WO2006004081A1 - Optical pickup device - Google Patents

Optical pickup device Download PDF

Info

Publication number
WO2006004081A1
WO2006004081A1 PCT/JP2005/012308 JP2005012308W WO2006004081A1 WO 2006004081 A1 WO2006004081 A1 WO 2006004081A1 JP 2005012308 W JP2005012308 W JP 2005012308W WO 2006004081 A1 WO2006004081 A1 WO 2006004081A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
optical pickup
pickup device
optical
Prior art date
Application number
PCT/JP2005/012308
Other languages
French (fr)
Japanese (ja)
Inventor
Ko Ishii
Hiroshi Hosoyamada
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2006004081A1 publication Critical patent/WO2006004081A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/133Shape of individual detector elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings

Definitions

  • the present invention relates to an optical pick-up device that receives diffracted light diffracted by a diffraction grating and reflected by a recording medium.
  • a disk device that processes a disk-shaped recording medium such as an optical disk by an optical pickup is known.
  • An optical pickup of this disk device is known to control the position of light irradiation, for example, tracking servo control of an objective lens, based on light emitted from a light source and reflected by an optical disk.
  • tracking servo control a configuration is known in which the focus position is detected by diffracting the light emitted from the light source (see, for example, Patent Document 1).
  • the device described in Patent Document 1 includes a pickup that irradiates an optical disc with reproduction light, receives reflected light from the optical disc, and outputs a received light signal.
  • the pickup includes a first light receiving element, a second light receiving element, and a third light receiving element.
  • the first light receiving element has a first light receiving surface and a second light receiving surface that receive the reflected light of the first sub-beam from the optical disk.
  • the second light receiving element has first to fourth light receiving surfaces for receiving reflected light of the main beam from the optical disk.
  • the third light receiving element has a first light receiving surface and a second light receiving surface that receive the reflected light of the second sub-beam from the optical disk.
  • the tracking error signal generation circuit outputs a tracking error signal based on the received light signal received and output by the first to third light receiving elements, and the optical disk is reproduced based on the tracking error signal. .
  • Patent Document 1 JP-A-8-329490 (Page 5, left column, page 10, left column, Fig. 2)
  • an optical disc has a two-layer structure in which recording surfaces are laminated in the thickness direction. ing.
  • This optical disc includes a recording surface that reflects a part of the irradiated light and transmits a part of the light so that it can be condensed on the lower recording surface.
  • An object of the present invention is to provide an optical pickup device that appropriately receives light reflected from a recording medium in view of the above-described circumstances.
  • the optical pickup device of the present invention includes a light source that irradiates a beam, a diffraction grating that divides the beam emitted from the light source power into transmitted light and diffracted light and outputs the light to a recording medium, and is reflected by the recording medium
  • a first light-receiving unit that receives the transmitted light and a second light-receiving unit that receives the diffracted light diffracted by the diffraction grating, wherein the second light-receiving unit has the beam as described above.
  • It is characterized in that it is formed in a shape corresponding to the shape of the entire region including the region where the irradiation region irradiated with the diffracted light is changed by the change in the optical path from the irradiation of the light source to the reception of light.
  • FIG. 1 is a plan view showing a schematic configuration of a disk device according to an embodiment of the present invention.
  • FIG. 2 is a plan view with a part cut away showing a schematic configuration in a state in which a tray portion has advanced in the disk device in the embodiment.
  • FIG. 3 is a plan view with a part cut away showing a disk processing unit of the disk device in the embodiment.
  • FIG. 4 is an explanatory diagram showing a schematic configuration for explaining an optical path configuration of the optical pickup in the embodiment.
  • FIG. 5 is a plan view schematically showing the shape of each light receiving portion of the light receiving element in the embodiment.
  • FIG. 6 is a plan view schematically showing the shape of the first (second) sub-light-receiving portion in the embodiment.
  • FIG. 7 is a partially cutaway cross-sectional view schematically showing a schematic configuration of an optical disk for performing information processing in the disk device in the embodiment.
  • FIG. 8 is an explanatory diagram conceptually showing an optical path in a state where information is processed by the 0th recording layer of the optical disc in the embodiment.
  • FIG. 9 is an explanatory diagram conceptually showing an optical path in a state where information is processed by the first recording layer of the optical disc in the embodiment.
  • FIG. 10 is an explanatory diagram showing, in a tabular form, experimental results regarding a reduction in stray light reception by the light receiving element according to the embodiment.
  • FIG. 11 is an explanatory diagram showing FIG. 10 in a graph format.
  • FIG. 12 is an explanatory diagram showing, in a tabular form, experimental results regarding changes in the output voltage value due to the reduction of stray light reception by the light receiving element in the embodiment.
  • FIG. 13 is an explanatory diagram showing FIG. 12 in a graph format.
  • FIG. 14 is a plan view schematically showing the shape of the first (second) sub-light-receiving part of the light-receiving element according to another embodiment of the present invention.
  • FIG. 15 is a plan view schematically showing the shape of each light receiving portion of a light receiving element in still another embodiment of the present invention.
  • a disk device that records and reads information on and from an optical disk that is a detachable disk-shaped recording medium as a recording medium
  • the recording medium is not limited to the optical disk, but can be any disc-shaped recording medium that uses light such as a magneto-optical disk.
  • any shape such as a cylindrical shape having a recording surface on the outer peripheral surface or a tape shape is applicable.
  • the recording process and the reading process are performed by moving the optical pickup along the recording surface without rotating the optical disk, for example, without being limited to the configuration in which the optical disk is moved in the substantially radial direction along the recording surface of the rotating optical disk. It may be configured.
  • a disk device called a so-called slim disk drive, for example, a so-called slot-in type disk device, a configuration having a tray on which a disk-shaped recording medium is placed and conveyed by advancing and retreating, Any configuration such as a configuration in which a pedestal that pivotally supports the recording medium advances and retreats can be used.
  • the disk device not only the disk device but also any optical system device that performs processing appropriately based on the light receiving state of the irradiated light, such as a camera or a microscope, can be targeted.
  • 100 is a disk device as an information processing device, and this disk device 100 is a so-called slim disk drive that is mounted on an electric device such as a portable personal computer.
  • This disk unit 100 can be Various types of reading processes and various recording surfaces that are information processing for reading information recorded on a recording surface provided on at least one surface of a disk-shaped optical disc 10 as a disc-shaped recording medium that is a recording medium that can be mounted. Performs recording processing, which is information processing for recording information.
  • the disk device 100 has a substantially rectangular box-shaped case body 110 made of, for example, metal, having an internal space and having one side surface opened.
  • a tray section 120 there are a tray section 120, a conveying means 130 for moving the tray section 120 forward and backward through the opening of the case body 110, and a control circuit section (not shown) that controls the operation of the entire disk device 100.
  • a control circuit section (not shown) that controls the operation of the entire disk device 100.
  • the tray section 120 includes a substantially plate-like tray 121 formed of, for example, a synthetic resin, and a case that is provided in one edge of the tray and is retracted into the case body 110 by the conveying means 130. And a decorative plate 122 formed into a thin plate shape with a synthetic resin or the like that closes the opening of the body 110.
  • the tray 121 has a mounting opening 121A formed substantially at the center.
  • the tray section 120 is provided with a disk processing section 200 so that a part of the tray section 120 faces the mounting opening 121A of the tray 121.
  • the conveying means 130 includes a guide rail 131 disposed in the case body, an urging means (not shown), an urging release means 132, and the like.
  • the guide rail 131 is disposed along the advancing / retreating direction through the opening of the tray part 120, and guides the advancing / retreating movement of the tray part 120.
  • the biasing means is, for example, a spring member, and is elastically deformed with the tray portion 120 retracted into the case body 110, and the tray portion 120 is advanced through the opening of the case body 110. Act.
  • the urging release means 132 is engaged with the engaging / disengaging claw 123 provided in the tray portion 120 in a state where the tray portion 120 is retracted into the case body 110 and the opening is closed, for example, an operation of an eject button, etc.
  • the engagement / disengagement claw 123 is released in response to the advance request of the tray section 120.
  • the disk processing unit 200 disposed in the tray unit 120 includes a pedestal unit 210 formed in a frame shape.
  • a disk rotation driving means 220 is disposed on the pedestal 210 in the vicinity of the periphery.
  • the disk rotation driving means 220 includes a rotating electric motor (not shown) which is a spindle motor, and a turntable 222 provided integrally with the output shaft 222 A of the rotating electric motor.
  • the pedestal portion 210 is provided with a processing moving means 230 as a driving means.
  • This The processing moving means 230 includes a pair of guide shafts 231 disposed on the pedestal portion 210 so that the axial directions thereof are substantially parallel to each other, and a moving electric motor 232 that is a stepping motor, for example.
  • a lead screw 232A having a helical engagement groove 232B on the outer peripheral surface is integrally and coaxially connected to an output shaft (not shown) of the electric motor 232 for movement.
  • the information processing unit 240 supported by the processing moving unit 230 is disposed on the pedestal unit 210.
  • the information processing unit 240 includes a movement holding unit 241 that is held in a state of being bridged between the pair of guide shafts 231.
  • the movement holding portion 241 includes a holding portion 241A into which the guide shaft 231 is movably inserted, and a movement restriction that engages with the engagement groove 232B of the lead screw 232A connected to the output shaft of the electric motor 232 for movement. Claw portion 241B.
  • the movement holding unit 241 of the information processing unit 240 is connected to the control circuit unit so as to be able to transmit and receive signals.
  • An optical pickup 300 is provided as an optical pickup device for performing reading processing to be output to the recording section and recording processing for recording various information from the control circuit section on the recording surface.
  • the control circuit unit is configured as a circuit configuration on a circuit board on which various electrical components are mounted, for example.
  • the control circuit unit includes drive control means for controlling the operation of the optical pickup 300, information processing means for performing information processing such as reading processing and recording processing, and the like.
  • the configuration of the optical pickup 300 of the disk device 100 described above will be described in detail with reference to the drawings.
  • the optical pickup 300 will be described by exemplifying a configuration capable of information processing of both a CD (Compact Disc) and a DVD (Digital Versatile Disc) as the optical disc 10, but as described above, any recording medium may be used.
  • a configuration according to the information processing can be applied.
  • the light source is a light source capable of emitting two-wavelength emitted light, that is, a laser beam for CD that is a beam and a laser beam for DVD that is a beam.
  • the optical pickup 300 includes a holder 310 as a casing, a part of which is shown in FIG.
  • the This holder 310 can be either an integral structure constituting a part of the movement holding unit 241 or a structure incorporated in the movement holding unit 241.
  • the holder 310 has a light source for emitting CD laser light as emitted light that is light having a wavelength for CD and DVD laser light as emitted light that is light having a wavelength for DVD.
  • a semiconductor laser 320 is provided.
  • a grating element 331 that is an optical element is disposed on the emission side of the semiconductor laser 320.
  • This grating element 331 has a diffraction grating that diffracts laser light emitted from the semiconductor laser 320 on a glass substrate (not shown) into at least three light beams of zero-order light and first-order light. . That is, the diffraction grating diffracts the light from the semiconductor laser 320 into zero-order light as passing light passing through and first-order light as diffracted diffracted light. Note that the intensity of the 0th order light is considerably stronger than the intensity of the ⁇ 1st order light.
  • the 0th-order light is diffracted to a sufficient intensity so that the information reading process and recording process are appropriately performed.
  • a plurality of grating elements 331 are provided for diffracting the laser beam for CD and the laser beam for DVD emitted from the semiconductor laser 320, or a diffraction grating is provided on both surfaces of the glass substrate. Form may be sufficient.
  • the holder 310 is provided with a semi-transmissive mirror 332 that is an optical element and is positioned on the optical axis of the semiconductor laser 320.
  • This transflective mirror 332 reflects the CD laser light and DVD laser light in the optical axis direction by approximately 90 °, and the reflection direction force is incident on the CD laser light and DVD. Transmits the 0th order light and the 1st order light of the laser light for use.
  • the holder 310 has a collimator as an optical element that adjusts the divergence angle of the 0th order light and the ⁇ 1st order light of the laser beam for CD and the laser beam for DVD reflected by the semi-transmissive mirror 332.
  • a lens 333 is provided.
  • the holder 310 is a mirror as an optical element that reflects each 90th-order light and first-order light of the CD laser light and DVD laser light that has passed through the collimator lens 333 in the optical axis direction by approximately 90 °. 334 is arranged.
  • the holder 310 is not shown in the figure for wave plate aberration and wavefront aberration (not shown) through which the 0th order light and ⁇ 1st order light of the CD laser light and DVD laser light reflected by the mirror 334 are transmitted!
  • a liquid crystal panel is installed.
  • the holder 310 receives the 0th order light and ⁇ 1st order light of the laser beam for CD and the laser beam for DV D transmitted by the semi-transmission mirror 332, and outputs a predetermined signal.
  • a light receiving element 350 as a device is provided.
  • a cylindrical lens as an optical element (not shown) for astigmatism is disposed between the semi-transmissive mirror 332 and the light receiving element 350.
  • the optical pickup 300 includes an objective lens 370 as an optical element held by an objective lens holder (not shown).
  • This objective lens 370 is disposed so as to be movable in the focus direction along the optical axis of the CD laser light and DVD laser light reflected by the mirror 334 and in the tracking direction orthogonal to the optical axis.
  • the objective lens 370 is moved by a moving means including a holder 310 and a magnetic body, a magnet, and a coil (not shown) attached to the objective lens holder.
  • a positional relationship in which the 0th-order light condensing in the main light receiving unit 351 of the light receiving element 350 by the cylindrical lens is substantially circular at the substantially center position of the main light receiving unit 351.
  • the cylindrical lens is mounted and fixed on the holder 310 in such a positional relationship that the main light receiving unit 351 is linearly condensed in two diagonal directions.
  • the light receiving element 350 includes a main light receiving unit 351 as a first light receiving unit that receives 0th order light, and a second light receiving unit that receives + first order light.
  • the first sub light receiving unit 352 has a second sub light receiving unit 353 as a second secondary light receiving unit that receives the primary light.
  • the ⁇ primary light reception may be reversed, that is, the primary light may be received by the first sub light receiving unit 352 and the + primary light may be received by the second sub light receiving unit 353.
  • the light receiving element 350 is configured such that the first sub light receiving unit 352 and the second sub light receiving unit 353 are adjacent to each other in one direction of the main light receiving unit 351.
  • the main light-receiving unit 351 has a rectangular shape of a substantially square area divided into four crosses, and has a first main light-receiving area 351A, a second main light-receiving area 351B, and a third main It has a light receiving area 351C and a fourth main light receiving area 351D.
  • the first sub light receiving unit 352 has a substantially flat octagonal region that is long in one direction that is adjacent to the main light receiving unit 351, the first sub light receiving unit 352, and the second sub light receiving unit 353. Divided into two It has a first A sub-light-receiving area 352A and an IB sub-light-receiving area 352B.
  • the second sub light receiving portion 353 is formed in the same shape as the first sub light receiving portion 352, and has a second A sub light receiving region 353A and a second B sub light receiving region 353B.
  • the first to fourth main light receiving areas 351A to 351D, the first A sub light receiving area 352A, the IB sub light receiving area 352B, the second A sub light receiving area 353A, and the second B sub light receiving area 353B receive light respectively.
  • a voltage value corresponding to the intensity of light is output to the control circuit unit. Based on the output voltage values of these light receiving elements 350, the control circuit performs tracking and focusing.
  • the first sub light receiving part 352 and the second sub light receiving part 353 are formed in a light receiving area smaller than the light receiving area of the main light receiving part 351.
  • the 0th-order light and the first-order light are irradiated in a substantially circular shape at the center of the main light-receiving unit 351, the first sub-light-receiving unit, and the second sub-light-receiving unit, respectively.
  • the optical pickup 300 is configured by arranging a cylindrical lens, a light receiving element 350, and the like.
  • the irradiation region S irradiated with the primary light changes due to a change in the characteristics of the optical path reflected and received by the optical disk 10 from the semiconductor laser 320.
  • the first sub light receiving unit 352 and the second sub light receiving unit 353 are connected to the main light receiving unit 351. Is formed into a substantially flat octagon in the virtual region T of the same shape as
  • the characteristic change of the optical path includes the tolerance of the wavelength of the light emitted from the semiconductor laser 320, the tolerance of the distance between the diffraction gratings of the grating element 331, and the distance between the disposed semiconductor laser 320 and the grating element 331.
  • Distance tolerance tolerances such as the distance and tilt between the cylindrical lens and the light receiving element 350, component tolerances of each optical element itself, and further, for example, changes in distance and tilt due to changes in the timepiece of the resin fixing the cylindrical lens. It can be illustrated.
  • the irradiation region S of the primary light changes as a displacement in which the position is shifted by the center force, an enlargement or reduction of the radial dimension of the irradiation region S, and the changing locus is changed. It becomes a substantially flat circle that is long in the direction along the direction adjacent to the main light receiving portion 351, that is, in the tracking direction corresponding to the radial direction of the optical disc 10 for tracking control of the optical disc 10, and has a substantially raceway shape.
  • the locus of this changing ⁇ primary light irradiation area S A first sub light receiving portion 352 and a second sub light receiving portion 353 are formed in a shape corresponding to a region in consideration of operation guarantee.
  • the operation guarantee area U which is set in advance to guarantee operation in the ⁇ primary light irradiation area S and is wider than the ⁇ primary light irradiation area S at a predetermined rate, changes with changes in the optical path characteristics.
  • This is the locus area.
  • the irradiation region S is formed in a shape surrounded by a plurality of tangents, for example, a shape surrounded by eight tangents.
  • the optical pickup 300 receives a part of the laser beam for CD and the laser beam for DVD, detects the amount of received light, and adjusts the output of the semiconductor laser 320.
  • a collimator lens 333 for condensing light on the element 350 and optical elements such as various prisms and mirrors are also provided.
  • the optical disk 10 will be described as a two-layer structure in which recording surfaces such as DVD + R (Digital Versatile Disc-Recordable PIus) are stacked.
  • DVD + R Digital Versatile Disc-Recordable PIus
  • the control circuit unit when power is supplied to the disk device 100, the control circuit unit performs initialization processing such as recognizing the position of the information processing unit. Then, the control circuit unit determines whether or not the optical disc 10 is installed. For example, the optical disk 10 is detected by a detection operation of the optical disk 10 by a disk detection means such as a separately provided sensor or switch, or a detection operation of the optical disk 10 based on the presence or absence of light reflected by controlling the optical pickup 300. Determine the presence or absence.
  • control circuit unit When it is determined that the optical disk 10 is not loaded, the control circuit unit enters an optical disk 10 insertion standby state. If it is determined that the optical disk 10 is loaded, it is determined whether there is a request for execution of information processing such as reading processing or recording processing for reproducing recorded information.
  • the process enters a standby state.
  • the control circuit unit appropriately operates the electric motor 221 for rotation, the electric motor 232 for movement, and the optical pickup 300 to perform information processing.
  • light is emitted from the semiconductor laser 320, irradiated onto the recording surface of the optical disc 10, and reflected light.
  • a tracking error or a focus error based on the light condensing state on the optical disk 10 is detected, and the objective lens 370 is appropriately moved to be appropriately condensed on the optical disk 10 for processing.
  • the light receiving state of the light receiving element 350 in the optical pickup 300 is exemplified below.
  • the optical disk 10 is exemplified by a two-layer structure in which two recording surfaces such as DVD-R + are stacked in the thickness direction as shown in FIG.
  • a first recording layer 12A is provided on the other surface of the disc-like substrate 11 whose outer surface side that is one surface is a label surface 11A.
  • tracks are formed in a substantially spiral shape or a substantially concentric shape.
  • the surface of the first recording layer 12A is provided with a predetermined reflectance.
  • a zeroth recording layer 13A having a predetermined transmittance and reflectance is provided. Similar to the first recording layer 12A, tracks on the surface of the zeroth recording layer 13A are formed in a substantially spiral shape or a substantially concentric shape.
  • a protective layer 14 is provided on the surface of the 0th recording layer 13A.
  • the optical path applied to the optical disc 10 is as shown in FIGS. 8 and 9 are diagrams in which the track shape is omitted, and the 0th-order light R0 with particularly strong light is described as stray light.
  • 0th order light R0 and ⁇ 1st order light R diffracted by the grating element 331 and converted into parallel light by the collimator lens 333 + l and R-1 are condensed on the 0th recording layer 13A by the objective lens 370 appropriately moved by tracking and focusing.
  • the 0th recording layer 13A has a predetermined light transmittance, the 0th-order light R0 and the ⁇ 1st-order lights R + 1 and R-1 are also out of focus in the first recording layer 12A. Irradiated.
  • the 0th-order light R0 and the ⁇ 1st-order lights R + l and R-1 reflected by the 0th recording layer 13A are transmitted to the main light receiving element 350 through another collimator lens 333, a cylindrical lens, or the like. Irradiated to the part 351, the first sub light receiving part 352 and the second sub light receiving part 353, respectively. Similarly, the 0th-order light R0 and the ⁇ first-order lights R + 1 and R-1 reflected by the first recording layer 12A are also irradiated onto the light receiving element 350.
  • the light receiving element 350 receives the light power V reflected by the first recording layer 12A and the so-called stray light Rx, not the 0th recording layer 13A to be processed.
  • the 0th-order light R0 and the ⁇ 1st-order lights R + 1 and R-1 are appropriately moved by tracking and focusing.
  • the focused object lens 370 focuses the light on the first recording layer 12A and irradiates it with the focus shifted on the 0th recording layer 13A located in front.
  • the 0th-order light R0 and the ⁇ 1st-order lights R + 1 and R-1 reflected by the first recording layer 12A are sent to the main light receiving element 350 through the other collimator lens 333, cylindrical lens, etc. Irradiated to the part 351, the first sub light receiving part 352, and the second sub light receiving part 353, respectively.
  • the 0th-order light R0 and the ⁇ first-order lights R + 1 and R-1 reflected by the 0th recording layer 13A are similarly irradiated onto the light receiving element 350 as stray light Rx.
  • the 0th-order light R0 and the first-order light R + 1 and R-1 are reflected by the first recording layer 13A and irradiated to the light receiving element 350 as stray light ⁇ first-order light
  • the stray light of R + 1 and R-1 is low in the original level, so the amount of stray light is small and the influence is small. Therefore, for convenience of explanation, FIG. 8 shows only stray light of strong level V and 0th-order light R0! /.
  • the light receiving states of the reflected 0th-order light R0 and ⁇ first-order light R + 1, R-1 at these light receiving elements 350 are as shown in FIG. 5 as follows: main light receiving unit 351, first sub light receiving unit The stray light Rx is superposed on the substantially circular area including the second sub light receiving unit 353 and the second sub light receiving unit 353. Since the 0th-order light R0 has a relatively strong light intensity, the light receiving state of the main light receiving unit 351 is the stray light Rx light intensity per unit area received in a state where it is diffused as a stray light Rx. The light intensity per unit area of the 0th order light R0 is much stronger than that.
  • the light receiving state in each of the first to fourth main light receiving regions 351A to 351D of the main light receiving unit 351 can sufficiently detect the light receiving state of the 0th-order light R0 even if the stray light Rx is superimposed. It is possible to generate a focus error signal for good focusing based on the voltage value output from.
  • the first sub-light-receiving unit 352 and the second sub-light-receiving unit 353 have a light-receiving area smaller than that of the virtual region T, and have shapes corresponding to changes in optical path characteristics in consideration of operation guarantee, that is, for tracking.
  • the minimum light receiving area required for receiving light is the minimum light receiving area required for receiving light.
  • ⁇ primary light R + 1, R-1 is irradiated
  • the area irradiated with stray light Rx other than the irradiated area S is small. Therefore, the light receiving state in the 1st A sub light receiving area 352A, the 1st IB sub light receiving area 352B, the 2nd A sub light receiving area 353A, and the 2nd B sub light receiving area 353B is less affected by stray light Rx, and ⁇ primary light R + 1 and R-1 light reception status can be detected better, and tracking error signal generation for good tracking based on the voltage values output from the first sub-light-receiving unit 352 and second sub-light-receiving unit 353 can get.
  • FIG. 10 shows the result of measuring the ratio of stray light in the light receiving area in the 0th and 1st recording layers, with the comparative example before light shielding and the light receiving element of the present embodiment after light shielding. It is an explanatory diagram shown in form.
  • FIG. 11 is an explanatory diagram showing FIG. 10 in a graph format. From the experimental results shown in FIGS. 10 and 11, it can be seen that the ratio of stray light is reduced by a little less than about 30% by using a light receiving area with a flat light octagonal shape.
  • the amount of 0th-order light R0 which is the main power of 0th-order light on the recording surface side of the optical disc 10, is output from the first sub-light-receiving unit 352 and the second sub-light-receiving unit 353.
  • the output voltage of the semiconductor laser 320 is increased so that the amount of light increases, the voltage value output from the light receiving element 350 also increases correspondingly. It can be seen that the output range exceeds the D range.
  • the light receiving area is not set appropriately, it is necessary to use the light receiving element 350 with a large D range width for the amount of stray light Rx to be superimposed.Therefore, setting the appropriate light receiving area to reduce the influence of stray light Rx As a result, the accuracy of the output voltage value with respect to the amount of light received can be improved, and the cost can be easily reduced by using an inexpensive light receiving element 350 having a small D range width.
  • the diffraction element 331 diffracts the optical path from the semiconductor laser 320 until it is reflected by the 0th recording layer 13A or the first recording layer 12A and received.
  • ⁇ 1st order light R + 1, R-1 in a shape corresponding to the entire area including the region where the irradiation area S changes.
  • the first sub light receiving part 352 and the second sub light receiving part 353 are formed for detecting the light receiving state of the primary light R + 1, R-1 received.
  • the optical disk 10 is a weakly reflected primary light R + 1, such as stray light Rx or irregular reflection that occurs in a two-layer structure with two recording surfaces such as DVD + R.
  • Receiving unnecessary light other than R-1 can be prevented or reduced, and the light receiving state of the weak ⁇ 1st order light R + 1 and R-1 can be detected well.
  • stray light due to 0th order light which is a relatively strong beam Rx force Reduces the amount of light that is irradiated to the part receiving secondary light such as primary and secondary light, which is a relatively weak light beam
  • good secondary light reception can be realized.
  • the first sub-light-receiving part 352 and the second sub-light-receiving part 353 are formed in a shape in which the virtual area T is cut off by a tangent along the tracking direction with respect to the substantially flat circle that is the entire area.
  • the shapes of the first sub-light-receiving unit 352 and the second sub-light-receiving unit 353 that prevent or reduce the reception of unnecessary light other than ⁇ primary light R + 1 and R-1.
  • Productivity can be improved.
  • it because it is formed corresponding to the shape cut off by the tangent line, it can be designed to have a light receiving area smaller than the light receiving area of the main light receiving part 351 required for proper focusing, and an appropriate tracking error signal can be generated It can be easily formed into a shape, and the light receiving element 3 The 50 can be easily downsized.
  • the shape is surrounded by a plurality of tangent lines that touch the entire area corresponding to the entire area including the area where the irradiation area S of the ⁇ primary light R + 1, R-1 changes due to the change in the characteristics of the optical path.
  • the first sub light receiving part 352 and the second sub light receiving part 353 are formed. Therefore, it is possible to easily design the shapes of the first sub-light-receiving unit 3 52 and the second sub-light-receiving unit 353 that prevent or reduce the reception of unnecessary light other than ⁇ primary light R + l, R-1. Manufacturability can be improved.
  • the shape corresponding to the maximum region where the irradiation region S changes due to the change in the optical path characteristics that is, the irradiation region corresponding to the case where the radial dimension of the irradiation region S changes due to the change characteristic of the optical path.
  • the first sub light receiving unit 352 and the second sub light receiving unit 353 are formed in shapes corresponding to the entire region of the locus where the operation guarantee region U wider than S is displaced. For this reason, it is possible to prevent the light receiving area from being designed too small so that the ⁇ primary lights R + l and R-1 cannot be received sufficiently, and the tracking processing according to the light receiving state can be reliably controlled.
  • the first sub-light-receiving unit 352 and the second sub-light-receiving unit 353 are adjacent in the adjacent direction adjacent to both sides of the main light-receiving unit 351, which is a direction in which the irradiation region S is displaced by the change in the optical path characteristic in the tracking direction. Is divided into two parts. For this reason, the first sub-light-receiving part 352 and the second sub-light-receiving part 353 that can generate a good tracking error signal corresponding to the light receiving state can be easily formed, and manufactured in a simple shape that can detect changes in the light receiving state. Can be improved.
  • the main light receiving unit 351 is appropriately set to 0th-order light due to astigmatism without setting the same shape as the first sub light receiving unit 352 and the second sub light receiving unit 353 in consideration of the stray light Rx.
  • the quadrant is a quadrant that can detect the light receiving state. Therefore, it can be focused well.
  • the present invention is not limited to the above-described embodiment, but includes the following modifications as long as the object of the present invention can be achieved.
  • the force exemplified for the optical pickup 300 used in the disk device 100 that performs information processing on the optical disk 10 the information on any recording medium is processed, not limited to the disk device 100.
  • Optical pickup, and light receiving element itself It is good.
  • the light receiving element of the present invention is not limited to a device that performs information processing, and can be applied to any optical device having a configuration that receives light at a plurality of points, such as a camera, a telescope, and a microscope.
  • the force described in the form of a flat octagon for example, a rectangle such as a rhombus, a polygon such as a hexagon, and a polygon, such as FIG.
  • the shape of the area may be smaller than the one corresponding to the trajectory where the irradiation area S is displaced! ,.
  • the optical pickup 300 has an optical path shape.
  • the dividing direction may be set as appropriate. That is, the ⁇ first-order light is displaced in the tracking direction due to the change in the characteristics of the optical path, so that the first sub-light-receiving unit 352 and the second sub-light-receiving unit 353 are long in the tracking direction. In order to generate a tracking error signal, it may be divided in the tracking direction.
  • the light emitted from the semiconductor laser 320 has been described as being reflected at an angle of approximately 90 ° until the optical disk 10 is irradiated.
  • the light may be divided into a state inclined in a direction corresponding to the tracking direction but not the alignment direction.
  • FIG. 15 tracking as a displacement direction in a substantially flat circle that is the entire region of the locus in which the operation guarantee region U becomes the irradiation region S in consideration of the operation guarantee corresponding to the change in the characteristics of the optical path.
  • the tangent along the direction and the center of the virtual region T parallel to this tangent The position of the line symmetric with the central imaginary line with respect to the line segment from the position where the central imaginary line passing through the outer periphery of the virtual area T intersects with the tangent and the position where the outer periphery of the virtual area ⁇ intersects.
  • Virtual region The virtual region is formed in the shape of the region cut off. The configuration shown in FIG.
  • the 15 is suitable for preventing or reducing the reception of unnecessary light other than ⁇ 1st order light R + 1 and R-1 even if the optical path characteristics change corresponding to the form of the optical path.
  • Easy to design in shape For example, even when the optical path direction is restricted due to downsizing of the optical pickup 300, it is possible to cope with it, and versatility can be improved.
  • the shape divided in the tracking direction can be easily made symmetrical. A tracking error signal corresponding to a good light reception state can be generated and good control can be performed.
  • the light receiving state can be detected by dividing into a plurality of parts or detecting a light amount difference within the region. Any form that can be detected may be used.
  • the main light receiving unit 351 is not limited to the four-divided configuration, and can be divided into a plurality of parts or any form that can detect a light amount difference within a region and detect a light receiving state.
  • the main light receiving unit 351 is not limited to a square, and may have any shape such as a circle or a polygon that can detect a light receiving state and perform appropriate focusing.
  • the present invention is not limited to this. That is, it may be provided at a position different from the main light receiving part 351 by being appropriately reflected or refracted by the optical element, or may be arranged so as to correspond to the apex of the triangle.
  • first sub light receiving unit 352 and the second sub light receiving unit 353 have been described as being formed in a longitudinal direction in one direction.
  • the shape is not limited to one direction.
  • the light receiving element 350 includes a main light receiving unit 351 that receives the 0th order light R0, a first sub light receiving unit 352 that receives the first order light R + 1 and R-1, and a second sublight
  • the light receiving unit 353 has three light receiving regions. However, another light receiving region for receiving diffracted light may be provided.
  • the light source is not limited to light having two wavelengths, a structure that emits light of two wavelengths, a laser beam for CD and a laser beam for DVD, a light that emits only one of the two wavelengths, and other types of light sources.
  • a configuration that emits light of a wavelength, or a configuration that uses a CD semiconductor laser that emits CD laser light and a DVD semiconductor laser that emits DVD laser light, respectively, may be used. Further, not only the semiconductor laser 320 but also any other light source can be used. Furthermore, it is not limited to the wavelength for CD and DVD. Note that in a configuration that outputs different wavelengths, a grating element 331 having a diffraction grating corresponding to the wavelength is provided.
  • optical elements forming the optical path of the optical pickup 300 are not limited to the above-described configuration, but include the external shape of the information processing unit 240 and other configurations such as other arrangement relationships and configurations including other optical elements. It can be set as appropriate according to the wavelength.
  • the pair diffracted by the grating element 331 is changed by the characteristic change of the optical path from the semiconductor laser 320 until it is reflected by the 0th recording layer 13 and the first recording layer 128 and received.
  • Eggplanter The first sub-light-receiving part 352 and the second sub-light-receiving part 353 are formed in a shape corresponding to the entire area including the area where the irradiation area S of the primary light R + l, R-1 is changed. Each is formed. For this reason, for example, it is possible to prevent receiving unnecessary light other than ⁇ 1st order light R + l and R-1 that have been properly reflected, such as stray light Rx and diffuse reflection generated by the optical disk 10 having a two-layer recording surface. Alternatively, the state of light that can be reduced and reflected well can be detected.
  • the first sub-light-receiving unit 352 and the second sub-light-receiving are shaped into a shape surrounded by a plurality of tangent lines that touch the entire region including the region where the irradiation region S where the light R + l, R-1 is irradiated changes.
  • Each part 353 is formed.
  • the virtual region T is positioned at the center or in a symmetric line segment with respect to the line segment from the position where the outer periphery of the virtual region T intersects to the position where the outer edge of the tangent and virtual region T intersects.
  • a first sub light receiving part 352 and a second sub light receiving part 353 are formed in the shape of the cut-off area.
  • the first sub light receiving unit 352 and the second sub light receiving unit 353 for detecting the light receiving state of the primary light R + l and R-1 that form a pair diffracted by the grating element 331 are provided.
  • Each is formed in a longitudinal shape in a tracking direction corresponding to the radial direction of the optical disk 10. For this reason, for example, it is easy to receive unnecessary light other than ⁇ 1st order light R + l, R-1 that has been properly reflected, such as stray light Rx and diffuse reflection generated by the optical disk 10 having a two-layer recording surface. With a simple structure, it can be easily prevented or reduced, and the state of light reflected well can be detected.
  • the disk device 100 includes a light receiving element 350 having a first sub light receiving unit 352 and a second sub light receiving unit 353 designed in a predetermined shape. For this reason, for example, it is possible to prevent malfunction due to generation of an inappropriate tracking error signal due to reception of unnecessary light, and information processing such as reading processing of information recorded on the optical disc 10 and recording processing of recording information. Can be implemented appropriately.
  • the present invention can be used for an optical pickup device that receives diffracted light that is diffracted by a diffraction grating and reflected by a recording medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

A main light receiving unit (351) and first and second sub-light receiving units (352), (353), for respectively receiving a zero-order light and ± first-order lights diffracted at a grating element (331) and reflected off an optical disk to detect reception conditions, are adjacently formed in a row. The first and second sub-light receiving units (352), (353) are formed into almost flat octagons surrounded by a plurality of tangents at an almost flat circle that serves as the entire region of a path along which the lighting areas S of ± first-order lights change by the characteristics changes of a light path such as the tolerance and clocking changes of an optical element. The optical pickup device can reduce the reception of a stray light Rx by a two-layer-structure optical disk recording surface, detects satisfactorily the light reception conditions of weak ± first-order lights, and control tracking satisfactorily without erroneous operation.

Description

明 細 書  Specification
光ピックアップ装置  Optical pickup device
技術分野  Technical field
[0001] 本発明は、回折格子にて回折され記録媒体にて反射された回折光を受光する光ピ ックアップ装置に関する。  The present invention relates to an optical pick-up device that receives diffracted light diffracted by a diffraction grating and reflected by a recording medium.
背景技術  Background art
[0002] 従来、記録面に記録された情報を読み取ったり、記録面に各種情報を記録したり する情報処理装置として、光ピックアップにより光ディスクなどのディスク状記録媒体 を処理するディスク装置が知られている。このディスク装置の光ピックアップは、光源 から出射され光ディスクで反射された光に基づいて、光を照射する位置を制御、例え ば対物レンズのトラッキングサーボ制御を実施する構成が知られている。そして、この トラッキングサーボ制御として、光源力 出射される光を回折させて焦点位置を検出 する構成が知られている (例えば、特許文献 1参照)。  Conventionally, as an information processing apparatus that reads information recorded on a recording surface and records various information on the recording surface, a disk device that processes a disk-shaped recording medium such as an optical disk by an optical pickup is known. Yes. An optical pickup of this disk device is known to control the position of light irradiation, for example, tracking servo control of an objective lens, based on light emitted from a light source and reflected by an optical disk. As this tracking servo control, a configuration is known in which the focus position is detected by diffracting the light emitted from the light source (see, for example, Patent Document 1).
[0003] 特許文献 1に記載のものは、光ディスクに再生光を照射して光ディスクからの反射 光を受光し、受光信号を出力するピックアップを備えている。このピックアップは、第 1 受光素子と、第 2受光素子と、第 3受光素子と、を備えている。第 1受光素子は、第 1 サブビームの光ディスクによる反射光を受光する第 1受光面および第 2受光面を有し ている。第 2受光素子は、メインビームの光ディスクによる反射光を受光する第 1〜第 4受光面を有している。第 3受光素子は、第 2サブビームの光ディスクによる反射光を 受光する第 1受光面および第 2受光面を有している。そして、第 1から第 3受光素子で 受光し出力される受光信号に基づいてトラッキングエラー信号生成回路でトラツキン グエラー信号を出力し、このトラッキングエラー信号に基づいて光ディスクを再生する 構成が採られている。  [0003] The device described in Patent Document 1 includes a pickup that irradiates an optical disc with reproduction light, receives reflected light from the optical disc, and outputs a received light signal. The pickup includes a first light receiving element, a second light receiving element, and a third light receiving element. The first light receiving element has a first light receiving surface and a second light receiving surface that receive the reflected light of the first sub-beam from the optical disk. The second light receiving element has first to fourth light receiving surfaces for receiving reflected light of the main beam from the optical disk. The third light receiving element has a first light receiving surface and a second light receiving surface that receive the reflected light of the second sub-beam from the optical disk. The tracking error signal generation circuit outputs a tracking error signal based on the received light signal received and output by the first to third light receiving elements, and the optical disk is reproduced based on the tracking error signal. .
[0004] 特許文献 1 :特開平 8— 329490号公報 (第 5頁左欄 第 10頁左欄、図 2) [0004] Patent Document 1: JP-A-8-329490 (Page 5, left column, page 10, left column, Fig. 2)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、光ディスクとして、厚さ方向に記録面が積層する 2層構造の構成が知られ ている。この光ディスクは、照射された光の一部を反射するとともに一部を透過して下 層側の記録面でも集光可能な記録面を備えている。このことにより、上記特許文献 1 に記載の構成のような従来のディスク装置において、 2層構造の光ディスクを利用す る場合、目的とするいずれかの記録面へ集光させる光の一部が、他の記録面でいわ ゆる迷光として反射される。このため、目的とする反射面で反射された光に迷光が重 畳した状態で受光するおそれがあり、誤作動を生じるおそれがある問題が一例として 挙げられる。 [0005] By the way, an optical disc has a two-layer structure in which recording surfaces are laminated in the thickness direction. ing. This optical disc includes a recording surface that reflects a part of the irradiated light and transmits a part of the light so that it can be condensed on the lower recording surface. As a result, when a two-layered optical disk is used in a conventional disk device such as the configuration described in Patent Document 1, a part of the light condensed on one of the target recording surfaces is Reflected as so-called stray light on other recording surfaces. For this reason, there is a possibility that stray light may be received in a state where stray light is superimposed on the light reflected by the target reflecting surface, and a problem that may cause malfunction is cited as an example.
[0006] 本発明は、上述したような実情などに鑑みて、記録媒体で反射された光を適切に受 光する光ピックアップ装置を提供することを目的とする。  An object of the present invention is to provide an optical pickup device that appropriately receives light reflected from a recording medium in view of the above-described circumstances.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の光ピックアップ装置は、ビームを照射する光源と、この光源力 出射される 前記ビームを透過光と回折光とに分けて記録媒体へ出力する回折格子と、前記記録 媒体により反射された前記透過光を受光する第 1の受光部と、前記回折格子により 回折された回折光を受光する第 2の受光部と、を具備し、前記第 2の受光部は、前記 ビームが前記光源力 照射されて受光するまでの光路の変化により前記回折光が照 射される照射領域が変化する領域を含む全領域の形状に対応した形状に形成され たことを特徴とする。 The optical pickup device of the present invention includes a light source that irradiates a beam, a diffraction grating that divides the beam emitted from the light source power into transmitted light and diffracted light and outputs the light to a recording medium, and is reflected by the recording medium A first light-receiving unit that receives the transmitted light and a second light-receiving unit that receives the diffracted light diffracted by the diffraction grating, wherein the second light-receiving unit has the beam as described above. It is characterized in that it is formed in a shape corresponding to the shape of the entire region including the region where the irradiation region irradiated with the diffracted light is changed by the change in the optical path from the irradiation of the light source to the reception of light.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明における一実施の形態に係るディスク装置の概略構成を示す平面図で ある。  FIG. 1 is a plan view showing a schematic configuration of a disk device according to an embodiment of the present invention.
[図 2]前記一実施の形態におけるディスク装置におけるトレイ部が進出した状態での 概略構成を示す一部を切り欠 ヽた平面図である。  FIG. 2 is a plan view with a part cut away showing a schematic configuration in a state in which a tray portion has advanced in the disk device in the embodiment.
[図 3]前記一実施の形態におけるディスク装置のディスク処理部を示す一部を切り欠 いた平面図である。  FIG. 3 is a plan view with a part cut away showing a disk processing unit of the disk device in the embodiment.
[図 4]前記一実施の形態における光ピックアップの光路構成について説明するため の概略構成を示す説明図である。  FIG. 4 is an explanatory diagram showing a schematic configuration for explaining an optical path configuration of the optical pickup in the embodiment.
[図 5]前記一実施の形態における受光素子の各受光部の形状を模式的に示す平面 図である。 [図 6]前記一実施の形態における第 1 (第 2)のサブ受光部の形状を模式的に示す平 面図である。 FIG. 5 is a plan view schematically showing the shape of each light receiving portion of the light receiving element in the embodiment. FIG. 6 is a plan view schematically showing the shape of the first (second) sub-light-receiving portion in the embodiment.
[図 7]前記一実施の形態におけるディスク装置における情報処理を実施する光デイス クの概略構成を模式的に示す一部を切り欠いた断面図である。  FIG. 7 is a partially cutaway cross-sectional view schematically showing a schematic configuration of an optical disk for performing information processing in the disk device in the embodiment.
[図 8]前記一実施の形態における光ディスクの第 0の記録層で情報処理する状態の 光路を概念的に示す説明図である。 FIG. 8 is an explanatory diagram conceptually showing an optical path in a state where information is processed by the 0th recording layer of the optical disc in the embodiment.
[図 9]前記一実施の形態における光ディスクの第 1の記録層で情報処理する状態の 光路を概念的に示す説明図である。  FIG. 9 is an explanatory diagram conceptually showing an optical path in a state where information is processed by the first recording layer of the optical disc in the embodiment.
[図 10]前記一実施の形態における受光素子による迷光の受光低減状態に関する実 験結果を表形式で示す説明図である。  FIG. 10 is an explanatory diagram showing, in a tabular form, experimental results regarding a reduction in stray light reception by the light receiving element according to the embodiment.
圆 11]前記図 10をグラフ形式で示す説明図である。 [11] FIG. 11 is an explanatory diagram showing FIG. 10 in a graph format.
[図 12]前記一実施の形態における受光素子による迷光の受光低減による出力電圧 値の変化に関する実験結果を表形式で示す説明図である。  FIG. 12 is an explanatory diagram showing, in a tabular form, experimental results regarding changes in the output voltage value due to the reduction of stray light reception by the light receiving element in the embodiment.
[図 13]前記図 12をグラフ形式で示す説明図である。 FIG. 13 is an explanatory diagram showing FIG. 12 in a graph format.
圆 14]本発明における他の実施の形態における受光素子の第 1 (第 2)のサブ受光部 の形状を模式的に示す平面図である。 FIG. 14 is a plan view schematically showing the shape of the first (second) sub-light-receiving part of the light-receiving element according to another embodiment of the present invention.
圆 15]本発明におけるさらに他の実施の形態における受光素子の各受光部の形状 を模式的に示す平面図である。 15] FIG. 15 is a plan view schematically showing the shape of each light receiving portion of a light receiving element in still another embodiment of the present invention.
符号の説明 Explanation of symbols
10……記録媒体であるディスク状記録媒体としての光ディスク  10 …… Optical disk as a disk-shaped recording medium
300……光ピックアップ装置としての光ピックアップ  300 …… Optical pickup as an optical pickup device
320……光源である半導体レーザ  320 …… Semiconductor laser as light source
331 · ·… ·回折格子としての光学素子であるグレーティング素子  331 · · · · Grating element as an optical element as a diffraction grating
332……光学素子としての半透過ミラー  332 …… Translucent mirror as an optical element
333……光学素子としてのコリメータレンズ  333: Collimator lens as an optical element
334……光学素子としてのミラー  334 …… Mirror as optical element
351……第 1の受光部としてのメイン受光部  351 …… Main light-receiving unit as the first light-receiving unit
352……第 2の受光部としての第 1のサブ受光部 353……第 2の受光部としての第 2のサブ受光部 352 …… First sub-light-receiving unit as the second light-receiving unit 353 …… Second sub-light-receiving unit as second light-receiving unit
370……光学素子としての対物レンズ  370 …… Objective lens as an optical element
R0 ……通過光としての 0次光  R0 …… 0th-order light as passing light
R+1……回折光としての + 1次光  R + 1 …… + 1st order light as diffracted light
R-1……回折光としての 1次光  R-1 …… Primary light as diffracted light
S……照射領域  S …… Irradiation area
τ……仮想領域  τ …… Virtual region
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明における一実施の形態を図面に基づいて説明する。本実施の形態で は記録媒体として着脱可能なディスク状記録媒体である光ディスクに情報を記録およ び読み出すディスク装置を例示して説明するが、情報の読み出しあるいは記録のみ でもよい。また、記録媒体としては、ディスク状記録媒体としては、光ディスクに限らず 、光磁気ディスクなどの光を利用する ヽずれのディスク状記録媒体を対象とすること ができ、さらにはディスク状記録媒体に限らず、例えば外周面に記録面を有した円筒 状や、テープ状など、いずれの形態でも適用できる。さらに、回転する光ディスクの記 録面に沿って略径方向で移動させる構成に限らず、例えば光ディスクを回転させず に記録面に沿って光ピックアップを移動させて、記録処理や読取処理を実施する構 成などとしてもよい。また、いわゆるスリムディスクドライブと称されるディスク装置を例 示して説明する力 例えばいわゆるスロットインタイプのディスク装置、ディスク状記録 媒体が載置され進退移動により搬送するトレイを備えた構成や、ディスク状記録媒体 を回転可能に軸支する台座部が進退する構成など、いずれの構成も対象とすること ができる。また、ディスク装置に限らず、カメラや顕微鏡など、照射される光の受光状 態に基づいて適宜処理を実行するいずれの光学系機器をも対象とすることができる  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, a disk device that records and reads information on and from an optical disk that is a detachable disk-shaped recording medium as a recording medium will be described as an example. However, only information reading or recording may be performed. Further, the recording medium is not limited to the optical disk, but can be any disc-shaped recording medium that uses light such as a magneto-optical disk. For example, any shape such as a cylindrical shape having a recording surface on the outer peripheral surface or a tape shape is applicable. Further, the recording process and the reading process are performed by moving the optical pickup along the recording surface without rotating the optical disk, for example, without being limited to the configuration in which the optical disk is moved in the substantially radial direction along the recording surface of the rotating optical disk. It may be configured. In addition, the power to illustrate and explain a disk device called a so-called slim disk drive, for example, a so-called slot-in type disk device, a configuration having a tray on which a disk-shaped recording medium is placed and conveyed by advancing and retreating, Any configuration such as a configuration in which a pedestal that pivotally supports the recording medium advances and retreats can be used. Further, not only the disk device but also any optical system device that performs processing appropriately based on the light receiving state of the irradiated light, such as a camera or a microscope, can be targeted.
[0011] 〔ディスク装置の構成〕 [Configuration of Disk Device]
図 1および図 2において、 100は情報処理装置としてのディスク装置で、このディス ク装置 100は、例えば携帯型のパーソナルコンピュータなどの電気機器に装着され るいわゆるスリムディスクドライブと称されるものである。このディスク装置 100は、着脱 可能に装着される記録媒体であるディスク状記録媒体としての円板状の光ディスク 1 0における少なくとも一面に設けられた記録面に記録された情報を読み出す情報処 理である読取処理および記録面へ各種情報を記録する情報処理である記録処理を する。そして、ディスク装置 100は、例えば金属製で内部空間を有し一側面が開口す る略四角箱状のケース体 110を有している。また、ケース体 110内には、トレィ部 120 と、このトレィ部 120をケース体 110の開口を介して進退させる搬送手段 130と、ディ スク装置 100全体の動作を制御する図示しない制御回路部と、が配設されている。 In FIG. 1 and FIG. 2, 100 is a disk device as an information processing device, and this disk device 100 is a so-called slim disk drive that is mounted on an electric device such as a portable personal computer. . This disk unit 100 can be Various types of reading processes and various recording surfaces that are information processing for reading information recorded on a recording surface provided on at least one surface of a disk-shaped optical disc 10 as a disc-shaped recording medium that is a recording medium that can be mounted. Performs recording processing, which is information processing for recording information. The disk device 100 has a substantially rectangular box-shaped case body 110 made of, for example, metal, having an internal space and having one side surface opened. Further, in the case body 110, there are a tray section 120, a conveying means 130 for moving the tray section 120 forward and backward through the opening of the case body 110, and a control circuit section (not shown) that controls the operation of the entire disk device 100. Are disposed.
[0012] トレィ部 120は、例えば合成樹脂などにて形成された略板状のトレィ 121と、このト レイの一縁に設けられ搬送手段 130にてケース体 110内に後退された状態でケース 体 110の開口を閉塞する合成樹脂などにて細長板状に形成されたィ匕粧板 122と、を 備えている。そして、トレイ 121には、略中央部に装着開口 121Aが開口形成されて いる。そして、トレィ部 120には、トレイ 121の装着開口 121Aに一部が臨む状態にデ イスク処理部 200が配設されて 、る。  [0012] The tray section 120 includes a substantially plate-like tray 121 formed of, for example, a synthetic resin, and a case that is provided in one edge of the tray and is retracted into the case body 110 by the conveying means 130. And a decorative plate 122 formed into a thin plate shape with a synthetic resin or the like that closes the opening of the body 110. The tray 121 has a mounting opening 121A formed substantially at the center. The tray section 120 is provided with a disk processing section 200 so that a part of the tray section 120 faces the mounting opening 121A of the tray 121.
[0013] 搬送手段 130は、ケース体内に配設されたガイドレール 131と、図示しない付勢手 段と、付勢解除手段 132と、などを備えている。ガイドレール 131は、トレィ部 120の 開口を介した進退方向に沿って配設され、トレィ部 120の進退移動を案内誘導する 。付勢手段は、例えばばね部材などで、トレィ部 120がケース体 110内に後退された 状態で弾性変形され、トレィ部 120がケース体 110の開口を介して進出する状態に 弾性変形による復元力を作用させる。付勢解除手段 132は、トレィ部 120がケース体 110内に後退されて化粧板 122が開口を閉塞した状態でトレィ部 120に設けられた 係脱爪 123に係合し、例えばイジヱタトボタンの操作など、トレィ部 120の進出要求に 応じて係脱爪 123の係合状態を解除する。  [0013] The conveying means 130 includes a guide rail 131 disposed in the case body, an urging means (not shown), an urging release means 132, and the like. The guide rail 131 is disposed along the advancing / retreating direction through the opening of the tray part 120, and guides the advancing / retreating movement of the tray part 120. The biasing means is, for example, a spring member, and is elastically deformed with the tray portion 120 retracted into the case body 110, and the tray portion 120 is advanced through the opening of the case body 110. Act. The urging release means 132 is engaged with the engaging / disengaging claw 123 provided in the tray portion 120 in a state where the tray portion 120 is retracted into the case body 110 and the opening is closed, for example, an operation of an eject button, etc. The engagement / disengagement claw 123 is released in response to the advance request of the tray section 120.
[0014] トレィ部 120に配設されたディスク処理部 200は、図 1ないし図 3に示すように、枠状 に形成された台座部 210を備えている。台座部 210には、周縁近傍に位置して、ディ スク回転駆動手段 220が配設されている。このディスク回転駆動手段 220は、スピン ドルモータである図示しない回転用電動モータと、この回転用電動モータの出力軸 2 21 Aに一体的に設けられたターンテーブル 222と、を備えている。  As shown in FIGS. 1 to 3, the disk processing unit 200 disposed in the tray unit 120 includes a pedestal unit 210 formed in a frame shape. A disk rotation driving means 220 is disposed on the pedestal 210 in the vicinity of the periphery. The disk rotation driving means 220 includes a rotating electric motor (not shown) which is a spindle motor, and a turntable 222 provided integrally with the output shaft 222 A of the rotating electric motor.
[0015] また、台座部 210には、駆動手段としての処理移動手段 230が配設されている。こ の処理移動手段 230は、軸方向が略平行に台座部 210に配設された一対のガイド シャフト 231と、例えばステッピングモータである移動用電動モータ 232と、を備えて いる。移動用電動モータ 232の図示しない出力軸には、外周面に螺旋状の係合溝 2 32Bが設けられたリードスクリュ 232Aが同軸上に一体に連結されている。 [0015] The pedestal portion 210 is provided with a processing moving means 230 as a driving means. This The processing moving means 230 includes a pair of guide shafts 231 disposed on the pedestal portion 210 so that the axial directions thereof are substantially parallel to each other, and a moving electric motor 232 that is a stepping motor, for example. A lead screw 232A having a helical engagement groove 232B on the outer peripheral surface is integrally and coaxially connected to an output shaft (not shown) of the electric motor 232 for movement.
[0016] さらに、台座部 210には、処理移動手段 230に支持された情報処理部 240が配設 されている。この情報処理部 240は、一対のガイドシャフト 231間に架橋する状態で 保持される移動保持部 241を備えている。この移動保持部 241には、ガイドシャフト 2 31を移動可能に嵌挿する保持部 241Aと、移動用電動モータ 232の出力軸に連結 されたリードスクリュ 232Aの係合溝 232Bに係合する移動規制爪部 241Bと、を備え ている。また、情報処理部 240の移動保持部 241には、制御回路部に信号を送受信 可能に接続され、制御回路部の制御により、光ディスク 10の記録面に記録された各 種情報を読み取って出力回路部へ出力する読取処理や、制御回路部からの各種情 報を記録面に記録する記録処理を実施するための光ピックアップ装置としての光ピッ クアップ 300が配設されて!/、る。  Furthermore, an information processing unit 240 supported by the processing moving unit 230 is disposed on the pedestal unit 210. The information processing unit 240 includes a movement holding unit 241 that is held in a state of being bridged between the pair of guide shafts 231. The movement holding portion 241 includes a holding portion 241A into which the guide shaft 231 is movably inserted, and a movement restriction that engages with the engagement groove 232B of the lead screw 232A connected to the output shaft of the electric motor 232 for movement. Claw portion 241B. The movement holding unit 241 of the information processing unit 240 is connected to the control circuit unit so as to be able to transmit and receive signals. Under the control of the control circuit unit, various kinds of information recorded on the recording surface of the optical disc 10 are read and output circuit An optical pickup 300 is provided as an optical pickup device for performing reading processing to be output to the recording section and recording processing for recording various information from the control circuit section on the recording surface.
[0017] 制御回路部は、例えば各種電気部品が搭載された回路基板に回路構成として構 成されている。そして、制御回路部には、光ピックアップ 300の動作を制御する駆動 制御手段や、読取処理や記録処理などの情報処理を実施する情報処理手段、など が構成されている。  The control circuit unit is configured as a circuit configuration on a circuit board on which various electrical components are mounted, for example. The control circuit unit includes drive control means for controlling the operation of the optical pickup 300, information processing means for performing information processing such as reading processing and recording processing, and the like.
[0018] (光ピックアップの構成)  [0018] (Configuration of optical pickup)
次に、上述したディスク装置 100の光ピックアップ 300の構成を図面に基づいて詳 細に説明する。なお、光ピックアップ 300としては、光ディスク 10として CD (Compact Disc)および DVD (Digital Versatile Disc)の双方の情報処理が可能な構成を例示し て説明するが、上述したように、いずれの記録媒体の情報処理に応じた構成が適用 できる。また、光源として、ビームである CD用レーザ光およびビームである DVD用レ 一ザ光の 2波長の出射光を出射可能な光源を用 、た構成を例示するが、 CD用レー ザ光や DVD用レーザ光のみを出射する複数の光源を用 、る構成、 1つでさらに他の 波長の出射光を出射可能な光源などを用いる構成とするなどしてもょ 、。  Next, the configuration of the optical pickup 300 of the disk device 100 described above will be described in detail with reference to the drawings. The optical pickup 300 will be described by exemplifying a configuration capable of information processing of both a CD (Compact Disc) and a DVD (Digital Versatile Disc) as the optical disc 10, but as described above, any recording medium may be used. A configuration according to the information processing can be applied. In addition, the light source is a light source capable of emitting two-wavelength emitted light, that is, a laser beam for CD that is a beam and a laser beam for DVD that is a beam. For example, it is possible to use a plurality of light sources that emit only the laser light for use, or to use a light source that can emit light of other wavelengths.
[0019] 光ピックアップ 300は、図 3に一部を示すような筐体としてのホルダ 310を備えてい る。このホルダ 310は、移動保持部 241の一部を構成する一体構造あるいは移動保 持部 241に組み込まれる構成のいずれでもできる。このホルダ 310には、図 4に示す ように、 CD用の波長の光である出射光としての CD用レーザ光および DVD用の波長 の光である出射光としての DVD用レーザ光を出射する光源としての半導体レーザ 3 20が配設されている。 [0019] The optical pickup 300 includes a holder 310 as a casing, a part of which is shown in FIG. The This holder 310 can be either an integral structure constituting a part of the movement holding unit 241 or a structure incorporated in the movement holding unit 241. As shown in FIG. 4, the holder 310 has a light source for emitting CD laser light as emitted light that is light having a wavelength for CD and DVD laser light as emitted light that is light having a wavelength for DVD. A semiconductor laser 320 is provided.
[0020] また、半導体レーザ 320の出射側には、光学素子であるグレーティング素子 331が 配設されている。このグレーティング素子 331は、図示しないガラス基板に半導体レ 一ザ 320から出射されるレーザ光を、通過により少なくとも 0次光および士 1次光の 3 本の光に回折する回折格子を有している。すなわち、回折格子は、半導体レーザ 32 0からの光を、通過する通過光としての 0次光および回折された回折光としての士 1次 光に回折する。なお、 0次光の光の強さは、 ± 1次光の光の強さに比してかなり強い。 すなわち、情報の読取処理や記録処理が適切に実施されるように、 0次光の光の強 さが十分な強さとなる状態に回折される。そして、グレーティング素子 331は、半導体 レーザ 320から出射される CD用レーザ光および DVD用レーザ光をそれぞれ回折す るために複数設けたり、ガラス基板の両面に回折格子をそれぞれ設けたりするなど、 いずれの形態でもよい。  Further, a grating element 331 that is an optical element is disposed on the emission side of the semiconductor laser 320. This grating element 331 has a diffraction grating that diffracts laser light emitted from the semiconductor laser 320 on a glass substrate (not shown) into at least three light beams of zero-order light and first-order light. . That is, the diffraction grating diffracts the light from the semiconductor laser 320 into zero-order light as passing light passing through and first-order light as diffracted diffracted light. Note that the intensity of the 0th order light is considerably stronger than the intensity of the ± 1st order light. That is, the 0th-order light is diffracted to a sufficient intensity so that the information reading process and recording process are appropriately performed. A plurality of grating elements 331 are provided for diffracting the laser beam for CD and the laser beam for DVD emitted from the semiconductor laser 320, or a diffraction grating is provided on both surfaces of the glass substrate. Form may be sufficient.
[0021] さらに、ホルダ 310には、半導体レーザ 320の光軸上に位置して、光学素子である 半透過ミラー 332が配設されている。この半透過ミラー 332は、 CD用レーザ光および DVD用レーザ光の各 0次光および士 1次光を光軸方向で略 90° 反射するとともに、 反射方向力 入射される CD用レーザ光および DVD用レーザ光の各 0次光および士 1次光を透過する。さらに、ホルダ 310には、半透過ミラー 332にて反射した CD用レ 一ザ光および DVD用レーザ光の各 0次光および ± 1次光の径ゃ広がり角を調整す る光学素子としてのコリメータレンズ 333が配設されている。また、ホルダ 310には、コ リメータレンズ 333を透過した CD用レーザ光および DVD用レーザ光の各 0次光およ び士 1次光を光軸方向で略 90° 反射する光学素子としてのミラー 334が配設されて いる。そして、ホルダ 310には、ミラー 334に反射された CD用レーザ光および DVD 用レーザ光の各 0次光および ± 1次光が透過する図示しない波長板や波面収差を するための図示しな!、液晶パネルなどが配設されて 、る。 [0022] また、ホルダ 310には、半透過ミラー 332にて透過された CD用レーザ光および DV D用レーザ光の各 0次光および ± 1次光を受光して所定の信号を出力する受光装置 としての受光素子 350が配設されている。また、半透過ミラー 332と受光素子 350と の間には、非点収差のための例えば図示しない光学素子としてのシリンドリカルレン ズなどが配設されている。 Furthermore, the holder 310 is provided with a semi-transmissive mirror 332 that is an optical element and is positioned on the optical axis of the semiconductor laser 320. This transflective mirror 332 reflects the CD laser light and DVD laser light in the optical axis direction by approximately 90 °, and the reflection direction force is incident on the CD laser light and DVD. Transmits the 0th order light and the 1st order light of the laser light for use. Further, the holder 310 has a collimator as an optical element that adjusts the divergence angle of the 0th order light and the ± 1st order light of the laser beam for CD and the laser beam for DVD reflected by the semi-transmissive mirror 332. A lens 333 is provided. In addition, the holder 310 is a mirror as an optical element that reflects each 90th-order light and first-order light of the CD laser light and DVD laser light that has passed through the collimator lens 333 in the optical axis direction by approximately 90 °. 334 is arranged. The holder 310 is not shown in the figure for wave plate aberration and wavefront aberration (not shown) through which the 0th order light and ± 1st order light of the CD laser light and DVD laser light reflected by the mirror 334 are transmitted! A liquid crystal panel is installed. In addition, the holder 310 receives the 0th order light and ± 1st order light of the laser beam for CD and the laser beam for DV D transmitted by the semi-transmission mirror 332, and outputs a predetermined signal. A light receiving element 350 as a device is provided. In addition, for example, a cylindrical lens as an optical element (not shown) for astigmatism is disposed between the semi-transmissive mirror 332 and the light receiving element 350.
[0023] さらに、光ピックアップ 300には、図 4に示すように、図示しない対物レンズホルダに 保持された光学素子としての対物レンズ 370を備えている。この対物レンズ 370は、ミ ラー 334にて反射された CD用レーザ光および DVD用レーザ光の光軸に沿ったフォ 一カス方向および光軸に対して直交するトラッキング方向に移動可能に配設される。 この対物レンズ 370の移動は、ホルダ 310および対物レンズホルダに取り付けられた 図示しない磁性体やマグネット、コイルなどを備えた移動手段により移動される。そし て、対物レンズ 370が移動されていない通常状態で、シリンドリカルレンズによる受光 素子 350のメイン受光部 351における 0次光の集光がメイン受光部 351の略中心位 置で略円形となる位置関係で、かつメイン受光部 351における 2つの対角方向で線 状に集光される位置関係で、シリンドリカルレンズがホルダ 310に取付固定されて配 設されている。  Further, as shown in FIG. 4, the optical pickup 300 includes an objective lens 370 as an optical element held by an objective lens holder (not shown). This objective lens 370 is disposed so as to be movable in the focus direction along the optical axis of the CD laser light and DVD laser light reflected by the mirror 334 and in the tracking direction orthogonal to the optical axis. The The objective lens 370 is moved by a moving means including a holder 310 and a magnetic body, a magnet, and a coil (not shown) attached to the objective lens holder. In a normal state in which the objective lens 370 is not moved, a positional relationship in which the 0th-order light condensing in the main light receiving unit 351 of the light receiving element 350 by the cylindrical lens is substantially circular at the substantially center position of the main light receiving unit 351. In addition, the cylindrical lens is mounted and fixed on the holder 310 in such a positional relationship that the main light receiving unit 351 is linearly condensed in two diagonal directions.
[0024] そして、受光素子 350は、図 5に示すように、 0次光を受光する第 1の受光部として のメイン受光部 351と、 + 1次光を受光する第 2の受光部としての第 1のサブ受光部 3 52と、 1次光を受光する第 2の次受光部としての第 2のサブ受光部 353と、を有し ている。なお、 ± 1次光の受光としては逆の構成、すなわち第 1のサブ受光部 352で —1次光を受光させ、第 2のサブ受光部 353で + 1次光を受光させてもよい。そして、 受光素子 350は、メイン受光部 351における一方向の両側に第 1のサブ受光部 352 および第 2のサブ受光部 353が隣接する状態に構成されている。  Then, as shown in FIG. 5, the light receiving element 350 includes a main light receiving unit 351 as a first light receiving unit that receives 0th order light, and a second light receiving unit that receives + first order light. The first sub light receiving unit 352 has a second sub light receiving unit 353 as a second secondary light receiving unit that receives the primary light. It is to be noted that the ± primary light reception may be reversed, that is, the primary light may be received by the first sub light receiving unit 352 and the + primary light may be received by the second sub light receiving unit 353. The light receiving element 350 is configured such that the first sub light receiving unit 352 and the second sub light receiving unit 353 are adjacent to each other in one direction of the main light receiving unit 351.
[0025] メイン受光部 351は、矩形である略正方形の領域が十字状に 4分割された形状で、 略正方形の第 1のメイン受光領域 351A、第 2のメイン受光領域 351B、第 3のメイン 受光領域 351Cおよび第 4のメイン受光領域 351Dを有している。第 1のサブ受光部 352は、メイン受光部 351と第 1のサブ受光部 352および第 2のサブ受光部 353との 隣接方向である一方向で長手状の略扁平八角形の領域が長手方向で 2分割された 形状で、第 1Aサブ受光領域 352Aおよび第 IBサブ受光領域 352Bを有している。さ らに、第 2のサブ受光部 353は、第 1のサブ受光部 352と同形状に形成され、第 2A サブ受光領域 353Aおよび第 2Bサブ受光領域 353Bを有している。そして、各第 1 〜第 4のメイン受光領域 351A〜351D、第 1Aサブ受光領域 352A、第 IBサブ受光 領域 352B、第 2Aサブ受光領域 353Aおよび第 2Bサブ受光領域 353Bは、それぞ れ受光する光の強さに応じた電圧値を制御回路部へ出力する。これら受光素子 350 力 出力される各電圧値に基づいて、制御回路部はトラッキングおよびフォーカシン グを実施する。 [0025] The main light-receiving unit 351 has a rectangular shape of a substantially square area divided into four crosses, and has a first main light-receiving area 351A, a second main light-receiving area 351B, and a third main It has a light receiving area 351C and a fourth main light receiving area 351D. The first sub light receiving unit 352 has a substantially flat octagonal region that is long in one direction that is adjacent to the main light receiving unit 351, the first sub light receiving unit 352, and the second sub light receiving unit 353. Divided into two It has a first A sub-light-receiving area 352A and an IB sub-light-receiving area 352B. Further, the second sub light receiving portion 353 is formed in the same shape as the first sub light receiving portion 352, and has a second A sub light receiving region 353A and a second B sub light receiving region 353B. The first to fourth main light receiving areas 351A to 351D, the first A sub light receiving area 352A, the IB sub light receiving area 352B, the second A sub light receiving area 353A, and the second B sub light receiving area 353B receive light respectively. A voltage value corresponding to the intensity of light is output to the control circuit unit. Based on the output voltage values of these light receiving elements 350, the control circuit performs tracking and focusing.
[0026] なお、第 1のサブ受光部 352および第 2のサブ受光部 353は、メイン受光部 351の 受光面積より小さい受光面積に形成されている。すなわち、図 5に示すように、 0次光 および士 1次光がそれぞれメイン受光部 351、第 1のサブ受光部および第 2のサブ受 光部の中心で略円形に照射される位置関係で、シリンドリカルレンズゃ受光素子 35 0など配設されて光ピックアップ 300が構成される。この基準状態に対して、半導体レ 一ザ 320から光ディスク 10で反射されて受光する光路の特性変化により、士 1次光が 照射される照射領域 Sが変化する。この変化する照射領域 Sの軌跡となる全領域の 形状に対応して、図 5および図 6に示すように、第 1のサブ受光部 352および第 2のサ ブ受光部 353がメイン受光部 351と同じ形状の仮想領域 T内の略扁平八角形に形 成されている。  It should be noted that the first sub light receiving part 352 and the second sub light receiving part 353 are formed in a light receiving area smaller than the light receiving area of the main light receiving part 351. In other words, as shown in FIG. 5, the 0th-order light and the first-order light are irradiated in a substantially circular shape at the center of the main light-receiving unit 351, the first sub-light-receiving unit, and the second sub-light-receiving unit, respectively. The optical pickup 300 is configured by arranging a cylindrical lens, a light receiving element 350, and the like. With respect to this reference state, the irradiation region S irradiated with the primary light changes due to a change in the characteristics of the optical path reflected and received by the optical disk 10 from the semiconductor laser 320. Corresponding to the shape of the entire region that becomes the locus of the changing irradiation region S, as shown in FIGS. 5 and 6, the first sub light receiving unit 352 and the second sub light receiving unit 353 are connected to the main light receiving unit 351. Is formed into a substantially flat octagon in the virtual region T of the same shape as
[0027] ここで、光路の特性変化としては、半導体レーザ 320が出射する光の波長の公差、 グレーティング素子 331の回折格子の間隔寸法公差、配設された半導体レーザ 320 とグレーティング素子 331との間の距離公差、シリンドリカルレンズと受光素子 350と の距離や傾きなどの公差、各光学素子自体の部品公差など、さらには例えばシリンド リカルレンズを固定する榭脂の計時変化による距離や傾きの変化などが例示できる。  Here, the characteristic change of the optical path includes the tolerance of the wavelength of the light emitted from the semiconductor laser 320, the tolerance of the distance between the diffraction gratings of the grating element 331, and the distance between the disposed semiconductor laser 320 and the grating element 331. Distance tolerance, tolerances such as the distance and tilt between the cylindrical lens and the light receiving element 350, component tolerances of each optical element itself, and further, for example, changes in distance and tilt due to changes in the timepiece of the resin fixing the cylindrical lens. It can be illustrated.
[0028] そして、この光路の特性変化により、士 1次光の照射領域 Sは、位置が中心力 ず れる変位や照射領域 Sの径寸法の拡大や縮小などとして変化し、この変化する軌跡 がメイン受光部 351との隣接方向に沿った方向、すなわち光ディスク 10のトラツキン グ制御のための光ディスク 10の径方向に対応したトラッキング方向で長手状で略競 走路形状のような略扁平円形となる。この変化する ± 1次光の照射領域 Sの軌跡に 動作保証を考慮した領域に対応した形状に、第 1のサブ受光部 352および第 2のサ ブ受光部 353が形成されている。すなわち、 ± 1次光の照射領域 Sに動作保証のた めにあらかじめ設定され ± 1次光の照射領域 Sより所定の割合で広い略円形の動作 保証領域 Uが、光路の特性変化により変化する軌跡の領域である。この動作保証を 考慮した照射領域 Sの変化する領域に接する複数の接線にて囲まれた形状、例えば 8本の接線で囲まれた形状に形成されて 、る。 [0028] Then, due to the characteristic change of the optical path, the irradiation region S of the primary light changes as a displacement in which the position is shifted by the center force, an enlargement or reduction of the radial dimension of the irradiation region S, and the changing locus is changed. It becomes a substantially flat circle that is long in the direction along the direction adjacent to the main light receiving portion 351, that is, in the tracking direction corresponding to the radial direction of the optical disc 10 for tracking control of the optical disc 10, and has a substantially raceway shape. The locus of this changing ± primary light irradiation area S A first sub light receiving portion 352 and a second sub light receiving portion 353 are formed in a shape corresponding to a region in consideration of operation guarantee. In other words, the operation guarantee area U, which is set in advance to guarantee operation in the ± primary light irradiation area S and is wider than the ± primary light irradiation area S at a predetermined rate, changes with changes in the optical path characteristics. This is the locus area. In consideration of this operation guarantee, the irradiation region S is formed in a shape surrounded by a plurality of tangents, for example, a shape surrounded by eight tangents.
[0029] その他、光ピックアップ 300には、 CD用レーザ光および DVD用レーザ光の一部を 受光して受光量を検出し、半導体レーザ 320の出力を調整させるフロントモニタ用受 光素子や、受光素子 350に集光させるコリメータレンズ 333、各種プリズムやミラーな どの光学素子なども配設されて 、る。  [0029] In addition, the optical pickup 300 receives a part of the laser beam for CD and the laser beam for DVD, detects the amount of received light, and adjusts the output of the semiconductor laser 320. A collimator lens 333 for condensing light on the element 350 and optical elements such as various prisms and mirrors are also provided.
[0030] 〔ディスク装置の動作〕  [Operation of Disk Device]
次に、上記ディスク装置 100の動作について図面を参照して説明する。なお、この 動作では、光ディスク 10として例えば DVD+R(Digital Versatile Disc-Recordable PI us)などの記録面が積層する 2層構造で説明する。  Next, the operation of the disk device 100 will be described with reference to the drawings. In this operation, the optical disk 10 will be described as a two-layer structure in which recording surfaces such as DVD + R (Digital Versatile Disc-Recordable PIus) are stacked.
[0031] まず、ディスク装置 100に電力が供給されると、制御回路部は情報処理部の位置を 認識するなどの初期化処理を実施する。そして、制御回路部は、光ディスク 10が装 着されているか否かを判断する。例えば、別途設けた図示しないセンサやスィッチな どのディスク検出手段による光ディスク 10の検出動作、あるいは光ピックアップ 300を 制御して反射される光の有無に基づく光ディスク 10の検出動作などにより、光デイス ク 10の有無を判断する。  [0031] First, when power is supplied to the disk device 100, the control circuit unit performs initialization processing such as recognizing the position of the information processing unit. Then, the control circuit unit determines whether or not the optical disc 10 is installed. For example, the optical disk 10 is detected by a detection operation of the optical disk 10 by a disk detection means such as a separately provided sensor or switch, or a detection operation of the optical disk 10 based on the presence or absence of light reflected by controlling the optical pickup 300. Determine the presence or absence.
そして、光ディスク 10が装着されていないと判断すると、制御回路部は光ディスク 1 0の挿入待機状態となる。また、光ディスク 10が装着されていると判断すると、例えば 記録された情報の再生である読取処理や記録処理などの情報処理の実施要求があ るか否かを判断する。  When it is determined that the optical disk 10 is not loaded, the control circuit unit enters an optical disk 10 insertion standby state. If it is determined that the optical disk 10 is loaded, it is determined whether there is a request for execution of information processing such as reading processing or recording processing for reproducing recorded information.
この情報処理の実施要求がない場合には、処理の待機状態となる。また、実施要 求がある場合、制御回路部は、回転用電動モータ 221、移動用電動モータ 232およ び光ピックアップ 300を適宜動作させ、情報処理を実施する。すなわち、半導体レー ザ 320から光を出射させ、光ディスク 10の記録面に照射させるとともに、反射する光 を受光素子 350で受光し、光ディスク 10での集光状態に基づくトラッキングエラーや フォーカスエラーを検出し、対物レンズ 370を適宜移動させて適切に光ディスク 10で 集光させて処理する。 When there is no request for execution of this information processing, the process enters a standby state. When there is an execution request, the control circuit unit appropriately operates the electric motor 221 for rotation, the electric motor 232 for movement, and the optical pickup 300 to perform information processing. In other words, light is emitted from the semiconductor laser 320, irradiated onto the recording surface of the optical disc 10, and reflected light. Is received by the light receiving element 350, a tracking error or a focus error based on the light condensing state on the optical disk 10 is detected, and the objective lens 370 is appropriately moved to be appropriately condensed on the optical disk 10 for processing.
[0032] この光ピックアップ 300における受光素子 350の受光状況を以下に例示する。ここ で、光ディスク 10として、例えば DVD—R+などの図 7に示すような記録面が厚さ方 向で 2つ積層する 2層構造のものを例示する。この光ディスク 10は、一面となる外面 側がレーベル面 11Aとなる円板状の基板 11の他面に、第 1の記録層 12Aが設けら れている。この第 1の記録層 12Aの表面は、略螺旋状あるいは略同心円状にトラック が形成されている。この第 1の記録層 12Aは、表面が所定の反射率に設けられてい る。この第 1の記録層 12Aの表面側には、所定の透過率および反射率の第 0の記録 層 13Aが設けられている。この第 0の記録層 13Aの表面は、第 1の記録層 12Aと同 様に、略螺旋状あるいは略同心円状にトラックが形成されている。そして、第 0の記録 層 13Aの表面には、保護層 14が設けられている。  The light receiving state of the light receiving element 350 in the optical pickup 300 is exemplified below. Here, the optical disk 10 is exemplified by a two-layer structure in which two recording surfaces such as DVD-R + are stacked in the thickness direction as shown in FIG. In this optical disc 10, a first recording layer 12A is provided on the other surface of the disc-like substrate 11 whose outer surface side that is one surface is a label surface 11A. On the surface of the first recording layer 12A, tracks are formed in a substantially spiral shape or a substantially concentric shape. The surface of the first recording layer 12A is provided with a predetermined reflectance. On the surface side of the first recording layer 12A, a zeroth recording layer 13A having a predetermined transmittance and reflectance is provided. Similar to the first recording layer 12A, tracks on the surface of the zeroth recording layer 13A are formed in a substantially spiral shape or a substantially concentric shape. A protective layer 14 is provided on the surface of the 0th recording layer 13A.
[0033] そして、情報処理に際して、この光ディスク 10に照射する光路は、図 8および図 9に 示すようになる。なお、図 8および図 9は、トラック形状を省略した図で、特に光が強い 0次光 R0を迷光として記載した図である。具体的には、第 0の記録層 13Aにおける情 報処理では、図 8に示すように、グレーティング素子 331で回折されコリメータレンズ 3 33で平行光にされた 0次光 R0および ± 1次光 R+l, R-1は、トラッキングおよびフォー カシングにて適宜移動された対物レンズ 370にて、第 0の記録層 13Aで集光される。 さらに、第 0の記録層 13Aは所定の透光率であることから、 0次光 R0および ± 1次光 R+l, R-1は、第 1の記録層 12Aでも焦点がずれた状態で照射される。  [0033] In the information processing, the optical path applied to the optical disc 10 is as shown in FIGS. 8 and 9 are diagrams in which the track shape is omitted, and the 0th-order light R0 with particularly strong light is described as stray light. Specifically, in the information processing in the 0th recording layer 13A, as shown in FIG. 8, 0th order light R0 and ± 1st order light R diffracted by the grating element 331 and converted into parallel light by the collimator lens 333 + l and R-1 are condensed on the 0th recording layer 13A by the objective lens 370 appropriately moved by tracking and focusing. Further, since the 0th recording layer 13A has a predetermined light transmittance, the 0th-order light R0 and the ± 1st-order lights R + 1 and R-1 are also out of focus in the first recording layer 12A. Irradiated.
そして、この第 0の記録層 13Aで反射された 0次光 R0および ± 1次光 R+l, R-1は、 他のコリメータレンズ 333ゃシリンドリカルレンズなどを介して、受光素子 350のメイン 受光部 351、第 1のサブ受光部 352および第 2のサブ受光部 353にそれぞれ照射さ れる。また、第 1の記録層 12Aで反射された 0次光 R0および ± 1次光 R+l, R-1も同 様に受光素子 350に照射される状態となる。この情報処理の対象となる第 0の記録 層 13Aではな 、第 1の記録層 12Aで反射された光力 V、わゆる迷光 Rxとして受光素 子 350で受光されることとなる。 [0034] 同様に、第 1の記録層 12Aにおける情報処理では、図 9に示すように、 0次光 R0お よび ± 1次光 R+1, R-1は、トラッキングおよびフォーカシングにて適宜移動された対 物レンズ 370にて、第 1の記録層 12Aで集光されるとともに、手前に位置する第 0の 記録層 13Aで焦点がずれた状態で照射される。そして、第 1の記録層 12Aで反射さ れた 0次光 R0および ± 1次光 R+1, R-1は、他のコリメータレンズ 333ゃシリンドリカル レンズなどを介して、受光素子 350のメイン受光部 351、第 1のサブ受光部 352およ び第 2のサブ受光部 353にそれぞれ照射される。 Then, the 0th-order light R0 and the ± 1st-order lights R + l and R-1 reflected by the 0th recording layer 13A are transmitted to the main light receiving element 350 through another collimator lens 333, a cylindrical lens, or the like. Irradiated to the part 351, the first sub light receiving part 352 and the second sub light receiving part 353, respectively. Similarly, the 0th-order light R0 and the ± first-order lights R + 1 and R-1 reflected by the first recording layer 12A are also irradiated onto the light receiving element 350. The light receiving element 350 receives the light power V reflected by the first recording layer 12A and the so-called stray light Rx, not the 0th recording layer 13A to be processed. Similarly, in the information processing in the first recording layer 12A, as shown in FIG. 9, the 0th-order light R0 and the ± 1st-order lights R + 1 and R-1 are appropriately moved by tracking and focusing. The focused object lens 370 focuses the light on the first recording layer 12A and irradiates it with the focus shifted on the 0th recording layer 13A located in front. Then, the 0th-order light R0 and the ± 1st-order lights R + 1 and R-1 reflected by the first recording layer 12A are sent to the main light receiving element 350 through the other collimator lens 333, cylindrical lens, etc. Irradiated to the part 351, the first sub light receiving part 352, and the second sub light receiving part 353, respectively.
さらに、第 0の記録層 13Aで反射された 0次光 R0および ± 1次光 R+1, R-1も同様 に、迷光 Rxとして受光素子 350に照射される状態となる。なお、上述したように、 0次 光 R0および士 1次光 R+1, R-1がそれぞれ第 1の記録層 13Aで反射されて迷光とし て受光素子 350に照射される力 ± 1次光 R+1, R-1の迷光は、元々のレベルが低い ため、迷光の量も小さく影響が小さい。このため、図 8は、説明の都合上、レベルの強 V、0次光 R0の迷光のみを示して!/、る。  Further, the 0th-order light R0 and the ± first-order lights R + 1 and R-1 reflected by the 0th recording layer 13A are similarly irradiated onto the light receiving element 350 as stray light Rx. As described above, the 0th-order light R0 and the first-order light R + 1 and R-1 are reflected by the first recording layer 13A and irradiated to the light receiving element 350 as stray light ± first-order light The stray light of R + 1 and R-1 is low in the original level, so the amount of stray light is small and the influence is small. Therefore, for convenience of explanation, FIG. 8 shows only stray light of strong level V and 0th-order light R0! /.
[0035] これら受光素子 350における反射された 0次光 R0および ± 1次光 R+1, R-1の受光 状態は、図 5に示すように、メイン受光部 351、第 1のサブ受光部 352および第 2のサ ブ受光部 353を含む略円形領域に迷光 Rxが重畳する状態となる。そして、 0次光 R0 は比較的に光の強さが強いので、メイン受光部 351の受光状態は、迷光 Rxとして広 い範囲に拡散する状態で受光する単位面積当たりの迷光 Rxの光の強さよりも 0次光 R0の単位面積当たりの光の強さが遙かに強い。このため、メイン受光部 351の各第 1 〜第 4のメイン受光領域 351A〜351Dにおける受光状態は、迷光 Rxが重畳しても 0 次光 R0の受光状態を十分に検出でき、メイン受光部 351から出力される電圧値に基 づく良好なフォーカシングのためのフォーカスエラー信号の生成が得られる。  The light receiving states of the reflected 0th-order light R0 and ± first-order light R + 1, R-1 at these light receiving elements 350 are as shown in FIG. 5 as follows: main light receiving unit 351, first sub light receiving unit The stray light Rx is superposed on the substantially circular area including the second sub light receiving unit 353 and the second sub light receiving unit 353. Since the 0th-order light R0 has a relatively strong light intensity, the light receiving state of the main light receiving unit 351 is the stray light Rx light intensity per unit area received in a state where it is diffused as a stray light Rx. The light intensity per unit area of the 0th order light R0 is much stronger than that. Therefore, the light receiving state in each of the first to fourth main light receiving regions 351A to 351D of the main light receiving unit 351 can sufficiently detect the light receiving state of the 0th-order light R0 even if the stray light Rx is superimposed. It is possible to generate a focus error signal for good focusing based on the voltage value output from.
[0036] 一方、 ± 1次光 R+1, R-1は比較的に光の強さが弱いので、第 1のサブ受光部 352 および第 2のサブ受光部 353の受光状態は、迷光 Rxの単位面積当たり光の強さと士 1次光 R+1, R-1の単位面積当たりの光の強さと差が小さくなる。ところで、第 1のサブ 受光部 352および第 2のサブ受光部 353は、仮想領域 Tに比して受光面積が小さく 、動作保証を考慮して光路の特性変化に応じた形状、すなわちトラッキングのための 受光に必要な最小限の受光面積としている。このため、 ± 1次光 R+1, R-1が照射さ れる照射領域 S以外で迷光 Rxが照射される領域は小さい。したがって、第 1Aサブ受 光領域 352A、第 IBサブ受光領域 352B、第 2Aサブ受光領域 353Aおよび第 2Bサ ブ受光領域 353Bにおける受光状態は、迷光 Rxの影響が少なくなり、 ± 1次光 R+1, R-1の受光状態をよりよく検出でき、第 1のサブ受光部 352および第 2のサブ受光部 353から出力される電圧値に基づく良好なトラッキングのためのトラッキングエラー信 号の生成が得られる。 [0036] On the other hand, since the intensity of the ± first-order lights R + 1 and R-1 is relatively weak, the light receiving states of the first sub light receiving unit 352 and the second sub light receiving unit 353 are stray light Rx The difference between the light intensity per unit area and the light intensity per unit area of the primary light R + 1, R-1 becomes smaller. By the way, the first sub-light-receiving unit 352 and the second sub-light-receiving unit 353 have a light-receiving area smaller than that of the virtual region T, and have shapes corresponding to changes in optical path characteristics in consideration of operation guarantee, that is, for tracking. The minimum light receiving area required for receiving light. Therefore, ± primary light R + 1, R-1 is irradiated The area irradiated with stray light Rx other than the irradiated area S is small. Therefore, the light receiving state in the 1st A sub light receiving area 352A, the 1st IB sub light receiving area 352B, the 2nd A sub light receiving area 353A, and the 2nd B sub light receiving area 353B is less affected by stray light Rx, and ± primary light R + 1 and R-1 light reception status can be detected better, and tracking error signal generation for good tracking based on the voltage values output from the first sub-light-receiving unit 352 and second sub-light-receiving unit 353 can get.
[0037] ここで、第 1のサブ受光部 352および第 2のサブ受光部 353を仮想領域 Tの領域に 対応した受光面積としたものを比較例として、上記受光素子 350との受光状態の差 を確認する実験を実施した。その結果を図 10および図 11に示す。図 10は、比較例 のものを遮光前、本実施の形態の受光素子を利用したものを遮光後とし、第 0および 第 1の記録層における受光領域での迷光の割合を測定した結果を表形式で示す説 明図である。図 11は、図 10をグラフ形式で示す説明図である。これら図 10および図 11に示す実験結果から、扁平八角形に受光面積を小さくした受光領域とすることで 、迷光が含まれる割合が、約 3割弱低減することがわかる。  [0037] Here, as a comparative example in which the first sub light receiving unit 352 and the second sub light receiving unit 353 have a light receiving area corresponding to the region of the virtual region T, the difference in the light receiving state from the light receiving element 350 is described. An experiment was conducted to confirm the above. The results are shown in Figs. FIG. 10 shows the result of measuring the ratio of stray light in the light receiving area in the 0th and 1st recording layers, with the comparative example before light shielding and the light receiving element of the present embodiment after light shielding. It is an explanatory diagram shown in form. FIG. 11 is an explanatory diagram showing FIG. 10 in a graph format. From the experimental results shown in FIGS. 10 and 11, it can be seen that the ratio of stray light is reduced by a little less than about 30% by using a light receiving area with a flat light octagonal shape.
[0038] また、光ディスク 10の記録面側となる表面上での 0次光のメインパワーである 0次光 R0の光量と、第 1のサブ受光部 352および第 2のサブ受光部 353から出力される電 圧値との関係を確認する実験を実施した。その結果を図 12および図 13に示す。 これら図 12および図 13に示す実験結果から、扁平八角形に受光面積を小さくした 受光領域とすることで、出力電圧値が低減することが分かる。すなわち、受光してしま う迷光 Rxの割合が低減していることが分かる。また、情報処理として、ある程度の光 量を必要とするが、光量が高くなるように半導体レーザ 320の出力電圧を増大させる と、受光素子 350から出力される電圧値も対応して大きくなり、設定出力範囲となる D レンジを越えてしまうことが分かる。すなわち、受光面積を適切に設定しないと、迷光 Rxが重畳する分、 Dレンジ幅の大きい受光素子 350を利用する必要が生じるので、 適切な受光面積に設定して迷光 Rxの影響を少なくすることにより、受光する光量に 対する出力電圧値の精度を向上できるとともに、 Dレンジ幅の小さい安価な受光素子 350の利用によるコストの低減を容易に図れるなどが得られる。  [0038] Further, the amount of 0th-order light R0, which is the main power of 0th-order light on the recording surface side of the optical disc 10, is output from the first sub-light-receiving unit 352 and the second sub-light-receiving unit 353. An experiment was conducted to confirm the relationship with the measured voltage value. The results are shown in FIG. 12 and FIG. From the experimental results shown in FIGS. 12 and 13, it can be seen that the output voltage value is reduced by setting the light receiving area to a flat octagon with a small light receiving area. That is, it can be seen that the proportion of stray light Rx received is reduced. In addition, a certain amount of light is required for information processing. However, if the output voltage of the semiconductor laser 320 is increased so that the amount of light increases, the voltage value output from the light receiving element 350 also increases correspondingly. It can be seen that the output range exceeds the D range. In other words, if the light receiving area is not set appropriately, it is necessary to use the light receiving element 350 with a large D range width for the amount of stray light Rx to be superimposed.Therefore, setting the appropriate light receiving area to reduce the influence of stray light Rx As a result, the accuracy of the output voltage value with respect to the amount of light received can be improved, and the cost can be easily reduced by using an inexpensive light receiving element 350 having a small D range width.
[0039] 〔ディスク装置の作用効果〕 上述したように、上記一実施の形態では、半導体レーザ 320から第 0の記録層 13A や第 1の記録層 12Aで反射されて受光するまでの光路の特性変化により、グレーテ イング素子 331にて回折された対をなす ± 1次光 R+1, R-1が受光面で照射する照射 領域 Sが変化する領域を含む全領域に対応した形状に、 ± 1次光 R+1, R-1を受光し てこの受光した士 1次光 R+1, R-1の受光状態を検出する第 1のサブ受光部 352およ び第 2のサブ受光部 353をそれぞれ形成している。このため、光ディスク 10として例 えば DVD+Rのような記録面が 2層となる 2層構造の場合に生じる迷光 Rxや乱反射 など、適切に反射された光の弱い ± 1次光 R+1, R-1以外の不要な光を受光してしま うことを防止あるいは低減でき、光の弱い ± 1次光 R+1, R-1の受光状態を良好に検 出できる。すなわち、比較的に光が強いビームである 0次光による迷光 Rx力 比較的 に光が弱いビームである 1次や 2次などの副次光を受光する部分に照射される量を 低減することで、良好な副次光の受光を実現できる。 [Operational effects of the disk device] As described above, in the above embodiment, the diffraction element 331 diffracts the optical path from the semiconductor laser 320 until it is reflected by the 0th recording layer 13A or the first recording layer 12A and received. ± 1st order light R + 1, R-1 in a shape corresponding to the entire area including the region where the irradiation area S changes. The first sub light receiving part 352 and the second sub light receiving part 353 are formed for detecting the light receiving state of the primary light R + 1, R-1 received. For this reason, for example, the optical disk 10 is a weakly reflected primary light R + 1, such as stray light Rx or irregular reflection that occurs in a two-layer structure with two recording surfaces such as DVD + R. Receiving unnecessary light other than R-1 can be prevented or reduced, and the light receiving state of the weak ± 1st order light R + 1 and R-1 can be detected well. In other words, stray light due to 0th order light, which is a relatively strong beam Rx force Reduces the amount of light that is irradiated to the part receiving secondary light such as primary and secondary light, which is a relatively weak light beam Thus, good secondary light reception can be realized.
[0040] したがって、例えば不要な光の受光による不適切なトラッキングエラー信号の生成 により誤作動するなどを防止でき、光ディスク 10に記録された情報の読取処理や情 報を記録する記録処理などの情報処理を適切に実施できる。特に、記録面が層状に 設けられ迷光 Rxを生じてしまう光ディスク 10を利用した情報処理を実施する構成に おいては、特に有効である。  [0040] Therefore, for example, malfunction due to generation of an inappropriate tracking error signal due to reception of unnecessary light can be prevented, and information such as reading processing of information recorded on the optical disc 10 and recording processing for recording information is recorded. Processing can be performed appropriately. This is particularly effective in a configuration in which information processing is performed using the optical disk 10 in which the recording surface is provided in layers and generates stray light Rx.
[0041] そして、トラッキング方向となるメイン受光部 351、第 1のサブ受光部 352および第 2 のサブ受光部 353の隣接方向で長手状、すなわち光路の特性変化により照射領域 Sが変位する軌跡の全領域である略扁平円形に対するトラッキング方向に沿った接 線で仮想領域 Tを切り落とした形状に、第 1のサブ受光部 352および第 2のサブ受光 部 353をそれぞれ形成している。このため、 ± 1次光 R+1, R-1以外の不要な光の受 光の防止あるいは低減する第 1のサブ受光部 352および第 2のサブ受光部 353の形 状を容易に設計でき、製造性を向上できる。さらには、受光状態を検出するために分 割して形成した際の各形状を対称形状に容易に設計でき、製造性を向上できる。ま た、接線で切り落とした形状に対応して形成しているため、適切なフォーカシングの ために必要とするメイン受光部 351の受光面積より小さい受光面積に設計でき、適切 なトラッキングエラー信号を生成できる形状に容易に形成できるとともに、受光素子 3 50の小型化も容易に図れる。 [0041] Then, in a direction adjacent to the main light-receiving unit 351, the first sub-light-receiving unit 352, and the second sub-light-receiving unit 353 that are in the tracking direction, a trajectory in which the irradiation region S is displaced due to a change in the characteristics of the optical path. The first sub-light-receiving part 352 and the second sub-light-receiving part 353 are formed in a shape in which the virtual area T is cut off by a tangent along the tracking direction with respect to the substantially flat circle that is the entire area. Therefore, it is possible to easily design the shapes of the first sub-light-receiving unit 352 and the second sub-light-receiving unit 353 that prevent or reduce the reception of unnecessary light other than ± primary light R + 1 and R-1. , Productivity can be improved. Furthermore, it is possible to easily design each shape when it is divided and formed in order to detect the light receiving state, and to improve manufacturability. In addition, because it is formed corresponding to the shape cut off by the tangent line, it can be designed to have a light receiving area smaller than the light receiving area of the main light receiving part 351 required for proper focusing, and an appropriate tracking error signal can be generated It can be easily formed into a shape, and the light receiving element 3 The 50 can be easily downsized.
[0042] さらに、光路の特性変化により ± 1次光 R+l, R-1の照射領域 Sが変化する領域を 含む全領域に対応した全領域に接する複数の接線にて囲まれた形状に、第 1のサ ブ受光部 352および第 2のサブ受光部 353をそれぞれ形成している。このため、 ± 1 次光 R+l, R-1以外の不要な光の受光の防止あるいは低減する第 1のサブ受光部 3 52および第 2のサブ受光部 353の形状を容易に設計でき、製造性を向上できる。  [0042] Furthermore, the shape is surrounded by a plurality of tangent lines that touch the entire area corresponding to the entire area including the area where the irradiation area S of the ± primary light R + 1, R-1 changes due to the change in the characteristics of the optical path. The first sub light receiving part 352 and the second sub light receiving part 353 are formed. Therefore, it is possible to easily design the shapes of the first sub-light-receiving unit 3 52 and the second sub-light-receiving unit 353 that prevent or reduce the reception of unnecessary light other than ± primary light R + l, R-1. Manufacturability can be improved.
[0043] また、光路の特性変化により照射領域 Sが変化する最大領域に対応した形状、す なわち光路の変化特性により照射領域 Sの径寸法が変化するような場合にも対応し た照射領域 Sより広い動作保証領域 Uが変位する軌跡の全領域に対応した形状に、 第 1のサブ受光部 352および第 2のサブ受光部 353をそれぞれ形成している。このた め、受光面積を小さく設計しすぎて ± 1次光 R+l, R-1を十分に受光できなくなること を防止でき、確実に受光状態に応じたトラッキング処理などの制御ができる。  [0043] In addition, the shape corresponding to the maximum region where the irradiation region S changes due to the change in the optical path characteristics, that is, the irradiation region corresponding to the case where the radial dimension of the irradiation region S changes due to the change characteristic of the optical path. The first sub light receiving unit 352 and the second sub light receiving unit 353 are formed in shapes corresponding to the entire region of the locus where the operation guarantee region U wider than S is displaced. For this reason, it is possible to prevent the light receiving area from being designed too small so that the ± primary lights R + l and R-1 cannot be received sufficiently, and the tracking processing according to the light receiving state can be reliably controlled.
[0044] そして、トラッキング方向となる光路の特性変化により照射領域 Sが変位する方向で あるメイン受光部 351の両側に隣接する隣接方向で第 1のサブ受光部 352および第 2のサブ受光部 353を 2分割に形成している。このため、受光状態に対応した良好な トラッキングエラー信号を生成できる第 1のサブ受光部 352および第 2のサブ受光部 353を容易に形成でき、受光状態の変化を検出できる簡単な形状で、製造性を向上 できる。  [0044] Then, the first sub-light-receiving unit 352 and the second sub-light-receiving unit 353 are adjacent in the adjacent direction adjacent to both sides of the main light-receiving unit 351, which is a direction in which the irradiation region S is displaced by the change in the optical path characteristic in the tracking direction. Is divided into two parts. For this reason, the first sub-light-receiving part 352 and the second sub-light-receiving part 353 that can generate a good tracking error signal corresponding to the light receiving state can be easily formed, and manufactured in a simple shape that can detect changes in the light receiving state. Can be improved.
[0045] また、メイン受光部 351は、迷光 Rxを考慮して第 1のサブ受光部 352および第 2の サブ受光部 353と同様の形状に設定することなぐ適切に非点収差による 0次光の受 光状態を検出できる正方形の 4分割形状としている。このため、良好にフォーカシン グできる。  [0045] In addition, the main light receiving unit 351 is appropriately set to 0th-order light due to astigmatism without setting the same shape as the first sub light receiving unit 352 and the second sub light receiving unit 353 in consideration of the stray light Rx. The quadrant is a quadrant that can detect the light receiving state. Therefore, it can be focused well.
[0046] 〔実施形態の変形〕  [Modification of Embodiment]
なお、本発明は、上述した一実施の形態に限定されるものではなぐ本発明の目的 を達成できる範囲で以下に示される変形をも含むものである。  The present invention is not limited to the above-described embodiment, but includes the following modifications as long as the object of the present invention can be achieved.
[0047] すなわち、光ディスク 10を対象とした情報処理を実施するディスク装置 100に用い られる光ピックアップ 300について例示した力 上述したように、ディスク装置 100に 限らず、いずれの記録媒体の情報を処理する光ピックアップ、さらには受光素子自体 としてもよい。また、本発明の受光素子は、情報処理を実施する機器に限らず、例え ばカメラや望遠鏡、顕微鏡など、複数の点で受光する構成を有するいずれの光学系 機器にも適用できる。 That is, the force exemplified for the optical pickup 300 used in the disk device 100 that performs information processing on the optical disk 10 As described above, the information on any recording medium is processed, not limited to the disk device 100. Optical pickup, and light receiving element itself It is good. In addition, the light receiving element of the present invention is not limited to a device that performs information processing, and can be applied to any optical device having a configuration that receives light at a plurality of points, such as a camera, a telescope, and a microscope.
[0048] そして、ディスク状記録媒体である光ディスク 10、特に動作説明では 2層構造の光 ディスク 10を用いて説明した力 上述したように、記録媒体としては、光ディスク 10に 限らず光磁気ディスクなどでもよい。さら〖こは、ディスク状に限らず、例えば円筒状に 形成され外周面に記録面が設けられたもの、テープ状に形成されたものなど、いず れの形態のものを対称とすることができる。そして、 2層に限らず、 1層あるいは 3層以 上の多層構造でもよい。  [0048] Then, the power described using the optical disk 10 which is a disk-shaped recording medium, particularly the optical disk 10 having a two-layer structure in the description of the operation, as described above, the recording medium is not limited to the optical disk 10, but a magneto-optical disk, etc. But you can. Sarakuko is not limited to a disk shape, but may be symmetrical in any form, such as a cylindrical shape with a recording surface on the outer peripheral surface, or a tape shape. it can. And it is not limited to two layers, but may be a single layer or a multilayer structure of three or more layers.
[0049] また、第 1 (第 2)のサブ受光部 352 (353)として、扁平八角形に形成して説明した 力 例えば菱形などの四角形や六角形、 10角形などの多角形や、図 14に示すよう な動作保証領域 Uが変位する軌跡の全領域の略扁平円形に対応した競走路様の 形状や、楕円形状などとしてもよい。さらには、照射領域 Sが変位する軌跡に対応し た一回り小さ 、領域の形状とするなどしてもよ!、。  [0049] In addition, as the first (second) sub-light-receiving portion 352 (353), the force described in the form of a flat octagon, for example, a rectangle such as a rhombus, a polygon such as a hexagon, and a polygon, such as FIG. The raceway-like shape corresponding to a substantially flat circle in the entire region of the locus where the motion guarantee region U is displaced as shown in FIG. Furthermore, the shape of the area may be smaller than the one corresponding to the trajectory where the irradiation area S is displaced! ,.
[0050] また、メイン受光部 351、第 1のサブ受光部 352および第 2のサブ受光部 353の並 び方向で 2分割した形状に形成して説明したが、光ピックアップ 300光路の経路形状 に対応して適宜分割方向を設定してよい。すなわち、光路の特性変化により、 ± 1次 光はトラッキング方向で変位する状態となるので、このトラッキング方向で長手状とな るように第 1のサブ受光部 352および第 2のサブ受光部 353が形成され、トラッキング エラー信号を生成するためにトラッキング方向で分割する状態にすればよい。具体的 には、上記実施の形態では、半導体レーザ 320から出射された光が光ディスク 10へ 照射されるまで、略 90° の角度で反射される形態で説明したが、例えば半導体レー ザ 320からの光が半透過ミラー 332により鋭角に反射される状態では、図 15に示す ように、並び方向ではなぐトラッキング方向に対応した方向で傾斜した状態に分割し てもよい。  [0050] Although the main light-receiving unit 351, the first sub-light-receiving unit 352, and the second sub-light-receiving unit 353 are described as being divided into two in the parallel direction, the optical pickup 300 has an optical path shape. Correspondingly, the dividing direction may be set as appropriate. That is, the ± first-order light is displaced in the tracking direction due to the change in the characteristics of the optical path, so that the first sub-light-receiving unit 352 and the second sub-light-receiving unit 353 are long in the tracking direction. In order to generate a tracking error signal, it may be divided in the tracking direction. Specifically, in the above embodiment, the light emitted from the semiconductor laser 320 has been described as being reflected at an angle of approximately 90 ° until the optical disk 10 is irradiated. In a state where the light is reflected at an acute angle by the semi-transmissive mirror 332, as shown in FIG. 15, the light may be divided into a state inclined in a direction corresponding to the tracking direction but not the alignment direction.
[0051] すなわち、図 15において、光路の特性変化に対応して動作保証を加味した照射領 域 Sとなる動作保証領域 Uが変位する軌跡の全領域となる略扁平円形における変位 方向としてのトラッキング方向に沿った接線と、この接線と平行で仮想領域 Tの中心 を通る中心仮想線と仮想領域 Tの外周縁との交差する位置から接線および仮想領域 Τの外周縁の交差する位置までの線分に対して中心仮想線で対称な線分との位置 で、仮想領域 Τを切り落とした領域の形状に形成している。この図 15に示す構成で は、光路の形態に対応して光路の特性変化が生じても ± 1次光 R+l, R-1以外の不 要な光の受光の防止あるいは低減する適切な形状に容易に設計できる。そして、例 えば、光ピックアップ 300の小型化などのために光路方向に制約が生じるような場合 でも対応でき、汎用性も向上できる。さらには、このような切り落とした領域に対応した 形状とすることで、仮想領域 Τに対してトラッキング方向が傾斜する状態でも、トラツキ ング方向で分割した形状を容易に対称形とすることができ、良好な受光状態に対応 するトラッキングエラー信号を生成でき、良好な制御ができる。 That is, in FIG. 15, tracking as a displacement direction in a substantially flat circle that is the entire region of the locus in which the operation guarantee region U becomes the irradiation region S in consideration of the operation guarantee corresponding to the change in the characteristics of the optical path. The tangent along the direction and the center of the virtual region T parallel to this tangent The position of the line symmetric with the central imaginary line with respect to the line segment from the position where the central imaginary line passing through the outer periphery of the virtual area T intersects with the tangent and the position where the outer periphery of the virtual area Τ intersects. Virtual region The virtual region is formed in the shape of the region cut off. The configuration shown in FIG. 15 is suitable for preventing or reducing the reception of unnecessary light other than ± 1st order light R + 1 and R-1 even if the optical path characteristics change corresponding to the form of the optical path. Easy to design in shape. For example, even when the optical path direction is restricted due to downsizing of the optical pickup 300, it is possible to cope with it, and versatility can be improved. Furthermore, by adopting a shape corresponding to such a cut-off area, even when the tracking direction is inclined with respect to the virtual area Τ, the shape divided in the tracking direction can be easily made symmetrical. A tracking error signal corresponding to a good light reception state can be generated and good control can be performed.
[0052] そして、第 1のサブ受光部 352および第 2のサブ受光部 353を 2分割に形成して説 明したが、複数に分割、あるいは領域内での光量差を検出可能で受光状態を検出 できるいずれの形態としてもよい。メイン受光部 351も同様に、 4分割に形成した構成 に限らず、複数に分割、あるいは領域内での光量差を検出可能で受光状態を検出 できるいずれの形態とすることができる。また、メイン受光部 351は、正方形に限らず 、円形、多角形など、受光状態を検出でき適切なフォーカシングを実行できるいずれ の形状とすることができる。  [0052] Although the first sub light receiving unit 352 and the second sub light receiving unit 353 have been described as being divided into two parts, the light receiving state can be detected by dividing into a plurality of parts or detecting a light amount difference within the region. Any form that can be detected may be used. Similarly, the main light receiving unit 351 is not limited to the four-divided configuration, and can be divided into a plurality of parts or any form that can detect a light amount difference within a region and detect a light receiving state. In addition, the main light receiving unit 351 is not limited to a square, and may have any shape such as a circle or a polygon that can detect a light receiving state and perform appropriate focusing.
[0053] また、メイン受光部 351の両側に第 1のサブ受光部 352および第 2のサブ受光部 35 3が隣接する状態に一方向で隣接させて形成したが、これに限られない。すなわち、 光学素子にて適宜反射、屈折などされてメイン受光部 351とは異なる位置に設けたり 、三角形の頂点に対応するように配設したりするなどしてもよ!ヽ。  [0053] Although the first sub light receiving unit 352 and the second sub light receiving unit 353 are formed adjacent to each other in one direction on both sides of the main light receiving unit 351, the present invention is not limited to this. That is, it may be provided at a position different from the main light receiving part 351 by being appropriately reflected or refracted by the optical element, or may be arranged so as to correspond to the apex of the triangle.
[0054] さらに、第 1のサブ受光部 352および第 2のサブ受光部 353を一方向に長手状に 形成して説明したが、光路の特性変化により照射領域 Sが変位する軌跡に応じた形 状であればよぐ一方向に限られない。  [0054] Furthermore, the first sub light receiving unit 352 and the second sub light receiving unit 353 have been described as being formed in a longitudinal direction in one direction. The shape is not limited to one direction.
[0055] そして、受光素子 350としては、 0次光 R0を受光するメイン受光部 351、士 1次光 R +1, R-1をそれぞれ受光する第 1のサブ受光部 352および第 2のサブ受光部 353の 3 つの受光領域を有して説明したが、さらに回折された光を受光する他の受光領域を 設けた構成などとしてもよい。 [0056] また、光源としては、 CD用レーザ光および DVD用レーザ光の 2つの波長の光を出 射する構成、いずれか一方のみを出射する構成、 2つの波長の光に限らずさらに他 の波長の光を出射する構成、あるいは CD用レーザ光を出射する CD用半導体レー ザと DVD用レーザ光を出射する DVD用半導体レーザとをそれぞれ用いる構成など としてもよい。また、半導体レーザ 320に限らず、他のいずれの光源をも利用できる。 さらには、 CD用および DVD用の波長に限らない。なお、異なる波長を出力する構成 においては、波長に対応した回折格子を有するグレーティング素子 331をそれぞれ 配設する。 [0055] The light receiving element 350 includes a main light receiving unit 351 that receives the 0th order light R0, a first sub light receiving unit 352 that receives the first order light R + 1 and R-1, and a second sublight In the above description, the light receiving unit 353 has three light receiving regions. However, another light receiving region for receiving diffracted light may be provided. [0056] In addition, the light source is not limited to light having two wavelengths, a structure that emits light of two wavelengths, a laser beam for CD and a laser beam for DVD, a light that emits only one of the two wavelengths, and other types of light sources. A configuration that emits light of a wavelength, or a configuration that uses a CD semiconductor laser that emits CD laser light and a DVD semiconductor laser that emits DVD laser light, respectively, may be used. Further, not only the semiconductor laser 320 but also any other light source can be used. Furthermore, it is not limited to the wavelength for CD and DVD. Note that in a configuration that outputs different wavelengths, a grating element 331 having a diffraction grating corresponding to the wavelength is provided.
[0057] そして、光ピックアップ 300の光路を形成する各光学素子は、上述した構成に限ら ず、他の配列関係や他の光学素子を備えた構成など、情報処理部 240の外観形状 や使用する波長などに応じて適宜設定できる。  [0057] The optical elements forming the optical path of the optical pickup 300 are not limited to the above-described configuration, but include the external shape of the information processing unit 240 and other configurations such as other arrangement relationships and configurations including other optical elements. It can be set as appropriate according to the wavelength.
[0058] その他、本発明の実施の際の具体的な構造および手順は、本発明の目的を達成 できる範囲で他の構造などに適宜変更できる。  [0058] In addition, the specific structure and procedure for carrying out the present invention can be appropriately changed to other structures and the like as long as the object of the present invention can be achieved.
[0059] 〔実施の形態の効果〕  [Effect of Embodiment]
上述したように、半導体レーザ 320から第 0の記録層 13八ゃ第1の記録層12八で反 射されて受光するまでの光路の特性変化により、グレーティング素子 331にて回折さ れた対をなす士 1次光 R+l, R-1の照射される照射領域 Sが変化する領域を含む全 領域に対応した形状に、第 1のサブ受光部 352および第 2のサブ受光部 353をそれ ぞれ形成している。このため、例えば記録面が 2層構造の光ディスク 10で生じる迷光 Rxや乱反射など、適切に反射された ± 1次光 R+l, R-1以外の不要な光を受光して しまうことを防止あるいは低減でき、良好に反射される光の状態を検出できる。  As described above, the pair diffracted by the grating element 331 is changed by the characteristic change of the optical path from the semiconductor laser 320 until it is reflected by the 0th recording layer 13 and the first recording layer 128 and received. Eggplanter The first sub-light-receiving part 352 and the second sub-light-receiving part 353 are formed in a shape corresponding to the entire area including the area where the irradiation area S of the primary light R + l, R-1 is changed. Each is formed. For this reason, for example, it is possible to prevent receiving unnecessary light other than ± 1st order light R + l and R-1 that have been properly reflected, such as stray light Rx and diffuse reflection generated by the optical disk 10 having a two-layer recording surface. Alternatively, the state of light that can be reduced and reflected well can be detected.
[0060] また、半導体レーザ 320から第 0の記録層 13Aや第 1の記録層 12Aで反射されて 受光するまでの光路の特性変化により、グレーティング素子 331にて回折された対を なす士 1次光 R+l, R-1の照射される照射領域 Sが変化する領域を含む全領域に接 する複数の接線にて囲まれた形状に、第 1のサブ受光部 352および第 2のサブ受光 部 353をそれぞれ形成している。このため、例えば記録面が 2層構造の光ディスク 10 で生じる迷光 Rxや乱反射など、適切に反射された ± 1次光 R+l, R-1以外の不要な 光を受光してしまうことを簡単な構造で防止ある 、は低減でき、良好に反射される光 の状態を検出できる。 [0060] Further, a pair of diffractors diffracted by the grating element 331 due to a change in the characteristics of the optical path from the semiconductor laser 320 until it is reflected by the 0th recording layer 13A and the first recording layer 12A and received. The first sub-light-receiving unit 352 and the second sub-light-receiving are shaped into a shape surrounded by a plurality of tangent lines that touch the entire region including the region where the irradiation region S where the light R + l, R-1 is irradiated changes. Each part 353 is formed. For this reason, it is easy to receive unnecessary light other than ± 1st-order light R + l, R-1 that has been properly reflected, such as stray light Rx or diffuse reflection that occurs on an optical disk 10 with a two-layer recording surface. With a simple structure, it is possible to reduce or reduce the light reflected well Can be detected.
[0061] さらに、半導体レーザ 320から第 0の記録層 13Aや第 1の記録層 12Aで反射され て受光するまでの光路の特性変化により、グレーティング素子 331にて回折された対 をなす ± 1次光 R+l, R-1の照射される照射領域 Sが変化する方向に沿った接線と、 0次受光部と略同一形状の仮想領域 Tの中心を通り接線と略平行な中心仮想線と仮 想領域 Tの外周縁との交差する位置から接線および仮想領域 Tの外周縁の交差す る位置までの線分に対して中心か宋銭で対称な線分との位置で仮想領域 Tを切り落 とした領域の形状に、第 1のサブ受光部 352および第 2のサブ受光部 353をそれぞ れ形成している。このため、例えば記録面が 2層構造の光ディスク 10で生じる迷光 Rx や乱反射など、適切に反射された ± 1次光 R+l, R-1以外の不要な光を受光してしま うことを簡単な構造で光路の形態に対応して防止あるいは低減でき、良好に反射さ れる光の状態を検出できる。  [0061] Furthermore, a ± first-order that forms a pair diffracted by the grating element 331 due to a change in the characteristics of the optical path from the semiconductor laser 320 until it is reflected by the 0th recording layer 13A or the first recording layer 12A and received. A tangent line along the direction in which the irradiation area S irradiated with the light R + l, R-1 is changed, and a central imaginary line that is substantially parallel to the tangent line through the center of the virtual area T having substantially the same shape as the zero-order light receiving section The virtual region T is positioned at the center or in a symmetric line segment with respect to the line segment from the position where the outer periphery of the virtual region T intersects to the position where the outer edge of the tangent and virtual region T intersects. A first sub light receiving part 352 and a second sub light receiving part 353 are formed in the shape of the cut-off area. For this reason, for example, it is necessary to receive unnecessary light other than ± 1st-order light R + l, R-1 that has been properly reflected, such as stray light Rx and diffuse reflection that occur on an optical disk 10 having a two-layer recording surface. With a simple structure, it can be prevented or reduced according to the form of the optical path, and the state of light reflected well can be detected.
[0062] また、グレーティング素子 331にて回折された対をなす士 1次光 R+l, R-1の受光状 態を検出する第 1のサブ受光部 352および第 2のサブ受光部 353を、光ディスク 10 の径方向に対応するトラッキング方向で長手状にそれぞれ形成して ヽる。このため、 例えば記録面が 2層構造の光ディスク 10で生じる迷光 Rxや乱反射など、適切に反射 された ± 1次光 R+l, R-1以外の不要な光を受光してしまうことを簡単な構造で容易 に防止あるいは低減でき、良好に反射される光の状態を検出できる。  [0062] Further, the first sub light receiving unit 352 and the second sub light receiving unit 353 for detecting the light receiving state of the primary light R + l and R-1 that form a pair diffracted by the grating element 331 are provided. Each is formed in a longitudinal shape in a tracking direction corresponding to the radial direction of the optical disk 10. For this reason, for example, it is easy to receive unnecessary light other than ± 1st order light R + l, R-1 that has been properly reflected, such as stray light Rx and diffuse reflection generated by the optical disk 10 having a two-layer recording surface. With a simple structure, it can be easily prevented or reduced, and the state of light reflected well can be detected.
[0063] 所定の形状に設計された第 1のサブ受光部 352および第 2のサブ受光部 353を有 する受光素子 350を備えたディスク装置 100としている。このため、例えば不要な光 の受光による不適切なトラッキングエラー信号の生成により誤作動するなどを防止で き、光ディスク 10に記録された情報の読取処理や情報を記録する記録処理などの情 報処理を適切に実施できる。  The disk device 100 includes a light receiving element 350 having a first sub light receiving unit 352 and a second sub light receiving unit 353 designed in a predetermined shape. For this reason, for example, it is possible to prevent malfunction due to generation of an inappropriate tracking error signal due to reception of unnecessary light, and information processing such as reading processing of information recorded on the optical disc 10 and recording processing of recording information. Can be implemented appropriately.
産業上の利用可能性  Industrial applicability
[0064] 本発明は、回折格子にて回折され記録媒体にて反射された回折光を受光する光ピ ックアップ装置に利用できる。 The present invention can be used for an optical pickup device that receives diffracted light that is diffracted by a diffraction grating and reflected by a recording medium.

Claims

請求の範囲 The scope of the claims
[1] ビームを照射する光源と、  [1] a light source for irradiating the beam;
この光源から出射される前記ビームを透過光と回折光とに分けて記録媒体へ出力 する回折格子と、  A diffraction grating that divides the beam emitted from the light source into transmitted light and diffracted light and outputs the divided light to a recording medium;
前記記録媒体により反射された前記透過光を受光する第 1の受光部と、 前記回折格子により回折された回折光を受光する第 2の受光部と、を具備し、 前記第 2の受光部は、前記ビームが前記光源から照射されて受光するまでの光路 の変化により前記回折光が照射される照射領域が変化する領域を含む全領域の形 状に対応した形状に形成された  A first light receiving unit that receives the transmitted light reflected by the recording medium; and a second light receiving unit that receives the diffracted light diffracted by the diffraction grating, and the second light receiving unit includes: The beam is formed in a shape corresponding to the shape of the entire region including the region where the irradiation region irradiated with the diffracted light changes due to a change in the optical path from when the beam is irradiated from the light source to receiving the beam.
ことを特徴とした光ピックアップ装置。  An optical pickup device characterized by that.
[2] 請求項 1に記載の光ピックアップ装置であって、 [2] The optical pickup device according to claim 1,
前記第 2の受光部は、前記光路の変化により変化する前記回折光の照射領域を含 む全領域の形状に接する複数の接線にて囲まれた形状に形成された  The second light receiving portion is formed in a shape surrounded by a plurality of tangent lines that touch the shape of the entire region including the irradiation region of the diffracted light that changes due to the change in the optical path.
ことを特徴とした光ピックアップ装置。  An optical pickup device characterized by that.
[3] 請求項 1または請求項 2に記載の光ピックアップ装置であって、 [3] The optical pickup device according to claim 1 or claim 2,
前記第 1の受光部は、矩形に形成され、  The first light receiving portion is formed in a rectangular shape,
前記第 2の受光部は、前記第 1の受光部と略同一形状の仮想領域に対して、前記 光路の変化により変化する前記回折光の照射領域の変化する変化方向に沿った接 線と、前記仮想領域の中心を通り前記接線と略平行な中心仮想線と前記仮想領域 の外周縁との交差する位置から前記接線および前記仮想領域の外周縁の交差する 位置までの線分に対して前記中心仮想線で対象な線分との位置で前記仮想領域を 切り落とした領域の形状にそれぞれ形成された  The second light receiving unit has a tangent along a changing direction of the irradiation region of the diffracted light that changes due to a change in the optical path with respect to a virtual region having substantially the same shape as the first light receiving unit, and With respect to a line segment from a position where a central virtual line that passes through the center of the virtual area and substantially parallel to the tangent line and an outer peripheral edge of the virtual area intersects with a position where the tangent line and the outer peripheral edge of the virtual area intersect Each of the virtual regions is formed in the shape of a region cut off from the virtual region at the position of the center virtual line and the target line segment.
ことを特徴とした光ピックアップ装置。  An optical pickup device characterized by that.
[4] 請求項 1な 、し請求項 3の 、ずれかに記載の光ピックアップ装置であって、 [4] The optical pickup device according to any one of claims 1 and 3, wherein:
前記第 2の受光部は、前記光源および前記回折格子との位置関係の変化を前記 光路の変化として前記回折光の照射領域が変化する全領域の形状に対応した形状 である  The second light receiving unit has a shape corresponding to the shape of the entire region in which the irradiation region of the diffracted light changes by changing the positional relationship between the light source and the diffraction grating as the change in the optical path.
ことを特徴とした光ピックアップ装置。 An optical pickup device characterized by that.
[5] 請求項 1な 、し請求項 4の 、ずれかに記載の光ピックアップ装置であって、 前記第 2の受光部は、前記光路の変化により前記回折光の照射領域の径寸法が 変化する最大領域に対応した形状である [5] The optical pickup device according to any one of claims 1 and 4, wherein the second light receiving unit has a diameter dimension of an irradiation region of the diffracted light changed by a change in the optical path. The shape corresponds to the maximum area
ことを特徴とした光ピックアップ装置。  An optical pickup device characterized by that.
[6] 請求項 1な 、し請求項 5の 、ずれかに記載の光ピックアップ装置であって、 [6] The optical pickup device according to any one of claims 1 and 5, wherein:
前記記録媒体は、略螺旋状または略同心円周状に情報が記録されるトラックを有し たディスク状記録媒体であり、  The recording medium is a disk-shaped recording medium having a track on which information is recorded in a substantially spiral shape or a substantially concentric circumference,
前記第 2の受光部は、トラッキング方向に長手状に形成された  The second light receiving portion is formed in a longitudinal shape in the tracking direction.
ことを特徴とした光ピックアップ装置。  An optical pickup device characterized by that.
[7] 請求項 1な 、し請求項 6の 、ずれかに記載の光ピックアップ装置であって、 [7] The optical pickup device according to any one of claims 1 and 6, wherein:
前記第 2の受光部は、前記第 1の受光部における一方向に沿って両側に隣接する 位置に設けられ、隣接方向に略沿った方向で 2分割された  The second light receiving portion is provided at a position adjacent to both sides along one direction in the first light receiving portion, and is divided into two in a direction substantially along the adjacent direction.
ことを特徴とした光ピックアップ装置。  An optical pickup device characterized by that.
[8] 請求項 1な 、し請求項 7の 、ずれかに記載の光ピックアップ装置であって [8] The optical pickup device according to any one of claims 1 and 7,
前記第 2の受光部は、前記回折光の照射領域が変化する方向に略沿った方向で 少なくとも 2分割に形成された  The second light receiving portion is formed in at least two parts in a direction substantially along a direction in which the irradiation region of the diffracted light changes.
ことを特徴とした光ピックアップ装置。  An optical pickup device characterized by that.
[9] 請求項 1な 、し請求項 8の 、ずれかに記載の光ピックアップ装置であって、 [9] The optical pickup device according to any one of claims 1 and 8, wherein
前記第 2の受光部は、中心を通る中心軸で対称形状に分割形成された ことを特徴とした光ピックアップ装置。  The optical pickup device, wherein the second light receiving section is divided and formed symmetrically with a central axis passing through the center.
[10] 請求項 1な!、し請求項 9の 、ずれかに記載の光ピックアップ装置であって、 [10] The optical pickup device according to any one of claims 1 to 9 and claim 9,
前記第 1の受光部は、前記第 2の受光部における前記回折光の照射領域が前記 光路の変化により変化する変化方向に略沿った方向で 2分割されるとともに、この移 動方向に対して略直交する方向で 2分割されて少なくとも 4分割に形成された ことを特徴とした光ピックアップ装置。  The first light receiving unit is divided into two in a direction substantially along a changing direction in which the irradiation region of the diffracted light in the second light receiving unit changes due to a change in the optical path, and with respect to the moving direction. An optical pickup device characterized in that it is divided into two at least in four directions in a substantially orthogonal direction.
[11] 請求項 1ないし請求項 10のいずれかに記載の光ピックアップ装置であって、 [11] The optical pickup device according to any one of claims 1 to 10,
前記第 2の受光部は、前記第 1の受光部の受光面積より小さい受光面積に形成さ れた ことを特徴とした光ピックアップ装置。 The second light receiving part is formed in a light receiving area smaller than the light receiving area of the first light receiving part. An optical pickup device characterized by that.
[12] 請求項 1な!、し請求項 11の 、ずれかに記載の光ピックアップ装置であって、  [12] The optical pickup device according to any one of claims 1 to 11 and claim 11,
前記記録媒体は、前記光が照射される光軸方向で前記記録面が層状に設けられ たものである  In the recording medium, the recording surface is provided in a layered manner in an optical axis direction in which the light is irradiated.
ことを特徴とした光ピックアップ装置。  An optical pickup device characterized by that.
[13] 請求項 1ないし請求項 12のいずれかに記載の光ピックアップ装置であって、  [13] The optical pickup device according to any one of claims 1 to 12,
前記透過光および前記回折光を前記記録媒体の記録面へ集光させる集光手段と 前記光源および前記集光手段間に設けられ前記光源から出射される光を略平行 に変換する光学素子と、を具備し、  A condensing means for condensing the transmitted light and the diffracted light onto a recording surface of the recording medium; an optical element provided between the light source and the condensing means for converting light emitted from the light source into substantially parallel; Comprising
前記第 1の受光部は、前記光源、前記記録面および前記光学素子との位置関係に より変化する前記回折光の照射領域が変化する領域を含む全領域の形状に対応す る形状である  The first light receiving portion has a shape corresponding to the shape of the entire region including a region in which an irradiation region of the diffracted light that changes depending on a positional relationship with the light source, the recording surface, and the optical element is changed.
ことを特徴とした光ピックアップ装置。  An optical pickup device characterized by that.
[14] 請求項 1ないし請求項 13のいずれかに記載の光ピックアップ装置であって、 [14] The optical pickup device according to any one of claims 1 to 13,
前記反射された透過光および回折光を前記第 1の受光部および前記第 2の受光部 にそれぞれ集光させる光学素子を備え、  An optical element for condensing the reflected transmitted light and diffracted light on the first light receiving unit and the second light receiving unit, respectively.
前記第 2の受光部は、前記光源、前記記録面および前記光学素子との位置関係に より変化する前記回折光の照射領域が変化する領域を含む全領域の形状に対応す る形状である  The second light receiving portion has a shape corresponding to the shape of the entire region including the region where the irradiation region of the diffracted light that changes depending on the positional relationship between the light source, the recording surface, and the optical element changes.
ことを特徴とした光ピックアップ装置。  An optical pickup device characterized by that.
PCT/JP2005/012308 2004-07-06 2005-07-04 Optical pickup device WO2006004081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-199903 2004-07-06
JP2004199903 2004-07-06

Publications (1)

Publication Number Publication Date
WO2006004081A1 true WO2006004081A1 (en) 2006-01-12

Family

ID=35782882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012308 WO2006004081A1 (en) 2004-07-06 2005-07-04 Optical pickup device

Country Status (1)

Country Link
WO (1) WO2006004081A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176367A (en) * 2008-01-25 2009-08-06 Sanyo Electric Co Ltd Optical pickup device
JP2009187638A (en) * 2008-02-08 2009-08-20 Sanyo Electric Co Ltd Optical pickup device
JP2010244623A (en) * 2009-04-07 2010-10-28 Panasonic Corp Optical pickup device and optical disk device
US8184519B2 (en) 2008-01-25 2012-05-22 Sanyo Electric Co., Ltd. Optical pickup apparatus
US8576684B2 (en) 2010-10-28 2013-11-05 Toshiba Samsung Storage Technology Korea Corporation Compatible optical pickup and optical information storage medium apparatus using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020473A1 (en) * 1994-12-28 1996-07-04 Sony Corporation Optical pickup device
JPH09204681A (en) * 1995-11-21 1997-08-05 Sony Corp Method and system for recording/reproducing recording medium
JP2003317306A (en) * 2002-04-19 2003-11-07 Ricoh Co Ltd Optical pickup device and optical disk device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020473A1 (en) * 1994-12-28 1996-07-04 Sony Corporation Optical pickup device
JPH09204681A (en) * 1995-11-21 1997-08-05 Sony Corp Method and system for recording/reproducing recording medium
JP2003317306A (en) * 2002-04-19 2003-11-07 Ricoh Co Ltd Optical pickup device and optical disk device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176367A (en) * 2008-01-25 2009-08-06 Sanyo Electric Co Ltd Optical pickup device
US8184519B2 (en) 2008-01-25 2012-05-22 Sanyo Electric Co., Ltd. Optical pickup apparatus
JP2009187638A (en) * 2008-02-08 2009-08-20 Sanyo Electric Co Ltd Optical pickup device
JP2010244623A (en) * 2009-04-07 2010-10-28 Panasonic Corp Optical pickup device and optical disk device
US8576684B2 (en) 2010-10-28 2013-11-05 Toshiba Samsung Storage Technology Korea Corporation Compatible optical pickup and optical information storage medium apparatus using the same

Similar Documents

Publication Publication Date Title
US8169880B2 (en) Optical pickup having radially arranged lenses in a low profile construction
WO2006004081A1 (en) Optical pickup device
US20060013110A1 (en) Optical pickup and disk drive apparatus
US8130624B2 (en) Optical head device for forming light spot on disc-shaped information medium
US7680007B2 (en) Optical state recognizer, information processor, and optical state recognizing method
JPH08329487A (en) Optical pickup device with position adjusting device of objective lens
WO2007094288A1 (en) Optical head, optical head control method and optical information processor
US8787137B2 (en) Optical pickup device and optical disc device
JPH09185843A (en) Optical pickup for dual focusing
US7327662B2 (en) Optical pickup and optical disk drive
JP2005174529A (en) Optical head
KR101727520B1 (en) Optical pick-up apparatus with diffractive optical element and optical recording/reproducing apparatus having the same
US7447136B2 (en) Optical pickup and optical disc apparatus
JP5121762B2 (en) Optical pickup
JP3988464B2 (en) Optical device, composite optical element, optical pickup device, and optical disk device
US20110276989A1 (en) Optical pickup device and optical disc drive
JP2014175030A (en) Optical integrated element, optical head device, and optical disk device
JP4563334B2 (en) Optical pickup device and optical disk device
JP2015172985A (en) optical pickup device
JP2008041184A (en) Optical pickup device and optical disk device
JP2002208167A (en) Optical pickup device and optical disk device
US20120314556A1 (en) Optical pickup device and optical disc apparatus
JPH11134668A (en) Optical head and recorder and/or reproducer
JPH11176012A (en) Optical pickup and optical disk device
JP2001160235A (en) Optical head and optical recording and reproducing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP