WO2005123304A2 - Giessverfahren und giessanlage für aluminium bzw. aluminiumlegierungen - Google Patents

Giessverfahren und giessanlage für aluminium bzw. aluminiumlegierungen Download PDF

Info

Publication number
WO2005123304A2
WO2005123304A2 PCT/EP2005/006486 EP2005006486W WO2005123304A2 WO 2005123304 A2 WO2005123304 A2 WO 2005123304A2 EP 2005006486 W EP2005006486 W EP 2005006486W WO 2005123304 A2 WO2005123304 A2 WO 2005123304A2
Authority
WO
WIPO (PCT)
Prior art keywords
casting
pans
station
melt
aluminum
Prior art date
Application number
PCT/EP2005/006486
Other languages
English (en)
French (fr)
Other versions
WO2005123304A3 (de
Inventor
Dirk Kotze
Dawid Dewet-Smith
Original Assignee
Stopinc Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stopinc Aktiengesellschaft filed Critical Stopinc Aktiengesellschaft
Priority to AU2005254220A priority Critical patent/AU2005254220A1/en
Priority to CA002570361A priority patent/CA2570361A1/en
Priority to US11/629,712 priority patent/US20080164000A1/en
Priority to MXPA06014600A priority patent/MXPA06014600A/es
Priority to JP2007515884A priority patent/JP2008502483A/ja
Publication of WO2005123304A2 publication Critical patent/WO2005123304A2/de
Publication of WO2005123304A3 publication Critical patent/WO2005123304A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D47/00Casting plants

Definitions

  • the invention relates to a casting process for aluminum or aluminum alloys according to the preamble of claim 1 and a casting plant for performing the method.
  • Casting processes and casting plants for aluminum or aluminum alloys are known in which solid or liquid aluminum is melted in a melting furnace and then held in a heat-holding furnace, from which the melt flows over a long channel to a casting station and is subjected to different treatments. is set. Alloy additives are added to the melt flowing through the trough and an inert cleaning gas (argon) is blown in before the melt reaches the casting station via a filter, where it is cast into semi-products (see Fig. 1, in which a conventional casting plant for aluminum is shown schematically). Homogenization of the melt is only possible to a limited extent. The treatment times are linked to the casting process and thus predetermined and limited in time.
  • argon inert cleaning gas
  • the individual treatment stations must be perfectly coordinated. If one of the stages of this in-line system does not work, the entire casting system must be shut down.
  • the long channel that flows through the melt means a loss of temperature, so that the material in the heat-retaining furnace must be overheated so that a sufficient temperature can be reached at the casting station when starting up. Extensive casting times mean that the melting and holding furnace must be available for the entire casting time before the next melting rate is used. The energy consumption of the furnace is correspondingly high.
  • flame furnaces reverberatory furnaces
  • hydrocarbon as fuel are used, whereby the disadvantage of rapid absorption of hydrogen from the burner flame arises.
  • greenhouse gases and other pollutants polluting the atmosphere are generated.
  • the long, open channel for the flow of the melt also means that the metal absorbs the hydrogen from the atmosphere and causes the formation of slag.
  • the present invention has for its object to propose a more economical and flexible casting process for aluminum or aluminum alloys and a casting system for performing the To create processes that allow an optimal timing for the treatment and casting of the aluminum melt and with which an improved quality of the semi-products to be produced can be achieved.
  • pans according to the invention for treating and feeding aluminum melt in controllable sequences to preferably several casting stations, this process phase is decoupled in time from the actual casting process.
  • the individual treatments are no longer fixed and limited in time, but can be adjusted as required until the desired quality of the melt to be cast is achieved in the respective pan.
  • the method according to the invention is considerably more efficient than the in-line method, since the need for large heat-holding ovens is eliminated. If at all, the furnaces are used for melting and heating, but not for keeping warm over long periods of time. These can be designed as energetically efficient and ecologically advantageous induction furnaces. The invention is explained below with reference to the drawing. Show it:
  • FIG. 1 shows schematically an embodiment of a casting plant for aluminum corresponding to the prior art
  • FIG. 2 schematically shows an exemplary embodiment of a casting installation for aluminum according to the invention.
  • Fig.l shows a prior art casting system 1 for aluminum or aluminum alloys.
  • Liquid or solid aluminum is introduced as a starting material in a first stage or station 2, which comprises a melting furnace 3 and a heat-holding furnace 4 connected to it.
  • the aluminum can be supplied from a filling space by means of a transport pan 5 or as a scrap load.
  • the furnaces 3, 4 are generally large flame furnaces with hydrocarbon fuel.
  • the melt produced in the melting furnace 3 is heated to the necessary temperature in the heat holding furnace 4 and partially homogenized by stirring.
  • the aluminum melt After the aluminum melt has reached the required temperature, it is passed from the heat-holding furnace 4 via a long channel 6 (channel) to a casting station 7, through which it flows through various treatment stations 11, 12, which together with a filter 13 upstream of the casting station 7, pass a second one Stage 10 of the casting plant 1 is commonly known as gutter treatment.
  • various alloy additives are added to the aluminum melt. Gas treatment takes place in the treatment station 12.
  • the casting station 7, in which the aluminum melt is cast into semifinished products, can be operated continuously or semi-continuously in a manner known per se and therefore not described in detail.
  • the treatment times in the trough stage 10 are linked to the casting process to be carried out in the casting station 7 and are thus predetermined and limited.
  • the function of the individual treatment stations 11, 12, 13 must be perfectly coordinated with one another in terms of time. If one of the stages of this in-line system does not work, the entire casting system 1 must be put out of operation.
  • the long channel or channel 6 through which the melt flows means a loss of temperature, so that the material in the heat-holding furnace 4 has to be overheated (for example to 730 ° C.) so that a sufficient temperature when starting up (for example 700 ° C) can be achieved.
  • Extensive casting times mean that the melting and heat holding furnace 4 must be available for the entire casting time before the next melting rate is used.
  • the energy consumption of the oven 3, 4 is correspondingly large.
  • the flame furnace with hydrocarbon fuel has the disadvantage of rapid absorption of hydrogen from the burner flame.
  • greenhouse gases and other pollutants polluting the atmosphere are generated.
  • the long, open channel 6 (channel) for the flow of the aluminum melt also means that the metal absorbs the hydrogen from the atmosphere and causes the formation of slag.
  • FIG. 2 shows a casting installation 1 according to the invention for aluminum or aluminum alloys.
  • the first stage of the casting process according to the invention takes place in a filling station 21, in which hot aluminum melt is filled into a number of pans 25.
  • the pans can have a capacity of 15 t, for example.
  • Either liquid, hot (temperature approx. 900 ° C.) aluminum can be filled directly into the pans 25 by means of transport pans from a filling space, or at least one, preferably several, furnaces 22, 23, 24 are assigned to the filling station 21 and are used for delivery responsible for the aluminum melt, whereby in addition to liquid aluminum, aluminum scrap or blocks intended for remelting can serve as the starting material.
  • the melt can, for example, be poured into one of the pans 25 at half-hourly intervals.
  • aluminum melts of different quality can be poured into the pans 25 from the individual furnaces, the filling of the pans 25 with aluminum melt possibly also being computer-controlled with mixed material from different furnaces 22, 23, 24.
  • Electric induction furnaces which are energetically considerably more efficient than flame furnaces can preferably be used as furnaces 22, 23, 24.
  • This can be, for example, an induction furnace with a capacity of 20 t, from which the 15 t of aluminum melt is poured into one of the pans 25 and the remaining 5 t are helpful in melting another charge.
  • the casting plant 1 has a cleaning and preparation station 30, from which cleaned and preheated pans 25a are transported to the filling station 21 for filling (pans 25 located on a transport route are generally designated by the letter T in FIG. 2).
  • a cleaning and preparation station 30 from which cleaned and preheated pans 25a are transported to the filling station 21 for filling (pans 25 located on a transport route are generally designated by the letter T in FIG. 2).
  • the pans 25a By preheating the pans 25a to, for example, 900 ° C., the pans with a temperature of approx. 800 ° C operated furnace 22, 23, 24 filled aluminum melt remain in the pans 25 until it drops to the typical casting temperature of 700 ° C than would be the case without preheating.
  • the slag is skimmed off from the surface of the molten bath by placing the pan 25 in an inclined position.
  • the pans 25 filled in the filling station 21 are transported to a treatment station 32, in which the second stage of the casting process takes place. Alloy additives are first introduced into the aluminum melt (see the pans labeled 25b in FIG. 2). (However, at least some of the alloy additives can also be introduced into the cleaned pans 25a before the melt is poured in.)
  • the aluminum melt is then homogenized and cleaned (cf. pans 25c).
  • the pans are placed underneath a fan wheel which can be immersed in the respective pan 25c for blowing in an inert gas, e.g. Argon or nitrogen, placed, a combined hydrogen removal, homogenization and / or heat regulation of the aluminum melt can take place.
  • an inert gas e.g. Argon or nitrogen
  • the pans 25 can be held in storage stations provided for this purpose (such storage stations are generally designated with the letter S in FIG. 2) until a casting station 33 or 34 is available.
  • the casting plant 20 has preferably via several such casting stations (two shown in FIG. 2), to which the pans 25 can be transported from the treatment or storage station, and in which the melt is poured into semifinished products.
  • the pans 25 can advantageously be covered with a lid.
  • the temperature in the pan 25 can be reduced by blowing argon through a porous plug in the pan bottom or maintained or increased by means of a small burner built into the pan lid.
  • the pans 25d at the respective pouring station 33, 34 are emptied through the pan bottom with a controllable opening of a slide closure, the outflowing aluminum melt being passed into a collecting channel, preferably with a jacket, by an inert gas.
  • argon can be blown through the porous stopper in the pan base, thereby stirring and cleaning the melt.
  • an inert atmosphere can be created in its upper region, which reduces the oxidation and absorption of hydrogen.
  • the casting stations 33, 34 are each equipped in a manner known per se with a filter system and are operated continuously or semi-continuously
  • pans 25d After the pans 25d have been emptied, they are transported to and in the cleaning and preparation station 30 already mentioned cleaned (see pan 25 e) and prepared for reuse, in particular preheated (see pan 25 a).
  • the emptied pans can also be stored in storage stations S provided for them until they are used again.
  • the casting system according to the invention is equipped with a control system with which the batches to be filled from individual furnaces 22, 23, 24 into the individual pans 25, the alloy additives, heating, cooling, gas supply and treatment times are controlled so that the aluminum melt is of the desired quality and with the desired quality Temperature and fully homogenized reaches the casting stations 33, 34.
  • pans 25 according to the invention for treating and feeding aluminum melt in controllable sequences to preferably several casting stations 33, 34, this process phase is decoupled in time from the actual casting process.
  • the individual treatments are no longer fixed and limited in time, but can be adjusted as required until the desired quality of the aluminum melt to be cast is achieved in the respective pan. If, for example, a low hydrogen content is required, the gas cleaning time (degassing) can be extended. This possibility did not exist with the traditional in-line method according to FIG. 1.
  • the production capacity of the casting system depends on the actual casting process at the casting stations alone, which can be continued until the feed the treated aluminum melt to the casting stations is interrupted in a deliberate manner.
  • the method according to the invention is considerably more efficient than the in-line method, since the need for large heat-holding ovens is eliminated. If at all, the furnaces are used for melting and heating, but not for keeping warm over long periods of time. These can be designed as energetically efficient and ecologically advantageous induction furnaces. By preheating the pans, the melt temperature that can be reached in the furnace can be lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

Bei einem Giessverfahren für Aluminium bzw. Aluminiumlegierungen, erfolgt ein Behandlen und Zuführen von Aluminiumschmelze zu mindestens einer Giessstation (33, 34), in welcher die Schmelze zu Halbprodukten oder dergleichen vergossen wird. Für das Behandeln und Zuführen der Aluminiumschmelze zu der jeweiligen Giessstation (33, 34) wird eine Anzahl von Pfannen (25) verwendet, in welche die Schmelze eingefüllt, zu mindestens einer weiteren Stufe (32) transportiert und dort behandelt wird. Anschliessend wird die Schmelze in den Pfannen (25) zu der Giessstation (33, 34) geliefert, in welcher die Pfannen (25) entleert werden. Damit wird ein effizientes Verfahren mit flexiblen Anpassungen an die je nach Situation ändernden Zeitabschnitten im Prozess erzielt.

Description

Giessverfahren und Giessanlage für Aluminium bzw. Aluminiumlegierungen
Die Erfindung betrifft ein Giessverfahren für Aluminium bzw. Aluminiumlegierungen gemäss dem Oberbegriff des Anspruches 1 sowie eine Giessanlage zum Durchführen des Verfahrens.
Es sind Giessverfahren sowie Giessanlagen für Aluminium bzw. Aluminiumlegierungen bekannt, bei denen festes oder flüssiges Aluminium in einem Schmelzofen geschmolzen und anschliessend in einem Wärmehalteofen gehalten wird, aus welchem die Schmelze über eine lange Rinne zu einer Giesstation fliesst und dabei unterschiedlicher Behandlung ausge- setzt wird. So werden der die Rinne durchfliessenden Schmelze Legierungszusätze zugegeben und ein inertes Reinigungsgas (Argon) eingeblasen, bevor die Schmelze über einen Filter zu der Giesstation gelangt, in der sie zu Halbprodukten vergossen wird (vgl. Fig. 1, in der eine herkömmliche Giessanlage für Aluminium schematisch dargestellt ist). Eine Homogenisierung der Schmelze ist nur begrenzt möglich. Die Behandlungszeiten sind an den Giessprozess gebunden und somit vorbestimmt und zeitlich begrenzt.
Die einzelnen Behandlungsstationen müssen perfekt aufeinander abgestimmt sein. Funktioniert eine der Stufen dieser In-line-Anlage nicht, so muss die ganze Giessanlage ausser Betrieb gesetzt werden. Die lange Rinne, die die Schmelze durchfliesst, bedeutet einen Temperäturverlust, so dass das Material in dem Wärmehalteofen überhitzt werden muss, damit an der Giessstation eine genügende Temperatur beim Anfahren erreicht werden kann. Extensive Giesszeiten bedeuten, dass der Schmelz- und Wärmehalteofen für die ganze Giesszeit zur Verfügung stehen muss, bevor nächste Schmelzrate zum Einsatz kommt. Der Energieverbrauch der Ofen ist entsprechend gross. Es werden in der Regel Flammenofen (reverberatory furnaces) mit Kohlenwasserstoff als Brennstoff verwendet, wodurch der Nächteil einer rapiden Absorption von Wasserstoff aus der Brennerflamme entsteht. Zudem entstehen Treibhausgase und andere die Atmosphäre belastende Verunreinigungen. Die lange, offene Rinne für den Durchfluss der Schmelze bedeutet aber auch, dass das Metall den Wasserstoff von der Atmosphäre aufnimmt und die Bildung von Schlacke verursacht.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein wirtschaftlicheres und flexibleres Giessverfahren für Aluminium bzw. Aluminiumlegierungen vorzuschlagen sowie eine Giessanlage zum Durchführen des Verfahrens zu schaffen, die einen optimalen Zeitablauf für das Behandeln und das Vergiessen der Aluminiumschmelze ermöglichen und mit denen eine verbesserte Qualität der zu erzeugenden Halbprodukte erreicht werden kann.
Diese Aufgabe wird erfindungs gemäss durch ein Giessverfahren mit den Merkmalen des Anspruches 1 sowie durch eine Giessanlage mit den Merkmalen des Anspruches 13 gelöst.
Bevorzugte Weitergestaltungen des erfindungsgemässen Giessverfahrens sowie der erfindungsgemässen Giessanlage bilden den Gegenstand der abhängigen Ansprüche.
Durch die erfindungsgemässe Verwendung von Pfannen für das Behandeln und Zuführen von Aluschmelze in steuerbaren Sequenzen zu vorzugsweise mehreren Giessstationen wird diese Verfahrensphase von dem eigentlichen Giessvorgang zeitlich abgekoppelt. Die einzelnen Behandlungen sind nicht mehr fix festgelegt und zeitlich begrenzt, sondern sie können nach Bedarf angepasst werden, bis die gewünschte Qualität der zu vergiessenden Schmelze in der jeweiligen Pfanne erreicht wird.
Das erfindungsgemässe Verfahren ist wesentlich effizienter als das In- line- Verfahren, da die Notwendigkeit von grossen Wärmehalteofen entfallt. Wenn überhaupt, werden die Ofen zum Schmelzen und Aufheizen gebraucht, jedoch nicht zum Wärmehalten über längere Zeitabschnitte. Diese können als energetisch effiziente und ökologisch vorteilhafte Induktionsofen ausgebildet sein. Die Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. Es zeigen:
Fig. 1 schematisch ein Ausführungsbeispiel einer dem Stand der Technik entsprechenden Giessanlage für Aluminium; und Fig. 2 schematisch ein Ausführungsbeispiel einer erfindungsgemässen Giessanlage für Aluminium.
Fig.l zeigt eine dem Stand der Technik entsprechende Giessanlage 1 für Aluminium bzw. Aluminiumlegierungen. Als Ausgangsmaterial wird flüssiges oder festes Aluminium in eine erste Stufe bzw. Station 2 eingebracht, die einen Schmelzofen 3 sowie einen an diesen angeschlossenen Wärmehalteofen 4 umfasst. Beispielsweise kann das Aluminium aus einem Füllraum mittels einer Transportpfanne 5 oder als eine Schrottladung geliefert werden. Bei den Ofen 3, 4 handelt es sich in der Regel um grosse Flammenofen mit Kohlenwasserstoff als Brennstoff. Die im Schmelzofen 3 erzeugte Schmelze wird im Wärmehalteofen 4 auf die notwendige Temperatur erhitzt und teilweise durch Rühren homogenisiert.
Nachdem die Aluminiumschmelze die erforderliche Temperatur erreicht hat, wird sie aus dem Wärmehalteofen 4 über eine lange Rinne 6 (Kanal) zu einer Giessstation 7 geleitet, wobei sie verschiedene Behandlungsstationen 11, 12 durchfliesst, die zusammen mit einem der Giessstation 7 vorgeschalteten Filter 13 eine zweite Stufe 10 der Giessanlage 1 allgemein bekannt als Rinnenbehandlung bilden. In der Behandlungsstation 1 1 werden der Aluschmelze diverse Legierungszusätze zugefügt. In der Behandlungsstation 12 findet eine Gasreinigung statt. Die Giessstation 7, in der die Alumimumschmelze zu Halbprodukten vergossen wird, kann in einer an sich bekannten und daher nicht näher beschriebenen Weise kontinuierlich oder halbkontinuierlich betrieben werden.
Die Behandlungszeiten in der Rinnen-Stufe 10 sind an den in der Giessstation 7 durchzuführenden Giessprozess gebunden und somit vorbestimmt und begrenzt. Die einzelnen Behandlungsstationen 1 1, 12, 13 müssen in ihrer Funktion zeitlich perfekt aufeinander abgestimmt sein. Funktioniert eine der Stufen dieser In-line-Anlage nicht, so muss die ganze Giessanlage 1 ausser Betrieb gesetzt werden. Der lange Kanal bzw. Rinne 6, durch die die Schmelze fliesst, bedeutet einen Temperaturverlust, so dass das Material in dem Wärmehalteofen 4 überhitzt werden muss (z.B. auf 730°C), damit an der Giessstation 7 eine genügende Temperatur beim Anfahren (z.B. 700°C) erreicht werden kann. Extensive Giesszeiten bedeuten, dass der Schmelz- und Wärmehalteofen 4 für die ganze Giesszeit zur Verfügung stehen muss, bevor nächste Schmelzrate zum Einsatz kommt. Der Energieverbrauch der Ofen 3, 4 ist entsprechend gross.
Bei den Flammenofen mit Kohlenwasserstoff als Brennstoff entsteht der Nachteil einer rapiden Absorption von Wasserstoff aus der Brennerflamme. Zudem entstehen Treibhausgase und andere die Atmosphäre belastende Verunreinigungen. Die lange, offene Rinne 6 (Kanal) für den Durch- fluss der Aluschmelze bedeutet aber auch, dass das Metall den Wasserstoff von der Atmosphäre aufnimmt und die Bildung von Schlacke verursacht.
In Fig. 2 ist eine erfindungsgemässe Giessanlage 1 für Aluminium bzw. Aluminiumlegierungen schematisch dargestellt. Die erste Stufe des erfindungsgemässen Giessverfahrens erfolgt in einer Füllstation 21, in welcher heisse Aluschmelze in eine Anzahl von Pfannen 25 gefüllt wird. Die Pfannen können beispielsweise ein Fassungsvermögen von 15 t aufweisen. Es kann entweder flüssiges, heisses (Temperatur ca. 900°C) Aluminium aus einem Füllraum mittels Transportpfannen direkt in die Pfannen 25 eingefüllt werden, oder es ist mindestens ein, vorzugsweise mehrere Ofen 22, 23, 24 der Füllstation 21 zugeordnet und für die Lieferung der Aluschmelze zuständig, wobei neben flüssigem Aluminium auch Aluminiumschrott oder zum Umschmelzen vorgesehene Blöcke als Ausgangsmaterial dienen können. Die Schmelze kann z.B. in halbstündigen Intervallen jeweils in eine der Pfannen 25 eingefüllt werden. Mit Vorteil kann aus den einzelnen Öfen Aluschmelze unterschiedlicher Qualität (mit unterschiedlichem Aluminium-Reinheitsgrad) in die Pfannen 25 eingefüllt werden, wobei das Füllen der Pfannen 25 mit Aluschmelze allenfalls auch mit gemischtem Material aus verschiedenen Ofen 22, 23, 24 computergesteuert verlaufen kann.
Als Ofen 22, 23, 24 können vorzugsweise elektrische Induktionsofen eingesetzt werden, die energetisch wesentlich effizienter sind als Flammenofen. Es kann sich dabei beispielsweise um Induktionsofen mit einem Fassungsvermögen von 20 t handeln, aus denen jeweils die 15 t Aluminiumschmelze in eine der Pfannen 25 gefüllt und die restlichen 5t beim Schmelzen einer weiteren Ladung behilflich sind.
Die erfindungsgemässe Giessanlage 1 verfügt über eine Reinigungs- und Vorbereitungsstation 30, aus welcher gereinigte und vorerhitzte Pfannen 25a zum Einfüllen zu der Füllstation 21 transportiert werden (sich auf einer Transportstrecke befindenden Pfannen 25 sind in Fig. 2 generell mit dem Buchstaben T bezeichnet). Durch die Vorheizung der Pfannen 25a auf beispielsweise 900°C kann die aus den mit einer Temperatur von ca. 800° C betriebenen Ofen 22, 23, 24 eingefüllte Aluschmelze länger in den Pfannen 25 verbleiben, bis sie auf die typische Giesstemperatur von 700°C absinkt, als es ohne Vorheizung der Fall wäre.
Nach dem Einfüllen der jeweilige Pfanne 25 wird von der Schmelzbadoberfläche die Schlacke abgeschöpft, indem die Pfanne 25 in eine Schrägstellung gebracht wird.
Die in der Füllstation 21 gefüllten Pfannen 25 werden zu einer Behandlungsstation 32 transportiert, in welcher die zweite Stufe des Giessverfahrens verläuft. Dabei werden zuerst Legierungszusätze in die Aluschmelze eingebracht (vgl. die mit 25b bezeichnete Pfannen in Fig. 2). (Allerdings kann auch zumindest ein Teil der Legierungszusätze bereits in die gereinigten Pfannen 25a vor dem Einfüllen der Schmelze eingebracht werden.) Danach wird die Aluschmelze homogenisiert und gereinigt (vgl. Pfannen 25c). Zu diesem Zweck werden die Pfannen unterhalb eines in die jeweilige Pfanne 25c eintauchbaren Gebläserades zum Einblasen von einem Inertgas, z.B. Argon oder Stickstoff, platziert , wobei eine kombinierte Wasserstoffentfernung, Homogenisierung und/oder Wärmeregulierung der Aluschmelze erfolgen kann. Mit dem Einblasen von Argon wird die Absorption von Wasserstoff von der in der Atmosphäre vorhandenen Feuchtigkeit eliminiert und die Schlackenbildung reduziert. Zur Beseitigung von alkalischen Spurverunreinigungen können zusätzlich kleine Mengen von Chlorin dem Reinigungsgas beigemischt werden.
Nach der Behandlung der Aluminiumschmelze können die Pfannen 25 in dafür vorgesehenen Lagerstationen (in Fig. 2 sind generell solche Lagerstationen mit dem Buchstaben S bezeichnet) gehalten werden, bis eine Giessstation 33 bzw. 34 verfugbar ist. Die Giessanlage 20 verfügt vor- zugsweise über mehrere solche Giessstationen (in Fig. 2 zwei dargestellt), zu welchen die Pfannen 25 von der Behandlungs- oder Lagerstation transportiert werden können, und in welchen die Schmelze zu Halbprodukten vergossen wird.
Zum Aufrechterhalten der Aluschmelze-Temperatur können mit Vorteil die Pfannen 25 mit einem Deckel abgedeckt werden.
Während des Verweilens in der Lagerstation S kann die Temperatur in der Pfanne 25 durch Einblasen von Argon durch einen porösen Stöpsel im Pfannenboden hindurch herabgesetzt oder mittels eines in den Pfannendeckel eingebauten, kleinen Brenners aufrechterhalten oder erhöht werden.
Die Entleerung der Pfannen 25d an der jeweiligen Giessstation 33, 34 erfolgt durch den Pfannenboden unter steuerbarer Öffnung eines Schiebeverschlusses, wobei die ausfliessende Aluschmelze in einen Sammelkanal vorzugsweise unter Ummantelung durch ein Inertgas geleitet wird. Auch während dieser Phase kann durch den porösen Stöpsel im Pfannenboden Argon eingeblasen werden, wodurch die Schmelze gerührt und gereinigt wird. Durch Abdecken der Pfanne 25d kann in ihrem oberen Bereich inerte Atmosphäre geschaffen werden, die die Oxidation und Absorption von Wasserstoff herabsetzt.
Die Giessstationen 33, 34 sind jeweils in einer an sich bekannten Weise mit einem Filtersystem ausgerüstet und werden kontinuierlich oder halbkontinuierlich betrieben^
Nach dem Entleeren der Pfannen 25d werden diese zu der bereits erwähnten Reinigungs- und Vorbereitungs Station 30 transportiert und in dieser gereinigt (vgl. Pfanne 25 e) und für die Wiederverwendung vorbereitet, insbesondere vorerhitzt (vgl. Pfanne 25 a). Die entleerten Pfannen können auch bis zum Wiedergebrauch in dafür vorgesehenen Lagerstationen S aufbewahrt werden.
Für den Transport der Pfannen 25 von einer Station zu der nächsten oder zu den Lagerstationen S sind mehrfache Wege vorgesehen, wobei die Pfannen 25 auf Schienen oder mittels obliegender Kräne transportiert werden können.
Die erfindungsgemässe Giessanlage ist mit einem Steuersystem ausgestattet, mit dem die aus einzelnen Ofen 22, 23, 24 in die einzelnen Pfannen 25 einzufüllenden Chargen, die Legierungszusätze, Heizung, Kühlung, Gaszufuhr und Behandlungszeiten gesteuert werden, damit die Aluschmelze in gewünschter Qualität, mit gewünschter Temperatur und voll homogenisiert zu den Giessstationen 33, 34 gelangt.
Durch die erfindungsgemässe Verwendung von Pfannen 25 für das Behandeln und Zuführen von Aluschmelze in steuerbaren Sequenzen zu vorzugsweise mehreren Giessstationen 33, 34 wird diese Verfahrensphase von dem eigentlichen Giessvorgang zeitlich abgekoppelt. Die einzelnen Behandlungen sind nicht mehr fix festgelegt und zeitlich begrenzt, sondern sie können nach Bedarf angepasst werden, bis die gewünschte Qualität der zu vergiessenden Aluschmelze in der jeweiligen Pfanne erreicht wird. Wird z.B. ein niedriger Wasserstoffgehalt verlangt, kann die Gasreinigungszeit (degassing) verlängert werden. Diese Möglichkeit bestand bei dem traditionellen In-line- Verfahren nach Fig. 1 nicht. Die Produktionsleistung der Giessanlage hängt vom eigentlichen Giessprozess an den Giesstationen alleine ab, der fortgesetzt werden kann, bis die Zuführung der behandelten Aluschmelze zu den Giessstationen in gewollter Weise unterbrochen wird.
Das erfindungsgemässe Verfahren ist wesentlich effizienter als das In- line- Verfahren, da die Notwendigkeit von grossen Wärmehalteofen entfällt. Wenn überhaupt, werden die Ofen zum Schmelzen und Aufheizen gebraucht, jedoch nicht zum Wärmehalten über längere Zeitabschnitte. Diese können als energetisch effiziente und ökologisch vorteilhafte Induktionsofen ausgebildet sein. Durch Vorheizen der Pfannen kann die in den Ofen erreichbare Temperatur der Schmelze eine tieferen Wert betragen.

Claims

PATENTANSPRÜCHE
1. Giessverfahren für Aluminium bzw. Aluminiumlegierungen, bei dem ein Behandeln und Zuführen von Aluminiumschmelze zu mindestens einer Giessstation (33, 34) erfolgt, in welcher die Schmelze zu Halbprodukten oder dergleichen vergossen wird, dadurch gekennzeichnet, dass für das Behandeln und Zuführen der Aluminiumschmelze zu der jeweiligen Giessstation (33, 34) eine Anzahl von Pfannen (25) verwendet wird, in welche die Schmelze eingefüllt, zu mindestens einer weiteren Stufe (32) transportiert und dort behandelt wird, und anschliessend zu der Giessstation (33, 34) geliefert wird, in welcher die Pfannen (25) entleert werden.
2. Giessverfahren nach Anspruch 1, dadurch gekennzeichnet, dass in einer weiteren Stufe (30) die entleerten Pfannen (25) gereinigt und für die Wiederverwendung vorbereitet, insbesondere vorerhitzt werden.
3. Giessverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in der ersten Stufe (21) die Schmelze aus einem oder wahlweise aus mehreren Öfen (22, 23, 24) in die Pfannen (25) eingefüllt wird, wobei beim Vorhandensein von mehreren Öfen (22, 23, 24) Aluminiumschmelze unterschiedlicher Qualität aus den einzelnen Öfen (22, 23, 24) in die Pfannen (25) eingefüllt werden kann.
4. Giessverfahren nach Anspruch 3, dadurch gekennzeichnet, dass in der ersten Stufe (21) Induktionsofen verwendet werden.
5. Giessverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass nach dem Einfüllen der jeweiligen Pfanne (25) die Schlacke von der Schmelzbadoberfläche abgeschöpft wird, wozu die Pfanne in eine Schrägstellung gebracht wird.
6. Giessverfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in der zweiten Stufe (32) die Zugabe von Legierungszusätzen in die Schmelze, deren Reinigung und Homogenisierung sowie allenfalls jeweils eine Temperaturregulierung durchgeführt wird.
7. Giessverfahren nach Anspruch 6, dadurch gekennzeichnet, dass in der zweiten Behandlungsstufe (32) die Pfannen (25) unterhalb eines in die jeweilige Pfanne (25) eintauchbaren Gebläserades zum Einblasen von Argon oder Stickstoff platzierbar sind zur kombinierten Wasserstoffentfernung, Homogenisierung und allenfalls Wärmeregulierung, wobei zur Beseitigung von alkalischen Spurverunreinigungen zusätzlich kleine Mengen von Chlorin dem Reinigungsgas beigemischt werden können.
8. Giessverfahren nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass zumindest ein Teil der Legierungszusätze bereits in die entleerten und gereinigten Pfannen (25) vor dem Einfüllen der Aluminiumschmelze eingebracht wird.
9. Giessverfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Pfannen (25) auf Schienen oder mittels obliegender Kräne die einzelnen Stationen bzw. Stufen durchlaufen, wobei mehrfache Wege zu vorzugsweise mehreren Giessstationen (33, 34) und zu zusätzlichen Lagerstationen (S) zum Abstellen von mit Aluminiumschmelze gefüllten und/oder leeren Pfannen (25) bis zum Gebrauch führen.
10. Giessverfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Entleerung der Pfannen (25) an der jeweiligen Giessstation (33, 34) durch den Boden der Pfannen unter steuerbarer Öffnung eines Schiebeverschlusses erfolgt, wobei die ausfliessende Aluminiumschmelze in einen Sammelkanal vorzugsweise unter Ummantelung durch ein Inertgas geleitet wird.
11. Giessverfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass das Füllen der Pfannen (25) mit Aluminiumschmelze allenfalls mit gemischtem Material aus verschiedenen Ofen (22, 23, 24), die Zugabe der Legierungszusätze, die Homogenisierung, die Wärmeregulierung und der zeitliche Ablauf der Behandlung und Zuführung der Schmelze zu der gewählten Giessstation (33, 34) computergesteuert verläuft.
12. Giessverfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die jeweilige Giessstation (33, 34) kontinuierlich oder halbkontinuierlich betrieben wird und mit einem Filtersystem ausgerüstet ist.
13. Giessanlage zum Durchführen des Verfahrens nach Anspruch 1, mit mindestens einer Giessstation (33, 34) und mit Mitteln zum Behandeln und Zuführen von Aluminiumschmelze zu der Giessstation (33, 34), dadurch gekennzeichnet, dass die Mittel zum Behandeln und Zuführen von Aluschmelze eine Anzahl von in einer ersten Füllstation (21) mit der Schmelze füllbaren Pfannen (25) umfassen, die zu einer zweiten Behandlungsstation (32) und von dort zu der jeweiligen Giessstation (33, 34) transportierbar sind, wobei für den Transport mehrfache Wege vorgesehen sind, und die Pfannen (25) jeweils mit einem Schiebeverschluss oder dergleichen ausgestattet sind, durch dessen Öffnen sie entleerbar sind.
14. Giessanlage nach Anspruch 13, dadurch gekennzeichnet, dass eine weitere Reinigungs- und Vorbereitungsstation (30) für die entleerten Pfannen (25) vorgesehen ist, von der die Pfannen (25) zu der Füllstation (21) transportierbar sind.
15. Giessanlage nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass zusätzliche Lagerstationen (S) zum Abstellen von mit Alumimumschmelze gefüllten und/oder entleerten Pfannen (25) bis zum Gebrauch vorhanden sind.
16. Giessanlage nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die Füllstation (21) eine Anzahl von mit Ausgangsmaterial belieferbaren Ofen (22, 23, 24), vorzugsweise Induktionsofen, versehen ist, wobei die einzelnen Ofen (22, 23, 24) allenfalls mit Alumaterial unterschiedlicher Qualität belieferbar sind.
17. Giessanlage nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass die Pfannen (25) mit einem Deckel abdeckbar sind, in welchen ein Brenner einbaubar ist zum Aufrechterhalten oder Erhöhen der Schmelzetemperatur.
18. Giessanlage nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass die Pfannen mit einem porösen Stöpsel zum Einblasen von einem Inertgas ausgestattet sind.
19. Giessanlage nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, dass für den Transport der Pfannen (25) von einer Station zu der nächsten und zu den Lagerstationen (S) Schienen oder Kräne vorhanden sind.
PCT/EP2005/006486 2004-06-16 2005-06-16 Giessverfahren und giessanlage für aluminium bzw. aluminiumlegierungen WO2005123304A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2005254220A AU2005254220A1 (en) 2004-06-16 2005-06-16 Casting method and casting installation for aluminium or aluminium alloys
CA002570361A CA2570361A1 (en) 2004-06-16 2005-06-16 Casting method and casting installation for aluminium or aluminium alloys
US11/629,712 US20080164000A1 (en) 2004-06-16 2005-06-16 Casting Method and Casting Installation for Aluminium or Aluminium Alloys
MXPA06014600A MXPA06014600A (es) 2004-06-16 2005-06-16 Metodo de moldeo e instalacion de moldeo para aluminio y aleaciones de aluminio.
JP2007515884A JP2008502483A (ja) 2004-06-16 2005-06-16 アルミニウムおよび/またはアルミニウム合金の鋳造法及び鋳造施設

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04405366.8 2004-06-16
EP04405366A EP1607156B1 (de) 2004-06-16 2004-06-16 Giessverfahren und Giessanlage für Aluminium bzw. Aluminiumlegierungen

Publications (2)

Publication Number Publication Date
WO2005123304A2 true WO2005123304A2 (de) 2005-12-29
WO2005123304A3 WO2005123304A3 (de) 2006-08-10

Family

ID=34932148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/006486 WO2005123304A2 (de) 2004-06-16 2005-06-16 Giessverfahren und giessanlage für aluminium bzw. aluminiumlegierungen

Country Status (12)

Country Link
US (1) US20080164000A1 (de)
EP (1) EP1607156B1 (de)
JP (1) JP2008502483A (de)
CN (1) CN1976773A (de)
AT (1) ATE421398T1 (de)
AU (1) AU2005254220A1 (de)
CA (1) CA2570361A1 (de)
DE (1) DE502004008913D1 (de)
MX (1) MXPA06014600A (de)
RU (1) RU2007101384A (de)
WO (1) WO2005123304A2 (de)
ZA (1) ZA200609947B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2684354A1 (en) * 2007-04-16 2008-10-23 Stopinc Aktiengesellschaft Casting method and casting system for aluminium or aluminium alloys
CN102151816B (zh) * 2011-03-10 2013-04-24 山东滨州渤海活塞股份有限公司 铝活塞自动铸造机
CN104259396A (zh) * 2014-07-10 2015-01-07 陕西国德电气制造有限公司 枕梁制备方法
CN115213393B (zh) * 2022-07-09 2023-07-21 江苏政田新材料有限公司 一种锚链轮铸造用钢水过滤装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3736117A1 (de) * 1987-10-26 1989-05-03 Krupp Gmbh Anlage zur herstellung von stahl, insbesondere ministahlwerksanlage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8428251D0 (en) * 1984-11-08 1984-12-19 Alcan Int Ltd Treating aluminium
US4959101A (en) * 1987-06-29 1990-09-25 Aga Ab Process for degassing aluminum melts with sulfur hexafluoride
US5272720A (en) * 1990-01-31 1993-12-21 Inductotherm Corp. Induction heating apparatus and method
JPH09182958A (ja) * 1995-12-28 1997-07-15 Kusano Sangyo Kk 溶湯取鍋の自動搬送装置
JP3680252B2 (ja) * 1999-06-29 2005-08-10 Jfeスチール株式会社 蓄熱式バーナの使用方法
JP3621405B2 (ja) * 2000-12-27 2005-02-16 株式会社豊栄商会 容器
JP3323489B1 (ja) * 2000-12-27 2002-09-09 株式会社豊栄商会 溶融金属供給用容器
JP2002205162A (ja) * 2001-01-05 2002-07-23 Hoei Shokai:Kk 金属供給システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3736117A1 (de) * 1987-10-26 1989-05-03 Krupp Gmbh Anlage zur herstellung von stahl, insbesondere ministahlwerksanlage

Also Published As

Publication number Publication date
ZA200609947B (en) 2008-11-26
EP1607156B1 (de) 2009-01-21
RU2007101384A (ru) 2008-07-27
AU2005254220A1 (en) 2005-12-29
US20080164000A1 (en) 2008-07-10
WO2005123304A3 (de) 2006-08-10
ATE421398T1 (de) 2009-02-15
JP2008502483A (ja) 2008-01-31
DE502004008913D1 (de) 2009-03-12
CA2570361A1 (en) 2005-12-29
EP1607156A1 (de) 2005-12-21
CN1976773A (zh) 2007-06-06
MXPA06014600A (es) 2007-05-16

Similar Documents

Publication Publication Date Title
DE69922698T2 (de) Schmelz-/warmhalteofen für aluminiumblock
EP0483322B1 (de) Einschmelzaggregat mit zwei nebeneinander angeordneten schmelzöfen
DE69914777T2 (de) Direktschmelzverfahren und -vorrichtung
DE69132590T3 (de) Raffinationsofen für Kupfer
DE3321687A1 (de) Verfahren und vorrichtung zum kontinuierlichen windfrischen von nichteisen-lechen
WO2005123304A2 (de) Giessverfahren und giessanlage für aluminium bzw. aluminiumlegierungen
DE1961336A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Aufbereitung von sulfidischen Erzen
WO2002008476A1 (de) Verfahren und vorrichtung zur verminderung des sauerstoffgehaltes einer kupferschmelze
DE1483154B1 (de) Vorrichtung und Verfahren fuer das kontinuierliche Schmelzen von Kupferkonzentraten im Gleichstrom und ihre Umwandlung in metallisches Kupfer
EP4384763A1 (de) Vorrichtung zur induktiven erwärmung einer metallschmelze, mehrkammerschmelzofen zum schmelzen von schrott aus metall und verfahren zum schmelzen von schrott aus metall
DE3245050A1 (de) Verfahren und vorrichtung zum umsetzen von ofenabstichen, insbesondere hochwertiger ofenabstiche
DE10213918B3 (de) Verfahren zum Wechseln von Glaszusammensetzungen in Schmelzanlagen und angepaßte Schmelzanlage
DE2725813C3 (de) Schmelzschachtofen
DE1800388A1 (de) UEberfuehrungsbehaelter fuer Metallschmelzen-Giessvorrichtungen
DE1288760B (de) Verfahren zur Steuerung von Temperatur und Stahlanalyse beim Stranggiessen und Vorrichtung dazu
EP0217094A1 (de) Verfahren und Vorrichtung zum Warmhalten einer Schmelze in einer Pfanne
EP3473733A1 (de) Zwischenbehälter zur schlackenabtrennung
WO2007073823A1 (de) Giessanlage insbesondere für aluminium bzw. aluminiumlegierungen sowie verfahren zum betrieb der giessanlage
DE903024C (de) Verfahren und Anlage zum kontinuierlichen Giessen von hochschmelzenden Stoffen, wie Stahl
DE900391C (de) Verfahren und Vorrichtung zum Raffinieren schmelzfluessiger Metalle, insbesondere Leichtmetalle
EP3171999A1 (de) SCHMELZAGGREGAT ZUM EINSCHMELZEN VON GUSSWERKSTOFFEN SOWIE EIN VERFAHREN ZUR HERSTELLUNG EINER SCHMELZE FÜR DAS GIEßEN
WO2008125319A1 (de) Giessverfahren und giessanlage für aluminium bzw. aluminiumlegierungen
DE102005012721B4 (de) Chargieranlage und Verfahren zum Einschmelzen von Metall-Masseln
WO2022029298A1 (de) GIEßDÜSE ODER GIEßVERTEILER, ANORDNUNG UND VERFAHREN ZUR BEHEIZUNG UND/ODER VORWÄRMUNG EINER GIEßDÜSE
DE321034C (de) Verfahren zur Beseitigung von Schlackeneinschluessen und Gasen aus normal fertiggestelltem Eisen oder Stahl

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067024977

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 7255/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Country of ref document: MX

Ref document number: PA/a/2006/014600

WWE Wipo information: entry into national phase

Ref document number: 2007515884

Country of ref document: JP

Ref document number: 2570361

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580019847.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005254220

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007101384

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2005254220

Country of ref document: AU

Date of ref document: 20050616

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005254220

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020067024977

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 11629712

Country of ref document: US

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0512194

Country of ref document: BR

Kind code of ref document: A2

Free format text: PEDIDO CONSIDERADO RETIRADO EM RELACAO AO BRASIL, FACE AO ARQUIVAMENTO DA PETICAO DE ENTRADA NA FASE NACIONAL.