WO2005121655A1 - Supercooling apparatus - Google Patents

Supercooling apparatus Download PDF

Info

Publication number
WO2005121655A1
WO2005121655A1 PCT/JP2005/010611 JP2005010611W WO2005121655A1 WO 2005121655 A1 WO2005121655 A1 WO 2005121655A1 JP 2005010611 W JP2005010611 W JP 2005010611W WO 2005121655 A1 WO2005121655 A1 WO 2005121655A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
supercooling
temperature
subcooling
heat exchanger
Prior art date
Application number
PCT/JP2005/010611
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Takegami
Kenji Tanimoto
Satoru Sakae
Iwao Shinohara
Azuma Kondo
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP05748824A priority Critical patent/EP1679479A4/en
Priority to AU2005252962A priority patent/AU2005252962B2/en
Priority to US10/571,940 priority patent/US20080229769A1/en
Publication of WO2005121655A1 publication Critical patent/WO2005121655A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly, to a measure for improving the performance and reliability of a refrigeration apparatus provided with a refrigerant circuit for performing a two-stage compression refrigeration cycle.
  • This supercooling device is attached to an air conditioner including an outdoor unit and an indoor unit.
  • the subcooling device is provided in the middle of a liquid-side connecting pipe connecting the outdoor unit and the indoor unit, and includes a subcooling refrigerant circuit.
  • This subcooling device performs a refrigeration cycle by circulating the refrigerant in a subcooling refrigerant circuit, and cools the refrigerant of the air conditioner sent from the liquid-side communication pipe by an evaporator in the subcooling refrigerant circuit.
  • the supercooling device cools the liquid refrigerant sent from the outdoor unit of the air conditioner to the indoor unit, and increases the cooling capacity by reducing the enthalpy of the liquid refrigerant sent to the indoor unit.
  • the control unit of the supercooling device is connected to the control unit of the air conditioner to constitute one control system.
  • a signal indicating the load condition of the air conditioner is input to the control unit of the air conditioner.
  • operation control is performed based on a signal input to the control unit of the air conditioner. For example, if it is determined from the input signal that the cooling load is large, the supercooling device starts operation to increase the cooling capacity of the air conditioner, and if it is determined that the cooling load is small, the supercooling device stops the operation. Stop. That is, the supercooling device appropriately adjusts the cooling capacity by transmitting and receiving signals to and from the air conditioner.
  • the subcooling device is installed in the refrigeration device.
  • wiring work for transmitting signals transmitted and received between the two was required, and there was a problem that installation work of the supercooling device was complicated.
  • erroneous wiring may occur in the wiring work, and there is a possibility that such a human error may cause a trouble.
  • the present invention has been made in view of its power, and an object of the present invention is to control the operation of a supercooling device without transmitting and receiving signals to and from a refrigeration device to be mounted. And to simplify the installation work of the supercooling device, and to prevent human error during the installation work.
  • a first solution is to circulate a refrigerant between a heat source unit (11) and a utilization unit (12, 13, 14) connected by a communication pipe to form a vapor compression refrigeration cycle. It is assumed that a supercooling device that is attached to a refrigeration system (10) that performs cooling and that also transmits the power of the heat source unit (11) to the utilization units (12, 13, 14) to cool the refrigerant of the refrigeration system (10).
  • a refrigerant passage (205) connected to the liquid-side communication pipe of the cooling device (10), and a supercooling heat exchange for cooling the refrigerant in the refrigerant passage (205) by exchanging heat with a cooling fluid.
  • a cooling fluid circuit (220) having a cooling passage (210) and a cooling temperature of the cooling medium in the refrigerant passage (205) in the supercooling heat exchanger (210). Control means (240) for adjusting based on conditions.
  • the refrigerant flows between the heat source unit (11) and the utilization units (12, 13, 14) through the communication pipe.
  • the refrigerant passage (205) of the subcooling device is connected to the liquid-side communication pipe (21, 22) of the refrigeration device (10), and the refrigerant of the refrigeration device (10) flows through the inside thereof.
  • a cooling fluid such as refrigerant, water, or air flows.
  • the refrigerant of the refrigerating device (10) flowing in the refrigerant passage (205) exchanges heat with the cooling fluid.
  • the cooling fluid absorbs heat from the refrigerant in the refrigeration system (10) and evaporates, and the refrigerant in the refrigeration system (10) is cooled.
  • the control means (240) determines whether the outside air temperature ⁇ the refrigerant flow rate.
  • the cooling temperature of the refrigerant of the cooling device (10) flowing in the refrigerant passage (205) is adjusted based on the surrounding conditions of the supercooling heat exchanger (210). For example, when the ambient temperature of the supercooling heat exchanger (210) is set to the outside air temperature, the cooling temperature of the refrigerant is lowered when the outside air temperature is high, and the cooling of the refrigerant is performed when the outside air temperature is low. Adjust so that the temperature rises.
  • the operation control suitable for the load condition is performed by adjusting according to the surrounding conditions. .
  • the cooling capacity of the subcooling device is adjusted without receiving the signal regarding the load state or the like from the refrigeration device (10).
  • a second solution is the first solution of the first aspect, wherein the control means (240) is configured so that the control means (240) sets a subcooling heat exchanger (210) in advance according to ambient conditions.
  • the target cooling temperature of the refrigerant of the refrigeration system (10) according to the ambient conditions of the supercooling heat exchanger (210) such as the outside air temperature, that is, the load state is set in advance. For example, if the outside air temperature is high, the target cooling temperature is set lower, and if the outside air temperature is low, the target cooling temperature is set higher.
  • the target cooling temperature is low in the control unit (242)
  • the flow rate of the cooling fluid such as the refrigerant and the water in the supercooling heat exchanger (210) is increased.
  • the amount of heat exchange between the refrigerant of the refrigerating device (10) and the cooling fluid in the supercooling heat exchanger (210) also increases, so that the refrigerant of the refrigerating device (10) is further cooled.
  • the control unit (242) when the target cooling temperature is high, the flow rate of the cooling fluid such as the refrigerant and the water in the supercooling heat exchange (210) is reduced. As a result, the amount of heat exchange in the supercooling heat exchanger (210) also decreases, so that the refrigerant in the refrigeration system (10) is not cooled so much.
  • the cooling fluid circuit includes a supercooling compressor (221) having a variable capacity and a heat source side heat exchanger (222).
  • the control section (242) of the control means (240) controls the operating frequency of the subcooling compressor (221) based on the target cooling temperature, thereby controlling the subcooling.
  • the flow rate of the subcooling refrigerant flowing through the heat exchanger (210) is adjusted.
  • the cooling fluid circuit constitutes a subcooling refrigerant circuit (220), and the refrigerant discharged from the supercooling compressor (221) is a heat source in the subcooling refrigerant circuit (220).
  • the side heat exchange (222) exchanges heat with, for example, air, and then exchanges heat with the refrigerant in the refrigerant passage (205) in the subcooling heat exchanger (210) and returns to the subcooling compressor (221) again. repeat.
  • the target cooling temperature is low in the control unit (242
  • the operating frequency of the subcooling compressor (221) is increased to increase the subcooling refrigerant flowing through the subcooling heat exchanger (210).
  • Increase flow rate In the control unit (242), when the target cooling temperature is high, the operating frequency of the subcooling compressor (221) is reduced to reduce the supercooling refrigerant flowing through the subcooling heat exchanger (210). Decrease flow rate.
  • the cooling fluid circuit includes a supercooling compressor (221) having a variable capacity and a heat source side heat exchanger (222).
  • the control unit (242) of the control means (240) controls the operating frequency of the fan (230) of the heat source side heat exchanger (222) based on the target cooling temperature, thereby controlling the operation frequency of the fan (230).
  • the flow rate of the subcooling refrigerant flowing through the subcooling heat exchanger (210) is adjusted.
  • the refrigerant discharged from the supercooling compressor (221) is mixed with air taken in by the fan (230) in the heat source side heat exchanger (222).
  • the heat exchange is performed, and thereafter, the heat exchange with the refrigerant in the refrigerant passage (205) is performed by the supercooling heat exchange (210), and the circulation returning to the supercooling compressor (221) is repeated.
  • the target cooling temperature is low in the control section (242)
  • the operating frequency of the fan (230) of the heat source side heat exchanger (222) is reduced to reduce the supercooling heat exchanger (210). )
  • the operating frequency of the fan (230) of the heat source side heat exchanger (222) is increased to activate the subcooling heat exchanger (210). Reduce the flow rate of the subcooling refrigerant that flows.
  • a fifth solution is the above-mentioned third solution, wherein the control section (242) of the control means (240) is configured to perform cooling with the target cooling temperature and the supercooling heat exchanger (210).
  • the operating frequency of the subcooling compressor (221) is controlled based on the difference from the temperature of the refrigerant in the refrigerant passage (205).
  • the operating frequency of the subcooling compressor (221) is increased to increase the subcooling heat.
  • the cooling temperature of the refrigerant in the exchanger (210) is reduced.
  • the present invention also adjusts the cooling capacity of the subcooling device without receiving a signal related to the load state or the like from the refrigeration device (10). Is surely performed.
  • control section (242) of the control section (240) includes the target cooling temperature and the subcooling refrigerant circuit (220).
  • the operating frequency of the supercooling compressor (221) is controlled based on the difference from the set temperature determined by the saturation temperature corresponding to the low pressure of the refrigerant for use.
  • a set temperature regarded as the temperature of the refrigerant after being cooled by the supercooling heat exchanger (210) is determined from the saturation temperature corresponding to the low pressure of the subcooling refrigerant. Therefore, even if a signal regarding the load state of the refrigeration system (10) is not received, almost the same information as the actual temperature of the cooled refrigerant is obtained, and the cooling capacity is reliably adjusted.
  • a seventh solution is the above-mentioned third solution, wherein the control section (242) of the control means (240) is configured to control the target cooling temperature and the suction temperature of the subcooling compressor (221).
  • the operating frequency of the subcooling compressor (221) is controlled based on the difference between the set temperature and the set temperature.
  • the set temperature regarded as the temperature of the refrigerant after being cooled by the subcooling heat exchanger (210) is determined from the suction temperature of the subcooling compressor (221). Therefore, even if a signal regarding the load state of the refrigeration system (10) is not received, almost the same information as the actual temperature of the cooled refrigerant is obtained, and the cooling capacity is reliably adjusted.
  • an eighth solution of the present invention is the same as the fourth solution, wherein the control unit (242) of the control means (240) includes a target cooling temperature and a subcooling heat exchanger (210). )), The operating frequency of the fan (230) is controlled based on the difference from the temperature of the refrigerant in the refrigerant passage (205). [0024] In the above solution, when the temperature of the refrigerant in the refrigerant passage (205) after being cooled is higher than the target cooling temperature, the operating frequency of the fan (230) is reduced to change the subcooling heat exchanger (210). ) To reduce the cooling temperature of the refrigerant.
  • the operating frequency of the fan (230) is increased to increase the temperature of the refrigerant in the supercooling heat exchanger (210). Increase the cooling temperature. Therefore, the cooling capacity is surely adjusted by obtaining the actual temperature of the cooled refrigerant as information. Further, since the temperature of the refrigerant after being cooled is information obtained by a temperature sensor or the like in the subcooling device, in the present invention, the cooling capacity of the subcooling device without receiving a signal regarding the load state from the refrigeration device (10) is also provided. Adjustments are made reliably.
  • control section (242) of the control means (240) comprises a target cooling temperature and a subcooling refrigerant circuit (220).
  • the operating frequency of the fan (230) is controlled based on the difference from the set temperature determined by the saturation temperature corresponding to the low pressure pressure of the subcooling refrigerant.
  • the set temperature regarded as the temperature of the refrigerant after being cooled by the supercooling heat exchanger (210) is determined from the saturation temperature corresponding to the low pressure of the subcooling refrigerant. Therefore, even if a signal regarding the load state of the refrigeration system (10) is not received, almost the same information as the actual temperature of the cooled refrigerant is obtained, and the cooling capacity is reliably adjusted.
  • a tenth solution is the control according to the fourth solution, wherein the control section (242) of the control means (240) determines the target cooling temperature and the suction temperature of the subcooling compressor (221). The operating frequency of the fan (230) is controlled based on the difference from the set temperature.
  • a set temperature regarded as the temperature of the refrigerant after being cooled by the subcooling heat exchanger (210) is determined from the suction temperature of the subcooling compressor (221). Therefore, even if a signal regarding the load state of the refrigeration system (10) is not received, almost the same information as the actual temperature of the cooled refrigerant is obtained, and the cooling capacity is reliably adjusted.
  • An eleventh solution is the heat exchanger for supercooling according to the first solution, wherein
  • the ambient condition of (210) is the outside air temperature.
  • the cooling temperature of the refrigerant in the refrigerant passage (205) in the supercooling heat exchanger (210) is adjusted based on the outside air temperature. For example, when the outside air temperature is high, The cooling temperature of the refrigerant is adjusted to be low, and when the outside air temperature is low, the cooling temperature of the refrigerant is adjusted to be high. That is, the control means (240) determines the load state of the refrigeration system (10) based on the outside air temperature.
  • a twelfth solution is the heat exchanger for supercooling according to the first solution.
  • the surrounding condition of (210) is the flow rate of the refrigerant in the refrigerant passage (205).
  • the cooling temperature of the refrigerant in the refrigerant passage (205) in the supercooling heat exchanger (210) is adjusted based on the actual refrigerant flow rate in the refrigerant passage (205). For example, when the flow rate of the refrigerant is large, the cooling temperature of the refrigerant is adjusted to be low, and when the flow rate of the refrigerant is small, the cooling temperature of the refrigerant is adjusted to be increased. That is, the control means (240) determines the load state of the refrigeration system (10) based on the coolant flow rate.
  • a thirteenth solution of the above-mentioned first solution is the supercooling heat exchanger.
  • the ambient condition of (210) is the temperature of the refrigerant in the refrigerant passage (205) before being cooled by the subcooling heat exchanger (210), or the refrigerant after being cooled by the supercooling heat exchanger (210).
  • the cooling temperature of the refrigerant in the refrigerant passage (205) in the supercooling heat exchanger (210) is adjusted based on the actual refrigerant temperature before or after the cooling. . For example, when the refrigerant temperature is high, the cooling temperature of the refrigerant is decreased, and when the refrigerant temperature is low, the cooling temperature of the refrigerant is adjusted to be high. That is, the control means (240) determines the load state of the refrigeration system (10) based on the refrigerant temperature.
  • a fourteenth solution is the supercooling refrigerant according to the first solution, wherein the cooling fluid circuit circulates a supercooling refrigerant as a cooling fluid to perform a vapor compression refrigeration cycle.
  • the surrounding condition of the supercooling heat exchanger (210) is the low pressure or the high pressure of the supercooling refrigerant in the supercooling refrigerant circuit (220).
  • the cooling temperature of the refrigerant in the refrigerant passage (205) in the subcooling heat exchanger (210) is set at the actual low pressure or the actual low pressure of the subcooling refrigerant in the subcooling refrigerant circuit (220). Adjusted based on high pressure.
  • the low pressure of the supercooling refrigerant is regarded as the suction pressure of the compressor of the supercooling refrigerant circuit (220), and the high pressure of the supercooling refrigerant is regarded as the discharge pressure of the compressor of the supercooling refrigerant circuit (220). Considered as pressure.
  • the control means (240) determines the load state of the refrigeration apparatus (10) based on the low pressure or the high pressure in the vapor compression refrigeration cycle of the subcooling refrigerant circuit (220).
  • a fifteenth solution is the first solution, wherein the cooling fluid circuit is a supercooling refrigerant in which a supercooling refrigerant as a cooling fluid circulates to perform a vapor compression refrigeration cycle.
  • the ambient condition of the subcooling heat exchanger (210) is the temperature of the subcooling refrigerant after the refrigerant in the refrigerant passage (205) is cooled by the subcooling heat exchanger (210).
  • the cooling temperature of the refrigerant in the refrigerant passage (205) in the subcooling heat exchanger (210) is adjusted based on the actual temperature of the subcooling refrigerant after cooling.
  • the temperature of the subcooling refrigerant may be regarded as the suction temperature of the compressor of the subcooling refrigerant circuit (220). For example, when the temperature of the subcooling refrigerant is high, the cooling temperature of the refrigerant is lowered, and when the temperature of the supercooling refrigerant is low, the cooling temperature of the refrigerant is adjusted to be high. That is, the control means (240) determines the load state of the refrigeration system (10) based on the temperature of the subcooling refrigerant after cooling in the subcooling refrigerant circuit (220).
  • the cooling temperature of the refrigerant in the refrigerant passage (205) is adjusted based on the ambient conditions of the subcooling heat exchanger (210) which can be detected in the device. Therefore, even if signals are not exchanged between the heat source unit (11) and the utilization unit (12, 13, 14), an appropriate signal can be taken according to the load state of the utilization unit (12, 13, 14). Driving can be performed. Therefore, when attaching the subcooling device to the refrigeration unit (10), simply connect the refrigerant passage (205) of the subcooling unit to the connection pipe of the refrigeration unit (10). There is no need to lay communication wiring for exchanging signals between devices. As a result, it is possible to reduce the number of man-hours required for attaching the subcooling device to the refrigeration system (10), and further to prevent troubles caused by human error during installation work such as incorrect wiring.
  • the constant is determined according to the ambient conditions of the subcooling heat exchanger (210). Based on the target cooling temperature of the refrigerant in the refrigeration system (10) in the subcooling heat exchanger (210), the flow rate of the cooling fluid flowing through the subcooling heat exchanger (210) is adjusted. Therefore, it is also possible to perform more appropriate adjustment of the cooling capacity using only the information obtained in the subcooling device.
  • the cooling fluid circuit is constituted by the subcooling refrigerant circuit (220), and the supercooling compressor (221) or the heat source side heat exchanger (222) ),
  • the flow rate of the supercooling refrigerant in the supercooling heat exchanger (210) is adjusted by controlling the operation of the fan (230), so that the cooling temperature of the refrigerant in the refrigeration system (10) is surely adjusted.
  • the ninth solution based on the difference between the set temperature determined by the saturation temperature corresponding to the low-pressure pressure of the supercooling refrigerant and the target cooling temperature, and according to the seventh or the tenth solution, Based on the difference between the set temperature determined from the suction temperature of the subcooling compressor (221) and the target cooling temperature, the operation of the supercooling compressor (221) and fan (230) is controlled. Therefore, in this case as well, it is possible to adjust the cooling capacity more suitable for the load condition using only the information obtained in the subcooling device.
  • the ambient conditions of the supercooling heat exchange (210) include the outside air temperature or the state quantity of the refrigerant on the refrigeration apparatus (10) side.
  • the flow rate and temperature of the refrigerant, or the pressure and temperature of the refrigerant, which is the state quantity of the refrigerant in the subcooling refrigerant circuit (220) are used. Since the temperature is regarded as the detected temperature, it can be reliably and easily obtained as information obtained in the subcooling device. As a result, a highly reliable device can be provided.
  • FIG. 1 is a piping diagram showing a configuration of a refrigeration system including a supercooling unit.
  • FIG. 2 is a piping diagram showing an operation of the refrigeration system during a cooling operation.
  • FIG. 3 is a piping diagram showing an operation of the refrigeration system during a first heating operation.
  • FIG. 4 is a piping diagram illustrating an operation of the refrigeration system during a first heating operation.
  • FIG. 5 is a piping diagram showing an operation of the refrigeration system during a second heating operation.
  • FIG. 6 is a flowchart showing a control operation of a controller in the supercooling unit.
  • FIG. 7 is a graph showing a relationship between an outside air temperature and a target cooling temperature.
  • the refrigeration system of this embodiment is installed in a convenience store or the like, and performs air conditioning in the store and cooling in the showcase.
  • the refrigeration system includes a subcooling unit (200) as a subcooling device according to the present invention, and a refrigeration device (10) to which the subcooling unit (200) is attached.
  • the refrigeration system includes an outdoor unit (11), an air conditioning unit (12), a refrigerated showcase (13), a refrigerated showcase (14), and a booster unit (15). ) And a supercooling unit (200).
  • the outdoor unit (11), the air conditioning unit (12), the refrigerated showcase (13), the refrigerated showcase (14), and the booster unit (15) constitute a refrigeration system (10).
  • an outdoor unit (11) and a subcooling unit (200) are installed outdoors, and the remaining air conditioning unit (12) is installed in a store such as a convenience store.
  • the outdoor unit (11) has an outdoor circuit (40) power
  • the air conditioning unit (12) has an air conditioning circuit (100) power
  • the refrigeration showcase (13) has a refrigeration circuit (110) power refrigeration showcase (14) Has a refrigeration circuit (130) power
  • the booster unit (15) is provided with a booster circuit (140).
  • the subcooling unit (200) is provided with a refrigerant passage (205).
  • a refrigerant circuit (20) is formed by connecting the above-described circuits (40, 100,...) And the refrigerant passage (205) of the supercooling unit (200) with piping.
  • the refrigerant circuit (20) includes a first liquid side communication pipe (21), a second liquid side communication pipe (22), a first gas side communication pipe (23), and a second gas side communication pipe.
  • a side communication pipe (24) is provided.
  • the first liquid side communication pipe (21) connects one end of the refrigerant passage (205) of the subcooling unit (200) to the outdoor circuit (40).
  • One end of the second liquid side communication pipe (22) is connected to the other end of the refrigerant passage (205).
  • the other end of the second liquid side connection pipe (22) is branched into three and air-conditioned.
  • a branch pipe connected to the refrigeration circuit (130) of the second liquid side communication pipe (22) is provided with a liquid side shutoff valve (25).
  • One end of the first gas side communication pipe (23) is branched into two and connected to a refrigeration circuit (110) and a booster circuit (140).
  • a branch pipe connected to the booster circuit (140) of the first gas-side communication pipe (23) is provided with a gas-side shut-off valve (26).
  • the other end of the first gas side communication pipe (23) is connected to an outdoor circuit (40).
  • the second gas side communication pipe (24) connects the air conditioning circuit (100) to the outdoor circuit (40).
  • the outdoor unit (11) constitutes a heat source unit of the refrigeration system (10).
  • the outdoor circuit (40) of the outdoor unit (11) includes a variable capacity compressor (41), a first fixed capacity compressor (42), a second fixed capacity compressor (43), and an outdoor heat exchanger.
  • a vessel (44), a receiver (45), and an outdoor expansion valve (46) are provided.
  • the outdoor circuit (40) has three suction pipes (61, 62, 63), two discharge pipes (64, 65), four liquid pipes (81, 82, 83, 84), One high pressure gas pipe (66) is provided.
  • the outdoor circuit (40) includes three four-way switching valves (51, 52, 53), one liquid-side shutoff valve (54), and two gas-side shutoff valves (55, 56). Is provided.
  • the liquid side shutoff valve (54) has a first liquid side communication pipe (21), and the first gas side shutoff valve (55) has a first gas side communication pipe.
  • the pipe (23) is connected to the second gas side shut-off valve (56) and the second gas side communication pipe (24), respectively.
  • variable capacity compressor (41), the first fixed capacity compressor (42), and the second fixed capacity compressor (43) are all hermetic, high-pressure dome type scroll compressors. Electric power is supplied to the variable capacity compressor (41) via an inverter.
  • the capacity of the variable displacement compressor (41) is variable by changing the output frequency of the inverter to change the rotation speed of the compressor motor.
  • the compressor motor is always operated at a constant rotation speed, and the capacity thereof cannot be changed.
  • the first suction pipe (61) is connected to the first gas-side stop valve (55).
  • the first suction pipe (61) is branched at the other end into a first branch pipe (61a) and a second branch pipe (61b),
  • the first branch pipe (61a) is connected to the suction side of the variable capacity compressor (41), and the second branch pipe (61b) is connected to the third four-way switching valve (53).
  • the second branch pipe (61b) of the first suction pipe (61) has a check valve that allows only the flow of refrigerant from the first gas side shut-off valve (55) to the third four-way switching valve (53).
  • a valve (CV-1) is provided.
  • the second suction pipe (62) has one end connected to the third four-way switching valve (53) and the other end connected to the suction side of the first fixed displacement compressor (42)! RU
  • One end of the third suction pipe (63) is connected to the second four-way switching valve (52).
  • the third suction pipe (63) is branched at the other end into a first branch pipe (63a) and a second branch pipe (63b), and the first branch pipe (63a) is connected to the second fixed capacity compressor.
  • the second branch pipe (63b) is connected to the third four-way switching valve (53) on the suction side of (43).
  • the second branch pipe (63b) of the third suction pipe (63) has a check that allows only the flow of refrigerant from the second four-way switching valve (52) to the third four-way switching valve (53).
  • a valve (CV-2) is provided.
  • the first discharge pipe (64) is branched at one end into a first branch pipe (64a) and a second branch pipe (64b).
  • a second branch pipe (64b) is connected to the discharge side of the first fixed displacement compressor (42) on the discharge side of the compressor (41).
  • the other end of the first discharge pipe (64) is connected to a first four-way switching valve (51).
  • the second branch pipe (64b) of the first discharge pipe (64) has a check valve that allows only refrigerant flow from the first fixed displacement compressor (42) to the first four-way switching valve (51).
  • a valve (CV-3) is provided.
  • the second discharge pipe (65) has one end connected to the suction side of the second fixed displacement compressor (43) and the other end connected to the first four-way switching valve (51) in the first discharge pipe (64). Each is connected immediately before.
  • the second discharge pipe (65) has a check valve (CV-4) that allows only the flow of refrigerant to the first four-way switching valve (51) from the second fixed displacement compressor (43) to the first four-way switching valve (51). Is provided.
  • the outdoor heat exchanger (44) is a cross-fin type fin-and-tube heat exchanger.
  • heat is exchanged between the refrigerant and the outdoor air.
  • One end of the outdoor heat exchange (44) is connected to a first four-way switching valve (51) via a closing valve (57).
  • the other end of the outdoor heat exchange (44) is connected to the top of a receiver (45) via a first liquid pipe (81).
  • the first liquid pipe (81) is provided with a check valve (CV-5) that allows only the flow of the refrigerant from the outdoor heat exchange (44) to the receiver (45).
  • One end of a second liquid pipe (82) is connected to the bottom of the receiver (45) via a closing valve (58).
  • the other end of the second liquid pipe (82) is connected to the liquid-side stop valve (54).
  • the second liquid pipe (82) is provided with a check valve (CV-6) that allows only the flow of the refrigerant flowing from the receiver (45) to the liquid-side stop valve (54). .
  • a third liquid pipe is provided between the check valve (CV-6) and the liquid-side stop valve (54) in the second liquid pipe (82).
  • One end of (83) is connected.
  • the other end of the third liquid pipe (83) is connected to the top of the receiver (45) via the first liquid pipe (81).
  • the third liquid pipe (83) is provided with a check valve (CV-7) that allows only the flow of the refrigerant flowing from one end to the other end.
  • a fourth liquid pipe (84) is connected between the closing valve (58) and the check valve (CV-6) in the second liquid pipe (82).
  • the other end of the fourth liquid pipe (84) is connected between the outdoor heat exchange (44) and the check valve (CV-5) in the first liquid pipe (81).
  • the fourth liquid pipe (84) is provided with a check valve (CV-8) and an outdoor expansion valve (46) in order of one end force and the other end.
  • This check valve (CV-8) allows only one direction force of the fourth liquid pipe (84) to flow to the other end of the fourth liquid pipe (84).
  • the outdoor expansion valve (46) is constituted by an electronic expansion valve.
  • One end of the high-pressure gas pipe (66) is connected to the first discharge pipe (64) immediately before the first four-way switching valve (51).
  • the high-pressure gas pipe (66) is branched at the other end into a first branch pipe (66a) and a second branch pipe (66b), and the first branch pipe (66a) is connected to the first liquid pipe (81).
  • the second branch pipe (66b) is connected to the third four-way switching valve (53) downstream of the check valve (CV-5).
  • the first branch pipe (66a) of the high-pressure gas pipe (66) is provided with a solenoid valve (SV-7) and a check valve (CV-9). This check valve (CV-9) is located downstream of the solenoid valve (SV-7), and allows only refrigerant flowing from the solenoid valve (SV-7) to the first liquid pipe (81). I do.
  • the first four-way switching valve (51) has a first port at the end of the first discharge pipe (64), a second port at the second four-way switching valve (52), and a third port.
  • the fourth port is connected to the outdoor heat exchange (44), and the fourth port is connected to the second gas side shutoff valve (56).
  • the first four-way switching valve (51) is in a first state in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other (shown by a solid line in FIG. 1). State) and a second state (a state shown by a broken line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other. I have.
  • the second four-way switching valve (52) has a first port downstream of the check valve (CV-4) in the second discharge pipe (65), and a second port connected to the second suction pipe. At the beginning of (62), the fourth ports are connected to the second ports of the first four-way switching valve (51), respectively.
  • the third port of the second four-way switching valve (52) is sealed.
  • the second four-way switching valve (52) is in a first state in which the first port and the third port are in communication with each other and the second and fourth ports are in communication with each other (the state shown by the solid line in FIG. 1). ) And a second state in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other (the state shown by the broken line in FIG. 1). ing.
  • the third four-way switching valve (53) has a first port at the end of the second branch pipe (66b) of the high-pressure gas pipe (66) and a second port at the second suction pipe (62). At the beginning of the third port, the third port is at the end of the second branch pipe (61b) of the first suction pipe (61), and the fourth port is at the end of the second branch pipe (63b) of the third suction pipe (63). Each is connected to the end.
  • the third four-way switching valve (53) is in a first state in which the first port and the third port are in communication with each other and the second and fourth ports are in communication with each other (the solid line in FIG. 1). State) and a second state (a state shown by a broken line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other. I have.
  • the outdoor circuit (40) is further provided with an injection pipe (85), a communication pipe (87), an oil separator (75), and an oil return pipe (76).
  • the outdoor circuit (40) is also provided with four oil equalizing pipes (71, 72, 73, 74).
  • the injection pipe (85) is for performing so-called liquid injection.
  • One end of the injection pipe (85) is provided between the check valve (CV-8) and the outdoor expansion valve (46) in the fourth liquid pipe (84), and the other end is provided in the first suction pipe (61). It is connected.
  • the injection pipe (85) is provided with a closing valve (59) and a flow control valve (86) in order of one end force and the other end.
  • the flow control valve (86) is formed by an electronic expansion valve.
  • the communication pipe (87) is provided between the closing valve (59) and the flow rate regulating valve (86) in the one-sided force injection pipe (85), and the other end is a first branch of the high-pressure gas pipe (66). They are connected to the pipe (66a) on the upstream side of the solenoid valve (SV-7), respectively.
  • the communication pipe (87) is provided with a check valve (CV-10) that allows only the flow of the refrigerant from one end to the other end.
  • the oil separator (75) is provided upstream of the connection position of the second discharge pipe (65) and the high-pressure gas pipe (66) in the first discharge pipe (64). The oil separator (75) is also for separating the refrigerating machine oil from the discharge gas power of the compressor (41, 42).
  • the oil return pipe (76) has one end connected to the oil separator (75).
  • the oil return pipe (76) is branched at the other end into a first branch pipe (76a) and a second branch pipe (76b), and the first branch pipe (76a) is connected to the injection pipe (85). Downstream of the flow control valve (86), second branch pipes (76b) are connected to the second suction pipes (62), respectively.
  • one solenoid valve (SV-5, SV-6) is provided in each of the first branch pipe (76a) and the second branch pipe (76b) of the oil return pipe (76).
  • the first oil equalizing pipe (71) has one end connected to the variable capacity compressor (41) and the other end connected to the second suction pipe (62).
  • the first oil equalizing pipe (71) is provided with a solenoid valve (SV-1).
  • One end of the second oil equalizing pipe (72) is connected to the first fixed displacement compressor (42), and the other end is connected to the first branch pipe (63a) of the third suction pipe (63).
  • the second oil level pipe (72) is provided with a solenoid valve (SV-2).
  • the third oil equalizing pipe (73) has one end connected to the second fixed displacement compressor (43) and the other end connected to the first branch pipe (61a) of the first suction pipe (61)! You.
  • the third oil level pipe (73) is provided with a solenoid valve (SV-3).
  • the fourth oil leveling pipe (74) has one end connected to the second oil leveling pipe (72) upstream of the solenoid valve (SV-2), and the other end connected to the first branch pipe (61) of the first suction pipe (61). 61a).
  • the fourth oil level pipe (74) is provided with a solenoid valve (SV-4).
  • the outdoor circuit (40) is provided with various sensors and pressure switches.
  • the first suction pipe (61) is provided with a first suction temperature sensor (91) and a first suction pressure sensor (92).
  • the second suction pipe (62) is provided with a second suction pressure sensor (93).
  • the third suction pipe (63) is provided with a third suction temperature sensor (94) and a third suction pressure sensor (95).
  • the first discharge pipe (64) has a first discharge temperature sensor (97) and a first discharge An output pressure sensor (98) is provided.
  • Each of the branch pipes (64a, 64b) of the first discharge pipe (64) is provided with one high-pressure switch (96).
  • the second discharge pipe (65) is provided with a second discharge temperature sensor (99) and a high pressure switch (96).
  • the outdoor unit (11) is provided with an outdoor temperature sensor (90) and an outdoor fan (48). Outdoor air is sent to the outdoor heat exchanger (44) by an outdoor fan (48).
  • the air conditioning unit (12) constitutes a use unit.
  • the air conditioning circuit (100) of the air conditioning unit (12) has a liquid side end connected to the second liquid side connection pipe (22) and a gas side end connected to the second gas side connection pipe (24).
  • an air conditioning expansion valve (102) and an air conditioning heat exchange (101) are provided in order with the liquid side end force also directed toward the gas side end.
  • This air conditioning heat exchange (101) is a cross-fin type fin 'and' tube type heat exchange ⁇ .
  • heat is exchanged between the refrigerant and room air.
  • the air conditioning expansion valve (102) is constituted by an electronic expansion valve.
  • the air conditioning unit (12) is provided with a heat exchange temperature sensor (103) and a refrigerant temperature sensor (104).
  • the heat exchanger temperature sensor (103) is attached to a heat transfer tube of the air conditioning heat exchanger (101).
  • the refrigerant temperature sensor (104) is attached near the gas side end of the air conditioning circuit (100).
  • the air conditioning unit (12) is provided with an internal temperature sensor (106) and an air conditioning fan (105). The indoor air in the store is sent to the air conditioning heat exchange (101) by the air conditioning fan (105).
  • the refrigerated showcase (13) constitutes a use unit.
  • the refrigeration circuit (110) of the refrigerated showcase (13) has a liquid side end connected to the second liquid side communication pipe (22) and a gas side end connected to the first gas side communication pipe (23). .
  • a refrigeration solenoid valve (114), a refrigeration expansion valve (112), and a refrigeration heat exchange (111) are provided in this order with the liquid side end force also directed to the gas side end. ! / Puru.
  • This refrigerated heat exchange (111) is a cross-fin type fin 'and' tube type heat exchanger. This refrigerated heat exchange In the vessel (111), heat exchange is performed between the refrigerant and the air in the refrigerator.
  • the refrigeration expansion valve (112) is constituted by an automatic temperature expansion valve.
  • the temperature sensing tube (113) of the refrigeration expansion valve (112) is attached to a pipe on the outlet side of the refrigeration heat exchanger (111).
  • the refrigerated showcase (13) is provided with a refrigerator temperature sensor (116) and a refrigerator fan (115).
  • the air in the refrigerator showcase (13) is sent to the refrigerator heat exchange (111) by the fan (115) in the refrigerator.
  • the frozen showcase (14) constitutes a use unit.
  • the refrigeration circuit (130) of the refrigeration showcase (14) has a liquid-side end connected to the second liquid-side communication pipe (22).
  • the gas side end of the refrigeration circuit (130) is connected to a booster unit (15) via a pipe.
  • a refrigeration solenoid valve (134), a refrigeration expansion valve (132), and a refrigeration heat exchange (131) are provided in this order with the liquid side end force also directed to the gas side end.
  • This frozen heat exchange (131) is a cross-fin type fin 'and' tube type heat exchanger.
  • the refrigeration expansion valve (132) is constituted by a temperature automatic expansion valve.
  • the temperature sensing tube (133) of the refrigeration expansion valve (132) is attached to a pipe on the outlet side of the refrigeration heat exchanger (131).
  • the freezer showcase (14) is provided with a freezer temperature sensor (136) and a freezer fan (135). Air in the freezer showcase (14) is sent to the freezing heat exchanger (131) by the freezer fan (135).
  • the booster circuit (140) of the booster unit (15) includes a booster compressor (141), an intake pipe (143), a discharge pipe (144), and a bypass pipe (150).
  • the booster compressor (141) is a hermetic, high-pressure dome-type scroll compressor.
  • the booster compressor (141) is supplied with electric power via an inverter.
  • the capacity of this booster compressor (141) can be changed by changing the output frequency of the inverter to change the rotation speed of the compressor motor.
  • the end of the suction pipe (143) is connected to the suction side of the booster compressor (141). This The start end of the suction pipe (143) is connected to the gas side end of the refrigeration circuit (130) via a pipe.
  • the discharge pipe (144) has a start end connected to the discharge side of the booster compressor (141), and an end connected to the first gas side communication pipe (23).
  • the discharge pipe (144) is provided with a high-pressure switch (148), an oil separator (145), and a discharge-side check valve (149) in order from the start end to the end.
  • the discharge-side check valve (149) allows only the refrigerant to flow toward the end of the discharge pipe (144).
  • the oil separator (145) is for separating the refrigerating machine oil discharged from the booster compressor (141).
  • One end of an oil return pipe (146) is connected to the oil separator (145).
  • the other end of the oil return pipe (146) is connected to a suction pipe (143).
  • the oil return pipe (146) is provided with a capillary tube (147).
  • the refrigerating machine oil separated by the oil separator (145) is returned to the suction side of the booster compressor (141) through the oil return pipe (146).
  • the bypass pipe (150) is connected at the beginning to the suction pipe (143) and at the end between the oil separator (145) and the discharge-side check valve (149) in the discharge pipe (64). ing.
  • the bypass pipe (150) is provided with a bypass check valve (151) that allows only the flow of the refrigerant toward the terminal end.
  • the subcooling unit (200) includes a refrigerant passage (205), a subcooling refrigerant circuit (220), and a controller (240).
  • the refrigerant passage (205) has one end connected to the first liquid side communication pipe (21) and the other end connected to the second liquid side communication pipe (22).
  • the subcooling refrigerant circuit (220) includes a subcooling compressor (221), a subcooling outdoor heat exchanger (222), a subcooling expansion valve (223), and a supercooling heat. This is a closed circuit configured by connecting the exchanger (210) in sequence with piping.
  • the supercooling refrigerant circuit (220) constitutes a cooling fluid circuit for performing a vapor compression refrigeration cycle by circulating a supercooling refrigerant as a filled cooling fluid.
  • the supercooling compressor (221) is a hermetically sealed high-pressure dome type scroll compressor.
  • the Electric power is supplied to the subcooling compressor (221) via an inverter.
  • the capacity of the supercooling compressor (221) is variable by changing the output frequency of the inverter to change the rotation speed of the compressor motor.
  • the supercooling outdoor heat exchanger (222) is a cross-fin type fin-and-tube heat exchanger, and constitutes a heat source side heat exchanger.
  • the supercooling expansion valve (223) is constituted by an electronic expansion valve.
  • the supercooling heat exchanger (210) is a so-called plate heat exchanger, and constitutes use-side heat exchange.
  • a plurality of first flow paths (211) and a plurality of second flow paths (212) are formed.
  • a supercooling refrigerant circuit (220) is connected to the first flow path (211), and a refrigerant passage (205) is connected to the second flow path (212).
  • the supercooling heat exchanger (210) exchanges heat between the supercooling refrigerant flowing through the first flow path (211) and the refrigerant of the refrigerating device (10) flowing through the second flow path (212). .
  • the supercooling unit (200) is provided with various sensors and pressure switches. Specifically, in the subcooling refrigerant circuit (220), a suction temperature sensor (235) and a suction pressure sensor (234) are provided on the suction side of the subcooling compressor (221), and A discharge temperature sensor (233) and a high pressure switch (232) are provided on the discharge side of the compressor (221). In the refrigerant passage (205), a refrigerant temperature sensor (236) is provided at a part closer to the other end than the supercooling heat exchanger (210), that is, a part near the end connected to the second liquid side communication pipe (22). It is provided. This refrigerant temperature sensor (236) constitutes a refrigerant temperature detecting means.
  • the subcooling unit (200) is provided with an outside air temperature sensor (231) and an outdoor fan (230). Outdoor air is sent to the subcooling outdoor heat exchanger (222) by an outdoor fan (230).
  • the controller (240) constitutes control means.
  • the controller (240) includes a setting unit (241) and a control unit (242).
  • the outside temperature which is the temperature detected by the outside temperature sensor (231), is input to the setting unit (241). Then, the setting unit (241) determines a target cooling temperature (Eom) of the refrigerant in the refrigerant passage (205) in the subcooling heat exchanger (210) which is set in advance based on the input outside air temperature. ) Is set. For example, when the outside air temperature is high, the cooling load in the store increases, so the target cooling temperature (Eom) of the refrigerant is set to a low temperature. Conversely, when the outside air temperature is low, the cooling load in the store becomes small, so the target cooling temperature (Eom) of the refrigerant is set to a higher temperature. That is, in the setting unit (241) of the present embodiment, the outside air temperature is used as the ambient condition of the supercooling heat exchange (210).
  • the detected temperature (Tout) of the refrigerant temperature sensor (236) and the detected pressure (LP) of the suction pressure sensor (234) are input to the control unit (242).
  • the control unit (242) detects the detected temperature (T out) of the refrigerant temperature sensor (236) and the target cooling temperature (Tout) of the setting unit (241).
  • the operating frequency of the subcooling compressor (221) is controlled based on the difference from Eom).
  • the control unit (242) controls the supercooling refrigerant corresponding to the detected pressure (LP) of the suction pressure sensor (234).
  • the operation frequency of the supercooling compressor (221) is controlled based on the difference between the set temperature (Tout) determined by the saturation temperature (TG) and the target cooling temperature (Eom).
  • the control unit (242) detects the set temperature (Tout) determined by the low pressure equivalent saturation temperature (TG) of the subcooling refrigerant in the subcooling refrigerant circuit (220) by the refrigerant temperature sensor (236).
  • the set temperature (Tout) is set at the saturation temperature (TG) + a ° C. This a can be set arbitrarily.
  • the control unit (242) regards the set temperature determined by the detected pressure (LP) of the suction pressure sensor (234) as the detected temperature (Tout) of the refrigerant.
  • the set temperature (Tout) determined by the suction temperature (Ti) detected by the suction temperature sensor (235) may be regarded as the detected temperature (Tout) of the refrigerant.
  • the detected temperature (Tout) of the refrigerant temperature sensor (236) and the detected temperature ( ⁇ ) of the suction temperature sensor (235) are input to the control unit (242).
  • the control unit (242) sets the target temperature (Tout) and the set temperature (Tout) determined by the detected temperature (Ti) of the suction temperature sensor (235).
  • the operating frequency of the subcooling compressor (221) is controlled based on the difference from the temperature (Eom).
  • the set temperature (Tout) is set, for example, at the detection temperature (Ti) + ⁇ ° C. This 13 can be set arbitrarily.
  • the circulation amount of the supercooling refrigerant in the subcooling refrigerant circuit (220) is increased, and the subcooling heat exchanger (210) Since the amount of heat exchange between the supercooling refrigerant and the refrigerant of the refrigeration unit (10) in () increases, the cooling temperature of the refrigerant of the refrigeration unit (10) decreases, and the cooling capacity of the air conditioning unit (12) increases. Will be.
  • the controller (240) adjusts the flow rate of the subcooling refrigerant in the subcooling heat exchanger (210) by controlling the capacity of the subcooling compressor (221) based on the outside air temperature. Adjust the cooling temperature of the refrigerant in the refrigeration system (10)!
  • the target cooling temperature (Eom) of the refrigerant is set based on the outside air temperature as the ambient condition of the supercooling heat exchanger (210).
  • the following (parameter) may be used instead of the outside air temperature.
  • the setting unit (241) determines the flow rate of the refrigerant in the refrigerant passage (205), that is, the flow rate of the refrigerant in the refrigerating device (10) in the subcooling heat exchanger (210) by using the subcooling heat exchanger ( It may be used as the surrounding condition of 210).
  • means for detecting the flow rate of the refrigerant is provided upstream of the subcooling heat exchanger (210) in the refrigerant passage (205), and the detected flow rate of the flow rate detecting means is transmitted to the setting section (241) of the controller (240). Is entered.
  • the setting unit (241) determines that the cooling load in the store is large, sets the target cooling temperature (Eom) of the refrigerant to a low temperature, and conversely, detects If the flow rate is low, determine that the cooling load in the store is small, and set the target cooling temperature (Eom) of the refrigerant to a higher temperature. To do.
  • the setting section (241) is configured to control the temperature of the refrigerant in the refrigerant passage (205) before being cooled by the subcooling heat exchanger (210), or to cool the refrigerant by the subcooling heat exchanger (210).
  • the temperature of the refrigerant in the refrigerant passage (205) after the cooling may be used as the surrounding condition of the supercooling heat exchange (210).
  • a refrigerant temperature detecting means is provided upstream of the subcooling heat exchanger (210) in the refrigerant passage (205), and the controller (240) detects the refrigerant temperature before the detected temperature of the flow rate detecting means is cooled. ) Is input to the setting unit (241).
  • the temperature detected by the refrigerant temperature sensor (236) provided downstream of the subcooling heat exchanger (210) is input to the setting unit (241) of the controller (240). Then, when the input detected temperature is high, the setting unit (241) determines that the cooling load in the store is large, and sets the target cooling temperature (Eom) of the refrigerant to low and temperature, and conversely. If the detected temperature is low, it is determined that the cooling load in the store is small, and the target cooling temperature (Eom) of the refrigerant is set to a higher temperature.
  • the setting unit (241) uses the low pressure or the high pressure of the subcooling refrigerant in the subcooling refrigerant circuit (220) as ambient conditions for the supercooling heat exchange (210). Is also good.
  • the detection pressure of the suction pressure sensor (234) provided on the suction side of the subcooling compressor (221) is input to the setting unit (241) as a low pressure.
  • refrigerant pressure detecting means is provided on the discharge side of the supercooling compressor (221), and the detected pressure of the pressure detecting means is input to the setting section (241) as a high pressure.
  • the setting unit (241) determines that the cooling load in the store is large, sets the target cooling temperature (Eom) of the refrigerant to a low temperature, and conversely, detects If the pressure is low, it is determined that the cooling load in the store is small, and the target cooling temperature (Eom) of the refrigerant is set to a higher temperature.
  • the setting unit (241) may use the temperature of the subcooling refrigerant after cooling in the subcooling heat exchanger (210) as the ambient condition of the subcooling heat exchanger (210).
  • the temperature detected by the suction temperature sensor (235) of the subcooling compressor (221) is input to the setting unit (241).
  • a refrigerant temperature detecting means is provided immediately downstream of the subcooling heat exchanger (210) in the subcooling refrigerant circuit (220), and the temperature detected by the temperature detecting means is the above-mentioned suction temperature sensor (235). Is input to the setting unit (241) in place of the detected temperature.
  • the setting unit (241) determines that the in-store cooling load is large, and sets the target cooling temperature (Eom) of the refrigerant to a low temperature. In the case of a low V, the cooling load in the store is judged to be small, and the target cooling temperature (Eom) of the refrigerant is set to a higher temperature.
  • the cooling operation is an operation 5 for cooling the inside of the store by cooling the indoor air in the refrigerated showcase (13) and the freezing showcase (14), and cooling the indoor air in the air conditioning unit (12).
  • the first four-way switching valve (51), the second four-way switching valve (52) and the third four-way switching valve (53) are respectively the first four-way switching valve (51).
  • the outdoor expansion valve (46) is fully closed, the opening degrees of the air conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) are appropriately adjusted.
  • the variable capacity compressor (41), the first fixed capacity compressor (42), the second fixed capacity compressor (43), and the booster compressor (141) are operated.
  • the subcooling unit (200) is in an operating state. The operation of the subcooling unit (200) will be described later.
  • the refrigerant discharged from the variable displacement compressor (41), the first fixed displacement compressor (42) and the second fixed displacement compressor (43) passes through the first four-way switching valve (51). Sent to outdoor heat exchange (44). In this outdoor heat exchange (44), the refrigerant radiates heat to outdoor air and condenses.
  • the refrigerant condensed in the outdoor heat exchange (44) passes through the first liquid pipe (81), the receiver (45), and the second liquid pipe (82) in that order, and goes to the first liquid side communication pipe (21). Inflow.
  • the refrigerant flowing into the first liquid-side communication pipe (21) flows into the refrigerant passage (205) of the subcooling unit (200).
  • the refrigerant flowing into the refrigerant passage (205) is cooled while passing through the second flow path (212) of the subcooling heat exchanger (210).
  • the supercooled liquid refrigerant cooled by the supercooling heat exchanger (210) passes through the second liquid side communication pipe (22) and is refrigerated with the air conditioning circuit (100). It is distributed to a circuit (110) and a refrigeration circuit (130).
  • the refrigerant that has flowed into the air conditioning circuit (100) is depressurized when passing through the air conditioning expansion valve (102), and the refrigerant is also introduced into the air conditioning heat exchange (101).
  • the air conditioning heat exchange (101) the refrigerant absorbs heat from room air and evaporates.
  • the evaporation temperature of the refrigerant is set to, for example, about 5 ° C.
  • the room air cooled by the air conditioning heat exchange (101) is supplied into the store.
  • the refrigerant evaporated in the air-conditioning heat exchanger (101) flows into the outdoor circuit (40) through the second gas side communication pipe (24), and then flows into the first four-way switching valve (51). And the second four-way switching valve (52), and flows into the third suction pipe (63). Part of the refrigerant flowing into the third suction pipe (63) passes through the first branch pipe (63a) and is sucked into the second fixed capacity compressor (43), and the remainder flows into the second branch pipe (63b). And the third four-way switching valve (53) and the second suction pipe (62), and are sucked into the first fixed displacement compressor (42).
  • the refrigerant that has flowed into the refrigeration circuit (110) is decompressed when passing through the refrigeration expansion valve (112), and is introduced into the cold refrigeration heat exchanger m ⁇ (iii).
  • the refrigerant absorbs heat from the air in the refrigerator and evaporates.
  • the evaporation temperature of the refrigerant is set to, for example, about 5 ° C.
  • the refrigerant evaporated in the refrigeration heat exchanger (111) flows into the first gas side communication pipe (23).
  • the air in the refrigerator cooled by refrigeration heat exchange (ll) is supplied into the refrigerator, and the temperature in the refrigerator is maintained at, for example, about 5 ° C.
  • the refrigerant that has flowed into the refrigeration circuit (130) is decompressed when passing through the refrigeration expansion valve (132), and the refrigerant is also introduced into the refrigeration heat exchanger (131).
  • the refrigerant absorbs heat from the air in the refrigerator and evaporates.
  • the evaporation temperature of the refrigerant is set to, for example, about 30 ° C.
  • the freezer showcase (14) the air in the refrigerator cooled by the freezing heat exchange (131) is supplied into the refrigerator, and the temperature in the refrigerator is maintained at, for example, about 20 ° C.
  • the refrigerant flowing into the first suction pipe (61) is sucked into the variable displacement compressor (41) through the first branch pipe (61a).
  • the first heating operation is an operation in which the inside of the refrigerator is cooled in the refrigerated showcase (13) and the frozen showcase (14), and the inside air is heated by the air conditioning unit (12) to heat the inside of the store. .
  • the first four-way switching valve (51) is in the second state
  • the second four-way switching valve (52) is in the first state
  • the third four-way switching valve (52) is in the third state.
  • the path switching valves (53) are set to the first state, respectively.
  • the outdoor expansion valve (46) is fully closed, the openings of the air conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) are appropriately adjusted.
  • the variable capacity compressor (41) and the booster compressor (141) are operated, and the first fixed capacity compressor (42) and the second fixed capacity compressor (43) are stopped.
  • the outdoor heat exchanger (44) enters a rest state without being supplied with the refrigerant.
  • the subcooling unit (200) is in a stopped state.
  • variable capacity compressor (41) force The discharged refrigerant passes through the first four-way switching valve (51) and the second gas side communication pipe (24) in order, and exchanges air conditioning heat of the air conditioning circuit (100). It is introduced into the vessel (101) and releases heat to the indoor air to condense. In the air conditioning unit (12), the indoor air heated by heat in the air conditioning heat exchanger (101) is supplied into the store. The refrigerant condensed in the air-conditioning heat exchanger (101) is distributed to the refrigeration circuit (110) and the refrigeration circuit (130) through the second liquid-side communication pipe (22).
  • the air in the refrigerator is cooled as in the cooling operation.
  • the refrigerant that has flowed into the refrigeration circuit (110) evaporates in the refrigeration heat exchanger (111) and then flows into the first gas side communication pipe (23).
  • the refrigerant flowing into the refrigeration circuit (130) evaporates in the refrigeration heat exchanger (131), is compressed in the booster compressor (141), and then flows into the first gas side communication pipe (23).
  • the refrigerant flowing into the first gas side communication pipe (23) passes through the first suction pipe (61), and then passes through the variable capacity compressor (41). It is inhaled and compressed.
  • the refrigerant absorbs heat in the refrigeration heat exchanger (111) and the refrigeration heat exchanger (131), and dissipates heat in the air conditioning heat exchanger (101). Then, the inside of the store is heated by utilizing the heat of the refrigerant absorbing the internal air power in the refrigerator heat exchanger (111) and the freezing heat exchanger (131).
  • the first fixed displacement compressor (42) may be operated. Whether or not to operate the first fixed displacement compressor (42) is determined according to the cooling load in the refrigerated showcase (13) and the refrigerated showcase (14). In this case, the third four-way switching valve (53) is set to the second state. Then, a part of the refrigerant flowing into the first suction pipe (61) passes through the first branch pipe (61a) and is sucked into the variable displacement compressor (41), and the rest flows into the second branch pipe (61b). It is sucked into the first fixed displacement compressor (42) through the third four-way switching valve (53) and the second suction pipe (62) in order.
  • the second heating operation is an operation for heating the inside of the store similarly to the first heating operation.
  • the second heating operation is performed when the first heating operation has insufficient heating capacity.
  • the first four-way switching valve (51) is in the second state
  • the second four-way switching valve (52) is in the first state
  • the third four-way switching valve (52) is in the third state.
  • the path switching valves (53) are set to the first state, respectively.
  • the opening degrees of the outdoor expansion valve (46), the air conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) are appropriately adjusted.
  • the variable capacity compressor (41), the second fixed capacity compressor (43) and the booster compressor (141) are operated, and the first fixed capacity compressor (42) is stopped.
  • the subcooling unit (200) is in a stopped state.
  • the refrigerant discharged from the variable displacement compressor (41) and the second fixed displacement compressor (43) passes through the first four-way switching valve and the second gas side communication pipe (24) in order. It is introduced into the air conditioning heat exchange (101) of the air conditioning circuit (100), and releases heat to indoor air to condense. In the air conditioning unit (12), the room air heated by the air conditioning heat exchange (101) is supplied into the store. The refrigerant condensed in the air conditioning heat exchange (101) flows into the second liquid side communication pipe (22). Part of the refrigerant flowing into the second liquid side communication pipe (22) is distributed to the refrigeration circuit (110) and the refrigeration circuit (130). Then, the remainder is introduced into the refrigerant passage (205) of the subcooling unit (200).
  • the air in the refrigerator is cooled as in the cooling operation.
  • the refrigerant that has flowed into the refrigeration circuit (110) evaporates in the refrigeration heat exchanger (111) and then flows into the first gas side communication pipe (23).
  • the refrigerant flowing into the refrigeration circuit (130) evaporates in the refrigeration heat exchanger (131), is compressed in the booster compressor (141), and then flows into the first gas side communication pipe (23).
  • the refrigerant that has flowed into the first gas side communication pipe (23) passes through the first suction pipe (61), is drawn into the variable displacement compressor (41), and is compressed.
  • the refrigerant that has flowed into the refrigerant passage (205) of the subcooling unit (200) is connected to the first liquid side communication pipe.
  • the liquid (21) passes through the third liquid pipe (83) in order, flows into the receiver (45), and then flows into the fourth liquid pipe (84) through the second liquid pipe (82).
  • the refrigerant flowing into the fourth liquid pipe (84) is decompressed when passing through the outdoor expansion valve (46), is introduced into the outdoor heat exchange (44), and absorbs heat from outdoor air to evaporate. .
  • the refrigerant evaporated in the outdoor heat exchanger (44) sequentially passes through the first four-way switching valve (51) and the second four-way switching valve (52) and flows into the second suction pipe (62). Is sucked into the second fixed capacity compressor (43) and compressed.
  • the refrigerant absorbs heat in the refrigeration heat exchanger (111), the refrigeration heat exchanger (131), and the outdoor heat exchanger (44), and the refrigerant absorbs heat in the air conditioning heat exchanger (101).
  • the refrigerant releases heat.
  • the heat of the refrigerant absorbing heat from the indoor air in the refrigeration heat exchanger (111) and the freezing heat exchanger (131) and the heat of the refrigerant absorbing heat from the outdoor air in the outdoor heat exchanger (44) are used. Then, the inside of the store is heated.
  • the operation of the supercooling unit (200) will be described.
  • the supercooling compressor (221) is operated, and the opening of the supercooling expansion valve (223) is appropriately adjusted.
  • the supercooling refrigerant discharged from the supercooling compressor (221) radiates heat to outdoor air in the supercooling outdoor heat exchanger (222) and condenses.
  • the subcooling refrigerant condensed in the subcooling outdoor heat exchanger (222) is decompressed when passing through the subcooling expansion valve (223), and then is discharged to the first subcooling heat exchanger (210). Flow into the channel (211).
  • This supercooling heat exchange In the first flow path (211) of (210) the supercooling refrigerant evaporates by absorbing the refrigerant power of the second flow path (212).
  • the subcooling refrigerant evaporated in the subcooling heat exchanger (210) is drawn into the subcooling compressor (221) and compressed.
  • the controller (240) controls the capacity of the subcooling compressor (221) based on the input outside air temperature.
  • the control operation of the controller (240) will be described with reference to FIG.
  • the control operation of the controller (240) is repeatedly performed at fixed time intervals (for example, at intervals of 30 seconds).
  • the detected temperature (Tout) force of the refrigerant temperature sensor (236) also subtracts the target cooling temperature (Eom) set by the setting unit (241) of the controller (240). Is calculated.
  • the target cooling temperature (Eom) is set. Specifically, the target cooling temperature (Eom) is set to 25 ° C if the outside air temperature is relatively low at 25 ° C or less, and the target cooling temperature (Eom) if the outside air temperature is high at 40 ° C or more. Is set to 0 ° C.
  • the target cooling temperature (Eom) is set so as to decrease proportionally to 25 ° C and 0 ° C.
  • the set value of the target cooling temperature (Eom) is not limited to this value! /.
  • step ST1 if the difference between the detected temperature (Tout) and the target cooling temperature (Eom) is "less than 11.0", the process proceeds to step ST2, and the process proceeds to "more than +1.0". If there is, the process proceeds to step ST3, and if it is “ ⁇ 1.0 to +1.0”, the process returns and the control ends. That is, if the cooling capacity of the refrigeration system (10) is excessively cooled and the cooling capacity is excessive, the process proceeds to step ST2, and the cooling capacity of the refrigeration system (10) is insufficient due to insufficient cooling of the cooling medium. If is not enough, move to step ST3.
  • the range of “ ⁇ 1.0 to +1.0” is a non-change range where the operating frequency of the supercooling compressor (221) is not changed.
  • the setting range is, for example, “ ⁇ 1.5 to +1.5 ”and“ ⁇ 2.0 to +2.0 ”. In that case, the set values of “less than ⁇ 1.0” and “more than +1.0” are also switched accordingly.
  • step ST2 it is determined whether or not the operation frequency of the subcooling compressor (221) is the lowest frequency. If it is determined that the operation frequency is the lowest frequency, the process returns and the control is terminated. Then, the process proceeds to step ST4.
  • the operating frequency of the subcooling compressor (221) is reduced by one step by the control unit (242) of the controller (240). The As a result, the cooling temperature of the refrigerant in the refrigeration system (10) increases, so that the cooling capacity or the like that has been in an excessive state can be reduced to an appropriate capacity according to the load.
  • step ST3 it is determined whether or not the operating frequency of the subcooling compressor (221) is the highest frequency. If it is determined that the operating frequency is the highest frequency, the process returns and the control is terminated, and it is determined that the frequency is not the highest frequency. Then, the process proceeds to step ST5.
  • step ST5 the operating frequency of the subcooling compressor (221) is increased by one step by the control unit (242) of the controller (240). As a result, the cooling temperature of the refrigerant in the refrigeration system (10) decreases, so that the cooling capacity or the like that has been in an insufficient state can be increased to an appropriate capacity according to the load.
  • the operating frequency of the supercooling compressor (221) can be changed in 20 steps.
  • Step ST1 the set temperature determined using the detected pressure of the suction pressure sensor (234) is determined. (Tout) minus the target cooling temperature (Eom) of the setting part (241) is calculated.
  • the subsequent control is the same as the control described above.
  • the operation of the supercooling compressor (221) was controlled to adjust the cooling temperature of the refrigerant in the refrigeration system (10).
  • the air conditioner unit (12) can be operated properly according to the load condition of the air conditioning unit (12) without sending / receiving signals to / from the refrigeration system (10). . Therefore, when attaching the subcooling unit (200) to the refrigeration system (10), the refrigerant of the subcooling unit (200) is connected to the first and second liquid side communication pipes (21, 22) of the refrigeration system (10). By simply connecting the passage (205), there is no need to lay communication wiring for transmitting and receiving signals between the refrigeration system (10) and the supercooling unit (200).
  • the controller (240) determines the detected temperature (Tout) of the refrigerant and the outside air temperature. Based on the difference from the target cooling temperature (Eom), the operation of the subcooling compressor (221) is controlled, so that this is also ensured only by the information obtained in the subcooling unit (200).
  • the cooling capacity can be adjusted in a short time.
  • the supercooling unit (200) of the present embodiment does not require any signal exchange with the refrigeration apparatus (10), and is restricted by the refrigeration apparatus (10) to be attached. You don't have to. Therefore, the usability of the supercooling unit (200) can be greatly improved.
  • the operating frequency of the outdoor fan (230) of the subcooling outdoor heat exchanger (2 22) is controlled to The flow rate of the subcooling refrigerant in the vessel (210) is adjusted. That is, the capacity of the outdoor fan (230) of the present modified example is variable by changing the operating frequency of the fan motor.
  • the high pressure in the subcooling refrigerant circuit (220) decreases, and the circulation amount of the supercooling refrigerant decreases. That is, the flow rate of the subcooling refrigerant in the subcooling heat exchanger (210) decreases.
  • the amount of heat exchange between the supercooling refrigerant in the supercooling heat exchanger (210) and the refrigerant in the refrigeration system (10) decreases, and the cooling temperature of the refrigerant in the refrigeration system (10) increases, The cooling capacity and the like of the air conditioning unit (12) will be reduced.
  • step ST2 of FIG. 6 it is determined whether or not the operating frequency of the outdoor fan (230) is the highest frequency. If it is determined that the operating frequency is the highest frequency, the process returns and the control is terminated. Then, the process proceeds to step ST4.
  • step ST4 the operating frequency of the outdoor fan (230) is increased by one step by the control unit (242) of the controller (240). As a result, the cooling temperature of the refrigerant in the refrigeration system (10) rises, so that the cooling capacity or the like that was in an excessive state can be reduced to an appropriate capacity according to the load.
  • step ST3 it is determined whether or not the operation frequency of the outdoor fan (230) is the lowest frequency power, and if it is determined that the operation frequency is the lowest frequency, the process returns and the control ends, and if it is determined that the operation frequency is not the lowest frequency. Then, the process proceeds to step ST5.
  • the operating frequency of the outdoor fan (230) is reduced by one step by the control unit (242) of the controller (240).
  • the cooling temperature of the refrigerant in the refrigeration system (10) decreases, so that the insufficient cooling capacity and the like can be increased to an appropriate capacity according to the load.
  • Other configurations, operations and effects are the same as those of the embodiment.
  • the present invention adjusts the flow rate of the subcooling refrigerant in the supercooling heat exchanger (210) by controlling both the subcooling compressor (221) and the outdoor fan (230). It may be. In this case, the controllability of the cooling temperature of the refrigerant is improved.
  • Modification 2 is a modification of the configuration of the cooling fluid circuit of the above embodiment.
  • the cooling fluid circuit is configured by the refrigerant circuit, but in the present modified example, the cooling fluid circuit is configured by the cooling water circuit through which the cooling water flows.
  • the cooling water circuit includes a subcooling heat exchanger (210) and a pump, and the pump circulates cooling water of the cooling tower to and from the subcooling heat exchanger (210). Is composed The Then, in the supercooling heat exchanger (210), the cooling water exchanges heat with the refrigerant in the refrigerant passage (205) to cool the refrigerant. That is, in the cooling fluid circuit of the present modification, the cooling water flows as the cooling fluid.
  • the operating frequency of the pump is increased to increase the flow rate of the cooling water in the supercooling heat exchange (210), thereby reducing the cooling temperature of the refrigerant.
  • the cooling capacity of the air conditioning unit (12) is increased.
  • the operation frequency of the pump is reduced to reduce the flow rate of the cooling water in the supercooling heat exchanger (210), thereby increasing the cooling temperature of the refrigerant and causing the air conditioning unit ( 12) Decrease the cooling capacity.
  • Other configurations, operations and effects are the same as those of the embodiment.
  • the setting unit (241) of the controller (240) uses, instead of the outside air temperature, the temperature of the cooling water after cooling by the supercooling heat exchanger (210). It may be used as the ambient condition of the heat exchanger (2 10)! / ,.
  • the control unit (242) is configured to input the two detection values, it is also possible to input both detection values. In that case, first, when the refrigerant temperature sensor (236) is abnormal, the detected pressure (LP) of the suction pressure sensor (234) is used, and both the refrigerant temperature sensor (236) and the suction pressure sensor (234) are abnormal. In the case of, use the detected temperature ( ⁇ ) of the suction temperature sensor (235).
  • the detected temperature (T out) of the refrigerant temperature sensor (236) is not input, and the detected pressure (LP) or the detected pressure (LP) of the suction pressure sensor (234) is not input. Only the detected temperature ( ⁇ ) of the suction temperature sensor (235) may be input to the control unit (242). In this case, the difference between the set temperature (Tout) determined by the detected pressure (LP) or detected temperature (Ti) and the target cooling temperature (Eom), which is related to the normal and abnormal state of the coolant temperature sensor (236), is used as a reference. As a result, the supercooling compressor (221) and the outdoor fan (230) are controlled.
  • a four-way switching valve or the like is provided in the supercooling refrigerant circuit (220) of the above embodiment. If the refrigerant circulation is configured to be reversible, by connecting the refrigerant passage (205) to the gas side communication pipe of the first gas side communication pipe (23) and the second gas side communication pipe (24), the refrigeration system ( The coolant of 10) can be heated. Therefore, the so-called liquid back to each compressor (41, ") of the outdoor unit (11) can be prevented.
  • the supercooling unit (200) includes the supercooling refrigerant circuit ( By configuring the refrigerant circulation of 220) to be reversible, the cooling device or the heating device of the refrigerant can be switched as required.
  • the present invention is useful for a supercooling device that cools a refrigerant sent from a heat source unit of a refrigerating device to a use unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

A supercooling apparatus, comprising a supercooling unit (200). In the supercooling unit, a refrigerant passage (205) is connected to the liquid side communication pipes (21, 22) of a refrigerating device (10). When a supercooling compressor (221) is operated, a supercooling refrigerant is circulated in a supercooling refrigerant circuit (220), a refrigerating cycle is performed, and the refrigerant of the refrigerating device (10) flowing in the refrigerant passage (205) is cooled. The detected values of an atmospheric temperature sensor (231) and a refrigerant temperature sensor (236) are inputted into the controller (240) of the supercooling unit (200). The controller (240) performs the operating control of the supercooling compressor (221) based on only the information obtained in the supercooling unit (200).

Description

明 細 書  Specification
過冷却装置  Subcooling device
技術分野  Technical field
[0001] 本発明は、冷凍装置に関し、特に、 2段圧縮式の冷凍サイクルを行う冷媒回路を備 えた冷凍装置の能力および信頼性の向上対策に係るものである。  The present invention relates to a refrigeration apparatus, and more particularly, to a measure for improving the performance and reliability of a refrigeration apparatus provided with a refrigerant circuit for performing a two-stage compression refrigeration cycle.
背景技術  Background art
[0002] 従来より、例えば特開平 10— 185333号公報に開示されているように、冷却能力の 増大を目的として冷凍装置に取り付けられ、冷凍装置において熱源ユニットから利用 ユニットへ送られる冷媒を冷却する過冷却装置が知られている。  [0002] Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 10-185333, it is attached to a refrigeration system for the purpose of increasing the cooling capacity, and cools a refrigerant sent from a heat source unit to a use unit in the refrigeration system. Subcooling devices are known.
[0003] この過冷却装置は、室外ユニットと室内ユニットとを備えた空気調和機に取り付けら れている。具体的に、この過冷却装置は、室外ユニットと室内ユニットを接続する液側 の連絡配管の途中に設けられると共に、過冷却用冷媒回路を備えている。この過冷 却装置は、過冷却用冷媒回路で冷媒を循環させて冷凍サイクルを行い、液側の連絡 配管から送り込まれた空調機の冷媒を過冷却用冷媒回路の蒸発器で冷却する。そし て、この過冷却装置は、空調機の室外ユニットから室内ユニットへ送られる液冷媒を 冷却し、室内ユニットへ送られる液冷媒のェンタルピを低下させることによって冷房能 力を増大させている。  [0003] This supercooling device is attached to an air conditioner including an outdoor unit and an indoor unit. Specifically, the subcooling device is provided in the middle of a liquid-side connecting pipe connecting the outdoor unit and the indoor unit, and includes a subcooling refrigerant circuit. This subcooling device performs a refrigeration cycle by circulating the refrigerant in a subcooling refrigerant circuit, and cools the refrigerant of the air conditioner sent from the liquid-side communication pipe by an evaporator in the subcooling refrigerant circuit. The supercooling device cools the liquid refrigerant sent from the outdoor unit of the air conditioner to the indoor unit, and increases the cooling capacity by reducing the enthalpy of the liquid refrigerant sent to the indoor unit.
[0004] ところで、上記過冷却装置では、過冷却装置の制御部を空気調和機の制御部と接 続して 1つの制御システムを構成している。この過冷却装置の制御部へは、空気調 和機の負荷状態を示す信号が空気調和機の制御部力 入力される。そして、この過 冷却装置では、空気調和機の制御部力 入力された信号に基づ 、て運転制御が行 われる。例えば、入力信号により冷房負荷が大きいと判断した場合、過冷却装置は 運転を開始して空気調和機の冷房能力を増大させ、冷房負荷が小さ 、と判断した場 合、過冷却装置は運転を停止させる。つまり、過冷却装置は、空気調和機との信号 の授受によって冷房能力を適切に調整して 、る。  [0004] By the way, in the above-mentioned subcooling device, the control unit of the supercooling device is connected to the control unit of the air conditioner to constitute one control system. A signal indicating the load condition of the air conditioner is input to the control unit of the air conditioner. In this subcooling device, operation control is performed based on a signal input to the control unit of the air conditioner. For example, if it is determined from the input signal that the cooling load is large, the supercooling device starts operation to increase the cooling capacity of the air conditioner, and if it is determined that the cooling load is small, the supercooling device stops the operation. Stop. That is, the supercooling device appropriately adjusts the cooling capacity by transmitting and receiving signals to and from the air conditioner.
[0005] —解決課題一  [0005] —Issues 1
しかしながら、上述した従来の過冷却装置では、その過冷却装置を冷凍装置に取 り付ける際に、両者間で送受信される信号を伝送するための配線工事が必要となり、 過冷却装置の設置作業が繁雑であるという問題があった。また、その配線工事にお いて、誤配線が生じる可能性もあり、このような人的ミスによるトラブルを招くおそれも めつに。 However, in the above-described conventional subcooling device, the subcooling device is installed in the refrigeration device. At the time of installation, wiring work for transmitting signals transmitted and received between the two was required, and there was a problem that installation work of the supercooling device was complicated. In addition, there is a possibility that erroneous wiring may occur in the wiring work, and there is a possibility that such a human error may cause a trouble.
[0006] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、取り付 け対象の冷凍装置との間で信号の授受を行うことなく過冷却装置の運転制御を可能 とし、過冷却装置の設置作業を簡素化すると共に、設置作業時の人的ミスを未然に 防止することである。  [0006] The present invention has been made in view of its power, and an object of the present invention is to control the operation of a supercooling device without transmitting and receiving signals to and from a refrigeration device to be mounted. And to simplify the installation work of the supercooling device, and to prevent human error during the installation work.
発明の開示  Disclosure of the invention
[0007] 本発明が講じた解決手段は、以下に示すものである。  [0007] The solution taken by the present invention is as follows.
[0008] 具体的に、第 1の解決手段は、連絡配管によって接続された熱源ユニット(11)と利 用ユニット(12,13,14)との間で冷媒を循環させて蒸気圧縮式冷凍サイクルを行う冷凍 装置(10)に取り付けられ、熱源ユニット(11)力も利用ユニット(12,13,14)へ送られる 上記冷凍装置(10)の冷媒を冷却する過冷却装置を前提としている。そして、上記冷 凍装置(10)の液側の連絡配管に接続される冷媒通路 (205)と、上記冷媒通路 (205) の冷媒を冷却用流体と熱交換させて冷却する過冷却用熱交 (210)を備えた冷 却用流体回路 (220)と、上記過冷却用熱交換器 (210)における冷媒通路 (205)の冷 媒の冷却温度を過冷却用熱交換器 (210)の周囲条件に基づいて調整する制御手段 (240)とを備えている。  [0008] Specifically, a first solution is to circulate a refrigerant between a heat source unit (11) and a utilization unit (12, 13, 14) connected by a communication pipe to form a vapor compression refrigeration cycle. It is assumed that a supercooling device that is attached to a refrigeration system (10) that performs cooling and that also transmits the power of the heat source unit (11) to the utilization units (12, 13, 14) to cool the refrigerant of the refrigeration system (10). A refrigerant passage (205) connected to the liquid-side communication pipe of the cooling device (10), and a supercooling heat exchange for cooling the refrigerant in the refrigerant passage (205) by exchanging heat with a cooling fluid. A cooling fluid circuit (220) having a cooling passage (210) and a cooling temperature of the cooling medium in the refrigerant passage (205) in the supercooling heat exchanger (210). Control means (240) for adjusting based on conditions.
[0009] 上記の解決手段では、過冷却装置が取り付けられる冷凍装置(10)では、連絡配管 を通って熱源ユニット(11)と利用ユニット(12,13,14)との間で冷媒が行き来する。この 過冷却装置の冷媒通路 (205)は、冷凍装置(10)の液側の連絡配管 (21,22)に接続 され、その内部を冷凍装置(10)の冷媒が流通する。この過冷却装置の冷却用流体 回路 (220)では、冷媒ゃ水や空気などの冷却用流体が流通している。そして、上記 過冷却用熱交換器 (210)では、冷媒通路 (205)内を流れる冷凍装置(10)の冷媒が 冷却用流体と熱交換する。この過冷却用熱交換器 (210)では、冷却用流体が冷凍装 置(10)の冷媒から吸熱して蒸発し、冷凍装置(10)の冷媒が冷却される。  [0009] In the above solution, in the refrigeration system (10) to which the subcooling device is attached, the refrigerant flows between the heat source unit (11) and the utilization units (12, 13, 14) through the communication pipe. . The refrigerant passage (205) of the subcooling device is connected to the liquid-side communication pipe (21, 22) of the refrigeration device (10), and the refrigerant of the refrigeration device (10) flows through the inside thereof. In the cooling fluid circuit (220) of the supercooling device, a cooling fluid such as refrigerant, water, or air flows. Then, in the supercooling heat exchanger (210), the refrigerant of the refrigerating device (10) flowing in the refrigerant passage (205) exchanges heat with the cooling fluid. In the supercooling heat exchanger (210), the cooling fluid absorbs heat from the refrigerant in the refrigeration system (10) and evaporates, and the refrigerant in the refrigeration system (10) is cooled.
[0010] ここで、本解決手段の過冷却装置では、制御手段 (240)が外気温度ゃ冷媒流量な どの過冷却用熱交換器 (210)の周囲条件に基づ 、て冷媒通路 (205)内を流れる冷 凍装置(10)の冷媒の冷却温度を調整する。例えば、過冷却用熱交換器 (210)の周 囲条件を外気温度とした場合、外気温度が高!ヽ場合は冷媒の冷却温度が低くなるよ うに、また外気温度が低い場合は冷媒の冷却温度が高くなるように調整する。つまり 、過冷却用熱交換器 (210)の周囲条件により冷凍装置(10)の負荷状態が分力るの で、その周囲条件に応じて調整することによって負荷状態に適した運転制御が行わ れる。これにより、負荷状態などに関する信号を冷凍装置(10)力 受けることなぐ過 冷却装置の冷却能力の調整が行われる。 [0010] Here, in the subcooling device of the present solution, the control means (240) determines whether the outside air temperature ゃ the refrigerant flow rate. The cooling temperature of the refrigerant of the cooling device (10) flowing in the refrigerant passage (205) is adjusted based on the surrounding conditions of the supercooling heat exchanger (210). For example, when the ambient temperature of the supercooling heat exchanger (210) is set to the outside air temperature, the cooling temperature of the refrigerant is lowered when the outside air temperature is high, and the cooling of the refrigerant is performed when the outside air temperature is low. Adjust so that the temperature rises. That is, since the load condition of the refrigeration system (10) is divided by the surrounding conditions of the subcooling heat exchanger (210), the operation control suitable for the load condition is performed by adjusting according to the surrounding conditions. . Thereby, the cooling capacity of the subcooling device is adjusted without receiving the signal regarding the load state or the like from the refrigeration device (10).
[0011] また、第 2の解決手段は、上記第 1の解決手段において、上記制御手段 (240)が、 過冷却用熱交換器 (210)の周囲条件に応じて予め設定された過冷却用熱交換器 (2 10)における冷媒通路 (205)の冷媒の目標冷却温度に基づ!、て過冷却用熱交換器 ( 210)を流れる冷却用流体の流量を調節する制御部(242)を備えている。  [0011] A second solution is the first solution of the first aspect, wherein the control means (240) is configured so that the control means (240) sets a subcooling heat exchanger (210) in advance according to ambient conditions. The control unit (242) for adjusting the flow rate of the cooling fluid flowing through the subcooling heat exchanger (210) based on the target cooling temperature of the refrigerant in the refrigerant passage (205) in the heat exchanger (2 10) Have.
[0012] 上記の解決手段では、外気温度などの過冷却用熱交換器 (210)の周囲条件、つま り負荷状態に応じた冷凍装置(10)の冷媒の目標冷却温度が予め設定される。例え ば、外気温度が高い場合は目標冷却温度が低めに設定され、外気温度が低い場合 は目標冷却温度が高めに設定される。そして、上記制御部(242)にお 、て、目標冷 却温度が低い場合には、過冷却用熱交換器 (210)における冷媒ゃ水などの冷却用 流体の流量を増大させる。これにより、過冷却用熱交換器 (210)における冷凍装置(1 0)の冷媒と冷却用流体との熱交換量も増大するので、冷凍装置(10)の冷媒がより冷 却される。また、上記制御部(242)において、目標冷却温度が高い場合には、過冷 却用熱交 (210)における冷媒ゃ水などの冷却用流体の流量を減少させる。これ により、過冷却用熱交換器 (210)における熱交換量も減少するので、冷凍装置(10) の冷媒がそれ程冷却されな 、。  [0012] In the above solution, the target cooling temperature of the refrigerant of the refrigeration system (10) according to the ambient conditions of the supercooling heat exchanger (210) such as the outside air temperature, that is, the load state is set in advance. For example, if the outside air temperature is high, the target cooling temperature is set lower, and if the outside air temperature is low, the target cooling temperature is set higher. When the target cooling temperature is low in the control unit (242), the flow rate of the cooling fluid such as the refrigerant and the water in the supercooling heat exchanger (210) is increased. Thereby, the amount of heat exchange between the refrigerant of the refrigerating device (10) and the cooling fluid in the supercooling heat exchanger (210) also increases, so that the refrigerant of the refrigerating device (10) is further cooled. In the control unit (242), when the target cooling temperature is high, the flow rate of the cooling fluid such as the refrigerant and the water in the supercooling heat exchange (210) is reduced. As a result, the amount of heat exchange in the supercooling heat exchanger (210) also decreases, so that the refrigerant in the refrigeration system (10) is not cooled so much.
[0013] また、第 3の解決手段は、上記第 2の解決手段において、上記冷却用流体回路が、 容量可変な過冷却用圧縮機 (221)および熱源側熱交換器 (222)を有し、冷却用流 体としての過冷却用冷媒が循環して蒸気圧縮式冷凍サイクルを行う過冷却用冷媒回 路 (220)である。そして、上記制御手段 (240)の制御部(242)は、目標冷却温度に基 づいて上記過冷却用圧縮機 (221)の運転周波数を制御することによって上記過冷却 用熱交換器 (210)を流れる過冷却用冷媒の流量を調節する。 [0013] In a third solution, in the second solution, the cooling fluid circuit includes a supercooling compressor (221) having a variable capacity and a heat source side heat exchanger (222). A supercooling refrigerant circuit (220) for circulating a supercooling refrigerant as a cooling fluid and performing a vapor compression refrigeration cycle. The control section (242) of the control means (240) controls the operating frequency of the subcooling compressor (221) based on the target cooling temperature, thereby controlling the subcooling. The flow rate of the subcooling refrigerant flowing through the heat exchanger (210) is adjusted.
[0014] 上記の解決手段では、冷却用流体回路が過冷却用冷媒回路 (220)を構成し、該過 冷却用冷媒回路 (220)において、過冷却用圧縮機 (221)の吐出冷媒が熱源側熱交 (222)で例えば空気と熱交換し、その後過冷却用熱交換器 (210)で冷媒通路 (2 05)の冷媒と熱交換して再び過冷却用圧縮機 (221)へ戻る循環を繰り返す。そして、 上記制御部(242)において、目標冷却温度が低い場合には、過冷却用圧縮機 (221) の運転周波数を増大させて過冷却用熱交換器 (210)を流れる過冷却用冷媒の流量 を増大させる。また、上記制御部(242)において、目標冷却温度が高い場合には、過 冷却用圧縮機 (221)の運転周波数を低下させて過冷却用熱交換器 (210)を流れる 過冷却用冷媒の流量を減少させる。  [0014] In the above solution, the cooling fluid circuit constitutes a subcooling refrigerant circuit (220), and the refrigerant discharged from the supercooling compressor (221) is a heat source in the subcooling refrigerant circuit (220). The side heat exchange (222) exchanges heat with, for example, air, and then exchanges heat with the refrigerant in the refrigerant passage (205) in the subcooling heat exchanger (210) and returns to the subcooling compressor (221) again. repeat. When the target cooling temperature is low in the control unit (242), the operating frequency of the subcooling compressor (221) is increased to increase the subcooling refrigerant flowing through the subcooling heat exchanger (210). Increase flow rate. In the control unit (242), when the target cooling temperature is high, the operating frequency of the subcooling compressor (221) is reduced to reduce the supercooling refrigerant flowing through the subcooling heat exchanger (210). Decrease flow rate.
[0015] また、第 4の解決手段は、上記第 2の解決手段において、上記冷却用流体回路が、 容量可変な過冷却用圧縮機 (221)および熱源側熱交換器 (222)を有し、冷却用流 体としての過冷却用冷媒が循環して蒸気圧縮式冷凍サイクルを行う過冷却用冷媒回 路 (220)である。そして、上記制御手段 (240)の制御部(242)は、目標冷却温度に基 づ ヽて上記熱源側熱交換器 (222)のファン (230)の運転周波数を制御することによつ て上記過冷却用熱交換器 (210)を流れる過冷却用冷媒の流量を調節する。  [0015] In a fourth solution, in the second solution, the cooling fluid circuit includes a supercooling compressor (221) having a variable capacity and a heat source side heat exchanger (222). A supercooling refrigerant circuit (220) for circulating a supercooling refrigerant as a cooling fluid and performing a vapor compression refrigeration cycle. The control unit (242) of the control means (240) controls the operating frequency of the fan (230) of the heat source side heat exchanger (222) based on the target cooling temperature, thereby controlling the operation frequency of the fan (230). The flow rate of the subcooling refrigerant flowing through the subcooling heat exchanger (210) is adjusted.
[0016] 上記の解決手段では、過冷却用冷媒回路 (220)において、過冷却用圧縮機 (221) の吐出冷媒が熱源側熱交換器 (222)でファン (230)によって取り込まれた空気と熱交 換し、その後過冷却用熱交 (210)で冷媒通路 (205)の冷媒と熱交換して再び過 冷却用圧縮機 (221)へ戻る循環を繰り返す。そして、上記制御部(242)において、目 標冷却温度が低!、場合には、熱源側熱交換器 (222)のファン (230)の運転周波数を 低下させて過冷却用熱交換器 (210)を流れる過冷却用冷媒の流量を増大させる。ま た、上記制御部 (242)において、目標冷却温度が高い場合には、熱源側熱交換器( 222)のファン (230)の運転周波数を増大させて過冷却用熱交換器 (210)を流れる過 冷却用冷媒の流量を減少させる。  [0016] In the above solution, in the subcooling refrigerant circuit (220), the refrigerant discharged from the supercooling compressor (221) is mixed with air taken in by the fan (230) in the heat source side heat exchanger (222). The heat exchange is performed, and thereafter, the heat exchange with the refrigerant in the refrigerant passage (205) is performed by the supercooling heat exchange (210), and the circulation returning to the supercooling compressor (221) is repeated. If the target cooling temperature is low in the control section (242), the operating frequency of the fan (230) of the heat source side heat exchanger (222) is reduced to reduce the supercooling heat exchanger (210). ) To increase the flow rate of the subcooling refrigerant. When the target cooling temperature is high in the control section (242), the operating frequency of the fan (230) of the heat source side heat exchanger (222) is increased to activate the subcooling heat exchanger (210). Reduce the flow rate of the subcooling refrigerant that flows.
[0017] また、第 5の解決手段は、上記第 3の解決手段において、上記制御手段 (240)の制 御部 (242)は、目標冷却温度と過冷却用熱交換器 (210)で冷却された冷媒通路 (205 )の冷媒の温度との差に基づ!、て過冷却用圧縮機 (221)の運転周波数を制御する。 [0018] 上記の解決手段では、冷却された後の冷媒通路 (205)の冷媒の温度が目標冷却 温度より高い場合、過冷却用圧縮機 (221)の運転周波数を増大させて過冷却用熱 交換器 (210)における冷媒の冷却温度を低下させる。また、冷却された後の冷媒通 路 (205)の冷媒の温度が目標冷却温度より低い場合は、過冷却用圧縮機 (221)の運 転周波数を低下させて過冷却用熱交換器 (210)における冷媒の冷却温度を上昇さ せる。したがって、冷却された実際の冷媒温度を情報として得ることにより、確実な冷 却能力の調整が行われる。また、冷却された後の冷媒温度は過冷却装置において 温度センサなどにより得られる情報なので、本発明においても負荷状態などに関する 信号を冷凍装置(10)力 受けることなぐ過冷却装置の冷却能力の調整が確実に行 われる。 [0017] A fifth solution is the above-mentioned third solution, wherein the control section (242) of the control means (240) is configured to perform cooling with the target cooling temperature and the supercooling heat exchanger (210). The operating frequency of the subcooling compressor (221) is controlled based on the difference from the temperature of the refrigerant in the refrigerant passage (205). [0018] In the above solution, when the temperature of the refrigerant in the refrigerant passage (205) after being cooled is higher than the target cooling temperature, the operating frequency of the subcooling compressor (221) is increased to increase the subcooling heat. The cooling temperature of the refrigerant in the exchanger (210) is reduced. If the temperature of the refrigerant in the refrigerant passage (205) after cooling is lower than the target cooling temperature, the operating frequency of the subcooling compressor (221) is reduced to reduce the subcooling heat exchanger (210). ) To raise the cooling temperature of the refrigerant. Therefore, by obtaining the temperature of the actual cooled refrigerant as information, the cooling capacity can be surely adjusted. In addition, since the temperature of the cooled refrigerant is information obtained by a temperature sensor or the like in the subcooling device, the present invention also adjusts the cooling capacity of the subcooling device without receiving a signal related to the load state or the like from the refrigeration device (10). Is surely performed.
[0019] また、第 6の解決手段は、上記第 3の解決手段において、上記制御手段 (240)の制 御部 (242)は、目標冷却温度と過冷却用冷媒回路 (220)の過冷却用冷媒の低圧圧 力相当飽和温度により定めた設定温度との差に基づいて過冷却用圧縮機 (221)の 運転周波数を制御する。  [0019] In a sixth aspect of the present invention, in the third aspect, the control section (242) of the control section (240) includes the target cooling temperature and the subcooling refrigerant circuit (220). The operating frequency of the supercooling compressor (221) is controlled based on the difference from the set temperature determined by the saturation temperature corresponding to the low pressure of the refrigerant for use.
[0020] 上記の解決手段では、過冷却用冷媒の低圧圧力相当飽和温度から、過冷却用熱 交 (210)で冷却された後の冷媒温度としてみなす設定温度が定められる。した がって、冷凍装置(10)力 負荷状態などに関する信号を受けなくても、冷却された実 際の冷媒温度とほぼ同一の情報を得ることになり、確実に冷却能力が調整される。  [0020] In the above solution, a set temperature regarded as the temperature of the refrigerant after being cooled by the supercooling heat exchanger (210) is determined from the saturation temperature corresponding to the low pressure of the subcooling refrigerant. Therefore, even if a signal regarding the load state of the refrigeration system (10) is not received, almost the same information as the actual temperature of the cooled refrigerant is obtained, and the cooling capacity is reliably adjusted.
[0021] また、第 7の解決手段は、上記第 3の解決手段において、上記制御手段 (240)の制 御部 (242)は、目標冷却温度と過冷却用圧縮機 (221)の吸入温度により定めた設定 温度との差に基づいて過冷却用圧縮機 (221)の運転周波数を制御する。  [0021] A seventh solution is the above-mentioned third solution, wherein the control section (242) of the control means (240) is configured to control the target cooling temperature and the suction temperature of the subcooling compressor (221). The operating frequency of the subcooling compressor (221) is controlled based on the difference between the set temperature and the set temperature.
[0022] 上記の解決手段では、過冷却用圧縮機 (221)の吸入温度から、過冷却用熱交換 器 (210)で冷却された後の冷媒温度としてみなす設定温度が定められる。したがって 、冷凍装置(10)力 負荷状態などに関する信号を受けなくても、冷却された実際の 冷媒温度とほぼ同一の情報を得ることになり、確実に冷却能力が調整される。  [0022] In the above solution, the set temperature regarded as the temperature of the refrigerant after being cooled by the subcooling heat exchanger (210) is determined from the suction temperature of the subcooling compressor (221). Therefore, even if a signal regarding the load state of the refrigeration system (10) is not received, almost the same information as the actual temperature of the cooled refrigerant is obtained, and the cooling capacity is reliably adjusted.
[0023] また、第 8の解決手段は、上記第 4の解決手段にぉ 、て、上記制御手段 (240)の制 御部 (242)は、目標冷却温度と過冷却用熱交換器 (210)で冷却された冷媒通路 (205 )の冷媒の温度との差に基づ!、てファン (230)の運転周波数を制御する。 [0024] 上記の解決手段では、冷却された後の冷媒通路 (205)の冷媒の温度が目標冷却 温度より高い場合、ファン (230)の運転周波数を低下させて過冷却用熱交換器 (210) における冷媒の冷却温度を低下させる。また、冷却された後の冷媒通路 (205)の冷 媒の温度が目標冷却温度より低!、場合は、ファン (230)の運転周波数を増大させて 過冷却用熱交 (210)における冷媒の冷却温度を上昇させる。したがって、冷却 された実際の冷媒温度を情報として得ることにより、確実な冷却能力の調整が行われ る。また、冷却された後の冷媒温度は過冷却装置において温度センサなどにより得ら れる情報なので、本発明においても負荷状態などに関する信号を冷凍装置(10)から 受けることなぐ過冷却装置の冷却能力の調整が確実に行われる。 [0023] Further, an eighth solution of the present invention is the same as the fourth solution, wherein the control unit (242) of the control means (240) includes a target cooling temperature and a subcooling heat exchanger (210). )), The operating frequency of the fan (230) is controlled based on the difference from the temperature of the refrigerant in the refrigerant passage (205). [0024] In the above solution, when the temperature of the refrigerant in the refrigerant passage (205) after being cooled is higher than the target cooling temperature, the operating frequency of the fan (230) is reduced to change the subcooling heat exchanger (210). ) To reduce the cooling temperature of the refrigerant. Also, if the temperature of the refrigerant in the refrigerant passage (205) after being cooled is lower than the target cooling temperature, the operating frequency of the fan (230) is increased to increase the temperature of the refrigerant in the supercooling heat exchanger (210). Increase the cooling temperature. Therefore, the cooling capacity is surely adjusted by obtaining the actual temperature of the cooled refrigerant as information. Further, since the temperature of the refrigerant after being cooled is information obtained by a temperature sensor or the like in the subcooling device, in the present invention, the cooling capacity of the subcooling device without receiving a signal regarding the load state from the refrigeration device (10) is also provided. Adjustments are made reliably.
[0025] また、第 9の解決手段は、上記第 4の解決手段にぉ 、て、上記制御手段 (240)の制 御部 (242)は、目標冷却温度と過冷却用冷媒回路 (220)の過冷却用冷媒の低圧圧 力相当飽和温度により定めた設定温度との差に基づいてファン (230)の運転周波数 を制御する。  [0025] Further, according to a ninth solution, the control section (242) of the control means (240) comprises a target cooling temperature and a subcooling refrigerant circuit (220). The operating frequency of the fan (230) is controlled based on the difference from the set temperature determined by the saturation temperature corresponding to the low pressure pressure of the subcooling refrigerant.
[0026] 上記の解決手段では、過冷却用冷媒の低圧圧力相当飽和温度から、過冷却用熱 交 (210)で冷却された後の冷媒温度としてみなす設定温度が定められる。した がって、冷凍装置(10)力 負荷状態などに関する信号を受けなくても、冷却された実 際の冷媒温度とほぼ同一の情報を得ることになり、確実に冷却能力が調整される。  [0026] In the above solution, the set temperature regarded as the temperature of the refrigerant after being cooled by the supercooling heat exchanger (210) is determined from the saturation temperature corresponding to the low pressure of the subcooling refrigerant. Therefore, even if a signal regarding the load state of the refrigeration system (10) is not received, almost the same information as the actual temperature of the cooled refrigerant is obtained, and the cooling capacity is reliably adjusted.
[0027] また、第 10の解決手段は、上記第 4の解決手段において、上記制御手段 (240)の 制御部 (242)は、目標冷却温度と過冷却用圧縮機 (221)の吸入温度により定めた設 定温度との差に基づ!/、てファン (230)の運転周波数を制御する。  [0027] A tenth solution is the control according to the fourth solution, wherein the control section (242) of the control means (240) determines the target cooling temperature and the suction temperature of the subcooling compressor (221). The operating frequency of the fan (230) is controlled based on the difference from the set temperature.
[0028] 上記の解決手段では、過冷却用圧縮機 (221)の吸入温度から、過冷却用熱交換 器 (210)で冷却された後の冷媒温度としてみなす設定温度が定められる。したがって 、冷凍装置(10)力 負荷状態などに関する信号を受けなくても、冷却された実際の 冷媒温度とほぼ同一の情報を得ることになり、確実に冷却能力が調整される。  [0028] In the above solution, a set temperature regarded as the temperature of the refrigerant after being cooled by the subcooling heat exchanger (210) is determined from the suction temperature of the subcooling compressor (221). Therefore, even if a signal regarding the load state of the refrigeration system (10) is not received, almost the same information as the actual temperature of the cooled refrigerant is obtained, and the cooling capacity is reliably adjusted.
[0029] また、第 11の解決手段は、上記第 1の解決手段において、上記過冷却用熱交換器  [0029] An eleventh solution is the heat exchanger for supercooling according to the first solution, wherein
(210)の周囲条件が外気温度である。  The ambient condition of (210) is the outside air temperature.
[0030] 上記の解決手段では、過冷却用熱交換器 (210)における冷媒通路 (205)の冷媒の 冷却温度が外気温度に基づいて調整される。例えば、外気温度が高い場合は冷媒 の冷却温度が低くなるように、また外気温度が低い場合は冷媒の冷却温度が高くな るように調整する。つまり、制御手段 (240)は、外気温度に基づいて冷凍装置(10)の 負荷状態を判断する。 [0030] In the above solution, the cooling temperature of the refrigerant in the refrigerant passage (205) in the supercooling heat exchanger (210) is adjusted based on the outside air temperature. For example, when the outside air temperature is high, The cooling temperature of the refrigerant is adjusted to be low, and when the outside air temperature is low, the cooling temperature of the refrigerant is adjusted to be high. That is, the control means (240) determines the load state of the refrigeration system (10) based on the outside air temperature.
[0031] また、第 12の解決手段は、上記第 1の解決手段において、上記過冷却用熱交換器  [0031] A twelfth solution is the heat exchanger for supercooling according to the first solution.
(210)の周囲条件が冷媒通路 (205)の冷媒の流量である。  The surrounding condition of (210) is the flow rate of the refrigerant in the refrigerant passage (205).
[0032] 上記の解決手段では、過冷却用熱交換器 (210)における冷媒通路 (205)の冷媒の 冷却温度が冷媒通路 (205)の実際の冷媒流量に基づいて調整される。例えば、その 冷媒流量が多 、場合は冷媒の冷却温度が低くなるように、また冷媒流量が少な 、場 合は冷媒の冷却温度が高くなるように調整する。つまり、制御手段 (240)は、上記冷 媒流量に基づ!/、て冷凍装置(10)の負荷状態を判断する。  [0032] In the above solution, the cooling temperature of the refrigerant in the refrigerant passage (205) in the supercooling heat exchanger (210) is adjusted based on the actual refrigerant flow rate in the refrigerant passage (205). For example, when the flow rate of the refrigerant is large, the cooling temperature of the refrigerant is adjusted to be low, and when the flow rate of the refrigerant is small, the cooling temperature of the refrigerant is adjusted to be increased. That is, the control means (240) determines the load state of the refrigeration system (10) based on the coolant flow rate.
[0033] また、第 13の解決手段は、上記第 1の解決手段において、上記過冷却用熱交換器  [0033] A thirteenth solution of the above-mentioned first solution is the supercooling heat exchanger.
(210)の周囲条件が、過冷却用熱交換器 (210)で冷却される前の冷媒通路 (205)の 冷媒の温度、または過冷却用熱交換器 (210)で冷却された後の冷媒通路 (205)の冷 媒の温度である。  The ambient condition of (210) is the temperature of the refrigerant in the refrigerant passage (205) before being cooled by the subcooling heat exchanger (210), or the refrigerant after being cooled by the supercooling heat exchanger (210). The temperature of the coolant in the passage (205).
[0034] 上記の解決手段では、過冷却用熱交換器 (210)における冷媒通路 (205)の冷媒の 冷却温度が冷却される前または冷却された後の実際の冷媒温度に基づいて調整さ れる。例えば、その冷媒温度が高い場合は冷媒の冷却温度が低くなるように、また冷 媒温度が低い場合は冷媒の冷却温度が高くなるように調整する。つまり、制御手段( 240)は、上記冷媒温度に基づいて冷凍装置(10)の負荷状態を判断する。  [0034] In the above solution, the cooling temperature of the refrigerant in the refrigerant passage (205) in the supercooling heat exchanger (210) is adjusted based on the actual refrigerant temperature before or after the cooling. . For example, when the refrigerant temperature is high, the cooling temperature of the refrigerant is decreased, and when the refrigerant temperature is low, the cooling temperature of the refrigerant is adjusted to be high. That is, the control means (240) determines the load state of the refrigeration system (10) based on the refrigerant temperature.
[0035] また、第 14の解決手段は、上記第 1の解決手段において、上記冷却用流体回路が 冷却用流体としての過冷却用冷媒が循環して蒸気圧縮式冷凍サイクルを行う過冷却 用冷媒回路 (220)である。そして、上記過冷却用熱交換器 (210)の周囲条件が過冷 却用冷媒回路 (220)における過冷却用冷媒の低圧圧力または高圧圧力である。  A fourteenth solution is the supercooling refrigerant according to the first solution, wherein the cooling fluid circuit circulates a supercooling refrigerant as a cooling fluid to perform a vapor compression refrigeration cycle. The circuit (220). The surrounding condition of the supercooling heat exchanger (210) is the low pressure or the high pressure of the supercooling refrigerant in the supercooling refrigerant circuit (220).
[0036] 上記の解決手段では、過冷却用熱交換器 (210)における冷媒通路 (205)の冷媒の 冷却温度が過冷却用冷媒回路 (220)における過冷却用冷媒の実際の低圧圧力また は高圧圧力に基づいて調整される。なお、この過冷却用冷媒の低圧圧力は過冷却 用冷媒回路 (220)の圧縮機の吸入圧力とみなされ、過冷却用冷媒の高圧圧力は過 冷却用冷媒回路 (220)の圧縮機の吐出圧力とみなされる。例えば、その低圧圧力ま たは高圧圧力が高い場合は冷媒の冷却温度が低くなるように、また低圧圧力または 高圧圧力が低い場合は冷媒の冷却温度が高くなるように調整する。つまり、制御手 段 (240)は、過冷却用冷媒回路 (220)の蒸気圧縮式冷凍サイクルにおける低圧圧力 または高圧圧力に基づ!/、て冷凍装置(10)の負荷状態を判断する。 [0036] In the above solution, the cooling temperature of the refrigerant in the refrigerant passage (205) in the subcooling heat exchanger (210) is set at the actual low pressure or the actual low pressure of the subcooling refrigerant in the subcooling refrigerant circuit (220). Adjusted based on high pressure. The low pressure of the supercooling refrigerant is regarded as the suction pressure of the compressor of the supercooling refrigerant circuit (220), and the high pressure of the supercooling refrigerant is regarded as the discharge pressure of the compressor of the supercooling refrigerant circuit (220). Considered as pressure. For example, the low pressure If the high pressure is high, the cooling temperature of the refrigerant will be low, and if the low pressure or high pressure is low, the cooling temperature of the refrigerant will be high. That is, the control means (240) determines the load state of the refrigeration apparatus (10) based on the low pressure or the high pressure in the vapor compression refrigeration cycle of the subcooling refrigerant circuit (220).
[0037] また、第 15の解決手段は、上記第 1の解決手段において、上記冷却用流体回路が 冷却用流体としての過冷却用冷媒が循環して蒸気圧縮式冷凍サイクルを行う過冷却 用冷媒回路 (220)である。そして、上記過冷却用熱交換器 (210)の周囲条件が過冷 却用熱交換器 (210)で冷媒通路 (205)の冷媒を冷却した後の過冷却用冷媒の温度 である。 A fifteenth solution is the first solution, wherein the cooling fluid circuit is a supercooling refrigerant in which a supercooling refrigerant as a cooling fluid circulates to perform a vapor compression refrigeration cycle. The circuit (220). The ambient condition of the subcooling heat exchanger (210) is the temperature of the subcooling refrigerant after the refrigerant in the refrigerant passage (205) is cooled by the subcooling heat exchanger (210).
[0038] 上記の解決手段では、過冷却用熱交換器 (210)における冷媒通路 (205)の冷媒の 冷却温度が冷却後の過冷却用冷媒の実際の温度に基づいて調整される。なお、こ の過冷却用冷媒の温度は、過冷却用冷媒回路 (220)の圧縮機の吸入温度とみなし てもよい。例えば、その過冷却用冷媒の温度が高い場合は冷媒の冷却温度が低くな るように、また過冷却用冷媒の温度が低い場合は冷媒の冷却温度が高くなるように調 整される。つまり、制御手段 (240)は、過冷却用冷媒回路 (220)における冷却後の過 冷却用冷媒の温度に基づいて冷凍装置(10)の負荷状態を判断する。  [0038] In the above solution, the cooling temperature of the refrigerant in the refrigerant passage (205) in the subcooling heat exchanger (210) is adjusted based on the actual temperature of the subcooling refrigerant after cooling. The temperature of the subcooling refrigerant may be regarded as the suction temperature of the compressor of the subcooling refrigerant circuit (220). For example, when the temperature of the subcooling refrigerant is high, the cooling temperature of the refrigerant is lowered, and when the temperature of the supercooling refrigerant is low, the cooling temperature of the refrigerant is adjusted to be high. That is, the control means (240) determines the load state of the refrigeration system (10) based on the temperature of the subcooling refrigerant after cooling in the subcooling refrigerant circuit (220).
[0039] 効果  [0039] Effect
したがって、第 1の解決手段によれば、装置内で検出可能な過冷却用熱交換器 (2 10)の周囲条件に基づ 、て冷媒通路 (205)の冷媒の冷却温度を調整するようにした ので、熱源ユニット(11)や利用ユニット(12,13,14)との間で信号の授受などを行わな くても、利用ユニット(12,13,14)の負荷状態に応じて適切な運転を行うことができる。 したがって、過冷却装置を冷凍装置(10)に取り付ける際には、冷凍装置(10)の連絡 配管に過冷却装置の冷媒通路 (205)を接続するだけでよぐ冷凍装置(10)と過冷却 装置の間で信号を授受するための通信用配線を敷設する必要が無くなる。この結果 、過冷却装置を冷凍装置 (10)に取り付ける際の作業工数を削減することができ、更 には誤配線等の設置作業時の人的ミスによるトラブルを未然に防止することができる  Therefore, according to the first solution, the cooling temperature of the refrigerant in the refrigerant passage (205) is adjusted based on the ambient conditions of the subcooling heat exchanger (210) which can be detected in the device. Therefore, even if signals are not exchanged between the heat source unit (11) and the utilization unit (12, 13, 14), an appropriate signal can be taken according to the load state of the utilization unit (12, 13, 14). Driving can be performed. Therefore, when attaching the subcooling device to the refrigeration unit (10), simply connect the refrigerant passage (205) of the subcooling unit to the connection pipe of the refrigeration unit (10). There is no need to lay communication wiring for exchanging signals between devices. As a result, it is possible to reduce the number of man-hours required for attaching the subcooling device to the refrigeration system (10), and further to prevent troubles caused by human error during installation work such as incorrect wiring.
[0040] また、第 2の解決手段によれば、過冷却用熱交換器 (210)の周囲条件に応じて定 めた過冷却用熱交換器 (210)における冷凍装置(10)の冷媒の目標冷却温度に基づ V、て過冷却用熱交換器 (210)を流れる冷却用流体の流量を調整するようにしたので 、これもまた過冷却装置内で得られる情報だけでより適切な冷却能力の調整を行うこ とがでさる。 [0040] According to the second solution, the constant is determined according to the ambient conditions of the subcooling heat exchanger (210). Based on the target cooling temperature of the refrigerant in the refrigeration system (10) in the subcooling heat exchanger (210), the flow rate of the cooling fluid flowing through the subcooling heat exchanger (210) is adjusted. Therefore, it is also possible to perform more appropriate adjustment of the cooling capacity using only the information obtained in the subcooling device.
[0041] また、第 3または第 4の解決手段によれば、冷却用流体回路を過冷却用冷媒回路( 220)により構成し、過冷却用圧縮機 (221)または熱源側熱交換器 (222)のファン (230 )の運転制御によって過冷却用熱交換器 (210)における過冷却用冷媒の流量を調整 するようにしたので、確実に冷凍装置(10)の冷媒の冷却温度を調整することができる  Further, according to the third or fourth solution, the cooling fluid circuit is constituted by the subcooling refrigerant circuit (220), and the supercooling compressor (221) or the heat source side heat exchanger (222) ), The flow rate of the supercooling refrigerant in the supercooling heat exchanger (210) is adjusted by controlling the operation of the fan (230), so that the cooling temperature of the refrigerant in the refrigeration system (10) is surely adjusted. Can
[0042] さらに、第 5または第 8の解決手段によれば、過冷却用熱交換器 (210)で冷却され た実際の冷媒温度と目標冷却温度との差に基づ 、て、また第 6または第 9の解決手 段によれば、過冷却用冷媒の低圧圧力相当飽和温度により定めた設定温度と目標 冷却温度との差に基づいて、また第 7または第 10の解決手段によれば、過冷却用圧 縮機 (221)の吸入温度より定めた設定温度と目標冷却温度との差に基づ!、て過冷却 用圧縮機 (221)やファン (230)の運転制御を行うようにしたので、この場合も過冷却装 置内で得られる情報だけでより負荷状態に適した冷却能力の調整を行うことができる Further, according to the fifth or the eighth solution, based on the difference between the actual refrigerant temperature cooled by the supercooling heat exchanger (210) and the target cooling temperature, Alternatively, according to the ninth solution, based on the difference between the set temperature determined by the saturation temperature corresponding to the low-pressure pressure of the supercooling refrigerant and the target cooling temperature, and according to the seventh or the tenth solution, Based on the difference between the set temperature determined from the suction temperature of the subcooling compressor (221) and the target cooling temperature, the operation of the supercooling compressor (221) and fan (230) is controlled. Therefore, in this case as well, it is possible to adjust the cooling capacity more suitable for the load condition using only the information obtained in the subcooling device.
[0043] また、第 11〜第 15の解決手段によれば、過冷却用熱交翻(210)の周囲条件とし て、外気温度、または冷凍装置(10)側の冷媒の状態量である冷媒の流量や温度、ま たは過冷却用冷媒回路 (220)側の冷媒の状態量である冷媒の圧力や温度を用いる ようにしたので、に基づ!/、て定めた設定温度を冷媒の検出温度とみなして用いるよう にしたので、過冷却装置内で得られる情報として確実に且つ容易に入手できる。この 結果、信頼性の高い装置を提供することができる。 [0043] According to the eleventh to fifteenth solutions, the ambient conditions of the supercooling heat exchange (210) include the outside air temperature or the state quantity of the refrigerant on the refrigeration apparatus (10) side. The flow rate and temperature of the refrigerant, or the pressure and temperature of the refrigerant, which is the state quantity of the refrigerant in the subcooling refrigerant circuit (220), are used. Since the temperature is regarded as the detected temperature, it can be reliably and easily obtained as information obtained in the subcooling device. As a result, a highly reliable device can be provided.
図面の簡単な説明  Brief Description of Drawings
[0044] [図 1]図 1は、過冷却ユニットを備えた冷凍システムの構成を示す配管系統図である。  FIG. 1 is a piping diagram showing a configuration of a refrigeration system including a supercooling unit.
[図 2]図 2は、冷凍システムの冷房運転時の動作を示す配管系統図である。  FIG. 2 is a piping diagram showing an operation of the refrigeration system during a cooling operation.
[図 3]図 3は、冷凍システムの第 1暖房運転時の動作を示す配管系統図である。  FIG. 3 is a piping diagram showing an operation of the refrigeration system during a first heating operation.
[図 4]図 4は、冷凍システムの第 1暖房運転時の動作を示す配管系統図である。 [図 5]図 5は、冷凍システムの第 2暖房運転時の動作を示す配管系統図である。 FIG. 4 is a piping diagram illustrating an operation of the refrigeration system during a first heating operation. FIG. 5 is a piping diagram showing an operation of the refrigeration system during a second heating operation.
[図 6]図 6は、過冷却ユニットにおけるコントローラの制御動作を示すフロー図である。  FIG. 6 is a flowchart showing a control operation of a controller in the supercooling unit.
[図 7]図 7は、外気温度と目標冷却温度との関係を示すグラフである。  FIG. 7 is a graph showing a relationship between an outside air temperature and a target cooling temperature.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0045] 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0046] 《発明の実施形態》 << Embodiments of the Invention >>
本実施形態の冷凍システムは、コンビ-エンスストア等に設置されて、店内の空気 調和とショーケース内の冷却とを行うものである。この冷凍システムは、本発明に係る 過冷却装置としての過冷却ユニット (200)と、この過冷却ユニット (200)が取り付けら れた冷凍装置(10)とにより構成されている。  The refrigeration system of this embodiment is installed in a convenience store or the like, and performs air conditioning in the store and cooling in the showcase. The refrigeration system includes a subcooling unit (200) as a subcooling device according to the present invention, and a refrigeration device (10) to which the subcooling unit (200) is attached.
[0047] 図 1に示すように、上記冷凍システムには、室外ユニット(11)と、空調ユニット(12)と 、冷蔵ショーケース(13)と、冷凍ショーケース(14)と、ブースタユニット(15)と、過冷却 ユニット(200)とが設けられている。そして、上記室外ユニット(11)、空調ユニット(12) 、冷蔵ショーケース(13)、冷凍ショーケース(14)およびブースタユニット (15)が冷凍 装置(10)を構成している。この冷凍システムでは、室外ユニット(11)と過冷却ユニット (200)とが屋外に設置され、残りの空調ユニット(12)等がコンビ-エンスストア等の店 内に設置される。 As shown in FIG. 1, the refrigeration system includes an outdoor unit (11), an air conditioning unit (12), a refrigerated showcase (13), a refrigerated showcase (14), and a booster unit (15). ) And a supercooling unit (200). The outdoor unit (11), the air conditioning unit (12), the refrigerated showcase (13), the refrigerated showcase (14), and the booster unit (15) constitute a refrigeration system (10). In this refrigeration system, an outdoor unit (11) and a subcooling unit (200) are installed outdoors, and the remaining air conditioning unit (12) is installed in a store such as a convenience store.
[0048] 上記室外ユニット(11)には室外回路 (40)力 空調ユニット(12)には空調回路(100) 力 冷蔵ショーケース(13)には冷蔵回路(110)力 冷凍ショーケース(14)には冷凍 回路(130)力 ブースタユニット(15)にはブースタ回路(140)がそれぞれ設けられて いる。また、上記過冷却ユニット (200)には、冷媒通路 (205)が設けられている。この 冷凍システムでは、上述した回路 (40,100,· · ·)や過冷却ユニット (200)の冷媒通路 (2 05)を配管で接続することによって冷媒回路 (20)が構成されて!、る。  The outdoor unit (11) has an outdoor circuit (40) power The air conditioning unit (12) has an air conditioning circuit (100) power The refrigeration showcase (13) has a refrigeration circuit (110) power refrigeration showcase (14) Has a refrigeration circuit (130) power The booster unit (15) is provided with a booster circuit (140). The subcooling unit (200) is provided with a refrigerant passage (205). In this refrigeration system, a refrigerant circuit (20) is formed by connecting the above-described circuits (40, 100,...) And the refrigerant passage (205) of the supercooling unit (200) with piping.
[0049] また、上記冷媒回路 (20)には、第 1液側連絡配管 (21)と、第 2液側連絡配管 (22)と 、第 1ガス側連絡配管 (23)と、第 2ガス側連絡配管 (24)とが設けられている。  [0049] The refrigerant circuit (20) includes a first liquid side communication pipe (21), a second liquid side communication pipe (22), a first gas side communication pipe (23), and a second gas side communication pipe. A side communication pipe (24) is provided.
[0050] 上記第 1液側連絡配管 (21)は、過冷却ユニット (200)の冷媒通路 (205)の一端を室 外回路 (40)に接続している。上記第 2液側連絡配管 (22)の一端は、冷媒通路 (205) の他端に接続している。上記第 2液側連絡配管 (22)の他端は、 3つに分岐して空調 回路(100)と冷蔵回路(110)と冷凍回路(130)とに接続して!/ヽる。この第 2液側連絡 配管 (22)のうち冷凍回路(130)に接続する分岐管には、液側閉鎖弁 (25)が設けられ ている。 [0050] The first liquid side communication pipe (21) connects one end of the refrigerant passage (205) of the subcooling unit (200) to the outdoor circuit (40). One end of the second liquid side communication pipe (22) is connected to the other end of the refrigerant passage (205). The other end of the second liquid side connection pipe (22) is branched into three and air-conditioned. Connect to the circuit (100), refrigeration circuit (110) and refrigeration circuit (130)! A branch pipe connected to the refrigeration circuit (130) of the second liquid side communication pipe (22) is provided with a liquid side shutoff valve (25).
[0051] 上記第 1ガス側連絡配管 (23)の一端は、 2つに分岐して冷蔵回路(110)とブースタ 回路(140)とに接続して!/、る。この第 1ガス側連絡配管(23)のうちブースタ回路(140) に接続する分岐管には、ガス側閉鎖弁 (26)が設けられている。上記第 1ガス側連絡 配管 (23)の他端は、室外回路 (40)に接続している。上記第 2ガス側連絡配管 (24)は 、空調回路(100)を室外回路 (40)に接続している。  [0051] One end of the first gas side communication pipe (23) is branched into two and connected to a refrigeration circuit (110) and a booster circuit (140). A branch pipe connected to the booster circuit (140) of the first gas-side communication pipe (23) is provided with a gas-side shut-off valve (26). The other end of the first gas side communication pipe (23) is connected to an outdoor circuit (40). The second gas side communication pipe (24) connects the air conditioning circuit (100) to the outdoor circuit (40).
[0052] 〈室外ユニット〉  [0052] <Outdoor unit>
上記室外ユニット(11)は、冷凍装置(10)の熱源ユニットを構成している。この室外 ユニット(11)の室外回路 (40)には、可変容量圧縮機 (41)と、第 1固定容量圧縮機 (4 2)と、第 2固定容量圧縮機 (43)と、室外熱交換器 (44)と、レシーバ (45)と、室外膨張 弁 (46)とが設けられている。また、この室外回路 (40)には、 3つの吸入管(61,62,63) と、 2つの吐出管(64,65)と、 4つの液管(81,82,83,84)と、 1つの高圧ガス管(66)とが 設けられている。更に、この室外回路 (40)には、 3つの四路切換弁 (51,52,53)と、 1 つの液側閉鎖弁 (54)と、 2つのガス側閉鎖弁 (55,56)とが設けられている。  The outdoor unit (11) constitutes a heat source unit of the refrigeration system (10). The outdoor circuit (40) of the outdoor unit (11) includes a variable capacity compressor (41), a first fixed capacity compressor (42), a second fixed capacity compressor (43), and an outdoor heat exchanger. A vessel (44), a receiver (45), and an outdoor expansion valve (46) are provided. The outdoor circuit (40) has three suction pipes (61, 62, 63), two discharge pipes (64, 65), four liquid pipes (81, 82, 83, 84), One high pressure gas pipe (66) is provided. Further, the outdoor circuit (40) includes three four-way switching valves (51, 52, 53), one liquid-side shutoff valve (54), and two gas-side shutoff valves (55, 56). Is provided.
[0053] 上記室外回路 (40)にお 、て、液側閉鎖弁 (54)には第 1液側連絡配管 (21)が、第 1 ガス側閉鎖弁 (55)には第 1ガス側連絡配管 (23)が、第 2ガス側閉鎖弁 (56)には第 2 ガス側連絡配管 (24)がそれぞれ接続されて!ヽる。  In the outdoor circuit (40), the liquid side shutoff valve (54) has a first liquid side communication pipe (21), and the first gas side shutoff valve (55) has a first gas side communication pipe. The pipe (23) is connected to the second gas side shut-off valve (56) and the second gas side communication pipe (24), respectively.
[0054] 上記可変容量圧縮機 (41)、第 1固定容量圧縮機 (42)および第 2固定容量圧縮機 ( 43)は、何れも全密閉型で高圧ドーム型のスクロール圧縮機である。上記可変容量圧 縮機 (41)には、インバータを介して電力が供給される。この可変容量圧縮機 (41)は 、インバータの出力周波数を変化させて圧縮機モータの回転速度を変更することに より、その容量が可変となっている。一方、上記第 1,第 2固定容量圧縮機 (42,43)は 、圧縮機モータが常に一定の回転速度で運転されるものであり、その容量が変更不 能となっている。  The variable capacity compressor (41), the first fixed capacity compressor (42), and the second fixed capacity compressor (43) are all hermetic, high-pressure dome type scroll compressors. Electric power is supplied to the variable capacity compressor (41) via an inverter. The capacity of the variable displacement compressor (41) is variable by changing the output frequency of the inverter to change the rotation speed of the compressor motor. On the other hand, in the first and second fixed capacity compressors (42, 43), the compressor motor is always operated at a constant rotation speed, and the capacity thereof cannot be changed.
[0055] 上記第 1吸入管 (61)は、一端が第 1ガス側閉鎖弁 (55)に接続されている。この第 1 吸入管 (61)は、他端側で第 1分岐管 (61a)と第 2分岐管 (61b)とに分岐されており、 第 1分岐管 (61a)が可変容量圧縮機 (41)の吸入側に、第 2分岐管 (61b)が第 3四路 切換弁 (53)にそれぞれ接続されている。上記第 1吸入管 (61)の第 2分岐管 (61b)に は、第 1ガス側閉鎖弁 (55)から第 3四路切換弁 (53)へ向力 冷媒の流通だけを許容 する逆止弁 (CV-1)が設けられて 、る。 [0055] One end of the first suction pipe (61) is connected to the first gas-side stop valve (55). The first suction pipe (61) is branched at the other end into a first branch pipe (61a) and a second branch pipe (61b), The first branch pipe (61a) is connected to the suction side of the variable capacity compressor (41), and the second branch pipe (61b) is connected to the third four-way switching valve (53). The second branch pipe (61b) of the first suction pipe (61) has a check valve that allows only the flow of refrigerant from the first gas side shut-off valve (55) to the third four-way switching valve (53). A valve (CV-1) is provided.
[0056] 上記第 2吸入管 (62)は、一端が第 3四路切換弁 (53)に、他端が第 1固定容量圧縮 機 (42)の吸入側にそれぞれ接続されて!、る。  [0056] The second suction pipe (62) has one end connected to the third four-way switching valve (53) and the other end connected to the suction side of the first fixed displacement compressor (42)! RU
[0057] 上記第 3吸入管 (63)は、一端が第 2四路切換弁 (52)に接続されている。この第 3吸 入管 (63)は、他端側で第 1分岐管 (63a)と第 2分岐管 (63b)とに分岐されており、第 1 分岐管 (63a)が第 2固定容量圧縮機 (43)の吸入側に、第 2分岐管 (63b)が第 3四路 切換弁 (53)にそれぞれ接続されて ヽる。上記第 3吸入管 (63)の第 2分岐管 (63b)に は、第 2四路切換弁 (52)から第 3四路切換弁 (53)へ向かう冷媒の流通だけを許容す る逆止弁 (CV-2)が設けられて 、る。  [0057] One end of the third suction pipe (63) is connected to the second four-way switching valve (52). The third suction pipe (63) is branched at the other end into a first branch pipe (63a) and a second branch pipe (63b), and the first branch pipe (63a) is connected to the second fixed capacity compressor. The second branch pipe (63b) is connected to the third four-way switching valve (53) on the suction side of (43). The second branch pipe (63b) of the third suction pipe (63) has a check that allows only the flow of refrigerant from the second four-way switching valve (52) to the third four-way switching valve (53). A valve (CV-2) is provided.
[0058] 上記第 1吐出管 (64)は、一端側で第 1分岐管 (64a)と第 2分岐管 (64b)とに分岐さ れており、第 1分岐管 (64a)が可変容量圧縮機 (41)の吐出側に、第 2分岐管 (64b)が 第 1固定容量圧縮機 (42)の吐出側にそれぞれ接続されて 、る。この第 1吐出管 (64) の他端は、第 1四路切換弁 (51)に接続されている。この第 1吐出管 (64)の第 2分岐 管 (64b)には、第 1固定容量圧縮機 (42)から第 1四路切換弁 (51)へ向かう冷媒の流 通だけを許容する逆止弁 (CV-3)が設けられて 、る。  [0058] The first discharge pipe (64) is branched at one end into a first branch pipe (64a) and a second branch pipe (64b). A second branch pipe (64b) is connected to the discharge side of the first fixed displacement compressor (42) on the discharge side of the compressor (41). The other end of the first discharge pipe (64) is connected to a first four-way switching valve (51). The second branch pipe (64b) of the first discharge pipe (64) has a check valve that allows only refrigerant flow from the first fixed displacement compressor (42) to the first four-way switching valve (51). A valve (CV-3) is provided.
[0059] 上記第 2吐出管 (65)は、一端が第 2固定容量圧縮機 (43)の吸入側に、他端が第 1 吐出管 (64)における第 1四路切換弁 (51)の直前にそれぞれ接続されている。この第 2吐出管 (65)には、第 2固定容量圧縮機 (43)から第 1四路切換弁 (51)へ向カゝぅ冷媒 の流通だけを許容する逆止弁 (CV-4)が設けられて ヽる。  [0059] The second discharge pipe (65) has one end connected to the suction side of the second fixed displacement compressor (43) and the other end connected to the first four-way switching valve (51) in the first discharge pipe (64). Each is connected immediately before. The second discharge pipe (65) has a check valve (CV-4) that allows only the flow of refrigerant to the first four-way switching valve (51) from the second fixed displacement compressor (43) to the first four-way switching valve (51). Is provided.
[0060] 上記室外熱交換器 (44)は、クロスフィン式のフィン'アンド ·チューブ型熱交換器で ある。この室外熱交 (44)では、冷媒と室外空気の間で熱交換が行われる。この 室外熱交翻 (44)の一端は、閉鎖弁 (57)を介して第 1四路切換弁 (51)に接続され ている。一方、上記室外熱交翻 (44)の他端は、第 1液管 (81)を介してレシーバ (45 )の頂部に接続されている。この第 1液管 (81)には、室外熱交翻 (44)からレシーバ (45)へ向かう冷媒の流通だけを許容する逆止弁 (CV-5)が設けられて 、る。 [0061] 上記レシーバ (45)の底部には、閉鎖弁 (58)を介して第 2液管 (82)の一端が接続さ れている。この第 2液管 (82)の他端は、液側閉鎖弁 (54)に接続されている。この第 2 液管(82)には、レシーバ (45)から液側閉鎖弁 (54)へ向力う冷媒の流通だけを許容 する逆止弁(CV-6)が設けられて!/、る。 The outdoor heat exchanger (44) is a cross-fin type fin-and-tube heat exchanger. In the outdoor heat exchange (44), heat is exchanged between the refrigerant and the outdoor air. One end of the outdoor heat exchange (44) is connected to a first four-way switching valve (51) via a closing valve (57). On the other hand, the other end of the outdoor heat exchange (44) is connected to the top of a receiver (45) via a first liquid pipe (81). The first liquid pipe (81) is provided with a check valve (CV-5) that allows only the flow of the refrigerant from the outdoor heat exchange (44) to the receiver (45). [0061] One end of a second liquid pipe (82) is connected to the bottom of the receiver (45) via a closing valve (58). The other end of the second liquid pipe (82) is connected to the liquid-side stop valve (54). The second liquid pipe (82) is provided with a check valve (CV-6) that allows only the flow of the refrigerant flowing from the receiver (45) to the liquid-side stop valve (54). .
[0062] 上記第 2液管 (82)における逆止弁 (CV-6)と液側閉鎖弁 (54)との間には、第 3液管  [0062] A third liquid pipe is provided between the check valve (CV-6) and the liquid-side stop valve (54) in the second liquid pipe (82).
(83)の一端が接続されている。この第 3液管 (83)の他端は、第 1液管 (81)を介してレ シーバ (45)の頂部に接続されている。また、この第 3液管 (83)には、一端から他端へ 向力う冷媒の流通だけを許容する逆止弁 (CV-7)が設けられて 、る。  One end of (83) is connected. The other end of the third liquid pipe (83) is connected to the top of the receiver (45) via the first liquid pipe (81). Further, the third liquid pipe (83) is provided with a check valve (CV-7) that allows only the flow of the refrigerant flowing from one end to the other end.
[0063] 上記第 2液管 (82)における閉鎖弁 (58)と逆止弁 (CV-6)との間には、第 4液管 (84) の一端が接続されている。この第 4液管 (84)の他端は、第 1液管 (81)における室外 熱交翻(44)と逆止弁 (CV-5)との間に接続されている。また、この第 4液管 (84)に は、一端力も他端へ向力つて順に、逆止弁 (CV-8)と室外膨張弁 (46)とが設けられて いる。この逆止弁 (CV-8)は、第 4液管 (84)の一端力 他端へ向力 冷媒の流通だけ を許容する。また、上記室外膨張弁 (46)は、電子膨張弁により構成されている。  [0063] One end of a fourth liquid pipe (84) is connected between the closing valve (58) and the check valve (CV-6) in the second liquid pipe (82). The other end of the fourth liquid pipe (84) is connected between the outdoor heat exchange (44) and the check valve (CV-5) in the first liquid pipe (81). In addition, the fourth liquid pipe (84) is provided with a check valve (CV-8) and an outdoor expansion valve (46) in order of one end force and the other end. This check valve (CV-8) allows only one direction force of the fourth liquid pipe (84) to flow to the other end of the fourth liquid pipe (84). Further, the outdoor expansion valve (46) is constituted by an electronic expansion valve.
[0064] 上記高圧ガス管 (66)は、一端が第 1吐出管 (64)における第 1四路切換弁 (51)の直 前に接続されている。この高圧ガス管 (66)は、他端側で第 1分岐管 (66a)と第 2分岐 管 (66b)とに分岐されており、第 1分岐管 (66a)が第 1液管 (81)における逆止弁 (CV- 5)の下流側に、第 2分岐管 (66b)が第 3四路切換弁 (53)にそれぞれ接続されている 。上記高圧ガス管(66)の第 1分岐管(66a)には、電磁弁 (SV-7)と逆止弁 (CV-9)とが 設けられている。この逆止弁 (CV-9)は、電磁弁 (SV-7)の下流側に配置され、電磁 弁 (SV-7)から第 1液管 (81)へ向力う冷媒の流通だけを許容する。  [0064] One end of the high-pressure gas pipe (66) is connected to the first discharge pipe (64) immediately before the first four-way switching valve (51). The high-pressure gas pipe (66) is branched at the other end into a first branch pipe (66a) and a second branch pipe (66b), and the first branch pipe (66a) is connected to the first liquid pipe (81). The second branch pipe (66b) is connected to the third four-way switching valve (53) downstream of the check valve (CV-5). The first branch pipe (66a) of the high-pressure gas pipe (66) is provided with a solenoid valve (SV-7) and a check valve (CV-9). This check valve (CV-9) is located downstream of the solenoid valve (SV-7), and allows only refrigerant flowing from the solenoid valve (SV-7) to the first liquid pipe (81). I do.
[0065] 上記第 1四路切換弁 (51)は、第 1のポートが第 1吐出管 (64)の終端に、第 2のポー トが第 2四路切換弁 (52)に、第 3のポートが室外熱交翻 (44)に、第 4のポートが第 2ガス側閉鎖弁 (56)にそれぞれ接続されている。この第 1四路切換弁 (51)は、第 1の ポートと第 3のポートが互いに連通し且つ第 2のポートと第 4のポートが互いに連通す る第 1状態(図 1に実線で示す状態)と、第 1のポートと第 4のポートが互いに連通し且 つ第 2のポートと第 3ポートが互いに連通する第 2状態(図 1に破線で示す状態)とに 切り換え可能となっている。 [0066] 上記第 2四路切換弁 (52)は、第 1のポートが第 2吐出管 (65)における逆止弁 (CV- 4)の下流側に、第 2のポートが第 2吸入管 (62)の始端に、第 4のポートが第 1四路切 換弁 (51)の第 2のポートにそれぞれ接続されている。また、この第 2四路切換弁 (52) は、第 3のポートが封止されている。この第 2四路切換弁 (52)は、第 1のポートと第 3 のポートが互いに連通し且つ第 2のポートと第 4のポートが互いに連通する第 1状態( 図 1に実線で示す状態)と、第 1のポートと第 4のポートが互いに連通し且つ第 2のポ 一トと第 3ポートが互いに連通する第 2状態(図 1に破線で示す状態)とに切り換え可 能となっている。 The first four-way switching valve (51) has a first port at the end of the first discharge pipe (64), a second port at the second four-way switching valve (52), and a third port. The fourth port is connected to the outdoor heat exchange (44), and the fourth port is connected to the second gas side shutoff valve (56). The first four-way switching valve (51) is in a first state in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other (shown by a solid line in FIG. 1). State) and a second state (a state shown by a broken line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other. I have. The second four-way switching valve (52) has a first port downstream of the check valve (CV-4) in the second discharge pipe (65), and a second port connected to the second suction pipe. At the beginning of (62), the fourth ports are connected to the second ports of the first four-way switching valve (51), respectively. The third port of the second four-way switching valve (52) is sealed. The second four-way switching valve (52) is in a first state in which the first port and the third port are in communication with each other and the second and fourth ports are in communication with each other (the state shown by the solid line in FIG. 1). ) And a second state in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other (the state shown by the broken line in FIG. 1). ing.
[0067] 上記第 3四路切換弁 (53)は、第 1のポートが高圧ガス管 (66)の第 2分岐管 (66b)の 終端に、第 2のポートが第 2吸入管 (62)の始端に、第 3のポートが第 1吸入管 (61)の 第 2分岐管 (61b)の終端に、第 4のポートが第 3吸入管 (63)の第 2分岐管 (63b)の終 端にそれぞれ接続されている。この第 3四路切換弁 (53)は、第 1のポートと第 3のポ ートが互いに連通し且つ第 2のポートと第 4のポートが互いに連通する第 1状態(図 1 に実線で示す状態)と、第 1のポートと第 4のポートが互いに連通し且つ第 2のポート と第 3ポートが互いに連通する第 2状態(図 1に破線で示す状態)とに切り換え可能と なっている。  The third four-way switching valve (53) has a first port at the end of the second branch pipe (66b) of the high-pressure gas pipe (66) and a second port at the second suction pipe (62). At the beginning of the third port, the third port is at the end of the second branch pipe (61b) of the first suction pipe (61), and the fourth port is at the end of the second branch pipe (63b) of the third suction pipe (63). Each is connected to the end. The third four-way switching valve (53) is in a first state in which the first port and the third port are in communication with each other and the second and fourth ports are in communication with each other (the solid line in FIG. 1). State) and a second state (a state shown by a broken line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other. I have.
[0068] 上記室外回路 (40)には、インジェクション管 (85)、連通管 (87)、油分離器 (75)およ び油戻し管(76)が更に設けられている。また、この室外回路 (40)には、 4つの均油管 (71, 72,73,74)も設けられている。  [0068] The outdoor circuit (40) is further provided with an injection pipe (85), a communication pipe (87), an oil separator (75), and an oil return pipe (76). The outdoor circuit (40) is also provided with four oil equalizing pipes (71, 72, 73, 74).
[0069] 上記インジェクション管 (85)は、 、わゆる液インジェクションを行うためのものである 。このインジェクション管 (85)は、一端が第 4液管(84)における逆止弁 (CV-8)と室外 膨張弁 (46)との間に、他端が第 1吸入管 (61)にそれぞれ接続されている。このインジ クシヨン管 (85)には、一端力も他端へ向力つて順に、閉鎖弁 (59)と流量調節弁 (86 )とが設けられている。この流量調節弁 (86)は、電子膨張弁により構成されている。  [0069] The injection pipe (85) is for performing so-called liquid injection. One end of the injection pipe (85) is provided between the check valve (CV-8) and the outdoor expansion valve (46) in the fourth liquid pipe (84), and the other end is provided in the first suction pipe (61). It is connected. The injection pipe (85) is provided with a closing valve (59) and a flow control valve (86) in order of one end force and the other end. The flow control valve (86) is formed by an electronic expansion valve.
[0070] 上記連通管(87)は、一端力インジェクション管(85)における閉鎖弁 (59)と流量調 節弁 (86)との間に、他端が高圧ガス管 (66)の第 1分岐管 (66a)における電磁弁 (SV- 7)の上流側にそれぞれ接続されている。この連通管 (87)には、一端から他端へ向か う冷媒の流通だけを許容する逆止弁 (CV-10)が設けられて 、る。 [0071] 上記油分離器 (75)は、第 1吐出管 (64)のうち第 2吐出管 (65)および高圧ガス管 (6 6)の接続位置よりも上流側に設けられている。この油分離器 (75)は、圧縮機 (41,42) の吐出ガス力も冷凍機油を分離するためのものである。 [0070] The communication pipe (87) is provided between the closing valve (59) and the flow rate regulating valve (86) in the one-sided force injection pipe (85), and the other end is a first branch of the high-pressure gas pipe (66). They are connected to the pipe (66a) on the upstream side of the solenoid valve (SV-7), respectively. The communication pipe (87) is provided with a check valve (CV-10) that allows only the flow of the refrigerant from one end to the other end. [0071] The oil separator (75) is provided upstream of the connection position of the second discharge pipe (65) and the high-pressure gas pipe (66) in the first discharge pipe (64). The oil separator (75) is also for separating the refrigerating machine oil from the discharge gas power of the compressor (41, 42).
[0072] 上記油戻し管 (76)は、一端が油分離器 (75)に接続されて!、る。この油戻し管 (76) は、他端側で第 1分岐管(76a)と第 2分岐管(76b)とに分岐されており、第 1分岐管(7 6a)がインジェクション管 (85)における流量調節弁 (86)の下流側に、第 2分岐管(76b )が第 2吸入管 (62)にそれぞれ接続されている。また、上記油戻し管 (76)の第 1分岐 管(76a)と第 2分岐管(76b)とには、電磁弁 (SV-5,SV-6)が 1つずつ設けられて 、る。 上記第 1分岐管 (76a)の電磁弁 (SV-5)を開くと、油分離器 (75)で分離された冷凍機 油がインジェクション管 (85)を通じて第 1吸入管 (61)へ送り返される。一方、上記第 2 分岐管 (76b)の電磁弁 (SV-6)を開くと、油分離器 (75)で分離された冷凍機油が第 2 吸入管 (62)へ送り返される。  The oil return pipe (76) has one end connected to the oil separator (75). The oil return pipe (76) is branched at the other end into a first branch pipe (76a) and a second branch pipe (76b), and the first branch pipe (76a) is connected to the injection pipe (85). Downstream of the flow control valve (86), second branch pipes (76b) are connected to the second suction pipes (62), respectively. Also, one solenoid valve (SV-5, SV-6) is provided in each of the first branch pipe (76a) and the second branch pipe (76b) of the oil return pipe (76). When the solenoid valve (SV-5) of the first branch pipe (76a) is opened, the refrigerating machine oil separated by the oil separator (75) is sent back to the first suction pipe (61) through the injection pipe (85). . On the other hand, when the solenoid valve (SV-6) of the second branch pipe (76b) is opened, the refrigerating machine oil separated by the oil separator (75) is sent back to the second suction pipe (62).
[0073] 上記第 1均油管(71)は、一端が可変容量圧縮機 (41)に接続され、他端が第 2吸入 管 (62)に接続されている。この第 1均油管(71)には、電磁弁 (SV-1)が設けられてい る。上記第 2均油管(72)は、一端が第 1固定容量圧縮機 (42)に接続され、他端が第 3吸入管 (63)の第 1分岐管 (63a)に接続されている。この第 2均油管(72)には、電磁 弁 (SV-2)が設けられている。上記第 3均油管(73)は、一端が第 2固定容量圧縮機 (4 3)に接続され、他端が第 1吸入管 (61)の第 1分岐管 (61a)に接続されて!、る。この第 3均油管(73)には、電磁弁 (SV-3)が設けられている。上記第 4均油管(74)は、一端 が第 2均油管(72)における電磁弁 (SV-2)の上流側に接続され、他端が第 1吸入管( 61)の第 1分岐管 (61a)に接続されている。この第 4均油管(74)には、電磁弁 (SV-4) が設けられて 、る。上記各均油管(71〜74)の電磁弁 (SV-l〜SV-4)を適宜開閉する ことにより、各圧縮機 (41,42,43)における冷凍機油の貯留量が平均化される。  [0073] The first oil equalizing pipe (71) has one end connected to the variable capacity compressor (41) and the other end connected to the second suction pipe (62). The first oil equalizing pipe (71) is provided with a solenoid valve (SV-1). One end of the second oil equalizing pipe (72) is connected to the first fixed displacement compressor (42), and the other end is connected to the first branch pipe (63a) of the third suction pipe (63). The second oil level pipe (72) is provided with a solenoid valve (SV-2). The third oil equalizing pipe (73) has one end connected to the second fixed displacement compressor (43) and the other end connected to the first branch pipe (61a) of the first suction pipe (61)! You. The third oil level pipe (73) is provided with a solenoid valve (SV-3). The fourth oil leveling pipe (74) has one end connected to the second oil leveling pipe (72) upstream of the solenoid valve (SV-2), and the other end connected to the first branch pipe (61) of the first suction pipe (61). 61a). The fourth oil level pipe (74) is provided with a solenoid valve (SV-4). By appropriately opening and closing the solenoid valves (SV-1 to SV-4) of the oil equalizing pipes (71 to 74), the amount of refrigerating machine oil stored in each compressor (41, 42, 43) is averaged.
[0074] 上記室外回路 (40)には、各種のセンサや圧力スィッチが設けられて 、る。具体的 に、上記第 1吸入管 (61)には、第 1吸入温度センサ (91)と第 1吸入圧力センサ (92)と が設けられている。上記第 2吸入管 (62)には、第 2吸入圧力センサ (93)が設けられ ている。上記第 3吸入管 (63)には、第 3吸入温度センサ (94)と第 3吸入圧力センサ (9 5)とが設けられている。上記第 1吐出管 (64)には、第 1吐出温度センサ (97)と第 1吐 出圧力センサ (98)とが設けられて 、る。上記第 1吐出管 (64)の各分岐管 (64a,64b) には、高圧圧力スィッチ (96)が 1つずつ設けられている。上記第 2吐出管 (65)には、 第 2吐出温度センサ (99)と高圧圧力スィッチ (96)とが設けられて 、る。 The outdoor circuit (40) is provided with various sensors and pressure switches. Specifically, the first suction pipe (61) is provided with a first suction temperature sensor (91) and a first suction pressure sensor (92). The second suction pipe (62) is provided with a second suction pressure sensor (93). The third suction pipe (63) is provided with a third suction temperature sensor (94) and a third suction pressure sensor (95). The first discharge pipe (64) has a first discharge temperature sensor (97) and a first discharge An output pressure sensor (98) is provided. Each of the branch pipes (64a, 64b) of the first discharge pipe (64) is provided with one high-pressure switch (96). The second discharge pipe (65) is provided with a second discharge temperature sensor (99) and a high pressure switch (96).
[0075] また、上記室外ユニット(11)には、外気温センサ(90)と室外ファン (48)とが設けら れている。上記室外熱交換器 (44)へは、室外ファン (48)によって室外空気が送られ る。 The outdoor unit (11) is provided with an outdoor temperature sensor (90) and an outdoor fan (48). Outdoor air is sent to the outdoor heat exchanger (44) by an outdoor fan (48).
[0076] 〈空調ユニット〉  <Air-conditioning unit>
上記空調ユニット(12)は、利用ユニットを構成している。この空調ユニット(12)の空 調回路(100)は、液側端が第 2液側連絡配管 (22)、ガス側端が第 2ガス側連絡配管( 24)にそれぞれ接続されている。  The air conditioning unit (12) constitutes a use unit. The air conditioning circuit (100) of the air conditioning unit (12) has a liquid side end connected to the second liquid side connection pipe (22) and a gas side end connected to the second gas side connection pipe (24).
[0077] 上記空調回路(100)では、液側端力もガス側端へ向力つて順に、空調膨張弁(102 )と空調熱交翻(101)とが設けられている。この空調熱交翻(101)は、クロスフィン 式のフィン 'アンド'チューブ型熱交^^である。この空調熱交翻(101)では、冷媒 と室内空気との間で熱交換が行われる。一方、上記空調膨張弁(102)は、電子膨張 弁により構成されている。  [0077] In the air conditioning circuit (100), an air conditioning expansion valve (102) and an air conditioning heat exchange (101) are provided in order with the liquid side end force also directed toward the gas side end. This air conditioning heat exchange (101) is a cross-fin type fin 'and' tube type heat exchange ^^. In this air-conditioning heat exchange (101), heat is exchanged between the refrigerant and room air. On the other hand, the air conditioning expansion valve (102) is constituted by an electronic expansion valve.
[0078] 上記空調ユニット(12)には、熱交 温度センサ(103)と冷媒温度センサ(104)と が設けられている。この熱交換器温度センサ(103)は、空調熱交換器(101)の伝熱管 に取り付けられている。上記冷媒温度センサ(104)は、空調回路(100)におけるガス 側端の近傍に取り付けられている。また、上記空調ユニット(12)には、内気温センサ( 106)と空調ファン(105)とが設けられている。上記空調熱交翻(101)へは、空調フ アン(105)によって店内の室内空気が送られる。  [0078] The air conditioning unit (12) is provided with a heat exchange temperature sensor (103) and a refrigerant temperature sensor (104). The heat exchanger temperature sensor (103) is attached to a heat transfer tube of the air conditioning heat exchanger (101). The refrigerant temperature sensor (104) is attached near the gas side end of the air conditioning circuit (100). The air conditioning unit (12) is provided with an internal temperature sensor (106) and an air conditioning fan (105). The indoor air in the store is sent to the air conditioning heat exchange (101) by the air conditioning fan (105).
[0079] 〈冷蔵ショーケース〉  [0079] <Refrigerated showcase>
上記冷蔵ショーケース(13)は、利用ユニットを構成している。この冷蔵ショーケース (13)の冷蔵回路(110)は、液側端が第 2液側連絡配管 (22)に、ガス側端が第 1ガス 側連絡配管 (23)にそれぞれ接続されて ヽる。  The refrigerated showcase (13) constitutes a use unit. The refrigeration circuit (110) of the refrigerated showcase (13) has a liquid side end connected to the second liquid side communication pipe (22) and a gas side end connected to the first gas side communication pipe (23). .
[0080] 上記冷蔵回路(110)では、液側端力もガス側端へ向力つて順に、冷蔵電磁弁(114 )と冷蔵膨張弁 (112)と冷蔵熱交翻 (111)とが設けられて!/ヽる。この冷蔵熱交翻 ( 111)は、クロスフィン式のフィン 'アンド'チューブ型熱交換器である。この冷蔵熱交換 器 (111)では、冷媒と庫内空気との間で熱交換が行われる。上記冷蔵膨張弁(112) は、温度自動膨張弁により構成されている。この冷蔵膨張弁(112)の感温筒(113)は 、冷蔵熱交^^ (111)の出口側の配管に取り付けられて 、る。 [0080] In the refrigeration circuit (110), a refrigeration solenoid valve (114), a refrigeration expansion valve (112), and a refrigeration heat exchange (111) are provided in this order with the liquid side end force also directed to the gas side end. ! / Puru. This refrigerated heat exchange (111) is a cross-fin type fin 'and' tube type heat exchanger. This refrigerated heat exchange In the vessel (111), heat exchange is performed between the refrigerant and the air in the refrigerator. The refrigeration expansion valve (112) is constituted by an automatic temperature expansion valve. The temperature sensing tube (113) of the refrigeration expansion valve (112) is attached to a pipe on the outlet side of the refrigeration heat exchanger (111).
[0081] 上記冷蔵ショーケース(13)には、冷蔵庫内温度センサ(116)と冷蔵庫内ファン(115 )とが設けられている。上記冷蔵熱交翻(111)へは、冷蔵庫内ファン(115)によって 冷蔵ショーケース(13)の庫内空気が送られる。  [0081] The refrigerated showcase (13) is provided with a refrigerator temperature sensor (116) and a refrigerator fan (115). The air in the refrigerator showcase (13) is sent to the refrigerator heat exchange (111) by the fan (115) in the refrigerator.
[0082] 〈冷凍ショーケース〉  [0082] <Frozen showcase>
上記冷凍ショーケース(14)は、利用ユニットを構成している。この冷凍ショーケース (14)の冷凍回路(130)は、液側端が第 2液側連絡配管 (22)に接続されている。また 、この冷凍回路(130)のガス側端は、配管を介してブースタユニット(15)に接続され ている。  The frozen showcase (14) constitutes a use unit. The refrigeration circuit (130) of the refrigeration showcase (14) has a liquid-side end connected to the second liquid-side communication pipe (22). The gas side end of the refrigeration circuit (130) is connected to a booster unit (15) via a pipe.
[0083] 上記冷凍回路(130)では、液側端力もガス側端へ向力つて順に、冷凍電磁弁(134 )と冷凍膨張弁 (132)と冷凍熱交翻 (131)とが設けられている。この冷凍熱交翻( 131)は、クロスフィン式のフィン 'アンド'チューブ型熱交換器である。この冷凍熱交換 器 (131)では、冷媒と庫内空気との間で熱交換が行われる。上記冷凍膨張弁(132) は、温度自動膨張弁により構成されている。この冷凍膨張弁(132)の感温筒(133)は 、冷凍熱交換器(131)の出口側の配管に取り付けられている。  [0083] In the refrigeration circuit (130), a refrigeration solenoid valve (134), a refrigeration expansion valve (132), and a refrigeration heat exchange (131) are provided in this order with the liquid side end force also directed to the gas side end. I have. This frozen heat exchange (131) is a cross-fin type fin 'and' tube type heat exchanger. In this refrigeration heat exchanger (131), heat is exchanged between the refrigerant and the air in the refrigerator. The refrigeration expansion valve (132) is constituted by a temperature automatic expansion valve. The temperature sensing tube (133) of the refrigeration expansion valve (132) is attached to a pipe on the outlet side of the refrigeration heat exchanger (131).
[0084] 上記冷凍ショーケース(14)には、冷凍庫内温度センサ(136)と冷凍庫内ファン(135 )とが設けられている。上記冷凍熱交 (131)へは、冷凍庫内ファン(135)によって 冷凍ショーケース(14)の庫内空気が送られる。  The freezer showcase (14) is provided with a freezer temperature sensor (136) and a freezer fan (135). Air in the freezer showcase (14) is sent to the freezing heat exchanger (131) by the freezer fan (135).
[0085] 〈ブースタユニット〉  [0085] <Booster unit>
上記ブースタユニット (15)のブースタ回路(140)には、ブースタ圧縮機(141)と、吸 入管(143)と、吐出管(144)と、バイパス管(150)とが設けられて 、る。  The booster circuit (140) of the booster unit (15) includes a booster compressor (141), an intake pipe (143), a discharge pipe (144), and a bypass pipe (150).
[0086] 上記ブースタ圧縮機(141)は、全密閉型で高圧ドーム型のスクロール圧縮機である 。このブースタ圧縮機(141)には、インバータを介して電力が供給される。このブース タ圧縮機(141)は、インバータの出力周波数を変化させて圧縮機モータの回転速度 を変更することによって、その容量が変更可能となって 、る。  [0086] The booster compressor (141) is a hermetic, high-pressure dome-type scroll compressor. The booster compressor (141) is supplied with electric power via an inverter. The capacity of this booster compressor (141) can be changed by changing the output frequency of the inverter to change the rotation speed of the compressor motor.
[0087] 上記吸入管(143)は、終端がブースタ圧縮機(141)の吸入側に接続されている。こ の吸入管(143)の始端は、配管を介して冷凍回路(130)のガス側端に接続されて!ヽ る。 [0087] The end of the suction pipe (143) is connected to the suction side of the booster compressor (141). This The start end of the suction pipe (143) is connected to the gas side end of the refrigeration circuit (130) via a pipe.
[0088] 上記吐出管(144)は、始端がブースタ圧縮機(141)の吐出側に、終端が第 1ガス側 連絡配管 (23)にそれぞれ接続されている。この吐出管(144)には、始端から終端へ 向かって順に、高圧圧力スィッチ(148)と、油分離器(145)と、吐出側逆止弁(149)と が設けられている。この吐出側逆止弁(149)は、吐出管(144)の始端カも終端へ向か う冷媒の流通だけを許容する。  [0088] The discharge pipe (144) has a start end connected to the discharge side of the booster compressor (141), and an end connected to the first gas side communication pipe (23). The discharge pipe (144) is provided with a high-pressure switch (148), an oil separator (145), and a discharge-side check valve (149) in order from the start end to the end. The discharge-side check valve (149) allows only the refrigerant to flow toward the end of the discharge pipe (144).
[0089] 上記油分離器(145)は、ブースタ圧縮機(141)の吐出ガス力 冷凍機油を分離する ためのものである。この油分離器(145)には、油戻し管(146)の一端が接続されてい る。上記油戻し管(146)の他端は、吸入管(143)に接続されている。この油戻し管(14 6)には、キヤビラリチューブ(147)が設けられている。上記油分離器(145)で分離され た冷凍機油は、油戻し管(146)を通じてブースタ圧縮機(141)の吸入側へ送り返され る。  [0089] The oil separator (145) is for separating the refrigerating machine oil discharged from the booster compressor (141). One end of an oil return pipe (146) is connected to the oil separator (145). The other end of the oil return pipe (146) is connected to a suction pipe (143). The oil return pipe (146) is provided with a capillary tube (147). The refrigerating machine oil separated by the oil separator (145) is returned to the suction side of the booster compressor (141) through the oil return pipe (146).
[0090] 上記バイパス管(150)は、始端が吸入管(143)に、終端が吐出管 (64)における油 分離器(145)と吐出側逆止弁(149)との間にそれぞれ接続されている。このバイパス 管(150)には、始端カも終端へ向力 冷媒の流通だけを許容するバイパス逆止弁(15 1)が設けられている。  [0090] The bypass pipe (150) is connected at the beginning to the suction pipe (143) and at the end between the oil separator (145) and the discharge-side check valve (149) in the discharge pipe (64). ing. The bypass pipe (150) is provided with a bypass check valve (151) that allows only the flow of the refrigerant toward the terminal end.
[0091] 〈過冷却ユニット〉  [0091] <Supercooling unit>
上記過冷却ユニット (200)は、冷媒通路 (205)と過冷却用冷媒回路 (220)とコント口 ーラ(240)とを備えている。  The subcooling unit (200) includes a refrigerant passage (205), a subcooling refrigerant circuit (220), and a controller (240).
[0092] 上記冷媒通路 (205)は、一端が第 1液側連絡配管 (21)に、他端が第 2液側連絡配 管 (22)にそれぞれ接続されて!、る。  [0092] The refrigerant passage (205) has one end connected to the first liquid side communication pipe (21) and the other end connected to the second liquid side communication pipe (22).
[0093] 上記過冷却用冷媒回路 (220)は、過冷却用圧縮機 (221)と、過冷却用室外熱交換 器 (222)と、過冷却用膨張弁 (223)と、過冷却用熱交換器 (210)とを順に配管で接続 して構成された閉回路である。この過冷却用冷媒回路 (220)では、充填された冷却 用流体としての過冷却用冷媒が循環して蒸気圧縮式冷凍サイクルを行う冷却用流体 回路を構成している。  [0093] The subcooling refrigerant circuit (220) includes a subcooling compressor (221), a subcooling outdoor heat exchanger (222), a subcooling expansion valve (223), and a supercooling heat. This is a closed circuit configured by connecting the exchanger (210) in sequence with piping. The supercooling refrigerant circuit (220) constitutes a cooling fluid circuit for performing a vapor compression refrigeration cycle by circulating a supercooling refrigerant as a filled cooling fluid.
[0094] 上記過冷却用圧縮機 (221)は、全密閉型で高圧ドーム型のスクロール圧縮機であ る。この過冷却用圧縮機 (221)には、インバータを介して電力が供給される。この過 冷却用圧縮機 (221)は、インバータの出力周波数を変化させて圧縮機モータの回転 速度を変更することにより、その容量が可変となっている。 [0094] The supercooling compressor (221) is a hermetically sealed high-pressure dome type scroll compressor. The Electric power is supplied to the subcooling compressor (221) via an inverter. The capacity of the supercooling compressor (221) is variable by changing the output frequency of the inverter to change the rotation speed of the compressor motor.
[0095] 上記過冷却用室外熱交^^ (222)は、クロスフィン式のフィン'アンド ·チューブ型 熱交換器であり、熱源側熱交換器を構成している。この過冷却用室外熱交換器 (222 )では、過冷却用冷媒と室外空気との間で熱交換が行われる。上記過冷却用膨張弁 (223)は、電子膨張弁により構成されている。  The supercooling outdoor heat exchanger (222) is a cross-fin type fin-and-tube heat exchanger, and constitutes a heat source side heat exchanger. In the subcooling outdoor heat exchanger (222), heat is exchanged between the subcooling refrigerant and the outdoor air. The supercooling expansion valve (223) is constituted by an electronic expansion valve.
[0096] 上記過冷却用熱交換器 (210)は、いわゆるプレート式熱交換器であり、利用側熱交 を構成している。この過冷却用熱交換器 (210)には、第 1流路 (211)と第 2流路( 212)とが複数ずつ形成されている。この第 1流路 (211)には過冷却用冷媒回路 (220) 力 第 2流路 (212)には冷媒通路 (205)がそれぞれ接続されている。そして、この過 冷却用熱交換器 (210)は、第 1流路 (211)を流れる過冷却用冷媒と、第 2流路 (212) を流れる冷凍装置(10)の冷媒とを熱交換させる。  [0096] The supercooling heat exchanger (210) is a so-called plate heat exchanger, and constitutes use-side heat exchange. In the supercooling heat exchanger (210), a plurality of first flow paths (211) and a plurality of second flow paths (212) are formed. A supercooling refrigerant circuit (220) is connected to the first flow path (211), and a refrigerant passage (205) is connected to the second flow path (212). The supercooling heat exchanger (210) exchanges heat between the supercooling refrigerant flowing through the first flow path (211) and the refrigerant of the refrigerating device (10) flowing through the second flow path (212). .
[0097] 上記過冷却ユニット (200)には、各種のセンサや圧力スィッチが設けられて 、る。具 体的に、上記過冷却用冷媒回路 (220)では、過冷却用圧縮機 (221)の吸入側に吸 入温度センサ (235)と吸入圧力センサ (234)とが設けられ、過冷却用圧縮機 (221)の 吐出側に吐出温度センサ (233)と高圧圧力スィッチ (232)とが設けられて 、る。冷媒 通路 (205)では、過冷却用熱交換器 (210)よりも他端寄りの部分、即ち第 2液側連絡 配管 (22)に接続する端部寄りの部分に冷媒温度センサ (236)が設けられて 、る。こ の冷媒温度センサ (236)は、冷媒温度検出手段を構成している。  [0097] The supercooling unit (200) is provided with various sensors and pressure switches. Specifically, in the subcooling refrigerant circuit (220), a suction temperature sensor (235) and a suction pressure sensor (234) are provided on the suction side of the subcooling compressor (221), and A discharge temperature sensor (233) and a high pressure switch (232) are provided on the discharge side of the compressor (221). In the refrigerant passage (205), a refrigerant temperature sensor (236) is provided at a part closer to the other end than the supercooling heat exchanger (210), that is, a part near the end connected to the second liquid side communication pipe (22). It is provided. This refrigerant temperature sensor (236) constitutes a refrigerant temperature detecting means.
[0098] また、上記過冷却ユニット (200)には、外気温センサ(231)と室外ファン (230)とが設 けられている。上記過冷却用室外熱交換器 (222)へは、室外ファン (230)によって室 外空気が送られる。  [0098] The subcooling unit (200) is provided with an outside air temperature sensor (231) and an outdoor fan (230). Outdoor air is sent to the subcooling outdoor heat exchanger (222) by an outdoor fan (230).
[0099] 上記コントローラ(240)は、制御手段を構成して 、る。このコントローラ(240)には、 設定部 (241)と制御部 (242)とが設けられて 、る。  [0099] The controller (240) constitutes control means. The controller (240) includes a setting unit (241) and a control unit (242).
[0100] 上記設定部(241)には、外気温センサ(231)の検出温度である外気温度が入力さ れている。そして、この設定部(241)は、入力された外気温度に基づいて予め設定さ れた過冷却用熱交換器 (210)における冷媒通路 (205)の冷媒の目標冷却温度 (Eom )を設定するように構成されている。例えば、外気温度が高い場合には、店内の冷房 負荷が大きくなるので、冷媒の目標冷却温度 (Eom)を低い温度に設定する。逆に、 外気温度が低い場合には、店内の冷房負荷が小さくなるので、冷媒の目標冷却温 度 (Eom)を高めの温度に設定する。すなわち、本実施形態の設定部(241)では、外 気温度が過冷却用熱交 (210)の周囲条件として用いられて 、る。 [0100] The outside temperature, which is the temperature detected by the outside temperature sensor (231), is input to the setting unit (241). Then, the setting unit (241) determines a target cooling temperature (Eom) of the refrigerant in the refrigerant passage (205) in the subcooling heat exchanger (210) which is set in advance based on the input outside air temperature. ) Is set. For example, when the outside air temperature is high, the cooling load in the store increases, so the target cooling temperature (Eom) of the refrigerant is set to a low temperature. Conversely, when the outside air temperature is low, the cooling load in the store becomes small, so the target cooling temperature (Eom) of the refrigerant is set to a higher temperature. That is, in the setting unit (241) of the present embodiment, the outside air temperature is used as the ambient condition of the supercooling heat exchange (210).
[0101] 上記制御部(242)には、冷媒温度センサ(236)の検出温度 (Tout)と吸入圧力セン サ(234)の検出圧力(LP)とが入力されている。そして、この制御部(242)は、冷媒温 度センサ(236)が正常に検出可能である場合、冷媒温度センサ(236)の検出温度 (T out)と設定部 (241)の目標冷却温度 (Eom)との差に基づ 、て過冷却用圧縮機 (221) の運転周波数を制御するように構成されて ヽる。  [0101] The detected temperature (Tout) of the refrigerant temperature sensor (236) and the detected pressure (LP) of the suction pressure sensor (234) are input to the control unit (242). When the refrigerant temperature sensor (236) can normally detect the temperature, the control unit (242) detects the detected temperature (T out) of the refrigerant temperature sensor (236) and the target cooling temperature (Tout) of the setting unit (241). The operating frequency of the subcooling compressor (221) is controlled based on the difference from Eom).
[0102] そして、上記制御部(242)は、冷媒温度センサ(236)が異常で検出不能になった場 合、吸入圧力センサ(234)の検出圧力(LP)に相当する過冷却用冷媒の飽和温度 (T G)により定めた設定温度 (Tout)と目標冷却温度 (Eom)との差に基づ 、て過冷却用 圧縮機 (221)の運転周波数を制御するように構成されている。つまり、この制御部(24 2)では、過冷却用冷媒回路 (220)の過冷却用冷媒の低圧圧力相当飽和温度 (TG) により定めた設定温度 (Tout)を冷媒温度センサ(236)の検出温度とみなして!/、る。本 実施形態では、例えば、設定温度 (Tout)が飽和温度 (TG) + a °Cで設定される。こ の aは、任意に設定可能である。  [0102] Then, when the refrigerant temperature sensor (236) becomes abnormal and cannot be detected, the control unit (242) controls the supercooling refrigerant corresponding to the detected pressure (LP) of the suction pressure sensor (234). The operation frequency of the supercooling compressor (221) is controlled based on the difference between the set temperature (Tout) determined by the saturation temperature (TG) and the target cooling temperature (Eom). In other words, the control unit (242) detects the set temperature (Tout) determined by the low pressure equivalent saturation temperature (TG) of the subcooling refrigerant in the subcooling refrigerant circuit (220) by the refrigerant temperature sensor (236). Assuming temperature! In the present embodiment, for example, the set temperature (Tout) is set at the saturation temperature (TG) + a ° C. This a can be set arbitrarily.
[0103] なお、本実施形態では、制御部(242)が吸入圧力センサ (234)の検出圧力(LP)に よって定めた設定温度を冷媒の検出温度 (Tout)とみなすようにした力 これに代えて 、吸入温度センサ(235)の検出温度 (Ti)である吸入温度により定めた設定温度 (Tou t)を冷媒の検出温度 (Tout)とみなすようにしてもよい。その場合、制御部(242)には 、冷媒温度センサ(236)の検出温度 (Tout)と吸入温度センサ(235)の検出温度 (Ή) とが入力されることになる。そして、この制御部(242)は、冷媒温度センサ (236)が異 常となり検出不能になった場合、吸入温度センサ(235)の検出温度 (Ti)により定めた 設定温度 (Tout)と目標冷却温度 (Eom)との差に基づ 、て過冷却用圧縮機 (221)の 運転周波数を制御するように構成される。この場合、設定温度 (Tout)は、例えば検 出温度 (Ti) + β °Cで設定される。この 13は、任意に設定可能である。 [0104] 上記過冷却用圧縮機 (221)の運転周波数を増大させれば、過冷却用冷媒回路 (22 0)の過冷却用冷媒の循環量が増大し、過冷却用熱交換器 (210)における過冷却用 冷媒と冷凍装置(10)の冷媒との熱交換量が増大するので、冷凍装置(10)の冷媒の 冷却温度が低下し、空調ユニット(12)の冷房能力等が増大することになる。また、上 記過冷却用圧縮機 (221)の運転周波数を低下させれば、過冷却用冷媒回路 (220) の過冷却用冷媒の循環量が減少し、過冷却用熱交換器 (210)における過冷却用冷 媒と冷凍装置(10)の冷媒との熱交換量が減少するので、冷凍装置(10)の冷媒の冷 却温度が上昇し、空調ユニット(12)の冷房能力等が低下することになる。つまり、上 記コントローラ (240)は、外気温度に基づいて過冷却用圧縮機 (221)を容量制御して 過冷却用熱交換器 (210)における過冷却用冷媒の流量を調整することにより、冷凍 装置(10)の冷媒の冷却温度を調整するようにして!/、る。 [0103] In the present embodiment, the control unit (242) regards the set temperature determined by the detected pressure (LP) of the suction pressure sensor (234) as the detected temperature (Tout) of the refrigerant. Alternatively, the set temperature (Tout) determined by the suction temperature (Ti) detected by the suction temperature sensor (235) may be regarded as the detected temperature (Tout) of the refrigerant. In this case, the detected temperature (Tout) of the refrigerant temperature sensor (236) and the detected temperature (Ή) of the suction temperature sensor (235) are input to the control unit (242). When the refrigerant temperature sensor (236) becomes abnormal and cannot be detected, the control unit (242) sets the target temperature (Tout) and the set temperature (Tout) determined by the detected temperature (Ti) of the suction temperature sensor (235). The operating frequency of the subcooling compressor (221) is controlled based on the difference from the temperature (Eom). In this case, the set temperature (Tout) is set, for example, at the detection temperature (Ti) + β ° C. This 13 can be set arbitrarily. If the operating frequency of the subcooling compressor (221) is increased, the circulation amount of the supercooling refrigerant in the subcooling refrigerant circuit (220) is increased, and the subcooling heat exchanger (210) Since the amount of heat exchange between the supercooling refrigerant and the refrigerant of the refrigeration unit (10) in () increases, the cooling temperature of the refrigerant of the refrigeration unit (10) decreases, and the cooling capacity of the air conditioning unit (12) increases. Will be. Also, if the operating frequency of the above-described subcooling compressor (221) is reduced, the circulation amount of the supercooling refrigerant in the subcooling refrigerant circuit (220) is reduced, and the subcooling heat exchanger (210) Since the amount of heat exchange between the supercooling refrigerant and the refrigerant of the refrigeration unit (10) decreases, the cooling temperature of the refrigerant of the refrigeration unit (10) increases, and the cooling capacity of the air conditioning unit (12) decreases. Will be. That is, the controller (240) adjusts the flow rate of the subcooling refrigerant in the subcooling heat exchanger (210) by controlling the capacity of the subcooling compressor (221) based on the outside air temperature. Adjust the cooling temperature of the refrigerant in the refrigeration system (10)!
[0105] このように、コントローラ(240)には、室外ユニット(11)や空調ユニット(12)などで構 成された冷凍装置(10)力 の信号は一切入力されていない。つまり、このコントロー ラ(240)は、過冷却ユニット (200)に設けられたセンサの検出値など、過冷却ユニット( 200)の内部で得られた情報だけに基づ!/、て過冷却用圧縮機 (221)の運転制御を行 う。したがって、上記過冷却ユニット (200)および冷凍装置(10)の両者間で送受信さ れる信号を伝送するための配線工事が不要となる。  [0105] As described above, no signal of the power of the refrigerating apparatus (10) including the outdoor unit (11) and the air conditioning unit (12) is input to the controller (240). In other words, this controller (240) is based on only the information obtained inside the subcooling unit (200), such as the detection values of the sensors provided in the subcooling unit (200). Controls the operation of the compressor (221). Therefore, wiring work for transmitting signals transmitted and received between both the supercooling unit (200) and the refrigeration system (10) becomes unnecessary.
[0106] また、本実施形態の設定部 (241)では、過冷却用熱交換器 (210)の周囲条件として 外気温度に基づ 、て冷媒の目標冷却温度 (Eom)を設定するようにしたが、その外気 温度に代えて次のもの(パラメータ)を用いるようにしてもょ 、。  [0106] In the setting unit (241) of the present embodiment, the target cooling temperature (Eom) of the refrigerant is set based on the outside air temperature as the ambient condition of the supercooling heat exchanger (210). However, the following (parameter) may be used instead of the outside air temperature.
[0107] 例えば、上記設定部(241)は、冷媒通路 (205)の冷媒流量、すなわち過冷却用熱 交換器 (210)における冷凍装置(10)の冷媒の流量を過冷却用熱交換器 (210)の周 囲条件として用いるようにしてもよい。この場合、冷媒通路 (205)における過冷却用熱 交換器 (210)の上流に冷媒の流量検出手段が設けられ、該流量検出手段の検出流 量がコントローラ(240)の設定部(241)に入力される。そして、上記設定部(241)は、 入力された検出流量が多い場合には、店内の冷房負荷が大きいと判断して冷媒の 目標冷却温度 (Eom)を低い温度に設定し、逆に、検出流量が少ない場合には、店 内の冷房負荷が小さ 、と判断して冷媒の目標冷却温度 (Eom)を高めの温度に設定 する。 [0107] For example, the setting unit (241) determines the flow rate of the refrigerant in the refrigerant passage (205), that is, the flow rate of the refrigerant in the refrigerating device (10) in the subcooling heat exchanger (210) by using the subcooling heat exchanger ( It may be used as the surrounding condition of 210). In this case, means for detecting the flow rate of the refrigerant is provided upstream of the subcooling heat exchanger (210) in the refrigerant passage (205), and the detected flow rate of the flow rate detecting means is transmitted to the setting section (241) of the controller (240). Is entered. When the input detected flow rate is large, the setting unit (241) determines that the cooling load in the store is large, sets the target cooling temperature (Eom) of the refrigerant to a low temperature, and conversely, detects If the flow rate is low, determine that the cooling load in the store is small, and set the target cooling temperature (Eom) of the refrigerant to a higher temperature. To do.
[0108] また、上記設定部 (241)は、過冷却用熱交換器 (210)で冷却される前の冷媒通路( 205)の冷媒の温度、または過冷却用熱交換器 (210)で冷却された後の冷媒通路 (20 5)の冷媒の温度を過冷却用熱交 (210)の周囲条件として用いるようにしてもよ!、 。この場合、冷媒通路 (205)における過冷却用熱交換器 (210)の上流に冷媒の温度 検出手段が設けられ、該流量検出手段の検出温度が冷却される前の冷媒温度とし てコントローラ (240)の設定部(241)に入力される。または、過冷却用熱交換器 (210) の下流に設けられた冷媒温度センサ (236)の検出温度がコントローラ (240)の設定部 (241)に入力される。そして、上記設定部(241)は、入力された検出温度が高い場合 には、店内の冷房負荷が大き 、と判断して冷媒の目標冷却温度 (Eom)を低 、温度 に設定し、逆に、検出温度が低い場合には、店内の冷房負荷が小さいと判断して冷 媒の目標冷却温度 (Eom)を高めの温度に設定する。  [0108] Further, the setting section (241) is configured to control the temperature of the refrigerant in the refrigerant passage (205) before being cooled by the subcooling heat exchanger (210), or to cool the refrigerant by the subcooling heat exchanger (210). The temperature of the refrigerant in the refrigerant passage (205) after the cooling may be used as the surrounding condition of the supercooling heat exchange (210). In this case, a refrigerant temperature detecting means is provided upstream of the subcooling heat exchanger (210) in the refrigerant passage (205), and the controller (240) detects the refrigerant temperature before the detected temperature of the flow rate detecting means is cooled. ) Is input to the setting unit (241). Alternatively, the temperature detected by the refrigerant temperature sensor (236) provided downstream of the subcooling heat exchanger (210) is input to the setting unit (241) of the controller (240). Then, when the input detected temperature is high, the setting unit (241) determines that the cooling load in the store is large, and sets the target cooling temperature (Eom) of the refrigerant to low and temperature, and conversely. If the detected temperature is low, it is determined that the cooling load in the store is small, and the target cooling temperature (Eom) of the refrigerant is set to a higher temperature.
[0109] また、上記設定部(241)は、過冷却用冷媒回路 (220)における過冷却用冷媒の低 圧圧力または高圧圧力を過冷却用熱交 (210)の周囲条件として用いるようにし てもよい。この場合、過冷却用圧縮機 (221)の吸入側に設けられた吸入圧力センサ( 234)の検出圧力が低圧圧力として設定部(241)に入力される。または、上記過冷却 用圧縮機 (221)の吐出側に冷媒の圧力検出手段が設けられ、該圧力検出手段の検 出圧力が高圧圧力として設定部 (241)に入力される。そして、上記設定部 (241)は、 入力された検出圧力が高い場合には、店内の冷房負荷が大きいと判断して冷媒の 目標冷却温度 (Eom)を低い温度に設定し、逆に、検出圧力が低い場合には、店内 の冷房負荷が小さ 、と判断して冷媒の目標冷却温度 (Eom)を高めの温度に設定す る。  [0109] Further, the setting unit (241) uses the low pressure or the high pressure of the subcooling refrigerant in the subcooling refrigerant circuit (220) as ambient conditions for the supercooling heat exchange (210). Is also good. In this case, the detection pressure of the suction pressure sensor (234) provided on the suction side of the subcooling compressor (221) is input to the setting unit (241) as a low pressure. Alternatively, refrigerant pressure detecting means is provided on the discharge side of the supercooling compressor (221), and the detected pressure of the pressure detecting means is input to the setting section (241) as a high pressure. When the input detection pressure is high, the setting unit (241) determines that the cooling load in the store is large, sets the target cooling temperature (Eom) of the refrigerant to a low temperature, and conversely, detects If the pressure is low, it is determined that the cooling load in the store is small, and the target cooling temperature (Eom) of the refrigerant is set to a higher temperature.
[0110] また、上記設定部 (241)は、過冷却用熱交換器 (210)で冷却した後の過冷却用冷 媒の温度を過冷却用熱交換器 (210)の周囲条件として用いるようにしてもよ!、。この 場合、過冷却用圧縮機 (221)の吸入温度センサ (235)の検出温度が設定部(241)に 入力される。または、上記過冷却用冷媒回路 (220)における過冷却用熱交換器 (210 )の直下流に冷媒の温度検出手段が設けられ、該温度検出手段の検出温度が上述 した吸入温度センサ(235)の検出温度に代えて設定部(241)に入力される。そして、 上記設定部(241)は、入力された検出温度が高い場合には、店内の冷房負荷が大き いと判断して冷媒の目標冷却温度 (Eom)を低い温度に設定し、逆に、検出温度が低 V、場合には、店内の冷房負荷が小さ!、と判断して冷媒の目標冷却温度 (Eom)を高 めの温度に設定する。 [0110] Further, the setting unit (241) may use the temperature of the subcooling refrigerant after cooling in the subcooling heat exchanger (210) as the ambient condition of the subcooling heat exchanger (210). Anyway! In this case, the temperature detected by the suction temperature sensor (235) of the subcooling compressor (221) is input to the setting unit (241). Alternatively, a refrigerant temperature detecting means is provided immediately downstream of the subcooling heat exchanger (210) in the subcooling refrigerant circuit (220), and the temperature detected by the temperature detecting means is the above-mentioned suction temperature sensor (235). Is input to the setting unit (241) in place of the detected temperature. And When the input detected temperature is high, the setting unit (241) determines that the in-store cooling load is large, and sets the target cooling temperature (Eom) of the refrigerant to a low temperature. In the case of a low V, the cooling load in the store is judged to be small, and the target cooling temperature (Eom) of the refrigerant is set to a higher temperature.
[0111] 以上のように、何れのパラメータについても、過冷却ユニット(200)の内部で得られ た情報であるため、冷凍装置(10)との間で送受信が不要になる。  [0111] As described above, all parameters are information obtained inside the subcooling unit (200), so that transmission and reception to and from the refrigeration apparatus (10) become unnecessary.
[0112] 冷凍システムの運転動作 [0112] Operation of refrigeration system
上記冷凍システムが行う運転動作のうち、主要なものについて説明する。  The main operation operations performed by the refrigeration system will be described.
[0113] 〈冷房運転〉 [0113] <Cooling operation>
この冷房運転は、冷蔵ショーケース(13)および冷凍ショーケース(14)において庫 内空気の冷却を行い、空調ユニット(12)で室内空気の冷却を行って店内を冷房する 運 ¾5である。  The cooling operation is an operation 5 for cooling the inside of the store by cooling the indoor air in the refrigerated showcase (13) and the freezing showcase (14), and cooling the indoor air in the air conditioning unit (12).
[0114] 図 2に示すように、冷房運転中は、第 1四路切換弁 (51)、第 2四路切換弁 (52)およ び第 3四路切換弁 (53)がそれぞれ第 1状態に設定される。また、室外膨張弁 (46)が 全閉される一方、空調膨張弁(102)、冷蔵膨張弁(112)および冷凍膨張弁(132)の 開度がそれぞれ適宜調節される。この状態において、可変容量圧縮機 (41)、第 1固 定容量圧縮機 (42)、第 2固定容量圧縮機 (43)およびブースタ圧縮機(141)が運転さ れる。この冷房運転中には、過冷却ユニット(200)が運転状態となる。過冷却ユニット (200)の運転動作にっ 、ては後述する。  As shown in FIG. 2, during the cooling operation, the first four-way switching valve (51), the second four-way switching valve (52) and the third four-way switching valve (53) are respectively the first four-way switching valve (51). Set to state. Further, while the outdoor expansion valve (46) is fully closed, the opening degrees of the air conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) are appropriately adjusted. In this state, the variable capacity compressor (41), the first fixed capacity compressor (42), the second fixed capacity compressor (43), and the booster compressor (141) are operated. During this cooling operation, the subcooling unit (200) is in an operating state. The operation of the subcooling unit (200) will be described later.
[0115] 上記可変容量圧縮機 (41)、第 1固定容量圧縮機 (42)および第 2固定容量圧縮機 ( 43)から吐出された冷媒は、第 1四路切換弁 (51)を通過して室外熱交 (44)へ送 られる。この室外熱交 (44)では、冷媒が室外空気へ放熱して凝縮する。この室 外熱交 (44)で凝縮した冷媒は、第 1液管 (81)とレシーバ (45)と第 2液管 (82)と を順に通過して第 1液側連絡配管(21)へ流入する。  [0115] The refrigerant discharged from the variable displacement compressor (41), the first fixed displacement compressor (42) and the second fixed displacement compressor (43) passes through the first four-way switching valve (51). Sent to outdoor heat exchange (44). In this outdoor heat exchange (44), the refrigerant radiates heat to outdoor air and condenses. The refrigerant condensed in the outdoor heat exchange (44) passes through the first liquid pipe (81), the receiver (45), and the second liquid pipe (82) in that order, and goes to the first liquid side communication pipe (21). Inflow.
[0116] 上記第 1液側連絡配管 (21)へ流入した冷媒は、過冷却ユニット (200)の冷媒通路( 205)へ流入する。この冷媒通路 (205)へ流入した冷媒は、過冷却用熱交換器 (210) の第 2流路 (212)を通過する間に冷却される。この過冷却用熱交換器 (210)で冷却さ れた過冷却状態の液冷媒は、第 2液側連絡配管 (22)を通って空調回路(100)と冷蔵 回路(110)と冷凍回路(130)とに分配される。 [0116] The refrigerant flowing into the first liquid-side communication pipe (21) flows into the refrigerant passage (205) of the subcooling unit (200). The refrigerant flowing into the refrigerant passage (205) is cooled while passing through the second flow path (212) of the subcooling heat exchanger (210). The supercooled liquid refrigerant cooled by the supercooling heat exchanger (210) passes through the second liquid side communication pipe (22) and is refrigerated with the air conditioning circuit (100). It is distributed to a circuit (110) and a refrigeration circuit (130).
[0117] 上記空調回路(100)へ流入した冷媒は、空調膨張弁(102)を通過する際に減圧さ れてカも空調熱交 (101)へ導入される。この空調熱交 (101)では、冷媒が 室内空気から吸熱して蒸発する。その際、この空調熱交換器(101)では、冷媒の蒸 発温度が例えば 5°C程度に設定される。上記空調ユニット(12)では、空調熱交翻( 101)で冷却された室内空気が店内へ供給される。  [0117] The refrigerant that has flowed into the air conditioning circuit (100) is depressurized when passing through the air conditioning expansion valve (102), and the refrigerant is also introduced into the air conditioning heat exchange (101). In the air conditioning heat exchange (101), the refrigerant absorbs heat from room air and evaporates. At this time, in the air-conditioning heat exchanger (101), the evaporation temperature of the refrigerant is set to, for example, about 5 ° C. In the air conditioning unit (12), the room air cooled by the air conditioning heat exchange (101) is supplied into the store.
[0118] 上記空調熱交換器 (101)で蒸発した冷媒は、第 2ガス側連絡配管 (24)を通って室 外回路 (40)へ流入し、その後、第 1四路切換弁 (51)と第 2四路切換弁 (52)を順に通 過して第 3吸入管 (63)へ流入する。この第 3吸入管 (63)へ流入した冷媒は、一部が 第 1分岐管 (63a)を通って第 2固定容量圧縮機 (43)に吸入され、残りが第 2分岐管 (6 3b)と第 3四路切換弁 (53)と第 2吸入管 (62)とを順に通過して第 1固定容量圧縮機 (4 2)に吸入される。  [0118] The refrigerant evaporated in the air-conditioning heat exchanger (101) flows into the outdoor circuit (40) through the second gas side communication pipe (24), and then flows into the first four-way switching valve (51). And the second four-way switching valve (52), and flows into the third suction pipe (63). Part of the refrigerant flowing into the third suction pipe (63) passes through the first branch pipe (63a) and is sucked into the second fixed capacity compressor (43), and the remainder flows into the second branch pipe (63b). And the third four-way switching valve (53) and the second suction pipe (62), and are sucked into the first fixed displacement compressor (42).
[0119] 上記冷蔵回路(110)へ流入した冷媒は、冷蔵膨張弁(112)を通過する際に減圧さ れてカゝら冷蔵熱交 m^ (i i i)へ導入される。この冷蔵熱交 m^ (i i i)では、冷媒が 庫内空気から吸熱して蒸発する。その際、この冷蔵熱交換器 (111)では、冷媒の蒸 発温度が例えば 5°C程度に設定される。この冷蔵熱交換器(111)で蒸発した冷媒 は、第 1ガス側連絡配管 (23)へ流入する。上記冷蔵ショーケース(13)では、冷蔵熱 交 (l l l)で冷却された庫内空気が庫内へ供給され、庫内温度が例えば 5°C程度 に保たれる。  [0119] The refrigerant that has flowed into the refrigeration circuit (110) is decompressed when passing through the refrigeration expansion valve (112), and is introduced into the cold refrigeration heat exchanger m ^ (iii). In this refrigeration heat exchange m ^ (iii), the refrigerant absorbs heat from the air in the refrigerator and evaporates. At this time, in the refrigeration heat exchanger (111), the evaporation temperature of the refrigerant is set to, for example, about 5 ° C. The refrigerant evaporated in the refrigeration heat exchanger (111) flows into the first gas side communication pipe (23). In the refrigerated showcase (13), the air in the refrigerator cooled by refrigeration heat exchange (ll) is supplied into the refrigerator, and the temperature in the refrigerator is maintained at, for example, about 5 ° C.
[0120] 上記冷凍回路(130)へ流入した冷媒は、冷凍膨張弁(132)を通過する際に減圧さ れてカも冷凍熱交 (131)へ導入される。この冷凍熱交 (131)では、冷媒が 庫内空気から吸熱して蒸発する。その際、この冷凍熱交換器 (131)では、冷媒の蒸 発温度が例えば 30°C程度に設定される。上記冷凍ショーケース(14)では、冷凍 熱交 (131)で冷却された庫内空気が庫内へ供給され、庫内温度が例えば 20 °C程度に保たれる。  [0120] The refrigerant that has flowed into the refrigeration circuit (130) is decompressed when passing through the refrigeration expansion valve (132), and the refrigerant is also introduced into the refrigeration heat exchanger (131). In this freezing heat exchange (131), the refrigerant absorbs heat from the air in the refrigerator and evaporates. At this time, in the refrigeration heat exchanger (131), the evaporation temperature of the refrigerant is set to, for example, about 30 ° C. In the freezer showcase (14), the air in the refrigerator cooled by the freezing heat exchange (131) is supplied into the refrigerator, and the temperature in the refrigerator is maintained at, for example, about 20 ° C.
[0121] 上記冷凍熱交換器(131)で蒸発した冷媒は、ブースタ回路(140)へ流入してブース タ圧縮機(141)へ吸入される。このブースタ圧縮機(141)で圧縮された冷媒は、吐出 管(144)を通って第 1ガス側連絡配管 (23)へ流入する。 [0122] 上記第 1ガス側連絡配管 (23)では、冷蔵回路(110)から送り込まれた冷媒と、ブー スタ回路(140)から送り込まれた冷媒とが合流する。そして、これらの冷媒は、第 1ガ ス側連絡配管 (23)を通過して室外回路 (40)の第 1吸入管 (61)へ流入する。この第 1 吸入管 (61)へ流入した冷媒は、その第 1分岐管 (61a)を通って可変容量圧縮機 (41) に吸入される。 [0121] The refrigerant evaporated in the refrigerating heat exchanger (131) flows into the booster circuit (140) and is sucked into the booster compressor (141). The refrigerant compressed by the booster compressor (141) flows into the first gas side communication pipe (23) through the discharge pipe (144). [0122] In the first gas side communication pipe (23), the refrigerant sent from the refrigeration circuit (110) and the refrigerant sent from the booster circuit (140) merge. Then, these refrigerants pass through the first gas side communication pipe (23) and flow into the first suction pipe (61) of the outdoor circuit (40). The refrigerant flowing into the first suction pipe (61) is sucked into the variable displacement compressor (41) through the first branch pipe (61a).
[0123] 〈第 1暖房運転〉  [0123] <First heating operation>
この第 1暖房運転は、冷蔵ショーケース(13)および冷凍ショーケース(14)において 庫内空気の冷却を行い、空調ユニット(12)で室内空気の加熱を行って店内を暖房す る運転である。  The first heating operation is an operation in which the inside of the refrigerator is cooled in the refrigerated showcase (13) and the frozen showcase (14), and the inside air is heated by the air conditioning unit (12) to heat the inside of the store. .
[0124] 図 3に示すように、室外回路 (40)では、第 1四路切換弁 (51)が第 2状態に、第 2四 路切換弁 (52)が第 1状態に、第 3四路切換弁 (53)が第 1状態にそれぞれ設定される 。また、上記室外膨張弁 (46)が全閉される一方、空調膨張弁(102)、冷蔵膨張弁(11 2)および冷凍膨張弁(132)の開度が適宜調節される。この状態において、可変容量 圧縮機 (41)およびブースタ圧縮機(141)が運転され、第 1固定容量圧縮機 (42)およ び第 2固定容量圧縮機 (43)が休止する。また、上記室外熱交換器 (44)は、冷媒が 送り込まれずに休止状態となる。この第 1暖房運転中には、過冷却ユニット(200)が 停止状態となる。  As shown in FIG. 3, in the outdoor circuit (40), the first four-way switching valve (51) is in the second state, the second four-way switching valve (52) is in the first state, and the third four-way switching valve (52) is in the third state. The path switching valves (53) are set to the first state, respectively. Further, while the outdoor expansion valve (46) is fully closed, the openings of the air conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) are appropriately adjusted. In this state, the variable capacity compressor (41) and the booster compressor (141) are operated, and the first fixed capacity compressor (42) and the second fixed capacity compressor (43) are stopped. In addition, the outdoor heat exchanger (44) enters a rest state without being supplied with the refrigerant. During this first heating operation, the subcooling unit (200) is in a stopped state.
[0125] 上記可変容量圧縮機 (41)力 吐出された冷媒は、第 1四路切換弁 (51)と第 2ガス 側連絡配管 (24)と順に通って空調回路(100)の空調熱交換器(101)へ導入され、室 内空気へ放熱して凝縮する。上記空調ユニット(12)では、空調熱交換器(101)でカロ 熱された室内空気が店内へ供給される。この空調熱交換器(101)で凝縮した冷媒は 、第 2液側連絡配管 (22)を通って冷蔵回路(110)と冷凍回路(130)とに分配される。  [0125] The above-mentioned variable capacity compressor (41) force The discharged refrigerant passes through the first four-way switching valve (51) and the second gas side communication pipe (24) in order, and exchanges air conditioning heat of the air conditioning circuit (100). It is introduced into the vessel (101) and releases heat to the indoor air to condense. In the air conditioning unit (12), the indoor air heated by heat in the air conditioning heat exchanger (101) is supplied into the store. The refrigerant condensed in the air-conditioning heat exchanger (101) is distributed to the refrigeration circuit (110) and the refrigeration circuit (130) through the second liquid-side communication pipe (22).
[0126] 上記冷蔵ショーケース(13)および冷凍ショーケース(14)では、上記冷房運転時と 同様に、庫内空気の冷却が行われる。上記冷蔵回路(110)へ流入した冷媒は、冷蔵 熱交換器 (111)で蒸発した後に第 1ガス側連絡配管 (23)へ流入する。一方、上記冷 凍回路(130)へ流入した冷媒は、冷凍熱交換器 (131)で蒸発した後にブースタ圧縮 機(141)で圧縮され、その後に第 1ガス側連絡配管 (23)へ流入する。この第 1ガス側 連絡配管 (23)へ流入した冷媒は、第 1吸入管 (61)を通過後に可変容量圧縮機 (41) に吸入されて圧縮される。 [0126] In the refrigerated showcase (13) and the frozen showcase (14), the air in the refrigerator is cooled as in the cooling operation. The refrigerant that has flowed into the refrigeration circuit (110) evaporates in the refrigeration heat exchanger (111) and then flows into the first gas side communication pipe (23). On the other hand, the refrigerant flowing into the refrigeration circuit (130) evaporates in the refrigeration heat exchanger (131), is compressed in the booster compressor (141), and then flows into the first gas side communication pipe (23). . The refrigerant flowing into the first gas side communication pipe (23) passes through the first suction pipe (61), and then passes through the variable capacity compressor (41). It is inhaled and compressed.
[0127] このように、第 1暖房運転では、冷蔵熱交換器 (111)および冷凍熱交換器 (131)に おいて冷媒が吸熱し、空調熱交換器(101)において冷媒が放熱する。そして、上記 冷蔵熱交換器(111)および冷凍熱交換器(131)で冷媒が庫内空気力 吸熱した熱を 利用して、店内の暖房が行われる。  As described above, in the first heating operation, the refrigerant absorbs heat in the refrigeration heat exchanger (111) and the refrigeration heat exchanger (131), and dissipates heat in the air conditioning heat exchanger (101). Then, the inside of the store is heated by utilizing the heat of the refrigerant absorbing the internal air power in the refrigerator heat exchanger (111) and the freezing heat exchanger (131).
[0128] 尚、第 1暖房運転中には、図 4に示すように、第 1固定容量圧縮機 (42)を運転して もよい。上記第 1固定容量圧縮機 (42)を運転する力否かは、冷蔵ショーケース(13) および冷凍ショーケース(14)における冷却負荷に応じて決定される。この場合には、 第 3四路切換弁 (53)が第 2状態に設定される。そして、上記第 1吸入管 (61)へ流入 した冷媒は、一部が第 1分岐管 (61a)を通って可変容量圧縮機 (41)に吸入され、残り が第 2分岐管 (61b)と第 3四路切換弁 (53)と第 2吸入管 (62)とを順に通って第 1固定 容量圧縮機 (42)へ吸入される。  [0128] During the first heating operation, as shown in Fig. 4, the first fixed displacement compressor (42) may be operated. Whether or not to operate the first fixed displacement compressor (42) is determined according to the cooling load in the refrigerated showcase (13) and the refrigerated showcase (14). In this case, the third four-way switching valve (53) is set to the second state. Then, a part of the refrigerant flowing into the first suction pipe (61) passes through the first branch pipe (61a) and is sucked into the variable displacement compressor (41), and the rest flows into the second branch pipe (61b). It is sucked into the first fixed displacement compressor (42) through the third four-way switching valve (53) and the second suction pipe (62) in order.
[0129] 〈第 2暖房運転〉  [0129] <Second heating operation>
この第 2暖房運転は、上記第 1暖房運転と同様に店内の暖房を行う運転である。こ の第 2暖房運転は、上記第 1暖房運転では暖房能力が不足する場合に行われる。  The second heating operation is an operation for heating the inside of the store similarly to the first heating operation. The second heating operation is performed when the first heating operation has insufficient heating capacity.
[0130] 図 5に示すように、室外回路 (40)では、第 1四路切換弁 (51)が第 2状態に、第 2四 路切換弁 (52)が第 1状態に、第 3四路切換弁 (53)が第 1状態にそれぞれ設定される 。また、上記室外膨張弁 (46)、空調膨張弁(102)、冷蔵膨張弁(112)および冷凍膨 張弁(132)の開度が適宜調節される。この状態において、可変容量圧縮機 (41)、第 2固定容量圧縮機 (43)およびブースタ圧縮機(141)が運転され、第 1固定容量圧縮 機 (42)が休止する。この第 1暖房運転中には、過冷却ユニット (200)が停止状態とな る。  [0130] As shown in Fig. 5, in the outdoor circuit (40), the first four-way switching valve (51) is in the second state, the second four-way switching valve (52) is in the first state, and the third four-way switching valve (52) is in the third state. The path switching valves (53) are set to the first state, respectively. Further, the opening degrees of the outdoor expansion valve (46), the air conditioning expansion valve (102), the refrigeration expansion valve (112), and the refrigeration expansion valve (132) are appropriately adjusted. In this state, the variable capacity compressor (41), the second fixed capacity compressor (43) and the booster compressor (141) are operated, and the first fixed capacity compressor (42) is stopped. During this first heating operation, the subcooling unit (200) is in a stopped state.
[0131] 上記可変容量圧縮機 (41)および第 2固定容量圧縮機 (43)カゝら吐出された冷媒は 、第 1四路切換弁と第 2ガス側連絡配管 (24)とを順に通って空調回路(100)の空調 熱交 (101)へ導入され、室内空気へ放熱して凝縮する。上記空調ユニット(12) では、空調熱交 (101)で加熱された室内空気が店内へ供給される。この空調熱 交 (101)で凝縮した冷媒は、第 2液側連絡配管 (22)へ流入する。この第 2液側 連絡配管 (22)へ流入した冷媒は、一部が冷蔵回路(110)と冷凍回路(130)とに分配 され、残りが過冷却ユニット(200)の冷媒通路 (205)へ導入される。 The refrigerant discharged from the variable displacement compressor (41) and the second fixed displacement compressor (43) passes through the first four-way switching valve and the second gas side communication pipe (24) in order. It is introduced into the air conditioning heat exchange (101) of the air conditioning circuit (100), and releases heat to indoor air to condense. In the air conditioning unit (12), the room air heated by the air conditioning heat exchange (101) is supplied into the store. The refrigerant condensed in the air conditioning heat exchange (101) flows into the second liquid side communication pipe (22). Part of the refrigerant flowing into the second liquid side communication pipe (22) is distributed to the refrigeration circuit (110) and the refrigeration circuit (130). Then, the remainder is introduced into the refrigerant passage (205) of the subcooling unit (200).
[0132] 上記冷蔵ショーケース(13)および冷凍ショーケース(14)では、上記冷房運転時と 同様に、庫内空気の冷却が行われる。上記冷蔵回路(110)へ流入した冷媒は、冷蔵 熱交換器 (111)で蒸発した後に第 1ガス側連絡配管 (23)へ流入する。一方、上記冷 凍回路(130)へ流入した冷媒は、冷凍熱交換器 (131)で蒸発した後にブースタ圧縮 機(141)で圧縮され、その後に第 1ガス側連絡配管 (23)へ流入する。そして、この第 1ガス側連絡配管 (23)へ流入した冷媒は、第 1吸入管 (61)を通過後に可変容量圧 縮機 (41)に吸入されて圧縮される。  [0132] In the refrigerated showcase (13) and the frozen showcase (14), the air in the refrigerator is cooled as in the cooling operation. The refrigerant that has flowed into the refrigeration circuit (110) evaporates in the refrigeration heat exchanger (111) and then flows into the first gas side communication pipe (23). On the other hand, the refrigerant flowing into the refrigeration circuit (130) evaporates in the refrigeration heat exchanger (131), is compressed in the booster compressor (141), and then flows into the first gas side communication pipe (23). . Then, the refrigerant that has flowed into the first gas side communication pipe (23) passes through the first suction pipe (61), is drawn into the variable displacement compressor (41), and is compressed.
[0133] 上記過冷却ユニット (200)の冷媒通路 (205)へ流入した冷媒は、第 1液側連絡配管  [0133] The refrigerant that has flowed into the refrigerant passage (205) of the subcooling unit (200) is connected to the first liquid side communication pipe.
(21)と第 3液管 (83)とを順に通過してレシーバ (45)へ流入し、その後に第 2液管 (82 )を通って第 4液管 (84)へ流入する。この第 4液管 (84)へ流入した冷媒は、室外膨張 弁 (46)を通過する際に減圧されてカゝら室外熱交 (44)へ導入され、室外空気か ら吸熱して蒸発する。この室外熱交換器 (44)で蒸発した冷媒は、第 1四路切換弁 (5 1)と第 2四路切換弁 (52)とを順に通過して第 2吸入管 (62)へ流入し、第 2固定容量 圧縮機 (43)へ吸入されて圧縮される。  The liquid (21) passes through the third liquid pipe (83) in order, flows into the receiver (45), and then flows into the fourth liquid pipe (84) through the second liquid pipe (82). The refrigerant flowing into the fourth liquid pipe (84) is decompressed when passing through the outdoor expansion valve (46), is introduced into the outdoor heat exchange (44), and absorbs heat from outdoor air to evaporate. . The refrigerant evaporated in the outdoor heat exchanger (44) sequentially passes through the first four-way switching valve (51) and the second four-way switching valve (52) and flows into the second suction pipe (62). Is sucked into the second fixed capacity compressor (43) and compressed.
[0134] このように、第 2暖房運転では、冷蔵熱交換器 (111)、冷凍熱交換器 (131)および 室外熱交換器 (44)において冷媒が吸熱し、空調熱交換器(101)において冷媒が放 熱する。そして、上記冷蔵熱交換器 (111)および冷凍熱交換器 (131)で冷媒が庫内 空気から吸熱した熱と、室外熱交換器 (44)で冷媒が室外空気から吸熱した熱とを利 用して、店内の暖房が行われる。  [0134] As described above, in the second heating operation, the refrigerant absorbs heat in the refrigeration heat exchanger (111), the refrigeration heat exchanger (131), and the outdoor heat exchanger (44), and the refrigerant absorbs heat in the air conditioning heat exchanger (101). The refrigerant releases heat. Then, the heat of the refrigerant absorbing heat from the indoor air in the refrigeration heat exchanger (111) and the freezing heat exchanger (131) and the heat of the refrigerant absorbing heat from the outdoor air in the outdoor heat exchanger (44) are used. Then, the inside of the store is heated.
[0135] 一過冷却ユニットの運転動作  [0135] Operation of subcooling unit
上記過冷却ユニット (200)の運転動作にっ 、て説明する。この過冷却ユニット (200) の運転状態では、過冷却用圧縮機 (221)が運転されると共に、過冷却用膨張弁 (223 )の開度が適宜調節される。  The operation of the supercooling unit (200) will be described. In the operating state of the subcooling unit (200), the supercooling compressor (221) is operated, and the opening of the supercooling expansion valve (223) is appropriately adjusted.
[0136] 図 1に示すように、過冷却用圧縮機 (221)から吐出された過冷却用冷媒は、過冷却 用室外熱交換器 (222)で室外空気へ放熱して凝縮する。この過冷却用室外熱交換 器 (222)で凝縮した過冷却用冷媒は、過冷却用膨張弁 (223)を通過する際に減圧さ れてから過冷却用熱交換器 (210)の第 1流路 (211)へ流入する。この過冷却用熱交 (210)の第 1流路 (211)では、過冷却用冷媒が第 2流路 (212)の冷媒力 吸熱し て蒸発する。この過冷却用熱交換器 (210)で蒸発した過冷却用冷媒は、過冷却用圧 縮機 (221)へ吸入されて圧縮される。 As shown in FIG. 1, the supercooling refrigerant discharged from the supercooling compressor (221) radiates heat to outdoor air in the supercooling outdoor heat exchanger (222) and condenses. The subcooling refrigerant condensed in the subcooling outdoor heat exchanger (222) is decompressed when passing through the subcooling expansion valve (223), and then is discharged to the first subcooling heat exchanger (210). Flow into the channel (211). This supercooling heat exchange In the first flow path (211) of (210), the supercooling refrigerant evaporates by absorbing the refrigerant power of the second flow path (212). The subcooling refrigerant evaporated in the subcooling heat exchanger (210) is drawn into the subcooling compressor (221) and compressed.
[0137] 上述したように、コントローラ (240)は、入力された外気温度に基づき、過冷却用圧 縮機 (221)の容量を制御する。ここでは、コントローラ (240)の制御動作について、図 6を参照しながら説明する。このコントローラ (240)の制御動作は、一定の時間間隔( 例えば 30秒間隔)で繰り返し行われる。  As described above, the controller (240) controls the capacity of the subcooling compressor (221) based on the input outside air temperature. Here, the control operation of the controller (240) will be described with reference to FIG. The control operation of the controller (240) is repeatedly performed at fixed time intervals (for example, at intervals of 30 seconds).
[0138] 最初に、制御がスタートすると、ステップ ST1において、冷媒温度センサ(236)の検 出温度 (Tout)力もコントローラ (240)の設定部 (241)で設定した目標冷却温度 (Eom) を引いた値が算出される。本実施形態では、図 7に示すように、上記目標冷却温度( Eom)が設定される。具体的に、外気温度が 25°C以下と割と低い場合は、目標冷却 温度 (Eom)が 25°Cに設定され、外気温度が 40°C以上と高い場合は、目標冷却温度 (Eom)が 0°Cに設定される。また、外気温度が 25°C力 40°Cの範囲では、目標冷却 温度 (Eom)が 25°C力 0°Cへと比例的に低下するように設定される。なお、上記目標 冷却温度(Eom)の設定値にっ 、ては、これに限られるものではな!/、。  [0138] First, when the control starts, in step ST1, the detected temperature (Tout) force of the refrigerant temperature sensor (236) also subtracts the target cooling temperature (Eom) set by the setting unit (241) of the controller (240). Is calculated. In the present embodiment, as shown in FIG. 7, the target cooling temperature (Eom) is set. Specifically, the target cooling temperature (Eom) is set to 25 ° C if the outside air temperature is relatively low at 25 ° C or less, and the target cooling temperature (Eom) if the outside air temperature is high at 40 ° C or more. Is set to 0 ° C. When the outside air temperature is in the range of 25 ° C and 40 ° C, the target cooling temperature (Eom) is set so as to decrease proportionally to 25 ° C and 0 ° C. The set value of the target cooling temperature (Eom) is not limited to this value! /.
[0139] 上記ステップ ST1において、検出温度 (Tout)と目標冷却温度 (Eom)との差が「一 1 . 0未満」である場合は、ステップ ST2へ移行し、「 + 1. 0超」である場合は、ステップ ST3へ移行し、「― 1. 0〜+ 1. 0」である場合は、リターンして制御が終了する。つま り、上記冷凍装置(10)の冷媒が過剰に冷却されて冷房能力等が過大となっている場 合は、ステップ ST2へ移行し、冷凍装置(10)の冷媒が冷却不足で冷房能力等が不 足している場合は、ステップ ST3へ移行する。また、上記「― 1. 0〜+ 1. 0」の範囲 は、過冷却用圧縮機 (221)の運転周波数を変更しない無変化領域であり、この設定 幅は、例えば「ー1. 5〜+ 1. 5」と「ー2. 0〜+ 2. 0」とに切換可能である。その場合 、「― 1. 0未満」や「 + 1. 0超」の設定値もそれに応じて切り換わることになる。  [0139] In step ST1, if the difference between the detected temperature (Tout) and the target cooling temperature (Eom) is "less than 11.0", the process proceeds to step ST2, and the process proceeds to "more than +1.0". If there is, the process proceeds to step ST3, and if it is “−1.0 to +1.0”, the process returns and the control ends. That is, if the cooling capacity of the refrigeration system (10) is excessively cooled and the cooling capacity is excessive, the process proceeds to step ST2, and the cooling capacity of the refrigeration system (10) is insufficient due to insufficient cooling of the cooling medium. If is not enough, move to step ST3. The range of “−1.0 to +1.0” is a non-change range where the operating frequency of the supercooling compressor (221) is not changed.The setting range is, for example, “−1.5 to +1.5 ”and“ −2.0 to +2.0 ”. In that case, the set values of “less than −1.0” and “more than +1.0” are also switched accordingly.
[0140] 上記ステップ ST2では、過冷却用圧縮機 (221)の運転周波数が最低周波数か否か を判定し、最低周波数であると判定すると、リターンして制御が終了し、最低周波数 でないと判定すると、ステップ ST4へ移行する。このステップ ST4では、コントローラ( 240)の制御部 (242)により、過冷却用圧縮機 (221)の運転周波数が 1段階下げられ る。これにより、冷凍装置(10)の冷媒の冷却温度が上昇するので、過剰状態であつ た冷房能力等を負荷に応じた適切な能力に低下させることができる。 [0140] In step ST2, it is determined whether or not the operation frequency of the subcooling compressor (221) is the lowest frequency. If it is determined that the operation frequency is the lowest frequency, the process returns and the control is terminated. Then, the process proceeds to step ST4. In this step ST4, the operating frequency of the subcooling compressor (221) is reduced by one step by the control unit (242) of the controller (240). The As a result, the cooling temperature of the refrigerant in the refrigeration system (10) increases, so that the cooling capacity or the like that has been in an excessive state can be reduced to an appropriate capacity according to the load.
[0141] 上記ステップ ST3では、過冷却用圧縮機 (221)の運転周波数が最高周波数か否か を判定し、最高周波数であると判定すると、リターンして制御が終了し、最高周波数 でないと判定すると、ステップ ST5へ移行する。このステップ ST5では、コントローラ( 240)の制御部 (242)により、過冷却用圧縮機 (221)の運転周波数が 1段階上げられ る。これにより、冷凍装置(10)の冷媒の冷却温度が低下するので、不足状態であつ た冷房能力等を負荷に応じた適切な能力に増大させることができる。なお、本実施形 態では、過冷却用圧縮機 (221)の運転周波数が 20段階に変更可能になっている。  [0141] In step ST3, it is determined whether or not the operating frequency of the subcooling compressor (221) is the highest frequency. If it is determined that the operating frequency is the highest frequency, the process returns and the control is terminated, and it is determined that the frequency is not the highest frequency. Then, the process proceeds to step ST5. In step ST5, the operating frequency of the subcooling compressor (221) is increased by one step by the control unit (242) of the controller (240). As a result, the cooling temperature of the refrigerant in the refrigeration system (10) decreases, so that the cooling capacity or the like that has been in an insufficient state can be increased to an appropriate capacity according to the load. In this embodiment, the operating frequency of the supercooling compressor (221) can be changed in 20 steps.
[0142] また、上記冷媒温度センサ (236)の故障等により過冷却用冷媒の検出温度が正確 に検出できない場合、ステップ ST1では、吸入圧力センサ(234)の検出圧力を用い て定めた設定温度 (Tout)から設定部 (241)の目標冷却温度 (Eom)を引いた値が算 出される。これ以降の制御については、上述した制御内容と同様である。  If the detected temperature of the supercooling refrigerant cannot be accurately detected due to a failure of the refrigerant temperature sensor (236) or the like, in Step ST1, the set temperature determined using the detected pressure of the suction pressure sensor (234) is determined. (Tout) minus the target cooling temperature (Eom) of the setting part (241) is calculated. The subsequent control is the same as the control described above.
[0143] 一実施形態の効果  [0143] Effects of one embodiment
以上説明したように、本実施形態によれば、過冷却ユニット(200)において、該過冷 却ユニット (200)に設けられたセンサの検出値である外気温度、すなわち過冷却ュ- ット (200)内で得られる情報に基づ!/、て過冷却用圧縮機 (221)の運転制御を行って 冷凍装置(10)の冷媒の冷却温度を調整するようにしたので、室外ユニット(11)や空 調ユニット(12)などの冷凍装置(10)との間で信号の授受などを行わなくても、空調ュ ニット(12)などの負荷状態に応じて適切な運転を行うことができる。したがって、上記 過冷却ユニット (200)を冷凍装置(10)に取り付ける際には、冷凍装置(10)の第 1,第 2液側連絡配管(21,22)に過冷却ユニット(200)の冷媒通路 (205)を接続するだけで よぐ冷凍装置(10)と過冷却ユニット (200)の間で信号を授受するための通信用配線 を敷設する必要が無くなる。  As described above, according to the present embodiment, in the subcooling unit (200), the outside air temperature which is the detection value of the sensor provided in the subcooling unit (200), that is, the subcooling unit (200) Based on the information obtained in 200), the operation of the supercooling compressor (221) was controlled to adjust the cooling temperature of the refrigerant in the refrigeration system (10). ) And the air conditioner unit (12) can be operated properly according to the load condition of the air conditioning unit (12) without sending / receiving signals to / from the refrigeration system (10). . Therefore, when attaching the subcooling unit (200) to the refrigeration system (10), the refrigerant of the subcooling unit (200) is connected to the first and second liquid side communication pipes (21, 22) of the refrigeration system (10). By simply connecting the passage (205), there is no need to lay communication wiring for transmitting and receiving signals between the refrigeration system (10) and the supercooling unit (200).
[0144] この結果、本実施形態によれば、過冷却ユニット(200)を冷凍装置(10)に取り付け る際の作業工数を削減することができ、更には誤配線等の設置作業時の人的ミスに よるトラブルを未然に防止することができる。  As a result, according to the present embodiment, it is possible to reduce the number of man-hours for attaching the supercooling unit (200) to the refrigeration system (10), and furthermore, it is possible to reduce the man-hour required for installation work such as incorrect wiring. Troubles caused by mistakes can be prevented beforehand.
[0145] さらに、上記コントローラ (240)は、冷媒の検出温度 (Tout)と外気温度によって定め た目標冷却温度 (Eom)との差に基づ 、て過冷却用圧縮機 (221)の運転制御を行うよ うにしたので、これもまた過冷却ユニット(200)内で得られる情報だけで確実に冷却能 力の調整を行うことができる。 [0145] Further, the controller (240) determines the detected temperature (Tout) of the refrigerant and the outside air temperature. Based on the difference from the target cooling temperature (Eom), the operation of the subcooling compressor (221) is controlled, so that this is also ensured only by the information obtained in the subcooling unit (200). The cooling capacity can be adjusted in a short time.
[0146] また、上記冷媒温度センサ (236)が異常状態となり検出不能となった場合でも、過 冷却ユニット (200)内に設けられた吸入圧力センサ(234)の検出圧力(LP)における 過冷却用冷媒の飽和温度 (TG)によって定めた設定温度を冷媒の検出温度としてみ なすようにしたので、一層確実に冷却能力の調整を行うことができる。  [0146] Even when the refrigerant temperature sensor (236) is in an abnormal state and cannot be detected, the supercooling at the detected pressure (LP) of the suction pressure sensor (234) provided in the subcooling unit (200) is performed. Since the set temperature determined by the saturation temperature (TG) of the refrigerant for use is regarded as the detected temperature of the refrigerant, the cooling capacity can be more reliably adjusted.
[0147] ここで、過冷却ユニット (200)と冷凍装置(10)の間で信号を授受するためには、過 冷却ユニット (200)だけでなく冷凍装置(10)〖こも通信インターフェースが必要となる。 このため、運転制御に冷凍装置(10)からの信号入力が必要な過冷却ユニット(200) については、適用可能な冷凍装置(10)の機種が制限されることとなり、過冷却ュニッ ト(200)の使 、勝手が悪くなると!、う問題もあった。  [0147] Here, in order to exchange signals between the subcooling unit (200) and the refrigeration unit (10), a communication interface is required not only for the subcooling unit (200) but also for the refrigeration unit (10). Become. For this reason, for the supercooling unit (200) that requires a signal input from the refrigeration unit (10) for operation control, applicable refrigeration unit (10) models are limited, and the subcooling unit (200) is limited. There was also a problem with the use of the parentheses.
[0148] これに対し、本実施形態の過冷却ユニット (200)は、冷凍装置(10)との間における 信号の授受を全く必要とせず、取り付け対象となる冷凍装置(10)について制約を受 けなくてすむ。したがって、過冷却ユニット(200)の使い勝手を大幅に向上させること ができる。  [0148] On the other hand, the supercooling unit (200) of the present embodiment does not require any signal exchange with the refrigeration apparatus (10), and is restricted by the refrigeration apparatus (10) to be attached. You don't have to. Therefore, the usability of the supercooling unit (200) can be greatly improved.
[0149] 実施形態の変形例 1  [0149] Modification Example 1 of Embodiment
本変形例 1は、過冷却用圧縮機 (221)の制御に代えて、過冷却用室外熱交換器 (2 22)の室外ファン (230)の運転周波数を制御することによって過冷却用熱交換器 (210 )における過冷却用冷媒の流量を調整するようにしたものである。つまり、本変形例の 室外ファン (230)は、ファンモータの運転周波数を変化させることによって容量が可 変となる。  In the first modification, instead of controlling the supercooling compressor (221), the operating frequency of the outdoor fan (230) of the subcooling outdoor heat exchanger (2 22) is controlled to The flow rate of the subcooling refrigerant in the vessel (210) is adjusted. That is, the capacity of the outdoor fan (230) of the present modified example is variable by changing the operating frequency of the fan motor.
[0150] 具体的に、上記室外ファン (230)の運転周波数を低下させれば、過冷却用冷媒回 路 (220)における高圧圧力が上昇して過冷却用冷媒の循環量が増大する。つまり、 上記過冷却用熱交換器 (210)における過冷却用冷媒の流量が増大する。これにより 、過冷却用熱交換器 (210)における過冷却用冷媒と冷凍装置(10)の冷媒との熱交 換量が増大するので、冷凍装置(10)の冷媒の冷却温度が低下し、空調ユニット(12) の冷房能力等が増大することになる。逆に、上記室外ファン (230)の運転周波数を増 大させれば、過冷却用冷媒回路 (220)における高圧圧力が低下して過冷却用冷媒 の循環量が減少する。つまり、上記過冷却用熱交換器 (210)における過冷却用冷媒 の流量が減少する。これにより、過冷却用熱交換器 (210)における過冷却用冷媒と 冷凍装置(10)の冷媒との熱交換量が減少するので、冷凍装置(10)の冷媒の冷却温 度が上昇し、空調ユニット(12)の冷房能力等が低下することになる。 [0150] Specifically, when the operating frequency of the outdoor fan (230) is reduced, the high-pressure pressure in the subcooling refrigerant circuit (220) increases, and the circulation amount of the subcooling refrigerant increases. That is, the flow rate of the subcooling refrigerant in the subcooling heat exchanger (210) increases. As a result, the amount of heat exchange between the supercooling refrigerant in the supercooling heat exchanger (210) and the refrigerant in the refrigerating device (10) increases, and the cooling temperature of the refrigerant in the refrigerating device (10) decreases, The cooling capacity of the air conditioning unit (12) will be increased. Conversely, increase the operating frequency of the outdoor fan (230). If it is increased, the high pressure in the subcooling refrigerant circuit (220) decreases, and the circulation amount of the supercooling refrigerant decreases. That is, the flow rate of the subcooling refrigerant in the subcooling heat exchanger (210) decreases. As a result, the amount of heat exchange between the supercooling refrigerant in the supercooling heat exchanger (210) and the refrigerant in the refrigeration system (10) decreases, and the cooling temperature of the refrigerant in the refrigeration system (10) increases, The cooling capacity and the like of the air conditioning unit (12) will be reduced.
[0151] 本変形例の場合、コントローラ(240)の制御動作は次のようになる。図 6のステップ S T2では、上記室外ファン (230)の運転周波数が最高周波数か否かを判定し、最高周 波数であると判定すると、リターンして制御が終了し、最高周波数でないと判定すると 、ステップ ST4へ移行する。このステップ ST4では、コントローラ(240)の制御部(242 )により、室外ファン (230)の運転周波数が 1段階上げられる。これにより、冷凍装置( 10)の冷媒の冷却温度が上昇するので、過剰状態であった冷房能力等を負荷に応じ た適切な能力に低下させることができる。  In the case of this modification, the control operation of the controller (240) is as follows. In step ST2 of FIG. 6, it is determined whether or not the operating frequency of the outdoor fan (230) is the highest frequency.If it is determined that the operating frequency is the highest frequency, the process returns and the control is terminated. Then, the process proceeds to step ST4. In this step ST4, the operating frequency of the outdoor fan (230) is increased by one step by the control unit (242) of the controller (240). As a result, the cooling temperature of the refrigerant in the refrigeration system (10) rises, so that the cooling capacity or the like that was in an excessive state can be reduced to an appropriate capacity according to the load.
[0152] 上記ステップ ST3では、室外ファン (230)の運転周波数が最低周波数力否かを判 定し、最低周波数であると判定すると、リターンして制御が終了し、最低周波数でな いと判定すると、ステップ ST5へ移行する。このステップ ST5では、コントローラ(240) の制御部(242)により、室外ファン (230)の運転周波数が 1段階下げられる。これによ り、冷凍装置(10)の冷媒の冷却温度が低下するので、不足状態であった冷房能力 等を負荷に応じた適切な能力に増大させることができる。その他の構成、作用および 効果は実施形態と同様である。  [0152] In step ST3, it is determined whether or not the operation frequency of the outdoor fan (230) is the lowest frequency power, and if it is determined that the operation frequency is the lowest frequency, the process returns and the control ends, and if it is determined that the operation frequency is not the lowest frequency. Then, the process proceeds to step ST5. In this step ST5, the operating frequency of the outdoor fan (230) is reduced by one step by the control unit (242) of the controller (240). As a result, the cooling temperature of the refrigerant in the refrigeration system (10) decreases, so that the insufficient cooling capacity and the like can be increased to an appropriate capacity according to the load. Other configurations, operations and effects are the same as those of the embodiment.
[0153] なお、本発明は、過冷却用圧縮機 (221)および室外ファン (230)の両方を制御する ことによって過冷却用熱交換器 (210)における過冷却用冷媒の流量を調整するよう にしてもよい。この場合、冷媒の冷却温度の制御性が高まる。  [0153] It should be noted that the present invention adjusts the flow rate of the subcooling refrigerant in the supercooling heat exchanger (210) by controlling both the subcooling compressor (221) and the outdoor fan (230). It may be. In this case, the controllability of the cooling temperature of the refrigerant is improved.
[0154] 実施形態の変形例 2—  [0154] Modification 2 of Embodiment 2
本変形例 2は、図示しないが、上記実施形態の冷却用流体回路の構成を変更した ものである。上記実施形態では冷却用流体回路を冷媒回路により構成したが、本変 形例では冷却水が流れる冷却水回路により構成するようにした。具体的に、この冷却 水回路は、過冷却用熱交換器 (210)およびポンプを備え、該ポンプによってクーリン グタワーの冷却水が過冷却用熱交換器 (210)との間で循環するように構成されてい る。そして、上記過冷却用熱交換器 (210)において、冷却水が冷媒通路 (205)の冷 媒と熱交換して該冷媒を冷却する。つまり、本変形例の冷却用流体回路では、冷却 水が冷却用流体として流れる。 Although not shown, Modification 2 is a modification of the configuration of the cooling fluid circuit of the above embodiment. In the above embodiment, the cooling fluid circuit is configured by the refrigerant circuit, but in the present modified example, the cooling fluid circuit is configured by the cooling water circuit through which the cooling water flows. Specifically, the cooling water circuit includes a subcooling heat exchanger (210) and a pump, and the pump circulates cooling water of the cooling tower to and from the subcooling heat exchanger (210). Is composed The Then, in the supercooling heat exchanger (210), the cooling water exchanges heat with the refrigerant in the refrigerant passage (205) to cool the refrigerant. That is, in the cooling fluid circuit of the present modification, the cooling water flows as the cooling fluid.
[0155] この変形例において、例えば、外気温度が高い場合には、ポンプの運転周波数を 増大させて過冷却用熱交 (210)における冷却水の流量を増大させることにより、 冷媒の冷却温度が低下させて空調ユニット(12)の冷房能力等を高める。逆に、外気 温度が低い場合には、ポンプの運転周波数を減少させて過冷却用熱交換器 (210) における冷却水の流量を減少させることにより、冷媒の冷却温度が上昇させて空調 ユニット(12)の冷房能力等を低下させる。その他の構成、作用および効果は実施形 態と同様である。 In this modification, for example, when the outside air temperature is high, the operating frequency of the pump is increased to increase the flow rate of the cooling water in the supercooling heat exchange (210), thereby reducing the cooling temperature of the refrigerant. By lowering it, the cooling capacity of the air conditioning unit (12) is increased. Conversely, when the outside air temperature is low, the operation frequency of the pump is reduced to reduce the flow rate of the cooling water in the supercooling heat exchanger (210), thereby increasing the cooling temperature of the refrigerant and causing the air conditioning unit ( 12) Decrease the cooling capacity. Other configurations, operations and effects are the same as those of the embodiment.
[0156] なお、本変形例において、コントローラ (240)の設定部(241)は、外気温度の代わり に、過冷却用熱交換器 (210)で冷却した後の冷却水の温度を過冷却用熱交換器 (2 10)の周囲条件として用いるようにしてもよ!/、。  [0156] In this modification, the setting unit (241) of the controller (240) uses, instead of the outside air temperature, the temperature of the cooling water after cooling by the supercooling heat exchanger (210). It may be used as the ambient condition of the heat exchanger (2 10)! / ,.
[0157] 《その他の実施形態》  << Other Embodiments >>
上記実施形態では、冷媒温度センサ(236)が異常の場合、吸入圧力センサ(234) の検出圧力(LP)および吸入温度センサ(235)の検出温度 (Ti)の何れかがコントロー ラ(240)の制御部(242)に入力されるようにしたが、両方の検出値が入力されるように してもよい。その場合、先ず、冷媒温度センサ(236)が異常の場合は、吸入圧力セン サ(234)の検出圧力(LP)を用い、冷媒温度センサ(236)および吸入圧力センサ (234 )の両方が異常の場合は、吸入温度センサ(235)の検出温度 (Ή)を用いるようにする  In the above embodiment, when the refrigerant temperature sensor (236) is abnormal, one of the detected pressure (LP) of the suction pressure sensor (234) and the detected temperature (Ti) of the suction temperature sensor (235) is controlled by the controller (240). Although the control unit (242) is configured to input the two detection values, it is also possible to input both detection values. In that case, first, when the refrigerant temperature sensor (236) is abnormal, the detected pressure (LP) of the suction pressure sensor (234) is used, and both the refrigerant temperature sensor (236) and the suction pressure sensor (234) are abnormal. In the case of, use the detected temperature (Ή) of the suction temperature sensor (235).
[0158] また、上記実施形態やその変形例にお!、て、冷媒温度センサ(236)の検出温度 (T out)は入力せずに、吸入圧力センサ (234)の検出圧力(LP)または吸入温度センサ( 235)の検出温度 (Ή)だけを制御部(242)に入力するようにしてもよい。この場合、冷 媒温度センサ (236)の正常および異常に関係なぐその検出圧力(LP)または検出温 度 (Ti)により定めた設定温度 (Tout)と目標冷却温度 (Eom)との差が基準となって過 冷却用圧縮機 (221)や室外ファン (230)が制御される。 In the above-described embodiment and its modifications, the detected temperature (T out) of the refrigerant temperature sensor (236) is not input, and the detected pressure (LP) or the detected pressure (LP) of the suction pressure sensor (234) is not input. Only the detected temperature (Ή) of the suction temperature sensor (235) may be input to the control unit (242). In this case, the difference between the set temperature (Tout) determined by the detected pressure (LP) or detected temperature (Ti) and the target cooling temperature (Eom), which is related to the normal and abnormal state of the coolant temperature sensor (236), is used as a reference. As a result, the supercooling compressor (221) and the outdoor fan (230) are controlled.
[0159] また、上記実施形態の過冷却用冷媒回路 (220)において、四路切換弁などを設け て冷媒循環を可逆に構成すれば、冷媒通路 (205)を第 1ガス側連絡配管 (23)や第 2 ガス側連絡配管 (24)のガス側の連絡配管に接続することにより、冷凍装置(10)の冷 媒を加熱することができる。したがって、室外ユニット(11)の各圧縮機 (41, " への いわゆる液バックを防止することができる。このように、本発明に係る過冷却ユニット (2 00)は、過冷却用冷媒回路 (220)の冷媒循環を可逆に構成することにより、必要に応 じて冷媒の冷却装置または加熱装置を切り換えることができる。 [0159] In the supercooling refrigerant circuit (220) of the above embodiment, a four-way switching valve or the like is provided. If the refrigerant circulation is configured to be reversible, by connecting the refrigerant passage (205) to the gas side communication pipe of the first gas side communication pipe (23) and the second gas side communication pipe (24), the refrigeration system ( The coolant of 10) can be heated. Therefore, the so-called liquid back to each compressor (41, ") of the outdoor unit (11) can be prevented. As described above, the supercooling unit (200) according to the present invention includes the supercooling refrigerant circuit ( By configuring the refrigerant circulation of 220) to be reversible, the cooling device or the heating device of the refrigerant can be switched as required.
[0160] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。  [0160] The above embodiments are essentially preferred examples, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0161] 以上説明したように、本発明は、冷凍装置の熱源ユニットから利用ユニットへ送られ る冷媒を冷却する過冷却装置にっ 、て有用である。 [0161] As described above, the present invention is useful for a supercooling device that cools a refrigerant sent from a heat source unit of a refrigerating device to a use unit.

Claims

請求の範囲 The scope of the claims
[1] 連絡配管によって接続された熱源ユニット(11)と利用ユニット(12,13,14)との間で 冷媒を循環させて蒸気圧縮式冷凍サイクルを行う冷凍装置(10)に取り付けられ、熱 源ユニット(11)力 利用ユニット(12,13,14)へ送られる上記冷凍装置(10)の冷媒を 冷却する過冷却装置であって、  [1] Installed in a refrigeration system (10) that performs a vapor compression refrigeration cycle by circulating refrigerant between the heat source unit (11) and the utilization units (12, 13, 14) connected by the communication pipe, A supercooling device for cooling the refrigerant of the refrigerating device (10) sent to the source unit (11) power utilization unit (12, 13, 14),
上記冷凍装置(10)の液側の連絡配管に接続される冷媒通路 (205)と、 上記冷媒通路 (205)の冷媒を冷却用流体と熱交換させて冷却する過冷却用熱交 (210)を備えた冷却用流体回路 (220)と、  A refrigerant passage (205) connected to the liquid-side communication pipe of the refrigerating device (10); and a supercooling heat exchange (210) for cooling the refrigerant in the refrigerant passage (205) by exchanging heat with a cooling fluid. A cooling fluid circuit (220) comprising:
上記過冷却用熱交換器 (210)における冷媒通路 (205)の冷媒の冷却温度を過冷 却用熱交換器 (210)の周囲条件に基づ 、て調整する制御手段 (240)とを備えて!/、る ことを特徴とする過冷却装置。  Control means (240) for adjusting the cooling temperature of the refrigerant in the refrigerant passage (205) in the supercooling heat exchanger (210) based on the ambient conditions of the subcooling heat exchanger (210). A supercooling device characterized by the following:
[2] 請求項 1において、 [2] In claim 1,
上記制御手段 (240)は、過冷却用熱交換器 (210)の周囲条件に応じて予め設定 された過冷却用熱交換器 (210)における冷媒通路 (205)の冷媒の目標冷却温度に 基づいて過冷却用熱交換器 (210)を流れる冷却用流体の流量を調節する制御部(2 42)を備えている  The control means (240) is based on a target cooling temperature of the refrigerant in the refrigerant passage (205) in the subcooling heat exchanger (210) set in advance according to the surrounding conditions of the subcooling heat exchanger (210). Control unit (242) for adjusting the flow rate of the cooling fluid flowing through the subcooling heat exchanger (210).
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[3] 請求項 2において、 [3] In claim 2,
上記冷却用流体回路は、容量可変な過冷却用圧縮機 (221)および熱源側熱交 換器 (222)を有し、冷却用流体としての過冷却用冷媒が循環して蒸気圧縮式冷凍サ イタルを行う過冷却用冷媒回路 (220)であり、  The cooling fluid circuit has a variable-capacity subcooling compressor (221) and a heat-source-side heat exchanger (222). It is a subcooling refrigerant circuit (220) that performs ital,
上記制御手段 (240)の制御部(242)は、目標冷却温度に基づ!/、て上記過冷却用 圧縮機 (221)の運転周波数を制御することによって上記過冷却用熱交換器 (210)を 流れる過冷却用冷媒の流量を調節する  The control unit (242) of the control means (240) controls the operating frequency of the subcooling compressor (221) based on the target cooling temperature to control the subcooling heat exchanger (210). Adjust the flow rate of the subcooling refrigerant flowing through
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[4] 請求項 2において、 [4] In claim 2,
上記冷却用流体回路は、容量可変な過冷却用圧縮機 (221)および熱源側熱交 換器 (222)を有し、冷却用流体としての過冷却用冷媒が循環して蒸気圧縮式冷凍サ イタルを行う過冷却用冷媒回路 (220)であり、 The cooling fluid circuit has a variable-capacity subcooling compressor (221) and a heat-source-side heat exchanger (222). It is a subcooling refrigerant circuit (220) that performs ital,
上記制御手段 (240)の制御部 (242)は、目標冷却温度に基づ!/、て上記熱源側熱 交換器 (222)のファン (230)の運転周波数を制御することによって上記過冷却用熱交 ^ (210)を流れる過冷却用冷媒の流量を調節する  The control unit (242) of the control means (240) controls the subcooling by controlling the operating frequency of the fan (230) of the heat source side heat exchanger (222) based on the target cooling temperature. Heat exchange ^ Adjust the flow rate of subcooling refrigerant flowing through (210)
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[5] 請求項 3において、 [5] In claim 3,
上記制御手段 (240)の制御部 (242)は、目標冷却温度と過冷却用熱交換器 (210 )で冷却された冷媒通路 (205)の冷媒の温度との差に基づ!/、て過冷却用圧縮機 (221 )の運転周波数を制御する  The control unit (242) of the control means (240) is based on the difference between the target cooling temperature and the temperature of the refrigerant in the refrigerant passage (205) cooled by the supercooling heat exchanger (210). Control the operating frequency of the subcooling compressor (221)
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[6] 請求項 3において、 [6] In claim 3,
上記制御手段 (240)の制御部 (242)は、目標冷却温度と過冷却用冷媒回路 (220 )の過冷却用冷媒の低圧圧力相当飽和温度により定めた設定温度との差に基づい て過冷却用圧縮機 (221)の運転周波数を制御する  The control unit (242) of the control means (240) performs supercooling based on a difference between the target cooling temperature and a set temperature determined by the saturation temperature corresponding to the low pressure of the supercooling refrigerant in the supercooling refrigerant circuit (220). The operating frequency of the compressor (221)
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[7] 請求項 3において、 [7] In claim 3,
上記制御手段 (240)の制御部 (242)は、目標冷却温度と過冷却用圧縮機 (221) の吸入温度により定めた設定温度との差に基づいて過冷却用圧縮機 (221)の運転 周波数を制御する  The control unit (242) of the control means (240) operates the subcooling compressor (221) based on a difference between the target cooling temperature and a set temperature determined by the suction temperature of the subcooling compressor (221). Control frequency
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[8] 請求項 4において、 [8] In claim 4,
上記制御手段 (240)の制御部 (242)は、目標冷却温度と過冷却用熱交換器 (210 )で冷却された冷媒通路 (205)の冷媒の温度との差に基づ!/、てファン (230)の運転周 波数を制御する  The control unit (242) of the control means (240) is based on the difference between the target cooling temperature and the temperature of the refrigerant in the refrigerant passage (205) cooled by the supercooling heat exchanger (210). Control the operating frequency of the fan (230)
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[9] 請求項 4において、 [9] In claim 4,
上記制御手段 (240)の制御部 (242)は、目標冷却温度と過冷却用冷媒回路 (220 )の過冷却用冷媒の低圧圧力相当飽和温度により定めた設定温度との差に基づい てファン (230)の運転周波数を制御する The control unit (242) of the control means (240) is configured to perform a control based on a difference between the target cooling temperature and a set temperature determined by a saturation temperature corresponding to a low-pressure pressure of the subcooling refrigerant in the subcooling refrigerant circuit (220). Control the operating frequency of the fan (230)
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[10] 請求項 4において、 [10] In claim 4,
上記制御手段 (240)の制御部 (242)は、目標冷却温度と過冷却用圧縮機 (221) の吸入温度により定めた設定温度との差に基づ 、てファン (230)の運転周波数を制 御する  The control unit (242) of the control means (240) adjusts the operating frequency of the fan (230) based on the difference between the target cooling temperature and the set temperature determined by the suction temperature of the subcooling compressor (221). Control
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[11] 請求項 1において、 [11] In claim 1,
上記過冷却用熱交換器 (210)の周囲条件は、外気温度である  The ambient condition of the supercooling heat exchanger (210) is the outside air temperature.
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[12] 請求項 1において、 [12] In claim 1,
上記過冷却用熱交換器 (210)の周囲条件は、冷媒通路 (205)の冷媒の流量であ る  The ambient condition of the supercooling heat exchanger (210) is the flow rate of the refrigerant in the refrigerant passage (205).
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[13] 請求項 1において、 [13] In claim 1,
上記過冷却用熱交換器 (210)の周囲条件は、過冷却用熱交換器 (210)で冷却さ れる前の冷媒通路 (205)の冷媒の温度、または過冷却用熱交換器 (210)で冷却され た後の冷媒通路 (205)の冷媒の温度である  The ambient conditions of the supercooling heat exchanger (210) may be the temperature of the refrigerant in the refrigerant passage (205) before being cooled by the supercooling heat exchanger (210) or the supercooling heat exchanger (210). Is the temperature of the refrigerant in the refrigerant passage (205)
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[14] 請求項 1において、 [14] In claim 1,
上記冷却用流体回路は、冷却用流体としての過冷却用冷媒が循環して蒸気圧縮 式冷凍サイクルを行う過冷却用冷媒回路 (220)であり、  The cooling fluid circuit is a supercooling refrigerant circuit (220) in which a supercooling refrigerant as a cooling fluid circulates to perform a vapor compression refrigeration cycle,
上記過冷却用熱交換器 (210)の周囲条件は、過冷却用冷媒回路 (220)における 過冷却用冷媒の低圧圧力または高圧圧力である  The ambient condition of the supercooling heat exchanger (210) is a low pressure or a high pressure of the supercooling refrigerant in the supercooling refrigerant circuit (220).
ことを特徴とする過冷却装置。  A supercooling device characterized by the above-mentioned.
[15] 請求項 1において、 [15] In claim 1,
上記冷却用流体回路は、冷却用流体としての過冷却用冷媒が循環して蒸気圧縮 式冷凍サイクルを行う過冷却用冷媒回路 (220)であり、 上記過冷却用熱交換器 (210)の周囲条件は、過冷却用熱交換器 (210)で冷媒通 路 (205)の冷媒を冷却した後の過冷却用冷媒の温度である The cooling fluid circuit is a supercooling refrigerant circuit (220) in which a supercooling refrigerant as a cooling fluid circulates to perform a vapor compression refrigeration cycle, The ambient condition of the supercooling heat exchanger (210) is the temperature of the supercooling refrigerant after the refrigerant in the refrigerant passage (205) is cooled by the supercooling heat exchanger (210).
ことを特徴とする過冷却装置。 A supercooling device characterized by the above-mentioned.
PCT/JP2005/010611 2004-06-11 2005-06-09 Supercooling apparatus WO2005121655A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05748824A EP1679479A4 (en) 2004-06-11 2005-06-09 Supercooling apparatus
AU2005252962A AU2005252962B2 (en) 2004-06-11 2005-06-09 Subcooling apparatus
US10/571,940 US20080229769A1 (en) 2004-06-11 2005-06-09 Subcooling Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-174579 2004-06-11
JP2004174579 2004-06-11

Publications (1)

Publication Number Publication Date
WO2005121655A1 true WO2005121655A1 (en) 2005-12-22

Family

ID=35503162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010611 WO2005121655A1 (en) 2004-06-11 2005-06-09 Supercooling apparatus

Country Status (6)

Country Link
US (1) US20080229769A1 (en)
EP (1) EP1679479A4 (en)
KR (1) KR100738780B1 (en)
CN (1) CN100375874C (en)
AU (1) AU2005252962B2 (en)
WO (1) WO2005121655A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080011004A1 (en) * 2006-07-12 2008-01-17 Gaetan Lesage Refrigeration system having adjustable refrigeration capacity
JP5405076B2 (en) * 2008-09-29 2014-02-05 三洋電機株式会社 Air conditioning refrigeration system
US8997514B2 (en) * 2009-04-03 2015-04-07 Mitsubishi Electric Corporation Air-conditioning apparatus with a control unit operating as an evaporator
US9797610B2 (en) * 2011-11-07 2017-10-24 Mitsubishi Electric Corporation Air-conditioning apparatus with regulation of injection flow rate
US9109816B2 (en) * 2012-02-23 2015-08-18 Systemes Lmp Inc. Mechanical subcooling of transcritical R-744 refrigeration systems with heat pump heat reclaim and floating head pressure
US9683768B2 (en) * 2012-03-27 2017-06-20 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6064412B2 (en) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル Air conditioner
JP5579243B2 (en) * 2012-10-26 2014-08-27 三菱電機株式会社 Refrigeration cycle equipment
EP3282208B1 (en) * 2015-04-28 2019-10-30 Daikin Industries, Ltd. Refrigeration apparatus
US11226144B2 (en) * 2018-05-18 2022-01-18 Systemes Lmp Inc. R-744 system with hot gas defrost by the transcritical compressors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208455A (en) * 1989-02-08 1990-08-20 Toshiba Corp Refrigerator
JPH0828984A (en) * 1994-07-14 1996-02-02 Toshiba Corp Air conditioner
JPH10185333A (en) * 1996-12-19 1998-07-14 Daikin Ind Ltd Air conditioning equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852974A (en) * 1971-12-03 1974-12-10 T Brown Refrigeration system with subcooler
US4178769A (en) * 1978-01-26 1979-12-18 The Trane Company System for producing refrigeration and a heated liquid and control therefor
US4338794A (en) * 1980-03-17 1982-07-13 Haasis Jr Hans High efficiency ice-making system
US5269153A (en) * 1991-05-22 1993-12-14 Artesian Building Systems, Inc. Apparatus for controlling space heating and/or space cooling and water heating
JPH06201176A (en) * 1992-12-28 1994-07-19 Toshiba Corp Air-conditioner
JPH0669966U (en) * 1993-03-12 1994-09-30 均 射落 Earthquake / tsunami generation model device
US5848537A (en) * 1997-08-22 1998-12-15 Carrier Corporation Variable refrigerant, intrastage compression heat pump
US6237359B1 (en) * 1998-10-08 2001-05-29 Thomas H. Hebert Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
US6604376B1 (en) * 1999-01-08 2003-08-12 Victor M. Demarco Heat pump using treated water effluent
US6647735B2 (en) * 2000-03-14 2003-11-18 Hussmann Corporation Distributed intelligence control for commercial refrigeration
US6637229B1 (en) * 2002-10-21 2003-10-28 Delphi Technologies, Inc. Cooling fan control method for minimizing the power consumption of a vehicle air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208455A (en) * 1989-02-08 1990-08-20 Toshiba Corp Refrigerator
JPH0828984A (en) * 1994-07-14 1996-02-02 Toshiba Corp Air conditioner
JPH10185333A (en) * 1996-12-19 1998-07-14 Daikin Ind Ltd Air conditioning equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1679479A4 *

Also Published As

Publication number Publication date
AU2005252962A1 (en) 2005-12-22
CN1820168A (en) 2006-08-16
US20080229769A1 (en) 2008-09-25
AU2005252962B2 (en) 2008-03-13
EP1679479A1 (en) 2006-07-12
KR100738780B1 (en) 2007-07-12
EP1679479A4 (en) 2012-03-28
CN100375874C (en) 2008-03-19
KR20060063971A (en) 2006-06-12

Similar Documents

Publication Publication Date Title
JP3861912B2 (en) Refrigeration equipment
KR101161240B1 (en) Air conditioner
WO2005121655A1 (en) Supercooling apparatus
US10107533B2 (en) Air-conditioning apparatus with subcooling heat exchanger
KR100764339B1 (en) Supercooling apparatus
US7155928B2 (en) Refrigerating apparatus
WO2019073870A1 (en) Refrigeration device
US7578137B2 (en) Air-conditioning system with multiple indoor and outdoor units and control system therefor
WO2006013861A1 (en) Refrigeration unit
US9857088B2 (en) Air-conditioning apparatus
WO2005019742A1 (en) Freezing apparatus
US20220221200A1 (en) Refrigeration apparatus
WO2006025524A1 (en) Freezing apparatus
JP2002174463A (en) Refrigerating apparatus
JP3966345B2 (en) Supercooling device
US20220268498A1 (en) Intermediate unit for refrigeration apparatus, and refrigeration apparatus
JP3824008B2 (en) Supercooling device
JP2003314909A (en) Refrigerating machine
JP2002188874A (en) Refrigerator
KR101204443B1 (en) Multi system air conditioner and control method thereof
JP2016156569A (en) Freezer
US11686518B2 (en) Refrigeration apparatus that operates a utilization unit based on drivability of a compressor in a heat source unit
JP7485995B1 (en) Heat source unit and refrigeration device
JP3824009B2 (en) Supercooling device
GB2549897A (en) Air conditioning device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000683.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10571940

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005252962

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067005400

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005748824

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005252962

Country of ref document: AU

Date of ref document: 20050609

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005252962

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020067005400

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005748824

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE