WO2006004076A1 - Physiologically active biomaterial - Google Patents

Physiologically active biomaterial Download PDF

Info

Publication number
WO2006004076A1
WO2006004076A1 PCT/JP2005/012292 JP2005012292W WO2006004076A1 WO 2006004076 A1 WO2006004076 A1 WO 2006004076A1 JP 2005012292 W JP2005012292 W JP 2005012292W WO 2006004076 A1 WO2006004076 A1 WO 2006004076A1
Authority
WO
WIPO (PCT)
Prior art keywords
silk
protein
bioactive
biomaterial
silkworm
Prior art date
Application number
PCT/JP2005/012292
Other languages
French (fr)
Japanese (ja)
Inventor
Rika Hino
Masahiro Tomita
Katsutoshi Yoshizato
Original Assignee
Hiroshima Industrial Promotion Organization
Biointegrence Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Industrial Promotion Organization, Biointegrence Inc. filed Critical Hiroshima Industrial Promotion Organization
Publication of WO2006004076A1 publication Critical patent/WO2006004076A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • A01K67/0333Genetically modified invertebrates, e.g. transgenic, polyploid
    • A01K67/0337Genetically modified Arthropods
    • A01K67/0339Genetically modified insects, e.g. Drosophila melanogaster, medfly
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43586Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention of this application relates to a biomaterial having a given physiological activity. More specifically, the invention of this application includes a transgenic silkworm that produces a silk protein containing a fusion protein of silk hive mouth-in and a physiologically active substance, and a silk protein produced by the silkworm or the fusion protein as a main component. It relates to bioactive biomaterials.
  • Biological tissues are composed of cells and extracellular matrix, and cells carry out various physiological phenomena including adhesion, proliferation and differentiation using the extracellular matrix as a scaffold.
  • the extracellular matrix In the case of damage to living tissue, if the extracellular matrix is not present, the repair and regeneration of the tissue will not be successful because the damaged area and its surrounding cells will not adhere, proliferate or differentiate rapidly. . Therefore, when a living tissue is largely deficient, an extracellular matrix must be provided from the outside to the target tissue that is the deficient site. Therefore, what is needed as a substitute for the extracellular matrix is biomaterial that has an affinity for organisms.
  • Bioactive proteins such as cell growth factors and cytokines that promote cell growth and differentiation play an extremely important role in tissue repair and regeneration.
  • Human basic fibroblast growth factor (bFGF) acts at a low concentration on not only fibroblasts but also a wide range of cells such as vascular endothelial cells, osteoblasts, and nerve cells to promote tissue repair and regeneration. Therefore, an attempt has been made to supply these physiologically active proteins from the outside to the damaged site to repair and accelerate regeneration. However, if the supplied bioactive protein is at a low concentration in the target tissue, tissue repair / regeneration does not proceed quickly.
  • Non-patent Document 1 When an aqueous solution of bFGF is administered to a target tissue, about half of the dose administered in only 4 hours is lost due to diffusion (Non-patent Document 1).
  • Silk hive mouth-in is the main protein that constitutes about 70% of silk thread spouted by silkworms.
  • Silk fiber mouth-in is a natural material and has been used as a material that can be implanted into the body of surgical sutures for many years because it has excellent operability and biocompatibility. .
  • silk fiproin has been liquefied in water and methods for producing films and gels using it have been developed, and the potential for use as new biomaterials is expanding.
  • Non-patent Document 2 a support for cell culture using a silk-fibre mouth-in film
  • Patent Document 3 wound skin materials
  • Patent Document 3 contact lenses
  • Non-patent Document 3 silk fibroin films have been shown to be digested by protease XIV collagenase IA under physiological conditions. It has been suggested that mouth-in has biocompatibility and biodegradability.
  • Non-patent document 4 integrin recognition sequence (RGD) (Non-patent document 4) and ⁇ -galactose residue (Non-patent document 5) specifically recognized by hepatocyte surface
  • RGD integrin recognition sequence
  • Non-patent document 5 ⁇ -galactose residue
  • Non-Patent Document 6 As a material that promotes tissue repair and regeneration by immobilizing bioactive proteins such as cell growth factors and cytokines that promote cell growth and differentiation to biomaterials such as chitosan film through chemical covalent bonds Attempts to use it have been made (Non-Patent Document 6). At this time, purified recombinant protein derived from E. coli or insect cells is used as the physiologically active protein used for immobilization. Therefore, a biomaterial in which a physiologically active protein is immobilized cannot be produced unless complicated steps such as expression, purification, and immobilization of the recombinant protein are performed. In addition, in order for this immobilized bioactive protein to exhibit high biological activity, it is necessary to immobilize a relatively large amount of recombinant protein.
  • the quantitative problem of the physiologically active protein to be immobilized is the biggest problem in producing a biomaterial containing a physiologically active protein. This is because in the process of chemical immobilization, the biological activity of the bioactive protein decreases due to heating or contact with an organic solvent.
  • Transgenic silkworm The applicants of the present invention have invented and have applied for a patent for a transgenic silkworm that produces recombinant human collagen as part of a silk protein (Patent Document 4). In addition, a method for producing a recombinant cytokine using a transgenic silkworm has been devised (Patent Document 5). Thus, silkworms are attracting attention as host animals for producing recombinant proteins.
  • Patent Document 1 Japanese Patent Laid-Open No. 1-243948
  • Patent Document 2 JP-A-11-70160
  • Patent Document 3 Japanese Patent Laid-Open No. 1-52303
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-16144
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-325188
  • Non-Patent Document 1 J. Biomed. Mater. Res. 64A, 177-181 (2003)
  • Non-Patent Document 2 J. Biomed. Mater. Res. 29, 1215-1221 (1995)
  • Non-Patent Document 3 Biomaterials 24, 357-365 (2003)
  • Non-Patent Document 4 J. Biomed. Mater. Res. 54, 139-148 (2001)
  • Non-Patent Document 5 Biomaterials 25, 1 13 1- 1 140 (2004)
  • Non-Patent Document 6 J Biomed. Mater. Res. 64Ai l), 177-181 (2003)
  • biomaterials to which bioactive proteins are immobilized are large as medical materials due to two effects such as “bioactivity” of the protein and “biocompatibility” of the biomaterial. It has potential.
  • bioactive proteins and biomaterials were prepared separately and combined to create them.
  • Another problem is that the activity of the immobilized physiologically active protein is decreasing.
  • the invention of this application has been made in view of the problems of the prior art as described above, and is a novel material that can easily obtain a biomaterial containing a biologically active protein that retains activity and function. The problem is to provide means.
  • This application is obtained from a transgenic silkworm having a fusion polynucleotide encoding a fusion protein of silk fibroin and a physiologically active protein in the genome as a first invention for solving the above-mentioned problems.
  • a bioactive biomaterial mainly composed of a recombinant silk protein containing the fusion protein.
  • this application is a recombinant silk protein obtained from a transgenic silkworm that possesses a fusion polynucleotide encoding a fusion protein of silk fiber mouth-in and a physiologically active protein in the genome. From the above, a bioactive biomaterial from which one or more protein components other than the fusion protein are removed is provided.
  • a transgene which has a fusion polynucleotide encoding a fusion protein of silk fiber mouth-in and a physiologically active protein in its genome, and produces a recombinant silk protein containing the fusion protein.
  • the physiologically active protein is a human fibroblast growth factor.
  • This application provides, as a fourth invention, a silk thread or a protein in the silk line produced by the transgenic silkworm of the third invention.
  • This application provides, as a fifth invention, a bioactive biomaterial solution obtained by treating a silk thread produced by the transgenic silkworm of the third invention with a solubilizing agent.
  • This application provides, as a sixth invention, a method for regenerating the physiological activity of the bioactive biomaterial solution of the fifth invention, wherein the bioactive biomaterial solution is treated with a denaturant, and then in the bioactive biomaterial solution. There is provided a method characterized by reducing the concentration of the denaturant.
  • This application provides, as a seventh invention, a bioactive biomaterial processed product molded using the bioactive biomaterial of the first invention or the second invention.
  • physiologically active protein means a protein having at least one known function that acts on physiological functions of animals and plants including humans.
  • Fusion protein means that the silk fiber mouth-in and the physiologically active protein are physically fused and do not separate by operation in the normal use range.
  • the fusion protein in the present invention also means that the silk fiber mouth-in and the physiologically active protein are bound in a state that retains the function and activity corresponding to each purpose of use.
  • “recombinant silk protein including fusion protein” specifically means a protein component of silk produced by transgene silkworm or a protein in the lumen of silk gland.
  • the term “main component” means, for example, silk thread or silk thread, as long as the function of the bioactive biomaterial of the present invention is substantially carried by the fusion protein contained in the recombinant silk protein. It means that a small amount of reagent or the like used for separating the protein component from the glandular lumen may remain.
  • a bioactive biomaterial containing a fusion protein of silk hive mouth-in and a bioactive protein can be obtained as a recombinant silk protein produced by a transgene silkworm. Therefore, in the conventional method, the operations for securing and immobilizing individual purified recombinant proteins, which were necessary for immobilizing the bioactive protein to silk fibroin, are omitted. Furthermore, since no heating or treatment with an organic solvent is required, the activity of the bioactive protein is not impaired.
  • FIG. 1 shows the expression of a fusion protein between silk hive mouth-in and human bFGF in silkworm silk of Transgenic silkworm.
  • Figure A shows the result of Kumashi staining of SDS polyacrylamide gel developed from silk-five mouth-in samples prepared from silkworms of wild-type silkworm and transgenic silkworm.
  • Figure B shows the results of immunoblot analysis of the nitrocellulose membrane to which the protein developed on SDS polyacrylamide gel was transferred with anti-human bFGF polyclonal antibody.
  • Lane M contains a protein marker
  • Lane W contains a silkworm silk-in sample of a wild-type silkworm
  • Lanes 1 and 2 contain silky silkworms of different transgenic silkworms.
  • FIG. 1 shows the biological activity of silk hive mouth-in solution containing human bFGF prepared from silkworm silk of transgenic silkworm. It is the result of investigating the biological activity of silk fibroin solution containing human bFGF quantitatively using WST-1 method. Below each column of the graph is the concentration of human bFGF in the silk hive mouth-in solution added to the medium.
  • the column shows 100% growth of human umbilical vascular endothelial cells when cultured in normal medium (containing 5 ng / ml human recombinant bFGF), and human umbilical vascular endothelial cells in medium without bFGF.
  • the figure shows the relative growth of the cells when the cells are cultured with the silk fib-in solution added to the medium without bFGF, assuming that the growth of the cells when cultured is 0%.
  • proliferation of umbilical cord vascular endothelial cells by human bFGF in silk-fibre mouth-in solution was similarly performed by adding human recombinant bFGF expressed in E.
  • FIG. 4 is a structural diagram of the vector pL-bFGF prepared in the example.
  • DsRed red fluorescent protein
  • a polynucleotide encoding a fusion protein of silk fibroin and bFGF is incorporated.
  • Transgenic silkworms can be produced by introducing a polynucleotide encoding a fusion protein of a physiologically active protein and silk fib-in into the silkworm chromosome.
  • Silk hive mouth-in is a protein complex in which a hive chain in H chain with a molecular weight of 350 kDa and a hive in L chain with a molecular weight of 25 kDa are associated, and the polynucleotide encoding them is known (the hive in H chain : GenBank Accession No. AF226688; Five mouth in L chain: GenBank Accession No. M76430).
  • a polynucleotide encoding a biologically active protein is linked to either a polynucleotide encoding a hive mouth-in H chain or a hive mouth-in L chain.
  • the ligation position of the polynucleotide encoding the biologically active protein may be 5 ′ side or 3 ′ J of the polynucleotide encoding the five mouth in H chain or fiproin L chain.
  • the polynucleotides may be directly linked or indirectly linked via a linker.
  • the polynucleotide encoding the hive mouth-in H chain or the hive mouth-in L chain may be a sequence encoding the full length of each protein or a partial sequence.
  • Bioactive proteins fused with silk hive mouth-in refer to a group of proteins that exhibit various physiological activities on cells.
  • FGF fibroblast growth factor
  • MBP bone morphogenetic factor
  • EGF epidermal growth factor
  • PDGF platelet-derived growth factor
  • TGF insulin-like growth factor
  • IGF insulin-like growth factor
  • HGF hepatocyte growth factor
  • VEGF vascular endothelial growth factor
  • NNF nerve growth factor
  • interleukins This refers to cytosines including IDs, erythropoietin, colony stimulating factor (CSF), tumor necrosis factor (TNF), etc.
  • FGF Fibroblast growth factor
  • FGF-3 Fibroblast growth factor-3
  • X14445, FGF-4 J02986, FGF-5; M37825, FGF-6; X63454, FGF-7; M60828, FGF-8 AH006649, FGF-9; D 14838, FGF-10; AF411527, FGF-11; AY049782, FGF-12; U66197, FGF-13; U66198, FGF-14; U66200, FGF-16; AB009391, FGF-17; AB009249, FGF-18; AF075292, FGF-19; AFl 10400, FGF-20; AB044277, FGF-21; AY359086, FGF-22; AB021925, FGF-23; AF263537, etc. Osteogenic factors
  • BMP (Bone morphogenetic protein) -1; M22488, BMP-2; M22489, BMP-3; M22491, BMP-4; U43842, BMP-5; M60314, BMP-6; M60315, BMP-7; X51801, BMP-8B M97016, BMP-9; AF188285, BMP-10; AF101441, BMP-11; AFl 00907, etc.
  • EGF Epidermal growth factor
  • EGF Epidermal Growth Factor
  • X04571 X04571, etc.
  • PDGF Plate-derived growth factor
  • PDGF-A PDGF (Platelet-derived growth factor)
  • PDGF-B PDGF-B
  • TGF Transforming growth factor
  • TGF Transforming growth factor
  • IGF Insulin-like growth factor
  • IGF Insulin-like growth factor
  • HGF Hepatocyte growth factor
  • HGF Hepatocyte growth factor
  • VEGF Vascular endothelial growth factor
  • VEGF Vascular endothelial growth factor
  • M32977 VEGF-B
  • U52819 VEGF- C
  • X94216 VEGF-D
  • AJ000185 PIGF (Placenta growth factor); X54936, etc.
  • NGF Nema growth factor
  • X52599BDNF Brain-derived neurotrophic factor
  • Interleukin (IL) class class 1
  • IL Interleukin-1 alpha; M28983, IL-1 beta; M 15330, IL-2; U25676, I 3; M14743, IL-4; M13982, IL-5; X04688, IL-6; M29150, L- 7; J04156, IL-8; M26383, IL-9; AF361105, IL-10; M57627, IL-11; M57765, IL-12A; M65291, IL-12B; M65290, IL-13; L06801, IL-15; U14407, IL-16; M90391, IL-17; U32659, IL-18; AY044641, IL-19; AY040367, IL-20; AF212311, IL-21; AF254069, IL-22; AF279437, etc. )
  • EPO Errythropoietin
  • Ml 1319 Ml 1319, etc.
  • GM Granulocyte macrophage
  • M 1220 G (Granulocyte) -CSF
  • G G (Granulocyte) -CSF
  • M 17706 M (Macrophage) -CSF
  • M27087 etc.
  • Tumor necrosis factor (TNF) TNF
  • the polynucleotide and the polynucleotide encoding the bioactive protein are linked by genetic engineering techniques.
  • the polynucleotide encoding the fusion protein may be a fib mouth in H chain, L chain or P25. It needs to be linked downstream of the silk protein gene-derived promo. In order to increase the transcriptional activity of these promoters, an enhancer may be further linked.
  • the enhancer may be derived from a silk protein gene or from a protein other than a silk protein gene. Moreover, it may be derived from silkworms, or may be derived from other animals or viruses. In this way, a fusion protein expression cassette is constructed. This expression cassette is then inserted into a vector to create a transgenic silkworm. Any vector may be used as long as it can insert a foreign gene into the silkworm chromosome. For example, a vector prepared based on a DNA-type transposon can be used. is there. So far, DNA-type transposons that have been shown to have gene transfer activity into the silkworm chromosome include piggyBac and Mariner> Minos.
  • the vector using piggyBac is actually transgeneic silkworm by Tamura et al. (Nat. Biotechnol. 18, 81-84 (2000)) Nyota (Nat. Biotechnol. 21, 52-56 (2003)) et al. Is used to create Use a vector created based on DiggyBac In this case, for example, a method similar to the method of Tamura et al. (Nat. Biotechnol. 18, 81-84, 2000) may be used.
  • a pair of inverted repetitive sequences of piggyBac are incorporated into an appropriate plasmid vector, and a polynucleotide encoding a fusion protein and a promoter are inserted into a region sandwiched between the inverted repetitive sequences in this vector.
  • This plasmid vector is microinjected into silkworm eggs together with a piggyBac transposase expression vector (helper plasmid).
  • helper plasmid is a recombinant plasmid vector lacking one or both of the piggyBac inverted repeats and essentially incorporating only the piggyBac transposase gene region.
  • the promoter for expressing the transposase may be the endogenous transposase promoter, or the silkworm / actin promoter or the Drosophila HSP70 promoter. May be used.
  • the marker gene can be incorporated at the same time in the vector in which the polynucleotide to be inserted is incorporated.
  • a promoter sequence such as a silkworm-actin promoter or a Drosophila HSP70 promoter is incorporated upstream of the marker gene, and the marker gene is expressed by its action. As described above, F0 larvae hatched from silkworm eggs microinjected with Vector 1 are raised.
  • This F0 silkworm is crossed with a sibling or wild-type silkworm, and a transgenic silkworm is screened from the next-generation (F1 generation) silkworm.
  • the marker gene is integrated in the vector, screening is performed using the phenotype.
  • screening can be performed by irradiating F1 generation silkworm eggs and larvae with excitation light and detecting the fluorescence emitted by the fluorescent protein.
  • PCR can be screened by Southern blotting using genomic DNA extracted from larvae and silkworm pupae.
  • transgenic silkworm the polynucleotide encoding the fusion protein is stably integrated into the chromosome and is not lost even in its offspring.
  • Transgenic silkworms that have a polynucleotide encoding a fusion protein of silk fiproin and a bioactive protein synthesize a recombinant fusion protein in the silk gland at the age of five. Since this recombinant fusion protein has a part of the amino acid sequence of silk fiber mouth-in, it forms a complex with the endogenous silk protein, and the silk gland lumen from the silk gland cells together with the endogenous silk protein. Secreted into the body.
  • Liquid silk fibroin containing recombinant fusion protein secreted into the lumen becomes silk thread when spited, and silkworms form cocoons with the silk thread.
  • the bioactive biomaterial (recombinant silk protein) of the present invention is recovered from the liquid silk protein accumulated in the silk gland lumen, it can be obtained, for example, by the following method. Cut the body of Transgenic silkworm the day before spitting silk thread, take out the silk gland, and cut and collect only the rear silk gland. The collected posterior silk gland is cut into pieces of about 5 mm and soaked in distilled water for about 4 hours. Thereafter, tissue pieces of the posterior silk gland are removed by tweezers or removed by light centrifugation.
  • a recombinant silk protein (bioactive biomaterial) containing a fusion protein of a bioactive protein and a silk fiber mouth can be prepared as an aqueous solution.
  • the silk thread spun by Transgenic Silkworm itself becomes a bioactive biomaterial.
  • the silk thread of Transgenic silkworm can be made into a bioactive biomaterial solution (for example, an aqueous solution) by treating the silk thread with a solubilizing agent, for example.
  • chaotropic salts such as 9 M lithium thiocyanate and lithium bromide
  • (Ratio 1: 8: 2) (Nissan 6 1 2, 91 -94 (1998)) can be used.
  • the silk thread is solubilized in these solubilizers by soaking for 10 to 48 hours, preferably 18 to 36 hours, particularly preferably about 24 hours.
  • this aqueous solution can be prepared as a bioactive biomaterial aqueous solution by dialysis with distilled water or the like.
  • bioactive biomaterial solution In the process of isolating silk fiber lumen protein (bioactive biomaterial solution) or in the process of preparing bioactive biomaterial solution from silk thread, the bioactive protein is denatured and its biological activity is lost or reduced.
  • a bioactive biomaterial solution is treated with a denaturing agent, and then the biological activity of the bioactive protein is regenerated by reducing the concentration of the denaturing agent in the bioactive biomaterial solution, thereby A physiologically active biomaterial aqueous solution containing a physiologically active protein can also be obtained.
  • a silk protein solution from a liquid silk protein or silk thread is dissolved in a buffer solution containing a denaturing agent (for example, high-concentration urea-guanidine hydrochloride, etc.) to make a completely denatured silk protein solution.
  • a denaturing agent for example, high-concentration urea-guanidine hydrochloride, etc.
  • dialysis and dilution are performed stepwise to denature the silk protein solution. Decrease the concentration of the agent little by little. That is, the final concentration of the modifier is 5% or less, preferably 3% or less, particularly preferably 1% or less.
  • the biologically active protein in the silk protein solution is refolded from a completely denatured state to the correct body structure, so that the biological activity of the biologically active protein is regenerated.
  • the above method is an example for regenerating a physiologically active protein, and the optimum conditions for efficiently regenerating a physiologically active protein vary depending on the type of the physiologically active protein. Therefore, in order to obtain a bioactive biomaterial solution containing an active recombinant fusion protein, it is important to correctly and efficiently regenerate various bioactive proteins under optimal conditions. For example, the regeneration buffer used for dialysis and dilution needs to be carefully examined in terms of pH, temperature, ionic strength, presence of reducing agent, etc., depending on the type of bioactive protein.
  • one or more protein components other than the fusion protein may be removed from the recombinant silk protein obtained as described above or a solution thereof.
  • silk thread produced by silkworm mainly contains fib mouth in, P25 and sericin.
  • the bioactive biomaterial of the present invention is a silk thread or silk wire tamper containing a physiologically active protein. Proteins other than fib mouth-in (P25 and Z or sericin) may be removed from the protein.
  • sericin is known to have antigenicity to the human body, it is preferable to remove sericin when the bioactive biomaterial is applied directly to the human body.
  • aqueous solution such as 0.3-0.5% aqueous sodium bicarbonate or soapy water, or an 8 M urea aqueous solution.
  • a method of heating at 80 at a protein denaturant aqueous solution or a method of digesting with an enzyme such as trypsin can be used.
  • the silky bioactive biomaterial obtained in this way can be used as a powder material, for example, as a fibrous material or by pulverization using a homogenizer or the like.
  • a liquid bioactive biomaterial obtained from the silk gland lumen or an aqueous bioactive biomaterial prepared from silk can be processed into a film, gel, or sponge.
  • a bioactive film can be produced by pouring a bioactive biomaterial solution onto a flat plate and allowing it to air dry. In order to produce a stronger film, the film may be air-dried and then immersed in 90% (v / v) methanol / distilled water.
  • films mainly composed of silk protein especially have adhesion and proliferation properties to fibroblasts and the like.
  • biomaterial films are highly functional films with added physiological activities such as the proliferation and differentiation induction of cells with various physiologically active proteins.
  • a bioactive biomaterial powder having an active bioactive protein function is prepared by desalting a bioactive biomaterial aqueous solution by dialysis against pure water and lyophilization. be able to.
  • the pH of the silk fiber mouth-in aqueous solution is made weakly acidic using a citrate buffer solution or the like, so that Biomaterial gels can also be made.
  • biologically active biomaterials it is not limited to these forms and methods, and various methods such as solution, sheet, gel, granule, and sponge can be used depending on the application. It can be processed into a shape.
  • Example 1 The following is an example of a method for producing a bioactive biomaterial containing active human basic fibroblast growth factor (bFGF) using transgene silkworm silk thread. The invention will be described in detail, but the invention of this application is not limited to this embodiment.
  • bFGF basic fibroblast growth factor
  • pL-bFGF a vector that expresses a fusion protein of silk hive-in and human bFGF.
  • the insert DNA contained in the pL-bFGF vector is composed of a silkworm silk fib-in L chain promoter, a silkworm silk fib in L chain cDNA, a human bFGF cDNA, and a silkworm silk fiproin L chain poly A addition signal sequence.
  • the silk-fibre-in L chain promoter is a pLE vector (Nat. Biotechnol. 2 1, 52-56 (2003)), and is a primer with a restriction enzyme EcoRI recognition sequence at the 5 'end.
  • the both ends of the obtained DNA fragment were cleaved with Pstl and BamHI and inserted between the Pstl site and BamHI site of pBluescriptIISK +
  • the cDNA encoding human bFGF is The DNA fragment containing the sequence corresponding to nucleotide number 495-935 (GeneBank database accession number NM-002006) was obtained by PCR using human fibroblast cDNA as a saddle type.
  • a cDNA encoding the fusion protein of bFGF and bFGF was prepared, and from this vector, the Pstl cytoplasm present at the 5 'end of the silk-fibre mouth-in L chain cDNA and the 3' end of human bFGF were present.
  • the silk protein in L chain and bFGF fusion protein cDNA was excised, and the above-mentioned silk fiber in L chain promoter was incorporated. Of over and inserted between the Pstl site and EcoRI site at the 3 'end of the silk Fuiburoi down L chain promoter.
  • Silkworm silk of this plasmid vector Using the EcoRI site located at the 5 'end of the hive mouth in light chain promotion and the 3' end of human bFGF, an insert DNA fragment consisting of the fibroin light chain promoter and the fusion protein cDNA was excised and pBac [3xP3- DsRed / pA] (Nat. Biotechnol. 21, 52-56 (2003)) was inserted into the EcoRI site upstream of the fiproin light chain poly A-added signal sequence. In this way, a plasmid vector for microinjection (pL-bFGF) was prepared (see FIG. 4).
  • the pL-bFGF vector prepared in Example 1 was purified by the cesium chloride density gradient method, and this vector and helper plasmid pHA3PIG (Nat. Biotechnol. 18, 81-84). , 2000), and after ethanol precipitation, injection buffer solution (0.5 mM phosphate buffer pH 7.0, 5 niM KC1) was added so that the concentrations of pL-bFGF and pHA3PIG were 200 pg / ml respectively. ). A small amount of this DNA solution was injected at a volume of about 15-20 nl per egg into silkworm eggs at the preblastoderm stage 2-8 hours after laying. A total of 2423 eggs were microinjected.
  • the silk thread produced by the transgenic silkworm obtained in Example 3 was pulverized using a homogenizer.
  • the ground silk thread is suspended in a trypsin solution (0.5 mg / ml aqueous solution of trypsin dissolved in 50 mM Tris-HCl buffer pH 7.6) at a concentration of 5 mg / ml, and the silk thread is shaken.
  • the silk sericin contained in the rice was erased. Thereafter, the silk fiber mouth-in was recovered by centrifugation, and the digested silk sericin was removed.
  • the collected silk fiber mouth-in is washed thoroughly with a neutral buffer and then suspended in a mixed solution of 9 M lithium thiocyanate and 5% ⁇ -mercaptoethanol at a concentration of 5 mg / ml at 4 ° C. Dissolved by shaking. Then, the silk fiproin solution was recovered by removing the undissolved silk hive mouth in by centrifugation. This silk hive mouth-in solution was mixed with SDS-sample buffer, and the proteins contained in the solution were spread by SDS polyacrylamide gel electrophoresis and stained with Kumashi ( Figure 1A). The protein developed on the gel was transferred to a nitrocellulose membrane (PROTRAN) by a conventional method.
  • PROTRAN nitrocellulose membrane
  • This nitrocellulose membrane was treated with a blocking solution (5% Skim milk / 50 mM Tris-HCl buffer pH 7.5, 150 mM NaCl) at 4 for 16 hours, and then TBS (50 mM Tris-HCl buffer pH 7.5, 150 mM). It was reacted with an anti-human bFGF polyclonal antibody (R & D Systems, AF-233-NA) diluted 200-fold with NaCl) solution at room temperature for about 2 hours. Next, it was reacted with a peroxidase-labeled anti-goat IgG polyclonal antibody (VECTOR, PI-9500) diluted 3000 times with a blocking solution at room temperature for about 1 hour.
  • a blocking solution 5% Skim milk / 50 mM Tris-HCl buffer pH 7.5, 150 mM NaCl
  • TBS 50 mM Tris-HCl buffer pH 7.5, 150 mM
  • 2x103 human umbilical vein endothelial cells were seeded in one well (diameter 6.4 mm) of a 96-well plate (Falcon) for tissue culture, and normal medium (2% wild fetal serum, 10 ng / ml EGF, lpg Vascular endothelial cell basal medium (Humedia-EB2 (KURABO)) containing 4 ml / ml hydrocortisone, 50 pg / ml gentamicin, 50 ng / ml amphotericin, lOpg / ml heparin, and 5 ng / ml human recombinant bFGF) for 4 hours Cultivated.
  • normal medium 2% wild fetal serum, 10 ng / ml EGF, lpg Vascular endothelial cell basal medium (Humedia-EB2 (KURABO)
  • the degree of growth per bFGF amount was equivalent to that of human recombinant bFGF expressed in E. coli used as a positive control. As described above, it was confirmed that the silk hive mouth-in solution containing bFGF prepared from silk has high biological activity.
  • silk fibroin solution prepared from silkworm silk of wild-type silkworm and silk-fibre mouth-in solution in which human recombinant bFGF expressed in Escherichia coli was mixed with silk-type mouth silk-in solution of wild-type silkworm were also used.
  • silk-fibre-in-film was prepared and seeded with human umbilical vein endothelial cells.
  • the silk-fibre mouth-in material containing bFGF is useful as a functional biomaterial with added biological activities such as cell proliferation and differentiation.
  • the invention of this application provides a bioactive biomaterial containing an active bioactive protein.
  • This bioactive biomaterial By processing this bioactive biomaterial into films, sheets, gels, sponges, fibers, etc., new biomaterials that can be used in industrial fields such as medical care are provided.

Abstract

It is intended to provide a novel means whereby a biomaterial containing a physiologically active protein holding its activity and function can be conveniently obtained. This physiologically active biomaterial can be obtained from a transgenic silkworm carrying in its genome a fused polynucleotide encoding a fused protein of silk fibroin with the physiologically active protein and contains a recombinant silk protein containing the above-described fused protein as the main component.

Description

明細書  Specification
生理活性バイオマテリアル Bioactive biomaterial
技術分野 この出願の発明は、 所与の生理活性を有するバイオマテリアルに関するもので ある。 さらに詳しくは、 この出願の発明は、 絹フイブ口インと生理活性物質との 融合タンパク質を含む絹タンパク質を産生するトランスジエニックカイコと、 こ のカイコが産生する絹タンパク質または前記融合タンパク質を主成分とする生理 活性バイオマテリアルに関するものである。 TECHNICAL FIELD The invention of this application relates to a biomaterial having a given physiological activity. More specifically, the invention of this application includes a transgenic silkworm that produces a silk protein containing a fusion protein of silk hive mouth-in and a physiologically active substance, and a silk protein produced by the silkworm or the fusion protein as a main component. It relates to bioactive biomaterials.
背景技術 Background art
( 1) バイオマテリアル (1) Biomaterial
生体の組織は、 細胞と細胞外マトリックスから構成されており、 細胞は細胞外 マトリックスを足場として、 接着、 増殖および分化などを含む様々な生理現象を 営んでいる。 生体の組織に損傷が生じた場合、 細胞外マトリックスが存在しなけ れば、 損傷部やその周辺細胞の接着、 さらに増殖や分化が迅速に進行しないため、 組織の修復 ·再生がうまく行われない。 従って、 生体の組織が大きく欠損した場 合には、 その欠損部位である標的組織に細胞外マトリックスを外部から提供しな くてはならない。 そこで、 細胞外マトリックスの代用として必要となるのが、 生 体に親和性のあるバイォマテリアルである。  Biological tissues are composed of cells and extracellular matrix, and cells carry out various physiological phenomena including adhesion, proliferation and differentiation using the extracellular matrix as a scaffold. In the case of damage to living tissue, if the extracellular matrix is not present, the repair and regeneration of the tissue will not be successful because the damaged area and its surrounding cells will not adhere, proliferate or differentiate rapidly. . Therefore, when a living tissue is largely deficient, an extracellular matrix must be provided from the outside to the target tissue that is the deficient site. Therefore, what is needed as a substitute for the extracellular matrix is biomaterial that has an affinity for organisms.
(2) 生理活性タンパク質 (2) Bioactive protein
細胞の増殖や分化を促進する細胞増殖因子やサイ トカインなどの生理活性タン パク質は、 組織の修復 '再生において極めて重要な役割をはたしている。 例えば、 ヒト塩基性線維芽細胞増殖因子 (bFGF) は、 線維芽細胞のみならず、 血管内皮 細胞、 骨芽細胞や神経細胞など幅広い細胞において低濃度で作用し組織の修復 · 再生を促進する。 そこで、 損傷部位にこれらの生理活性タンパク質を外部から供 給し、 修復 '再生を早めようとする試みが行われている。 しかし、 供給した生理 活性タンパク質が、 標的組織において低濃度であると、 組織の修復 ·再生は速や かに進行しない。 従って、 単に生理活性タンパク質を損傷部位に投与するだけで は、 拡散や分解によって生理活性タンパク質が消失し、 損傷組織における生理活 性タンパク質の有効濃度を長期間保つことが難しい。 例えば、 標的組織に bFGF の水溶液を投与した場合、 たった 4 時間で投与した約半分量が拡散により失わ れてしまう (非特許文献 1) 。 Bioactive proteins such as cell growth factors and cytokines that promote cell growth and differentiation play an extremely important role in tissue repair and regeneration. For example, Human basic fibroblast growth factor (bFGF) acts at a low concentration on not only fibroblasts but also a wide range of cells such as vascular endothelial cells, osteoblasts, and nerve cells to promote tissue repair and regeneration. Therefore, an attempt has been made to supply these physiologically active proteins from the outside to the damaged site to repair and accelerate regeneration. However, if the supplied bioactive protein is at a low concentration in the target tissue, tissue repair / regeneration does not proceed quickly. Therefore, simply administering the bioactive protein to the damaged site causes the bioactive protein to disappear due to diffusion and degradation, and it is difficult to maintain the effective concentration of the bioactive protein in the damaged tissue for a long period of time. For example, when an aqueous solution of bFGF is administered to a target tissue, about half of the dose administered in only 4 hours is lost due to diffusion (Non-patent Document 1).
(3) 絹フイブ口イン (3) Silk Five Mouth Inn
絹フイブ口インは、 カイコが吐き出す絹糸において約 70 %を構成する主要な タンパク質である。 絹フイブ口インは天然材料であるうえに、 優れた操作性およ ぴ生体適合性をもつことから、 長年にわたって、 手術用縫合糸などの体内に埋め 込むことが可能な材料として利用されてきた。 近年では、 絹フィプロインの水溶 液化やそれを用いてフィルムやゲルなどを製造する方法が開発され、 新たなバイ ォマテリアルとして利用される可能性が広がりつつある。  Silk hive mouth-in is the main protein that constitutes about 70% of silk thread spouted by silkworms. Silk fiber mouth-in is a natural material and has been used as a material that can be implanted into the body of surgical sutures for many years because it has excellent operability and biocompatibility. . In recent years, silk fiproin has been liquefied in water and methods for producing films and gels using it have been developed, and the potential for use as new biomaterials is expanding.
例えば、 絹フイブ口インフィルム上において線維芽細胞の培養を行うと、 希薄 なコラーゲン水溶液を用いて同様に作製したフィルム上において線維芽細胞の培 養を行ったものと同程度の細胞接着性と増殖性が認められており (非特許文献 2) 、 絹フイブ口インフィルムを利用した細胞培養用支持体 (特許文献 1 ) が提 案されている。 また、 絹フイブ口インフィルムのもつ生体表皮等との親和性を利 用して、 創傷皮膚材 (特許文献 2) やコンタクトレンズ (特許文献 3) などが開 発されている。 さらには、 手術用縫合糸は非吸収性であるが、 絹フイブロインフ イルムは、 生理的条件下において、 プロテアーゼ XIVゃコラゲナーゼ IAの消化 を受けることが示されており (非特許文献 3) 、 絹フイブ口インが生体適合性や 生分解性を有することが示唆されている。  For example, when fibroblasts are cultured on a silk-fibre-in-film, cell adhesion similar to that obtained by culturing fibroblasts on a film prepared in the same manner using a dilute collagen aqueous solution. Proliferation has been recognized (Non-patent Document 2), and a support for cell culture using a silk-fibre mouth-in film (Patent Document 1) has been proposed. In addition, wound skin materials (Patent Document 2), contact lenses (Patent Document 3), and the like have been developed using the affinity with the living skin of the silk fiber mouth film. Furthermore, although surgical sutures are non-absorbable, silk fibroin films have been shown to be digested by protease XIV collagenase IA under physiological conditions (Non-patent Document 3). It has been suggested that mouth-in has biocompatibility and biodegradability.
あるいはまた、 インテグリン認識配列 (RGD) (非特許文献 4) や、 肝細胞 表面によって特異的に認識される β-ガラクトース残基 (非特許文献 5) などの 細胞接着に関与した分子を化学的な共有結合で絹フイブ口インフィルム上に固定 化し、 細胞親和性を高めた絹フイブ口イン材料も開発されている。 このように、 絹フィブロインを利用して新しいバイオマテリアルを創出しょうとする種々の試 みがなされている。 Alternatively, such as integrin recognition sequence (RGD) (Non-patent document 4) and β-galactose residue (Non-patent document 5) specifically recognized by hepatocyte surface A silk fibre-in material has also been developed in which molecules involved in cell adhesion are immobilized on the silk fibre-in film by chemical covalent bonds to enhance cell affinity. In this way, various attempts have been made to create new biomaterials using silk fibroin.
(4) 生理活性バイオマテリアル (4) Bioactive biomaterial
前記 (2)のとおり、 生理活性タンパク質を単独で生体に適用した塲合には、 そ の活性を長時間維持することは困難である。 そこで、 生理活性タンパク質を、 そ の生理活性を保ったままバイオマテリアルに固定化させ、 バイオマテリアルと共 に生理活性タンパク質を損傷部位に供給する技術の開発が望まれている。 この技 術が確立されれば、 必要濃度の生理活性タンパク質を必要な期間だけ標的組織に 供給することを可能となり、 組織の修復 ·再生を速やかに進行させることができ ると期待される。  As described in (2) above, it is difficult to maintain the activity for a long time when a bioactive protein is applied alone to a living body. Therefore, it is desired to develop a technology for immobilizing a bioactive protein on a biomaterial while maintaining the bioactivity and supplying the bioactive protein to the damaged site together with the biomaterial. If this technology is established, it will be possible to supply the target tissue with the required concentration of physiologically active protein for the required period, and it is expected that the repair and regeneration of the tissue can proceed rapidly.
細胞の増殖や分化を促進する細胞増殖因子やサイトカインなどの生理活性タン パク質を、 化学的な共有結合によって、 キトサンフィルムなどのバイオマテリア ルに固定化し、 組織の修復 ·再生を促進する材料として利用しょうとする試みが 行われている (非特許文献 6) 。 このとき、 固定化に用いられる生理活性タンパ ク質は、 大腸菌や昆虫細胞由来の精製された組換えタンパク質が用いられている。 従って、 組換えタンパク質の発現、 精製、 および固定化という、 煩雑なステップ を経なければ、 生理活性タンパク質を固定化したバイオマテリアルを作製するこ とができない。 また、 この固定化した生理活性タンパク質が高い生物活性を示す には、 比較的大量の組換えタンパク質を固定化させる必要がある。 固定化する生 理活性タンパク質の量的な問題は、 生理活性夕ンパク質を含有するバイオマテ リアルを作製する上で最大の問題点である。 これは、 化学的な固定化を行う過程 で、 加熱や有機溶媒との接触などにより、 生理活性タンパク質の生物活性が低下 するためである。  As a material that promotes tissue repair and regeneration by immobilizing bioactive proteins such as cell growth factors and cytokines that promote cell growth and differentiation to biomaterials such as chitosan film through chemical covalent bonds Attempts to use it have been made (Non-Patent Document 6). At this time, purified recombinant protein derived from E. coli or insect cells is used as the physiologically active protein used for immobilization. Therefore, a biomaterial in which a physiologically active protein is immobilized cannot be produced unless complicated steps such as expression, purification, and immobilization of the recombinant protein are performed. In addition, in order for this immobilized bioactive protein to exhibit high biological activity, it is necessary to immobilize a relatively large amount of recombinant protein. The quantitative problem of the physiologically active protein to be immobilized is the biggest problem in producing a biomaterial containing a physiologically active protein. This is because in the process of chemical immobilization, the biological activity of the bioactive protein decreases due to heating or contact with an organic solvent.
従って、 穏和な条件下で生理活性タンパク質をバイオマテリアルへ固定化する 方法が望まれている。 (5) トランスジエニックカイコ この発明の出願者らは、 組換えヒトコラ一ゲンを絹タンパク質の一部として生 産するトランスジエニックカイコを発明し特許出願している (特許文献 4) 。 ま た、 遺伝子組換えカイコを用いた組換え型サイトカインの製造方法も考案されて いる (特許文献 5) 。 このように、 カイコは組換えタンパク質を生産するための 宿主動物としても注目されている。 Therefore, a method for immobilizing bioactive proteins to biomaterials under mild conditions is desired. (5) Transgenic silkworm The applicants of the present invention have invented and have applied for a patent for a transgenic silkworm that produces recombinant human collagen as part of a silk protein (Patent Document 4). In addition, a method for producing a recombinant cytokine using a transgenic silkworm has been devised (Patent Document 5). Thus, silkworms are attracting attention as host animals for producing recombinant proteins.
文献リス卜 特許文献 1:特開平 1 1-243948号公報 Document squirrel 特許 Patent Document 1: Japanese Patent Laid-Open No. 1-243948
特許文献 2:特開平 1 1 -70 160号公報 Patent Document 2: JP-A-11-70160
特許文献 3:特開平 1 1-52303号公報 Patent Document 3: Japanese Patent Laid-Open No. 1-52303
特許文献 4:特開 2004- 16144号公報 Patent Document 4: Japanese Patent Laid-Open No. 2004-16144
特許文献 5:特開 2003-325188号公報 Patent Document 5: Japanese Patent Laid-Open No. 2003-325188
非特許文献 1: J. Biomed. Mater. Res. 64A, 177- 181 (2003) Non-Patent Document 1: J. Biomed. Mater. Res. 64A, 177-181 (2003)
非特許文献 2: J. Biomed. Mater. Res. 29, 1215- 1221 ( 1995) Non-Patent Document 2: J. Biomed. Mater. Res. 29, 1215-1221 (1995)
非特許文献 3: Biomaterials 24, 357-365 (2003) Non-Patent Document 3: Biomaterials 24, 357-365 (2003)
非特許文献 4: J. Biomed. Mater. Res. 54, 139- 148 (2001) Non-Patent Document 4: J. Biomed. Mater. Res. 54, 139-148 (2001)
非特許文献 5: Biomaterials 25, 1 13 1- 1 140 (2004) Non-Patent Document 5: Biomaterials 25, 1 13 1- 1 140 (2004)
非特許文献 6: J Biomed. Mater. Res. 64Ai l) , 177- 181 (2003) Non-Patent Document 6: J Biomed. Mater. Res. 64Ai l), 177-181 (2003)
発明の開示 前記のとおり、 生理活性タンパク質を固定化したバイオマテリアルは、 その夕 ンパク質の 「生理活性」 とバイオマテリアルの持つ 「生体親和性」 等の二つの効 果によって、 医療材料等として大きな可能性を秘めている。 しかしながら、 従来の生理活性バイオマテリアルの場合には、 生理活性タンパ ク質とバイオマテリアルとを別個に調製し、 それらを結合して作成していたため に、 固定化した生理活性タンパク質の活性が低下していまうといった問題点を有 していた。 この出願の発明は、 以上のとおりの従来技術の問題点に鑑みてなされたもので あって、 活性 ·機能を保持した状態の生理活性タンパク質を含むバイオマテリア ルを簡便に得ることのできる新規な手段を提供することを課題としている。 この出願は、 前記の課題を解決するための第 1 の発明として、 絹フイブロイ ンと生理活性タンパク質との融合夕ンパク質をコードする融合ポリヌクレオチド をゲノム中に保有するトランスジエニックカイコから得られ、 前記融合タンパク 質を含む組換え絹タンパク質を主成分とする生理活性バイオマテリアルを提供す る。 またこの出願は、 第 2 の発明として、 絹フイブ口インと生理活性タンパク質 との融合タンパク質をコードする融合ポリヌクレオチドをゲノム中に保有するト ランスジエニックカイコから得られた組換え絹夕ンパク質から、 前記融合夕ンパ ク質以外の 1以上のタンパク質成分が除去された生理活性バイオマテリアルを提 供する。 この出願は、 第 3 の発明として、 絹フイブ口インと生理活性タンパク質との 融合タンパク質をコードする融合ポリヌクレオチドをゲノム中に保有し、 前記融 合タンパク質を含む組換え絹タンパク質を産生するトランスジエニックカイコを 提供する。 なお、 前記の各発明においては、 生理活性タンパク質がヒト線維芽細胞増殖因 子であることを好ましい一つの態様としている。 この出願は、 第 4 の発明として、 前記第 3 発明のトランスジエニックカイコ が産生する絹糸または絹糸線内タンパク質を提供する。 この出願は、 第 5 の発明として、 前記第 3 発明のトランスジエニックカイコ が産生する絹糸を可溶化剤で処理することによって得られる生理活性バイオマテ リアル溶液を提供する。 この出願は、 第 6 の発明として、 前記第 5 発明の生理活性バイオマテリアル 溶液の生理活性を再生する方法であって、 生理活性バイオマテリアル溶液を変性 剤で処理し、 次いで生理活性バイオマテリアル溶液中の変性剤濃度を減少させる ことを特徴とする方法を提供する。 この出願は、 第 7の発明として、 前記第 1発明または第 2発明の生理活性パ ィォマテリアルを用いて成形加工された生理活性バイオマテリアル加工物を提供 する。 なお、 前記の各発明において、 「生理活性タンパク質」 とは、 ヒトを含めた動 植物の生理機能に対して作用する、 少なくとも 1 の公知機能を有するタンパク 質を意味する。 「融合タンパク質」 とは、 絹フイブ口インと生理活性タンパク質 が物理的に融合し、 通常の使用範囲における操作では分離しないことを意味する。 さらに、 この発明における融合タンパク質とは、 絹フイブ口インと生理活性タン パク質とが、 それぞれの使用目的に合致した機能、 活性を保持した状態で結合し ていることをも意味する。 さらに、 「融合タンパク質を含む組換え絹タンパク 質」 とは、 具体的にはトランスジエニックカイコが産生する絹糸のタンパク質成 分または絹糸腺内腔のタンパク質を意味する。 また、 「主成分」 という用語は、 この発明の生理活性バイォマテリアルの機能が、 組換え絹タンパク質に含まれる 融合夕ンパク質によって実質的に担われている限りにおいては、 例えば絹糸や絹 糸腺内腔からタンパク質成分を分離したりする際に使用する試薬等が微量に残存 していてもよいことを意味する。 この出願の各発明におけるその他の用語や概念は、 発明の実施形態および実施 例の説明において詳しく規定する。 またこの発明を実施するために使用する様々 な技術は、 特にその出典を明示した技術を除いては、 公知の文献等に基づいて当 業者であれば容易かつ確実に実施可能である。 例えば、 遺伝子工学および分子生 物学的技 feは Sambrook and Maniatis, m Molecular Clonmg-A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989; Ausubel, F. M. et al. , Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y, 1995 等に記載されている。 さらに、 この発明における用語は 基本的には IUPAC-IUB Commission on Biochemical Nomenclatureによるも のであり、 あるいは当該分野において慣用的に使用される用語の意味に基づくも のである。 DISCLOSURE OF THE INVENTION As described above, biomaterials to which bioactive proteins are immobilized are large as medical materials due to two effects such as “bioactivity” of the protein and “biocompatibility” of the biomaterial. It has potential. However, in the case of conventional bioactive biomaterials, bioactive proteins and biomaterials were prepared separately and combined to create them. Another problem is that the activity of the immobilized physiologically active protein is decreasing. The invention of this application has been made in view of the problems of the prior art as described above, and is a novel material that can easily obtain a biomaterial containing a biologically active protein that retains activity and function. The problem is to provide means. This application is obtained from a transgenic silkworm having a fusion polynucleotide encoding a fusion protein of silk fibroin and a physiologically active protein in the genome as a first invention for solving the above-mentioned problems. Provided is a bioactive biomaterial mainly composed of a recombinant silk protein containing the fusion protein. In addition, as a second invention, this application is a recombinant silk protein obtained from a transgenic silkworm that possesses a fusion polynucleotide encoding a fusion protein of silk fiber mouth-in and a physiologically active protein in the genome. From the above, a bioactive biomaterial from which one or more protein components other than the fusion protein are removed is provided. In this application, as a third invention, a transgene which has a fusion polynucleotide encoding a fusion protein of silk fiber mouth-in and a physiologically active protein in its genome, and produces a recombinant silk protein containing the fusion protein. Provide Nick Silkworm. In each of the above-described inventions, a preferred embodiment is that the physiologically active protein is a human fibroblast growth factor. This application provides, as a fourth invention, a silk thread or a protein in the silk line produced by the transgenic silkworm of the third invention. This application provides, as a fifth invention, a bioactive biomaterial solution obtained by treating a silk thread produced by the transgenic silkworm of the third invention with a solubilizing agent. This application provides, as a sixth invention, a method for regenerating the physiological activity of the bioactive biomaterial solution of the fifth invention, wherein the bioactive biomaterial solution is treated with a denaturant, and then in the bioactive biomaterial solution. There is provided a method characterized by reducing the concentration of the denaturant. This application provides, as a seventh invention, a bioactive biomaterial processed product molded using the bioactive biomaterial of the first invention or the second invention. In each of the above-mentioned inventions, “physiologically active protein” means a protein having at least one known function that acts on physiological functions of animals and plants including humans. “Fusion protein” means that the silk fiber mouth-in and the physiologically active protein are physically fused and do not separate by operation in the normal use range. Furthermore, the fusion protein in the present invention also means that the silk fiber mouth-in and the physiologically active protein are bound in a state that retains the function and activity corresponding to each purpose of use. Furthermore, “recombinant silk protein including fusion protein” specifically means a protein component of silk produced by transgene silkworm or a protein in the lumen of silk gland. In addition, the term “main component” means, for example, silk thread or silk thread, as long as the function of the bioactive biomaterial of the present invention is substantially carried by the fusion protein contained in the recombinant silk protein. It means that a small amount of reagent or the like used for separating the protein component from the glandular lumen may remain. Other terms and concepts in each invention of this application are defined in detail in the description of the embodiments and examples of the invention. Various techniques used for carrying out the present invention are based on well-known documents, etc., except for the techniques that clearly indicate the source. If it is a contractor, it can carry out easily and reliably. For example, genetic engineering and molecular biology fe are Sambrook and Maniatis, m Molecular Clonmg-A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989; Ausubel, FM et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1995, etc. Furthermore, the terms in the present invention are basically based on the IUPAC-IUB Commission on Biochemical Nomenclature, or based on the meanings of terms conventionally used in the field.
発明の効果 この出願の発明によれば、 絹フイブ口インと生理活性タンパク質との融合タン パク質を含む生理活性バイオマテリアルが、 トランスジエニックカイコの産生す る組換え絹タンパク質として得られる。 従って、 従来方法では生理活性タンパク 質を絹フィブロインへ固定化するために必要であった個別の精製組換えタンパク 質の確保や固定化の操作は省略される。 さらに、 加熱や有機溶媒による処理を必 要としないため、 生理活性タンパク質の活性が損なわれることもない。 Effects of the Invention According to the invention of this application, a bioactive biomaterial containing a fusion protein of silk hive mouth-in and a bioactive protein can be obtained as a recombinant silk protein produced by a transgene silkworm. Therefore, in the conventional method, the operations for securing and immobilizing individual purified recombinant proteins, which were necessary for immobilizing the bioactive protein to silk fibroin, are omitted. Furthermore, since no heating or treatment with an organic solvent is required, the activity of the bioactive protein is not impaired.
図面の簡単な説明 図 1 は、 トランスジエニックカイコの絹糸における絹フイブ口インとヒト bFGF の融合タンパク質の発現。 図 A は、 野生型のカイコとトランスジェニッ クカイコの絹糸から調製した絹フイブ口インサンプルを展開した SDS ポリアク リルアミドゲルをクマシ一染色した結果である。 図 Bは SDSポリアクリルアミ ドゲルに展開されたタンパク質を転写したニトロセルロース膜を抗ヒ卜 bFGF ポリクローナル抗体でィムノブロット解析を行った結果である。 レーン M には タンパク質マーカーを、 レーン W には野生型カイコの絹フイブ口インサンプル を、 レーン 1 と 2 には系統が異なるトランスジエニックカイコの絹フイブロイ ンサンプルを、 レーン FGFには大腸菌で発現させたヒト組換え型 bFGFを展開 している。 右脇の鏃マークは絹フィブロイン L鎖とヒト bFGF との融合タンパ ク質の位置を示す。 図 2 は、 トランスジエニックカイコの絹糸から調製したヒト bFGF を含有し た絹フイブ口イン溶液の生物活性。 WST- 1 法を用いて、 定量的にヒト bFGF を 含有した絹フィブロイン溶液の生物活性を調べた結果である。 グラフの各カラム の下には、 培地に加えた絹フイブ口イン溶液中のヒト bFGF の濃度を示してい る。 カラムは、 正常培地 (5 ng/ml ヒト組換え型 bFGF を含む) においてヒト さい帯血管内皮細胞の培養を行った場合の細胞の増殖を 100 %、 bFGF を含ま ない培地においてヒトさい帯血管内皮細胞の培養を行った場合の細胞の増殖を 0 %として、 bFGF を含まない培地に絹フイブ口イン溶液を加えて細胞の培養を 行った場合の細胞の増殖を相対的に示している。 実験は n=3 で行い、 結果は平 均値土標準偏差で表した。 グラフには示していないが、 絹フイブ口イン溶液中の ヒト bFGF によるトさい帯血管内皮細胞の増殖は、 大腸菌で発現させたヒト組 換え型 bFGFを、 bFGFを含まない培地に同様に加えて培養を行った場合の細胞 の増殖と等しかった。 図 3 は、 絹フイブ口インフィルム上でのヒトさい帯血管内皮細胞の増殖。 野 生型のカイコ (A) とトランスジエニックカイコ (B) の絹フイブ口イン溶液か ら作製した絹フイブ口インフィルム上にヒトさい帯血管内皮細胞を播種した。 bFGFを含まない正常培地を加え 3日間培養を行った後、 位相差顕微鏡によって 細胞を観察した。 スケールバーは、 ΙΟΟμιηである。 図 4 は、 実施例で作成したベクタ一 pL- bFGFの構造図である。 このベクター には、 一対の piggyBac の逆向き反復配列とその間に、 3xP3 プロモー夕一によ つて発現が制御される赤色蛍光タンパク質 (DsRed) をコードするポリヌクレ ォチドと、 絹フィブロインプロモーターによって発現が制御される絹フィブロイ ンと bFGF との融合タンパク質をコードするポリヌクレオチドが組み込まれて いる。 発明を実施するための最良の形態 この出願の発明において、 活性型の生理活性夕ンパク質と絹フィプロインとの 融合夕ンパク質を含む生理活性バイオマテリアルは、 トランスジエニックカイコ の絹糸腺内腔に蓄積された液状絹タンパク質やトランスジエニックカイコによつ て産生された絹糸である。 トランスジエニックカイコは、 生理活性タンパク質と絹フイブ口インとの融合 タンパク質をコードするポリヌクレオチドを、 カイコ染色体に導入することによ つて作出することができる。 絹フイブ口インは、 分子量 350 kDa のフイブ口イン H 鎖および分子量 25 kDa のフイブ口イン L 鎖が会合したタンパク質複合体であり、 これらをコード するポリヌクレオチドは公知である (フイブ口イン H鎖: GenBank Accession No. AF226688; フイブ口イン L鎖: GenBank Accession No. M76430) 。 生 理活性タンパク質をコードするポリヌクレオチドは、 フイブ口イン H 鎖または フイブ口イン L 鎖をコードするポリヌクレオチドのどちらかに連結される。 生 理活性タンパク質をコードするポリヌクレオチドの連結位置は、 フイブ口イン H鎖またはフィプロイン L鎖をコ一ドするポリヌクレオチドの 5'側でも 3'御 Jで もよい。 また、 ポリヌクレオチドが直接的に連結されていても、 あるいはリンカ '一を介して間接的に連結されていてもよい。 さらに、 フイブ口イン H 鎖または フイブ口イン L 鎖をコードするポリヌクレオチドは、 それぞれのタンパク質全 長をコードする配列であってもよいし、 部分配列でもよい。 絹フイブ口インと融合される生理活性タンパク質は、 細胞に対して様々な生理 活性を示すタンパク質群のことを指す。 例えば、 線維芽細胞増殖因子 (FGF) 類、 骨形成因子 (MBP) 類、 上皮増殖因子 (EGF) 類、 血小板由来増殖因子 (PDGF) 類、 トランスフォーミング増殖因子 (TGF) 類、 インスリン様増殖因 子 (IGF) 類、 肝細胞増殖因子 (HGF) 類、 血管内皮細胞増殖因子 (VEGF) 類、 神経増殖因子 (NGF) 類などを含む細胞増殖因子類、 およびインターロイキン (ID 類、 エリスロポエチン、 コロニー刺激因子 (CSF) 類、 腫瘍壊死因子 (TNF) 類などを含むサイト力イン類を指す。 これらの生理活性タンパク質をコ ードするポリヌクレオチドも公知であり、 例えば以下が例示される。 なお、 以下 にお いて、 登録番号は、 X で始ま る も のは EMBL データベース ( http://www.embl-heidelberg.de/ ) 、 それ以外の記号で始まる ものは GenBank データベース (http://www.ncbi.nlm.nih.gov/) で検索可能である。 線維芽細胞増殖因子 (FGF) 類 BRIEF DESCRIPTION OF THE FIGURES FIG. 1 shows the expression of a fusion protein between silk hive mouth-in and human bFGF in silkworm silk of Transgenic silkworm. Figure A shows the result of Kumashi staining of SDS polyacrylamide gel developed from silk-five mouth-in samples prepared from silkworms of wild-type silkworm and transgenic silkworm. Figure B shows the results of immunoblot analysis of the nitrocellulose membrane to which the protein developed on SDS polyacrylamide gel was transferred with anti-human bFGF polyclonal antibody. Lane M contains a protein marker, Lane W contains a silkworm silk-in sample of a wild-type silkworm, and Lanes 1 and 2 contain silky silkworms of different transgenic silkworms. In the lane FGF, human recombinant bFGF expressed in E. coli is expanded. The wrinkle mark on the right side indicates the position of the fusion protein of silk fibroin L chain and human bFGF. Figure 2 shows the biological activity of silk hive mouth-in solution containing human bFGF prepared from silkworm silk of transgenic silkworm. It is the result of investigating the biological activity of silk fibroin solution containing human bFGF quantitatively using WST-1 method. Below each column of the graph is the concentration of human bFGF in the silk hive mouth-in solution added to the medium. The column shows 100% growth of human umbilical vascular endothelial cells when cultured in normal medium (containing 5 ng / ml human recombinant bFGF), and human umbilical vascular endothelial cells in medium without bFGF. The figure shows the relative growth of the cells when the cells are cultured with the silk fib-in solution added to the medium without bFGF, assuming that the growth of the cells when cultured is 0%. The experiment was performed at n = 3, and the results were expressed as mean soil standard deviation. Although not shown in the graph, proliferation of umbilical cord vascular endothelial cells by human bFGF in silk-fibre mouth-in solution was similarly performed by adding human recombinant bFGF expressed in E. coli to a medium without bFGF. It was equal to the proliferation of cells. Figure 3 shows growth of human umbilical cord vascular endothelial cells on silk-fibre in-film. Human umbilical cord vascular endothelial cells were seeded on silk fiber mouth-in films prepared from silk-type mouth silk-in solutions of wild silkworm (A) and transgenic silkworm (B). After adding bFGF-free normal medium and culturing for 3 days, the cells were observed with a phase contrast microscope. The scale bar is ΙΟΟμιη. FIG. 4 is a structural diagram of the vector pL-bFGF prepared in the example. In this vector, a pair of piggyBac inverted repeats and a polynucleotide encoding a red fluorescent protein (DsRed) whose expression is controlled by the 3xP3 promoter, and expression is controlled by the silk fibroin promoter. A polynucleotide encoding a fusion protein of silk fibroin and bFGF is incorporated. BEST MODE FOR CARRYING OUT THE INVENTION In the invention of this application, a bioactive biomaterial containing a fusion protein of an active bioactive protein and silk fiproin is contained in the silk gland lumen of Transgenic silkworm. It is silk silk produced by accumulated liquid silk protein and transgenic silkworm. Transgenic silkworms can be produced by introducing a polynucleotide encoding a fusion protein of a physiologically active protein and silk fib-in into the silkworm chromosome. Silk hive mouth-in is a protein complex in which a hive chain in H chain with a molecular weight of 350 kDa and a hive in L chain with a molecular weight of 25 kDa are associated, and the polynucleotide encoding them is known (the hive in H chain : GenBank Accession No. AF226688; Five mouth in L chain: GenBank Accession No. M76430). A polynucleotide encoding a biologically active protein is linked to either a polynucleotide encoding a hive mouth-in H chain or a hive mouth-in L chain. The ligation position of the polynucleotide encoding the biologically active protein may be 5 ′ side or 3 ′ J of the polynucleotide encoding the five mouth in H chain or fiproin L chain. The polynucleotides may be directly linked or indirectly linked via a linker. Furthermore, the polynucleotide encoding the hive mouth-in H chain or the hive mouth-in L chain may be a sequence encoding the full length of each protein or a partial sequence. Bioactive proteins fused with silk hive mouth-in refer to a group of proteins that exhibit various physiological activities on cells. For example, fibroblast growth factor (FGF), bone morphogenetic factor (MBP), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), insulin-like growth factor Cell growth factors including children (IGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), and interleukins (This refers to cytosines including IDs, erythropoietin, colony stimulating factor (CSF), tumor necrosis factor (TNF), etc. Polynucleotides that code for these bioactive proteins are also known, for example: In the following, registration numbers that begin with X are EMBL databases (http://www.embl-heidelberg.de/), and those that begin with other symbols are GenBank databases. (Http://www.ncbi.nlm.nih.gov/) Search for fibroblast growth factor (FGF) class
FGF (Fibroblast growth factor) -1 ; AY601819, FGF-2; J04513, FGF- 3; X14445, FGF-4 ; J02986, FGF- 5 ; M37825, FGF-6 ; X63454, FGF- 7 ; M60828, FGF-8; AH006649, FGF-9; D 14838, FGF-10; AF411527, FGF- 11 ; AY049782, FGF- 12; U66197, FGF- 13; U66198, FGF- 14; U66200, FGF- 16; AB009391, FGF- 17; AB009249, FGF- 18; AF075292, FGF- 19; AFl 10400, FGF-20; AB044277, FGF-21; AY359086, FGF-22; AB021925, FGF-23 ; AF263537、 など 骨形成因子 類  FGF (Fibroblast growth factor) -1; AY601819, FGF-2; J04513, FGF-3; X14445, FGF-4; J02986, FGF-5; M37825, FGF-6; X63454, FGF-7; M60828, FGF-8 AH006649, FGF-9; D 14838, FGF-10; AF411527, FGF-11; AY049782, FGF-12; U66197, FGF-13; U66198, FGF-14; U66200, FGF-16; AB009391, FGF-17; AB009249, FGF-18; AF075292, FGF-19; AFl 10400, FGF-20; AB044277, FGF-21; AY359086, FGF-22; AB021925, FGF-23; AF263537, etc. Osteogenic factors
BMP (Bone morphogenetic protein)- 1 ; M22488, BMP-2; M22489, BMP- 3; M22491, BMP- 4; U43842, BMP- 5; M60314, BMP-6; M60315, BMP- 7; X51801, BMP-8B; M97016, BMP-9; AF188285, BMP- 10; AF101441, BMP- 11; AFl 00907、 など 上皮増殖因子 (EGF) 類  BMP (Bone morphogenetic protein) -1; M22488, BMP-2; M22489, BMP-3; M22491, BMP-4; U43842, BMP-5; M60314, BMP-6; M60315, BMP-7; X51801, BMP-8B M97016, BMP-9; AF188285, BMP-10; AF101441, BMP-11; AFl 00907, etc. Epidermal growth factor (EGF) class
EGF (Epidermal growth factor); X04571、 など 血小板由来増殖因子 (PDGF) 類  EGF (Epidermal Growth Factor); X04571, etc. Platelet-derived growth factor (PDGF)
PDGF (Platelet-derived growth factor) -A; X06374, PDGF-B; X02811、 な ど トランスフォーミング増殖因子 (TGF) 類 1 PDGF (Platelet-derived growth factor) -A; X06374, PDGF-B; X02811, etc. Transforming growth factor (TGF) class 1
TGF (Transforming growth factor) -alpha; M31172, TGF-betal; X02812, TGF-beta 2; Y00083, TGF-beta 3; X14149、 など TGF (Transforming growth factor) -alpha; M31172, TGF-betal; X02812, TGF-beta 2; Y00083, TGF-beta 3; X14149, etc.
インスリン様増殖因子 (IGF) 類 ' Insulin-like growth factor (IGF) class ''
IGF (Insulin-like growth factor)-I ; M29644, IGF-II ; M29645Insulin ; J00265> など IGF (Insulin-like growth factor) -I ; M29644, IGF-II ; M29645Insulin ; J00265> etc.
肝細胞増殖因子 (HGF) Hepatocyte growth factor (HGF)
HGF (Hepatocyte growth factor); M29145 など  HGF (Hepatocyte growth factor); M29145 etc.
血管内皮細胞増殖因子 (VEGF) 類 Vascular endothelial growth factor (VEGF)
VEGF (Vascular endothelial growth factor); M32977, VEGF-B; U52819, VEGF- C; X94216, VEGF-D; AJ000185, PIGF (Placenta growth factor); X54936、 など  VEGF (Vascular endothelial growth factor); M32977, VEGF-B; U52819, VEGF- C; X94216, VEGF-D; AJ000185, PIGF (Placenta growth factor); X54936, etc.
神経増殖因子 (M 類  Nerve growth factor (Class M
NGF (Nerve growth factor)-beta ; X52599BDNF (Brain-derived neurotrophic factor) ; M61176, NT (Neurotrophin)-3 ; M37763, NT- 4 ; M86528、 など  NGF (Nerve growth factor) -beta; X52599BDNF (Brain-derived neurotrophic factor); M61176, NT (Neurotrophin) -3; M37763, NT-4; M86528, etc.
インターロイキン (IL) 類  Interleukin (IL) class
IL (Interleukin) -1 alpha; M28983, IL-1 beta; M 15330, IL-2; U25676, Iレ 3 ; M14743, IL-4 ; M13982, IL-5 ; X04688, IL-6 ; M29150, L-7 ; J04156, IL-8 ; M26383, IL-9 ; AF361105, IL-10 ; M57627, IL-11 ; M57765, IL-12A ; M65291, IL-12B ; M65290, IL-13 ; L06801, IL-15 ; U14407, IL-16 ; M90391, IL-17 ; U32659, IL-18 ; AY044641, IL-19 ; AY040367, IL-20; AF212311, IL-21; AF254069, IL-22; AF279437, など エリス口ポェチン (EPO)  IL (Interleukin) -1 alpha; M28983, IL-1 beta; M 15330, IL-2; U25676, I 3; M14743, IL-4; M13982, IL-5; X04688, IL-6; M29150, L- 7; J04156, IL-8; M26383, IL-9; AF361105, IL-10; M57627, IL-11; M57765, IL-12A; M65291, IL-12B; M65290, IL-13; L06801, IL-15; U14407, IL-16; M90391, IL-17; U32659, IL-18; AY044641, IL-19; AY040367, IL-20; AF212311, IL-21; AF254069, IL-22; AF279437, etc. )
EPO (Erythropoietin); Ml 1319、 など コロニー刺激因子 (CSF) 類 EPO (Erythropoietin); Ml 1319, etc. Colony stimulating factor (CSF)
GM (Granulocyte macrophage)-CSF ; M l 1220, G (Granulocyte)-CSF ; M 17706, M (Macrophage)-CSF; M27087、 など 腫瘍壊死因子 (TNF) 類  GM (Granulocyte macrophage) -CSF; M 1220, G (Granulocyte) -CSF; M 17706, M (Macrophage) -CSF; M27087, etc. Tumor necrosis factor (TNF)
TNF (Tumor necrosis factor) -alpha; X02910, TNF- beta; M55913、 など これらの絹フイブ口インをコードするとポリヌクレオチドと生理活性タンパク 質をコードするポリヌクレオチドとは遺伝子工学的手法により連結する。 さらに、 生理活性タンパク質と絹フィプロインの融合夕ンパク質を、 トランスジエニック カイコの絹糸腺において発現させるためには、 融合タンパク質をコードするポリ ヌクレオチドは、 フイブ口イン H鎖、 L鎖または P25などの絹タンパク質遺伝 子由来のプロモ一夕一の下流に連結される必要がある。 また、 これらプロモ一夕 一の転写活性を増大させるために、 さらにェンハンサーを連結してもよい。 絹夕 ンパク質の転写活性を増強させる効果があるものであれば、 ェンハンサ一は絹夕 ンパク質遺伝子由来のものであっても、 絹タンパク質遺伝子以外に由来するもの であってもよい。 また、 カイコ由来であっても、 他の動物やウィルスなどに由来 するものであってもよい。 このようにして融合夕ンパク質発現カセッ卜が構築さ れる。 この発現カセットは、 次いで、 トランスジエニックカイコを作出するためのベ クタ一に挿入する。 ベクターは、 外来遺伝子をカイコの染色体内に挿入すること ができるものであればどのようなものであってもよいが、 例えば DNA型トラン スポゾンをもとに作製したベクターを利用することが可能である。 これまでに、 カイコの染色体中に遺伝子転移する活性が示されている DNA 型トランスポゾン には、 piggyBac、 Mariner > Minosなどがある。 中でも、 piggyBacを利用した ベクターは、 田村ら (Nat. Biotechnol. 18, 81-84 (2000) ) ゃ冨田 (Nat. Biotechnol. 21 , 52-56 (2003) ) らによって、 実際にトランスジエニックカイコ を作出するために用いられている。 DiggyBac をもとに作製したベクタ一を利用 する場合は、 例えば田村らの方法 (Nat. Biotechnol. 18, 81-84, 2000) と同 様な方法によって行えばよい。 すなわち、 piggyBac の一対の逆向き反復配列を 適当なプラスミドベクタ一に組み込み、 さらに、 このべクタ一内の逆向き反復配 列で挟まれた領域に融合タンパク質をコードするポリヌクレオチドとプロモータ —を挿入する。 そしてこのプラスミ ドベクターを、 piggyBac のトランスポゼ一 ス発現べクタ一 (ヘルパープラスミド) と共にカイコ卵へ微量注入する。 このへ ルパ一プラスミドは、 piggyBac の逆向き反復配列の片方または両方を欠いた、 実質的には piggyBacのトランスポゼース遺伝子領域のみが組み込まれている組 換えプラスミドベクタ一である。 このヘルパープラスミドにおいて、 トランスポ ゼ一スを発現させるためのプロモータ一は、 内在性のトランスポゼ一スプロモー 夕一をそのまま利用しても良いし、 あるいは、 カイコ · ァクチンプロモ一夕一や ショウジョゥバエ HSP70 プロモーター等を利用してもよい。 次世代カイコのス クリ一ニングを容易にするために、 挿入するポリヌクレオチドを組み込んだぺク 夕一内に同時にマ一カー遺伝子を組み込んでおくこともできる。 この場合、 マ— カー遺伝子の上流に例えばカイコ · ァクチンプロモーターやショウジヨウバエ HSP70 プロモータ一等のプロモーター配列を組み込み、 その作用によりマーカ —遺伝子を発現させるようにする。 以上のように、 ベクタ一をマイクロインジェクションしたカイコの卵から孵化 した F0幼虫を飼育する。 この F0カイコを同胞交配あるいは野生型カイコと交 配し、 次世代 (F1 世代) のカイコからトランスジエニックカイコをスクリ一二 ングする。 ベクター内にマーカー遺伝子が組み込まれている場合には、 その表現 形質を利用してスクリーニングする。 例えばマーカ一遺伝子として GFP 等の蛍 光タンパク質遺伝子を利用すれば、 F1 世代のカイコ卵や幼虫に励起光を照射し、 蛍光夕ンパク質の発する蛍光を検出することによりスクリーニングすることがで きる。 この他、 幼虫やカイコ蛾より抽出したゲノム DNA を用いた PCRゃサザ ンブロット法によってもスクリ一ニングすることができる。 このようにして得ら れたトランスジエニックカイコには、 融合タンパク質をコードするポリヌクレオ チドが染色体内に安定に組み込まれており、 その子孫においても失われることが ない。 絹フィプロインと生理活性タンパク質との融合夕ンパク質をコードするポリヌ クレオチドを有するトランスジエニックカイコは、 5齢期になると絹糸腺におい て組換え融合タンパク質を合成する。 この組換え融合タンパク質は、 その一部に 絹フイブ口インのアミノ酸配列を有しているため、 内在性の絹タンパク質と複合 体を形成し、 内在性の絹タンパク質と共に絹糸腺細胞から絹糸腺内腔へ分泌され る。 内腔へ分泌された組換え融合タンパク質を含有する液状絹フィブロインは、 吐糸される際に絹糸となり、 その絹糸でカイコは繭を形成する。 この発明の生理活性バイオマテリアル (組換え絹タンパク質) を絹糸腺内腔に 蓄積された液状絹タンパク質から回収する場合は、 例えば以下のような方法によ つて行うことができる。 絹糸を吐く前日のトランスジエニックカイコの体を切開 して絹糸腺を取り出し、 さらに、 後部絹糸腺のみを切断して回収する。 回収した 後部絹糸腺は約 5 mm くらいの長さに細かく切断し、 蒸留水に約 4時間浸す。 その後、 後部絹糸腺の組織片をピンセットで摘み出すか、 軽く遠心分離すること によって除去する。 以上のような操作により、 生理活性タンパク質と絹フイブ口 ィンとの融合タンパク質を含む組換え絹タンパク質 (生理活性バイオマテリァ ル) を水溶液として調製することができる。 トランスジエニックカイコが吐糸した絹糸は、 それ自体が生理活性バイオマテ リアルとなる。 あるいは、 トランスジエニックカイコの絹糸は、 例えば、 絹糸を 可溶化剤で処理することによって、 生理活性バイオマテリアル溶液 (例えば、 水 溶液) とすることもできる。 可溶化剤としては、 9 M チォシアン酸リチウムや 臭化リチウムなどのカオトロピック塩と 5 % β-メルカプトエタノールなどの還 元剤を含む水溶液もしくは塩化カルシウム · エタノール水溶液 (塩化カルシゥ ム :水:エタノール =モル比 1 : 8 : 2) (日蚕雑 6 1 2, 91 -94 ( 1998) ) などを 用いることができる。 絹糸をこれらの可溶化剤に 10〜48 時間、 好ましくは 18 〜36 時間、 特に好ましくは約 24 時間程度浸潰するなどして可溶化する。 さら に、 この水溶液を蒸留水などで透析することにより、 生理活性バイオマテリアル 水溶液として調製することができる。 絹糸線内腔タンパク質 (生理活性バイオマテリアル溶液) を単離する課程で、 あるいは絹糸から生理活性バイオマテリアル溶液を調製する過程で、 生理活性夕 ンパク質が変性し、 その生物活性が消失または低下した場合は、 例えば、 生理活 性バイオマテリアル溶液を変性剤で処理し、 次いで生理活性バイオマテリアル溶 液中の変性剤の濃度を減少させることによって生理活性タンパクの生物活性を再 生させ、 活性型の生理活性夕ンパクを含有する生理活性バイォマテリアル水溶液 を得ることもできる。 すなわち、 液状絹タンパク質や絹糸からの絹タンパク質溶 液を変性剤 (例えば、 高濃度のウレァゃグァニジン塩酸など) を含んだ緩衝液に 溶解し、 一旦、 完全に変性状態の絹タンパク質溶液にする。 そして、 あらかじめ 調製しておいた酸化型および還元型グル夕チオンなどの酸化還元剤などを含んだ 再生緩衝液を用いて、 段階的に透析や希釈を行うことによって、 絹タンパク質溶 液中の変性剤の濃度を少しずつ下げていく。 すなわち、 変性剤の最終濃度を、 5 %以下、 好ましくは 3 %以下、 特に好ましくは 1 %以下にする。 これにより、 絹タンパク質溶液中にある生理活性タンパク質は、 完全な変性状態から正しい立 体構造にリフォールディングされるため、 生理活性夕ンパクの生物活性が再生さ れる。 以上の方法は、 生理活性タンパク質を再生させるための一例であり、 生理 活性夕ンパク質を効率よく再生させるための最適条件は、 生理活性タンパク質の 種類などにより異なる。 従って、 活性型の組換え融合タンパク質を含有する生理 活性バイオマテリアル溶液を得るためには、 最適な条件下で種々の生理活性タン パク質を正しく効率的に再生させることが重要である。 例えば、 透析や希釈に用 いる再生緩衝液は、 生理活性タンパク質の種類に応じて pH、 温度、 イオン強度、 還元剤の存在などについて十分な検討が必要であり、 再生時の温度や所要時間な どといった操作方法についても十分に検討したものを用いなくてはならない。 さらに、 この発明の生理活性バイオマテリアルでは、 以上の様にして得られた 組換え絹タンパク質またはその溶液から、 融合タンパク質以外の 1以上のタンパ ク質成分が除去されたものであってもよい。 前記のとおり、 カイコの産生する絹 糸は主としてフイブ口イン、 P25 およぴセリシンを含んでいる。 この発明の生 理活性バイオマテリアルは、 生理活性タンパク質を含む絹糸または絹糸線タンパ ク質から、 フイブ口イン以外のタンパク質 (P25 および Zまたはセリシン) を 除去したものであってもよい。 特にセリシンは人体に対して抗原性を有すること が知られているため、 生理活性バイオマテリアルを直接人体に適用する場合には、 セリシンを除去することが好ましい。 トランスジエニックカイコの産生する組換え絹タンパク質から絹セリシンを除 去する場合には、 0.3~0.5 %炭酸水素ナトリウム水溶液あるいは石けん水など のアルカリ水溶液中で煮沸する方法、 もしくは 8 M ゥレア水溶液などのタンパ ク質変性剤水溶液中で 80でにおいて加熱する方法、 もしくはトリプシンなどの 酵素を用いて消化する方法を用いることができる。 このようにして得られた絹糸状の生理活性バイオマテリアルは、 例えば、 繊維 状の材料として、 あるいは、 ホモジナイザ一などを用いて粉砕して、 粉末状の材 料として利用することもできる。 また、 絹糸腺内腔から得られた液状の生理活性バイオマテリアル、 あるいは絹 糸から調製された水溶液状生理活性バイオマテリアルは、 フィルム、 ゲル、 また はスポンジ状に加工することもできる。 例えば、 生理活性バイオマテリアル溶液 を平板上に流し入れ、 風乾させることにより生理活性フィルムを作製することが できる。 また、 より強固なフィルムを作製する場合には、 風乾させた後、 90 %(v/v)メタノ一ル /蒸留水などに浸してもよい。 先にも述べたように、 絹夕 ンパク質 (特に) を主成分とするフィルムは線維芽細胞などに対する接着性と増 殖性を有することが示されているが、 この出願の発明における生理活性バイォマ テリアルフィルムは、 それらの性質に加えて、 種々の生理活性タンパク質が有す る細胞の増殖や分化の誘導といった生理活性を付加させた高機能性フィルムであ る。 この他にも、 生理活性バイオマテリアル水溶液を純水に対して透析を行うこ とによって脱塩し、 凍結乾燥を行うことによって、 活性型の生理活性タンパク質 機能を有する生理活性バイオマテリアルパウダーを作製することができる。 また、 このパウダーを 50 %グリセロール水溶液に溶解した後、 クェン酸緩衝液などを 用いて絹フイブ口イン水溶液中の pHを弱酸性にすることによって、 生理活性バ ィォマテリアルゲルを作製することもできる。 生理活性バイオマテリアル加工物 の製造に関しては、 これらの形態と方法に限定されることなく、 用途に応じて、 多様な方法で溶液状、 シート状、 ゲル状、 顆粒状、 スポンジ状などの多様な形態 に加工すればよい。 TNF (Tumor necrosis factor) -alpha; X02910, TNF-beta; M55913, etc. When these silk hive mouth-ins are encoded, the polynucleotide and the polynucleotide encoding the bioactive protein are linked by genetic engineering techniques. Furthermore, in order to express a fusion protein of a bioactive protein and silk fiproin in the silk gland of a transgenic silkworm, the polynucleotide encoding the fusion protein may be a fib mouth in H chain, L chain or P25. It needs to be linked downstream of the silk protein gene-derived promo. In order to increase the transcriptional activity of these promoters, an enhancer may be further linked. As long as it has an effect of enhancing the transcriptional activity of silk protein, the enhancer may be derived from a silk protein gene or from a protein other than a silk protein gene. Moreover, it may be derived from silkworms, or may be derived from other animals or viruses. In this way, a fusion protein expression cassette is constructed. This expression cassette is then inserted into a vector to create a transgenic silkworm. Any vector may be used as long as it can insert a foreign gene into the silkworm chromosome. For example, a vector prepared based on a DNA-type transposon can be used. is there. So far, DNA-type transposons that have been shown to have gene transfer activity into the silkworm chromosome include piggyBac and Mariner> Minos. Among them, the vector using piggyBac is actually transgeneic silkworm by Tamura et al. (Nat. Biotechnol. 18, 81-84 (2000)) Nyota (Nat. Biotechnol. 21, 52-56 (2003)) et al. Is used to create Use a vector created based on DiggyBac In this case, for example, a method similar to the method of Tamura et al. (Nat. Biotechnol. 18, 81-84, 2000) may be used. That is, a pair of inverted repetitive sequences of piggyBac are incorporated into an appropriate plasmid vector, and a polynucleotide encoding a fusion protein and a promoter are inserted into a region sandwiched between the inverted repetitive sequences in this vector. To do. This plasmid vector is microinjected into silkworm eggs together with a piggyBac transposase expression vector (helper plasmid). This helper plasmid is a recombinant plasmid vector lacking one or both of the piggyBac inverted repeats and essentially incorporating only the piggyBac transposase gene region. In this helper plasmid, the promoter for expressing the transposase may be the endogenous transposase promoter, or the silkworm / actin promoter or the Drosophila HSP70 promoter. May be used. In order to facilitate the screening of next-generation silkworms, the marker gene can be incorporated at the same time in the vector in which the polynucleotide to be inserted is incorporated. In this case, a promoter sequence such as a silkworm-actin promoter or a Drosophila HSP70 promoter is incorporated upstream of the marker gene, and the marker gene is expressed by its action. As described above, F0 larvae hatched from silkworm eggs microinjected with Vector 1 are raised. This F0 silkworm is crossed with a sibling or wild-type silkworm, and a transgenic silkworm is screened from the next-generation (F1 generation) silkworm. If the marker gene is integrated in the vector, screening is performed using the phenotype. For example, if a fluorescent protein gene such as GFP is used as a marker gene, screening can be performed by irradiating F1 generation silkworm eggs and larvae with excitation light and detecting the fluorescence emitted by the fluorescent protein. In addition, PCR can be screened by Southern blotting using genomic DNA extracted from larvae and silkworm pupae. In the thus obtained transgenic silkworm, the polynucleotide encoding the fusion protein is stably integrated into the chromosome and is not lost even in its offspring. Transgenic silkworms that have a polynucleotide encoding a fusion protein of silk fiproin and a bioactive protein synthesize a recombinant fusion protein in the silk gland at the age of five. Since this recombinant fusion protein has a part of the amino acid sequence of silk fiber mouth-in, it forms a complex with the endogenous silk protein, and the silk gland lumen from the silk gland cells together with the endogenous silk protein. Secreted into the body. Liquid silk fibroin containing recombinant fusion protein secreted into the lumen becomes silk thread when spited, and silkworms form cocoons with the silk thread. When the bioactive biomaterial (recombinant silk protein) of the present invention is recovered from the liquid silk protein accumulated in the silk gland lumen, it can be obtained, for example, by the following method. Cut the body of Transgenic silkworm the day before spitting silk thread, take out the silk gland, and cut and collect only the rear silk gland. The collected posterior silk gland is cut into pieces of about 5 mm and soaked in distilled water for about 4 hours. Thereafter, tissue pieces of the posterior silk gland are removed by tweezers or removed by light centrifugation. By the above operation, a recombinant silk protein (bioactive biomaterial) containing a fusion protein of a bioactive protein and a silk fiber mouth can be prepared as an aqueous solution. The silk thread spun by Transgenic Silkworm itself becomes a bioactive biomaterial. Alternatively, the silk thread of Transgenic silkworm can be made into a bioactive biomaterial solution (for example, an aqueous solution) by treating the silk thread with a solubilizing agent, for example. Solubilizers include aqueous solutions containing chaotropic salts such as 9 M lithium thiocyanate and lithium bromide and reducing agents such as 5% β-mercaptoethanol or calcium chloride / ethanol aqueous solutions (calcium chloride: water: ethanol = mol). (Ratio 1: 8: 2) (Nissan 6 1 2, 91 -94 (1998)) can be used. The silk thread is solubilized in these solubilizers by soaking for 10 to 48 hours, preferably 18 to 36 hours, particularly preferably about 24 hours. Furthermore, this aqueous solution can be prepared as a bioactive biomaterial aqueous solution by dialysis with distilled water or the like. In the process of isolating silk fiber lumen protein (bioactive biomaterial solution) or in the process of preparing bioactive biomaterial solution from silk thread, the bioactive protein is denatured and its biological activity is lost or reduced. In this case, for example, a bioactive biomaterial solution is treated with a denaturing agent, and then the biological activity of the bioactive protein is regenerated by reducing the concentration of the denaturing agent in the bioactive biomaterial solution, thereby A physiologically active biomaterial aqueous solution containing a physiologically active protein can also be obtained. That is, a silk protein solution from a liquid silk protein or silk thread is dissolved in a buffer solution containing a denaturing agent (for example, high-concentration urea-guanidine hydrochloride, etc.) to make a completely denatured silk protein solution. Then, using a regenerative buffer containing a redox agent such as oxidized and reduced glutathione prepared in advance, dialysis and dilution are performed stepwise to denature the silk protein solution. Decrease the concentration of the agent little by little. That is, the final concentration of the modifier is 5% or less, preferably 3% or less, particularly preferably 1% or less. As a result, the biologically active protein in the silk protein solution is refolded from a completely denatured state to the correct body structure, so that the biological activity of the biologically active protein is regenerated. The above method is an example for regenerating a physiologically active protein, and the optimum conditions for efficiently regenerating a physiologically active protein vary depending on the type of the physiologically active protein. Therefore, in order to obtain a bioactive biomaterial solution containing an active recombinant fusion protein, it is important to correctly and efficiently regenerate various bioactive proteins under optimal conditions. For example, the regeneration buffer used for dialysis and dilution needs to be carefully examined in terms of pH, temperature, ionic strength, presence of reducing agent, etc., depending on the type of bioactive protein. You must use a well-considered operation method. Furthermore, in the bioactive biomaterial of this invention, one or more protein components other than the fusion protein may be removed from the recombinant silk protein obtained as described above or a solution thereof. As described above, silk thread produced by silkworm mainly contains fib mouth in, P25 and sericin. The bioactive biomaterial of the present invention is a silk thread or silk wire tamper containing a physiologically active protein. Proteins other than fib mouth-in (P25 and Z or sericin) may be removed from the protein. In particular, since sericin is known to have antigenicity to the human body, it is preferable to remove sericin when the bioactive biomaterial is applied directly to the human body. When removing silk sericin from recombinant silk protein produced by transgenic silkworms, boil it in an alkaline aqueous solution such as 0.3-0.5% aqueous sodium bicarbonate or soapy water, or an 8 M urea aqueous solution. A method of heating at 80 at a protein denaturant aqueous solution or a method of digesting with an enzyme such as trypsin can be used. The silky bioactive biomaterial obtained in this way can be used as a powder material, for example, as a fibrous material or by pulverization using a homogenizer or the like. In addition, a liquid bioactive biomaterial obtained from the silk gland lumen or an aqueous bioactive biomaterial prepared from silk can be processed into a film, gel, or sponge. For example, a bioactive film can be produced by pouring a bioactive biomaterial solution onto a flat plate and allowing it to air dry. In order to produce a stronger film, the film may be air-dried and then immersed in 90% (v / v) methanol / distilled water. As mentioned above, it has been shown that films mainly composed of silk protein (especially) have adhesion and proliferation properties to fibroblasts and the like. In addition to these properties, biomaterial films are highly functional films with added physiological activities such as the proliferation and differentiation induction of cells with various physiologically active proteins. In addition, a bioactive biomaterial powder having an active bioactive protein function is prepared by desalting a bioactive biomaterial aqueous solution by dialysis against pure water and lyophilization. be able to. In addition, after dissolving this powder in a 50% aqueous glycerol solution, the pH of the silk fiber mouth-in aqueous solution is made weakly acidic using a citrate buffer solution or the like, so that Biomaterial gels can also be made. Regarding the production of biologically active biomaterials, it is not limited to these forms and methods, and various methods such as solution, sheet, gel, granule, and sponge can be used depending on the application. It can be processed into a shape.
実施例 以下に、 トランスジエニックカイコの絹糸を用いた活性型のヒト塩基性線維芽 細胞増殖因子 (bFGF) を含有する生理活性バイオマテリアルの製造方法に関す る実施例を挙げて、 この出願の発明を具体的に説明するが、 この出願の発明はこ の実施例に限定されるものではない。 実施例 1 Examples The following is an example of a method for producing a bioactive biomaterial containing active human basic fibroblast growth factor (bFGF) using transgene silkworm silk thread. The invention will be described in detail, but the invention of this application is not limited to this embodiment. Example 1
絹フイブ口インとヒト bFGFとの融合タンパク質  Fusion protein of silk hive mouth-in and human bFGF
を発現するベクター (pL-bFGF) の構築 絹フイブ口インとヒト bFGF との融合タンパク質を発現するベクター (pL- bFGF) を作製した。 pL-bFGFベクターに含まれるインサート DNAは、 カイコ 絹フイブ口イン L 鎖プロモーター、 カイコ絹フイブ口イン L 鎖 cDNA、 ヒト bFGF cDNA、 カイコ絹フィプロイン L鎖ポリ A付加シグナル配列より構成され る。 絹フイブ口イン L鎖のプロモーターは、 pLEベクター (Nat. Biotechnol. 2 1, 52-56 (2003)) を铸型として、 5'末端に制限酵素 EcoRI の認識配列を有するプ ライマ一 5'- gaattcggtacggttcgtaaagttcacctg- 3' (SEQ ID NO: 1 ) 、 および 5' 末端に制限酵素 EcoRI と Pstl の認識配列を有する プライ マー 5'- gaattcctgcaggtctgttatgtgaccaatc-3' (SEQ ID NO: 2) を用いた PCRを行うこ とによって単離した。 得られた DNA 断片の両末端を EcoRI で切断し、 pBluescriptIISK+の EcoRIサイトに組み込んだ。 絹フイブ口イン L鎖をコードする cDNAは、 pLEベクター (Nat. Biotechnol. 21 , 52-56 (2003)を铸型として、 5'末端に制限酵素 Pstl の認識配列を有したプ ライマー 5'-ctgcagtaacagaccactaaaatgaag-3' (SEQ ID NO: 3) 、 および 5'末 端 に 制 限 酵 素 BamHI の 認 識 配 列 を 有 し た プ ラ イ マ ー 5'- ggatccgcgtcattaccgttgccaac-3' (SEQ ID NO: 4) を用いた PCRを行うことに よって単離した。 得られた DNA 断片の両末端を Pstl と BamHI で切断し、 pBluescriptIISK+の Pstlサイトと BamHIサイト間に組み込んだ。 ヒト bFGFをコードする cDNAは、 塩基番号 495-935 (GeneBankデータべ ース登録番号 NM—002006) に相当する配列を含む DNA断片として、 ヒト線維 芽細胞 cDNAを铸型とした PCRによって所得した。 用いたプライマーの配列は、 5'末端に Bglll の認識配列を有した 5'-agatctccccgccttgcccgaggatggc-3' ( SEQ ID NO: 5 ) 、 お よ び Xbal の 認 識 配 列 を 有 し た 5'- tctagatcagctcttagcagacattggaag-3' (SEQ ID NO: 6) である。 得られた PCR 産物を Bglllと Xbalで切断し、 上記の絹フィブロイン L鎖 cDNAを組み込んだ pBluescriptIISK+の、 フイブ口イン L鎖 cDNAの 3'末端に存在する BamHIサ イトと、 その下流に存在し pBluescriptIISK+のマルチクロ一ニングサイ トに由 来する Xbalサイト間に挿入し、 絹フィブロイン L鎖と bFGFの融合夕ンパク質 をコードする cDNAを作製した。 さらに、 このベクターより、 絹フイブ口イン L 鎖 cDNAの 5'末端に存在する Pstlサイ卜と、 ヒト bFGFの 3'末端側に存在し pBluescriptIISK+のマルチクローニングサイ卜に由来する EcoRI サイトを利用 して、 絹フイブ口イン L鎖と bFGFの融合タンパク質 cDNAを切り出し、 上記 の絹フイブ口イン L 鎖のプロモー夕一を組み込んだベクターの、 絹フイブロイ ン L鎖プロモーターの 3'末端に存在する Pstlサイ トと EcoRIサイト間に挿入し た。 以上のようにして、 カイコ絹フイブ口イン L 鎖プロモー夕一とその下流に力 ィコ絹フィブロイン L鎖とヒ卜 bFGFの融合夕ンパク質をコ一ドする cDNAを 組み込んだプラスミ ドベクターを作製した。 このプラスミ ドベクターのカイコ絹 フイブ口イン L 鎖プロモー夕一の 5'末端とヒト bFGF の 3'末端に存在する EcoRI サイトを利用して、 フィブロイン L 鎖のプロモーターと融合タンパク質 cDNA からなるインサート DNA 断片を切り出し、 pBac[3xP3-DsRed/pA】 (Nat. Biotechnol. 21 , 52-56 (2003)) のフィプロイン L鎖ポリ A付加シグナ ル配列の上流にある EcoRI サイトに挿入した。 このようにして、 マイクロイン ジェクシヨン用のプラスミドベクター (pL-bFGF) を作製した (図 4参照) 。 Construction of a vector (pL-bFGF) that expresses a fusion protein of silk hive-in and human bFGF. The insert DNA contained in the pL-bFGF vector is composed of a silkworm silk fib-in L chain promoter, a silkworm silk fib in L chain cDNA, a human bFGF cDNA, and a silkworm silk fiproin L chain poly A addition signal sequence. The silk-fibre-in L chain promoter is a pLE vector (Nat. Biotechnol. 2 1, 52-56 (2003)), and is a primer with a restriction enzyme EcoRI recognition sequence at the 5 'end. Perform PCR using gaattcggtacggttcgtaaagttcacctg-3 '(SEQ ID NO: 1) and primer 5'-gaattcctgcaggtctgttatgtgaccaatc-3' (SEQ ID NO: 2), which has recognition sequences for restriction enzymes EcoRI and Pstl at the 5 'end. And isolated. Both ends of the obtained DNA fragment were cleaved with EcoRI and incorporated into the EcoRI site of pBluescriptIISK +. The cDNA encoding the silk fiber mouth-in L chain is a 5′-primer with a pLE vector (Nat. Biotechnol. 21, 52-56 (2003) as a saddle and a restriction enzyme Pstl recognition sequence at the 5 ′ end. ctgcagtaacagaccactaaaatgaag-3 '(SEQ ID NO: 3), and primer 5'-ggatccgcgtcattaccgttgccaac-3' (SEQ ID NO: 4) which has the recognition sequence of the restriction enzyme BamHI at the 5 'end The both ends of the obtained DNA fragment were cleaved with Pstl and BamHI and inserted between the Pstl site and BamHI site of pBluescriptIISK + The cDNA encoding human bFGF is The DNA fragment containing the sequence corresponding to nucleotide number 495-935 (GeneBank database accession number NM-002006) was obtained by PCR using human fibroblast cDNA as a saddle type. '5'-agatctccccgccttgcccgaggatggc-3' with Bglll recognition sequence at the end (SEQ ID NO: 5) 5'-tctagatcagctcttagcagacattggaag-3 '(SEQ ID NO: 6), which has the recognition sequence of Xbal and the above PCR fibroin L chain cDNA cut with Bglll and Xbal. Inserted between the BamHI site present at the 3 'end of the pBluescriptIISK +, which incorporates pBluescriptIISK +, and the Xbal site downstream from the pBluescriptIISK + multicloning site, and the silk fibroin L chain. In addition, a cDNA encoding the fusion protein of bFGF and bFGF was prepared, and from this vector, the Pstl cytoplasm present at the 5 'end of the silk-fibre mouth-in L chain cDNA and the 3' end of human bFGF were present. Using the EcoRI site derived from the multi-cloning site of pBluescriptIISK +, the silk protein in L chain and bFGF fusion protein cDNA was excised, and the above-mentioned silk fiber in L chain promoter was incorporated. Of over and inserted between the Pstl site and EcoRI site at the 3 'end of the silk Fuiburoi down L chain promoter. As described above, a plasmid vector in which a cDNA that encodes the fusion protein of silkworm fibroin L chain and rabbit bFGF is prepared in the silkworm silk mouth in L chain promoter and downstream of it. did. Silkworm silk of this plasmid vector Using the EcoRI site located at the 5 'end of the hive mouth in light chain promotion and the 3' end of human bFGF, an insert DNA fragment consisting of the fibroin light chain promoter and the fusion protein cDNA was excised and pBac [3xP3- DsRed / pA] (Nat. Biotechnol. 21, 52-56 (2003)) was inserted into the EcoRI site upstream of the fiproin light chain poly A-added signal sequence. In this way, a plasmid vector for microinjection (pL-bFGF) was prepared (see FIG. 4).
実施例 2 Example 2
プラスミドベクターのカイコ卵への微量注入 実施例 1で作製した pL-bFGFベクタ一を塩化セシウム密度勾配法で精製し、 このベクターとヘルパ一プラスミ ドである pHA3PIG (Nat. Biotechnol. 18, 81-84, 2000 ) を混合し、 さらにエタノール沈殿を行った後、 pL-bFGF と pHA3PIGの濃度がそれぞれ 200pg/mlずつになるようにィンジェクション緩衝 液 (0.5 mMリン酸緩衝液 pH 7.0, 5 niM KC1) に溶解した。 この DNA溶液を 産卵から 2~ 8 時間後の前胚盤葉期のカイコ卵に、 一つの卵あたりに約 15-20 nl の液量で微量注入した。 合計 2423 個の卵にマイクロインジェクションを行 つた。  Microinjection of plasmid vector into silkworm eggs The pL-bFGF vector prepared in Example 1 was purified by the cesium chloride density gradient method, and this vector and helper plasmid pHA3PIG (Nat. Biotechnol. 18, 81-84). , 2000), and after ethanol precipitation, injection buffer solution (0.5 mM phosphate buffer pH 7.0, 5 niM KC1) was added so that the concentrations of pL-bFGF and pHA3PIG were 200 pg / ml respectively. ). A small amount of this DNA solution was injected at a volume of about 15-20 nl per egg into silkworm eggs at the preblastoderm stage 2-8 hours after laying. A total of 2423 eggs were microinjected.
実施例 3 Example 3
卜ランスジエニックカイコの F1幼虫のスクリーニング ベクターをマイクロインジェクションした卵を 25°Cでィンキュペートしたと ころ、 595個の卵が孵化した。 孵化した F0幼虫の飼育を続けた後、 蛾になった ところで、 同胞交配を行い、 67グループの F1卵塊を得た。 産卵日から 5~6 日 目の F1卵塊を蛍光顕微鏡 (Gフィルター: 励起フィルター 546/ 10 nm、 吸収 フィルター 590 nm) を用いて観察した結果、 67 グループのうち、 9 グループ の F1卵塊において、 スクリーニングマーカーの赤色蛍光タンパク質 (DsRed) の発現が検出された。 DsRedの蛍光が検出された卵のみを 25°Cにおいて飼育し たところ、 81 頭の F1 成虫が得られた。 これらの成虫を野生型成虫と交配させ ることにより、 F2卵塊を得た。 81頭の F1 成虫から抽出したゲノム DNAを铸 型に、 サザンブロッテイング解析を行った結果、 15 系統のトランスジエニック カイコが得られていることが分かった。 卜 Screening of F1 larvae of Lancegien silkworms When eggs injected with a microinjection vector were incubated at 25 ° C, 595 eggs hatched. After continuing the breeding of F0 larvae that had hatched, when they became pupae, they were sibling mated to obtain 67 groups of F1 egg masses. As a result of observing F1 egg masses on the 5th to 6th day from the date of spawning using a fluorescence microscope (G filter: excitation filter 546/10 nm, absorption filter 590 nm), screening was performed on 9 out of 67 groups of F1 egg masses. Marker red fluorescent protein (DsRed) Expression was detected. Only eggs with DsRed fluorescence detected were raised at 25 ° C, and 81 F1 adults were obtained. F2 egg masses were obtained by crossing these adults with wild-type adults. As a result of Southern blotting analysis using genomic DNA extracted from 81 F1 adults, it was found that 15 transgenic silkworms were obtained.
実施例 4 Example 4
トランスジエニックカイコの絹糸における絹フイブ口インと  The silk hive mouth in the silk thread of Transgenic silkworm
ヒト bFGFの融合タンパク質の検出 実施例 3 で得たトランスジエニックカイコが産生した絹糸を、 ホモジナイザ 一を用いて粉砕した。 粉砕した絹糸を、 5 mg/ml の濃度でトリプシン溶液 (50 mM トリス塩酸緩衝液 pH 7.6に溶解された 0.5 mg/mlの濃度のトリプシン水 溶液) に懸濁し、 ー晚振盪させることによって、 絹糸に含まれる絹セリシンの消 化を行った。 この後、 遠心での分別により、 絹フイブ口インを回収し、 消化され た絹セリシンを除去した。 回収した絹フイブ口インを、 中性緩衝液でよく洗浄し た後、 9 Mチォシアン酸リチウムと 5 % β-メルカプトエタノールの混合溶液に 5 mg/ml の濃度で懸濁し、 4°Cにおいてー晚振盪させることにより溶解した。 そして、 遠心操作により、 溶け残った絹フイブ口インを除き、 絹フィプロイン溶 液を回収した。 この絹フイブ口イン溶液を SDS-サンプルバッファーと混合し、 溶液に含まれるタンパク質を SDS ポリアクリルアミドゲル電気泳動法により展 開しクマシ一染色を行った (図 1A) 。 また、 ゲルに展開したタンパク質を、 定 法によりニトロセルロース膜 (PROTRAN) に転写した。 このニトロセルロース 膜をブロッキング液 (5 % Skim milk/ 50 mM トリス塩酸緩衝液 pH 7.5、 150 mM NaCl) で 4でにおいて 16時間処理した後に、 TBS (50 mM トリス塩 酸緩衝液 pH 7.5、 150 mM NaCl) 溶液で 200倍に希釈した抗ヒト bFGF ポリ クローナル抗体 (R&D Systems、 AF-233-NA) と室温で約 2時間反応させた。 次に、 ブロッキング溶液で 3000倍に希釈したペルォキシダーゼ標識抗ャギ IgG ポリクローナル抗体 (VECTOR、 PI- 9500) と室温で約 1 時間反応させた。 最 2 後に、 抗体が反応したタ ンパク質を ECL Western Blotting Detection Reagents (Amersham Biosciences) を用いて検出した。 この結果、 トランス ジエニックカイコが産生した絹フイブ口インに、 絹フイブ口イン L 鎖とヒト bFGFとの融合タンパク質が含まれていることを確認した (図 2A) 。 Detection of fusion protein of human bFGF The silk thread produced by the transgenic silkworm obtained in Example 3 was pulverized using a homogenizer. The ground silk thread is suspended in a trypsin solution (0.5 mg / ml aqueous solution of trypsin dissolved in 50 mM Tris-HCl buffer pH 7.6) at a concentration of 5 mg / ml, and the silk thread is shaken. The silk sericin contained in the rice was erased. Thereafter, the silk fiber mouth-in was recovered by centrifugation, and the digested silk sericin was removed. The collected silk fiber mouth-in is washed thoroughly with a neutral buffer and then suspended in a mixed solution of 9 M lithium thiocyanate and 5% β-mercaptoethanol at a concentration of 5 mg / ml at 4 ° C. Dissolved by shaking. Then, the silk fiproin solution was recovered by removing the undissolved silk hive mouth in by centrifugation. This silk hive mouth-in solution was mixed with SDS-sample buffer, and the proteins contained in the solution were spread by SDS polyacrylamide gel electrophoresis and stained with Kumashi (Figure 1A). The protein developed on the gel was transferred to a nitrocellulose membrane (PROTRAN) by a conventional method. This nitrocellulose membrane was treated with a blocking solution (5% Skim milk / 50 mM Tris-HCl buffer pH 7.5, 150 mM NaCl) at 4 for 16 hours, and then TBS (50 mM Tris-HCl buffer pH 7.5, 150 mM). It was reacted with an anti-human bFGF polyclonal antibody (R & D Systems, AF-233-NA) diluted 200-fold with NaCl) solution at room temperature for about 2 hours. Next, it was reacted with a peroxidase-labeled anti-goat IgG polyclonal antibody (VECTOR, PI-9500) diluted 3000 times with a blocking solution at room temperature for about 1 hour. Most 2 Later, the antibody-reacted protein was detected using ECL Western Blotting Detection Reagents (Amersham Biosciences). As a result, it was confirmed that the silk hive mouth in produced by the transgenic silkworm contained a fusion protein of silk hive mouth in L chain and human bFGF (FIG. 2A).
実施例 5 Example 5
トランスジエニックカイコの絹糸からのヒト bFGFを含有した  Contained human bFGF from silk of transgenic silkworm
絹フイブ口イン材料の作製 実施例 4 の形質転換カイコの絹糸から得られた絹フイブ口イン溶液を透析力 ップ (MWCO 8000、 Bio-Rad) に入れ、 可溶化緩衝液 (8 M ゥレア、 1 mM ジチオトレイ トール、 50 mM トリス塩酸緩衝液 pH 8.0、 200 mM NaCl) に 対して 12 時間透析を行った。 続いて、 透析外液の約半分量を捨て、 これと等量 の再生緩衝液 (2.0 mM還元型ダル夕チオン、 0.2 mM 酸化型グルタチオン、 1 mM ジチオトレイ トール、 50 mM トリス塩酸緩衝液 pH 8.0、 200 mM NaCl) ( Growth Factors 18, 26 1-275 (2001)) を透析外液へ加えることによ つて、 透析外液中のゥレアの最終濃度を 4 Mとし、 12時間透析を行った。 この ような透析外液を再生緩衝液と半分量ずつ交換して透析する操作を繰り返し行う ことにより、 透析外液中のゥレアの最終濃度を段階的に 0.5 M まで下げていき、 変性剤であるチォシアン酸リチウムゃゥレアの除去を行うとともに、 変性した bFGF の活性を再生させた。 最終的に、 ヒト bFGF とフィプロイン L鎖との融 合タンパク質を含有した絹フイブ口インは、 変性剤を含まない中性緩衝液 (50 mM トリス塩酸緩衝液 pH 8.0、 200 mM NaCl) に対して透析を行うことによ つて、 中性緩衝液に溶解された状態で得ることができた。  Preparation of silk hive mouth-in material The silk hive mouth-in solution obtained from the silkworm silk thread of Example 4 was put into a dialysis force (MWCO 8000, Bio-Rad) and solubilized buffer (8 M urea, Dialyzed against 1 mM dithiothreitol, 50 mM Tris-HCl buffer (pH 8.0, 200 mM NaCl) for 12 hours. Next, discard about half of the external dialysis solution and regenerate the same amount of regeneration buffer (2.0 mM reduced dalbutione, 0.2 mM oxidized glutathione, 1 mM dithiothreitol, 50 mM Tris-HCl buffer pH 8.0, 200 mM NaCl) (Growth Factors 18, 26 1-275 (2001)) was added to the dialysate solution, and the final concentration of urea in the dialysate solution was adjusted to 4 M and dialyzed for 12 hours. This is a denaturing agent by gradually reducing the final concentration of urea in the dialyzed solution to 0.5 M by repeatedly performing dialysis by exchanging half of the dialyzed solution with the regeneration buffer. In addition to removing lithium thiocyanate, the activity of denatured bFGF was regenerated. Finally, silk five mouth-in containing a fusion protein of human bFGF and fiproin L chain is more effective than neutral buffer without denaturant (50 mM Tris-HCl buffer pH 8.0, 200 mM NaCl). By dialysis, it was obtained in a state dissolved in a neutral buffer.
実施例 6 Example 6
bFGF を含有した絹フイブ口イン材料の生物活性の測定 実施例 5 の、 中性緩衝液に溶解されたヒト bFGF を含有した絹フイブ口イン 溶液中の bFGF量を ELISAキット (Human FGF basic Immunoassay ¾ R&D Systems) を用いて定量した。 bFGFの生物活性は、 正常ヒトさい帯静脈血管内 皮細胞 (KURABO) に対する増殖促進効果として測定した。 Measurement of biological activity of silk hive mouth-in material containing bFGF The amount of bFGF in the silk fiber mouth-in solution containing human bFGF dissolved in neutral buffer in Example 5 was quantified using an ELISA kit (Human FGF basic Immunoassay ¾ R & D Systems). The biological activity of bFGF was measured as a growth promoting effect on normal human umbilical vein endothelium (KURABO).
2x103 のヒ トさい帯静脈血管内皮細胞を、 組織培養用 96 穴プレー 卜 (Falcon) の 1穴 (直径 6.4 mm) に播種し、 正常培地 (2 %ゥシ胎児血清、 10 ng/ ml EGF、 lpg/mlハイドロコ一チゾン、 50pg/mlゲンタマイシン、 50 ng/ml アンフォテリシン、 lOpg/mlへパリン、 および 5 ng/ml ヒト組換え型 bFGF を含む血管内皮細胞基礎培地 Humedia-EB2 (KURABO) ) で 4 時間培 養した。 その後、 培地を除き HEPES緩衝液を用いて細胞を 2回洗浄し、 bFGF を含まない上記培地を加えた。 さらに、 ヒト bFGF を含有した絹フィプロイン 溶液を、 bFGFあたりの最終濃度が 125 pg/mlおよび 250 pg/mlになるよう に加えた。 37°Cで 3 日間培養した後、 Cell Counting Kit (同仁化学) を用いた WST- 1 法により、 細胞増殖を調べた (図 2) 。 その結果、 培地に加えた絹フィ ブロイン溶液中のヒト bFGFの濃度が 125 pg/mlおよび 250 pg/mlの両方の 場合において、 細胞が増殖していることが明らかになった。 bFGF量あたりの増 殖の程度は、 陽性コントロールとして用いた大腸菌で発現させたヒト組換え型 bFGF と同等であった。 以上のように、 絹糸から調製した bFGF を含有する絹 フイブ口イン溶液は、 高い生物活性を有していることが確かめられた。 2x103 human umbilical vein endothelial cells were seeded in one well (diameter 6.4 mm) of a 96-well plate (Falcon) for tissue culture, and normal medium (2% wild fetal serum, 10 ng / ml EGF, lpg Vascular endothelial cell basal medium (Humedia-EB2 (KURABO)) containing 4 ml / ml hydrocortisone, 50 pg / ml gentamicin, 50 ng / ml amphotericin, lOpg / ml heparin, and 5 ng / ml human recombinant bFGF) for 4 hours Cultivated. Thereafter, the medium was removed, the cells were washed twice with HEPES buffer, and the above medium without bFGF was added. Furthermore, silk fiproin solution containing human bFGF was added so that the final concentration per bFGF was 125 pg / ml and 250 pg / ml. After culturing at 37 ° C for 3 days, cell proliferation was examined by the WST-1 method using Cell Counting Kit (Dojindo) (Fig. 2). As a result, it was revealed that the cells were proliferating when the concentration of human bFGF in the silk fibroin solution added to the medium was 125 pg / ml and 250 pg / ml. The degree of growth per bFGF amount was equivalent to that of human recombinant bFGF expressed in E. coli used as a positive control. As described above, it was confirmed that the silk hive mouth-in solution containing bFGF prepared from silk has high biological activity.
実施例 7 Example 7
bFGFを含有した絹フイブロインフィルム上でのヒトさい帯血管内皮細胞の培養 ポリスチレン製の直径 35 mmの細胞培養皿 (Falcon) に、 上記 5 で得られ た中性緩衝液に溶解されたヒト bFGFを含有した絹フィブロイン溶液 2.0 mlを 入れて静置し、 一晩クリーンベンチ内で送風しながら風乾させることにより、 培 養皿表面上に絹フイブ口インフィルムを作製した。 HEPES 緩衝液を用いて、 絹 フイブ口インフィルムの表面を 2回洗い、 bFGFを含まない正常培地に懸濁した 6xl04のヒトさい帯血管内皮細胞を播種した。 また、 コントロールとして、 野生 型のカイコの絹糸から調製した絹フィブロイン溶液、 および野生型カイコの絹フ イブ口イン溶液に大腸菌で発現させたヒト組換え型 bFGF を混合した絹フイブ 口イン溶液からも同様にして絹フイブ口インフィルムを作製し、 ヒトさい帯血管 内皮細胞を播種した。 37°Cで 3 日間培養を行った結果、 野生型のカイコの絹糸 から調製した絹フィプロインフィルム上での培養に比べ、 トランスジエニック力 ィコの絹糸から調製したヒト bFGF を含有した絹フイブ口インフィルム上での 培養においては、 有意な細胞増殖促進効果が認められた (図 3) 。 また、 ヒト組 換え型 bFGF を混合させた絹フイブ口イン溶液を用いて作製した絹フイブロイ ンフィルム上においては、 細胞の増殖促進効果が認められなかった。 これは、 絹 フィプロインフィルム上に細胞を播種するために、 フィルム表面の洗浄を行った 際に、 ヒト組換え型 bFGF は、 絹フイブ口インフィルムから洗い流されてしま つたためであると考えられる。 以上のように、 bFGFを含有した絹フイブ口イン材料は、 細胞の増殖や分化な どの生物活性を付加した機能的なバイオマテリアルとして有用である。 Cultivation of human umbilical cord vascular endothelial cells on silk fibroin film containing bFGF Human bFGF dissolved in neutral buffer obtained in 5 above in a 35 mm diameter cell culture dish (Falcon) made of polystyrene A silk fibro-in film was prepared on the surface of the culture dish by placing 2.0 ml of a silk fibroin solution containing lysate and allowing it to air dry while blowing air in a clean bench overnight. Using HEPES buffer, wash the surface of the silk fiber mouth film twice and suspend in normal medium without bFGF 6Xl0 4 of human umbilical cord endothelial cells were seeded. As a control, silk fibroin solution prepared from silkworm silk of wild-type silkworm, and silk-fibre mouth-in solution in which human recombinant bFGF expressed in Escherichia coli was mixed with silk-type mouth silk-in solution of wild-type silkworm were also used. Similarly, silk-fibre-in-film was prepared and seeded with human umbilical vein endothelial cells. As a result of culturing at 37 ° C for 3 days, it was found that silk containing human bFGF prepared from silk of transgenic force compared to culture on silk fiproin film prepared from silk of wild-type silkworm. In the culture on the fibre-in-film, a significant cell growth promoting effect was observed (Fig. 3). In addition, on the silk fibroin film prepared using the silk fibre-in solution mixed with human recombinant bFGF, no cell growth promoting effect was observed. This is thought to be because the human recombinant bFGF was washed away from the silk fibre-in film when the surface of the film was washed to seed cells on silk fiproin film. It is done. As described above, the silk-fibre mouth-in material containing bFGF is useful as a functional biomaterial with added biological activities such as cell proliferation and differentiation.
産業上の利用可能性 以上、 詳しく説明したとおり、 この出願の発明によって、 活性型の生理活性夕 ンパク質を含有した生理活性バイオマテリアルが提供される。 この生理活性バイ ォマテリアルをフィルム、 シート、 ゲル、 スポンジ、 および繊維などに加工する ことにより、 医療などの産業分野で利用することができる新しいバイオマテリァ ルが提供される。 Industrial Applicability As described above in detail, the invention of this application provides a bioactive biomaterial containing an active bioactive protein. By processing this bioactive biomaterial into films, sheets, gels, sponges, fibers, etc., new biomaterials that can be used in industrial fields such as medical care are provided.

Claims

請求の範囲 The scope of the claims
1. 絹フィプロインと生理活性タンパク質との融合タンパク質をコードする融 合ポリヌクレオチドをゲノム中に保有するトランスジエニックカイコから得られ、 前記融合夕ンパク質を含む組換え絹タンパク質を主成分とする生理活性バイオマ テリアル。 1. Physiology obtained from a transgenic silkworm having a fusion polynucleotide encoding a fusion protein of silk fiproin and a physiologically active protein in the genome, and comprising a recombinant silk protein containing the fusion protein as a main component. Active biomaterial.
2. 絹フィプロインと生理活性タンパク質との融合タンパク質をコードする融 合ポリヌクレオチドをゲノム中に保有するトランスジエニックカイコから得られ た組換え絹タンパク質から、 前記融合タンパク質以外の 1以上のタンパク質成分 が除去された生理活性バイオマテリアル。 2. From a recombinant silk protein obtained from a transgenic silkworm that possesses a fusion polynucleotide encoding a fusion protein of silk fiproin and a physiologically active protein in the genome, one or more protein components other than the fusion protein are present. Bioactive biomaterial removed.
3. 生理活性夕ンパク質がヒト線維芽細胞増殖因子である請求項 1または 2の 生理活性バイオマテリアル。 3. The bioactive biomaterial according to claim 1 or 2, wherein the bioactive protein is human fibroblast growth factor.
4. 絹フィプロインと生理活性タンパク質との融合タンパク質をコードする融 合ポリヌクレオチドをゲノム中に保有し、 前記融合タンパク質を含む組換え絹夕 ンパク質を産生するトランスジエニックカイコ。 4. A transgenic silkworm that possesses a fusion polynucleotide encoding a fusion protein of silk fiproin and a physiologically active protein in its genome, and produces a recombinant silk protein containing the fusion protein.
5. 生理活性タンパク質がヒト線維芽細胞増殖因子である請求項 4のトランス ジエニックカイコ。 5. The transgenic silkworm of claim 4, wherein the physiologically active protein is human fibroblast growth factor.
6. ' 請求項 4または 5記載のトランスジエニックカイコが産生する絹糸または 絹糸線内タンパク質。 6. 'Silk or silk fiber protein produced by the transgenic silkworm according to claim 4 or 5.
.  .
7. 請求項 6記載の絹糸を可溶化剤で処理することによって得られる生理活性 バイォマテリアル溶液。  7. A bioactive biomaterial solution obtained by treating the silk thread according to claim 6 with a solubilizer.
8. 請求項 7記載の生理活性バイオマテリアル溶液の生理活性を再生する方法 であって、 生理活性バイオマテリアル溶液を変性剤で処理し、 次いで生理活性バ ィォマテリアル溶液中の変性剤濃度を減少させることを特徴とする方法。 8. A method for regenerating the physiological activity of the bioactive biomaterial solution according to claim 7, wherein the bioactive biomaterial solution is treated with a denaturant, and then the bioactive buffer is treated. Reducing the concentration of the denaturant in the biomaterial solution.
9. 請求項 1または 2の生理活性バイオマテリアルを用いて成形加工された生 理活性バイオマテリアル加工物。 9. A processed biologically active biomaterial formed by using the bioactive biomaterial according to claim 1 or 2.
PCT/JP2005/012292 2004-06-30 2005-06-28 Physiologically active biomaterial WO2006004076A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-194215 2004-06-30
JP2004194215A JP2006016323A (en) 2004-06-30 2004-06-30 Physiologically active biomaterial

Publications (1)

Publication Number Publication Date
WO2006004076A1 true WO2006004076A1 (en) 2006-01-12

Family

ID=35782879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012292 WO2006004076A1 (en) 2004-06-30 2005-06-28 Physiologically active biomaterial

Country Status (2)

Country Link
JP (1) JP2006016323A (en)
WO (1) WO2006004076A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9089525B1 (en) 2011-07-01 2015-07-28 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for reducing glucose levels in a subject
US9273107B2 (en) 2012-12-27 2016-03-01 Ngm Biopharmaceuticals, Inc. Uses and methods for modulating bile acid homeostasis and treatment of bile acid disorders and diseases
US9290557B2 (en) 2012-11-28 2016-03-22 Ngm Biopharmaceuticals, Inc. Compositions comprising variants and fusions of FGF19 polypeptides
US9925242B2 (en) 2012-12-27 2018-03-27 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for treatment of nonalcoholic steatohepatitis
US9963494B2 (en) 2012-11-28 2018-05-08 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for reducing glucose levels in a subject
US10093735B2 (en) 2014-01-24 2018-10-09 Ngm Biopharmaceuticals, Inc. Beta-klotho binding proteins
US10369199B2 (en) 2013-10-28 2019-08-06 Ngm Biopharmaceuticals, Inc. Methods of using variants of FGF19 polypeptides for the treatment of cancer
US10398758B2 (en) 2014-05-28 2019-09-03 Ngm Biopharmaceuticals, Inc. Compositions comprising variants of FGF19 polypeptides and uses thereof for the treatment of hyperglycemic conditions
US10434144B2 (en) 2014-11-07 2019-10-08 Ngm Biopharmaceuticals, Inc. Methods for treatment of bile acid-related disorders and prediction of clinical sensitivity to treatment of bile acid-related disorders
US10456449B2 (en) 2014-06-16 2019-10-29 Ngm Biopharmaceuticals, Inc. Methods and uses for modulating bile acid homeostasis and treatment of bile acid disorders and diseases
US10517929B2 (en) 2014-10-23 2019-12-31 Ngm Biopharmaceuticals, Inc. Pharmaceutical compositions comprising FGF19 variants
US10744185B2 (en) 2015-11-09 2020-08-18 Ngm Biopharmaceuticals, Inc. Methods of using variants of FGF19 polypeptides for the treatment of pruritus
US10800843B2 (en) 2015-07-29 2020-10-13 Ngm Biopharmaceuticals, Inc. Beta klotho-binding proteins
US11370841B2 (en) 2016-08-26 2022-06-28 Ngm Biopharmaceuticals, Inc. Methods of treating fibroblast growth factor 19-mediated cancers and tumors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101506365A (en) * 2006-08-23 2009-08-12 海洋纳米技术有限公司 Biosilica-adhesive protein nanocomposite materials: synthesis and application in dentistry
JP2008067612A (en) * 2006-09-12 2008-03-27 Hiroshima Industrial Promotion Organization Transgenic silkworm for producing functional antibody molecule
JP2008125366A (en) * 2006-11-16 2008-06-05 Hiroshima Industrial Promotion Organization Fused polynucleotide for expressing recombinant protein in silk gland of transgenic silkworm
JP5812256B2 (en) * 2011-05-20 2015-11-11 国立研究開発法人農業生物資源研究所 Method for producing single chain antibody
JP6362878B2 (en) * 2013-03-12 2018-07-25 国立研究開発法人農業・食品産業技術総合研究機構 Fusion protein containing modified peptide repeat peptide and silk fiber containing the fusion protein

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04503607A (en) * 1989-02-24 1992-07-02 イムノセラピューティックス・インコーポレイテッド Immobilized cytokines
JPH11243948A (en) * 1998-03-02 1999-09-14 Natl Inst Of Sericultural & Entomological Science Cell culture bed substrate for proliferation of animal cell and its preparation
JP2000510712A (en) * 1996-03-29 2000-08-22 ハンソン,ハンス―アルネ Promote regeneration of living tissue
JP2000336040A (en) * 1999-05-28 2000-12-05 Univ Tokyo Preventive or treating agent for myofibroblast-related disease
JP2003024056A (en) * 2001-06-06 2003-01-28 Becton Dickinson & Co Process for providing readily usable and homogeneously dispersed extracellular matrix as substrate
JP2004016144A (en) * 2002-06-18 2004-01-22 Japan Science & Technology Corp Transformed silkworm producing human collagen
FR2852325A1 (en) * 2003-03-13 2004-09-17 Centre Nat Rech Scient New nucleic acid that directs expression of protein in silk glands of silkworm, useful for preparation of pharmaceutical proteins and for modifying textile properties of silk

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04503607A (en) * 1989-02-24 1992-07-02 イムノセラピューティックス・インコーポレイテッド Immobilized cytokines
JP2000510712A (en) * 1996-03-29 2000-08-22 ハンソン,ハンス―アルネ Promote regeneration of living tissue
JPH11243948A (en) * 1998-03-02 1999-09-14 Natl Inst Of Sericultural & Entomological Science Cell culture bed substrate for proliferation of animal cell and its preparation
JP2000336040A (en) * 1999-05-28 2000-12-05 Univ Tokyo Preventive or treating agent for myofibroblast-related disease
JP2003024056A (en) * 2001-06-06 2003-01-28 Becton Dickinson & Co Process for providing readily usable and homogeneously dispersed extracellular matrix as substrate
JP2004016144A (en) * 2002-06-18 2004-01-22 Japan Science & Technology Corp Transformed silkworm producing human collagen
FR2852325A1 (en) * 2003-03-13 2004-09-17 Centre Nat Rech Scient New nucleic acid that directs expression of protein in silk glands of silkworm, useful for preparation of pharmaceutical proteins and for modifying textile properties of silk

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580483B2 (en) 2011-07-01 2017-02-28 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for treatment of diabetes
US9670260B2 (en) 2011-07-01 2017-06-06 Ngm Biopharmaceuticals, Inc. Compositions comprising fusion variants of FGF19 polypeptides
US9751924B2 (en) 2011-07-01 2017-09-05 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising fusion variants of FGF19 polypeptides for reducing glucose levels in a subject
US11065302B2 (en) 2011-07-01 2021-07-20 Ngm Biopharmaceuticals, Inc. Compositions comprising fusion variants of FGF19 polypeptides
US10413590B2 (en) 2011-07-01 2019-09-17 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants of FGF19 polypeptides for reducing body mass in a subject
US9089525B1 (en) 2011-07-01 2015-07-28 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for reducing glucose levels in a subject
US9963494B2 (en) 2012-11-28 2018-05-08 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for reducing glucose levels in a subject
US10758590B2 (en) 2012-11-28 2020-09-01 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF 19 polypeptides for treating diabetes
US9290557B2 (en) 2012-11-28 2016-03-22 Ngm Biopharmaceuticals, Inc. Compositions comprising variants and fusions of FGF19 polypeptides
US11066454B2 (en) 2012-11-28 2021-07-20 Ngm Biopharmaceuticals, Inc. Compositions comprising variants and fusions of FGF19 polypeptides
US9878009B2 (en) 2012-12-27 2018-01-30 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for modulating bile acid homeostasis in a subject having error of bile acid synthesis
US11103554B2 (en) 2012-12-27 2021-08-31 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants of FGF19 polypeptides for reducing bile acid synthesis in a subject having cirrhosis
US9895416B2 (en) 2012-12-27 2018-02-20 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for modulating bile acid homeostasis in a subject having cholestasis
US9974833B2 (en) 2012-12-27 2018-05-22 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for modulating bile acid homeostasis in a subject having pregnancy intrahepatic cholestasis
US9273107B2 (en) 2012-12-27 2016-03-01 Ngm Biopharmaceuticals, Inc. Uses and methods for modulating bile acid homeostasis and treatment of bile acid disorders and diseases
US9878008B2 (en) 2012-12-27 2018-01-30 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for modulating bile acid homeostasis in a subject having bile acid diarrhea or bile acid malabsorption
US9889177B2 (en) 2012-12-27 2018-02-13 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for modulating bile acid homeostasis in a subject having primary sclerosing cholangitis
US9889178B2 (en) 2012-12-27 2018-02-13 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for modulating bile acid homeostasis in a subject having nonalcoholic steatohepatitis
US9925242B2 (en) 2012-12-27 2018-03-27 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants and fusions of FGF19 polypeptides for treatment of nonalcoholic steatohepatitis
US11564972B2 (en) 2012-12-27 2023-01-31 Ngm Biopharmaceuticals, Inc. Methods of using compositions comprising variants of FGF19 polypeptides for treating primary biliary cirrhosis in a subject
US10369199B2 (en) 2013-10-28 2019-08-06 Ngm Biopharmaceuticals, Inc. Methods of using variants of FGF19 polypeptides for the treatment of cancer
US11596676B2 (en) 2014-01-24 2023-03-07 Ngm Biopharmaceuticals, Inc. Methods of treating nonalcoholic steatohepatitis comprising administering an anti-human beta klotho antibody or binding fragment thereof
US10744191B2 (en) 2014-01-24 2020-08-18 Ngm Biopharmaceuticals, Inc. Beta klotho-binding proteins and methods of use thereof
US10093735B2 (en) 2014-01-24 2018-10-09 Ngm Biopharmaceuticals, Inc. Beta-klotho binding proteins
US10398758B2 (en) 2014-05-28 2019-09-03 Ngm Biopharmaceuticals, Inc. Compositions comprising variants of FGF19 polypeptides and uses thereof for the treatment of hyperglycemic conditions
US11241481B2 (en) 2014-06-16 2022-02-08 Ngm Biopharmaceuticals, Inc. Methods and uses for modulating bile acid homeostasis and treatment of bile acid disorders and diseases
US10456449B2 (en) 2014-06-16 2019-10-29 Ngm Biopharmaceuticals, Inc. Methods and uses for modulating bile acid homeostasis and treatment of bile acid disorders and diseases
US10517929B2 (en) 2014-10-23 2019-12-31 Ngm Biopharmaceuticals, Inc. Pharmaceutical compositions comprising FGF19 variants
US11141460B2 (en) 2014-11-07 2021-10-12 Ngm Biopharmaceuticals, Inc. Methods for treatment of bile acid-related disorders and prediction of clinical sensitivity to treatment of bile acid-related disorders
US10434144B2 (en) 2014-11-07 2019-10-08 Ngm Biopharmaceuticals, Inc. Methods for treatment of bile acid-related disorders and prediction of clinical sensitivity to treatment of bile acid-related disorders
US10800843B2 (en) 2015-07-29 2020-10-13 Ngm Biopharmaceuticals, Inc. Beta klotho-binding proteins
US11667708B2 (en) 2015-07-29 2023-06-06 Ngm Biopharmaceuticals, Inc. Anti-human beta klotho antibody or binding fragment thereof and methods of their use
US10744185B2 (en) 2015-11-09 2020-08-18 Ngm Biopharmaceuticals, Inc. Methods of using variants of FGF19 polypeptides for the treatment of pruritus
US11370841B2 (en) 2016-08-26 2022-06-28 Ngm Biopharmaceuticals, Inc. Methods of treating fibroblast growth factor 19-mediated cancers and tumors

Also Published As

Publication number Publication date
JP2006016323A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
WO2006004076A1 (en) Physiologically active biomaterial
Hino et al. The generation of germline transgenic silkworms for the production of biologically active recombinant fusion proteins of fibroin and human basic fibroblast growth factor
US10493134B2 (en) Compositions comprising collagen and PRP for tissue regeneration
Kambe et al. Silk fibroin sponges with cell growth‐promoting activity induced by genetically fused basic fibroblast growth factor
CN104946656B (en) A kind of people source basic fibroblast growth factor, tobacco chloroplast expression vector and production method
JP2009011323A (en) Polypeptide variant with raised heparin-binding capacity
CN107188948A (en) Peptide and its application for inducing tissue regeneration
CN102695525A (en) RNA with a combination of unmodified and modified nucleotides for protein expression
Wang et al. Large-scale production of bioactive recombinant human acidic fibroblast growth factor in transgenic silkworm cocoons
WO2007073661A1 (en) Activated collagen scaffold materials and their special fused active restoration factors
JP6699821B2 (en) Nerve regeneration transplant material, nerve regeneration transplant material manufacturing method, and nerve regeneration transplant material manufacturing kit
JP5645187B2 (en) Protein having triple helix structure and method for producing the same
CN108642059B (en) Modified gene with cell proliferation promoting factor suitable for silkworm expression and expression vector and application thereof
CN116813749B (en) Recombinant humanized III type collagen and preparation method and application thereof
CN115521372A (en) Triple-helix recombinant humanized type III collagen, preparation method and application
Huang et al. Engineering a self-assembling leucine zipper hydrogel system with function-specific motifs for tissue regeneration
CN115521373A (en) Triple-helix recombinant humanized type I collagen, preparation method and application thereof
Long et al. Genetic hybridization of highly active exogenous functional proteins into silk-based materials using “light-clothing” strategy
Zhang et al. Expression and characterization of recombinant human VEGF165 in the middle silk gland of transgenic silkworms
CN111424035A (en) Method for expressing human connective tissue growth factor with biological activity based on silkworm silk gland, product and application thereof
CN106256380A (en) The application in the material that preparation promotes the full transection lesion of animal spinal cord to repair of the functional biological material
CN110950930A (en) Bone peptide and confirmation method and application of osteogenic physiological activity thereof
CN114605516B (en) Barnacle mucin 20K derivative polypeptide with self-assembly characteristic and biomineralization function, and preparation method and application thereof
CN117510619B (en) Recombinant III-type humanized collagen microsphere with innovative spatial structure and design, preparation process and application thereof
WO2024016740A1 (en) Biosynthesis-based preparation method for structural material of human body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase