WO2006003760A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2006003760A1
WO2006003760A1 PCT/JP2005/009270 JP2005009270W WO2006003760A1 WO 2006003760 A1 WO2006003760 A1 WO 2006003760A1 JP 2005009270 W JP2005009270 W JP 2005009270W WO 2006003760 A1 WO2006003760 A1 WO 2006003760A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal
semiconductor device
metal oxide
oxide film
Prior art date
Application number
PCT/JP2005/009270
Other languages
English (en)
French (fr)
Inventor
Atsushi Ikeda
Hideo Nakagawa
Nobuo Aoi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05741631A priority Critical patent/EP1780788A1/en
Priority to US11/630,799 priority patent/US7663239B2/en
Publication of WO2006003760A1 publication Critical patent/WO2006003760A1/ja
Priority to US12/649,002 priority patent/US7893535B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device having copper wiring and a method for manufacturing the same, and more particularly to a barrier metal film and a method for forming the same.
  • semiconductor devices In recent years, with the miniaturization of processing dimensions of semiconductor integrated circuit devices (hereinafter referred to as “semiconductor devices”), multilayer wirings of semiconductor devices include copper wirings and insulating films having a low dielectric constant, so-called low k films. The combination of is adopted. In this way, RC delay and power consumption can be reduced. Furthermore, in order to achieve higher integration, higher functionality, and higher speed of semiconductor devices, the adoption of a low-k film having a lower dielectric constant is being studied.
  • the copper wiring is usually formed by a damascene method.
  • the damascene method includes a single damascene method in which wiring and via plugs are alternately formed, and a dual damascene method in which wiring and via plugs are simultaneously formed.
  • the first copper having the first noria metal film 103 in the first insulating film 102 is formed.
  • the wiring 104 is formed. Note that a transistor or the like (not shown) is formed on the silicon substrate 101. Subsequently, on the first insulating film 102 and the first copper wiring 104, a diffusion preventing film 105 for preventing copper diffusion and a second insulating film 106 are sequentially formed.
  • a via hole 106a is formed in the diffusion prevention film 105 and the second insulating film 106, and a wiring groove 106b is formed in the second insulating film 106, thereby forming a recess 106c composed of the via hole 106a and the wiring groove 106b.
  • a second noria metal film 107 is formed along the wall surface of the recess 106c.
  • FIG. 5 (a) the force shown in the case where the upper barrier metal structure is a single-layer structure of the second noria metal film 107 is applied to the wall surface of the recess 106c as shown in FIG. 8 (b).
  • a two-layer structure consisting of a second rare metal film 108 and a third rare metal film 109 It may be the case.
  • the second barrier metal film 107 (in the case of FIG. 5 (b), the third noria metal film 109) is formed.
  • the copper film is formed by filling the concave portion 106c and covering the entire surface of the second insulating film 106 by copper plating using the copper seed layer as a seed.
  • CMP chemical mechanical polishing
  • the barrier metal film has a single-layer structure consisting of a tantalum nitride film or a tantalum nitride film
  • the structure shown in FIG. The two-layer structure is the structure shown in Fig. 5 (b).
  • the second rare metal film 107 in the case of FIG. 5 (a)
  • the third rare metal film 109 in FIG. 5.
  • the tantalum nitride film is not oxidized, but the tantalum nitride film has a high resistance and low adhesion to copper. have.
  • the formation of the copper seed layer is usually performed by physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • the via hole aspect ratio ratio of via hole depth to diameter
  • the film thickness at the bottom of the via hole in the copper seed layer it is becoming difficult to secure the film thickness at the bottom of the via hole in the copper seed layer. If the film thickness at the bottom of the via hole is reduced, sufficient current for electrolytic plating cannot be supplied, so that the via hole cannot be sufficiently filled with electrolytic copper.
  • the concave portion 106c formed of the via hole 106a and the wiring groove 106b cannot be sufficiently filled with copper. This will lead to product yield degradation and reduced reliability.
  • the second barrier metal film 107 in the case of FIG. 5 (a) or the third noria metal film 109 (in the case of FIG. 5 (b)) has a high melting point such as tantalum.
  • a metal film is used, the tantalum film is oxidized when copper is formed by electrolytic plating, so that a high-resistance oxide-tantalum film is formed. Therefore, avoid an increase in wiring resistance You can't do that! /!
  • a metal such as ruthenium or iridium whose metal and the metal oxide itself have a low resistance and does not lose conductivity even when oxidized is used as the barrier metal film. It has been attracting attention for use (see, for example, Patent Documents 3 and 4). These metals have a lower resistivity than tantalum or tantalum nitride, and do not lose conductivity when oxidized. Therefore, these metals have a copper plating directly on the barrier metal film without using a copper seed layer. Can be performed. In general, these metals are formed by atomic layer deposition or chemical vapor deposition.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-223755
  • Patent Document 2 JP 2002-43419 A
  • Patent Document 3 Patent No. 3409831
  • Patent Document 4 JP 2002-75994 A
  • the conductive metal oxide film formed in order from the side where the insulating film exists is conductive even when oxidized.
  • a method using a barrier metal film made of a metal film without losing electrical properties is conceivable.
  • the oxygen constituting the insulating film and the oxygen constituting the metal oxide film are the same type of element. Adhesion is thought to increase.
  • it is formed on the outermost surface of the metal film force barrier metal film that does not lose conductivity even when oxidized, it does not lose conductivity even when oxidized! / As a result, the resistance of the NORA metal film can be reduced.
  • a low-resistance barrier metal film with high adhesion to the insulating film can be realized.
  • the mechanical strength of metal oxides is low.
  • a multilayer film of a metal film and a metal oxide film that does not lose conductivity even when oxidized as described above is used as a barrier metal film, for example, as shown in FIG.
  • the noria metal film is formed by heat treatment during the semiconductor manufacturing process.
  • an object of the present invention is to provide a semiconductor device having a barrier metal film that has excellent mechanical strength, low resistance, and high adhesion to an insulating film, and a method for manufacturing the same. is there.
  • a first semiconductor device includes an insulating film formed on a substrate, a buried metal wiring formed in the insulating film, an insulating film, and a wiring.
  • the noria metal film is laminated in order from the side where the insulating film exists to the side where the metal wiring exists! It consists of a metal oxide film, a metal compound film, and a metal film, and the elastic modulus of the metal compound film is larger than that of the metal oxide film.
  • the rare metal film has an elastic modulus greater than the elastic modulus of the metal oxide film between the metal oxide film and the metal film. High mechanical strength!
  • the metal compound film Since the metal compound film is provided, the mechanical strength of the rare metal film is dramatically improved as compared with a barrier metal film obtained by simply laminating a metal film and a metal oxide film. Therefore, it is possible to realize a highly reliable semiconductor device having a multilayer wiring with excellent mechanical strength.
  • the insulating film and the metal oxide film are formed to be bonded together, and the metal film and the metal wiring are bonded to each other. I prefer to talk.
  • the metal oxide film and the insulating film are bonded to each other, so that the adhesion of the NORA metal film to the insulating film is larger than that in the case where the metal film and the insulating film are bonded.
  • the outermost surface of the insulating film is an oxide, oxygen, which is a common element, exists in the metal oxide film and the insulating film, so that the insulating film, the metal oxide film, Increased adhesion.
  • the metal film and the metal wiring are joined together, it is more resistant than the metal compound film or metal oxide film, and the metal serves as a base for the electrode when the metal is attached.
  • the metal compound film or the metal oxide film is excellent in film thickness uniformity compared to the case where the metal compound film or the metal oxide film is formed on the surface of the barrier metal film, the adhesion film can be formed. For this reason, high-performance metal plating can be realized.
  • the metal oxide film preferably has conductivity.
  • a second semiconductor device includes an insulating film formed on a substrate, a buried metal wiring formed in the insulating film, and a barrier formed between the insulating film and the metal wiring.
  • the first metal oxide film is formed by sequentially laminating the side force on which the insulating film exists and the side force on the side on which the metal wiring exists.
  • the metal compound film, the second metal oxide film, and the metal film is characterized by being larger than the elastic modulus of the first metal oxide film and the elastic modulus of the second metal oxide film.
  • the noria metal film includes the metal compound film between the first metal oxide film and the metal film, and includes the metal film and the metal compound film.
  • a metal oxide film is provided between the elastic modulus of the first metal oxide film and the elastic modulus of the second metal oxide film. Since it has a large elastic modulus, a barrier metal film having excellent mechanical strength can be realized. As a result, the mechanical strength is dramatically improved as compared with a barrier metal film obtained by simply laminating a metal film and a metal oxide film. Even when the thermal expansion coefficients of the metal compound film and the first and second metal oxide films are different from each other, the thermal expansion of the barrier metal film is made uniform as a whole, and the thermal mechanical characteristics are increased.
  • a structure of a barrier metal film having excellent strength can be realized. Furthermore, since the barrier metal film has a structure in which the first metal oxide film, the metal compound film, and the second metal oxide film are sequentially laminated, the stress applied to the metal oxide film is dispersed in two layers. Therefore, the mechanical strength of the entire barrier metal film is dramatically increased. Therefore, a highly reliable semiconductor device having a multilayer wiring excellent in mechanical strength can be realized.
  • the insulating film and the first metal oxide film are formed to be joined, and the metal film and the metal wiring are joined to each other. It is preferable to meet.
  • the first metal oxide film and the insulating film are bonded to each other, so that the noria metal film and the insulating film are compared with the case where the metal film and the insulating film are bonded. Adhesion improves. Further, when the outermost surface of the insulating film is an oxide, oxygen, which is a common element, exists in the first metal oxide and the insulating film, so the insulating film and the first metal acid are present. The adhesion with the material film increases. In addition, since the metal film and the metal wiring are joined, a metal having a lower resistance than the metal compound film or the metal oxide film serves as an electrode-carrying base for metal plating. A film with a thickness can be formed because the film thickness is more uniform than when a compound film or a metal oxide film is formed on the surface of the barrier metal film. For this reason, high performance metal plating can be realized.
  • the first metal oxide film and the second metal acid It is preferable that at least one of the chemical films has conductivity.
  • the metal constituting the metal compound film is preferably a refractory metal.
  • the metal compound film does not change even if heat of about 400 ° C is applied in the semiconductor manufacturing process for forming the upper layer wiring after forming the metal wiring. Therefore, it is possible to suppress the occurrence of cracks in the noria metal film.
  • the metal compound film made of a refractory metal has high mechanical strength, it is possible to suppress the occurrence of cracks in the barrier metal film even if stress is applied during wire bonding in the assembly process. Therefore, a highly reliable semiconductor device having excellent mechanical strength can be realized.
  • the metal constituting the metal film is preferably a metal that does not lose conductivity even when oxidized.
  • the metal film is made of a metal that does not lose its conductivity even when the metal film is oxidized, even if the surface of the metal film is oxidized during wiring plating, the conductivity does not decrease. Therefore, high-performance wiring can be achieved. Therefore, a highly reliable semiconductor device having a multilayer wiring with low resistance and high adhesion can be realized.
  • the metal compound film is preferably made of a metal nitride film.
  • the metal nitride film having a higher mechanical strength than the metal oxide film exists between the metal film and the metal oxide film, the mechanical strength of the entire noria metal film is increased. Increases. Therefore, it has excellent mechanical strength, low resistance and high adhesion! In addition, a highly reliable semiconductor device having a multilayer wiring can be realized.
  • the metal compound film is preferably made of a metal carbide film.
  • the metal carbide film having a mechanical strength superior to that of the metal oxide film exists between the metal film and the metal oxide film, the mechanical strength of the entire barrier metal film is increased. Increases. Therefore, it has excellent mechanical strength, low resistance and high adhesion!
  • a highly reliable semiconductor device having a multilayer wiring can be realized.
  • the metal compound film is preferably made of a metal halide film.
  • the metal silicide film having mechanical strength superior to that of the metal oxide film exists between the metal film and the metal oxide film, the mechanical property of the entire barrier metal film is increased. Strength increases. Therefore, a semiconductor device having excellent mechanical strength, low resistance, high adhesion, and high reliability including a multilayer wiring can be realized.
  • a first method for manufacturing a semiconductor device includes a step of forming a recess in an insulating film on a substrate, and a metal oxide film, a metal compound film, and a metal film along the wall surface of the recess.
  • the mechanical strength between the metal oxide film and the metal film has a higher elastic modulus than that of the metal oxide film. Since a barrier metal film having an excellent metal compound film is formed, the mechanical strength is dramatically improved as compared with the case where a barrier metal film formed by simply laminating a metal film and a metal oxide film is formed. Therefore, a highly reliable semiconductor device having a multilayer wiring with excellent mechanical strength can be manufactured. In addition, by forming the metal oxide film and the insulating film to be bonded, the adhesion of the noria metal film to the insulating film can be improved as compared to the case where the metal film and the insulating film are bonded. it can.
  • the outermost surface of the insulating film is an oxide
  • oxygen which is a common element, exists between the metal oxide film and the insulating film. Adhesion increases.
  • a metal having a lower resistance than the metal compound film or the metal oxide film serves as a base for the electrode when performing metal plating.
  • Compound film or metal oxide film The film can be formed because the film thickness is more uniform than that formed on the surface of the barrier metal film. For this reason, high-performance metal plating can be realized.
  • the second method for manufacturing a semiconductor device includes a step of forming a recess in an insulating film on a substrate, and a first metal oxide film and a metal compound film along the wall surface of the recess.
  • the step of forming the barrier metal film includes the step of forming a metal compound film having an elastic modulus greater than each of the elastic modulus of the first metal oxide film and the elastic modulus of the second metal oxide film. It is characterized by including.
  • the metal compound film is provided between the first metal oxide film and the metal film, and the first metal oxide film is provided between the metal film and the metal compound film.
  • a barrier metal film having a metal oxide film of 2 is formed, and the metal compound film has an elasticity greater than the elastic modulus of the first metal oxide film and the elastic modulus of the second metal oxide film. Therefore, a noria metal film having excellent mechanical strength can be realized. As a result, the mechanical strength is dramatically improved as compared with the case where a barrier metal film formed by simply laminating a metal film and a metal oxide film is formed.
  • the thermal expansion of the barrier metal film is made uniform and the thermal mechanical strength is improved.
  • An excellent barrier metal film structure can be realized. Furthermore, since a barrier metal film having a structure in which the first metal oxide film, the metal compound film, and the second metal oxide film are sequentially stacked is formed, the stress applied to the metal oxide film is dispersed in two layers. Therefore, the mechanical strength of the entire barrier metal film can be dramatically increased. Therefore, a highly reliable semiconductor device having a multilayer wiring excellent in mechanical strength can be manufactured.
  • the adhesion between the barrier metal film and the insulating film is improved as compared with the case where the metal film and the insulating film are bonded.
  • the outermost surface of the insulating film is an oxide, oxygen, which is a common element, exists in the first metal oxide and the insulating film, so the insulating film and the first metal oxide Adhesion with a material film increases.
  • the resistance and the metal oxide film can be more resistant than the metal compound film or the metal oxide film.
  • Plating film with superior film thickness uniformity compared to the case where a metal compound film or metal oxide film is formed on the surface of the noria metal film because the genus serves as an electrode and a base for metal plating. Can be formed. For this reason, high-performance metal plating can be realized.
  • the noria metal film is formed.
  • the method further includes the step of forming a seed layer thereon, and the step of forming the buried metal wiring includes a step of forming the buried metal wiring on the seed layer so as to fill the recess.
  • the process window for plating for wiring is expanded, so that the process of forming the embedded metal wiring can be easily optimized compared to the case of forming the embedded metal wiring without forming the seed layer. Can be.
  • the manufacturing yield is improved, and a highly reliable semiconductor device having a multilayer wiring having low resistance and high adhesion can be stably manufactured.
  • the semiconductor device and the method for manufacturing the same according to the present invention has excellent mechanical strength, low resistance, and high adhesion! ⁇ A highly reliable semiconductor device having multilayer wiring can be realized.
  • FIGS. 1 (a) and 1 (b) are principal part cross-sectional views showing the structure of a semiconductor device according to a first embodiment of the present invention.
  • FIGS. 2 (a) to 2 (c) are cross-sectional views of essential steps showing a method for manufacturing a semiconductor device according to a first embodiment of the present invention.
  • FIGS. 3 (a) and 3 (b) are principal part cross-sectional views showing the structure of a semiconductor device according to a second embodiment of the present invention.
  • FIGS. 4 (a) to 4 (c) are cross-sectional views of relevant steps showing a method for manufacturing a semiconductor device according to a second embodiment of the present invention.
  • FIGS. 5 (a) and 5 (b) are main part sectional views showing the structure of a semiconductor device according to a conventional example. Explanation of symbols
  • FIGS. 1A and 1B are cross-sectional views of relevant parts showing the structure of the semiconductor device according to the first embodiment.
  • a first insulating film 2 is formed on a silicon substrate 1, and the first insulating film 2 has a first noria metal film 3.
  • a first copper wiring 4 is formed.
  • a transistor or the like (not shown) is formed on the silicon substrate 1.
  • a diffusion preventing film 5 and a second insulating film 6 for preventing copper diffusion are formed in this order.
  • Via holes 6 a are formed in the diffusion preventing film 5 and the second insulating film 6, and wiring grooves 6 b are formed in the second insulating film 6. In this way, a recess 6c composed of the via hole 6a and the wiring groove 6b is formed.
  • a second noria metal film A1 is formed on the wall surface of the recess 6c.
  • the second noria metal film A1 includes a metal oxide film 7 formed on the second insulating film 6 along the recess 6c, and a metal compound film formed on the metal oxide film 7. 8 and a metal film 9 formed on the metal compound film 8.
  • the elastic modulus of the metal compound film 8 is larger than the elastic modulus of the metal oxide film 7.
  • at least a part of the metal film 9 is oxidized!
  • the recess 6c in the copper film and the second noria metal film A1 is formed.
  • the second copper wiring 10 may be any one of wiring, via plugs, or both.
  • the second copper wiring 10 may be made of pure copper or a copper alloy containing a component other than copper (for example, a trace amount of Si, Al, Mo, Sc, etc.). The process from the formation of the diffusion prevention film 5 to the CMP is repeated. As a result, a multilayer wiring is formed.
  • the diffusion preventing film 5 a silicon nitride film, a silicon nitride carbonized film, a silicon carbonized oxide film, a silicon carbide film, or a laminated film formed by combining these films may be used.
  • the diffusion preventing film 5 has a function of preventing the copper of the first copper wiring 4 from diffusing into the second insulating film 6.
  • an insulating film made of a silicon oxide film, a fluorine-doped silicon oxide film, a silicon oxycarbide film, or an organic film may be used as the second insulating film 6. These films may be films formed by chemical vapor deposition or SOD (spin on dielectric) films formed by spin coating! / ⁇ .
  • the metal oxide film 7 does not necessarily need to have conductivity when the film thickness is thin.
  • the conductive metal oxide film 7 will be specifically described.
  • the metal of the metal oxide film 7 includes ruthenium (Ru), iridium (Ir), molybdenum (Mo), osmium (Os), rhodium (Rh), platinum (Pt), vanadium (V), Alternatively, a metal oxide film such as palladium (Pd) that does not lose conductivity even when oxidized is used.
  • the metal oxide film 7 may be a metal other than the metals described above as long as it does not lose conductivity even when oxidized.
  • a refractory metal is preferably used as the metal constituting the metal compound film 8.
  • heat of about 400 ° C. is applied in the step of forming the upper layer wiring, but the metal compound film 8 is transformed by the occurrence of cracks or the like by this heat treatment. None do. Therefore, a highly reliable semiconductor device can be realized.
  • a refractory metal nitride film may be used for the metal compound film 8.
  • the metal of the metal compound film 8 includes titanium (Ti), tantalum (Ta) zirconium (Zr), niobium (Nb), hafnium (Hf), tungsten (W), Excellent mechanical strength such as ruthenium (Ru), iridium (Ir), molybdenum (Mo), osmium (Os), rhodium (Rh), platinum (Pt), or vanadium (V). It is recommended to use a metal nitride film that is not lost. Note that the metal of the metal compound film 7 has excellent mechanical strength.
  • a metal other than the metals described above may be used.
  • the metal compound film 8 may be a refractory metal carbide film.
  • the metal of the metal compound film 8 includes ruthenium (Ru), iridium (Ir), molybdenum (Mo), osmium (Os), rhodium (Rh), platinum (Pt), vanadium ( V), Titanium (Ti), Tantalum (Ta), Zirconium (Zr), -Obium (Nb), Hafnium (Hf), Tungsten (W), etc.
  • a metal carbide film that does not lose its properties may be used.
  • the metal of the metal compound film 8 may be a metal other than the metals described above as long as it is excellent in mechanical strength and does not lose conductivity even when carbonized. However, it is necessary to select the metal of the metal compound film 8 so as to have an elastic modulus larger than that of the metal oxide film 7.
  • a refractory metal cage film can be used as the metal compound film 8.
  • a metal cadmium film that has excellent mechanical strength and does not lose its conductivity even if it is chemidized, such as zirconium (Zr), niobium (Nb), hafnium (Hf), or tungsten (W). You can also.
  • the metal of the metal compound film 8 may be a metal other than the metals described above as long as it is excellent in mechanical strength and does not lose conductivity even if it is made into a key. However, it is necessary to select the metal of the metal compound film 8 so as to have an elastic modulus larger than that of the metal oxide film 7.
  • the metal film 9 is oxidized by ruthenium (Ru), iridium (Ir), molybdenum (Mo), osmium (O s), rhodium (Rh), platinum (Pt), or vanadium (V).
  • Ru ruthenium
  • Ir iridium
  • Mo molybdenum
  • O s osmium
  • Rh rhodium
  • Pt platinum
  • V vanadium
  • the metal of the metal film 9 may be a metal other than the metals described above as long as it is a metal that does not lose conductivity even when oxidized.
  • FIGS. 2A to 2C are cross-sectional views of relevant steps showing a method for manufacturing a semiconductor device according to the first embodiment of the present invention.
  • the first insulating film 2 having the first noria metal film 3 in the first insulating film 2 is formed.
  • the copper wiring 4 is formed.
  • a transistor or the like (not shown) is formed on the silicon substrate 1.
  • a diffusion preventing film 5 and a second insulating film 6 for preventing copper diffusion are formed in order on the first insulating film 2 and the first copper wiring 4.
  • a via hole 6a having a lower end reaching the first copper wiring 4 is formed in the diffusion preventing film 5 and the second insulating film 6, and a wiring groove communicating with the via hole 6a is formed in the second insulating film 6. 6b is formed.
  • a recess 6c composed of a dual damascene via hole 6a and a wiring groove 6b is formed.
  • the recess 6c formed of the via hole 6a and the wiring groove 6b is formed by using, for example, a dual damascene disclosed in Japanese Patent Laid-Open No. 2002-75994 using a well-known lithography technique, etching technique, ashing technique, and cleaning technique. What is necessary is just to form by the formation method.
  • a metal oxide film 7 is formed on the second insulating film 6 along the wall surface of the recess 6c.
  • a metal compound film 8 is formed on the metal oxide film 7.
  • a metal film 9 is formed on the metal compound film 8.
  • the metal oxide film 7, the metal compound film 8, and the metal film 9 are formed by atomic layer deposition (ALD), chemical vapor deposition (CVD), or physical vapor deposition.
  • the film may be formed by a film forming method such as (PVD: PPhysical vapor deposition). In this way, a second noria metal film A1 composed of the metal oxide film 7, the metal compound film 8, and the metal film 9 is formed.
  • the second copper wiring 10 may be formed by performing CMP in the same manner as described above.
  • copper plating can be performed more stably by providing a step of forming a copper seed layer. That is, for example, even if the surface of the metal film 9 is partially or wholly oxidized, the copper seeding can be more stably performed by forming the copper seed layer.
  • an embedded wiring made of a material other than copper is formed instead of the second copper wiring 10 as the embedded metal wiring, a material for the seed layer corresponding to the material is appropriately selected.
  • the second noria metal film A1 in the present embodiment has a mechanical modulus between the metal oxide film 7 and the metal film 9 that is larger than that of the metal oxide film 7.
  • the mechanical strength of the second noria metal film A1 is higher than that of the noria metal film formed by simply laminating the metal film 9 and the metal oxide film 7. Will improve dramatically. Therefore, it is possible to realize a highly reliable semiconductor device having a multilayer wiring with excellent mechanical strength.
  • the second insulating film 6 and the metal oxide film 7 are formed to be joined together, and the metal film 9 and the second copper wiring 12 are joined to each other. For this reason, since the second insulating film 6 and the metal oxide film 7 are joined, compared to the case where the second insulating film 6 and the metal film 9 are joined. Thus, the adhesion between the second noria metal film Al and the second insulating film 6 is improved. Furthermore, when the outermost surface of the second insulating film 6 is an oxide, oxygen, which is a common element, exists in the second insulating film 6 and the metal oxide film 7. Adhesion between the second insulating film 6 and the metal oxide film 7 is increased.
  • the metal film 9 and the second copper wiring 10 are joined, a metal having a lower resistance than the metal compound film 8 or the metal oxide film 7 is plated as an electrode when performing metal plating. Since it serves as a base, it is possible to form a coating film because it has excellent film thickness uniformity compared to the case where the metal compound film 8 or the metal oxide film 7 is on the surface of the second noria metal film A1. For this reason, high-performance metal plating can be realized.
  • a barrier metal film formed by laminating metal films the mechanical strength of the barrier metal film is improved, so that the barrier metal film does not generate cracks due to heat treatment in the semiconductor manufacturing process or stress in the assembly process. Can be realized.
  • the adhesion of the noria metal film to the insulating film can be improved.
  • a barrier metal film having a uniform film thickness can be obtained.
  • the specific resistance of ruthenium is 7.5 ( ⁇ 'cm), and the specific resistance of iridium is 6.5 ( ⁇ -cm).
  • the specific resistance of the ruthenium oxide film is 35 ⁇ -cm), and the specific resistance of the iridium oxide film is 30 ( ⁇ ′cm).
  • the specific resistance of tantalum films currently used as standard is 60 to 180 ( ⁇ 'cm), and the specific resistance of tantalum nitride films is 250 ⁇ -cm. ).
  • the thickness of the metal oxide film 7 is several ⁇ !
  • the metal compound film 8 has a thickness of several ⁇ ! It is formed to be about 25 nm
  • the thickness of the metal film 9 is several ⁇ ! It may be formed to be about ⁇ 25 nm.
  • the total thickness of the second noria metal film A1 is preferably 20 nm to 30 nm in the case of a 65 nm generation semiconductor device. In the case of a 45 nm generation semiconductor device, the total film thickness is expected to be about 15 nm or less even if it is thick.
  • the film thickness ratio of the metal oxide film 7, the metal compound film 8, and the metal film 9 may be arbitrarily optimized according to the film forming method and application.
  • the mechanical strength is excellent, and the resistance is low and the adhesion is high.
  • ⁇ Semiconductor devices can be realized.
  • a plurality of second barrier metal films A1 may be laminated between the second insulating film 6 and the second copper wiring 10.
  • one or more other films are interposed between the metal oxide film 7 and the metal compound film 8.
  • one or more other films are provided between the metal compound film 8 and the metal film 9. May be.
  • the wiring and the via plug are formed in separate processes.
  • the wiring and the via plug are the second copper wiring 10 in this embodiment. It is included in a certain embedded wiring.
  • the material of the embedded wiring that is the second copper wiring 10 has been described.
  • the material is lower than copper.
  • Ag, Au, or Pt metal with resistivity or combination of these metals Use gold as a material for buried wiring.
  • the second embodiment since the parts common to the first embodiment are the same, the description thereof will not be repeated, and the following description will focus on differences from the first embodiment. .
  • FIGS. 3 (a) and 3 (b) are cross-sectional views showing the main part of the structure of the semiconductor device according to the second embodiment.
  • 3 (a) and 3 (b) are different from the semiconductor device according to the first embodiment in that a second noria metal film A2 is formed on the wall surface of the recess 6c.
  • the second noria metal film A2 is formed on the first metal oxide film 7a and the metal oxide film 7a formed on the second insulating film 6 along the recess 6c.
  • the elastic modulus of the metal compound film 8 is larger than the elastic modulus of the first metal oxide film 7a and the elastic modulus of the second metal oxide film 7b.
  • the metal of the first metal oxide film 7a and the metal of the second metal oxide film 7b include the types of metals constituting the metal oxide 7 described in the first embodiment. A metal selected from among the above may be used.
  • the first metal oxide film 7a and the second metal oxide film 7b may be composed of the same type of metal cover or different types of metal cover. Well ...
  • the first metal compound film 8 has a larger elastic modulus than the elastic modulus of the first metal oxide film 7a and the elastic modulus of the second metal oxide film 7b. It is necessary to select from the type of metal constituting the metal compound film 8 described in the embodiment.
  • FIG. 4A to 4C are different from the method of manufacturing the semiconductor device according to the first embodiment in that a second noria metal film A2 is formed in FIG. 4B. .
  • a first metal oxide film 7a is formed on the second insulating film 6 along the wall surface of the recess 6c.
  • a metal compound film 8 is formed on the first metal oxide film 7a.
  • a second metal oxide film 7 b is formed on the metal compound film 8.
  • a metal film 9 is formed on the second metal oxide film 7b.
  • the first metal oxide film 7a, the metal compound film 8, the second metal oxide film 7b, and the metal film 9 are formed by atomic layer deposition (ALD: Atomic layer deposition).
  • the first metal oxide film 7a may be formed by a deposition method such as a growth method (VD: cemical vapor deposition) or a physical vapor deposition method (PVD).
  • VD cemical vapor deposition
  • PVD physical vapor deposition method
  • the second noria metal film A2 includes a metal compound film 8 between the first metal oxide film 7a and the metal film 9, and between the metal film 9 and the metal compound film 8. And the second metal oxide film 7b, and the elastic modulus of the metal compound film 8 is determined by the elastic modulus of the first metal oxide film 7a and the elastic modulus of the second metal oxide film 7b. Therefore, the second noria metal film A2 having excellent mechanical strength can be realized. As a result, the mechanical strength of the second noria metal film A2 is dramatically improved as compared with a barrier metal film in which a metal film and a metal oxide film are simply laminated.
  • the second noria metal Since the thermal expansion of the film A2 is made uniform as a whole, the structure of the second barrier metal film A2 having excellent thermal mechanical strength can be realized. Further, since the first metal oxide film 7a, the metal compound film 8 and the second metal oxide film 7b are stacked in this order to form the second metal oxide film A2, the first metal oxide film 7a is stacked. Since the stress applied to the metal oxide film 7a is dispersed in two layers, the mechanical strength of the entire second noria metal film A2 is dramatically increased.
  • the mechanical strength further increases. To do. Therefore, a highly reliable semiconductor device having a multilayer wiring with excellent mechanical strength can be realized.
  • the second insulating film 6 and the first metal oxide film 7a are joined and formed, and the metal film 9 and the second copper wiring 10 are joined and formed. ing. For this reason, since the first metal oxide film 7a and the second insulating film 6 are joined, the second nod film is compared with the case where the metal film 9 and the second insulating film 6 are joined. The adhesion between the rear metal film A2 and the second insulating film 6 is improved.
  • the outermost surface of the second insulating film 6 is an oxide
  • oxygen which is a common element, exists in the first metal oxide film 7a and the second insulating film 6.
  • the adhesion between the second insulating film 6 and the first metal oxide film 7a is increased.
  • the metal compound film 8, the first metal oxide film 7a, or the second metal oxide film 7b is used.
  • the metal with low resistance serves as an electrode and ground for metal plating, so the metal compound film 8, the first metal oxide film 7a, or the second metal oxide film 7b.
  • a plurality of second barrier metal films A2 may be laminated between the second insulating film 6 and the second copper wiring 10.
  • the gap between the first metal oxide film 7a and the metal compound film 8 is reduced.
  • One or more other films may be provided, and the second metal oxide film 7b and the second metal oxide film 7b may be provided as long as the adhesion between the second metal oxide film 7b and the metal film 9 is not impaired.
  • One or more other films may be provided between the metal film 9 and the metal film 9.
  • the metal compound film 8 and the second metal oxide film 7b are disposed between the metal compound film 8 and the second metal oxide film 7b.
  • One or more other films may be provided.
  • the present invention is useful for a semiconductor device including a barrier metal film that has excellent mechanical strength, low resistance, and high adhesion, and a method for manufacturing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 基板(1)上に形成された絶縁膜(6)と、絶縁膜(6)中に形成された埋め込み金属配線(10)と、絶縁膜(6)と金属配線(10)との間に形成されたバリアメタル膜(A1)とを備えた半導体装置において、バリアメタル膜(A1)は、絶縁膜(6)が存在している側から金属配線(10)が存在している側へ向かって順に積層されている金属酸化物膜(7)、金属化合物膜(8)及び金属膜(9)よりなる。金属化合物膜(8)の弾性率は、金属酸化物膜(7)の弾性率よりも大きい。

Description

明 細 書
半導体装置及びその製造方法
技術分野
[0001] 本発明は、銅配線を有する半導体装置及びその製造方法に関し、特にバリアメタ ル膜とその形成方法に関する。
背景技術
[0002] 近年、半導体集積回路装置 (以下、半導体装置という。)の加工寸法の微細化に伴 つて、半導体装置の多層配線には、銅配線と誘電率が小さい絶縁膜、いわゆる Low k膜との組み合わせが採用されている。こうすることにより、 RC遅延及び消費電力 の低減を可能にする。さらに、半導体装置の高集積化、高機能化及び高速化を図る ために、誘電率がより低 、Low— k膜の採用が検討されて 、る。
[0003] ところで、銅配線は、通常ダマシン法によって形成される。ダマシン法には、配線及 びビアプラグを交互に形成するシングルダマシン法と、配線及びビアプラグを同時に 形成するデュアルダマシン法とがある。
[0004] 以下に、ダマシン法による多層配線の形成方法について、図 5 (a)及び (b)を参照 しながら説明する。
[0005] 図 5 (a)に示すように、シリコン基板 101上に第 1の絶縁膜 102を形成した後に、該 第 1の絶縁膜 102中に第 1のノリアメタル膜 103を有する第 1の銅配線 104を形成す る。なお、シリコン基板 101上には、図示していないトランジスタなどが形成されている 。続いて、第 1の絶縁膜 102及び第 1の銅配線 104の上に、銅の拡散を防止する拡 散防止膜 105及び第 2の絶縁膜 106を順に形成する。続いて、拡散防止膜 105及び 第 2の絶縁膜 106にビアホール 106aを形成すると共に、第 2の絶縁膜 106に配線溝 106bを形成することにより、ビアホール 106a及び配線溝 106bよりなる凹部 106cを 形成する。続いて、凹部 106cの壁面に沿うように、第 2のノリアメタル膜 107を形成 する。なお、図 5 (a)では、上層のバリアメタル構造として、第 2のノリアメタル膜 107の 単層構造よりなる場合について示している力 図 8 (b)に示すように、凹部 106cの壁 面に沿うように、第 2のノ リアメタル膜 108及び第 3のノ リアメタル膜 109の 2層構造よ りなる場合でもよい。
[0006] 次に、図示していないが、図 5 (a)の場合であれば第 2のバリアメタル膜 107 (なお、 図 5 (b)の場合であれば第 3のノリアメタル膜 109)の上に、銅シード層を形成した後 に、該銅シード層を種に用いた銅めつきにより、凹部 106cを埋め込むと共に第 2の絶 縁膜 106の表面全体を覆うように銅膜を形成する。続いて、化学機械研磨 (CMP: Chemical mechanical polishing)法により、銅膜における凹部 106cの内側の部分以 外であって第 2の絶縁膜 106の上に形成されている部分と、図 5 (a)の場合であれば 第 2のノリアノリアメタル膜 107における凹部 106cの内側の部分以外であって第 2の 絶縁膜 106の上に形成されている部分(図 5 (b)の場合であれば第 3のノリアメタル 膜 109及び第 2のノリアメタル膜 108における凹部 106cの内側の部分以外の部分 であって第 2の絶縁膜 106の上に形成されている部分)を研磨除去する。これにより、 配線、ビアプラグ又はこれら両方を形成することができる。以上の一連の動作を繰り 返し行なうことにより、多層配線を形成することができる (例えば、特許文献 1参照)。
[0007] 一般に、銅は、熱又は電界によって容易にシリコン酸ィ匕膜などの絶縁膜中を拡散 するので、これが原因となってトランジスタの特性劣化が生じやすい。また、銅は、絶 縁膜との密着性が低い。したがって、銅配線を形成する際には、銅と絶縁膜との間に 、タンタル膜又は窒化タンタル膜よりなるノリアメタル膜を形成することにより、銅が絶 縁膜へ拡散することを防止すると共に絶縁膜及び銅との密着性を向上させる方法が 提案されている(例えば、特許文献 2参照)。例えば、バリアメタル膜の構造カ^ンタ ル膜又は窒化タンタル膜よりなる単層構造である場合が、図 5 (a)に示した構造となる 一方、ノリアメタル膜の構造がタンタル膜及び窒化タンタル膜よりなる 2層構造である 場合が、図 5 (b)に示した構造となる。
[0008] し力しながら、例えば前述の例において、図 5 (a)に示す第 2のバリアメタル膜 107と してタンタルなどの高融点金属膜を用いた場合には、凹部 106cを有する第 2の絶縁 膜 106と高融点金属膜との密着性が悪 、と 、う問題がある。この密着性が悪 、と!/、う 問題に対しては、図 5 (b)に示すように、例えば第 3のノリアメタル膜 109としてタンタ ル膜を用いる場合には、タンタル膜よりなる第 3のノリアメタル膜 109と第 2の絶縁膜 1 06との間に、第 2のノリアメタル膜 108としてタンタル窒化膜を形成することによって 密着性の悪さを改善してきたが、十分な密着性が得られて 、るわけではな!/、。
[0009] また、第 2のノ リアメタル膜 107 (図 5 (a)の場合)又は第 3のノ リアメタル膜 109 (図 5
(b)の場合)として窒化タンタル膜を用いた場合には、窒化タンタル膜は酸化されるこ とはないが、窒化タンタル膜は高抵抗であって、且つ銅との密着性が低いという問題 を有している。
[0010] さらに、第 2のノリアメタル膜 107 (図 5 (a)の場合)又は第 3のノリアメタル膜 109 ( 図 5 (b)の場合)としてとしてチタン膜又は窒化チタン膜を用いた場合にも、それぞれ 、前述したタンタル膜を用いた場合又は窒化タンタル膜を用いた場合と同様の問題 が存在する。
[0011] ところで、前記の銅シード層の形成には、通常、物理気相成長法 (PVD:Physical wapor deposition)が用いられる。半導体装置の微細化に伴って、ビアホールのァス ぺクト比(ビアホールの深さと径との比)が高くなる傾向があるので、物理気相成長法 を用いて銅シード層を形成する場合、銅シード層におけるビアホールの底部での膜 厚の確保が難しくなつてきている。ビアホールの底部での膜厚が薄くなると、電解め つきの電流が十分供給できな 、ので、電解めつきの銅でビアホールを十分に埋め込 むことができなくなる。例えば、前記図 5 (a)の場合では、ビアホール 106a及び配線 溝 106bよりなる凹部 106cを銅によって十分に埋め込むことができなくなる。これによ り、製品歩留まりの劣化及び信頼性の低下を招くことになる。この点、銅シード層にお けるビアホールの底部での膜厚を確保するために、化学気相成長法 (CVD:Chemical wapor deposition )を用いて銅シード層を形成することも検討されている力 フッ素( F)等の銅を腐食させる物質が原料ガスに含まれる場合が多いので、実用化には至 つていない。
[0012] 一方で、銅シード層を用いることなぐ電解めつきによってノリアメタル膜の上に直 接銅配線を形成する試みも検討されて 、る。
[0013] ところが、例えば前述の例において、第 2のバリアメタル膜 107 (図 5 (a)の場合)又 は第 3のノリアメタル膜 109 (図 5 (b)の場合)としてタンタルなどの高融点金属膜を用 いた場合には、電解めつきによって銅を形成する際に、タンタル膜は酸ィ匕されるので 、高抵抗の酸ィ匕タンタル膜が形成されてしまう。このため、配線抵抗の上昇を避ける ことができな 、と!/、う問題を有して!/、る。
[0014] そこで、バリアメタル膜の低抵抗化を実現するために、酸化されても導電性を失わ な 、金属及びその金属酸化物自体が低抵抗であるルテニウム又はイリジウムなどの 金属をバリアメタル膜として用いることが注目されてきている(例えば、特許文献 3及 び 4参照)。これらの金属は、タンタル又はタンタル窒化物よりも比抵抗が低抵抗であ つて、且つ酸化されても導電性を失わないので、銅シード層を用いることなぐバリア メタル膜の上に直接銅めつきを行なうことが可能となる。なお、一般にこれらの金属は 原子層成長法又は化学気相成長法によって形成される。
特許文献 1:特開平 11― 223755号公報
特許文献 2 :特開 2002— 43419号公報
特許文献 3 :特許第 3409831号
特許文献 4:特開 2002— 75994号公報
発明の開示
発明が解決しょうとする課題
[0015] 前記を考慮して、ノ リアメタル膜の低抵抗ィ匕を実現するために、ルテニウム又はイリ ジゥムなどの金属をバリアメタル膜として絶縁膜上に直接形成する場合、これらの金 属と絶縁膜との密着性が低いために、半導体製造工程において、バリアメタル膜が 絶縁膜から剥離してしまうと 、う問題がある。
[0016] この場合に、ノ リアメタル膜と絶縁膜との密着性を増大させる方法として、絶縁膜が 存在している側から順に形成された導電性を有する金属酸化物膜と酸化されても導 電性を失わな 、金属膜よりなるバリアメタル膜を用いる方法が考えられる。このように すると、絶縁膜としてシリコン酸ィ匕膜を用いる場合、絶縁膜を構成する酸素と金属酸 化物膜を構成する酸素とが同種の元素であるので、絶縁膜と金属酸化物膜との密着 性が増大すると考えられる。さらに、酸化されても導電性を失わない金属膜力バリアメ タル膜の最表面に形成されて!ヽる場合、酸化されても導電性を失わな!/、金属膜が電 解めつきの電極となるので、ノ リアメタル膜の抵抗を低下させることができる。これによ り、絶縁膜との密着性が高ぐ低抵抗であるバリアメタル膜を実現することができると 考えられる。 [0017] し力しながら、一般的に、金属酸ィ匕物の機械的強度は低いことが知られている。こ のため、前述したような酸化されても導電性を失わない金属膜と金属酸ィ匕物膜との積 層膜をバリアメタル膜として用いた場合、例えば、図 5 (b)に示した第 2のノリアメタル 膜 108として金属酸ィ匕物膜を用い、第 3のノリアメタル膜 109としてルテニウム又はィ リジゥムなどの金属を用いた場合を仮定すると、半導体製造工程中の熱処理により、 ノ リアメタル膜にクラックが発生し、ビア抵抗若しくは配線抵抗の高抵抗化、又は Electro- migration若しくは Stress- migrationなどにより配線の信頼性が劣化するという 問題が考えられる。さらに、組み立て工程におけるワイヤーボンディング時に半導体 装置に加わる応力により、ノリアメタル膜にクラックが発生し、配線の信頼性が劣化す るという問題が考えられる。
[0018] また、例えば、図 5 (b)に示した第 2のノリアメタル膜 108として酸化ルテニウム又は 酸化イリジウム等の金属酸ィ匕物を用いる場合には、低抵抗であって且つ絶縁膜に対 する密着性に優れたバリアメタル膜を実現することができるが、バリアメタル膜の機械 的強度が小さくなると 、う問題が考えられる。バリアメタル膜の機械的強度が小さ 、と 、半導体製造工程の熱処理により、ノリアメタル膜にクラックが発生し、配線抵抗の高 抵抗化、又は Electro- migration若しくは Stress- migrationなどにより配線の信頼性が 劣化するという問題が発生する。さらに、組み立て工程におけるワイヤーボンディング 時にノリアメタル膜にクラックが発生するという問題が考えられる。
[0019] 前記に鑑み、本発明の目的は、機械的強度に優れると共に、低抵抗であって且つ 絶縁膜に対する密着性の高いバリアメタル膜を有する半導体装置及びその製造方 法を提供することである。
課題を解決するための手段
[0020] 前記の課題を解決するために、本発明に係る第 1の半導体装置は、基板上に形成 された絶縁膜と、絶縁膜中に形成された埋め込み金属配線と、絶縁膜と配線との間 に形成されたバリアメタル膜とを有する半導体装置において、ノリアメタル膜は、絶縁 膜が存在して ヽる側から金属配線が存在して!/ヽる側へ向かって順に積層されて ヽる 金属酸化物膜、金属化合物膜及び金属膜よりなり、金属化合物膜の弾性率は、金属 酸ィ匕物膜の弾性率よりも大き 、ことを特徴とする。 [0021] 本発明に係る第 1の半導体装置によると、ノ リアメタル膜は、金属酸化物膜と金属 膜との間に、金属酸ィ匕物膜の弾性率よりも大き!ヽ弾性率を有する機械的強度の高!、 金属化合物膜を備えているので、金属膜と金属酸ィ匕物膜とを単に積層してなるバリ ァメタル膜に比べて、ノ リアメタル膜の機械的強度が飛躍的に向上する。したがって 、機械的強度に優れた多層配線を有する信頼性の高 ヽ半導体装置を実現すること ができる。
[0022] 本発明に係る第 1の半導体装置において、絶縁膜と金属酸ィ匕物膜とは接合して形 成されて!/ヽると共に、金属膜と金属配線とは接合して形成されて ヽることが好ま ヽ。
[0023] このようにすると、金属酸ィ匕物膜と絶縁膜とが接合していることにより、金属膜と絶縁 膜とが接合している場合と比べて、ノ リアメタル膜の絶縁膜に対する密着性が向上す る。さらに、絶縁膜の最表面が酸ィ匕物である場合には、金属酸ィ匕物膜と絶縁膜とに 共通の元素である酸素が存在するので、絶縁膜と金属酸ィ匕物膜との密着性が増大 する。また、金属膜と金属配線とが接合していることにより、金属化合物膜又は金属 酸ィ匕物膜よりも抵抗力 、さい金属が金属めつきを行なう際の電極兼めつき下地となる ので、金属化合物膜又は金属酸化物膜がバリアメタル膜の表面に形成されている場 合よりも膜厚均一性に優れためつき膜を形成することができる。このため、高性能な 金属めつきを実現することができる。
[0024] 本発明に係る第 1の半導体装置において、金属酸ィ匕物膜は、導電性を有すること が好ましい。
[0025] このようにすると、金属酸ィ匕物膜と絶縁膜との密着性を増大させることができること に加えて、低抵抗のノ リアメタル膜を実現することができる。このため、低抵抗であつ て且つ密着性が高!ヽ多層配線を有する信頼性の高!ヽ半導体装置を実現することが できる。
[0026] 本発明に係る第 2の半導体装置は、基板上に形成された絶縁膜と、絶縁膜中に形 成された埋め込み金属配線と、絶縁膜と金属配線との間に形成されたバリアメタル膜 とを有する半導体装置において、ノ リアメタル膜は、絶縁膜が存在している側力も金 属配線が存在している側に向力つて順に積層されている第 1の金属酸ィ匕物膜、金属 化合物膜、第 2の金属酸ィ匕物膜及び金属膜よりなり、金属化合物膜の弾性率は、第 1の金属酸ィ匕物膜の弾性率及び第 2の金属酸ィ匕物膜の弾性率のそれぞれよりも大き いことを特徴とする。
[0027] 本発明に係る第 2の半導体装置によると、ノリアメタル膜は、第 1の金属酸化物膜と 金属膜との間に金属化合物膜を備えていると共に、金属膜と金属化合物膜との間に 第 2の金属酸ィ匕物膜を備えており、金属化合物膜は、第 1の金属酸ィ匕物膜の弾性率 及び第 2の金属酸ィ匕物膜の弾性率のそれぞれよりも大き ヽ弾性率を有するので、機 械的強度に優れたバリアメタル膜を実現することができる。これにより、単に金属膜と 金属酸ィ匕物膜を積層してなるバリアメタル膜に比べて、機械的強度が飛躍的に向上 する。また、金属化合物膜と第 1及び第 2の金属酸化物膜のそれぞれの熱膨張率と が異なる場合であっても、バリアメタル膜の熱膨張が全体的に均一化されて熱的機 械的強度に優れたバリアメタル膜の構造を実現することができる。さらに、バリアメタ ル膜は、第 1の金属酸化物膜、金属化合物膜及び第 2の金属酸化物膜が順に積層 された構造を有するので、金属酸ィ匕物膜に加わる応力が 2層に分散するので、バリア メタル膜全体の機械的強度が飛躍的に増大する。したがって、機械的強度に優れた 多層配線を有する信頼性の高い半導体装置を実現することができる。
[0028] 本発明に係る第 2の半導体装置において、絶縁膜と第 1の金属酸ィ匕物膜とは接合 して形成されて ヽると共に、金属膜と金属配線とは接合して形成されて ヽることが好 ましい。
[0029] このようにすると、第 1の金属酸ィ匕物膜と絶縁膜とが接合していることにより、金属膜 と絶縁膜とが接合する場合と比べて、ノリアメタル膜と絶縁膜との密着性が向上する 。さらに、絶縁膜の最表面が酸ィ匕物である場合には、第 1の金属酸ィ匕物と絶縁膜とに 共通の元素である酸素が存在するので、絶縁膜と第 1の金属酸ィ匕物膜との密着性が 増大する。また、金属膜と金属配線とが接合していることにより、金属化合物膜又は 金属酸ィ匕物膜よりも抵抗力小さい金属が金属めつきを行なう際の電極兼めつき下地 となるので、金属化合物膜又は金属酸化物膜がバリアメタル膜の表面に形成されて いる場合よりも膜厚均一性に優れためつき膜を形成することができる。このため、高性 能な金属めつきを実現することができる。
[0030] 本発明に係る第 2の半導体装置において、第 1の金属酸化物膜及び第 2の金属酸 化物膜のうちの少なくとも一方は、導電性を有することが好ましい。
[0031] このようにすると、第 1及び第 2の金属酸ィ匕物膜のうちの少なくとも一方と絶縁膜との 密着性が増大することに加えて、低抵抗のノリアメタル膜を実現することができる。こ のため、低抵抗であって且つ密着性が高い多層配線を有する信頼性の高い半導体 装置を実現することができる。
[0032] 本発明に係る第 1又は第 2の半導体装置において、金属化合物膜を構成する金属 は、高融点金属であることが好ましい。
[0033] このよう〖こすると、金属配線を形成した後に、さらに上層配線を形成する半導体製 造工程において、およそ 400°C前後の熱が加えられても、金属化合物膜が変成する ことがないので、ノリアメタル膜にクラックが発生することを抑制できる。また、高融点 金属よりなる金属化合物膜の機械的強度は高いので、組み立て工程におけるワイヤ 一ボンディング時にストレスが加わっても、バリアメタル膜にクラックが発生することを 抑制できる。したがって、機械的強度に優れた信頼性の高い半導体装置を実現でき る。
[0034] 本発明に係る第 1又は第 2の半導体装置において、金属膜を構成する金属は、酸 化されても導電性を失わな 、金属であることが好ま 、。
[0035] このようにすると、金属膜が酸化されても導電性を失わない金属よりなるため、配線 めっきの際に金属膜の表面が酸ィ匕されても導電性が低下することがな 、ので、高性 能の配線めつきが可能となる。このため、低抵抗であって且つ密着性が高い多層配 線を有する信頼性の高い半導体装置を実現することができる。
[0036] 本発明に係る第 1又は第 2の半導体装置において、金属化合物膜は、金属窒化物 膜よりなることが好ましい。
[0037] このようにすると、金属膜と金属酸化物膜との間に、金属酸化物膜よりも機械的強 度に優れる金属窒化物膜が存在しているので、ノリアメタル膜全体の機械的強度が 増大する。したがって、機械的強度に優れると共に、低抵抗であって且つ密着性の 高!、多層配線を有する信頼性の高 、半導体装置を実現することができる。
[0038] 本発明に係る第 1又は第 2の半導体装置において、金属化合物膜は、金属炭化物 膜よりなることが好ましい。 [0039] このようにすると、金属膜と金属酸化物膜との間に、金属酸化物膜よりも機械的強 度に優れる金属炭化物膜が存在しているので、バリアメタル膜全体の機械的強度が 増大する。したがって、機械的強度に優れると共に、低抵抗であって且つ密着性の 高!、多層配線を有する信頼性の高 、半導体装置を実現することができる。
[0040] 本発明に係る第 1又は第 2の半導体装置において、金属化合物膜は、金属ケィ化 物膜よりなることが好ましい。
[0041] このようにすると、金属膜と金属酸化物膜との間に、金属酸化物膜よりも機械的強 度に優れる金属ケィ化物膜が存在しているので、バリアメタル膜全体の機械的強度 が増大する。したがって、機械的強度に優れると共に、低抵抗であって且つ密着性 の高 、多層配線を有する信頼性の高 、半導体装置を実現することができる。
[0042] 本発明に係る第 1の半導体装置の製造方法は、基板上の絶縁膜に凹部を形成す る工程と、凹部の壁面に沿うように、金属酸化物膜、金属化合物膜及び金属膜がこ の順に形成されてなるバリアメタル膜を形成する工程と、凹部を埋め込むように、バリ ァメタル膜の上に埋め込み金属配線を形成する工程とを備え、ノリアメタル膜を形成 する工程は、金属酸ィ匕物膜の弾性率よりも大き!ヽ弾性率を有する金属化合物膜を形 成する工程を含むことを特徴とする。
[0043] 本発明に係る第 1の半導体装置の製造方法によると、金属酸化物膜と金属膜との 間に、金属酸ィ匕物膜の弾性率よりも大きい弾性率を有する機械的強度に優れる金属 化合物膜を備えたバリアメタル膜を形成するので、金属膜と金属酸化物膜とを単に 積層してなるバリアメタル膜を形成する場合に比べて、機械的強度が飛躍的に向上 する。したがって、機械的強度に優れた多層配線を有する信頼性の高い半導体装置 を製造することができる。また、金属酸化物膜と絶縁膜とを接合するように形成するこ とにより、金属膜と絶縁膜とが接合する場合と比べて、ノリアメタル膜の絶縁膜に対 する密着性を向上させることができる。また、絶縁膜の最表面が酸ィ匕物である場合に は、金属酸ィ匕物膜と絶縁膜とに共通の元素である酸素が存在するので、絶縁膜と金 属酸化物膜との密着性が増大する。さらに、金属膜と金属配線とを接合するように形 成することにより、金属化合物膜又は金属酸化物膜よりも抵抗が小さい金属が金属 めっきを行なう際の電極兼めつき下地となるので、金属化合物膜又は金属酸化物膜 力 sバリアメタル膜の表面に形成されている場合よりも膜厚均一性に優れためつき膜を 形成することができる。このため、高性能な金属めつきを実現することができる。
[0044] 本発明に係る第 2の半導体装置の製造方法は、基板上の絶縁膜に凹部を形成す る工程と、凹部の壁面に沿うように、第 1の金属酸化物膜、金属化合物膜、第 2の金 属酸ィ匕物膜及び金属膜がこの順に形成されてなるバリアメタル膜を形成する工程と、 凹部を埋め込むように、ノリアメタル膜の上に埋め込み金属配線を形成する工程とを 備え、バリアメタル膜を形成する工程は、第 1の金属酸化物膜の弾性率及び第 2の金 属酸化物膜の弾性率のそれぞれよりも大きい弾性率を有する金属化合物膜を形成 する工程を含むことを特徴とする。
[0045] 本発明に係る第 2の半導体装置の製造方法によると、第 1の金属酸化物膜と金属 膜との間に金属化合物膜を備えると共に、金属膜と金属化合物膜との間に第 2の金 属酸化物膜を備えたバリアメタル膜を形成し、金属化合物膜を第 1の金属酸化物膜 の弾性率及び第 2の金属酸ィ匕物膜の弾性率のそれぞれよりも大きい弾性率とするこ とにより、機械的強度に優れたノリアメタル膜を実現することができる。これにより、単 に金属膜と金属酸ィ匕物膜とを積層してなるバリアメタル膜を形成する場合に比べて、 機械的強度が飛躍的に向上する。また、金属化合物膜と第 1及び第 2の金属酸化物 膜のそれぞれの熱膨張率とが異なる場合であっても、バリアメタル膜の熱膨張が全体 的に均一化されて熱的機械的強度に優れたバリアメタル膜の構造を実現することが できる。さらに、第 1の金属酸化物膜、金属化合物膜及び第 2の金属酸化物膜が順 に積層された構造を有するバリアメタル膜を形成するので、金属酸化物膜に加わる 応力が 2層に分散するので、バリアメタル膜全体の機械的強度を飛躍的に増大させ ることができる。したがって、機械的強度に優れた多層配線を有する信頼性の高い半 導体装置を製造することができる。また、第 1の金属酸化物膜と絶縁膜とが接合する ように形成することにより、金属膜と絶縁膜とが接合する場合と比べて、バリアメタル 膜と絶縁膜との密着性が向上する。さらに、絶縁膜の最表面が酸ィ匕物である場合に は、第 1の金属酸ィ匕物と絶縁膜とに共通の元素である酸素が存在するので、絶縁膜 と第 1の金属酸化物膜との密着性が増大する。さらに、金属膜と金属配線とを接合す るように形成することにより、金属化合物膜又は金属酸ィ匕物膜よりも抵抗力 、さい金 属が金属めつきを行なう際の電極兼めつき下地となるので、金属化合物膜又は金属 酸ィ匕物膜がノリアメタル膜の表面に形成されている場合よりも膜厚均一性に優れた めっき膜を形成することができる。このため、高性能な金属めつきを実現することがで きる。
[0046] 本発明に係る第 1又は第 2の半導体装置の製造方法において、バリアメタル膜を形 成する工程よりも後であって埋め込み金属配線を形成する工程よりも前に、ノリアメタ ル膜の上にシード層を形成する工程をさらに備え、埋め込み金属配線を形成するェ 程は、凹部を埋め込むように、シード層の上に埋め込み金属配線を形成する工程を 含むことが好ましい。
[0047] このようにすると、配線用のめっきのプロセスウィンドウが拡大するので、シード層を 形成することなく埋め込み金属配線を形成する場合と比べて、埋め込み金属配線を 形成する工程の最適化を容易にできる。このため、製造歩留まりが向上すると共に、 低抵抗であって且つ密着性が高!ヽ多層配線を有する信頼性の高!ヽ半導体装置を安 定的に製造することができる。
発明の効果
[0048] 本発明に係る半導体装置及びその製造方法によると、機械的強度に優れると共に 、低抵抗であって且つ密着性が高!ヽ多層配線を有する信頼性の高!ヽ半導体装置を 実現することができる。
図面の簡単な説明
[0049] [図 1]図 1 (a)及び (b)は、本発明の第 1の実施形態に係る半導体装置の構造を示す 要部断面図である。
[図 2]図 2 (a)〜 (c)は、本発明の第 1の実施形態に係る半導体装置の製造方法を示 す要部工程断面図である。
[図 3]図 3 (a)及び (b)は、本発明の第 2の実施形態に係る半導体装置の構造を示す 要部断面図である。
[図 4]図 4 (a)〜 (c)は、本発明の第 2の実施形態に係る半導体装置の製造方法を示 す要部工程断面図である。
[図 5]図 5 (a)及び (b)は、従来例に係る半導体装置の構造を示す要部断面図である 符号の説明
1 シリコン基板
2 第 1の絶縁膜
3 第 1のバリアメタル膜
4 第 1の銅配線
5 拡散防止膜
6 第 2の絶縁膜
6a ビアホーノレ
6b 配線溝
6c 凹部
7 金属酸化物膜
7a 第 1の金属酸化物膜
7b 第 2の金属酸化物膜
8 金属化合物膜
9 金属膜
10 第 2の銅配線
A1、A2 第 2のバリアメタル膜
101 シリコン基板
102 第 1の絶縁膜
103 第 1のノ リアメタル膜
104 第 1の銅配線
105 拡散防止膜
106 第 2の絶縁膜
106a ビアホーノレ
106b 配線溝
106c 凹部
107、 108 第 2のバリアメタル膜 109 第 3のノリアメタル膜
発明を実施するための最良の形態
[0051] (第 1の実施形態)
以下、本発明の第 1の実施形態に係る半導体装置及び半導体装置の製造方法に つ!、て、図 1 (a)及び (b)並びに図 2 (a)〜(c)を参照しながら説明する。
[0052] 図 1 (a)及び (b)は、第 1の実施形態に係る半導体装置の構造を示す要部断面図 である。
[0053] まず、図 1 (a)に示すように、シリコン基板 1上には第 1の絶縁膜 2が形成されており 、該第 1の絶縁膜 2には第 1のノリアメタル膜 3を有する第 1の銅配線 4が形成されて いる。なお、シリコン基板 1上には、図示していないトランジスタなどが形成されている 。第 1の絶縁膜 2及び第 1の銅配線 4の上には、銅の拡散を防止する拡散防止膜 5及 び第 2の絶縁膜 6が順に形成されている。拡散防止膜 5及び第 2の絶縁膜 6にはビア ホール 6aが形成されていると共に、第 2の絶縁膜 6には配線溝 6bが形成されている 。このように、ビアホール 6a及び配線溝 6bよりなる凹部 6cが形成されている。
[0054] また、図 1 (a)に示すように、凹部 6cの壁面には、第 2のノリアメタル膜 A1が形成さ れている。ここで、第 2のノリアメタル膜 A1は、凹部 6cに沿うように第 2の絶縁膜 6の 上に形成された金属酸化物膜 7、該金属酸化物膜 7の上に形成された金属化合物 膜 8、及び該金属化合物膜 8の上に形成された金属膜 9よりなる。ここで、金属化合 物膜 8の弾性率は、金属酸ィ匕物膜 7の弾性率よりも大きい。なお、金属膜 9の少なくと も一部は酸化されて!、てもよ!/、。
[0055] さらに、図 1 (a)に示された凹部 6cを埋め込むように、銅めつきによって金属膜 9の 上に銅膜を形成した後に、銅膜及び第 2のノリアメタル膜 A1における凹部 6cの内部 以外の部分であって第 2の絶縁膜 6の上に形成されている部分を CMPによって除去 し、第 2の銅配線 10及びその一部であるビアプラグを形成することで、図 1 (b)に示す 構造を有する半導体装置が形成されている。なお、第 2の銅配線 10は、配線、ビア プラグ、又はこれらの両方のいずれかであればよい。ここで、第 2の銅配線 10は、純 銅又は銅以外の成分 (例えば、微量の Si、 Al、 Mo又は Scなど)を含む銅合金よりな る場合であってもよい。なお、拡散防止膜 5の成膜から CMPまでの工程が繰り返され ることで多層配線が形成される。
[0056] ここで、拡散防止膜 5には、シリコン窒化膜、シリコン窒化炭化膜、シリコン炭化酸化 膜、シリコン炭化膜、又はこれらの膜を組み合わせてなる積層膜を用いるとよい。拡 散防止膜 5は、第 1の銅配線 4の銅が第 2の絶縁膜 6中に拡散することを防止する働 きを有する。
[0057] また、第 2の絶縁膜 6には、シリコン酸ィ匕膜、フッ素ドープシリコン酸ィ匕膜、シリコン酸 化炭化膜、又は有機膜よりなる絶縁膜を用いるとよい。これらの膜は、化学気相成長 法にて形成される膜であってもよいし、スピン塗布法にて形成される SOD (spin on dielectric)膜であってもよ!/ヽ。
[0058] また、金属酸化物膜 7は、膜厚が薄い場合には必ずしも導電性を有さなくてもよい 力 導電性を有する方が好ましい。以下に、導電性を有する金属酸化物膜 7につい て具体的に説明する。
[0059] 金属酸ィ匕物膜 7の金属には、ルテニウム (Ru)、イリジウム (Ir)、モリブデン (Mo)、 ォスミニゥム(Os)、ロジウム(Rh)、プラチナ(Pt)、バナジウム (V)、又はパラジウム( Pd)などの酸化されても導電性を失わない金属の酸ィ匕膜を用いるとよい。なお、金属 酸ィ匕物膜 7の金属は、酸化されても導電性を失わない金属であれば、前記に示した 金属以外の金属であってもよ 、。
[0060] また、金属化合物膜 8を構成する金属には、高融点金属を用いるとよい。これにより 、第 2の銅配線 10を形成した後に、さらに上層配線を形成する工程において、およそ 400°C前後の熱が加えられるが、本熱処理によって金属化合物膜 8がクラック等の発 生によって変成することはない。したがって、信頼性の高い半導体装置を実現できる
[0061] さらに、金属化合物膜 8には、高融点金属の窒化膜を用いるとよい。
[0062] 具体的には、金属化合物膜 8の金属には、チタニウム (Ti)、タンタル (Ta)ジルコ- ゥム(Zr)、二オビゥム(Nb)、ハフニウム(Hf)、タングステン(W)、ルテニウム (Ru)、 イリジウム(Ir)、モリブデン(Mo)、ォスミニゥム(Os)、ロジウム(Rh)、プラチナ(Pt)、 又はバナジウム (V)などの機械的強度に優れると共に窒化されても導電性を失わな い金属の窒化膜を用いるとよい。なお、金属化合物膜 7の金属は、機械的強度に優 れると共に窒化されても導電性を失わな 、金属であれば、前記に示した金属以外の 金属であってもよい。但し、前記の金属酸ィ匕物膜 7の弾性率よりも大きい弾性率を有 するように、金属化合物膜 8の金属を選択する必要がある。
[0063] また、金属化合物膜 8には、高融点金属の炭化膜を用いることもできる。
[0064] 具体的には、金属化合物膜 8の金属には、ルテニウム (Ru)、イリジウム (Ir)、モリブ デン(Mo)、ォスミニゥム(Os)、ロジウム(Rh)、プラチナ(Pt)、バナジウム(V)、チタ -ゥム(Ti)、タンタル (Ta)、ジルコニウム(Zr)、 -ォビゥム(Nb)、ハフニウム(Hf)、 又はタングステン (W)などの機械的強度に優れると共に炭化されても導電性を失わ ない金属の炭化膜を用いてもよい。なお、金属化合物膜 8の金属は、機械的強度に 優れると共に炭化されても導電性を失わない金属であれば、前記に示した金属以外 の金属であってもよい。但し、前記の金属酸ィ匕物膜 7の弾性率よりも大きい弾性率を 有するように、金属化合物膜 8の金属を選択する必要がある。
[0065] また、金属化合物膜 8には、高融点金属のケィ化膜を用いることもできる。
[0066] 具体的には、ルテニウム(Ru)、イリジウム(Ir)、モリブデン(Mo)、ォスミニゥム(Os) 、ロジウム(Rh)、プラチナ(Pt)、バナジウム(V)チタニウム (Ti)、タンタル (Ta)ジル コ -ゥム(Zr)、二オビゥム(Nb)、ハフニウム(Hf)、又はタングステン (W)など機械的 強度に優れると共にケィ化されても導電性を失わない金属のケィ化膜を用いることも できる。なお、金属化合物膜 8の金属は、機械的強度に優れると共にケィ化されても 導電性を失わない金属であれば、前記に示した金属以外の金属であってもよい。伹 し、前記の金属酸ィ匕物膜 7の弾性率よりも大きい弾性率を有するように、金属化合物 膜 8の金属を選択する必要がある。
[0067] 金属膜 9には、ルテニウム(Ru)、イリジウム(Ir)、モリブデン(Mo)、ォスミニゥム(O s)、ロジウム (Rh)、プラチナ (Pt)、又はバナジウム (V)などの酸化されても導電性を 失わない金属を用いるとよい。なお、金属膜 9の金属は、酸化されても導電性を失わ な ヽ金属であれば、前記に示した金属以外の金属であってもよ 、。
[0068] なお、図示して!/、な!/、が、デュアルダマシン配線溝(ビアホール 6a及び配線溝 6bよ りなる凹部 6c)における第 2の絶縁膜 6の表面と金属酸ィ匕物膜 7との間に、シリコン酸 化膜 (例えば、 Si02 、 SiOC、 SiCO、若しくは SiONなど)、シリコン窒化膜 (例えば Si3N4、 SiON、若しくは SiCNなど)、又はシリコン炭化膜(例えば SiC、 SiCO、 SiO C、若しくは SiCNなど)などの絶縁膜が形成されて 、てもよ!/、。
[0069] 以下に、本発明の第 1の実施形態に係る半導体装置の製造方法について、図 2 (a )〜 (c)を参照しながら説明する。
[0070] 図 2 (a)〜 (c)は、本発明の第 1の実施形態に係る半導体装置の製造方法を示す 要部工程断面図である。
[0071] まず、図 2 (a)に示すように、シリコン基板 1上に第 1の絶縁膜 2を形成した後に、該 第 1の絶縁膜 2中に第 1のノリアメタル膜 3を有する第 1の銅配線 4を形成する。なお 、シリコン基板 1上には、図示していないトランジスタなどが形成されている。続いて、 第 1の絶縁膜 2及び第 1の銅配線 4の上に、銅の拡散を防止する拡散防止膜 5及び 第 2の絶縁膜 6を順に形成する。続いて、拡散防止膜 5及び第 2の絶縁膜 6に、下端 が第 1の銅配線 4に到達するビアホール 6aを形成すると共に、第 2の絶縁膜 6に、ビ ァホール 6aに連通する配線溝 6bを形成する。このようにして、デュアルダマシン用の ビアホール 6a及び配線溝 6bよりなる凹部 6cを形成する。ここで、ビアホール 6a及び 配線溝 6bよりなる凹部 6cは、周知のリソグラフィ技術、エッチング技術、アツシング技 術、及び洗浄技術を用いて、例えば特開 2002— 75994号公報などに開示されてい るデュアルダマシン形成方法によって形成すればよい。
[0072] 次に、図 2 (b)に示すように、凹部 6cの壁面に沿うように、第 2の絶縁膜 6の上に金 属酸化物膜 7を形成する。続いて、金属酸化物膜 7の上に、金属化合物膜 8を形成 する。続いて、金属化合物膜 8の上に金属膜 9を形成する。ここで、金属酸化物膜 7、 金属化合物膜 8及び金属膜 9は、原子層成長法 (ALD : Atomic layer deposition)、 化学気相成長法(CVD: Chemical vapor deposition)、又は物理気相成長法(PVD: PPhysical vapor deposition)などの成膜方法によって形成すればよい。このようにして 、金属酸化物膜 7、金属化合物膜 8及び金属膜 9よりなる第 2のノリアメタル膜 A1が 形成される。
[0073] 次に、図 2 (c)に示すように、凹部 6cが埋め込まれるように、銅めつきにより、凹部 6c の内部を含む金属膜 9の上に銅膜を形成した後に、銅膜、金属膜 9、金属化合物膜 8、及び金属酸ィ匕物膜 7における凹部 6aの内部以外の部分であって第 2の絶縁膜 6 の上に形成されている部分を CMPによって除去し、第 2の銅配線 10及びその一部 であるビアプラグを形成する。このようにして、図 2 (c)に示す構造を有する半導体装 置を形成することができる。なお、金属膜 9の上に、銅シード層を形成した後に、凹部 6cが埋め込まれるように、銅シード層の上に、銅めつきによって銅膜を形成した後に 、前述の図 1 (b)を用いた説明と同様にして CMPを行なって、第 2の銅配線 10を形 成してもよい。この場合は、銅シード層を形成する工程を備えたことにより、より安定 的に銅めつきを行なうことができる。すなわち、例えば、仮に金属膜 9の表面が部分 的又は全体的に酸化された場合であっても、銅シード層を形成することにより、より安 定的に銅めつきを可能にする。また、埋め込み金属配線としての第 2の銅配線 10の 代わりに、銅以外の材料よりなる埋め込み配線を形成する場合には、その材料に応 じたシード層の材料を適宜選択するとよ 、。
[0074] ここで、本発明の第 1の実施形態に係る半導体装置及びその製造方法による効果 について、以下に説明する。
[0075] ノリアメタル膜として、金属膜及び金属酸ィ匕物膜よりなるバリアメタル膜を用いる場 合には、金属酸化物膜の機械的強度が弱いために、半導体製造工程における熱処 理により、金属酸化物膜にクラックが発生する。このようにバリアメタル膜にクラックが 発生すると、エレクト口マイグレーション又はストレスマイグレーション等による配線の 信頼性を劣化させる。さらに、組み立て工程におけるワイヤーボンディングの際に加 わるストレスによってノリアメタル膜にクラックが発生し、配線の信頼性が劣化する。
[0076] 一方、本実施形態における第 2のノリアメタル膜 A1は、金属酸化物膜 7と金属膜 9 との間に、金属酸ィ匕物膜 7の弾性率よりも大きい弾性率を有する機械的強度に優れ ると共に金属化合物膜 8を備えていることにより、金属膜 9及び金属酸ィ匕物膜 7を単 に積層してなるノリアメタル膜に比べて、第 2のノリアメタル膜 A1の機械的強度は飛 躍的に向上する。したがって、機械的強度に優れた多層配線を有する信頼性の高い 半導体装置を実現することができる。
[0077] さらに、第 2の絶縁膜 6と金属酸ィ匕物膜 7とが接合して形成されていると共に、金属 膜 9と第 2の銅配線 12とが接合して形成されている。このため、第 2の絶縁膜 6と金属 酸ィ匕物膜 7とが接合して ヽるので、第 2の絶縁膜 6と金属膜 9とが接合する場合と比べ て、第 2のノリアメタル膜 Alと第 2の絶縁膜 6との密着性が向上する。さらに、第 2の 絶縁膜 6の最表面が酸ィ匕物である場合には、第 2の絶縁膜 6と金属酸ィ匕物膜 7とに共 通の元素である酸素が存在するので、第 2の絶縁膜 6と金属酸ィ匕物膜 7との密着性 が増大する。また、金属膜 9と第 2の銅配線 10とが接合しているため、金属めつきを 行なう際に、金属化合物膜 8又は金属酸ィ匕物膜 7よりも抵抗が小さい金属が電極兼 めっき下地となるので、金属化合物膜 8又は金属酸ィ匕物膜 7が第 2のノリアメタル膜 A1の表面にある場合と比べて、膜厚均一性に優れためつき膜を形成することができ る。このため、高性能な金属めつきを実現することができる。
[0078] また、金属膜 9を構成する金属として酸化されても導電性を失わない金属を用いる 場合には、銅めつき層を第 2のノリアメタル膜 A1の上に直接堆積する際に、めっき膜 厚を均一にできると共に、銅めつきによってビアホールをボイドなしに埋め込むことが 可能となる。したがって、機械的強度に優れると共に、低抵抗であって且つ基板材料 との密着性が高 、多層配線を有する信頼性の高 、半導体装置を実現することができ る。
[0079] このように、本発明の第 1の実施形態に係る半導体装置及びその製造方法によると 、金属酸化物膜、該金属酸化物膜の弾性率よりも大きい弾性率を有する金属化合物 膜及び金属膜を積層してなるバリアメタル膜を用いることにより、バリアメタル膜の機 械的強度が向上するので、半導体製造工程における熱処理又は組み立て工程にお けるストレスなどによってもクラックが発生しないバリアメタル膜を実現することができる 。さらに、ノリアメタル膜の絶縁膜に対する密着性を高めることができる。また、バリア メタル膜上に直接銅めつきを行なう場合であっても、均一な膜厚を有するバリアメタル 膜を得ることができる。また、ボイドを形成することなくビアホールに銅を埋め込むこと が可能となる。したがって、信頼性の高い銅配線を提供することができる。
[0080] 以下に、本実施形態に示した金属及び金属化合物の比抵抗の一例を示す。
[0081] ルテニウムの比抵抗は 7. 5 ( Ω 'cm)であり、イリジウムの比抵抗は 6. 5 ( Ω -c m)である。また、ルテニウム酸ィ匕膜の比抵抗は 35 Ω -cm)であり、イリジウム酸ィ匕 膜の比抵抗は 30 ( Ω 'cm)である。一方、現在標準的に使用されているタンタル膜 の比抵抗は60〜180 ( Ω 'cm)であり、タンタル窒化膜の比抵抗は 250 Ω -cm )である。
[0082] また、本実施形態に示した第 2のバリアメタル膜 Alを実際の半導体装置に組み込 む場合には、金属酸ィ匕物膜 7の膜厚が数 ηπ!〜 25nm程度となるように形成し、金属 化合物膜 8の膜厚が数 ηπ!〜 25nm程度となるように形成し、さらに、金属膜 9の膜厚 が数 ηπ!〜 25nm程度となるように形成するとよい。この場合に、第 2のノリアメタル膜 A1の全体の膜厚は、 65nm世代の半導体装置の場合であれば、 20nm〜30nmと なるように形成されるとよい。また、 45nm世代の半導体装置の場合であれば、全体 の膜厚として、厚くてもおよそ 15nm以下にする必要があると予測される。また、金属 酸化物膜 7、金属化合物膜 8及び金属膜 9の膜厚比は成膜方法及び用途に応じて 任意に最適化するとよい。
[0083] 以上説明したように、本発明の第 1の実施形態によると、機械的強度に優れると共 に、低抵抗であって且つ密着性が高!ヽ多層配線を有する信頼性の高!ヽ半導体装置 を実現することができる。
[0084] なお、第 2の絶縁膜 6と第 2の銅配線 10との間に、第 2のバリアメタル膜 A1を複数 層積層される構成にしてよ 、。
[0085] また、金属酸ィ匕物膜 7と金属化合物膜 8との密着性を損なわない限りにおいて、金 属酸化物膜 7と金属化合物膜 8との間に、他の 1層以上の膜を設けてもよいし、金属 化合物膜 8と金属膜 9との密着性を損なわない限りにお 、て、金属化合物膜 8と金属 膜 9との間に、他の 1層以上の膜を設けてもよい。
[0086] なお、本実施形態にぉ 、ては、デュアルダマシン構造が採用されて 、る場合につ いて説明したが、シングルダマシン構造を採用する場合であっても、デュアルダマシ ン構造を採用する場合と同様の効果が得られることは 、うまでもな ヽ。シングルダマ シン構造を採用する場合には、配線とビアプラグとがそれぞれ別工程にぉ ヽて形成 されることになるが、この場合の配線及びビアプラグは、本実施形態における第 2の 銅配線 10である埋め込み配線に含まれる。
[0087] また、本実施形態においては、第 2の銅配線 10である埋め込み配線の材料として、 銅又は銅合金を用いた場合について説明したが、より好ましい本実施形態としては、 銅よりも低い抵抗率を有する Ag、 Au、若しくは Ptなどの金属又はこれらの金属の合 金を埋め込み配線の材料として用いるとよ 、。
[0088] (第 2の実施形態)
以下、本発明の第 2の実施形態に係る半導体装置及び半導体装置の製造方法に ついて、図 3 (a)及び (b)並びに図 4 (a)〜(c)を参照しながら説明する。なお、第 2の 実施形態では、第 1の実施形態と共通する部分は同様であるので、その説明は繰り 返さないことにして、以下では、第 1の実施形態と異なる点を中心に説明する。
[0089] まず、図 3 (a)及び (b)は、第 2の実施形態に係る半導体装置の構造を示す要部断 面図である。
[0090] 図 3 (a)及び (b)において、第 1の実施形態に係る半導体装置と異なる点は、凹部 6 cの壁面には、第 2のノリアメタル膜 A2が形成されており、ここで、第 2のノリアメタル 膜 A2は、凹部 6cに沿うように第 2の絶縁膜 6の上に形成された第 1の金属酸ィ匕物膜 7a、該金属酸化物膜 7aの上に形成された金属化合物膜 8、該金属化合物膜 8の上 に形成された第 2の金属酸化物膜 7b、及び該第 2の金属酸化物膜 7bの上に形成さ れた金属膜 9よりなる点である。ここで、金属化合物膜 8の弾性率は、第 1の金属酸化 物膜 7aの弾性率及び第 2の金属酸化物膜 7bの弾性率よりも大きい。
[0091] 第 1の金属酸ィ匕物膜 7aの金属及び第 2の金属酸ィ匕物膜 7bの金属には、第 1の実 施形態で説明した金属酸化物 7を構成する金属の種類のうちから選択される金属を 用いるとよい。第 1の金属酸ィ匕物膜 7aと第 2の金属酸ィ匕物膜 7bとは、それぞれ同一 種類の金属カゝら構成されてもょ ヽし、異なる種類の金属カゝら構成されてもょ 、。
[0092] また、金属化合物膜 8は、第 1の金属酸ィ匕物膜 7aの弾性率及び第 2の金属酸ィ匕物 膜 7bの弾性率よりも大きい弾性率を有するように、第 1の実施形態で説明した金属化 合物膜 8を構成する金属の種類から選択する必要がある。
[0093] 以下、本発明の第 2の実施形態に係る半導体装置の製造方法について、図 4 (a) 〜 (c)を参照しながら説明する。
[0094] 図 4 (a)〜(c)において、第 1の実施形態に係る半導体装置の製造方法と異なる点 は、図 4 (b)において、第 2のノリアメタル膜 A2を形成する点である。具体的には、図 4 (b)に示すように、凹部 6cの壁面に沿うように、第 2の絶縁膜 6の上に第 1の金属酸 化物膜 7aを形成する。続いて、第 1の金属酸ィ匕物膜 7aの上に、金属化合物膜 8を形 成する。続いて、金属化合物膜 8の上に、第 2の金属酸化物膜 7bを形成する。続い て、第 2の金属酸ィ匕物膜 7bの上に、金属膜 9を形成する。ここで、第 1の金属酸化物 膜 7a、金属化合物膜 8、第 2の金属酸化物膜 7b、及び金属膜 9は、原子層成長法( ALD: Atomic layer depositionノ、ィ匕学気ネ目成長法 (し VD: cemical vapor deposition) 、又は物理気相成長法(PVD : PPhysical vapor deposition)などの成膜方法によって 形成すればよい。このようにして、第 1の金属酸ィ匕物膜 7a、金属化合物膜 8、第 2の 金属酸ィ匕物膜 7b、及び金属膜 11よりなる第 2のノリアメタル膜 A2が形成される。
[0095] ここで、本発明の第 2の実施形態に係る半導体装置及び半導体装置の製造方法に よる効果について、以下に説明する。
[0096] 本発明の第 2の実施形態に係る半導体装置及び半導体装置の製造方法によると、 前述した第 1の実施形態に係る半導体装置及び半導体装置の製造方法による効果 に加えて、以下の効果を得ることができる。
[0097] 第 2のノリアメタル膜 A2は、第 1の金属酸ィ匕物膜 7aと金属膜 9との間に、金属化合 物膜 8を備え、金属膜 9と金属化合物膜 8との間に、第 2の金属酸化物膜 7bを備える と共に、金属化合物膜 8の弾性率が第 1の金属酸ィ匕物膜 7aの弾性率及び第 2の金 属酸ィ匕物膜 7bの弾性率よりも大きいので、機械的強度に優れた第 2のノリアメタル膜 A2を実現することができる。これにより、金属膜と金属酸ィ匕物膜とが単に積層されて なるバリアメタル膜に比べて、第 2のノリアメタル膜 A2の機械的強度は飛躍的に向上 している。さらに、金属化合物膜 8の熱膨張率と第 1の金属酸化物膜 7a及び第 2の金 属酸ィ匕物膜 7bのそれぞれの熱膨張率とが異なる場合であっても、第 2のノリアメタル 膜 A2の熱膨張は全体的に均一化されるので、熱的機械的強度に優れた第 2のバリ ァメタル膜 A2の構造を実現できる。さらに、第 1の金属酸ィ匕物膜 7a、金属化合物膜 8 、及び第 2の金属酸ィ匕物膜 7bの順に積層して第 2のノ リアメタル膜 A2を形成するの で、第 1の金属酸ィ匕物膜 7aに加わる応力が 2層に分散するので、第 2のノリアメタル 膜 A2全体の機械的強度が飛躍的に増大する。特に、第 1の金属酸ィ匕物膜 7aと第 2 の金属酸ィ匕物膜 7bとが、それぞれ同一の金属材料カゝら構成されている場合には、そ の機械的強度はさらに増大する。したがって、機械的強度に優れた多層配線を有す る信頼性の高 、半導体装置を実現することができる。 [0098] さらに、第 2の絶縁膜 6と第 1の金属酸ィ匕物膜 7aとが接合して形成されていると共に 、金属膜 9と第 2の銅配線 10とが接合して形成されている。このため、第 1の金属酸 化物膜 7aと第 2の絶縁膜 6とが接合していることにより、金属膜 9と第 2の絶縁膜 6とが 接合する場合と比べて、第 2のノ リアメタル膜 A2と第 2の絶縁膜 6との密着性が向上 する。さらに、第 2の絶縁膜 6の最表面が酸ィ匕物である場合には、第 1の金属酸化物 膜 7aと第 2の絶縁膜 6とに共通の元素である酸素が存在するので、第 2の絶縁膜 6と 第 1の金属酸化物膜 7aとの密着性が増大する。また、金属膜 9と第 2の銅配線 10と が接合していることにより、金属化合物膜 8、第 1の金属酸ィ匕物膜 7a、又は第 2の金 属酸ィ匕物膜 7bよりも抵抗が小さい金属が、金属めつきを行なう際の電極兼めつき下 地となるので、金属化合物膜 8、第 1の金属酸ィ匕物膜 7a又は第 2の金属酸ィ匕物膜 7b 1S 第 2のノ リアメタル膜 A2の表面に形成されている場合に比べて、膜厚均一性に より優れためつき膜を形成することができる。このため、高性能な金属めつきを実現す ることがでさる。
[0099] なお、第 2の絶縁膜 6と第 2の銅配線 10との間に、第 2のバリアメタル膜 A2を複数 層積層される構成にしてもよい。
[0100] また、第 1の金属酸ィ匕物膜 7aと金属化合物膜 8との密着性を損なわない限りにおい て、第 1の金属酸ィ匕物膜 7aと金属化合物膜 8との間に、他の 1層以上の膜を設けても よいし、第 2の金属酸ィ匕物膜 7bと金属膜 9との密着性を損なわない限りにおいて、第 2の金属酸ィ匕物膜 7bと金属膜 9との間に、他の 1層以上の膜を設けてもよい。また、 金属化合物膜 8と第 2の金属酸ィ匕物膜 7bとの密着性を損なわない限りにお 、て、金 属化合物膜 8と第 2の金属酸ィ匕物膜 7bとの間に、他の 1層以上の膜を設けてもよい。 産業上の利用可能性
[0101] 以上説明したように、本発明は、機械的強度に優れると共に、低抵抗であって且つ 高密着性を実現するバリアメタル膜を備えた半導体装置及びその製造方法に有用 である。

Claims

請求の範囲
[1] 基板上に形成された絶縁膜と、前記絶縁膜中に形成された埋め込み金属配線と、 前記絶縁膜と前記金属配線との間に形成されたバリアメタル膜とを有する半導体装
¾【こ; i l /、て、
前記ノリアメタル膜は、前記絶縁膜が存在して 、る側力 前記金属配線が存在して いる側へ向カゝつて順に積層されている金属酸ィ匕物膜、金属化合物膜及び金属膜より なり、
前記金属化合物膜の弾性率は、金属酸ィ匕物膜の弾性率よりも大き 、ことを特徴と する半導体装置。
[2] 前記絶縁膜と前記金属酸ィ匕物膜とは接合して形成されていると共に、
前記金属膜と前記金属配線とは接合して形成されていることを特徴とする請求項 1 に記載の半導体装置。
[3] 前記金属酸化物膜は、導電性を有することを特徴とする請求項 1に記載の半導体 装置。
[4] 前記金属化合物膜を構成する金属は、高融点金属であることを特徴とする請求項
1に記載の半導体装置。
[5] 前記金属膜を構成する金属は、酸化されても導電性を失わな!/ヽ金属であることを特 徴とする請求項 1に記載の半導体装置。
[6] 前記金属化合物膜は、金属窒化物膜よりなることを特徴とする請求項 1に記載の半 導体装置。
[7] 前記金属化合物膜は、金属炭化物膜よりなることを特徴とする請求項 1に記載の半 導体装置。
[8] 前記金属化合物膜は、金属ケィ化物膜よりなることを特徴とする請求項 1に記載の 半導体装置。
[9] 基板上に形成された絶縁膜と、前記絶縁膜中に形成された埋め込み金属配線と、 前記絶縁膜と前記金属配線との間に形成されたバリアメタル膜とを有する半導体装
¾【こ; /、て、
前記バリアメタル膜は、前記絶縁膜が存在している側から前記金属配線が存在して いる側に向力つて順に積層されている第 1の金属酸ィ匕物膜、金属化合物膜、第 2の 金属酸ィ匕物膜及び金属膜よりなり、
前記金属化合物膜の弾性率は、前記第 1の金属酸化物膜の弾性率及び前記第 2 の金属酸ィ匕物膜の弾性率のそれぞれよりも大きいことを特徴とする半導体装置。
[10] 前記絶縁膜と前記第 1の金属酸ィ匕物膜とは接合して形成されていると共に、
前記金属膜と前記金属配線とは接合して形成されていることを特徴とする請求項 9 に記載の半導体装置。
[11] 前記第 1の金属酸化物膜及び前記第 2の金属酸化物膜のうちの少なくとも一方は、 導電性を有することを特徴とする請求項 9に記載の半導体装置。
[12] 前記金属化合物膜を構成する金属は、高融点金属であることを特徴とする請求項
9に記載の半導体装置。
[13] 前記金属膜を構成する金属は、酸化されても導電性を失わな!/ヽ金属であることを特 徴とする請求項 9に記載の半導体装置。
[14] 前記金属化合物膜は、金属窒化物膜よりなることを特徴とする請求項 9に記載の半 導体装置。
[15] 前記金属化合物膜は、金属炭化物膜よりなることを特徴とする請求項 9に記載の半 導体装置。
[16] 前記金属化合物膜は、金属ケィ化物膜よりなることを特徴とする請求項 9に記載の 半導体装置。
[17] 基板上の絶縁膜に凹部を形成する工程と、
前記凹部の壁面に沿うように、金属酸化物膜、金属化合物膜、及び金属膜がこの 順に形成されてなるバリアメタル膜を形成する工程と、
前記凹部を埋め込むように、前記バリアメタル膜の上に埋め込み金属配線を形成 する工程とを備え、
前記バリアメタル膜を形成する工程は、
前記金属酸ィ匕物膜の弾性率よりも大きい弾性率を有する前記金属化合物膜を形 成する工程を含むことを特徴とする半導体装置の製造方法。
[18] 前記バリアメタル膜を形成する工程よりも後であって前記埋め込み金属配線を形成 する工程よりも前に、前記ノリアメタル膜の上にシード層を形成する工程をさらに備え 前記埋め込み金属配線を形成する工程は、前記凹部を埋め込むように、前記シー ド層の上に前記埋め込み金属配線を形成する工程を含むことを特徴とする請求項 1 7に記載の半導体装置の製造方法。
[19] 基板上の絶縁膜に凹部を形成する工程と、
前記凹部の壁面に沿うように、第 1の金属酸化物膜、金属化合物膜、第 2の金属酸 化物膜、及び金属膜がこの順に形成されてなるバリアメタル膜を形成する工程と、 前記凹部を埋め込むように、前記バリアメタル膜の上に埋め込み金属配線を形成 する工程とを備え、
前記バリアメタル膜を形成する工程は、
前記第 1の金属酸ィヒ物膜の弾性率及び前記第 2の金属酸ィヒ物膜の弾性率のそれ ぞれよりも大きい弾性率を有する前記金属化合物膜を形成する工程を含むことを特 徴とする半導体装置の製造方法。
[20] 前記バリアメタル膜を形成する工程よりも後であって前記埋め込み金属配線を形成 する工程よりも前に、前記ノリアメタル膜の上にシード層を形成する工程をさらに備え 前記埋め込み金属配線を形成する工程は、前記凹部を埋め込むように、前記シー ド層の上に前記埋め込み金属配線を形成する工程を含むことを特徴とする請求項 1 9に記載の半導体装置の製造方法。
PCT/JP2005/009270 2004-06-30 2005-05-20 半導体装置及びその製造方法 WO2006003760A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05741631A EP1780788A1 (en) 2004-06-30 2005-05-20 Semiconductor device and method for manufacturing same
US11/630,799 US7663239B2 (en) 2004-06-30 2005-05-20 Semiconductor device and method for fabricating the same
US12/649,002 US7893535B2 (en) 2004-06-30 2009-12-29 Semiconductor device and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-192653 2004-06-30
JP2004192653A JP4224434B2 (ja) 2004-06-30 2004-06-30 半導体装置及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US63079906A Continuation 2004-06-30 2006-12-27

Publications (1)

Publication Number Publication Date
WO2006003760A1 true WO2006003760A1 (ja) 2006-01-12

Family

ID=35782573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009270 WO2006003760A1 (ja) 2004-06-30 2005-05-20 半導体装置及びその製造方法

Country Status (7)

Country Link
US (2) US7663239B2 (ja)
EP (1) EP1780788A1 (ja)
JP (1) JP4224434B2 (ja)
KR (1) KR20070028574A (ja)
CN (1) CN100447979C (ja)
TW (1) TW200601410A (ja)
WO (1) WO2006003760A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251135A (ja) * 2006-02-18 2007-09-27 Seiko Instruments Inc 半導体装置およびその製造方法
US7579274B2 (en) * 2006-02-21 2009-08-25 Alchimer Method and compositions for direct copper plating and filing to form interconnects in the fabrication of semiconductor devices
JP2007258390A (ja) * 2006-03-23 2007-10-04 Sony Corp 半導体装置、および半導体装置の製造方法
JP4634977B2 (ja) * 2006-08-15 2011-02-16 Okiセミコンダクタ株式会社 半導体装置及び半導体装置の製造方法
US20080096381A1 (en) * 2006-10-12 2008-04-24 Han Joseph H Atomic layer deposition process for iridium barrier layers
JP5154789B2 (ja) 2006-12-21 2013-02-27 ルネサスエレクトロニクス株式会社 半導体装置並びに半導体装置の製造方法
JP2010192467A (ja) * 2007-06-28 2010-09-02 Tokyo Electron Ltd 被処理体の成膜方法及び処理システム
JP4836092B2 (ja) 2008-03-19 2011-12-14 国立大学法人東北大学 半導体装置の形成方法
US8679970B2 (en) * 2008-05-21 2014-03-25 International Business Machines Corporation Structure and process for conductive contact integration
US7928569B2 (en) * 2008-08-14 2011-04-19 International Business Machines Corporation Redundant barrier structure for interconnect and wiring applications, design structure and method of manufacture
US8242600B2 (en) * 2009-05-19 2012-08-14 International Business Machines Corporation Redundant metal barrier structure for interconnect applications
EP2259307B1 (en) 2009-06-02 2019-07-03 Napra Co., Ltd. Electronic device
JP5190415B2 (ja) * 2009-06-04 2013-04-24 パナソニック株式会社 半導体装置
KR101656444B1 (ko) * 2010-01-25 2016-09-09 삼성전자주식회사 상보형 mos 트랜지스터, 상기 상보형 mos 트랜지스터를 포함하는 반도체 장치, 및 상기 반도체 장치를 포함하는 반도체 모듈
US8461683B2 (en) * 2011-04-01 2013-06-11 Intel Corporation Self-forming, self-aligned barriers for back-end interconnects and methods of making same
US8610280B2 (en) * 2011-09-16 2013-12-17 Micron Technology, Inc. Platinum-containing constructions, and methods of forming platinum-containing constructions
US8592985B2 (en) * 2012-04-10 2013-11-26 Micron Technology, Inc. Methods of forming conductive structures and methods of forming DRAM cells
US20130328098A1 (en) * 2012-05-15 2013-12-12 High Power Opto. Inc. Buffer layer structure for light-emitting diode
JP6061610B2 (ja) * 2012-10-18 2017-01-18 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US20140273436A1 (en) * 2013-03-15 2014-09-18 Globalfoundries Inc. Methods of forming barrier layers for conductive copper structures
US9349636B2 (en) 2013-09-26 2016-05-24 Intel Corporation Interconnect wires including relatively low resistivity cores
US9418889B2 (en) * 2014-06-30 2016-08-16 Lam Research Corporation Selective formation of dielectric barriers for metal interconnects in semiconductor devices
JP2016219660A (ja) * 2015-05-22 2016-12-22 ソニー株式会社 半導体装置、製造方法、固体撮像素子、および電子機器
WO2017111814A1 (en) * 2015-12-26 2017-06-29 Intel Corporation Low resistance interconnect
US10504821B2 (en) * 2016-01-29 2019-12-10 United Microelectronics Corp. Through-silicon via structure
CN105895579B (zh) * 2016-06-08 2017-12-05 无锡微奥科技有限公司 一种基于soi衬底的tsv圆片的加工方法
US10741442B2 (en) * 2018-05-31 2020-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Barrier layer formation for conductive feature
JP2022029308A (ja) * 2020-08-04 2022-02-17 新光電気工業株式会社 配線基板及び配線基板の製造方法
US20220246534A1 (en) * 2021-01-29 2022-08-04 Taiwan Semiconductor Manufacturing Company, Ltd. Low-resistance copper interconnects

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332426A (ja) * 2002-05-17 2003-11-21 Renesas Technology Corp 半導体装置の製造方法および半導体装置
JP2004031497A (ja) * 2002-06-24 2004-01-29 Nec Corp 半導体装置およびその製造方法
JP2004031866A (ja) * 2002-06-28 2004-01-29 Trecenti Technologies Inc 半導体集積回路装置
JP2004040128A (ja) * 2003-08-29 2004-02-05 Ulvac Japan Ltd 化学蒸着法による銅薄膜の形成方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3337876B2 (ja) 1994-06-21 2002-10-28 株式会社東芝 半導体装置の製造方法
JP3409831B2 (ja) 1997-02-14 2003-05-26 日本電信電話株式会社 半導体装置の配線構造の製造方法
US6069068A (en) * 1997-05-30 2000-05-30 International Business Machines Corporation Sub-quarter-micron copper interconnections with improved electromigration resistance and reduced defect sensitivity
JPH11223755A (ja) 1998-02-09 1999-08-17 Asahi Optical Co Ltd レンズ保持構造
JP3149846B2 (ja) * 1998-04-17 2001-03-26 日本電気株式会社 半導体装置及びその製造方法
JP2000049116A (ja) * 1998-07-30 2000-02-18 Toshiba Corp 半導体装置及びその製造方法
JP3528665B2 (ja) 1998-10-20 2004-05-17 セイコーエプソン株式会社 半導体装置の製造方法
JP2000208443A (ja) 1999-01-13 2000-07-28 Sony Corp 電子装置の製造方法および製造装置
JP4377040B2 (ja) 2000-07-24 2009-12-02 Necエレクトロニクス株式会社 半導体の製造方法
JP2002075994A (ja) * 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
CN1248294C (zh) * 2000-11-22 2006-03-29 联华电子股份有限公司 形成阻挡层的方法及形成的结构
US6462417B1 (en) * 2000-12-18 2002-10-08 Advanced Micro Devices, Inc. Coherent alloy diffusion barrier for integrated circuit interconnects
US6433379B1 (en) * 2001-02-06 2002-08-13 Advanced Micro Devices, Inc. Tantalum anodization for in-laid copper metallization capacitor
JP2002343859A (ja) * 2001-05-15 2002-11-29 Mitsubishi Electric Corp 配線間の接続構造及びその製造方法
JP3540302B2 (ja) * 2001-10-19 2004-07-07 Necエレクトロニクス株式会社 半導体装置およびその製造方法
US6713373B1 (en) * 2002-02-05 2004-03-30 Novellus Systems, Inc. Method for obtaining adhesion for device manufacture
US7279423B2 (en) * 2002-10-31 2007-10-09 Intel Corporation Forming a copper diffusion barrier
US7045071B2 (en) * 2002-12-30 2006-05-16 Hynix Semiconductor Inc. Method for fabricating ferroelectric random access memory device
US20050206000A1 (en) * 2004-03-19 2005-09-22 Sanjeev Aggarwal Barrier for copper integrated circuits
FR2879064B1 (fr) * 2004-12-03 2007-06-01 Eastman Kodak Co Procede de diffusion de donnees multimedia vers un equipement pourvu d'un capteur d'images
KR100613388B1 (ko) * 2004-12-23 2006-08-17 동부일렉트로닉스 주식회사 다마신법을 이용한 구리 배선층을 갖는 반도체 소자 및 그형성 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332426A (ja) * 2002-05-17 2003-11-21 Renesas Technology Corp 半導体装置の製造方法および半導体装置
JP2004031497A (ja) * 2002-06-24 2004-01-29 Nec Corp 半導体装置およびその製造方法
JP2004031866A (ja) * 2002-06-28 2004-01-29 Trecenti Technologies Inc 半導体集積回路装置
JP2004040128A (ja) * 2003-08-29 2004-02-05 Ulvac Japan Ltd 化学蒸着法による銅薄膜の形成方法

Also Published As

Publication number Publication date
CN1973367A (zh) 2007-05-30
KR20070028574A (ko) 2007-03-12
CN100447979C (zh) 2008-12-31
EP1780788A1 (en) 2007-05-02
US7893535B2 (en) 2011-02-22
JP2006019325A (ja) 2006-01-19
JP4224434B2 (ja) 2009-02-12
US7663239B2 (en) 2010-02-16
TW200601410A (en) 2006-01-01
US20100102449A1 (en) 2010-04-29
US20080054464A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4224434B2 (ja) 半導体装置及びその製造方法
JP5089575B2 (ja) 相互接続構造体及びその製造方法
US20070132100A1 (en) Semiconductor device and method for fabricating the same
TWI260067B (en) Semiconductor device
US7514354B2 (en) Methods for forming damascene wiring structures having line and plug conductors formed from different materials
KR100426904B1 (ko) 전극간의 접속 구조 및 그 제조 방법
US8102051B2 (en) Semiconductor device having an electrode and method for manufacturing the same
JP2006344965A (ja) 配線構造の形成方法,配線構造およびデュアルダマシン構造
US7659626B2 (en) Semiconductor device including a barrier metal film
US8164160B2 (en) Semiconductor device
JP4370206B2 (ja) 半導体装置及びその製造方法
JP2008300674A (ja) 半導体装置
JP2006324584A (ja) 半導体装置およびその製造方法
JP2006253666A (ja) 半導体装置およびその製造方法
JP2007180313A (ja) 半導体装置および半導体装置の製造方法
JP2010080607A (ja) 半導体装置の製造方法
JPH11102911A (ja) 半導体装置及びその製造方法
JP2001044202A (ja) 半導体装置及びその製造方法
JP2009170665A (ja) 半導体装置および半導体装置の製造方法
JP2006196820A (ja) 半導体装置及びその製造方法
JPH10294317A (ja) 積層配線構造体およびその製造方法
JP2002190517A (ja) 半導体装置及びその製造方法
KR20090099223A (ko) 반도체 소자의 캐패시터 제조 방법
JPH06216262A (ja) 半導体装置
JP2009033128A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580021240.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11630799

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005741631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077001622

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077001622

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005741631

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11630799

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005741631

Country of ref document: EP