode can efficiently obtain a large common mode impedance, and the magnetic flux concentrates to obtain a high degree of coupling. Therefore, the common mode choke coil having such a configuration can obtain a large common mode impedance, a high coupling between the coils, and a low normal mode impedance. Furthermore, since each coil is constituted by two layers of parallel spiral electrodes, the cross-sectional area of the electrode can be doubled compared to a single layer electrode, and the DC resistance of the coil can be kept low.
[0003] また、特許文献 2には主として高速信号伝送系を有するデジタル回路等力 放射さ れる電磁妨害を抑制するためのコモンモードチョークコイルが提案されて 、る。このコ モンモードチョークコイルは、磁芯を含む磁気回路中に一対のミアンダ形状の平行平 板電極カゝらなる電極パターンが絶縁層を介して対向配置され、平衡線路の微小区間 のディファレンシャルインダクタンスと容量とで特性インピーダンスを調整する。  [0003] Further, Patent Document 2 proposes a common mode choke coil for suppressing electromagnetic interference radiated mainly by a digital circuit having a high-speed signal transmission system. In this common mode choke coil, an electrode pattern consisting of a pair of meander-shaped parallel flat plate electrodes is arranged opposite to each other through an insulating layer in a magnetic circuit including a magnetic core, and differential inductance in a minute section of a balanced line is detected. The characteristic impedance is adjusted with the capacitance.
[0004] 特許文献 1 :特開 2003— 133135号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2003-133135
特許文献 2:特開 2000-277335号公報  Patent Document 2: JP 2000-277335 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] し力しながら、従来の特許文献 1に記載のコイル部品には以下の課題があった。即 ち、所望の特性インピーダンスを得るためにコイル間の容量を低減する必要がある場 合には、対向するコイル線幅を細くする力 コイル間の距離を広げる必要がある。しか し、コイル線幅を細くするだけでは直流抵抗が増加するため好ましくなぐまた、コィ ル間の距離を広げるだけでは磁性体基板間の距離が広がってインピーダンスの取得 効率が低下すると共に結合度が低下する。また、逆に、所望の特性インピーダンスを 得るためにはコイル間の容量を増やす必要がある場合には、対向するコイル線幅を 太くするか、コイル間の距離を狭くする必要がある。しかし、コイル線幅を太くするだ けではスペースに限界があり必要なインダクタンスが得られず、また、コイル間の距離 を狭くするだけでは磁性体基板間の絶縁性を確保することが難しぐ信頼性の面で 限界がある。 Problems to be solved by the invention However, the conventional coil component described in Patent Document 1 has the following problems. That is, when it is necessary to reduce the capacitance between the coils in order to obtain the desired characteristic impedance, it is necessary to increase the distance between the force coils that make the opposing coil wire width narrower. However, simply reducing the coil wire width is not preferable because the DC resistance increases, and simply increasing the distance between the coils increases the distance between the magnetic substrates, reducing the impedance acquisition efficiency and reducing the coupling degree. descend. Conversely, when it is necessary to increase the capacitance between the coils in order to obtain the desired characteristic impedance, it is necessary to increase the width of the opposing coil wires or reduce the distance between the coils. However, simply increasing the coil wire width limits the space and cannot provide the required inductance, and it is difficult to ensure insulation between the magnetic substrates simply by reducing the distance between the coils. There is a limit in terms of sex.
[0006] 一方、従来の特許文献 2に記載のコモンモードチョークコイルには以下の課題があ つた。即ち、ミアンダ形状の平行平板電極を所定の間隔で対向配置することで均一 な特性インピーダンスが得られる反面、ミアンダ形状では大きなインピーダンスを効率 良く得ることができず、しかも高 、結合が得られずノーマルモードインピーダンスが増 カロして好ましくない。更に、所望の特性インピーダンスを得ようとすれば、コイル間の 容量を調整する際に特許文献 1の技術の場合と同様の課題があった。  On the other hand, the conventional common mode choke coil described in Patent Document 2 has the following problems. In other words, uniform characteristic impedance can be obtained by arranging meander-shaped parallel plate electrodes facing each other at a predetermined interval. On the other hand, with meander shape, large impedance cannot be obtained efficiently, and high and coupling cannot be obtained. The mode impedance increases, which is not preferable. Furthermore, if a desired characteristic impedance is to be obtained, the same problem as in the technique of Patent Document 1 occurs when adjusting the capacitance between the coils.
[0007] 本発明は、上記課題を解決するためになされたもので、小型化及び低背化を促進 することができると共に、低抵抗で取得インピーダンスの範囲を広ぐコイル間の結合 を高めることができ、し力も特性インピーダンスの設計の自由度を高めることができる コイル部品を提供することを目的として!/ヽる。  [0007] The present invention has been made to solve the above-described problems, and can promote downsizing and reduction in height, and increase the coupling between coils that expands the range of acquired impedance with low resistance. The purpose is to provide a coil component that can increase the degree of freedom in designing characteristic impedance!
課題を解決するための手段  Means for solving the problem
[0008] 本発明の請求項 1に記載のコイル部品は、上下一対の磁性体基板と、これらの磁 性体基板の間に介在する非磁性体層と、この非磁性体層内で上下方向に離間して 形成され且つ互いに対向して配置された一対の第 1、第 2コイル電極と、を備えたコィ ル部品であって、上記第 1、第 2コイル電極は、それぞれ、互いに離間する少なくとも 二層のスパイラル状の第 1、第 2パターン電極を有し、上記第 1、第 2コイル電極それ ぞれの第 1パターン電極はそれぞれ上下方向の最も内側に配置されて互いに対向 すると共に、上記各第 1パターン電極の面積はそれぞれの外側に配置された第 2パ ターン電極よりも大き!/ヽか、または小さ ヽことを特徴とするものである。 The coil component according to claim 1 of the present invention includes a pair of upper and lower magnetic substrates, a nonmagnetic layer interposed between these magnetic substrates, and a vertical direction within the nonmagnetic layer. A coil component including a pair of first and second coil electrodes that are spaced apart from each other and disposed opposite to each other, wherein the first and second coil electrodes are spaced apart from each other. It has at least two layers of spiral first and second pattern electrodes, and each of the first and second coil electrodes is arranged on the innermost side in the vertical direction and faces each other. In addition, the area of each of the first pattern electrodes is larger / smaller than that of the second pattern electrodes arranged on the outer side of each first pattern electrode.
[0009] また、本発明の請求項 2に記載のコイル部品は、請求項 1に記載の発明にお 、て、 上記第 1、第 2コイル電極は、いずれも二層のスパイラル状のパターン電極を有する ことを特徴とするものである。 [0009] The coil component according to claim 2 of the present invention is the coil component according to claim 1, wherein each of the first and second coil electrodes is a two-layer spiral pattern electrode. It is characterized by having.
[0010] また、本発明の請求項 3に記載のコイル部品は、請求項 1または請求項 2に記載の 発明において、上記第 1パターン電極の線幅は、上記第 2パターン電極の線幅と異 なることを特徴とするものである。 [0010] Further, in the coil component according to claim 3 of the present invention, in the invention according to claim 1 or claim 2, the line width of the first pattern electrode is equal to the line width of the second pattern electrode. It is characterized by being different.
[0011] また、本発明の請求項 4に記載のコイル部品は、請求項 1〜請求項 3のいずれか 1 項に記載の発明において、上記第 1パターン電極のコイルの卷数は、上記第 2パタ ーン電極のコイルの卷数と異なることを特徴とするものである。 [0011] In addition, the coil component according to claim 4 of the present invention is the invention according to any one of claims 1 to 3, wherein the number of coils of the first pattern electrode is the first number. It differs from the number of coils in the two-pattern electrode.
発明の効果  The invention's effect
[0012] 本発明の請求項 1〜請求項 4に記載の発明によれば、小型化及び低背化を促進 することができると共に、低抵抗で取得インピーダンスの範囲を広ぐコイル間の結合 を高めることができ、し力も特性インピーダンスの設計の自由度を高めることができる コイル部品を提供することができる。  [0012] According to the inventions described in claims 1 to 4, it is possible to promote downsizing and height reduction, and to reduce the coupling between the coils that expands the range of acquired impedance with a low resistance. It is possible to provide a coil component that can increase the degree of freedom and the degree of freedom in designing the characteristic impedance.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明のコイル部品の一実施形態を示す図で、(a)はその外観を示す斜視図、  FIG. 1 is a view showing an embodiment of a coil component of the present invention, in which (a) is a perspective view showing an appearance thereof,
(b)は(a)の B— B線方向の断面図である。  (b) is a sectional view taken along the line BB of (a).
[図 2]図 1に示すコイル部品のコイル電極を取り出して示す図で、(a)はその第 1、第 2 ノターン電極を示す平面図、(b)は第 1、第 2パターン電極の接続状態を示す説明 図である。  FIG. 2 is a view showing the coil electrodes extracted from the coil component shown in FIG. 1, wherein (a) is a plan view showing the first and second non-turn electrodes, and (b) is a connection of the first and second pattern electrodes. It is explanatory drawing which shows a state.
[図 3]図 1に示すコイル部品を分解して示す分解斜視図である。  FIG. 3 is an exploded perspective view showing the coil component shown in FIG. 1 in an exploded manner.
[図 4]本発明のコイル部品の他の実施形態を示す分解斜視図である。  FIG. 4 is an exploded perspective view showing another embodiment of the coil component of the present invention.
符号の説明  Explanation of symbols
[0014] 10 コイル部品 [0014] 10 coil parts
11、 12 磁性体基板  11, 12 Magnetic substrate
13 非磁性体層 14 第 1コイル電極 13 Non-magnetic layer 14 First coil electrode
15 第 2コイル電極  15 Second coil electrode
141A、 151A 第 1パターン電極  141A, 151A 1st pattern electrode
141B、 151B 第 2パターン電極  141B, 151B Second pattern electrode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、図 1〜図 3に示す実施形態に基づいて本発明を説明する。 Hereinafter, the present invention will be described based on the embodiment shown in FIGS.
[0016] 本実施形態のコイル部品 10は、例えば図 1〜図 3に示すように、上下の磁性体基 板 11、 12と、これらの磁性体基板 11、 12間に介在し且つ複数の絶縁層 13A、 13B が積層された非磁性体層 13と、この非磁性体層 13内に上下方向で互 、に対向して 配置された平面形状力スパイラル状を呈する一対の第 1、第 2コイル電極 14、 15と、 これらのコイル電極 14、 15の両端部とそれぞれ電気的に接続された二対の第 1、第 2外部電極 16A、 16B、 17A、 17Bと、を備え、例えばコモンモードチョークコイルとし て使用するように構成されている。また、上側の磁性体基板 12と非磁性体層 13との 間にはこれら両者を接着する接着層 18が介在して 、る。 The coil component 10 of the present embodiment includes, for example, as shown in FIGS. 1 to 3, upper and lower magnetic substrates 11 and 12 and a plurality of insulating substrates interposed between these magnetic substrates 11 and 12. A nonmagnetic material layer 13 in which layers 13A and 13B are stacked, and a pair of first and second coils that form a planar force spiral disposed in the nonmagnetic material layer 13 so as to face each other in the vertical direction Electrodes 14, 15 and two pairs of first and second external electrodes 16A, 16B, 17A, 17B electrically connected to both ends of the coil electrodes 14, 15, respectively, for example, a common mode choke It is configured to be used as a coil. In addition, an adhesive layer 18 is provided between the upper magnetic substrate 12 and the nonmagnetic layer 13 to bond them together.
[0017] コイル部品 10は、通常、マザ一基板に複数個同時に形成することができる。第 1、 第 2コイル電極 14、 15等の内部配線はフォトリソグラフィ技術等によって形成すること 力 Sできる。尚、以下では上下の磁性体基板 11、 12、非磁性体層 13及び第 1、第 2コ ィル電極 14、 15を含むコイル部品本体を必要に応じてコイル部品本体 10Aと称する [0017] Normally, a plurality of coil components 10 can be simultaneously formed on a mother substrate. Internal wiring such as the first and second coil electrodes 14 and 15 can be formed by photolithography technology. Hereinafter, the coil component body including the upper and lower magnetic substrates 11 and 12, the nonmagnetic layer 13 and the first and second coil electrodes 14 and 15 will be referred to as a coil component body 10A as necessary.
[0018] 磁性体基板 11、 12は、磁性材料で形成されたものであれば特に制限されないが、 磁性体材料としては、例えば高周波特性に優れたフェライト材料が好ましく用いられ る。磁性体基板 11、 12上には絶縁層 13を形成するため、その接合面が表面粗さ Ra で 0. 5 m以下に研磨されていることが好ましい。 [0018] The magnetic substrates 11 and 12 are not particularly limited as long as they are made of a magnetic material. As the magnetic material, for example, a ferrite material excellent in high-frequency characteristics is preferably used. In order to form the insulating layer 13 on the magnetic substrates 11 and 12, it is preferable that the bonding surface is polished to a surface roughness Ra of 0.5 m or less.
[0019] 非磁性体層 13は、複数の絶縁層 13A、 13Bが積層して形成されている。図 3に示 すように、非磁性体層 13のうち上から 3番目及び 4番目に位置する絶縁層 13Bは、 第 1コイル電極 14と第 2コイル電極 15との間に介在し、コイル部品 10の特性インピー ダンスを設定する層である。これらの絶縁層 13A、 13Bの形成方法は特に制限され ないが、その形成方法としては、例えばスピン塗布法等を用いることができる。 [0020] 絶縁層 13A、 13Bは、非磁性の絶縁性材料によって形成されたものであれば特に 制限されないが、絶縁性材料としては例えばポリイミド榭脂、エポキシ榭脂、ベンゾシ クロブテン樹脂等の熱硬化性榭脂や、 SiO等のガラス、ガラスセラミックが好ましく用 The nonmagnetic material layer 13 is formed by laminating a plurality of insulating layers 13A and 13B. As shown in FIG. 3, the third and fourth insulating layers 13B from the top of the non-magnetic layer 13 are interposed between the first coil electrode 14 and the second coil electrode 15 to provide coil components. This is a layer that sets 10 characteristic impedances. A method for forming these insulating layers 13A and 13B is not particularly limited, and for example, a spin coating method or the like can be used. [0020] The insulating layers 13A and 13B are not particularly limited as long as they are formed of a non-magnetic insulating material. Examples of the insulating material include thermosetting such as polyimide resin, epoxy resin, and benzocyclobutene resin. Preferably used for synthetic resin, glass such as SiO, glass ceramic
2  2
いられる。また、絶縁性材料としては、必要に応じて感光性を付与した感光性榭脂材 料を単独であるいは上記各材料と組み合わせて用いることもできる。感光性榭脂材 料力もなる絶縁層 13A、 13Bは、絶縁層 13A、 13Bにビアホールを形成する場合に 用いられる。ビアホールを形成する場合には、絶縁層 13A、 13Bをフォトマスクでマス キングした後、絶縁層 13A、 13Bを露光、現像処理してビアホールを形成する。絶縁 層 13Aの厚さは、例えば 1〜3 /ζ πιの範囲が好ましぐ絶縁層 13Bの厚さは、特性ィ ンピーダンスを規定する関係上 5〜30 mの範囲が好ましい。接着層 18に用いられ る接着剤としては、ポリイミド榭脂等の熱硬化性榭脂を用いることができる。  I can. Moreover, as the insulating material, a photosensitive resin material imparted with photosensitivity can be used alone or in combination with each of the above materials as necessary. The insulating layers 13A and 13B, which also serve as a photosensitive resin material, are used when via holes are formed in the insulating layers 13A and 13B. When forming via holes, the insulating layers 13A and 13B are masked with a photomask, and then the insulating layers 13A and 13B are exposed and developed to form via holes. The thickness of the insulating layer 13A is preferably in the range of, for example, 1 to 3 / ζ πι. The thickness of the insulating layer 13B is preferably in the range of 5 to 30 m in view of defining the characteristic impedance. As an adhesive used for the adhesive layer 18, a thermosetting resin such as polyimide resin can be used.
[0021] 第 1、第 2コイル電極 14、 15は、図 1及び図 3に示すように、それぞれ上下方向で互 いに対称になるように対向して配置され、互いに重なる位置関係を有している。各コ ィル電極 14、 15は、後述するようにそれぞれ実質的に同一大きさのスパイラル形状 に形成された第 1、第 2パターン電極を有し、第 1、第 2パターン電極はそれぞれの引 き出し電極を介して第 1外部電極 16 A、 16B及び第 2外部電極 17A、 17B (図 1の(a )参照)に接続されている。第 1、第 2コイル電極 14、 15はそれぞれスパイラル状に形 成されているため、広範囲のインピーダンスを得ることができ、コイル部品 10の小型 ィ匕、低背化を促進することができる。  As shown in FIGS. 1 and 3, the first and second coil electrodes 14 and 15 are arranged to face each other so as to be symmetrical with each other in the vertical direction, and have a positional relationship overlapping each other. ing. Each of the coil electrodes 14 and 15 has first and second pattern electrodes formed in a spiral shape having substantially the same size, as will be described later. The first and second pattern electrodes are respectively drawn. The first external electrodes 16A and 16B and the second external electrodes 17A and 17B (see (a) in FIG. 1) are connected via the lead-out electrodes. Since the first and second coil electrodes 14 and 15 are each formed in a spiral shape, a wide range of impedances can be obtained, and a reduction in the size and height of the coil component 10 can be promoted.
[0022] 第 1、第 2コイル電極 14、 15それぞれの第 1パターン電極は、 5〜30 μ m厚の絶縁 層 13Bを介して互 、に対向して配置され、それぞれの外側に配置された第 2パター ン電極とは異なる面積を有している。コイル部品 10は、第 1、第 2コイル電極 14、 15 それぞれの互いに対向する第 1パターン電極の面積の大きさによって第 1、第 2コィ ル電極 14、 15間の容量が調整され、コモンモードインピーダンスの低下や結合度の 低下を招くことなぐ特性インピーダンスが調整される。つまり、本発明では、第 1、第 2コイル電極 14、 15それぞれの第 1パターン電極の面積を第 2パターン電極の面積 より小さくすることにより、コイル部品 10の特性インピーダンスを高く設定することがで き、逆に、上下の第 1パターン電極の面積を第 2パターン電極の面積より大きくするこ とにより、コイル部品 10の特性インピーダンスを低く設定することができる。 [0022] The first pattern electrodes of the first and second coil electrodes 14, 15 are arranged to face each other via an insulating layer 13B having a thickness of 5 to 30 μm, and are arranged on the outer sides of the first pattern electrodes. It has a different area from the second pattern electrode. The coil component 10 has a common mode in which the capacitance between the first and second coil electrodes 14 and 15 is adjusted according to the size of the area of the first pattern electrodes 14 and 15 that face each other. The characteristic impedance is adjusted without causing a drop in impedance or a reduction in coupling. In other words, in the present invention, the characteristic impedance of the coil component 10 can be set high by making the area of the first pattern electrode of each of the first and second coil electrodes 14 and 15 smaller than the area of the second pattern electrode. Conversely, the area of the upper and lower first pattern electrodes is larger than the area of the second pattern electrodes. Thus, the characteristic impedance of the coil component 10 can be set low.
[0023] 以下、第 1、第 2コイル電極 14、 15のコイル構造について具体的に説明する。第 1、 第 2コイル電極 14、 15は、それぞれの第 1、第 2パターン電極の面積の大小関係の みが上下逆転する上下対称構造になっていることを除き、実質的に同一構造を有す るため、第 1コイル電極 14を中心に説明する。  Hereinafter, the coil structure of the first and second coil electrodes 14 and 15 will be described in detail. The first and second coil electrodes 14 and 15 have substantially the same structure except that the first and second pattern electrodes have a vertically symmetrical structure in which only the size relationship of the areas of the first and second pattern electrodes is reversed. Therefore, the first coil electrode 14 will be mainly described.
[0024] 第 1コイル電極 14は、図 1の(b)〜図 3に示すように、絶縁層 13Bを介して第 2コィ ル電極 15の上側に位置している。第 1コイル電極 14は、図 3に示すように、絶縁層 1 3Aを介して互いに上下に配置され且つ並列接続された二層のスパイラル状の第 1、 第 2パターン電極 141A、 141Bと、第 1、第 2パターン電極 141A、 141Bの両端部か らそれぞれ第 1外部電極 16A、 16Bまで引き出されたそれぞれの一対の引き出し電 極 142A、 142B、 143A、 143Bと、を有し、一方の引き出し電極 142A、 143Aがー 方の第 1外部電極 16Aにそれぞれ接続され、他方の引き出し電極 142B、 143B力 S 他方の第 1外部電極 16Bにそれぞれ接続されている。第 1コイル電極 14は、上下二 層の第 1、第 2パターン電極 141A、 141Bが第 1外部電極 16A、 16Bを介して並列 接続されて構成されているため、断面積が略倍増して直流抵抗が低くなつている。  The first coil electrode 14 is positioned above the second coil electrode 15 via the insulating layer 13B as shown in FIGS. As shown in FIG. 3, the first coil electrode 14 includes two layers of spiral first and second pattern electrodes 141A and 141B that are arranged above and below each other and connected in parallel via an insulating layer 13A. 1. Each of the second pattern electrodes 141A, 141B has a pair of lead electrodes 142A, 142B, 143A, 143B drawn from both ends of the second pattern electrodes 141A, 141B to the first external electrodes 16A, 16B, respectively. 142A and 143A are connected to the first first external electrode 16A, respectively, and the other lead electrode 142B and 143B force S are connected to the other first external electrode 16B. The first coil electrode 14 is constructed by connecting the first and second pattern electrodes 141A and 141B in two upper and lower layers in parallel via the first external electrodes 16A and 16B. Resistance is getting low.
[0025] 第 1コイル電極 14は、第 1パターン電極 141Aが上下方向内側(下側)に位置し、第 2パターン電極 141Bが上下方向外側(上側)に位置している。第 2コイル電極 15は、 第 1パターン電極 151Aが上下方向内側(上側)に位置し、第 2パターン電極 151B が上下方向外側(下側)に位置している。そして、第 1パターン電極 141A、 151Aの 線幅は、それぞれ第 2パターン電極 141B、 151Bの線幅より細ぐ小さな面積として 形成されている。上下の第 1、第 2コイル電極 14、 15それぞれの互いに対向する第 1 パターン電極 141A、 151Aの面積を小さくすることによって、コモンモードインピーダ ンスゃ結合度を低下させることなぐ両コイル 14、 15間の容量を小さくし、コイル部品 10の特性インピーダンスを高めることができる。また、第 1パターン電極 141A、 151 Aの線幅が細くても、第 2パターン電極 141B、 151Bの線幅を太くすることで、第 1、 第 2コイル電極 14、 15の直流抵抗の増加を回避することができる。  [0025] In the first coil electrode 14, the first pattern electrode 141A is positioned on the inner side (lower side) in the vertical direction, and the second pattern electrode 141B is positioned on the outer side (upper side) in the vertical direction. In the second coil electrode 15, the first pattern electrode 151A is positioned on the inner side (upper side) in the vertical direction, and the second pattern electrode 151B is positioned on the outer side (lower side) in the vertical direction. The line widths of the first pattern electrodes 141A and 151A are formed as small areas smaller than the line widths of the second pattern electrodes 141B and 151B, respectively. By reducing the area of the first pattern electrodes 141A and 151A facing each other on the upper and lower first and second coil electrodes 14 and 15, respectively, the common mode impedance can be reduced between the coils 14 and 15 without reducing the coupling degree. The characteristic impedance of the coil component 10 can be increased. Even if the line width of the first pattern electrodes 141A and 151A is narrow, increasing the line width of the second pattern electrodes 141B and 151B can increase the DC resistance of the first and second coil electrodes 14 and 15. It can be avoided.
[0026] 次に、第 1、第 2パターン電極 141A、 141Bの並列接続構造について図 2、図 3を 参照しながら説明する。尚、図 2の(a)では第 1パターン電極 141Aは破線で示してあ る。図 2の(b)、 (c)では線幅の細い第 1パターン電極 141Aを細い線で示し、線幅の 太い第 2パターン電極 141Bを太い線で示してあり、電流の方向を矢印で示してある Next, a parallel connection structure of the first and second pattern electrodes 141A and 141B will be described with reference to FIGS. In FIG. 2A, the first pattern electrode 141A is indicated by a broken line. The In (b) and (c) of FIG. 2, the first pattern electrode 141A having a narrow line width is indicated by a thin line, the second pattern electrode 141B having a large line width is indicated by a thick line, and the direction of current is indicated by an arrow. Have
[0027] 第 1電極パターン 141Aは、図 2の(a)、図 3に示すように、一方の引き出し電極 142 Aを始点として時計方向に矩形状のスパイラルを描 、て絶縁層 13Bの略中心を終点 としている。第 1電極パターン 141Aの他方の引き出し電極 142Bは、絶縁層 13B上 で第 1パターン電極 141Aの外側に位置しているため、他方の引き出し電極 142Bと 第 1パターン電極 141Aの終点とを絶縁層 13B上で直接接続できないため、図 3に 示すように第 1電極パターン 141Aの終点と他方の引き出し電極 142Bの直接接続で きな 、区間は分断されて、この部分の弓 Iき出し配線を後述するように第 2パターン電 極 141Bの引き出し線が肩代わりしている。 [0027] As shown in Fig. 2 (a) and Fig. 3, the first electrode pattern 141A has a rectangular spiral drawn clockwise from one lead electrode 142A, and is substantially at the center of the insulating layer 13B. Is the end point. Since the other lead electrode 142B of the first electrode pattern 141A is located outside the first pattern electrode 141A on the insulating layer 13B, the other lead electrode 142B and the end point of the first pattern electrode 141A are connected to the insulating layer 13B. As shown in FIG. 3, the end point of the first electrode pattern 141A and the other lead electrode 142B cannot be directly connected as shown in FIG. As shown, the lead wire of the second pattern electrode 141B takes over.
[0028] 一方、第 2パターン電極 141Bは、図 2の(a)、図 3に示すように、第 1パターン電極 141Aと同様に一方の引き出し電極 143Aを始点として時計方向にスパイラルを描い て絶縁層 13Aの略中心を終点としている。そして、この終点と第 2パターン電極 141 Bの外側に配置された他方の弓 Iき出し電極 143Bとは絶縁層 13A上で引き出し配線 144によって接続され、この引き出し配線 144が第 1パターン電極 141Aの引き出し 配線を肩代わりし、第 1パターン電極 141Aの電流が引き出し配線 144で第 2パター ン電極 141Bとー且合流するようにしている。  On the other hand, as shown in FIGS. 2 (a) and 3, the second pattern electrode 141B is insulated by drawing a spiral in the clockwise direction starting from one lead electrode 143A, as in the case of the first pattern electrode 141A. The approximate center of layer 13A is the end point. This end point and the other bow I lead electrode 143B arranged outside the second pattern electrode 141B are connected to each other by the lead wire 144 on the insulating layer 13A, and the lead wire 144 is connected to the first pattern electrode 141A. The lead wiring is used as a shoulder so that the current of the first pattern electrode 141A is merged with the second pattern electrode 141B through the lead wiring 144.
[0029] つまり、図 2の(b)に示すように、第 1パターン電極 141Aの終点と、第 2パターン電 極 141Bの終点(引き出し配線 144の一端でもある)は、絶縁層 13Aの中央部を貫通 するビアホール導体 145Aを介して電気的に接続され、第 1パターン電極 141Aは第 2パターン電極 141Bの引き出し配線 144を利用するようにしてある。更に、第 2パタ ーン電極 141Bの外側に位置する引き出し配線 144の他端は、同様に絶縁層 13A を貫通するビアホール導体(図示せず)を介して第 1パターン電極 141Aの引き出し 電極 142Bに対して電気的に接続されている。この結果、第 1パターン電極 141Aの 電流は、引き出し配線 144の一端で第 2パターン電極 141Bの電流と合流し、引き出 し配線 144の他端で引き出し電極 142B、 143Bに戻る。  That is, as shown in FIG. 2 (b), the end point of the first pattern electrode 141A and the end point of the second pattern electrode 141B (which is also one end of the lead-out wiring 144) are the central part of the insulating layer 13A. The first pattern electrode 141A uses the lead-out wiring 144 of the second pattern electrode 141B. The via hole conductor 145A passes through the first pattern electrode 141A. Further, the other end of the lead wire 144 positioned outside the second pattern electrode 141B is connected to the lead electrode 142B of the first pattern electrode 141A via a via-hole conductor (not shown) that also penetrates the insulating layer 13A. Are electrically connected to each other. As a result, the current of the first pattern electrode 141A merges with the current of the second pattern electrode 141B at one end of the lead wiring 144, and returns to the lead electrodes 142B and 143B at the other end of the lead wiring 144.
[0030] また、第 2パターン電極 141Bでは引き出し配線 144が通過する部分が図 2 (a)、図 3に示すように分断されているため、この部分を第 1パターン電極 141Aが肩代わりし ている。この場合も引き出し配線 144の両側で対畤する第 2パターン電極 141Bの分 断点は、それぞれ図 2の(c)に示すように、絶縁層 13Aを貫通するビアホール導体 1 45B、 145Cを介して第 1パターン電極 141Aに対して電気的に接続されている。そ して、第 2パターン電極 141Bの電流は、ビアホール導体 145Bで第 1パターン電極 1 41Aの電流と合流し、ビアホール導体 145Cを介して第 2パターン電極 141Bに戻る [0030] Further, in the second pattern electrode 141B, the portion through which the lead-out wiring 144 passes is shown in FIG. Since it is divided as shown in FIG. 3, the first pattern electrode 141A replaces this portion. In this case as well, the dividing points of the second pattern electrode 141B facing each other on both sides of the lead-out wiring 144 are via via-hole conductors 145B and 145C that penetrate the insulating layer 13A, as shown in FIG. It is electrically connected to the first pattern electrode 141A. Then, the current of the second pattern electrode 141B merges with the current of the first pattern electrode 141A at the via hole conductor 145B, and returns to the second pattern electrode 141B via the via hole conductor 145C.
[0031] また、第 2コイル電極 15も、第 1コイル電極 14と同様に、第 1、第 2パターン電極 15 1A、 15 IB及びそれぞれの引き出し電極 152A、 152B、 153A、 153Bを有し、第 1 コイル電極 14に準じて構成されている。但し、第 1パターン電極 151Aは、上述したよ うに上側に位置し、第 2パターン電極 151Bが下側に位置している。 [0031] Similarly to the first coil electrode 14, the second coil electrode 15 also includes first and second pattern electrodes 151A, 15IB and respective extraction electrodes 152A, 152B, 153A, 153B. 1 Constructed according to coil electrode 14 However, the first pattern electrode 151A is located on the upper side as described above, and the second pattern electrode 151B is located on the lower side.
[0032] 第 1、第 2コイル電極 14、 15及びビアホール導体の導電性材料としては、導電性に 優れた金属であれば特に制限されないが、このような金属としては、例えば Ag、 Pd、 Cu、 A1を用いることができる。  [0032] The conductive material for the first and second coil electrodes 14, 15 and the via-hole conductor is not particularly limited as long as it is a metal having excellent conductivity. Examples of such a metal include Ag, Pd, and Cu. A1 can be used.
[0033] 而して、コイル部品 10を製造する場合には、例えば、スピン塗布法を用いて絶縁層 を形成し、スパッタリング法を用いてコイル電極を絶縁層に形成する。絶縁層のビア ホール及びコイル電極層をそれぞれパター-ングする場合にはフォトリソグラフィ技 術及びエッチング技術を用い、一層毎に形成して積層する。例えば、予め作製され た磁性体基板 11上に例えば絶縁材料 (例えば、ポリイミド榭脂)を塗布して絶縁層 13 Aを形成し、加熱、キュア (硬化)した後、冷却する。次いで、絶縁層 13A上に導電層 をスパッタリングにて形成した後、この導電層上に感光性のレジスト材を塗布し、この レジスト材層を、フォトマスクを介して露光、現像した後、導電層をエッチングして第 2 コイル電極 15の第 2パターン電極 151Bを形成した後、レジストを剥離する。  Thus, when the coil component 10 is manufactured, for example, an insulating layer is formed using a spin coating method, and a coil electrode is formed on the insulating layer using a sputtering method. When patterning the via hole and coil electrode layer of the insulating layer, respectively, photolithography technology and etching technology are used to form and laminate each layer. For example, an insulating material (for example, polyimide resin) is applied on the magnetic substrate 11 prepared in advance to form the insulating layer 13A, heated and cured (cured), and then cooled. Next, after forming a conductive layer on the insulating layer 13A by sputtering, a photosensitive resist material is applied on the conductive layer, and the resist material layer is exposed and developed through a photomask. Is etched to form the second pattern electrode 151B of the second coil electrode 15, and then the resist is peeled off.
[0034] 引き続き、感光性絶縁材料 (例えば、感光性を付与したポリイミド榭脂)を塗布、乾 燥して絶縁層 13 Aを形成し、フォトマスクを介して露光、現像した後、所定のパターン でビアホールを形成し、加熱、硬化する。更に、導電層をスパッタリング法によって形 成した後、この導電層上に感光性のレジスト材を塗布し、このレジスト材層を、フォトマ スクを介して露光、現像した後、導電層をエッチングして第 2コイル電極 15の第 1パタ ーン電極 151Aを形成した後、レジストを剥離する。これによつて第 2コイル電極 15の 第 1、第 2パターン電極 151A、 15 IBがビアホール導体を介して電気的に接続され る。 [0034] Subsequently, a photosensitive insulating material (for example, a polyimide resin imparted with photosensitivity) is applied and dried to form an insulating layer 13A, which is exposed and developed through a photomask, and then has a predetermined pattern. A via hole is formed by heating and curing. Further, after forming the conductive layer by a sputtering method, a photosensitive resist material is applied onto the conductive layer, the resist material layer is exposed and developed through a photomask, and then the conductive layer is etched. First pattern of second coil electrode 15 After forming the thin electrode 151A, the resist is removed. As a result, the first and second pattern electrodes 151A and 15IB of the second coil electrode 15 are electrically connected via the via-hole conductor.
[0035] その後、上述した要領で、第 2コイル電極 15と第 1コイル電極 14間の絶縁層 13B、 13Bを連続して形成した後、第 1コイル電極 14の第 1パターン電極 141Aを絶縁層 1 3B上に、第 2パターン電極 141Bを絶縁層 13A上に順次形成し、更に最上層の絶縁 層 13Aを形成し、磁性体基板 11上に回路積層体を形成する。  [0035] After that, after the insulating layers 13B and 13B between the second coil electrode 15 and the first coil electrode 14 are continuously formed in the manner described above, the first pattern electrode 141A of the first coil electrode 14 is formed as the insulating layer. A second pattern electrode 141B is sequentially formed on the insulating layer 13A on 13B, and further, the uppermost insulating layer 13A is formed, and a circuit laminate is formed on the magnetic substrate 11.
[0036] 回路積層体を形成した後、不活性ガス雰囲気下または真空下で回路積層体の上 面に接着層 18を介して磁性体基板 12を加熱、加圧して接着し、複数のコイル部品 本体 10Aを一括して作製する。次いで、ダイシング等の切断加工を行って個々のコ ィル部品本体 10Aに切り出して分割した後、第 1外部電極 16A、 16B及び第 2外部 電極 17A、 17Bを設けてコイル部品 10を得る。  [0036] After the circuit laminate is formed, the magnetic substrate 12 is heated and pressed to adhere to the upper surface of the circuit laminate via the adhesive layer 18 in an inert gas atmosphere or under vacuum, and a plurality of coil components are bonded. Make the main body 10A in a batch. Next, after cutting and dividing into individual coil component bodies 10A by performing a cutting process such as dicing, the first external electrodes 16A and 16B and the second external electrodes 17A and 17B are provided to obtain the coil component 10.
[0037] 以上説明したように本実施形態によれば、上下一対の磁性体基板 11、 12と、これ らの磁性体基板 11、 12の間に介在する非磁性体層 13と、この非磁性体層 13内に 上下方向に離間して形成され且つ互いに対向して上下対称に配置された一対の第 1、第 2コイル電極 14、 15と、を備え、一対の第 1、第 2コイル電極 14、 15は、それぞ れ絶縁層 13Aを介して互いに離間して配置され且つ二層のスパイラル状の第 1、第 2パターン電極 141A、 141B及び第 1、第 2パターン電極 151A、 151Bとを有し、且 つ、一対の第 1、第 2コイル電極 14、 15は、それぞれの上下方向の最も内側に配置 されて互いに対向する第 1パターン電極 141A、 151Aの線幅がそれぞれ他の第 2パ ターン電極 141B、 151Bの線幅より小さいため、小型化及び低背化が可能で、取得 インピーダンスの範囲が広ぐコイル間の結合度が高ぐ直流抵抗が低ぐしかも特性 インピーダンスを高く設定することができる。  As described above, according to the present embodiment, the pair of upper and lower magnetic substrates 11, 12, the nonmagnetic layer 13 interposed between these magnetic substrates 11, 12, and the nonmagnetic A pair of first and second coil electrodes formed in the body layer 13 so as to be spaced apart from each other in the vertical direction and arranged symmetrically in the vertical direction opposite to each other. 14 and 15 are spaced apart from each other via an insulating layer 13A and have two layers of spiral first and second pattern electrodes 141A and 141B and first and second pattern electrodes 151A and 151B. And the pair of first and second coil electrodes 14 and 15 are arranged on the innermost side in the vertical direction and the first pattern electrodes 141A and 151A facing each other have line widths other than Since it is smaller than the line width of the pattern electrodes 141B and 151B, it is possible to reduce the size and height, and to obtain the acquired impedance. Wide range of coupling between coils, high direct current resistance, low characteristic impedance.
[0038] 次に、図 4に示す実施形態に基づいて特性インピーダンスを低く設定する場合に ついて説明する。以下では、上記実施形態と同一または相当部分には同一符号を 附して本実施形態の特徴を中心に説明し、本実施形態のコイル部品のその他の部 分は上記実施形態のコイル部品に準じて構成されている。  Next, the case where the characteristic impedance is set low based on the embodiment shown in FIG. 4 will be described. In the following, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and the features of this embodiment will be mainly described. The other parts of the coil parts of this embodiment are the same as those in the above embodiments. Configured.
[0039] 本実施形態のコイル部品 10は、例えば図 4に示すように、上下一対の磁性体基板 11、 12と、これらの磁性体基板 11、 12の間に介在する非磁性体層 13と、この非磁 性体層 13内で離間して形成され且つ互いに絶縁層 13Bを介して対向して配置され た一対の第 1、第 2コイル電極 14、 15と、を備え、第 1、第 2コイル電極 14、 15は、そ れぞれ、互いに絶縁層 13Bを介して離間して対向するスノィラル状の第 1パターン 電極 141A、 151A及び第 2パターン電極 141B、 151Bを有している。 [0039] The coil component 10 of the present embodiment includes a pair of upper and lower magnetic substrates as shown in FIG. 4, for example. 11 and 12, a nonmagnetic layer 13 interposed between the magnetic substrates 11 and 12, and a space formed in the nonmagnetic layer 13 so as to be spaced apart from each other with an insulating layer 13B therebetween. A pair of first and second coil electrodes 14 and 15 arranged, and each of the first and second coil electrodes 14 and 15 are spaced apart from each other via an insulating layer 13B. First pattern electrodes 141A and 151A and second pattern electrodes 141B and 151B.
[0040] そして、第 1、第 2コイル電極 14、 15それぞれの互いに対向する第 1パターン電極 1 41A、 151Aの線幅が第 2パターン電極 141B、 151Bの線幅よりも広く設定され、第 1パターン電極 141A、 151Aの面積が第 2パターン電極 141B、 151Bの面積より大 きく形成されている。従って、第 1パターン電極 151A、 151A間の容量を大きくするこ とができ、もってコイル部品 10の特性インピーダンスを低く設定することができる。  [0040] Then, the line widths of the first pattern electrodes 141A and 151A facing each other of the first and second coil electrodes 14 and 15 are set wider than the line widths of the second pattern electrodes 141B and 151B, respectively. The areas of the pattern electrodes 141A and 151A are formed larger than the areas of the second pattern electrodes 141B and 151B. Therefore, the capacitance between the first pattern electrodes 151A and 151A can be increased, and the characteristic impedance of the coil component 10 can be set low.
[0041] 上述のように第 1パターン電極 141A、 151Aの面積を大きくすると、スペース上の 制約から第 1パターン電極 141A、 151Aの卷数が減少し、延いては必要なインダク タンス値が得られなくなる虞がある。そこで、必要なインダクタンス値が得られない場 合には、第 2パターン電極 141B、 151Bの卷数を増やして第 1パターン電極 141A、 151Aの不足分を補完する。必要なインダクタンス値が得られる場合には、上記実施 形態のように第 1、第 2パターン電極 141A、 141Bを並列接続しても良い。本実施形 態では図 4に示すように、第 1パターン電極 141A、 151Aと第 2パターン電極 141B、 151Bとを直列接続し、第 2パターン電極 141B、 151Bの卷数を第 1パターン電極 14 1A、 151Aの卷数より増やして必要なインダクタンス値を得ている。  [0041] As described above, when the area of the first pattern electrodes 141A and 151A is increased, the number of first pattern electrodes 141A and 151A decreases due to space limitations, and thus the required inductance value can be obtained. There is a risk of disappearing. Therefore, if the required inductance value cannot be obtained, the number of second pattern electrodes 141B and 151B is increased to compensate for the shortage of first pattern electrodes 141A and 151A. When a required inductance value is obtained, the first and second pattern electrodes 141A and 141B may be connected in parallel as in the above embodiment. In the present embodiment, as shown in FIG. 4, the first pattern electrodes 141A and 151A and the second pattern electrodes 141B and 151B are connected in series, and the number of the second pattern electrodes 141B and 151B is set to the first pattern electrode 14 1A. The required inductance value is obtained by increasing it from 151A.
[0042] 第 1コイル電極 14の第 1パターン電極 141Aと第 2パターン電極 141Bの直列接続 構造について説明すると、図 4に示すように、第 1パターン電極 141Aの始点(外端) である引き出し電極 142Aは磁性体基板 11、 12の一側面側に位置し、その終点(内 端)は第 1パターン電極 141Aの内側に位置する。また、第 2パターン電極 141Bの始 点(内端)は第 1パターン電極 141Aの内端の真上に位置し、その終点 (外端)である 引き出し電極 143Bは磁性体基板 11、 12の一側面に対向する側面に位置する。そ して、第 1、第 2パターン電極 141A、 141Bはそれぞれの内端でビアホール導体 145 を介して接続されている。第 2コイル電極 15も第 1コイル電極 14に準じて直列接続さ れている。尚、図 4において、 155は第 2コイル電極 15の第 1パターン電極 151Aと第 2パターン電極 15 IBを接続するビアホール導体である。 [0042] The series connection structure of the first pattern electrode 141A and the second pattern electrode 141B of the first coil electrode 14 will be described. As shown in FIG. 4, the lead electrode that is the starting point (outer end) of the first pattern electrode 141A 142A is located on one side of the magnetic substrates 11 and 12, and its end point (inner end) is located inside the first pattern electrode 141A. The start point (inner end) of the second pattern electrode 141B is located immediately above the inner end of the first pattern electrode 141A, and the end point (outer end) of the extraction electrode 143B is one of the magnetic substrates 11 and 12. Located on the side facing the side. The first and second pattern electrodes 141A and 141B are connected to each other at their inner ends via via-hole conductors 145. The second coil electrode 15 is also connected in series according to the first coil electrode 14. In FIG. 4, reference numeral 155 denotes the first pattern electrode 151A of the second coil electrode 15 and the first pattern electrode 151A. 2 pattern electrode 15 Via hole conductor to connect IB.
[0043] 以上説明したように本実施形態によれば、第 1、第 2コイル電極 14、 15の互いに対 向する第 1パターン電極 141A、 151Aの線幅を、それぞれの第 2パターン電極 141 B、 151Bの線幅より広くして面積を大きくしたため、第 1、第 2コイル電極 14、 15間の 容量が大きくなり、特性インピーダンスを低く設定することができる。また、第 1パター ン電極 141A、 151Aの面積を大きくしてそれぞれの卷数が減少しても、これらのパタ ーン電極 141A、 151Aそれぞれに直列接続された第 2パターン電極 141B、 151B の卷数を増やすことにより必要なインピーダンス値を確保することができる。本実施形 態では特性インピーダンスを低くすることができる以外は、上記実施形態と同様に作 用効果を期することができる。  [0043] As described above, according to the present embodiment, the line widths of the first pattern electrodes 141A and 151A of the first and second coil electrodes 14 and 15 facing each other are set to the respective second pattern electrodes 141 B. Since the area is made larger than the line width of 151B, the capacitance between the first and second coil electrodes 14 and 15 is increased, and the characteristic impedance can be set low. Further, even if the area of the first pattern electrodes 141A and 151A is increased and the number of the respective patterns is reduced, the number of the second pattern electrodes 141B and 151B connected in series to each of the pattern electrodes 141A and 151A is reduced. A necessary impedance value can be secured by increasing the number. In this embodiment, the operational effect can be expected in the same manner as in the above embodiment except that the characteristic impedance can be lowered.
[0044] 尚、上記各実施形態では、第 1、第 2コイル電極 14、 15が第 1パターン電極 141A 、 151A及び第 2パターン電極 141B、 151Bの二層のパターン電極を有する場合に ついて説明したが、それぞれのパターン電極が 3層以上あっても良い。また、上記実 施形態では第 1コイル電極 14の第 1パターン電極 141Aが下層で第 2パターン電極 1 41Bが上層の場合について説明した力 第 1パターン電極 141Aが上層で第 2パタ ーン電極 141Bが下層であっても良い。この場合には第 1コイル電極 14の第 2パター ン電極 141Bと第 2コイル電極 15の第 1パターン電極 151Aとが対向することになる。 要は、第 1、第 2コイル電極それぞれの複数層のパターン電極のうち、第 1、第 2コィ ル電極の互いに直接対向するパターン電極の面積力 それぞれの他のパターン電 極の面積と異なるものであれば良 、。  In each of the above embodiments, the case where the first and second coil electrodes 14 and 15 have the two-layer pattern electrodes of the first pattern electrodes 141A and 151A and the second pattern electrodes 141B and 151B has been described. However, each pattern electrode may have three or more layers. In the above embodiment, the force described in the case where the first pattern electrode 141A of the first coil electrode 14 is the lower layer and the second pattern electrode 141B is the upper layer is described. The first pattern electrode 141A is the upper layer and the second pattern electrode 141B. May be a lower layer. In this case, the second pattern electrode 141B of the first coil electrode 14 and the first pattern electrode 151A of the second coil electrode 15 face each other. In short, out of the multiple layers of pattern electrodes for each of the first and second coil electrodes, the area force of the pattern electrodes of the first and second coil electrodes facing each other directly differs from the area of the other pattern electrodes. If so, good.
産業上の利用可能性  Industrial applicability
[0045] 本発明は、ノソコンをはじめとするデジタル機器の高速作動伝送ラインのコモンモ ードチョークコイルとして好適に用いることができるコイル部品に広く利用することがで きる。 [0045] The present invention can be widely used for coil parts that can be suitably used as a common mode choke coil for a high-speed operation transmission line of digital equipment such as a Nosocon.

Claims

請求の範囲 The scope of the claims
[1] 上下一対の磁性体基板と、これらの磁性体基板の間に介在する非磁性体層と、こ の非磁性体層内で上下方向に離間して形成され且つ互いに対向して配置された一 対の第 1、第 2コイル電極と、を備えたコイル部品であって、上記第 1、第 2コイル電極 は、それぞれ、互いに離間する少なくとも二層のスパイラル状の第 1、第 2パターン電 極を有し、上記第 1、第 2コイル電極それぞれの第 1パターン電極はそれぞれ上下方 向の最も内側に配置されて互いに対向すると共に、上記各第 1パターン電極の面積 はそれぞれの外側に配置された第 2パターン電極よりも大きいか、または小さいことを 特徴とするコイル部品。  [1] A pair of upper and lower magnetic substrates, a nonmagnetic layer interposed between these magnetic substrates, and formed in the nonmagnetic layer so as to be spaced apart from each other in the vertical direction and disposed opposite to each other. A coil component comprising a pair of first and second coil electrodes, wherein the first and second coil electrodes are respectively at least two layers of spiral first and second patterns spaced apart from each other. The first pattern electrode of each of the first and second coil electrodes is disposed on the innermost side in the upper and lower direction and faces each other, and the area of each first pattern electrode is on the outer side. A coil component characterized by being larger or smaller than the arranged second pattern electrode.
[2] 上記第 1、第 2コイル電極は、いずれも二層のスパイラル状のパターン電極を有する ことを特徴とする請求項 1に記載のコイル部品。  [2] The coil component according to [1], wherein each of the first and second coil electrodes has a two-layer spiral pattern electrode.
[3] 上記第 1パターン電極の線幅は、上記第 2パターン電極の線幅と異なることを特徴 とする請求項 1または請求項 2に記載のコイル部品。 [3] The coil component according to claim 1 or 2, wherein a line width of the first pattern electrode is different from a line width of the second pattern electrode.
[4] 上記第 1パターン電極のコイルの卷数は、上記第 2パターン電極のコイルの卷数と 異なることを特徴とする請求項 1〜請求項 3のいずれか 1項に記載のコイル部品。 [4] The coil component according to any one of claims 1 to 3, wherein the number of coils of the first pattern electrode is different from the number of coils of the second pattern electrode.
PCT/JP2005/010333 2004-07-20 2005-06-06 Coil component WO2006008878A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006528447A JP4367487B2 (en) 2004-07-20 2005-06-06 Coil parts
TW094118977A TWI303836B (en) 2004-07-20 2005-06-09 Coil component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004212336 2004-07-20
JP2004-212336 2004-07-20

Publications (1)

Publication Number Publication Date
WO2006008878A1 true WO2006008878A1 (en) 2006-01-26

Family

ID=35785007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010333 WO2006008878A1 (en) 2004-07-20 2005-06-06 Coil component

Country Status (3)

Country Link
JP (1) JP4367487B2 (en)
TW (1) TWI303836B (en)
WO (1) WO2006008878A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053447A (en) * 2006-08-24 2008-03-06 Tdk Corp Coil component and manufacturing method thereof
JP2013098279A (en) * 2011-10-31 2013-05-20 Panasonic Corp Common mode noise filter
JP2013207297A (en) * 2012-03-29 2013-10-07 Samsung Electro-Mechanics Co Ltd Thin film coil and electronic device having the same
JP2016139826A (en) * 2013-02-19 2016-08-04 株式会社村田製作所 Inductor bridge and electronic apparatus
EP3032550A4 (en) * 2013-05-13 2017-01-25 Nitto Denko Corporation Coil printed wiring board, power reception module, battery unit, and power reception communications module
US11837877B2 (en) 2018-03-28 2023-12-05 Huawei Technologies Co., Ltd. Coil module, wireless charging transmitting apparatus, receiving apparatus, system, and terminal

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI392639B (en) * 2008-10-31 2013-04-11 Univ Nat Pingtung Sci & Tech Electromagnetic micro-pump
JP4873049B2 (en) * 2009-06-25 2012-02-08 株式会社村田製作所 Electronic components
KR101381016B1 (en) * 2010-03-31 2014-04-04 가부시키가이샤 무라타 세이사쿠쇼 Electronic component and method for manufacturing same
TWI566265B (en) * 2010-07-23 2017-01-11 乾坤科技股份有限公司 Coil device
KR101546718B1 (en) * 2015-04-17 2015-08-25 삼성전기주식회사 Thin film coil, case assembly, non-contact power receiving device, and electronic device having the same
CN105655114A (en) * 2014-11-12 2016-06-08 介面光电股份有限公司 Film coil element and manufacturing method thereof, and charging device element having same
JP6678292B2 (en) * 2015-02-19 2020-04-08 パナソニックIpマネジメント株式会社 Common mode noise filter
KR101546720B1 (en) * 2015-04-17 2015-08-25 삼성전기주식회사 Thin film coil, case assembly, non-contact power receiving device, and electronic device having the same
KR101546719B1 (en) * 2015-04-17 2015-08-25 삼성전기주식회사 Non-contact power receiving device, case assembly, and electronic device having the same
KR101581695B1 (en) * 2015-10-20 2016-01-05 삼성전기주식회사 Coil substrate
JP6388096B2 (en) 2016-07-15 2018-09-12 株式会社村田製作所 High frequency transformer and phase shifter
KR101973453B1 (en) * 2018-07-27 2019-04-29 삼성전기주식회사 Thin film coil, wireless power receiving device, electronic apparatus, and case assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710913U (en) * 1993-07-19 1995-02-14 東和エレクトロン株式会社 Chip inductor
JP2000058323A (en) * 1998-07-31 2000-02-25 Tdk Corp Coil part
JP2002110438A (en) * 2000-10-02 2002-04-12 Toyota Industries Corp High-frequency coil
JP2002134319A (en) * 2000-10-23 2002-05-10 Alps Electric Co Ltd Spiral inductor
JP2002175921A (en) * 2000-09-20 2002-06-21 Tdk Corp Electronic component and its manufacturing method
JP2002190410A (en) * 2000-12-22 2002-07-05 Tdk Corp Laminated transformer
JP2004095860A (en) * 2002-08-30 2004-03-25 Murata Mfg Co Ltd Laminated coil component and manufacturing method thereof
JP2005085997A (en) * 2003-09-09 2005-03-31 Murata Mfg Co Ltd Coil component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710913U (en) * 1993-07-19 1995-02-14 東和エレクトロン株式会社 Chip inductor
JP2000058323A (en) * 1998-07-31 2000-02-25 Tdk Corp Coil part
JP2002175921A (en) * 2000-09-20 2002-06-21 Tdk Corp Electronic component and its manufacturing method
JP2002110438A (en) * 2000-10-02 2002-04-12 Toyota Industries Corp High-frequency coil
JP2002134319A (en) * 2000-10-23 2002-05-10 Alps Electric Co Ltd Spiral inductor
JP2002190410A (en) * 2000-12-22 2002-07-05 Tdk Corp Laminated transformer
JP2004095860A (en) * 2002-08-30 2004-03-25 Murata Mfg Co Ltd Laminated coil component and manufacturing method thereof
JP2005085997A (en) * 2003-09-09 2005-03-31 Murata Mfg Co Ltd Coil component

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053447A (en) * 2006-08-24 2008-03-06 Tdk Corp Coil component and manufacturing method thereof
JP2013098279A (en) * 2011-10-31 2013-05-20 Panasonic Corp Common mode noise filter
US10103554B2 (en) 2012-03-29 2018-10-16 Samsung Electro-Mechanics Co., Ltd. Thin film coil and electronic device having the same
JP2014112728A (en) * 2012-03-29 2014-06-19 Samsung Electro-Mechanics Co Ltd Thin film coil and electronic device having the same
US9165708B2 (en) 2012-03-29 2015-10-20 Samsung Electro-Mechanics Co., Ltd. Thin film coil and electronic device having the same
JP2013207297A (en) * 2012-03-29 2013-10-07 Samsung Electro-Mechanics Co Ltd Thin film coil and electronic device having the same
US10122183B2 (en) 2012-03-29 2018-11-06 Samsung Electro-Mechanics Co., Ltd. Thin film coil and electronic device having the same
US10483767B2 (en) 2012-03-29 2019-11-19 Wits Co., Ltd. Thin film coil and electronic device having the same
JP2016139826A (en) * 2013-02-19 2016-08-04 株式会社村田製作所 Inductor bridge and electronic apparatus
US9672970B2 (en) 2013-02-19 2017-06-06 Murata Manufacturing Co., Ltd. Inductor bridge and electronic device
EP3032550A4 (en) * 2013-05-13 2017-01-25 Nitto Denko Corporation Coil printed wiring board, power reception module, battery unit, and power reception communications module
US9843216B2 (en) 2013-05-13 2017-12-12 Nitto Denko Corporation Coil printed circuit board, power reception module, battery unit and power reception communication module
US11837877B2 (en) 2018-03-28 2023-12-05 Huawei Technologies Co., Ltd. Coil module, wireless charging transmitting apparatus, receiving apparatus, system, and terminal

Also Published As

Publication number Publication date
TW200609961A (en) 2006-03-16
JPWO2006008878A1 (en) 2008-05-01
JP4367487B2 (en) 2009-11-18
TWI303836B (en) 2008-12-01

Similar Documents

Publication Publication Date Title
WO2006008878A1 (en) Coil component
US8325003B2 (en) Common mode filter and method of manufacturing the same
JP3724405B2 (en) Common mode choke coil
JP4214700B2 (en) Common mode choke coil array
JP5195876B2 (en) Coil component and manufacturing method thereof
CN106328339B (en) Coil component
JP3601619B2 (en) Common mode choke coil
JP4477345B2 (en) Thin film common mode filter and thin film common mode filter array
US20080007382A1 (en) Transformer and associated method of making
JP5835355B2 (en) Coil parts
CN100538926C (en) Film common-mode filter and film common-mode filter array
JP2016515305A (en) Apparatus and method for planar magnetic technology using laminated polymer
JPH10172831A (en) Laminated inductor
JP2002270428A (en) Laminated chip inductor
US7391293B2 (en) Transformer and associated method of making using liquid crystal polymer (LCP) material
CN212163292U (en) Composite electronic component and electronic circuit
KR20180006262A (en) Coil component
JP2003332141A (en) Chip common mode choke coil
JPH04242911A (en) Manufacture of electronic parts
JP2005085997A (en) Coil component
JP2002110423A (en) Common mode choke coil
JP2003197427A (en) Inductance element
JP2004311830A (en) Stacked common mode choke coil and its manufacturing method
JP2004303776A (en) Stacked common mode choke coil and its manufacturing process
TWI445021B (en) Thin film type common mode filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528447

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase