WO2005119036A1 - Brennkraftmaschine mit abgasrückführungssystem zum regeln der ansaugtemperatur - Google Patents

Brennkraftmaschine mit abgasrückführungssystem zum regeln der ansaugtemperatur Download PDF

Info

Publication number
WO2005119036A1
WO2005119036A1 PCT/EP2005/005717 EP2005005717W WO2005119036A1 WO 2005119036 A1 WO2005119036 A1 WO 2005119036A1 EP 2005005717 W EP2005005717 W EP 2005005717W WO 2005119036 A1 WO2005119036 A1 WO 2005119036A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
internal combustion
combustion engine
regulating
compressor
Prior art date
Application number
PCT/EP2005/005717
Other languages
English (en)
French (fr)
Inventor
Wolfram Schmid
Siegfried Sumser
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2005119036A1 publication Critical patent/WO2005119036A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to an internal combustion engine with an exhaust gas aftertreatment system and a method for controlling the exhaust gas temperature according to the preamble of claim 1 and claim 5.
  • Implementation efficiency of nitrogen oxide reduction in an SCR catalytic converter is achieved at exhaust gas temperatures in a range from approximately 250 ° to 550 ° Celsius.
  • An internal combustion engine on the other hand, has exhaust gas temperatures of less than 250 ° Celsius both in the partial load range and in the cold start phase.
  • the SCR catalytic converter is generally not located directly at the exhaust valve of the internal combustion engine, so that the exhaust gas temperature is further reduced by means of wall heat losses in the exhaust gas pipes.
  • the SCR catalytic converter is located downstream of the turbine and there is a further reduction in exhaust gas temperature due to the thermodynamic process in the turbine. The low exhaust gas temperatures that occur in the named operating ranges have to be increased.
  • the publication DE 102 49 880 AI describes an emission control device and an emission control method of an internal combustion engine, the emission control device of the internal combustion engine comprising a NO x catalytic converter, a warming-up device for heating the NO x catalytic converter and an operating state detection device for detecting the operating state of the internal combustion engine.
  • the heating device of the emission control device is used in such a way that either the injected fuel is oxidized in the NO x catalyst and the temperature of the NO x catalyst is raised due to the heat generated by the oxidation, or the injected fuel reduces the oxygen concentration of the exhaust gas mass flow and brings about a reduction in the nitrogen oxides in the filter.
  • a disadvantage of the emission control device is an additional installation of a fuel line with a retentive valve and the installation of an injection valve in the exhaust manifold.
  • the invention is based on the problem of achieving a high efficiency of the SCR catalytic converter in all operating areas of the internal combustion engine, using the heat sources existing in the combustion circuit of the internal combustion engine.
  • the internal combustion engine according to the invention with an exhaust gas aftertreatment system and the regulation of the exhaust gas temperature of the internal combustion engine is based on the idea of the large temperature fluctuations between part-load operating ranges and full-load operating ranges and to be reduced in the cold start phase of the internal combustion engine by regulating the amount of combustion air, since the high exhaust gas temperature fluctuations and the absolute exhaust gas temperatures are directly related to a ratio of combustion air and fuel, the combustion air ratio ⁇ .
  • the highest possible temperature level of the exhaust gas temperature of the internal combustion engine should be maintained.
  • combustion air ratio ⁇ is relatively small, as is the case in the full load range of the internal combustion engine, the exhaust gas temperature rises. If the combustion air ratio ⁇ increases, as is the case when the load is reduced, the exhaust gas temperature drops. A prerequisite for this thermodynamic relationship is an optimal efficiency of the heat release of the internal combustion engine.
  • a charge air cooler can be bypassed via a bypass with a check valve to further increase the temperature level of the combustion.
  • a turbine in the exhaust line of the internal combustion engine has for optimizing the efficiency of an exhaust gas cleaning unit of the exhaust gas aftertreatment system has a variable turbine geometry and / or a bypass with a relief valve.
  • a compressor in the intake tract of the internal combustion engine has a variable compressor geometry to optimize the efficiency of the exhaust gas cleaning unit of the exhaust gas aftertreatment system.
  • the inventive method for controlling the exhaust gas temperature of the internal combustion engine according to claim 5 is characterized in that the control of the exhaust gas temperature depending on the
  • the method according to the invention is characterized in that the im
  • Combustion cycle of the internal combustion engine occurring heat sources such as the heat of the exhaust gas and the heat of the compressed air, are used to regulate the exhaust gas temperature and are regulated via a regulating and control unit as a function of the exhaust gas temperature and the combustion air ratio.
  • the method according to the invention is characterized in that a regulating and control unit receives the value of the combustion air ratio and the value of the exhaust gas temperature for each operating point of the internal combustion engine and, depending on these values, an exhaust gas recirculation valve and / or a shutoff valve for bypassing combustion air and / or a relief valve on the turbine and / or a shut-off valve for diverting the from Compressed combustion air sucked in and / or a throttle for regulating the combustion air in such a way that the minimum possible combustion air ratio ⁇ for the corresponding operating point of the internal combustion engine is achieved as a function of the exhaust gas temperature to be achieved.
  • 1 is a schematic representation of an internal combustion engine with an exhaust gas turbocharger
  • FIG. 2 shows a schematic illustration of the internal combustion engine according to FIG. 1 with a compressor which has a variable compressor inflow geometry.
  • the internal combustion engine 1 shown in FIG. 1 is assigned an exhaust gas turbocharger 2 with a turbine 3 in an exhaust line 4 and a compressor 5 in an intake tract 6.
  • the internal combustion engine 1 can be a gasoline engine or a diesel engine.
  • the turbine 3 is acted upon by the exhaust gases of the internal combustion engine 1 and drives the compressor 5 via a shaft 7, whereupon the compressor 5 draws in and compresses combustion air.
  • a charge air cooler 9 Downstream of the compressor 5, a charge air cooler 9 is provided in the intake tract 6, in which the compressed combustion air is cooled.
  • the compressed and cooled combustion air flows through a throttle 101 provided downstream of the charge air cooler, which regulates the amount of combustion air flowing into the internal combustion engine 1.
  • a bypass 14 with a shutoff valve 102 branches off downstream of the compressor 5 in front of the charge air cooler 9 and opens again into the intake tract 6 downstream of the throttle 101.
  • the turbine 3 is assigned a variable turbine geometry 8, by means of which an effective turbine inlet cross section can be variably adjusted.
  • an exhaust gas recirculation line 100 with an adjustable exhaust gas recirculation valve 19 branches off from the exhaust line 4 and opens into the intake tract 6 downstream of the throttle 101. so that, according to the invention, the temperature of the exhaust gas recirculation can be used to increase the temperature of the exhaust gas temperature.
  • a bypass 15 is provided in the exhaust line 4 upstream of the turbine 3, in which an adjustable relief valve 103 is provided.
  • the bypass 15 opens into the exhaust line 4 downstream of the turbine 3 and upstream of an exhaust gas cleaning unit 16
  • Exhaust gas cleaning unit 16 is known to be arranged in exhaust line 4 downstream of turbine 3 for exhaust gas cleaning.
  • an internal combustion engine 1 is shown, which largely corresponds in structure and in the reference character assignment of the internal combustion engine according to FIG. 1. All the same or equivalent parts have the same reference numerals of the first
  • the compressor 5 has a variable compressor inflow geometry 10 for shifting the surge limit of the compressor 5 or for operating the compressor 5 as a cold air turbine.
  • the compressor 5 is supplied with combustion air via an additional duct 17, which branches off upstream of the compressor 5 at a branch 20 from the intake tract 6.
  • a shutoff valve 12 is arranged downstream of the branch 20 of the additional channel 17 and regulates the setting of the mass flow into the additional channel 17.
  • An air flow meter 18 is located upstream of the branch 20 of the additional duct 17, with which the air flow rate is measured and fed to the regulating and control unit 11 as an information signal.
  • An air filter 13 arranged upstream of the air flow meter 18 cleans the air drawn in from the surroundings.
  • Combustion air ratio ⁇ of the internal combustion engine 1 is updated continuously.
  • the regulating and control unit 11 gives the exhaust gas recirculation valve 19, the throttle 101, the shut-off valve 102, if appropriate, in accordance with an optimal combustion air ratio ⁇ and the corresponding desired exhaust gas temperature T DNO ⁇ on the exhaust gas cleaning unit 16 Blow-off valve 103 and the variable turbine geometry 8 instruction to assume certain flow cross sections between a minimum and a maximum flow cross section.
  • the engine air quantity is set to a minimally compatible setpoint value of the combustion air ratio ⁇ and the temperature of the exhaust gas purification unit 16 is thus increased.
  • the relief valve 103 if present, is opened, or, if present, the variable turbine geometry 8 is set in such a way that boost pressure generation which is not necessary in the corresponding operating points is avoided.
  • FIG. 2 An advantageous embodiment of the internal combustion engine 1 is shown in FIG. 2.
  • the combustion air sucked in by the compressor 5 is regulated by the check valve 12 which can be regulated by the regulating and control unit 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Bei Brennkraftmaschinen mit Abgasnachbehandlungssystemen, mit einem Verdichter im Ansaugtrakt und einer Turbine im Abgasstrang, einer Abgasrückführleitung mit einem Abgasrückführventil und einem Abgasrückführkühler, einem Ladeluftkühler zur Kühlung der vom Verdichter verdichteten Luft, einer Drossel zur Steuerung der von der Brennkraftmaschine angesaugten Verbrennungsluft, einer Abgasreinigungseinheit zur Reduzierung des NOX-Gehaltes des Abgases und einer Regel- und Steuereinheit zum Erfassen und Regeln der Betriebszustände der Brennkraftmaschine werden zusätzliche Wärmequellen zur Erhöhung der Abgastemperatur der Brennkraftmaschine eingesetzt. Die erfindungsgemäße Brennkraftmaschine zeichnet sich dadurch aus, dass dem Ansaugtrakt (6) ungekühltes Abgas aus der Abgasrückführleitung (100) zuführbar ist.

Description

DaimlerChrysler AG
BRENNKRAFTMASCHINE MIT ABGASRÜCKFÜHRUNGSSYSTEM ZUM REGELN DERANSAUGTEMPERATUR
Die Erfindung betrifft eine Brennkraftmaschine mit einem Abgasnachbehandlungssystem und ein Verfahren zur Regelung der Abgastemperatur nach dem Oberbegriff des Anspruches 1 bzw. des Anspruchs 5.
Grundsätzlich ist bekannt, dass ein hoher
Umsetzungswirkungsgrad der Stickoxidreduzierung in einem SCR- Katalysator bei Abgastemperaturen in einem Bereich von etwa 250°- 550° Celsius erzielt wird. Eine Brennkraftmaschine dagegen weist Abgastemperaturen sowohl im Teillastbereich als auch in der Kaltstartphase von unter 250° Celsius auf. Aus Bauraumgründen befindet sich der SCR-Katalysator in der Regel nicht direkt am Auslassventil der Brennkraf maschine, so dass eine weitere Reduzierung der Abgastemperatur über Wandwärmeverluste in den Abgasrohrleitungen erfolgt . Bei Einsatz eines Abgasturboladers befindet sich der SCR- Katalysator stromab der Turbine und es erfolgt eine weitere Abgastemperaturreduzierung aufgrund des thermodynamisehen Prozesses in der Turbine. Die niedrigen Abgastemperaturen, die in den genannten Betriebsbreichen auftreten, gilt es zu erhöhe . In der Druckschrift DE 102 49 880 AI wird eine Emissionssteuerungsvorrichtung und ein Emissionssteuerverfahren einer Brennkraftmaschine beschrieben, wobei die Emissionssteuervorrichtung der Brennkraftmaschine einen NOx-Katalysator, eine Aufwärmeinrichtung zum Erwärmen des NOx-Katalysators und eine Betriebszustandserfassungseinrichtung zum Erfassen des Betriebszustandes der Brennkraftmaschine umfasst . Die Aufwärmeinrichtung der Emissionssteuervorrichtung wird je nach Betriebspunkt der Brennkraftmaschine derart eingesetzt, dass entweder der eingespritzte Kraftstoff in dem NOx- Katalysator oxidiert wird und aufgrund der durch die Oxidation erzeugten Wärme die Temperatur des NOx-Katalysators angehoben wird oder der eingespritzte Kraftstoff reduziert die Sauerstoffkonzentration des Abgasmassenstromes und führt eine Reduktion der Stickoxide im Filter herbei. Ein Nachteil der Emissionssteuervorrichtung ist ein zusätzlicher Einbau einer Kraftstoffleitung mit einem Absehalt entil sowie der Einbau eines Einspritzventils in den Auslasskrümmer .
Der Erfindung liegt das Problem zugrunde, in allen Betriebsbereichen der Brennkraftmaschine einen hohen Wirkungsgrad des SCR-Katalysators zu erzielen, unter Nutzung der im Verbrennungskreislauf der Brennkraftmaschine existierenden Wärmequellen.
Dieses Problem wird erfindungsgemäß mit den Merkmalen des Anspruchs 1 gelöst .
Die erfindungsgemäße Brennkraftmaschine mit einem Abgasnachbehandlungssystem und die Regelung der Abgastemperatur der Brennkraftmaschine basiert auf dem Gedanken, die großen Temperaturschwankungen zwischen Teillastbetriebsbereichen und Volllastbetriebsbereichen und in der Kaltstartphase der Brennkraftmaschine über eine Regelung der Verbrennungsluftmenge zu reduzieren, da die hohen Abgastemperaturschwankungen und die absoluten Abgastemperaturen in direktem Zusammenhang mit einem Verhältnis aus Verbrennungsluft und Kraftstoff, dem Verbrennungsluftverhältnis λ, stehen. Dabei soll ein möglichst hohes Temperaturniveau der Abgastemperatur der Brennkraftmaschine gehalten werden.
Ist das Verbrennungsluftverhältnis λ relativ klein, wie es im Volllastbereich der Brennkraftmaschine der Fall ist, steigt die Abgastemperatur. Steigt das Verbrennungsluftverhältnis λ, wie es bei Senkung der Last der Fall ist, sinkt die Abgastemperatur. Voraussetzung für diesen thermodynamisehen Zusammenhang ist dabei ein optimaler Wirkungsgrad der Wärmefreisetzung der Brennkraftmaschine.
Eine Rückführung ungekühlten Abgases über eine Abgasruckfuhrleitung in den Ansaugtrakt der
Brennkraftmaschine führt zu einer Reduzierung der angesaugten Verbrennungsluft und, da das Abgas ungekühlt ist, zu einer Erhöhung des Temperaturniveaus der Verbrennung und damit, bei unverändertem Brennbeginn der Verbrennung, zu einer Erhöhung der Abgastemperatur.
In einer vorteilhaften Ausgestaltung der erfindungsgemäßen Brennkraftmaschine nach Anspruch 2 ist zur weiteren Erhöhung des Temperaturniveaus der Verbrennung ein Ladeluftkühler über einen Bypass mit einem Sperrventil bypassierbar.
In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Brennkraftmaschine nach Anspruch 3 weist eine Turbine im Abgasstrang der Brennkraftmaschine zur Optimierung des Wirkungsgrades einer Abgasreinigungseinheit des Abgasnachbehandlungssystems eine variable Turbinengeometrie und/oder einen Bypass mit einem Abblaseventil auf.
In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Brennkraftmaschine nach Anspruch 4 weist ein Verdichter im Ansaugtrakt der Brennkraftmaschine zur Optimierung des Wirkungsgrades der Abgasreinigungseinheit des Abgasnachbehandlungssystems eine variable Verdichtergeometrie auf .
Das erfindungsgemäße Verfahren zur Regelung der Abgastemperatur der Brennkraftmaschine nach Anspruch 5 zeichnet sich dadurch aus, dass die Regelung der Abgastemperatur in Abhängigkeit des
Verbrennungsluftverhältnisses λ erfolgt.
Des Weiteren zeichnet sich das erfindungsgemäße Verfahren nach Anspruch 6 dadurch aus, dass die im
Verbrennungskreislauf der Brennkraftmaschine auftretenden Wärmequellen, wie zum Beispiel die Wärme des Abgases und die Wärme der verdichteten Luft, zur Regelung der Abgastemperatur genutzt werden und über eine Regel- und Steuereinheit in Abhängigkeit der Abgastemperatur und des Verbrennungsluftverhältnisses geregelt werden.
Des Weiteren zeichnet sich das erfindungsgemäße Verfahren nach Anspruch 7 dadurch aus, dass eine Regel- und Steuereinheit zu jedem Betriebspunkt der Brennkraftmaschine den Wert des Verbrennungsluftverhältnisses und den Wert der Abgastemperatur erhält und in Abhängigkeit dieser Werte ein Abgasrückführventil und/oder ein Sperrventil zur Bypassierung von Verbrennungsluft und/oder ein Abblaseventil an der Turbine und/oder ein Sperrventil zur Umleitung der vom Verdichter angesaugten Verbrennungsluft und/oder eine Drossel zur Regulierung der Verbrennungsluft derart regelt, dass das für den entsprechenden Betriebspunkt der Brennkraftmaschine minimal mögliche Verbrennungsluftverhältnis λ in Abhängigkeit der zu erzielenden Abgastemperatur erreicht wird.
Weitere Vorteile und zweckmäßige Ausführungen sind in den weiteren Ansprüchen, der Figurenbeschreibung und den Zeichnungen zu entnehmen. Dabei zeigen:
Fig. 1 eine schematische Darstellung einer Brennkraftmaschine mit Abgasturbolader,
Fig. 2 eine schematische Darstellung der Brennkraftmaschine nach Fig. 1 mit einem Verdichter, der eine variable Verdichtereinströmgeometrie aufweist .
Der in Fig. 1 dargestellten Brennkraftmaschine 1 ist ein Abgasturbolader 2 mit einer Turbine 3 in einem Abgasstrang 4 und ein Verdichter 5 in einem Ansaugtrakt 6 zugeordnet . Bei der Brennkraftmaschine 1 kann es sich um einen Ottomotor oder um einen Dieselmotor handeln. Die Turbine 3 wird von den Abgasen der Brennkraftmaschine 1 beaufschlagt und treibt den Verdichter 5 über eine Welle 7 an, woraufhin der Verdichter 5 Verbrennungsluft ansaugt und verdichtet .
Stromab des Verdichters 5 ist im Ansaugtrakt 6 ein Ladeluftkühler 9 vorgesehen, in welchem die verdichtete Verbrennungsluft gekühlt wird. Die verdichtete und gekühlte Verbrennungsluft strömt durch eine stromab des Ladeluftkühlers vorgesehene Drossel 101, welche die Menge der in die Brennkraftmaschine 1 einströmenden Verbrennungsluft regelt . Zur Umgehung des Ladeluftkühlers 9 zweigt stromab des Verdichters 5 vor dem Ladeluftkühler 9 ein Bypass 14 mit einem Sperrventil 102 ab und mündet stromab der Drossel 101 wieder in den Ansaugtrakt 6.
Der Turbine 3 ist eine variable Turbinengeometrie 8 zugeordnet, über die ein wirksamer Turbineneintrittsquerschnitt veränderlich einstellbar ist.
Stromauf der Turbine 3 zweigt vom Abgasstrang 4 eine Abgasruckfuhrleitung 100 mit einem einstellbaren Abgasrückführventil 19 ab und mündet stromab der Drossel 101 in den Ansaugtrakt 6. Würde in einer Abwandlung beispielsweise die Abgasruckfuhrleitung 100 einen Abgasrückführkühler aufweisen, so wäre ein Bypass um den Abgasrückführkühler zu legen, damit erfindungsgemäß die Temperatur der Abgasrückführung zur Temperaturerhöhung der Abgastemperatur genutzt werden kann.
Zur Umgehung der Turbine 3 ist im Abgasstrang 4 stromauf der Turbine 3 ein Bypass 15 vorgesehen, in welchem ein einstellbares Abblaseventil 103 vorgesehen ist. Der Bypass 15 mündet in den Abgasstrang 4 stromab der Turbine 3 und stromauf einer Abgasreinigungseinheit 16. Die
Abgasreinigungseinheit 16 ist bekanntermaßen im Abgasstrang 4 stromab der Turbine 3 zur Abgasreinigung angeordnet .
Über eine Regel- und Steuereinheit 11 werden diverse Aggregate der Brennkraftmaschine 1, insbesondere das Abgasrückführventil 19, die Drossel 101, das Sperrventil 102, das Abblaseventil 103 und die variable Turbinengeometrie 8 in Abhängigkeit von Zustands- und Betriebsgrößen der Brennkraftmaschine 1, insbesondere dem Verbrennungsluftverhältnis λ und der Abgastemperatur TDNOχ an der Abgasreinigungseinheit 16, eingestellt.
In einem zweiten Ausführungsbeispiel nach Fig. 2 ist eine Brennkraftmaschine 1 dargestellt, die weitestgehend im Aufbau und in der Bezugszeichenzuordnung der Brennkraftmaschine nach Fig. 1 entspricht. Alle gleichen oder gleichwirkenden Teile sind mit denselben Bezugszeichen des ersten
Ausführungsbeispiels gekennzeichnet. Der Verdichter 5 weist eine variable Verdichtereinströmgeometrie 10 zur Verschiebung der Pumpgrenze des Verdichters 5 bzw. zum Betrieb des Verdichters 5 als Kaltluftturbine auf. Dabei wird über einen Zusatzkanal 17, der stromauf des Verdichters 5 an einer Abzweigung 20 vom Ansaugtrakt 6 abzweigt, der Verdichter 5 mit Verbrennungsluft versorgt.
Stromab der Abzweigung 20 des Zusatzkanals 17 ist ein Sperrventil 12 angeordnet, welches die Einstellung des Massenstromes in den Zusatzkanal 17 regelt. Stromauf der Abzweigung 20 des Zusatzkanals 17 befindet sich ein Luftmengenmesser 18, mit dem der Luftdurchsatz gemessen und als Informationssignal der Regel- und Steuereinheit 11 zugeführt wird. Ein stromauf des Luftmengenmessers 18 angeordneter Luftfilter 13 reinigt die aus der Umgebung angesaugte Luft .
Die der Regel- und Steuereinheit 11 übermittelte Temperatur TDNOX der Abgasreinigungseinheit 16 und das
Verbrennungsluftverhältnis λ der Brennkraftmaschine 1 werden kontinuierlich aktualisiert. Die Regel- und Steuereinheit 11 gibt entsprechend einem optimalen Verbrennungsluftverhältnis λ und der entsprechenden gewünschten Abgastemperatur TDNOχ an der Abgasreinigungseinheit 16 dem Abgasrückführventil 19, der Drossel 101, dem Sperrventil 102, gegebenenfalls dem /Abblaseventil 103 und der variablen Turbinengeometrie 8 Anweisung bestimmte Strömungsquerschnitte zwischen einem minimalen und einem maximalen Strömungsquerschnitt einzunehmen. Durch die Regelung einer ungekühlten Abgasrückführmenge über das Abgasrückführventil 19 und der entsprechenden Einstellung der anderen zu regelnden Absperrorgane wird die Motorluftmenge auf einen minimal verträglichen Sollwert des Verbrennungsluftverhältnisses λ eingestellt und damit die Temperaturanhebung der Abgasreinigungseinheit 16 erreicht .
Zur Vermeidung einer Androsselung im Ansaugtrakt 6 und im Abgasstrang 4, bzw. zur Reduzierung der Ladungswechselverluste, wird, falls vorhanden, das Abblaseventil 103 geöffnet, oder, falls vorhanden, die variable Turbinengeometrie 8 derart eingestellt, dass eine in den entsprechenden Betriebspunkten nicht notwendige Ladedruckerzeugung vermieden wird.
Ist dennoch eine Ladedruckerzeugung unvermeidbar, muss im Ansaugtrakt 6 die angesaugte Verbrennungsluft gedrosselt werden.
Durch die Drosselung der Verbrennungsluftmenge nach dem Verdichter 5 über das Sperrventil 102 und gegebenenfalls über die Drossel 101, kann möglicherweise die Pumpgrenze des Verdichters 5 überschritten werden. Eine vorteilhafte Ausführung der Brennkraftmaschine 1 ist dazu in Fig. 2 dargestellt. Die vom Verdichter 5 angesaugte Verbrennungsluft wird über das von der Regel- und Steuereinheit 11 regelbare Sperrventil 12 geregelt .

Claims

DaimlerChrysler AGPatentansprüche
1. Brennkraftmaschine mit Abgasnachbehandlungssystem, mit einem Verdichter im Ansaugtrakt und einer Turbine im Abgasstrang, einer Abgasruckfuhrleitung mit einem Abgasrückführventil und einem Abgasrückführkühler, einem Ladeluftkühler zur Kühlung der vom Verdichter verdichteten Luft, einer Drossel zur Steuerung der von der Brennkraftmaschine angesaugten Verbrennungsluft , einer Abgasreinigungseinheit zur Reduzierung des NOx- Gehaltes des Abgases und einer Regel- und Steuereinheit zum Erfassen und Regeln der Betriebszustände der Brennkraftmaschine, dadurch gekennzeichnet, dass dem Ansaugtrakt (6) ungekühltes Abgas aus der Abgasruckfuhrleitung (100) zuführbar ist.
2. Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass im Ansaugtrakt (6) ein Bypass (14) mit einem Sperrventil (102) zur Bypassierung des Ladeluftkühlers (9) vorgesehen ist.
3. Brennkraftmaschine nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass zur Optimierung des Wirkungsgrades der Abgasreinigungseinheit (16) die Turbine (3) eine variable Turbinengeometrie (8) und/oder einen Bypass (15) mit einem Abblaseventil (103) aufweist.
4. Brennkraftmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zur Optimierung des Wirkungsgrades der Abgasreinigungseinheit (16) der Verdichter (5) eine variable Verdichtergeometrie (10) aufweist.
5. Verfahren zur Regelung der Abgastemperatur einer Brennkraftmaschine, mit einem Verdichter im Ansaugtrakt und einer Turbine im Abgasstrang, einer Abgasruckfuhrleitung mit einem Abgasrückführventil und einem Abgasrückführkühler, einem Ladeluftkühler zur Kühlung der vom Verdichter verdichteten Luft, einer Drossel zur Steuerung der von der Brennkraftmaschine angesaugten Verbrennungsluft, einem zur Reduzierung des NOx-Gehaltes des Abgases und einer Regel- und Steuereinheit zum Erfassen und Regeln der Betriebszustände der Brennkraftmaschine, dadurch gekennzeichnet, dass die Abgastemperatur TDNOχ an der Abgasreinigungseinheit (16) in Abhängigkeit des Verbrennungsluftverhältnisses λ der Brennkraftmaschine (1) geregelt wird, wobei dem Ansaugtrakt (6) ungekühltes Abgas aus der Abgasruckfuhrleitung (100) zugeführt wird.
6. Verfahren nach Anspruch 5 , dadurch gekennzeichnet, dass die im Verbrennungskreislauf der Brennkraftmaschine (1) auftretenden Wärmequellen zur Regelung der Abgastemperatur TDNOχ genutzt werden und über eine Regel- und Steuereinheit in Abhängigkeit der Abgastemperatur TDNOX und des Verbrennungsluftverhältnisses λ geregelt werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Regel- und Steuereinheit (11) zu jedem Betriebspunkt der Brennkraftmaschine (1) den Wert des Verbrennungsluftverhältnisses λ und den Wert der Abgastemperatur TDN0X erhält und in Abhängigkeit dieser Werte das Abgasrückführventil (19) und/oder das Sperrventil (102) und/oder das Abblaseventil (103) und/oder das Sperrventil (12) und/oder die Drossel (101) derart regelt, dass das für den entsprechenden Betriebspunkt der Brennkraftmaschine (1) minimal mögliche Verbrennungsluftverhältnis λ in Abhängigkeit der Abgastemperatur erreicht wird.
PCT/EP2005/005717 2004-06-02 2005-05-27 Brennkraftmaschine mit abgasrückführungssystem zum regeln der ansaugtemperatur WO2005119036A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004026797.9 2004-06-02
DE102004026797A DE102004026797A1 (de) 2004-06-02 2004-06-02 Brennkraftmaschine mit Abgasnachbehandlungssystem und ein Verfahren zur Regelung der Abgastemperatur

Publications (1)

Publication Number Publication Date
WO2005119036A1 true WO2005119036A1 (de) 2005-12-15

Family

ID=34969151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005717 WO2005119036A1 (de) 2004-06-02 2005-05-27 Brennkraftmaschine mit abgasrückführungssystem zum regeln der ansaugtemperatur

Country Status (2)

Country Link
DE (1) DE102004026797A1 (de)
WO (1) WO2005119036A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921122A3 (fr) * 2007-09-19 2009-03-20 Renault Sas Systeme de regulation de temperature des gaz d'admission d'un moteur a combustion interne, et procede associe
CN102308069A (zh) * 2009-02-05 2012-01-04 克诺尔商用车制动***有限公司 用于调节车辆的内燃机的增压空气压力的方法和装置
CN102889156A (zh) * 2012-10-19 2013-01-23 东风汽车有限公司 一种增压发动机智能化双路进气装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011018958B4 (de) * 2011-04-29 2014-12-31 Audi Ag Verbrennungsmotor und Verfahren zum Betrieb eines Verbrennungsmotors mit Ausleitung von gefrorenem Kondenswasser aus dem Ansaugtrakt
CN109323283B (zh) * 2018-10-30 2020-03-17 中船动力研究院有限公司 一种燃烧缸的燃烧稳定性控制***及方法
AT525355B1 (de) * 2021-09-13 2023-03-15 Avl List Gmbh Verfahren zur Temperierung einer an einen Verbrennungsmotor angeschlossenen Abgasreinigungsanlage mit einem SCR-Katalysator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617726A (en) * 1995-03-31 1997-04-08 Cummins Engine Company, Inc. Cooled exhaust gas recirculation system with load and ambient bypasses
US6367256B1 (en) * 2001-03-26 2002-04-09 Detroit Diesel Corporation Exhaust gas recirculation with condensation control
WO2002038940A1 (en) * 2000-11-10 2002-05-16 Detroit Diesel Corporation Hot/cold exhaust gas recirculation system
US20030114978A1 (en) * 2001-12-18 2003-06-19 Rimnac Phillip F. Condensation control for internal combustion engines using EGR
US20030140906A1 (en) * 2002-01-29 2003-07-31 Dollmeyer Thomas A. System for producing charge flow and EGR fraction commands based on engine operating conditions
EP1411315A1 (de) * 2001-07-25 2004-04-21 Denso Corporation Abgas-wärmetauscher
FR2848605A1 (fr) * 2002-12-11 2004-06-18 Renault Sa Dispositif et procede d'alimentation en comburant d'un moteur diesel
WO2004067945A1 (en) * 2003-01-31 2004-08-12 Scania Cv Ab (Publ) Arrangement and method for recirculation of exhaust gases of a combustion engine
US20040182372A1 (en) * 2003-03-17 2004-09-23 Kennedy Michael P. Method and apparatus for determining a valve operator position
US20040182373A1 (en) * 2003-03-17 2004-09-23 Xiaoqiu Li System for diagnosing operation of an egr cooler
FR2853011A1 (fr) * 2003-03-26 2004-10-01 Melchior Jean F Moteur alternatif a recirculation de gaz brules destine a la propulsion des vehicules automobiles et procede de turbocompression de ce moteur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847874A1 (de) * 1998-10-16 2000-04-20 Volkswagen Ag Verfahren zur Stickoxidreduzierung im Abgas einer mager betriebenen Brennkraftmaschine
DE10049198A1 (de) * 2000-10-05 2002-04-11 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine und Verfahren hierzu

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617726A (en) * 1995-03-31 1997-04-08 Cummins Engine Company, Inc. Cooled exhaust gas recirculation system with load and ambient bypasses
WO2002038940A1 (en) * 2000-11-10 2002-05-16 Detroit Diesel Corporation Hot/cold exhaust gas recirculation system
US6367256B1 (en) * 2001-03-26 2002-04-09 Detroit Diesel Corporation Exhaust gas recirculation with condensation control
EP1411315A1 (de) * 2001-07-25 2004-04-21 Denso Corporation Abgas-wärmetauscher
US20030114978A1 (en) * 2001-12-18 2003-06-19 Rimnac Phillip F. Condensation control for internal combustion engines using EGR
US20030140906A1 (en) * 2002-01-29 2003-07-31 Dollmeyer Thomas A. System for producing charge flow and EGR fraction commands based on engine operating conditions
FR2848605A1 (fr) * 2002-12-11 2004-06-18 Renault Sa Dispositif et procede d'alimentation en comburant d'un moteur diesel
WO2004067945A1 (en) * 2003-01-31 2004-08-12 Scania Cv Ab (Publ) Arrangement and method for recirculation of exhaust gases of a combustion engine
US20040182372A1 (en) * 2003-03-17 2004-09-23 Kennedy Michael P. Method and apparatus for determining a valve operator position
US20040182373A1 (en) * 2003-03-17 2004-09-23 Xiaoqiu Li System for diagnosing operation of an egr cooler
FR2853011A1 (fr) * 2003-03-26 2004-10-01 Melchior Jean F Moteur alternatif a recirculation de gaz brules destine a la propulsion des vehicules automobiles et procede de turbocompression de ce moteur

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921122A3 (fr) * 2007-09-19 2009-03-20 Renault Sas Systeme de regulation de temperature des gaz d'admission d'un moteur a combustion interne, et procede associe
CN102308069A (zh) * 2009-02-05 2012-01-04 克诺尔商用车制动***有限公司 用于调节车辆的内燃机的增压空气压力的方法和装置
CN102889156A (zh) * 2012-10-19 2013-01-23 东风汽车有限公司 一种增压发动机智能化双路进气装置

Also Published As

Publication number Publication date
DE102004026797A1 (de) 2005-12-22

Similar Documents

Publication Publication Date Title
EP1763627B1 (de) Brennkraftmaschine mit abgasnachbehandlung und verfahren zu deren betrieb
DE102005002518B3 (de) Abgasrückführungssystem für eine Brennkraftmaschine sowie Abgasrückführungsverfahren
EP2206899B1 (de) Verfahren zur Nachbehandlung eines Abgasstroms einer mehrzylindrigen Brennkkraftmaschine eines Fahrzeuges sowie Abgasnachbehandlungsvorrichtung
EP2206898B1 (de) Verfahren zur Nachbehandlung eines Abgasstroms einer mehrzylindrigen Brennkraftmaschine eines Fahrzeuges sowie Abgasnachbehandlungsvorrichtung
DE102005025434B4 (de) Schadstoffbegrenzungseinrichtung für einen Motor
EP1396619A1 (de) Aufladesystem für eine Brennkraftmaschine
DE102011002553A1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102016211274A1 (de) Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
DE112008000132T5 (de) Sekundärluftsystem für ein Entlüftungssystem eines Verbrennungsmotors
EP1640598A1 (de) Aufgeladene Brennkraftmaschine und Verfahren zur Verbesserung des Emissionsverhaltens einer aufgeladenen Brennkraftmaschine
EP2134943A1 (de) Turboaufgeladene brennkraftmaschine und verfahren
DE10204482A1 (de) Brennkraftmaschine
WO2010052055A1 (de) Brennkraftmaschine mit turbolader und oxidationskatalysator
WO2006029583A1 (de) Abgasrückführeinrichtung und verfahren zum betrieb einer abgasrückführeinrichtung
DE102011002552A1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP3298257B1 (de) Agr-system mit partikelfilter und wastegate
WO2005119036A1 (de) Brennkraftmaschine mit abgasrückführungssystem zum regeln der ansaugtemperatur
WO2006015814A1 (de) Brennkraftmaschine
WO2008155268A1 (de) Brennkraftmaschine mit zweistufiger turboaufladung und oxidationskatalysator
DE102010003337A1 (de) Kraftfahrzeug mit Verbrennungsmotor sowie Verfahren zu dessen Betrieb
EP1633967A2 (de) Brennkraftmaschine mit abgasrückführeinrichtung und verfahren hierzu
DE19849495C2 (de) Aufgeladene Brennkraftmaschine mit einer die Abgasturbine überbrückenden Umgehungsleitung
DE102017200835A1 (de) Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine
EP3683427A1 (de) Abgasnachbehandlung eines verbrennungsmotors
DE102017212065B4 (de) Aufgeladene Brennkraftmaschine mit parallel angeordneten Turbinen und Verfahren zum Betreiben einer derartigen Brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase