WO2005119017A1 - Device for modifying control times of an internal combustion engine - Google Patents

Device for modifying control times of an internal combustion engine Download PDF

Info

Publication number
WO2005119017A1
WO2005119017A1 PCT/EP2005/005902 EP2005005902W WO2005119017A1 WO 2005119017 A1 WO2005119017 A1 WO 2005119017A1 EP 2005005902 W EP2005005902 W EP 2005005902W WO 2005119017 A1 WO2005119017 A1 WO 2005119017A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
rotor
groove
stator
hardened
Prior art date
Application number
PCT/EP2005/005902
Other languages
German (de)
French (fr)
Inventor
Rainer Ottersbach
Uwe Gottschlig
Original Assignee
Schaeffler Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Kg filed Critical Schaeffler Kg
Publication of WO2005119017A1 publication Critical patent/WO2005119017A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials

Definitions

  • the invention relates to a device for changing the timing of an internal combustion engine with a stator driven by the crankshaft and a rotor driving at least one camshaft, which is driven by the stator via a hydraulic actuator, the phase position between the crankshaft and the at least one camshaft via the actuator can be changed and wherein the actuator comprises at least one pressure chamber into which a wing attached to the rotor engages, the wing separating the pressure chamber into two hydraulic pressure chambers working against each other.
  • camshafts are used to actuate the gas exchange valves.
  • Camshafts are mounted in the internal combustion engine in such a way that cams attached to them rest on cam followers, for example bucket tappets, rocker arms or rocker arms. If a camshaft is set in rotation, the cams roll on the cam followers, which in turn actuate the gas exchange valves.
  • the position and shape of the cams thus determine both the opening duration and amplitude, but also the opening and closing times of the gas exchange valves.
  • Modern engine concepts tend to variably design the valve train. On the one hand, the valve lift and valve opening duration should be variable, up to the complete shutdown of individual cylinders. Concepts such as switchable cam followers or electrohydraulic or electric valve actuations are provided for this.
  • the described variability in the gas exchange valve timing control is brought about by a relative change in the phase position of the camshaft relative to the crankshaft.
  • the camshaft is usually connected to the crankshaft via a chain, belt, gear drive or equivalent drive concepts. Between the chain, belt or gear drive driven by the crankshaft and the camshaft there is a device for changing the timing of an internal combustion engine, hereinafter referred to as the camshaft adjuster, which transmits the torque from the crankshaft to the camshaft.
  • This device is designed in such a way that the phase position between the crankshaft and the camshaft is held securely during operation of the internal combustion engine and, if desired, the camshaft can be rotated in a certain angular range with respect to the crankshaft.
  • each with a camshaft for the intake and exhaust valves these can be equipped with a camshaft adjuster. This allows the opening and closing times of the inlet and outlet Intake gas exchange valves are shifted in time relative to each other and the valve overlaps are set specifically.
  • Modern camshaft adjusters are generally located at the drive end of the camshaft. It consists of a drive wheel which is driven by the crankshafts and has a fixed phase relationship to the drive wheel, a camshaft-fixed output part and an adjusting mechanism which transmits the torque from the drive wheel to the output part.
  • the drive wheel can be designed as a chain, belt or gearwheel and is connected to the crankshaft in a rotationally fixed manner by means of a chain, a belt or a gearwheel drive.
  • the adjustment mechanism can be operated electrically, hydraulically or pneumatically.
  • the so-called rotary piston adjuster is a widespread embodiment.
  • the drive wheel is connected in a rotationally fixed manner to a stator.
  • the stator and a rotor are arranged concentrically to one another, the rotor being connected to a camshaft, an extension of the camshaft or an intermediate shaft in a force-fitting, form-fitting or material-locking manner, for example by means of a press fit, a screw or welded connection.
  • the radial space between the rotor and the stator takes up at least one, but usually a plurality of cavities spaced apart in the circumferential direction.
  • the cavities are delimited pressure-tight in the axial direction by side covers.
  • a vane connected to the rotor extends into each of these cavities. This wing divides each cavity into two pressure chambers.
  • the phase of the camshaft can be adjusted or held relative to the crankshaft by specifically connecting the individual pressure chambers to a hydraulic medium pump or to a hydraulic medium outlet.
  • sensors record the engine's characteristic data, such as the load condition and engine speed. This data is fed to an electronic control unit which, after comparison of the
  • a stator is rotatably mounted on a rotor.
  • the stator and the rotor are each limited in the axial direction by a side cover.
  • Several recesses are made in the inner jacket surface of the stator, these recesses being designed as pressure spaces.
  • the rotor, the stator and the two side covers enclose the pressure chambers in a pressure-tight manner.
  • Axially running vane grooves are made in the outer circumferential surface of the rotor, in each of which a vane is arranged.
  • the wings extend radially outward from the base of the groove. A wing is arranged in each pressure chamber.
  • Each wing divides a pressure chamber into two counteracting pressure chambers, the wing being freely displaceable within the pressure chamber.
  • each pressure chamber can optionally be connected to a pressure medium pump or a pressure medium reservoir. If the pressure chambers, which are seen from the respective wing in the drive direction of the stator, are connected to the pressure medium pump and the other pressure chambers are connected to the pressure medium reservoir, the wings move within the pressure chamber against the drive direction of the stator, causing the opening and closing times of the Gas exchange valves is set to "late”. Similarly, the opening and closing times of the gas exchange valves are shifted to an early point in time when the pressure medium flow direction is reversed.
  • each wing By applying pressure medium to the individual pressure medium chambers, a force is exerted on each wing, which force is transmitted to the rotor within the wing groove of the rotor.
  • the wing is subjected to high material stress in the area of the contact points to the rotor.
  • the areas of the sash that lie against the edges and corners of the sash groove are subjected to high stress.
  • the wings are made of hardened steel. Thereby, Usually the wing is first formed from a sheet metal part and then hardened as a whole in a hardening furnace.
  • the invention is therefore based on the object of avoiding the disadvantages described and thus creating vanes for use within a device for changing the timing of an internal combustion engine, which are both inexpensive to produce and durable.
  • the wing is only partially hardened. Furthermore, it is provided that the wing is arranged in an axially extending wing groove, which is formed in the outer circumferential surface of the rotor, and the areas of the wing are hardened, which in the assembled state are located in the area of the axially extending groove edges of the wing groove. Alternatively, the wing can be arranged in an axially extending wing groove, which is formed in the outer circumferential surface of the rotor, and the wing can be hardened in the regions which, in the assembled state, are located in the region of the axial ends of the axially extending groove edges of the wing groove.
  • an end of the wing facing away from the rotor, which abuts the stator, is hardened.
  • an end of the wing located in the wing groove is hardened.
  • the spring is acted upon by a spring element, which is arranged between the groove base of the wing groove and the end of the wing located in the wing groove, with a radially outward force and the contact point of the wing with the spring element is hardened.
  • a laser hardening method is advantageously used for partial hardening.
  • the blades are made from sheet metal by cutting or stamping.
  • the particularly stressed areas of the wing are hardened by means of a laser hardening process. Partially hardened areas in the form of dots or lines can be produced in any shape.
  • This step eliminates the need for conventional, costly thermal hardening processes while reducing the cycle time.
  • a further advantage results from the fact that less thermal energy is introduced into the material in the proposed method, whereby a material distortion of the wings can be avoided. This eliminates the machining steps that are otherwise customary after hardening.
  • the areas of high material stress to be hardened are primarily in the contact area between the blade and the rotor or between the blade and the stator.
  • the areas that come into contact with the axially extending groove edges of the wing groove should be mentioned above all. It is therefore proposed to harden the wing within this line-like area by means of a laser hardening process. Due to tolerances occurring between the rotor and the wing in the wing groove, it can be assumed that slight tilting can occur between the wing and the rotor during operation of the device. It is therefore proposed in an alternative embodiment to harden the end faces of the wing lying in the axial direction of the rotor in the region of the axially extending groove edges of the wing groove. In comparison to the first embodiment, there is not a region to be hardened in a linear manner, but only two regions to be hardened in a punctiform manner, whereby the hardening cycle time can be further reduced.
  • FIG. 1 shows a longitudinal section through a device according to the invention for changing the timing of an internal combustion engine according to the line I-1 from Figure 2
  • Figure 2 shows a cross section through an inventive device for changing the timing of an internal combustion engine according to Figure 1 along the line
  • FIG. 3 shows an enlarged view of the detail Z from FIG. 2,
  • the device 1 essentially consists of a stator 2 and a rotor 3 arranged concentrically thereto.
  • a drive wheel 4 is connected to the rotor in a rotationally fixed manner and, in the embodiment shown, is designed as a chain wheel. Embodiments of the drive wheel 4 as a belt or gear are also conceivable.
  • the stator 2 is rotatably mounted on the rotor 3, five recesses 5 spaced apart in the circumferential direction being provided on the inner circumferential surface of the stator 2 in the embodiment shown.
  • the recesses 5 are delimited in the radial direction by the stator 2 and the rotor 3, in the circumferential direction by two side walls 6 of the stator 2 and in the axial direction by a first and a second side cover 7, 8. Each of the recesses 5 is closed pressure-tight in this way.
  • the first and the second side covers 7, 8 are connected to the stator 2 by means of connecting elements 9, for example screws.
  • Axially extending vane grooves 10 are formed on the outer circumferential surface of the rotor 3, a radially extending vane 11 being arranged in each vane groove 10.
  • a vane 11 extends into each recess 5, the vanes 11 abutting the stator 2 in the radial direction and the first and second side covers 7, 8 in the axial direction.
  • Each vane 11 divides a recess 5 into two pressure chambers 12, 13 working against each other.
  • spring elements 15 are attached between the groove bases 14 of the vane grooves 10 and the vanes 11 apply a force in the radial direction.
  • first and second pressure medium lines 16, 17, the first and second pressure chambers 12, 13 can be connected to a pressure medium pump, also not shown, or a pressure medium reservoir, also not shown, via a control valve (not shown).
  • Oil drive 18 is formed, which enables a relative rotation of the stator 2 with respect to the rotor 3. It is provided that either all of the first pressure chambers 12 are connected to the pressure medium pump and all of the second pressure chambers 13 are connected to the pressure medium reservoir, or the exactly opposite configuration. If the first pressure chambers 12 are connected to the pressure medium pump and the second pressure chambers 13 to the pressure medium reservoir, the first pressure chambers 12 expand at the expense of the second pressure chambers 13. This results in a displacement of the wings 11 in the circumferential direction, in the direction shown by the arrow 19. By moving the blades 11, the rotor 3 is rotated relative to the stator 2.
  • the stator 2 is driven by the crankshaft by means of a chain drive, not shown, which engages with its drive wheel 4.
  • the drive of the stator 2 by means of a belt or gear drive is also conceivable.
  • the rotor 3 is non-positively, positively or materially connected, for example by means of a press fit or by a screw connection by means of a central screw, to a camshaft, not shown.
  • a phase shift between the camshaft and the crankshaft results from the relative rotation of the rotor 3 relative to the stator 2 as a result of the supply and discharge of pressure medium to and from the pressure chambers 12, 13.
  • the control times of the gas exchange valves of the internal combustion engine can thus be varied in a targeted manner by specifically introducing or discharging pressure medium into the pressure chambers 12, 13.
  • the pressure medium lines 16, 17 are designed as essentially radially arranged bores, which extend from a central bore 20 of the rotor 3 to its outer lateral surface.
  • a central valve (not shown) can be arranged within the central bore 20, via which the pressure chambers 12, 13 can be selectively connected to the pressure medium pump or the pressure medium reservoir.
  • Another possibility is to arrange a pressure medium distributor within the central bore 20, which distributes the pressure medium lines 16, 17 Connects pressure medium channels and ring grooves with the connections of an externally attached central valve.
  • the essentially radially extending side walls 6 of the recesses 5 are provided with formations 21 which extend into the recesses 5 in the circumferential direction.
  • the formations 21 serve as a stop for the vanes 11 and ensure that the pressure chambers 12, 13 can be supplied with pressure medium, even if the rotor 3 assumes one of its extreme positions relative to the stator 2, in which the vanes 11 rest on one of the side walls 6 ,
  • the rotor 3 In the event of insufficient supply of pressure medium to the device 1, for example during the starting phase of the internal combustion engine, the rotor 3 is moved in an uncontrolled manner relative to the stator 2 due to the alternating torques which the camshaft exerts thereon. In a first phase, the alternating torques of the camshaft urge the vanes 11 in the direction opposite to the direction of rotation 17 until they strike the side walls 6. Furthermore, the moments that change rapidly in the direction that the camshaft exerts on the rotor 3 cause the rotor 3 and thus the wing 11 to swing back and forth in the recesses 5. These phenomena lead to greater wear and to a higher noise level Device 1. In order to prevent these effects, a locking element 22 is attached in device 1.
  • a piston 24 is arranged in an axial bore 23, which is acted upon by a spring 25 in the axial direction with a force.
  • the spring 25 is supported in the axial direction on one side on a ventilation element 26 and is arranged with its axial end facing away from it within the cup-shaped piston 24.
  • a link 27 is arranged such that the piston 24 is pushed into the link 27 by means of the spring 25 if the pressure medium supply to the device 1 is insufficient, when the rotor 3 assumes a position relative to the stator 2 that corresponds to the position take the two components to each other during the starting phase of the internal combustion engine.
  • Means are also provided to ensure that the piston 24 is adequately supplied with the to push back direction 1 with pressure medium in the axial bore 23 and thus release the lock. This is usually accomplished with pressure medium, which is directed via pressure medium lines (not shown) into a recess 28 which is formed on the end face of the piston 24 on the cover side.
  • the ventilation element 26 is provided with axially extending grooves, along which the pressure medium can be guided to a bore in the second side cover 8.
  • a spring element 15 is arranged between the groove base 14 of the wing groove 10 and a first end face 31 of the wing 11 arranged within the wing groove 10.
  • the spring element 15 is advantageously designed as a leaf spring, wherein, supported on the groove base 14 of the wing groove 10, the first radial end face 31 of the wing 11 is subjected to a radially directed force. This first end face 31 is also exposed to great loads.
  • the action on the blade 11 with a radially directed force has the result that it is pressed against the stator 2 with a second radial end face 32.
  • the second radial end face 32 which is formed on the side of the wing 11 facing away from the first end face 31, likewise experiences a high load due to the contact pressure.
  • the wings 11 are hardened. This is usually accomplished by means of a thermal hardening process, for example by passing through a hardening furnace. In addition to the high throughput times and the high costs of this process, the introduction of thermal energy leads to a distortion of the material of the wings 11, as a result of which the side walls of the wings 11 sealing the pressure chambers 12 and 13 must be machined. Therefore it is suggested conditions that the wings 11 are only partially hardened in the loaded areas.
  • FIG. 4 shows an embodiment in which the first and second end faces 31, 32 are hardened. Furthermore, a line-shaped area is hardened, which corresponds to the first area 29 which, in the assembled state of the wing 11, bears against the axially extending groove edge 30 of the wing groove 10. Since, when the pressure conditions in the pressure chambers 12, 13 are reversed, the load occurs on the opposite side wall of the wing 11, the wing 11 is hardened on both sides in the first region 29.
  • a second embodiment of the wing 11 is shown in Figure 5.
  • the first and second end faces 31, 32 are also hardened here.
  • only the sections 33 of the first region 29 are hardened, which, in the assembled state, bear against the axial ends of the axially extending groove edges 30 of the wing groove 10.
  • the wing 11 is normally arranged with a certain play within the wing groove 10. In operation, this means that the wing 11 is tilted slightly about an axis running radially relative to the rotor 3. As a result, only the sections 33 abut the groove edges 30 of the wing groove 10.
  • This partial hardening can be carried out, for example, by means of laser hardening. Areas of the wing 11 of any shape can be hardened.
  • the lower heat input during the hardening process means that the wing 11 can no longer be machined after the hardening process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

The invention relates to a device (1) which is used to modify the control times of an internal combustion engine, wherein a rotor (3) is arranged inside a stator (2). The inner cover surface of the stator (2) is provided with cavities (5) wherein wings (11) protrude. The wings are arranged in the wing grooves (10) which are introduced into the rotor (3). The cavities (5) are embodied as pressure chambers and the wings (11) separate the pressure chambers in a first and a second pressure chamber (12, 13). The rotor (3) can be displaced in relation to the stator (2) by guiding pressure means to the first and/or second pressure chamber (12, 13). According to the invention, the wings (11) are only partially hardened in the region of the loading areas.

Description

Bezeichnung der Erfindung Vorrichtung zur Veränderung der Steuerzeiten einer Brennkraftmaschine Description of the invention Device for changing the timing of an internal combustion engine
Beschreibungdescription
Gebiet der ErfindungField of the Invention
Die Erfindung betrifft eine Vorrichtung zur Veränderung der Steuerzeiten einer Brennkraftmaschine mit einem von der Kurbelwelle angetriebenen Stator und einem mindestens eine Nockenwelle antreibenden Rotor, der vom Stator über einen hydraulischen Stellantrieb angetrieben wird, wobei über den Stellantrieb die Phasenlage zwischen der Kurbelwelle und der mindestens eine Nockenwelle verändert werden kann und wobei der Stellantrieb zumindest einen Druckraum umfasst, in den ein am Rotor befestigter Flügel eingreift, wobei der Flügel den Druckraum in zwei gegeneinander arbeitende hydraulische Druckkammern trennt.The invention relates to a device for changing the timing of an internal combustion engine with a stator driven by the crankshaft and a rotor driving at least one camshaft, which is driven by the stator via a hydraulic actuator, the phase position between the crankshaft and the at least one camshaft via the actuator can be changed and wherein the actuator comprises at least one pressure chamber into which a wing attached to the rotor engages, the wing separating the pressure chamber into two hydraulic pressure chambers working against each other.
In Brennkraftmaschinen werden zur Betätigung der Gaswechselventile Nockenwellen eingesetzt. Nockenwellen sind in der Brennkraftmaschine derart angebracht, dass auf ihnen angebrachte Nocken an Nockenfolgern, beispielsweise Tassenstößeln, Schlepphebeln oder Schwinghebeln, anliegen. Wird eine Nockenwelle in Drehung versetzt, so wälzen die Nocken auf den Nockenfolgern ab, die wiederum die Gaswechsel ventile betätigen. Durch die Lage und die Form der Nocken ist somit sowohl die Öffnungsdauer als auch Amplitude aber auch der Öffnungs- und Schließzeitpunkt der Gaswechselventile festgelegt. Moderne Motorkonzepte gehen dahin, den Ventiltrieb variabel auszulegen. Einerseits sollen Ventilhub und Ventilöffnungsdauer variabel gestaltbar sein, bis hin zur kompletten Abschaltung einzelner Zylinder. Dafür sind Konzepte wie schaltbare Nockenfolger oder elektrohydraulische oder elektrische Ventilbetä- tigungen vorgesehen. Weiterhin hat es sich als vorteilhaft herausgestellt, während des Betriebs der Brennkraftmaschine Einfluss auf die Öffnungs- und Schließzeiten der Gaswechselventile nehmen zu können. Ebenfalls wünschenswert ist es auf die Öffnungs- bzw. Schließzeitpunkte der Einlass- bzw. Auslassventile getrennt Einfluss nehmen zu können, um beispielsweise gezielt eine definierte Ventilüberschneidung einstellen zu können. Durch die Einstellung der Öffnungs- bzw. Schließzeitpunkte der Gaswechselventile abhängig vom aktuellen Kennfeldbereich des Motors, beispielsweise von der aktuellen Drehzahl bzw. der aktuellen Last, können der spezifische Treibstoff verbrauch gesenkt, das Abgasverhalten positiv beeinflusst, der Motorwirkungsgrad, das Maximaldrehmoment und die Maximalleistung erhöht werden.In internal combustion engines, camshafts are used to actuate the gas exchange valves. Camshafts are mounted in the internal combustion engine in such a way that cams attached to them rest on cam followers, for example bucket tappets, rocker arms or rocker arms. If a camshaft is set in rotation, the cams roll on the cam followers, which in turn actuate the gas exchange valves. The position and shape of the cams thus determine both the opening duration and amplitude, but also the opening and closing times of the gas exchange valves. Modern engine concepts tend to variably design the valve train. On the one hand, the valve lift and valve opening duration should be variable, up to the complete shutdown of individual cylinders. Concepts such as switchable cam followers or electrohydraulic or electric valve actuations are provided for this. Furthermore, it has proven to be advantageous to be able to influence the opening and closing times of the gas exchange valves during operation of the internal combustion engine. It is also desirable to be able to influence the opening and closing times of the intake and exhaust valves separately, for example, in order to be able to specifically set a defined valve overlap. By setting the opening and closing times of the gas exchange valves depending on the current map area of the engine, for example on the current speed or the current load, the specific fuel consumption can be reduced, the exhaust behavior can be positively influenced, the engine efficiency, the maximum torque and the maximum output increased become.
Die beschriebene Variabilität in der Gaswechselventilzeitensteuerung wird durch eine relative Änderung der Phasenlage der Nockenwelle zur Kurbelwelle bewerkstelligt. Dabei steht die Nockenwelle meist über einen Ketten-, Riemen-, Zahnradtrieb oder gleichwirkende Antriebskonzepte in Antriebsverbindung mit der Kurbelwelle. Zwischen dem von der Kurbelwelle angetriebenen Ketten-, Riemen- oder Zahnradtrieb und der Nockenwelle ist eine Vorrichtung zur ände- rung der Steuerzeiten einer Brennkraftmaschine, im folgenden Nockenwellen- versteller genannt, angebracht, der das Drehmoment von der Kurbelwelle auf die Nockenwelle überträgt. Dabei ist diese Vorrichtung derart ausgebildet, dass während des Betriebs der Brennkraftmaschine die Phasenlage zwischen Kurbelwelle und Nockenwelle sicher gehalten und, wenn gewünscht, die Nockenwelle in einem gewissen Winkelbereich gegenüber der Kurbelwelle verdreht werden kann.The described variability in the gas exchange valve timing control is brought about by a relative change in the phase position of the camshaft relative to the crankshaft. The camshaft is usually connected to the crankshaft via a chain, belt, gear drive or equivalent drive concepts. Between the chain, belt or gear drive driven by the crankshaft and the camshaft there is a device for changing the timing of an internal combustion engine, hereinafter referred to as the camshaft adjuster, which transmits the torque from the crankshaft to the camshaft. This device is designed in such a way that the phase position between the crankshaft and the camshaft is held securely during operation of the internal combustion engine and, if desired, the camshaft can be rotated in a certain angular range with respect to the crankshaft.
In Brennkraftmaschinen mit je einer Nockenwelle für die Einlass- und die Auslassventile können diese mit je einem Nockenwellenversteller ausgerüstet werden. Dadurch können die Öffnungs- und Schließzeiten der Einlass- und Aus- lassgaswechselventile zeitlich relativ zueinander verschoben und die Ventilzeitüberschneidungen gezielt eingestellt werden.In internal combustion engines, each with a camshaft for the intake and exhaust valves, these can be equipped with a camshaft adjuster. This allows the opening and closing times of the inlet and outlet Intake gas exchange valves are shifted in time relative to each other and the valve overlaps are set specifically.
Der Sitz moderner Nockenwellenversteller befindet sich im allgemeinen am antriebsseitigen Ende der Nockenwelle. Er besteht aus einem von der Kurbelwellen angetriebenen, eine feste Phasenbeziehung zu dieser haltendem Antriebsrad, einem nockenwellenfesten Abtriebsteil und einem das Drehmoment vom Antriebsrad auf das Abtriebsteil übertragenden Verstellmechanismus. Das Antriebsrad kann als Ketten-, Riemen- oder Zahnrad ausgeführt sein und ist mittels einer Kette, eines Riemens oder eines Zahnradtriebs mit der Kurbelwelle drehfest verbunden. Der Verstellmechanismus kann elektrisch, hydraulisch oder pneumatisch betrieben werden.Modern camshaft adjusters are generally located at the drive end of the camshaft. It consists of a drive wheel which is driven by the crankshafts and has a fixed phase relationship to the drive wheel, a camshaft-fixed output part and an adjusting mechanism which transmits the torque from the drive wheel to the output part. The drive wheel can be designed as a chain, belt or gearwheel and is connected to the crankshaft in a rotationally fixed manner by means of a chain, a belt or a gearwheel drive. The adjustment mechanism can be operated electrically, hydraulically or pneumatically.
Eine weit verbreitete Ausführungsform stellt der sogenannte Rotationskolben- versteller dar. In diesem ist das Antriebsrad drehfest mit einem Stator verbunden. Der Stator und ein Rotor sind konzentrisch zueinander angeordnet, wobei der Rotor kraft-, form- oder stoffschlüssig, beispielsweise mittels eines Presssitzes, einer Schraub- oder Schweißverbindung mit einer Nockenwelle, einer Verlängerung der Nockenwelle oder einer Zwischenwelle verbunden ist. Der radiale Zwischenraum zwischen dem Rotor und dem Stator nimmt mindestens eine, in der Regel aber mehrere, in Umfangsrichtung beabstandete Hohlräume auf. Die Hohlräume sind in axialer Richtung durch Seitendeckel druckdicht begrenzt. In jeden dieser Hohlräume erstreckt sich ein mit dem Rotor verbundener Flügel. Dieser Flügel teilt jeden Hohlraum in zwei Druckkammern. Durch gezieltes Verbinden der einzelnen Druckkammern mit einer Hydraulikmittelpumpe bzw. mit einem Hydraulikmittelauslass kann die Phase der Nockenwelle relativ zur Kurbelwelle eingestellt bzw. gehalten werden.The so-called rotary piston adjuster is a widespread embodiment. The drive wheel is connected in a rotationally fixed manner to a stator. The stator and a rotor are arranged concentrically to one another, the rotor being connected to a camshaft, an extension of the camshaft or an intermediate shaft in a force-fitting, form-fitting or material-locking manner, for example by means of a press fit, a screw or welded connection. The radial space between the rotor and the stator takes up at least one, but usually a plurality of cavities spaced apart in the circumferential direction. The cavities are delimited pressure-tight in the axial direction by side covers. A vane connected to the rotor extends into each of these cavities. This wing divides each cavity into two pressure chambers. The phase of the camshaft can be adjusted or held relative to the crankshaft by specifically connecting the individual pressure chambers to a hydraulic medium pump or to a hydraulic medium outlet.
Zur Steuerung des Nockenwellenverstellers erfassen Sensoren die Kenndaten des Motors wie beispielsweise den Lastzustand und die Drehzahl. Diese Daten werden einer elektronischen Kontrolleinheit zugeführt, die nach Vergleich derTo control the camshaft adjuster, sensors record the engine's characteristic data, such as the load condition and engine speed. This data is fed to an electronic control unit which, after comparison of the
Daten mit einem Kenndatenfeld der Brennkraftmaschine den Versteilmotor des Nockenwellenverstellers bzw. den Zu- und den Abfluss von Hydraulikmittel zu den verschiedenen Druckkammern steuert.Data with a characteristic data field of the internal combustion engine, the adjusting motor of the Controls camshaft adjuster or the inflow and outflow of hydraulic fluid to the various pressure chambers.
Es sind Vorrichtungen zur Veränderung der Steuerzeiten bekannt, bei denen ein Stator drehbar auf einem Rotor gelagert ist. Der Stator und der Rotor werden in axialer Richtung von je einem Seitendeckel begrenzt. In die Innenman- telfiäche des Stators sind mehrere Ausnehmungen eingebracht, wobei diese Ausnehmungen als Druckräume ausgeführt sind. D. h., der Rotor, der Stator und die zwei Seitendeckel umschließen die Druckräume druckdicht. In die Au- ßenmantelfläche des Rotors sind axial verlaufende Flügelnuten eingebracht, in welchen jeweils ein Flügel angeordnet ist. Die Flügel erstrecken sich vom Nutgrund in radialer Richtung nach außen. Dabei ist in jedem Druckraum ein Flügel angeordnet. Jeder Flügel trennt einen Druckraum in zwei gegeneinander- wirkende Druckkammern, wobei der Flügel innerhalb des Druckraums frei ver- schiebbar ist. Mittels eines Steuerventils und Druckmittelleitungen kann jeder Druckraum wahlweise mit einer Druckmittelpumpe oder einem Druckmittel re- servoir verbunden werden. Werden nun die Druckkammern die vom jeweiligen Flügel aus gesehen in Antriebsrichtung des Stators liegen mit der Druckmittelpumpe und die anderen Druckkammern mit dem Druckmittel reservoir verbun- den so bewegen sich die Flügel innerhalb des Druckraums entgegen der Antriebsrichtung des Stators, wodurch der Öffnungs- und Schließzeitpunkt der Gaswechsel ventile auf „spät" verstellt wird. Analog werden der Öffnungs- und der Schließzeitpunkt der Gaswechselventile bei Umkehr der Druckmittelflussrichtung zu einem frühen Zeitpunkt hin verschoben.Devices for changing the control times are known in which a stator is rotatably mounted on a rotor. The stator and the rotor are each limited in the axial direction by a side cover. Several recesses are made in the inner jacket surface of the stator, these recesses being designed as pressure spaces. In other words, the rotor, the stator and the two side covers enclose the pressure chambers in a pressure-tight manner. Axially running vane grooves are made in the outer circumferential surface of the rotor, in each of which a vane is arranged. The wings extend radially outward from the base of the groove. A wing is arranged in each pressure chamber. Each wing divides a pressure chamber into two counteracting pressure chambers, the wing being freely displaceable within the pressure chamber. By means of a control valve and pressure medium lines, each pressure chamber can optionally be connected to a pressure medium pump or a pressure medium reservoir. If the pressure chambers, which are seen from the respective wing in the drive direction of the stator, are connected to the pressure medium pump and the other pressure chambers are connected to the pressure medium reservoir, the wings move within the pressure chamber against the drive direction of the stator, causing the opening and closing times of the Gas exchange valves is set to "late". Similarly, the opening and closing times of the gas exchange valves are shifted to an early point in time when the pressure medium flow direction is reversed.
Durch die Beaufschlagung der einzelnen Druckmittelkammern mit Druckmittel wird eine Kraft auf jeden Flügel ausgeübt, die innerhalb der Flügelnut des Rotors auf den Rotor übertragen wird. In folge dessen findet eine hohe Materialbeanspruchung der Flügel im Bereich der Kontaktpunkte zum Rotor statt. Spe- ziell die Bereiche der Flügel, die an den Kanten und Ecken der Flügelnut anliegen erfahren eine hohe Beanspruchung. Aus Lebensdauergründen ist vorgesehen, dass die Flügel aus einem gehärteten Stahl bestehen. Dabei wird nor- malerweise zuerst der Flügel aus einem Blechteil geformt und anschließend als Ganzes in einem Härteofen gehärtet.By applying pressure medium to the individual pressure medium chambers, a force is exerted on each wing, which force is transmitted to the rotor within the wing groove of the rotor. As a result, the wing is subjected to high material stress in the area of the contact points to the rotor. In particular, the areas of the sash that lie against the edges and corners of the sash groove are subjected to high stress. For reasons of durability, it is envisaged that the wings are made of hardened steel. Thereby, Usually the wing is first formed from a sheet metal part and then hardened as a whole in a hardening furnace.
Neben den hohen Kosten und den hohen Durchlaufzeiten dieses Härteverfah- rens besteht die Gefahr, dass sich das Material durch thermisch bedingte Spannungen verzieht. Dies hat zur Folge, dass die Flächen des Flügels, die als Dichtflächen vorgesehen sind, spanend nachbearbeitet werden müssen, wodurch die Herstellung derartiger Flügel immens verteuert wird. Zusammenfassung der ErfindungIn addition to the high costs and the long throughput times of this hardening process, there is a risk that the material will warp due to thermal stresses. This has the consequence that the surfaces of the wing, which are provided as sealing surfaces, have to be reworked, making the manufacture of such wings extremely expensive. Summary of the invention
Der Erfindung liegt daher die Aufgabe zugrunde, diese geschilderten Nachteile zu vermeiden und somit Flügel zum Einsatz innerhalb einer Vorrichtung zur Veränderung der Steuerzeiten einer Brennkraftmaschine zu schaffen, die so- wohl kostengünstig zu produzieren als auch langlebig sind.The invention is therefore based on the object of avoiding the disadvantages described and thus creating vanes for use within a device for changing the timing of an internal combustion engine, which are both inexpensive to produce and durable.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass der Flügel nur partiell gehärtet ist. Weiterhin ist vorgesehen, dass der Flügel in einer axial verlaufenden Flügelnut, die in die Außenmantelfläche des Rotors eingeformt ist, an- geordnet ist und die Bereiche des Flügels gehärtet sind, die sich im montierten Zustand im Bereich der axial verlaufenden Nutkanten der Flügelnut befinden. Alternativ dazu kann der Flügel in einer axial verlaufenden Flügelnut, die in die Außenmantelfläche des Rotors eingeformt ist, angeordnet sein und der Flügel in den Bereichen gehärtet sein, die sich im montierten Zustand im Bereich der axialen Enden der axial verlaufenden Nutkanten der Flügelnut befinden. Weiterhin ist vorgesehen, dass ein vom Rotor abgewandtes Ende des Flügels, welches am Stator anliegt, gehärtet ist. In einer vorteilhaften Weiterentwicklung der Erfindung ist ein sich in der Flügelnut befindliches Ende des Flügels gehärtet. In dieser Ausführungsform ist vorgesehen, dass der Flügel von einem Fe- derelement, welches zwischen dem Nutgrund der Flügelnut und dem in der Flügelnut befindlichen Ende des Flügels angeordnet ist, mit einer radial nach außen gerichteten Kraft beaufschlagt wird und die Kontaktstelle des Flügels mit dem Federelement gehärtet ist. Vorteilhafterweise wird zum partiellen Härten ein Laserhärteverfahren angewendet.According to the invention, this object is achieved in that the wing is only partially hardened. Furthermore, it is provided that the wing is arranged in an axially extending wing groove, which is formed in the outer circumferential surface of the rotor, and the areas of the wing are hardened, which in the assembled state are located in the area of the axially extending groove edges of the wing groove. Alternatively, the wing can be arranged in an axially extending wing groove, which is formed in the outer circumferential surface of the rotor, and the wing can be hardened in the regions which, in the assembled state, are located in the region of the axial ends of the axially extending groove edges of the wing groove. Furthermore, it is provided that an end of the wing facing away from the rotor, which abuts the stator, is hardened. In an advantageous further development of the invention, an end of the wing located in the wing groove is hardened. In this embodiment it is provided that the spring is acted upon by a spring element, which is arranged between the groove base of the wing groove and the end of the wing located in the wing groove, with a radially outward force and the contact point of the wing with the spring element is hardened. A laser hardening method is advantageously used for partial hardening.
Wie im Stand der Technik üblich werden bei dieser Erfindung die Flügel durch Schneiden oder Stanzen aus einem Blechmaterial hergestellt. In einem sich an die Formgebung anschließenden Schritt werden mittels eines Laserhärteverfahrens die besonders beanspruchten Stellen des Flügels gehärtet. Dabei können partiell gehärtete Bereiche in Form von Punkten oder Linien in beliebiger Form hergestellt werden. Durch diesen Schritt entfallen konventionelle kost- spielige thermische Härteverfahren, bei gleichzeitiger Reduzierung der Taktzeit. Ein weiterer Vorteil ergibt sich daraus, dass in dem vorgeschlagenen Verfahren weniger thermische Energie in das Material eingebracht wird, wodurch ein Materialverzug der Flügel vermieden werden kann. Dadurch entfallen die sich sonst üblichen ans Härten anschließenden spanenden Bearbeitungsschrit- te.As is common in the prior art, in this invention the blades are made from sheet metal by cutting or stamping. In a step following the shaping, the particularly stressed areas of the wing are hardened by means of a laser hardening process. Partially hardened areas in the form of dots or lines can be produced in any shape. This step eliminates the need for conventional, costly thermal hardening processes while reducing the cycle time. A further advantage results from the fact that less thermal energy is introduced into the material in the proposed method, whereby a material distortion of the wings can be avoided. This eliminates the machining steps that are otherwise customary after hardening.
Die zu härtenden Stellen hoher Materialbeanspruchung liegen vornehmlich im Kontaktbereich zwischen Flügel und Rotor bzw. zwischen Flügel und Stator. Dabei sind vor allem die Bereiche zu nennen, die in Kontakt mit den axial ver- laufenden Nutkanten der Flügelnut treten. Deshalb wird vorgeschlagen mittels eines Laserhärteverfahrens den Flügel innerhalb dieses linienartigen Bereichs zu härten. Aufgrund von zwischen dem Rotor und dem Flügel in der Flügelnut auftretenden Toleranzen ist davon auszugehen, dass zwischen Flügel und Rotor während des Betriebs der Vorrichtung leichte Verkippungen auftreten kön- nen. Deshalb wird in einer alternativen Ausführungsform vorgeschlagen, die in Axialrichtung des Rotors liegenden Stirnseiten des Flügels im Bereich der axial verlaufenden Nutkanten der Flügelnut zu härten. Im Vergleich zur ersten Ausführungsform tritt hier nicht ein linienförmig zu härtender Bereich sondern lediglich zwei punktförmig zu härtende Bereiche auf, wodurch die Härtetaktzeit wei- ter gesenkt werden kann.The areas of high material stress to be hardened are primarily in the contact area between the blade and the rotor or between the blade and the stator. The areas that come into contact with the axially extending groove edges of the wing groove should be mentioned above all. It is therefore proposed to harden the wing within this line-like area by means of a laser hardening process. Due to tolerances occurring between the rotor and the wing in the wing groove, it can be assumed that slight tilting can occur between the wing and the rotor during operation of the device. It is therefore proposed in an alternative embodiment to harden the end faces of the wing lying in the axial direction of the rotor in the region of the axially extending groove edges of the wing groove. In comparison to the first embodiment, there is not a region to be hardened in a linear manner, but only two regions to be hardened in a punctiform manner, whereby the hardening cycle time can be further reduced.
Weiterhin kann es sich als notwendig erweisen, den Flügel an der Kontaktfläche zum Stator zu härten. Diese Kontaktzone muss möglichst druckdicht aus- geführt werden, um eine Leckage zwischen den Druckkammern zu vermeiden. Aus diesem Grund ist zwischen dem Nutgrund der Flügelnut und dem Flügel selber ein Federelement angeordnet, welches den Flügel radial nach außen mit einer Kraft beaufschlagt. Daraus resultiert neben einer starken Beanspruchung des Flügels an der Kontaktfläche zum Stator auch eine hohe Belastung an der Angriffsfläche der Feder. Um auch hier den Verschleiß so gering wie möglich zu halten wird ebenfalls vorgeschlagen diesen Bereich mittels eines Laserhärteverfahrens zu härten. Kurze Beschreibung der ZeichnungenFurthermore, it may prove necessary to harden the wing on the contact surface with the stator. This contact zone must be as pressure-tight as possible to avoid leakage between the pressure chambers. For this reason, a spring element is arranged between the groove base of the wing groove and the wing itself, which acts on the wing radially outward with a force. In addition to heavy stress on the wing on the contact surface with the stator, this also results in a high load on the contact surface of the spring. In order to keep wear as low as possible, it is also proposed to harden this area by means of a laser hardening process. Brief description of the drawings
Weitere Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung und aus den Zeichnungen, in der Ausführungsbeispiele der Erfindung vereinfacht dargestellt sind. Es zeigen:Further features of the invention result from the following description and from the drawings, in which exemplary embodiments of the invention are shown in simplified form. Show it:
Figur 1 einen Längsschnitt durch eine erfindungsgemäße Vorrichtung zur Veränderung der Steuerzeiten einer Brennkraftmaschine gemäß der Linie l-l aus Figur 2, Figur 2 einen Querschnitt durch eine erfindungsgemäße Vorrichtung zur Veränderung der Steuerzeiten einer Brennkraftmaschine nach Figur 1 entlang der Linie1 shows a longitudinal section through a device according to the invention for changing the timing of an internal combustion engine according to the line I-1 from Figure 2, Figure 2 shows a cross section through an inventive device for changing the timing of an internal combustion engine according to Figure 1 along the line
Figur 3 eine vergrößerte Ansicht der Einzelheit Z aus Figur 2,FIG. 3 shows an enlarged view of the detail Z from FIG. 2,
Figur 4, Figur 5 verschiedene Ausführungen partiell gehärteter Flügel. Ausführliche Beschreibung der ZeichnungenFigure 4, Figure 5 different versions of partially hardened wing. Detailed description of the drawings
Figur 1 und 2 zeigen eine erfindungsgemäße Vorrichtung 1 zur Veränderung der Steuerzeiten einer Brennkraftmaschine. Die Vorrichtung 1 besteht im we- sentlichen aus einem Stator 2 und einem konzentrisch dazu angeordneten Rotor 3. Ein Antriebsrad 4 ist drehfest mit dem Rotor verbunden und in der dargestellten Ausführungsform als Kettenrad ausgeführt. Ebenso denkbar sind Ausführungsformen des Antriebsrads 4 als Riemen oder Zahnrad. Der Stator 2 ist drehbar auf dem Rotor 3 gelagert, wobei an der Innenmantelfläche des Stators 2 in der dargestellten Ausführungsform fünf in Umfangsrichtung beabstandete Ausnehmungen 5 vorgesehen sind. Die Ausnehmungen 5 werden in radialer Richtung vom Stator 2 und dem Rotor 3, in Umfangsrichtung von zwei Seitenwänden 6 des Stators 2 und in axialer Richtung durch einen ersten und einen zweiten Seitendeckel 7, 8 begrenzt. Jede der Ausnehmungen 5 ist auf diese Weise druckdicht verschlossen. Der erste und der zweite Seitendeckel 7, 8 sind mit dem Stator 2 mittels Verbindungselementen 9, beispielsweise Schrauben, verbunden.1 and 2 show a device 1 according to the invention for changing the control times of an internal combustion engine. The device 1 essentially consists of a stator 2 and a rotor 3 arranged concentrically thereto. A drive wheel 4 is connected to the rotor in a rotationally fixed manner and, in the embodiment shown, is designed as a chain wheel. Embodiments of the drive wheel 4 as a belt or gear are also conceivable. The stator 2 is rotatably mounted on the rotor 3, five recesses 5 spaced apart in the circumferential direction being provided on the inner circumferential surface of the stator 2 in the embodiment shown. The recesses 5 are delimited in the radial direction by the stator 2 and the rotor 3, in the circumferential direction by two side walls 6 of the stator 2 and in the axial direction by a first and a second side cover 7, 8. Each of the recesses 5 is closed pressure-tight in this way. The first and the second side covers 7, 8 are connected to the stator 2 by means of connecting elements 9, for example screws.
An der Außenmantelfläche des Rotors 3 sind axial verlaufende Flügelnuten 10 ausgebildet, wobei in jeder Flügelnut 10 ein sich radial erstreckender Flügel 11 angeordnet ist. In jede Ausnehmung 5 erstreckt sich ein Flügel 11, wobei die Flügel 11 in radialer Richtung am Stator 2 und in axialer Richtung am ersten und zweiten Seitendeckel 7, 8 anliegen. Jeder Flügel 11 unterteilt eine Ausnehmung 5 in zwei gegeneinander arbeitende Druckkammern 12, 13. Um ein druckdichtes Anliegen der Flügel 11 am Stator 2 zu gewährleisten, sind zwischen den Nutgründen 14 der Flügelnuten 10 und den Flügeln 11 Federelemente 15 angebracht, die den Flügel 11 in radialer Richtung mit einer Kraft beaufschlagen.Axially extending vane grooves 10 are formed on the outer circumferential surface of the rotor 3, a radially extending vane 11 being arranged in each vane groove 10. A vane 11 extends into each recess 5, the vanes 11 abutting the stator 2 in the radial direction and the first and second side covers 7, 8 in the axial direction. Each vane 11 divides a recess 5 into two pressure chambers 12, 13 working against each other. In order to ensure that the vanes 11 bear against the stator 2 in a pressure-tight manner, spring elements 15 are attached between the groove bases 14 of the vane grooves 10 and the vanes 11 apply a force in the radial direction.
Mittels ersten und zweiten Druckmittelleitungen 16, 17 können die ersten und zweiten Druckkammern 12, 13 über ein nicht dargestelltes Steuerventil mit einer ebenfalls nicht dargestellten Druckmittelpumpe oder einem ebenfalls nicht dargestellten Druckmittel reservoir verbunden werden. Dadurch wird ein Stel- lantrieb 18 ausgebildet, der eine Relatiwerdrehung des Stators 2 gegenüber dem Rotor 3 ermöglicht. Dabei ist vorgesehen, dass entweder alle ersten Druckkammern 12 mit der Druckmittelpumpe und alle zweiten Druckkammern 13 mit dem Druckmittel reservoir verbunden werden bzw. die genau entgegen gesetzte Konfiguration. Werden die ersten Druckkammern 12 mit der Druckmittelpumpe und die zweiten Druckkammern 13 mit dem Druckmittel reservoir verbunden, so dehnen sich die ersten Druckkammern 12 auf Kosten der zweiten Druckkammern 13 aus. Daraus resultiert eine Verschiebung der Flügel 11 in Umfangsrichtung, in der durch den Pfeil 19 dargestellten Richtung. Durch das Verschieben der Flügel 11 wird der Rotor 3 relativ zum Stator 2 verdreht.By means of first and second pressure medium lines 16, 17, the first and second pressure chambers 12, 13 can be connected to a pressure medium pump, also not shown, or a pressure medium reservoir, also not shown, via a control valve (not shown). This means that Oil drive 18 is formed, which enables a relative rotation of the stator 2 with respect to the rotor 3. It is provided that either all of the first pressure chambers 12 are connected to the pressure medium pump and all of the second pressure chambers 13 are connected to the pressure medium reservoir, or the exactly opposite configuration. If the first pressure chambers 12 are connected to the pressure medium pump and the second pressure chambers 13 to the pressure medium reservoir, the first pressure chambers 12 expand at the expense of the second pressure chambers 13. This results in a displacement of the wings 11 in the circumferential direction, in the direction shown by the arrow 19. By moving the blades 11, the rotor 3 is rotated relative to the stator 2.
Der Stator 2 wird in der dargestellten Ausführungsform mittels eines an seinem Antriebsrad 4 angreifenden, nicht dargestellten Kettentrieb von der Kurbelwelle angetrieben. Ebenso denkbar ist der Antrieb des Stators 2 mittels eines Rie- men- oder Zahnradtriebs. Der Rotor 3 ist kraft-, form- oder stoffschlüssig, beispielsweise mittels Presssitz oder durch eine Schraubverbindung mittels einer Zentralschraube, mit einer nicht dargestellten Nockenwelle verbunden. Aus der Relatiwerdrehung des Rotors 3 relativ zum Stator 2, als Folge des Zu- bzw. Ableitens von Druckmittel zu bzw. aus den Druckkammer 12, 13, resultiert eine Phasenverschiebung zwischen Nockenwelle und Kurbelwelle. Durch gezieltes Ein- bzw. Ableiten von Druckmittel in die Druckkammern 12, 13 können somit die Steuerzeiten der Gaswechselventile der Brennkraftmaschine gezielt variiert werden.In the embodiment shown, the stator 2 is driven by the crankshaft by means of a chain drive, not shown, which engages with its drive wheel 4. The drive of the stator 2 by means of a belt or gear drive is also conceivable. The rotor 3 is non-positively, positively or materially connected, for example by means of a press fit or by a screw connection by means of a central screw, to a camshaft, not shown. A phase shift between the camshaft and the crankshaft results from the relative rotation of the rotor 3 relative to the stator 2 as a result of the supply and discharge of pressure medium to and from the pressure chambers 12, 13. The control times of the gas exchange valves of the internal combustion engine can thus be varied in a targeted manner by specifically introducing or discharging pressure medium into the pressure chambers 12, 13.
Die Druckmittelleitungen 16, 17 sind in der dargestellten Ausführungsform als im wesentlichen radial angeordnete Bohrungen ausgeführt, die sich von einer Zentralbohrung 20 des Rotors 3 zur dessen äußerer Mantelfläche erstrecken. Innerhalb der Zentral bohrung 20 kann ein nicht dargestelltes Zentralventil angeordnet sein, über welches die Druckkammern 12, 13 gezielt mit der Druck- mittelpumpe bzw. dem Druckmittelreservoir verbunden werden können. Eine weitere Möglichkeit besteht darin, innerhalb der Zentralbohrung 20 einen Druckmittel Verteiler anzuordnen, der die Druckmittelleitungen 16, 17 über Druckmittelkanäle und Ringnuten mit den Anschlüssen eines extern angebrachten Zentralventils verbindet.In the embodiment shown, the pressure medium lines 16, 17 are designed as essentially radially arranged bores, which extend from a central bore 20 of the rotor 3 to its outer lateral surface. A central valve (not shown) can be arranged within the central bore 20, via which the pressure chambers 12, 13 can be selectively connected to the pressure medium pump or the pressure medium reservoir. Another possibility is to arrange a pressure medium distributor within the central bore 20, which distributes the pressure medium lines 16, 17 Connects pressure medium channels and ring grooves with the connections of an externally attached central valve.
Die im wesentlichen radial verlaufenden Seitenwände 6 der Ausnehmungen 5 sind mit Ausformungen 21 versehen, die in Umfangsrichtung in die Ausnehmungen 5 hineinreichen. Die Ausformungen 21 dienen als Anschlag für die Flügel 11 und gewährleisten, dass die Druckkammern 12, 13 mit Druckmittel versorgt werden können, selbst wenn der Rotor 3 eine seiner Extremstellungen relativ zum Stator 2 einnimmt, in denen die Flügel 11 an einer der Seitenwände 6 anliegen.The essentially radially extending side walls 6 of the recesses 5 are provided with formations 21 which extend into the recesses 5 in the circumferential direction. The formations 21 serve as a stop for the vanes 11 and ensure that the pressure chambers 12, 13 can be supplied with pressure medium, even if the rotor 3 assumes one of its extreme positions relative to the stator 2, in which the vanes 11 rest on one of the side walls 6 ,
Bei ungenügender Druckmittelversorgung der Vorrichtung 1, beispielsweise während der Startphase der Brennkraftmaschine, wird der Rotor 3 aufgrund der Wechselmomente die die Nockenwelle auf diesen ausübt unkontrolliert relativ zum Stator 2 bewegt. In einer ersten Phase drängen die Wechselmomente der Nockenwelle die Flügel 11 in die Richtung entgegen der Drehrichtung 17, bis diese an den Seitenwänden 6 anschlagen. Weiterhin führen die in der Richtung schnell wechselnden Momente, die die Nockenwelle auf den Rotor 3 ausübt zu einem Hin- und Herschwingen des Rotors 3 und damit der Flügel 11 in den Ausnehmungen 5. Diese Phänomene führen zu einem höheren Verschleiß und zu einer höheren Geräuschentwicklung der Vorrichtung 1. Um diese Effekte zu verhindern ist in der Vorrichtung 1 ein Verriegelungselement 22 angebracht. Dazu ist in einer Axialbohrung 23 ein Kolben 24 angeordnet, welcher durch eine Feder 25 in axialer Richtung mit einer Kraft beaufschlagt wird. Die Feder 25 stützt sich in axialer Richtung auf der einen Seite an einer Entlüftungselement 26 ab und ist mit ihrem davon abgewandten axialen Ende innerhalb des topfförmig ausgeführten Kolbens 24 angeordnet. Innerhalb des ersten Seitendeckels 7 ist eine Kulisse 27 derart angeordnet, dass der Kolben 24 bei ungenügender Druckmittelversorgung der Vorrichtung 1 mittels der Feder 25 in die Kulisse 27 gedrängt wird, wenn der Rotor 3 relativ zum Stator 2 eine Position einnimmt, die der Position entspricht die die beiden Bauteile zueinander während der Startphase der Brennkraftmaschine einnehmen. Weiterhin sind Mittel vorgesehen, um den Kolben 24 bei ausreichender Versorgung der Vor- richtung 1 mit Druckmittel in die Axialbohrung 23 zurückzudrängen und damit die Verriegelung aufzuheben. Dies wird üblicherweise mit Druckmittel bewerkstelligt, welches über nicht dargestellte Druckmittelleitungen in eine Aussparung 28 geleitet wird, welche am deckelseitigen Stirnende des Kolbens 24 aus- gebildet ist. Um Leckageöl aus dem Federraum der Axialbohrung 23 ableiten zu können ist das Entlüftungselement 26 mit axial verlaufenden Nuten versehen, entlang derer das Druckmittel zu einer Bohrung im zweiten Seitendeckel 8 geleitet werden kann.In the event of insufficient supply of pressure medium to the device 1, for example during the starting phase of the internal combustion engine, the rotor 3 is moved in an uncontrolled manner relative to the stator 2 due to the alternating torques which the camshaft exerts thereon. In a first phase, the alternating torques of the camshaft urge the vanes 11 in the direction opposite to the direction of rotation 17 until they strike the side walls 6. Furthermore, the moments that change rapidly in the direction that the camshaft exerts on the rotor 3 cause the rotor 3 and thus the wing 11 to swing back and forth in the recesses 5. These phenomena lead to greater wear and to a higher noise level Device 1. In order to prevent these effects, a locking element 22 is attached in device 1. For this purpose, a piston 24 is arranged in an axial bore 23, which is acted upon by a spring 25 in the axial direction with a force. The spring 25 is supported in the axial direction on one side on a ventilation element 26 and is arranged with its axial end facing away from it within the cup-shaped piston 24. Within the first side cover 7, a link 27 is arranged such that the piston 24 is pushed into the link 27 by means of the spring 25 if the pressure medium supply to the device 1 is insufficient, when the rotor 3 assumes a position relative to the stator 2 that corresponds to the position take the two components to each other during the starting phase of the internal combustion engine. Means are also provided to ensure that the piston 24 is adequately supplied with the to push back direction 1 with pressure medium in the axial bore 23 and thus release the lock. This is usually accomplished with pressure medium, which is directed via pressure medium lines (not shown) into a recess 28 which is formed on the end face of the piston 24 on the cover side. In order to be able to discharge leakage oil from the spring chamber of the axial bore 23, the ventilation element 26 is provided with axially extending grooves, along which the pressure medium can be guided to a bore in the second side cover 8.
In Figur 2 und Figur 3 ist die Anordnung der Flügel 11 innerhalb der Flügelnut 10 dargestellt. Werden nun die ersten oder die zweiten Druckkammern 12, 13 mit Hydraulikmittel beaufschlagt, so wird ein erster Bereich 29 des Flügels 11 gegen die axial verlaufende Nutkante 30 der Flügelnut 10 gepresst, wodurch dieser erste Bereich 29 starken Belastungen ausgesetzt ist.In Figure 2 and Figure 3, the arrangement of the wings 11 within the wing groove 10 is shown. If hydraulic fluid is now applied to the first or the second pressure chambers 12, 13, a first region 29 of the wing 11 is pressed against the axially extending groove edge 30 of the wing groove 10, as a result of which this first region 29 is exposed to heavy loads.
Zwischen dem Nutgrund 14 der Flügelnut 10 und einer innerhalb der Flügelnut 10 angeordneten ersten Stirnfläche 31 des Flügels 11 ist ein Federelement 15 angeordnet. Das Federelement 15 ist vorteilhafterweise als Blattfeder ausgebildet, wobei es sich am Nutgrund 14 der Flügelnut 10 abstützend, die erste radiale Stirnfläche 31 des Flügels 11 mit einer radial gerichteten Kraft beaufschlagt. Auch diese erste Stirnfläche 31 ist großen Belastungen ausgesetzt. Die Beaufschlagung des Flügels 11 mit einer radial gerichteten Kraft hat zur Folge, dass dieser mit einer zweiten radialen Stirnfläche 32 gegen den Stator 2 gepresst wird. Die zweite radiale Stirnfläche 32, die auf der von der ersten Stirnfläche 31 abgewandten Seite des Flügels 11 ausgebildet ist, erfährt durch die Anpresskraft ebenfalls eine hohe Belastung. Um die Lebensdauer der Flügel 11 und damit der Vorrichtung 1 zu erhöhen werden die Flügel 11 gehärtet. Dies wird üblicherweise mittels eines thermischen Härtungsprozesses, beispielsweise durch das Durchlaufen eines Härteofens bewerkstelligt. Neben den hohen Durchlaufzeiten und den hohen Kosten dieses Verfahrens führt der Eintrag thermischer Energie zu einem Verzug des Materials der Flügel 11 , wodurch speziell die die Druckkammern 12 und 13 abdichtenden Seitenwände der Flügel 11 spanend nachbearbeitet werden müssen. Deshalb wird vorgeschla- gen, dass die Flügel 11 nur partiell in den belasteten Bereichen gehärtet werden.A spring element 15 is arranged between the groove base 14 of the wing groove 10 and a first end face 31 of the wing 11 arranged within the wing groove 10. The spring element 15 is advantageously designed as a leaf spring, wherein, supported on the groove base 14 of the wing groove 10, the first radial end face 31 of the wing 11 is subjected to a radially directed force. This first end face 31 is also exposed to great loads. The action on the blade 11 with a radially directed force has the result that it is pressed against the stator 2 with a second radial end face 32. The second radial end face 32, which is formed on the side of the wing 11 facing away from the first end face 31, likewise experiences a high load due to the contact pressure. In order to increase the life of the wings 11 and thus the device 1, the wings 11 are hardened. This is usually accomplished by means of a thermal hardening process, for example by passing through a hardening furnace. In addition to the high throughput times and the high costs of this process, the introduction of thermal energy leads to a distortion of the material of the wings 11, as a result of which the side walls of the wings 11 sealing the pressure chambers 12 and 13 must be machined. Therefore it is suggested conditions that the wings 11 are only partially hardened in the loaded areas.
Dies ist in den Figuren 4 und 5 dargestellt. Die Figuren zeigen jeweils einen Flügel 11 , wobei nur bestimmte Bereiche des Flügels 11 gehärtet sind. Figur 4 zeigt eine Ausführungsform in der die erste und zweite Stirnfläche 31 , 32 gehärtet ist. Weiterhin ist ein linienförmiger Bereich gehärtet, welcher dem ersten Bereich 29 entspricht, der im montierten Zustand des Flügels 11 an der axial verlaufenden Nutkante 30 der Flügelnut 10 anliegt. Da bei Umkehr der Druck- Verhältnisse in den Druckkammern 12, 13 die Belastung an der gegenüberliegenden Seitenwand des Flügels 11 auftritt ist der Flügel 11 beidseitig im ersten Bereich 29 gehärtet.This is shown in Figures 4 and 5. The figures each show a wing 11, only certain areas of the wing 11 being hardened. FIG. 4 shows an embodiment in which the first and second end faces 31, 32 are hardened. Furthermore, a line-shaped area is hardened, which corresponds to the first area 29 which, in the assembled state of the wing 11, bears against the axially extending groove edge 30 of the wing groove 10. Since, when the pressure conditions in the pressure chambers 12, 13 are reversed, the load occurs on the opposite side wall of the wing 11, the wing 11 is hardened on both sides in the first region 29.
Eine zweite Ausführungsform des Flügels 11 ist in Figur 5 dargestellt. Hier sind ebenfalls die erste und zweite Stirnfläche 31, 32 gehärtet. Zusätzlich sind nur die Abschnitte 33 des ersten Bereichs 29 gehärtet, welche im montierten Zustand an den axialen Enden der axial verlaufenden Nutkanten 30 der Flügelnut 10 anliegen. Der Flügel 11 ist im Normalfall mit einem gewissen Spiel innerhalb der Flügeinut 10 angeordnet. Im Betrieb führt dies dazu, dass der Flügel 11 leicht um eine radial relativ zum Rotor 3 verlaufende Achse verkippt wird. In Folge dessen liegen nur die Abschnitte 33 an den Nutkanten 30 der Flügelnut 10 an. Dieses partielle Härten kann beispielsweise mittels Laserhärtung vorgenommen werden. Dabei können beliebig geformte Bereiche des Flügels 11 gehärtet werden.A second embodiment of the wing 11 is shown in Figure 5. The first and second end faces 31, 32 are also hardened here. In addition, only the sections 33 of the first region 29 are hardened, which, in the assembled state, bear against the axial ends of the axially extending groove edges 30 of the wing groove 10. The wing 11 is normally arranged with a certain play within the wing groove 10. In operation, this means that the wing 11 is tilted slightly about an axis running radially relative to the rotor 3. As a result, only the sections 33 abut the groove edges 30 of the wing groove 10. This partial hardening can be carried out, for example, by means of laser hardening. Areas of the wing 11 of any shape can be hardened.
Neben einer Verringerung der Taktzeit und der Kosten führt der geringere Wärmeeintrag während des Härtevorgangs dazu, dass der Flügel 11 nach dem Härtevorgang nicht mehr spanend nachbearbeitet werden uss. BezugszeichenIn addition to a reduction in cycle time and costs, the lower heat input during the hardening process means that the wing 11 can no longer be machined after the hardening process. reference numeral
Vorrichtung 26 EntlüftungsvorrichtungDevice 26 venting device
Stator 27 KulisseStator 27 backdrop
Rotor 28 AussparungRotor 28 recess
Antriebsrad 29 erster BereichDrive wheel 29 first area
Ausnehmungen 30 NutkanteRecesses 30 groove edge
Seitenwand 31 erste Stirnfläche erster Seitendeckel 32 zweite Stirnfläche zweiter Seitendeckel 33 AbschnittSide wall 31 first end face first side cover 32 second end face second side cover 33 section
Verbindungselementconnecting element
Flügelnutvane
Flügel erste Druckkammer zweite DruckkammerWing first pressure chamber second pressure chamber
Nutgrundgroove base
Federelement erste Druckmittelleitung zweite DruckmittelleitungSpring element first pressure medium line second pressure medium line
Stellantriebactuator
Pfeilarrow
Zentralbohrungcentral bore
Ausformungenformations
Verriegelungselementlocking element
Axialbohrungaxial bore
Kolbenpiston
Feder feather

Claims

Patentansprüche claims
1. Vorrichtung (1) zur Veränderung der Steuerzeiten einer Brennkraftmaschine mit1. Device (1) for changing the timing of an internal combustion engine
- einem von der Kurbelwelle (3) angetriebenen Stator (2) und- A stator (2) and driven by the crankshaft (3)
- einem mindestens eine Nockenwelle (4) antreibenden Rotor (3),- a rotor (3) driving at least one camshaft (4),
- der von dem Stator (2) über einen hydraulischen Stellantrieb (18) angetrie- ben wird,- which is driven by the stator (2) via a hydraulic actuator (18),
- wobei über den Stellantrieb (18) die Phasenlage zwischen der Kurbelwelle (3) und der mindestens einen Nockenwelle (4) verändert werden kann und- The phase position between the crankshaft (3) and the at least one camshaft (4) can be changed via the actuator (18) and
- wobei der Stellantrieb (18) zumindest einen Druckraum umfaßt,- The actuator (18) comprises at least one pressure chamber,
- in den ein am Rotor (3) befestigter Flügel (11) eingreift, - wobei der Flügel (11) den Druckraum in zwei gegeneinander arbeitende hydraulische Druckkammern (12, 13) trennt, dadurch gekennzeichnet, dass- In which a wing (11) attached to the rotor (3) engages, - The wing (11) separating the pressure chamber into two hydraulic pressure chambers (12, 13) working against each other, characterized in that
- der Flügel (11) nur partiell gehärtet ist.- The wing (11) is only partially hardened.
2. Vorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass2. Device (1) according to claim 1, characterized in that
- der Flügel (11) in einer axial verlaufenden Flügelnut (10), die in die Außenmantelfläche des Rotors (3) eingeformt ist, angeordnet ist und- The wing (11) in an axially extending wing groove (10), which is formed in the outer surface of the rotor (3), is arranged and
- die Bereiche (29) des Flügels (11) gehärtet sind, die sich im montierten Zustand im Bereich der axial verlaufenden Nutkanten (30) der Flügelnut (10) befinden.- The areas (29) of the wing (11) are hardened, which are in the assembled state in the region of the axially extending groove edges (30) of the wing groove (10).
3. Vorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass3. Device (1) according to claim 1, characterized in that
- der Flügel (11) in einer axial verlaufenden Flügelnut (10), die in die Außenmantelfläche des Rotors (3) eingeformt ist, angeordnet ist und - der Flügel (11) in den Abschnitten (33) gehärtet ist, die sich im montierten Zustand im Bereich der axialen Enden der axial verlaufenden Nutkanten (30) der Flügelnut (10) befinden. - The wing (11) is arranged in an axially extending wing groove (10) which is formed in the outer circumferential surface of the rotor (3) and - The wing (11) is hardened in the sections (33) which are in the assembled state located in the area of the axial ends of the axially extending groove edges (30) of the wing groove (10).
4. Vorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass ein vom Rotor (3) abgewandtes Ende des Flügels (11), welches am Stator (2) anliegt, gehärtet ist.4. The device (1) according to claim 1, characterized in that an end of the wing (11) which faces away from the rotor (3) and which lies against the stator (2) is hardened.
5. Vorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass ein sich in der Flügelnut (10) befindliches Ende des Flügels (11) gehärtet ist.5. The device (1) according to claim 1, characterized in that one end of the wing (11) located in the wing groove (10) is hardened.
6. Vorrichtung (1) nach Anspruch 5, dadurch gekennzeichnet, dass6. The device (1) according to claim 5, characterized in that
- der Flügel (11) von einem Federelement (15), welches zwischen dem Nut- grund (14) der Flügellnut (10) und dem in der Flügelnut (10) befindlichen Ende des Flügels (11) angeordnet ist, mit einer radial nach außen gerichteten Kraft beaufschlagt wird und- The wing (11) of a spring element (15), which is arranged between the groove base (14) of the wing groove (10) and the end of the wing (11) located in the wing groove (10), with a radially outward directed force is applied and
- die Kontaktstelle des Flügels (11) mit dem Federelement (15) gehärtet ist.- The contact point of the wing (11) with the spring element (15) is hardened.
7. Vorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass ein Laserhärteverfahren angewendet wird. 7. The device (1) according to claim 1, characterized in that a laser hardening process is used.
PCT/EP2005/005902 2004-06-02 2005-06-01 Device for modifying control times of an internal combustion engine WO2005119017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004026865.7 2004-06-02
DE102004026865A DE102004026865A1 (en) 2004-06-02 2004-06-02 Device for changing the timing of an internal combustion engine

Publications (1)

Publication Number Publication Date
WO2005119017A1 true WO2005119017A1 (en) 2005-12-15

Family

ID=35056953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005902 WO2005119017A1 (en) 2004-06-02 2005-06-01 Device for modifying control times of an internal combustion engine

Country Status (2)

Country Link
DE (1) DE102004026865A1 (en)
WO (1) WO2005119017A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007040017B4 (en) 2007-08-24 2020-09-17 Schaeffler Technologies AG & Co. KG Timing setting device for an internal combustion engine with manufacturing process
DE102008030057B4 (en) 2008-06-27 2018-01-25 Hilite Germany Gmbh Camshaft adjustment device
DE102010009392A1 (en) 2010-02-26 2011-09-01 Schaeffler Technologies Gmbh & Co. Kg Device for the variable adjustment of the timing of gas exchange valves of an internal combustion engine
DE102013204929A1 (en) * 2013-03-20 2014-09-25 Schaeffler Technologies Gmbh & Co. Kg Phaser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658451A (en) * 1969-09-13 1972-04-25 Toyo Kogyo Co Apex seal for rotary piston engine
DE2208425A1 (en) * 1972-02-23 1973-08-30 Daimler Benz Ag SEALING ELEMENT ARRANGED IN THE PISTON OF A ROTATING PISTON ENGINE
JPS63159685A (en) * 1986-12-19 1988-07-02 Taiho Kogyo Co Ltd Vane
DE3937197A1 (en) * 1988-11-09 1990-05-10 Toyoda Automatic Loom Works Multicell compressor - with borided high carbon pearlitic steel blades
US20030221646A1 (en) * 2002-03-08 2003-12-04 Aisin Seiki Kabushiki Kaisha Variable valve timing control device
EP1479877A2 (en) * 2003-05-21 2004-11-24 Aisin Seiki Kabushiki Kaisha Vane,camshaft timing control device, and sliding member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196696B2 (en) * 1997-08-25 2001-08-06 株式会社デンソー Valve timing adjustment device
DE19936632A1 (en) * 1999-08-04 2001-02-15 Schaeffler Waelzlager Ohg Device for varying the valve timing of an internal combustion engine, in particular camshaft adjustment device with a swivel impeller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658451A (en) * 1969-09-13 1972-04-25 Toyo Kogyo Co Apex seal for rotary piston engine
DE2208425A1 (en) * 1972-02-23 1973-08-30 Daimler Benz Ag SEALING ELEMENT ARRANGED IN THE PISTON OF A ROTATING PISTON ENGINE
JPS63159685A (en) * 1986-12-19 1988-07-02 Taiho Kogyo Co Ltd Vane
DE3937197A1 (en) * 1988-11-09 1990-05-10 Toyoda Automatic Loom Works Multicell compressor - with borided high carbon pearlitic steel blades
US20030221646A1 (en) * 2002-03-08 2003-12-04 Aisin Seiki Kabushiki Kaisha Variable valve timing control device
EP1479877A2 (en) * 2003-05-21 2004-11-24 Aisin Seiki Kabushiki Kaisha Vane,camshaft timing control device, and sliding member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 424 (M - 761) 10 November 1988 (1988-11-10) *

Also Published As

Publication number Publication date
DE102004026865A1 (en) 2006-05-04

Similar Documents

Publication Publication Date Title
EP1924759B1 (en) Control valve for a device for changing the control times of an internal combustion engine
EP1596040B1 (en) Camshaft phaser
EP1914395B1 (en) Method to control an apparatus for variable timing of intake- and exhaust valves in a combustion engine
EP1596041A2 (en) Control valve for a camshaft timing phaser in an internal combustion engine
EP2326804B1 (en) Camshaft adjuster
DE202005008264U1 (en) Device for variable adjustment of gas exchange valve timing in IC engines has housing projecting into radial profile of on outer stator jacket surface for positive connection
DE102009016872B4 (en) Cam phaser assembly and engine assembly
DE102005028757A1 (en) Control valve for a device for the variable adjustment of the timing of gas exchange valves of an internal combustion engine
EP1653056B1 (en) Device for altering the valve timing in an internal combustion engine
EP3329104A1 (en) Camshaft adjuster
DE102004038160B4 (en) Phaser
WO2008089876A1 (en) Device for the combined locking and rotation angle limitation of a camshaft adjuster
DE102005024241B4 (en) Device for the variable adjustment of the timing of gas exchange valves of an internal combustion engine
EP1888895B1 (en) Device for variably setting the control times of gas exchange valves of an internal combustion engine
WO2005119017A1 (en) Device for modifying control times of an internal combustion engine
WO2002042613A1 (en) Device for adjusting the rotation angle of the camshaft of an internal combustion engine in relation to a drive wheel
DE102010009393A1 (en) Device for the variable adjustment of the timing of gas exchange valves of an internal combustion engine
DE102005023228B4 (en) Device for the variable adjustment of the timing of gas exchange valves of an internal combustion engine
WO2007019953A1 (en) Device for variable setting of timing points for gas exchange valves in an internal combustion engine
EP1370749B1 (en) Device for adjusting the angle of rotation of a camshaft of an internal combustion engine with regard to a drive gear
DE102005024242B4 (en) Device for the variable adjustment of the timing of gas exchange valves of an internal combustion engine
WO2010034575A1 (en) Device for variably adjusting the valve timing of gas exchange valves of an internal combustion engine
DE102004062068A1 (en) Device for changing the timing of an internal combustion engine
DE102021128258A1 (en) control valve
DE102017106473A1 (en) Hydraulic camshaft adjuster

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase