WO2005111576A1 - 摩擦試験装置及び摩擦試験方法 - Google Patents

摩擦試験装置及び摩擦試験方法 Download PDF

Info

Publication number
WO2005111576A1
WO2005111576A1 PCT/JP2005/008929 JP2005008929W WO2005111576A1 WO 2005111576 A1 WO2005111576 A1 WO 2005111576A1 JP 2005008929 W JP2005008929 W JP 2005008929W WO 2005111576 A1 WO2005111576 A1 WO 2005111576A1
Authority
WO
WIPO (PCT)
Prior art keywords
measured
movable
friction
dut
attached
Prior art date
Application number
PCT/JP2005/008929
Other languages
English (en)
French (fr)
Inventor
Yusaku Fujii
Takao Yamaguchi
Original Assignee
Gunma University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University filed Critical Gunma University
Priority to US11/569,344 priority Critical patent/US20070169539A1/en
Priority to EP05741447A priority patent/EP1754966A1/en
Publication of WO2005111576A1 publication Critical patent/WO2005111576A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials

Definitions

  • the present invention relates to a friction test apparatus and a friction test method, and more particularly to a friction test apparatus and a friction test method for detecting a physical quantity related to friction such as a friction force using an inertial force or an inertial moment.
  • Patent Document 1 An evaluation device for performing an evaluation is known (Patent Document 1).
  • the first sample is fixed to the slider driven by the linear motor, the second sample is placed on the first sample, and the weight is placed on the second sample.
  • a linear motor is driven, a motor current value of the linear motor and a thrust constant force of the linear motor are also obtained as a thrust, and a friction force measuring device that uses this thrust as a static friction force is known (Patent Document 3).
  • the linear motor is driven at a constant speed, and the current-thrust characteristic force of the linear motor also obtains a thrust according to the motor current value, and this thrust is used as the dynamic friction force.
  • the linear encoder detects the amount of movement of the slider.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-283873
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-174400
  • Patent Document 3 JP-A-10-62273
  • Patent Document 1 relates to a device for evaluating the impact response of a force sensor.
  • a method of calibrating the detection output of a force sensor with respect to a static force (static calibration method) has been established, but when a dynamic force acts on the force sensor.
  • phenomena such as a response delay of a detection output with respect to a change in force occur, and even if the detection output of the force sensor is calibrated by a static calibration method, a dynamic force cannot be measured accurately.
  • the present invention has been made to solve the above-described problem, and it is possible to accurately measure a physical quantity relating to friction such as a frictional force indicating a frictional characteristic between objects without using a force sensor even in a dynamic state. It is an object of the present invention to provide a friction test device and a friction test method capable of detecting a friction test.
  • a friction test apparatus of the present invention includes a movable section that is movably attached to a guide section along a guide section and to which a first DUT can be attached, A mounting member for mounting a second object to be pressed against the first object to be mounted, a reflecting member fixed to the movable portion, and a light source for emitting light to the reflecting member.
  • the reflective member, the movable part, and the second movable body attached to the movable member are pressed against the second movable body attached to the mounting member.
  • a light wave interferometer for detecting a change in the state of light reflected from the reflecting member when an object having the first object to be measured moves relative to the second object; and Based on the detected change in the state of the reflected light, the first measured Physical quantity detecting means for detecting a physical quantity related to friction acting between the object and the second object to be measured.
  • the first object to be measured attached to the movable part and the attachment to the attachment member
  • the object in which the reflecting member, the movable part, and the first DUT are integrated is moved relative to the second DUT with the second DUT pressed against the second DUT.
  • the state change of the reflected light from the reflecting member is detected by a light wave interferometer.
  • a physical quantity relating to friction acting between the first measured object and the second measured object is detected.
  • the first object force is measured.
  • Force acting on object and second object force The force acting on the first object is an opposite force of equal magnitude due to the action-reaction law.
  • the inertial force of the above object is equal to the frictional force acting between the two measured objects. They are equal in size. Therefore, by detecting the inertial force, the frictional force as a physical quantity relating to the friction acting between the first measured object and the second measured object can be detected with high accuracy.
  • the inertial force of this object is equal to the product of the mass and the acceleration of the object, and so the displacement speed of the object is detected by an optical interferometer, and the acceleration of the object can be accurately obtained by differentiating the detected displacement speed.
  • the inertia force of the object can be accurately detected from the acceleration and the mass of the object.
  • physical quantities relating to friction include, in addition to a frictional force acting between the first measured object and the second measured object, a displacement with respect to a reference position of the object, a speed of the object, And at least one of the acceleration of the object. If the displacement of the object is detected by integrating the displacement velocity of the object detected by the light wave interferometer, there is no need to provide a separate measuring means for measuring the displacement of the object, which is advantageous in terms of cost. .
  • the movable portion of the present invention be supported by a linear bearing such as a static pressure air linear bearing or a magnetic linear bearing so that its movement is limited to one degree of freedom.
  • Hydrostatic air linear bearings have two major features: high motion accuracy (high stability for five axes other than the motion axis) and low friction.
  • high motion accuracy high stability for five axes other than the motion axis
  • low friction By using a static pressure air linear bearing with these two features, The deviation between the inertial force of the object and the frictional force acting between the objects to be measured can be reduced to an extremely small value by minimizing the frictional force acting on the object, and the accuracy of the relative motion between the two objects In order to perform the measurement with high accuracy, the geometric accuracy of the relative motion between the two DUTs is also very important.) It is possible to increase the measurement accuracy.
  • a pressing force detecting means for detecting a pressing force acting on the second object to be measured is further provided, and the physical quantity related to the friction is detected by the physical quantity detecting means by the pressing force detecting means.
  • the movable shaft composed of the guide portion and the like was measured.
  • a linear motion bearing mechanism installed perpendicular to the direction of the main component of the frictional force was provided, and the movable object was provided on the movable shaft.
  • a friction test apparatus can be configured as follows by providing a pair of measurement units including a movable section and an optical interferometer. That is, a first movable portion that is attached to the first guide portion so as to be movable along the first guide portion and to which a first DUT can be attached, and a first movable portion that is attached to the first guide portion. A second mountable movably attached to the second guide portion along the second guide portion arranged in parallel and to which a second DUT to be pressed against the first DUT can be attached.
  • the first reflection member, the first movable part, and the first movable member are pressed in a state where the first DUT and the second DUT attached to the second movable part are pressed.
  • a state change of the reflected light of the first reflecting member force when the object integrated with the measured object relatively moves with respect to the second measured object.
  • Physical quantity detecting means for detecting a physical quantity related to friction acting between the first measured object and the second measured object based on a change in the state of the reflected light detected by at least one of the interferometers. And can be included.
  • the second movable section is provided with a third movable section movable with respect to the second movable section, and the second movable section is provided with the third movable section via the third movable section. It is easier to attach a second DUT.
  • a movable portion attached to the guide portion so as to be movable along the guide portion comprising an insertion portion inserted into the fluid, a reflecting member fixed to the movable portion, and the reflecting portion
  • a light source for injecting light into the material, and the object in which the reflecting member, the movable portion, and the insertion portion are integrally moved relative to the fluid in a state where the insertion portion is inserted into the fluid.
  • a light wave interferometer for detecting a change in the state of light reflected from the reflecting member at the time, and a physical quantity relating to friction of the fluid acting on the insertion portion based on the change in the state of the reflected light detected by the light wave interferometer.
  • a rotating body rotatably provided on the guide portion, a flywheel rotatably mounted on the rotating body together with the rotating body, and an object to be measured pressed against the outer peripheral surface of the flywheel are provided.
  • a physical quantity detecting means for detecting a physical quantity related to friction acting between the measured object and the flywheel based on the angular velocity detected by the detecting means.
  • Friction force is detected as a physical quantity related to friction acting between the measured object and the flywheel.
  • the frictional force can be measured using a hydrostatic air bearing having a pre-measured moment of inertia.
  • one hydrostatic air bearing is required to measure the moment (torque) of one axis.
  • the principle of moment measurement is described in the references (Y. Fujii, K. Ogushi, ⁇ . ⁇ ” ⁇ , A proposal for a dynamic—response—evaluation method ror torque transducers”, Meas. Sci. TechnoU Vol. 10, No. 12, pp. N142-N144, 1999).
  • the friction test method of the present invention provides a method of attaching a first object to be measured to a weight body movably provided along a guide portion and a method of attaching the first object to be measured attached to the weight body. While pressing the second DUT and pressing the first DUT with the second DUT, the object in which the first DUT and the weight are integrated is moved. The inertial force of the object when the object is moved is detected as a frictional force acting between the first object to be measured and the second object to be measured.
  • the flywheel rotatably provided on the guide portion is rotated, and the object to be measured is pressed against the outer peripheral surface of the flywheel, and the flywheel and an object having a rotating physical force rotating integrally with the flywheel. Based on the moment of inertia of the flywheel and the angular acceleration of the flywheel, it is preferable to detect a frictional force acting between the flywheel and the object to be measured.
  • the physical quantity related to friction is detected without using a force sensor. An effect is obtained that a physical quantity can be accurately detected even in a dynamic state.
  • the friction force is detected based on the inertial force of the object, or the inertial moment of the object and the angular acceleration of the flywheel. The effect that accurate detection is possible even in a dynamic state is obtained.
  • FIG. 1 is a block diagram showing a friction test apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an end view taken along line II II of FIG. 1.
  • FIG. 3 is a flowchart showing a processing routine for detecting a frictional force or the like according to the first embodiment.
  • FIG. 4A is a graph showing measured data of a beat frequency.
  • FIG. 4B is a graph showing the calculated displacement speed of the weight body, which is the measured data force of beat frequency.
  • FIG. 4C is a graph showing the calculated displacement of the weight body.
  • FIG. 4D is a graph showing the acceleration of the weight, which also calculates the displacement velocity force.
  • FIG. 4E is a graph showing the inertial force of the weight body for which the acceleration force has also been calculated.
  • FIG. 5B is a graph showing displacement of friction coefficient change ⁇ as a horizontal axis.
  • FIG. 6 is a graph showing a friction force measured as an inertial force in two measurement experiments.
  • FIG. 7 is a block diagram showing a friction test device according to a second embodiment of the present invention.
  • FIG. 8 is a block diagram showing a friction test apparatus according to a third embodiment of the present invention.
  • FIG. 9 is a block diagram showing a friction test apparatus according to a fourth embodiment of the present invention.
  • FIG. 10 is a block diagram showing a friction test apparatus according to a fifth embodiment of the present invention.
  • the first embodiment of the present invention includes a linear motion bearing 10 for mounting a first DUT 21 such as a metal plate, and a light wave interferometer 12. Measurement unit is provided.
  • the linear motion bearing 10 is constituted by a linear motion static pressure air bearing having a small frictional resistance.
  • the direct motion static pressure air bearing for example, an air slide (registered trademark) manufactured by ⁇ Corporation can be used.
  • the linear bearing 10 has a linear guide portion 10B fixed to a base (see FIG. 7) so as to face in a horizontal direction, and is mounted on the guide portion 10B so as to be movable along the guide portion 10B.
  • a block-shaped movable portion 10C functioning as a part of the weight is provided.
  • the movable portion 1OC is provided with a through hole, and as shown in FIG. 2, the guide portion 10B is provided through the through hole.
  • a compressed air layer (about 5 to: LO / zm) is formed over the entire outer peripheral surface of the guide portion 10B.
  • the movable portion 10C moves straight in the length direction of the guide portion 10B with extremely small frictional resistance. It is possible to exercise.
  • the compressed air also introduces one end force of the guide portion 10B, and the outlet force formed at the center portion of the guide portion 10B also receives the movable force through the groove formed on the inner periphery of the movable portion 10C. It is led to the inlet formed at the center of 10C and is supplied to the gap via the internal piping of the movable part 1OC. If compressed air is directly introduced into the movable part 10C via the air supply tube, the structure of the air supply passage becomes even simpler.However, in this embodiment, the external force of the air supply tube acts on the movable part 10C. In order to prevent this, compressed air is also introduced into the guide section 10B.
  • the upper surface 10A of the movable part 10C is configured so that a first DUT 21 such as a metal plate can be attached thereto.
  • the tube's prism 10D is fixed with the light input / output side facing backward.
  • a base 14 is provided upright so as to face an end of the guide portion 10B, and a rubber block or the like is provided above the side surface of the base 14 on the guide portion 10B side with which the movable portion 10C contacts. Buffer material 14A is fixed.
  • a laser diode 16A and a laser diode 16A are formed so as to form an optical path along the vertical direction at the reference position.
  • a reference position sensor 16 including a photodiode 16B is provided.
  • the photodiode 16B of the reference position sensor 16 is connected to a personal computer 20 via an A / D converter 18 that converts an analog signal into a digital signal.
  • the personal computer 20 includes a ROM storing a program of a measurement routine to be described later, a storage medium including a hard disk for storing measured time-series data, and an LCD or CRT for displaying the stored time-series data.
  • a configured display device is provided.
  • the mounting member 24 is vertically movably mounted on the base of the friction test apparatus via a force sensor 26 that detects a pressing force (vertical force Fn) acting vertically on the second DUT 22. Te ru.
  • the force sensor 26 is connected to the personal computer 20 and the personal computer 20 via an amplifier 28 that amplifies the output of the force sensor and a digital multimeter 30 that detects a current value that also outputs the amplifier force. It is connected to a DA converter 32 connected to one sonar computer 20.
  • a voltmeter for example, HP 3458A may be used.
  • the light wave interferometer 12 includes a light source 32 composed of a Zeeman-type helium-neon laser and the like, and the light emitted from the light source 32 is split by a polarizing beam splitter 34 into measurement light and reference light. Is done.
  • the measuring light is incident on the corner cube cube prism 10D fixed to the movable section 10C, is inverted by the corner cube cube prism 10D, changes the optical path by 180 °, and is again incident on the polarization beam splitter 34.
  • the direction of the optical path between the polarizing beam splitter 34 and the corner cube prism 10D is set so as to be parallel to the length direction of the guide 10B, that is, the moving direction of the movable part 10C.
  • a Doppler shift (frequency change or phase change due to the Doppler effect) occurs according to the displacement speed along the guide of the movable part 10C, and the state of the reflected light changes .
  • the reference light is reflected from the polarizing beam splitter 34 in the direction of the second corner 'cube' prism 36, is inverted by the second corner-cube prism 36, and is incident on the polarizing beam splitter 34 again.
  • interference light is generated which generates a beat at the frequency difference between the signal light and the reference light. That is, a state change (a Doppler shift in the frequency of the signal light or a change in the phase of the signal light) occurring in the signal light is detected by the light wave interferometer by interference.
  • the interference light is incident on a photodetector 42 composed of a photodiode from a polarizing beam splitter 34 via a reflection mirror 38 and a polarizing plate (eg, a Gran 'Thompson' prism) 40, At 42, the signal is converted into an electric signal corresponding to the beat frequency fbeat of the interference light and input to the first frequency counter 44. Then, digital data representing the value of the beat frequency fbeat is generated by the first frequency counter 44, and the digital data is input to the personal computer 20.
  • a photodetector 42 composed of a photodiode from a polarizing beam splitter 34 via a reflection mirror 38 and a polarizing plate (eg, a Gran 'Thompson' prism) 40, At 42, the signal is converted into an electric signal corresponding to the beat frequency fbeat of the interference light and input to the first frequency counter 44. Then, digital data representing the value of the beat frequency fbeat is generated by the first frequency counter 44, and the
  • an electric signal of a reference frequency frest corresponding to the stationary state of the movable unit 10 C is generated from the photodetector built in the light source 32, and this electric signal is input to the second frequency counter 46. Then, the digital data representing the value of the reference frequency frest is calculated by the second frequency counter 46. The digital data is input to the computer 20.
  • a measurement routine according to the present embodiment will be described with reference to FIG. First, a first DUT (for example, a metal plate) 21 is mounted on the upper surface of the movable portion 10C, and a second DUT (for example, a miniature car) 22 is mounted on the mounting member 24.
  • the first DUT 22 is pressed by the second DUT 22 by the weight of the second DUT 22 and the like.
  • the mounting member 24 may be moved downward so as to obtain a predetermined pressing force, and a load may be applied vertically downward to the second DUT so that the first DUT is pressed. .
  • the personal computer is started up, the measurement processing routine of FIG. Let it oscillate.
  • the movable part 10C is manually pushed in the longitudinal direction of the base 14 at an initial stage, and the movable part 10C is moved by inertia. Let it.
  • an object hereinafter, referred to as a weight
  • an actuator may be provided, and the initial speed (or the initial momentum or the initial movement energy) may be given to the weight by the actuator.
  • step 100 it is determined whether or not a force has been input with the reference position signal from the reference position sensor 16. If it is determined that the reference position signal has been input, in step 102, the trigger signal is transmitted to the digital multimeter 30. Input to the first frequency counter 44 and the second frequency counter 46 and start them. As a result, the vertical force by the digital multimeter and the frequency by the counter are synchronously detected.
  • step 104 the signals output from the digital multimeter 30, the first frequency counter 44, and the second frequency counter 46 are acquired at predetermined sample time intervals, and in step 106, the weight (first The velocity V of the corner 'cube' prism 10D, the movable part 10C, and the first measured object is calculated according to the following equation (1), and the displacement velocity V of the weight is detected. Since the weight moves along the guide portion, the degree of freedom of the movement is limited in the horizontal uniaxial direction.
  • ⁇ air- (fbeat-frest) / 2 ⁇ ⁇ ⁇ (!)
  • ⁇ air is the refractive index of air.
  • the displacement X of the weight body in the length direction of the guide portion (that is, the position with respect to the reference position) X is detected by integrating the displacement speed V at sample time intervals.
  • step 110 the acceleration oc of the weight in the length direction of the guide portion is detected by differentiating the displacement speed V at the sample time interval.
  • step 112 the detected acceleration ⁇ is multiplied by the mass ⁇ of the weight previously stored, so that the inertia force F of the weight in the length direction of the guide portion is determined as the frictional force. To detect.
  • step 114 the friction coefficient is detected by dividing the inertial force F by the normal force Fn detected by the force sensor 26. Then, in step 116, data of displacement velocity V, acceleration OC, position x, inertia force F, and friction coefficient, which are physical quantities related to the friction acting between the objects to be measured detected by the above calculation, are time-series. It is stored and stored in a storage medium such as a hard disk.
  • next step 118 it is determined whether or not the force has passed the reference position and the force has passed for a predetermined time.
  • the detection of displacement velocity v, acceleration oc, position x, inertia force F, and coefficient of friction ⁇ is continued at the sample time intervals described above.
  • step 120 When it is determined that the force has passed the reference position and the weight has passed through the reference position and the measurement has been completed after a lapse of a predetermined time, it is determined in step 120 whether or not there was an instruction to display time-series data by keyboard operation or the like. Is determined, and when there is a display instruction, in step 122, the time-series data is read from the storage medium and displayed on the display device. Also, the time series data may be output as appropriate to a printer.
  • the displacement velocity V and the like are detected at sample time intervals.
  • high-speed measurement measurement of zero dead time (pause time) in frequency measurement
  • data indicating the number of samples is transmitted in advance from a personal computer to a measuring device such as a digital multimeter or a counter via a communication line (such as GPI B), and the data determined in advance by the measuring device.
  • the measurement data may be transferred to a personal computer, and a physical quantity related to friction such as displacement velocity V may be detected based on the transferred measurement data.
  • the number of samplings can be, for example, 1000 or 1400.
  • the electric signal output from the photodetector 42 is recorded by a high-performance waveform recording device without using the force frequency counter described in the above-described example using the frequency counter, and after recording,
  • the change in frequency with respect to the time change of the recorded waveform force that is, the time change of the beat frequency fbeat may be obtained.
  • FIGS. 4A to 4E show the results of measuring the physical quantity related to friction by transmitting the number of samplings in advance using the above-mentioned friction test apparatus using a miniature car and a metal plate.
  • the mass of the weight was about 8.9 kg.
  • Figures 4A to 4E show the displacement frequency V of the weight calculated based on the beat frequency fbeat and the beat frequency fbeat, and the displacement x and the displacement speed V of the weight calculated by integrating the displacement speed V.
  • Figure 4E shows the measurement results of the inertia force F of the weight calculated by multiplying the acceleration a of the weight and the mass M of the weight by the acceleration (X.
  • the inertia force shown in Fig. And the metal plate) have the same magnitude of frictional force acting between them!
  • FIG. 5A shows the friction force F measured as the inertial force and the normal force F measured by the force sensor.
  • Figure 5B shows the change of the coefficient of friction; z with respect to the displacement. Soshi
  • Fig. 6 shows the changes in the frictional force measured as the inertial force in the two measurement experiments.
  • a pair of measurement units 50 and 52 each including a linear motion bearing F constituted by a linear motion static pressure air bearing and a light wave interferometer are provided.
  • the pair of measurement units 50 and 52 are provided so as to be movable in directions approaching and moving away from each other.
  • the measuring unit 50 has the same configuration as the measuring unit of the first embodiment, Only the bearing portion is shown, and other portions are not shown. Also, portions of the linear motion bearing portion of the measuring unit 50 corresponding to those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the measuring unit 52 has substantially the same configuration as the measuring unit 50, the corresponding portions are denoted by the reference numerals with the suffix 1, and are described so as to be parallel to the guide portion 10B.
  • a linear motion bearing constituted by a compressed air bearing or the like is provided.
  • Upper movable part 10C is provided.
  • the force sensor 54 is fixed to the lower surface of 1 so as to face vertically downward.
  • one personal computer is provided, and each of the digital multimeter, the first frequency counter, and the second frequency counter provided in each of the pair of optical interferometers is It is connected to this personal computer.
  • a first object 60 to be measured is attached to the upper surface of the movable part via a support plate 58, and a second object 60 is attached to the lower end of the force sensor 54. Attach workpiece 56. Then, each of the measurement units is pressed so as to approach each other, and in this state, the movable unit, the force sensor, and the first object to be measured are integrated, or the movable unit, the sensor, and the second object to be measured are integrated.
  • An object in which an object is integrated (each object corresponds to the weight of the first embodiment) is moved by inertia, and the friction-related object is moved by two light wave interferometers as in the first embodiment. Detect physical quantity.
  • the sheet when detecting a physical quantity relating to friction between a sheet and a ballpoint pen, as shown in FIG. 6, the sheet is attached to the upper surface of the movable portion via a support plate, and the lower end of the force sensor 54 is Attach a ballpoint pen to the part. Then, a load is applied to each of the measuring units so that the sheet and the tip of the ballpoint pen are pressed, and the measuring units are pressed against each other. In this state, the movable part 10C or the movable part 10C is pushed by hand to move the movable part 10C or the movable part 10C by inertia.
  • an object having a movable section having a corner 'cube' prism, a support plate, and a sheet, or an object having a movable section having a corner cube 'prism, a force sensor, and a ball-point pen are inertia. Displaces in the length direction of the guide portion along the guide portion.
  • a pair of measurement units for measuring friction are used to measure physical quantities relating to friction, such as a displacement speed, a displacement, an acceleration, and a frictional force acting between two objects to be measured. Therefore, it is easier to measure the frictional state in any relative motion. Also, under the condition where the external force such as the internal resistance of the linear bearing is negligible, the inertial forces acting on each of the two weights will have opposite directions of equal magnitude (action and reaction). Therefore, it is reasonable to assume that external forces such as the internal resistance of the bearing can be ignored by measuring and comparing the inertial forces acting on each of the two weights under various conditions. Can be evaluated. Further, the present embodiment is an effective method for searching for the existence of an unexpected external force (for example, an overlooked uncertainty factor).
  • the third embodiment is provided with a pair of measurement units 70 and 72 which also have a linear motion bearing and an optical interferometer. Since the measuring unit 70 has the same configuration as the measuring unit of the first embodiment, only the linear motion bearing portion is shown, and other portions are not shown. Also, portions of the linear motion bearing portion of the measurement unit 70 corresponding to those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • Measuring unit 70 has substantially the same configuration as measuring unit 50, and corresponding parts are denoted by the same reference numerals.
  • the measuring unit 72 includes a linear upper guide portion 10B fixed to the base so as to face in the horizontal direction at a predetermined interval from the guide portion 10B of the measurement unit 70 and to be orthogonal to the guide portion 10B, and an upper guide portion 10B. Can be moved along the upper guide
  • a linear motion bearing composed of the above is provided.
  • a corner 'cube' prism 1 constituting a light wave interferometer is provided on an upper surface of the upper movable portion 10C.
  • the side of the upper movable part 10C has a through hole
  • a bearing 62 having a through hole is fixed.
  • a vertical guide portion 64 is inserted into the bearing 62 so as to be movable in the vertical direction.
  • a force sensor 66 for detecting a vertical force Fn which is a pressing force acting in the vertical direction, similarly to the force sensor 26 is fixed to the upper end of the vertical guide portion 64.
  • the first DUT 21 is mounted on the upper surface of the movable portion 10C, and the second DUT 22 is mounted on the lower end surface of the vertical guide portion 64. At this time, the first measured member and the second measured member are pressed by the weight of the vertical guide portion 64. Note that the first measured member and the second measured member may be pressed by applying a load via the force sensor 66.
  • Both the moving part 10C and the upper movable part 10C are moved by inertia. As a result, the corner
  • An object (each object corresponds to the weight of the first embodiment) in which the object to be measured 22 is integrated is displaced by inertia along the guide portion in the length direction of the guide portion.
  • a physical quantity related to friction can be detected by two light wave interferometers.
  • the first DUT and the second DUT are relatively secondarily moved.
  • connection of the air pipe to the movable guide portion 64 can be eliminated.
  • the vertical force Fn may be detected using a light wave interferometer instead of the force sensor 66 described in the example of detecting the vertical force Fn using the force sensor.
  • the normal force is measured as the sum of the inertial force Ma of the object composed of the guide portion 64 and the second measured object and the gravitational Mg acting on the object.
  • the vertical force can be measured with high accuracy without using a force sensor.
  • the optical interferometer can be fixed to the movable unit 10C.
  • the light source of the light wave interferometer in this case is He—
  • the light wave interferometer is located above the guide section 64
  • the movable section is guided by a signal from an optical interferometer that measures the movement of the IOC.
  • the optical interferometer placed above the moving part 10C follows the movement of the movable part 10C in the length direction of the guiding part 10B.
  • the two measurement units in which the guide portions are arranged orthogonal to each other are used to determine the displacement speed, displacement, acceleration, and friction such as frictional force acting between two DUTs. Because the physical quantity is measured! /, It is easier to measure the frictional state on an arbitrary trajectory.
  • the fourth embodiment is provided with a linear motion bearing and a measuring unit 80 which also has a light wave interferometer force, but the measuring unit 80 is the same as the measuring unit of the first embodiment. Because of the configuration, only the linear motion bearing portion is illustrated, and other portions are not illustrated. Also, portions of the linear bearing portion of the measuring unit 80 corresponding to those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the base end of rod-shaped insertion portion 82 extending in the vertical direction is fixed to the bottom surface of movable portion 10C.
  • the movable section 10C is manually moved along the guide section while the distal end portion of the insertion section 82 is inserted into a fluid such as water stored in a water tank.
  • a fluid such as water stored in a water tank.
  • the object integrating the corner 'cube' prism 10D, the movable part 10C, and the insertion part 82 moves by inertia, and the reflected light from the corner 'cube' prism 10D when the object moves.
  • This state change is detected by the lightwave interferometer, and the physical quantity related to the fluid frictional resistance acting on the insertion portion can be detected in the same manner as described in the first embodiment.
  • the guide portion is installed at an angle with respect to the horizontal direction, an object to be measured is attached to the tip of the insertion portion, and the movable portion is slid by its own weight along the guide portion. It is difficult to install the device at a free angle due to gravity if the object enters the fluid.
  • the friction resistance when entering the object for example, the free surface of the fluid or sand
  • the insertion portion having various shapes can be used.
  • Abrasion resistance can be measured. For example, if a hull model is used as the insertion part, frictional resistance of the hull to fluid can be measured.
  • the present embodiment has a static pressure configured by a guide portion 90B having a through hole formed therein and a rotating body 90C rotatably inserted into the through hole of the guide portion 90B.
  • An air bearing 90 is provided.
  • a flywheel 92 is attached to one end of the rotating body 90C so as to be rotatable integrally with the rotating body 90C.
  • the rotating body and the flywheel can be regarded as an integral rigid body.
  • the rotating body and the flywheel may be manufactured by cutting out one metal lump.
  • the distinction between the rotating body and the flywheel is for convenience.
  • the rotating body means the rotating part of the rotary bearing
  • the flywheel rotates integrally with the rotating body, the purpose of increasing the moment of inertia of the whole (the rotating body and the flywheel), and the friction test surface Is introduced for at least one of the following purposes.
  • a mounting member 94 for mounting the object to be measured on the peripheral surface of the flywheel 92 so as to be pressed is provided above the flywheel 92.
  • the object to be measured is rotatably mounted on the mounting member 94.
  • the angular accelerations of the rotating body and the weight composed of the flywheel cap are detected.
  • An outgoing detection device is provided.
  • This detection device is composed of a laser Doppler velocimeter that detects the angular velocity of the cone and the velocity force on the outer peripheral surface of the flyhole, and an angular acceleration detection device that detects the angular acceleration ⁇ from the angular velocity.
  • a non-contact type high-precision rotary encoder may be attached to the rotating body to detect the angle. In this case, the angle should be obtained by differentiating the angle twice.
  • is the torque due to the rotational force acting on the outer peripheral surface of the flywheel (frictional force acting between the object pressed against the outer peripheral surface of the flywheel and the outer peripheral surface of the flywheel), and I is the torque generated by the flywheel.
  • the inertia moment of the entire rotating body (the rotating weight) including the rotating body, and a is the angular acceleration of the rotating weight.
  • F is the frictional force acting between the tire to be measured and the flywheel
  • r is the distance between the outer peripheral surface of the flywheel and the center of rotation (ie, the radius of the flywheel)
  • the frictional force F acting between the tire to be measured and the flywheel is detected by detecting the angular acceleration a. be able to.
  • various full-field measurement instruments can be introduced to measure the acceleration distribution, velocity distribution, displacement distribution, and the like inside the object to be measured. is there. Further, it is also possible to combine with a numerical analysis method such as a finite element method, thereby enabling a more advanced evaluation of friction characteristics.
  • a friction test for a small force of 1 N or less can be performed by using a weight body of about lg. Therefore, the mechanical properties of various materials used in micromachines, nanomachines, etc. are tested. Things can happen.
  • a heavy surface plate for example, a steel plate fixed to the floor is used as a base, and the friction test is performed. It is desirable to make the whole device strong and to take measures against vibration such as supporting or suspending the light wave interferometer with respect to the base via cushioning material and vibration damping material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

 被測定物間の摩擦特性を示す摩擦力等の摩擦に関する物理量を動的な状態で正確に検出する摩擦試験装置及び方法であって、ガイド部10Bに沿って移動可能に設けられた可動部10Cに第1の被測定物21を取付けると共に可動部10Cに取り付けられた第1の被測定物21に第2の被測定物22を押圧し、第1の被測定物に第2の被測定物を押圧した状態で第1の被測定物及び前記可動部を一体とした物体を移動させ、物体を移動させたときの物体の慣性力を第1の被測定物と第2の被測定物との間に作用する摩擦力として検出する。                                                                           

Description

明 細 書
摩擦試験装置及び摩擦試験方法
技術分野
[0001] 本発明は、摩擦試験装置及び摩擦試験方法に関し、特に、慣性力または慣性モー メントを用いて摩擦力等の摩擦に関する物理量を検出する摩擦試験装置及び摩擦 試験方法に関する。
背景技術
[0002] 従来より、直動軸受のガイド部に支持された可動部を力センサに衝突させ、その間 の速度変化力 力センサに作用した真の力を推定することで、力センサの衝撃応答 の評価を行なう評価装置が知られて 、る(特許文献 1)。
[0003] また、一対の回転ドラムに懸架された無端ベルトの外面に試料ホルダに保持された 試料を押し当てて無端ベルトを回転させ、ロードセル等の力センサを用いて試料ホル ダに作用する力を検出して、摩擦状態を検出する方法が知られている(特許文献 2)
[0004] そして、リニアモータにより駆動されるスライダに第 1の試料を固定すると共に第 1の 試料の上に第 2の試料を載置し、第 2の試料の上に錘を載置した状態で、リニアモー タを駆動させ、リニアモータのモータ電流値とリニアモータの推力定数力も推力を求 め、この推力を静摩擦力とする摩擦力測定装置が知られている (特許文献 3)。この 摩擦力測定装置では、リニアモータを定速で駆動し、リニアモータの電流一推カ特 性力もモータ電流値に応じた推力を求め、この推力を動摩擦力としている。また、リニ ァエンコーダによりスライダの移動量を検出している。
特許文献 1:特開 2000— 283873号公報
特許文献 2:特開 2001— 174400号公報
特許文献 3:特開平 10— 62273号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、特許文献 1の技術は力センサの衝撃応答の評価装置に関するもの であり、特許文献 2の技術については、静的な力に対する力センサの検出出力の較 正手法 (静的較正法)については確立されているが、力センサに動的な力が作用した 場合には、力の変化に対する検出出力の応答遅れ等の現象を生じ、力センサの検 出出力を静的較正法で較正しても、動的な力を正確に計測することはできない。従つ て、被測定物 (試料)間に作用する摩擦力が変化した場合には、その摩擦力をカセ ンサで計測しても、計測精度を確保できず、被測定物間の摩擦特性を示す物理量を 正確に検出することが困難である、という問題があった。
[0006] そして、特許文献 3の技術では、動摩擦力を計測するためには、予めリニアモータ の電流一推力特性を求めておく必要があると共に、細長い形状のリニアモータやリニ ァスライダを用いているため、ずれやゆがみが生じ易ぐ精度良く摩擦力を検出する のが困難である、という問題があった。
[0007] 本発明は、上記問題点を解消するためになされたもので、力センサを用いることなく 被測定物間の摩擦特性を示す摩擦力等の摩擦に関する物理量を動的な状態でも正 確に検出することができる摩擦試験装置及び摩擦試験方法を提供することを目的と する。
課題を解決するための手段
[0008] 上記目的を達成するために本発明の摩擦試験装置は、ガイド部に沿って移動可能 に該ガイド部に取付けられると共に第 1の被測定物が取り付け可能な可動部と、前記 可動部に取り付けられた前記第 1の被測定物に押圧される第 2の被測定物を取り付 けるための取り付け部材と、前記可動部に固定された反射部材及び該反射部材に 光を入射させる光源を備え、前記可動部に取付けられた第 1の被測定物と前記取り 付け部材に取付けられた第 2の被測定物とを押圧させた状態で、前記反射部材、前 記可動部、及び前記第 1の被測定物を一体とした物体が前記第 2の被測定物に対し て相対移動したときの該反射部材からの反射光の状態変化を検出する光波干渉計 と、前記光波干渉計で検出された反射光の状態変化に基づいて、前記第 1の被測定 物と前記第 2の被測定物との間に作用する摩擦に関する物理量を検出する物理量 検出手段と、を含んで構成したものである。
[0009] 本発明では、可動部に取付けられた第 1の被測定物と取り付け部材に取付けられ た第 2の被測定物とを押圧させた状態で、反射部材、可動部、及び第 1の被測定物 を一体とした物体を第 2の被測定物に対して相対移動させ、そのときの反射部材から の反射光の状態変化を光波干渉計で検出する。そして、光波干渉計で検出された 反射光の状態変化に基づいて、第 1の被測定物と前記第 2の被測定物との間に作用 する摩擦に関する物理量を検出する。
[0010] ここで、反射部材、可動部、及び第 1の被測定物を一体とした物体を第 2の被測定 物に対して相対移動させると、第 1の被測定物力 第 2の被測定物に作用する力と第 2の被測定物力 第 1の被測定物に作用する力とは、作用'反作用の法則により、大 きさが等しい逆向きの力になる。そして、ガイド部と可動部との間に作用する内部摩 擦力及び空気抵抗等の外力が無視できる条件下では、上記物体の慣性力は、 2つ の被測定物間に作用する摩擦力と等しい大きさになる。このため、慣性力を検出する ことにより、第 1の被測定物と第 2の被測定物との間に作用する摩擦に関する物理量 としての摩擦力を高精度に検出することができる。
[0011] この物体の慣性力は、物体の質量と加速度との積に等 U、ので、物体の変位速度 を光波干渉計により検出し、検出した変位速度を微分すれば物体の加速度を正確に 検出することができ、この加速度と物体の質量とから物体の慣性力を正確に検出する ことができる。
[0012] 本発明では、摩擦に関する物理量として、第 1の被測定物と第 2の被測定物との間 に作用する摩擦力の他、物体の基準位置を基準とした変位、物体の速度、及び物体 の加速度の少なくとも 1つを検出することができる。光波干渉計で検出した物体の変 位速度を積分することにより物体の変位を検出するようにすれば、物体の変位を計測 する計測手段を別途設ける必要がなくなるので、コスト的にも有利になる。
[0013] 本発明によれば、力センサを用いていないので、変動する摩擦に関する物理量の 計測精度を力センサを用いた従来方法に比較し飛躍的に向上させることができる。
[0014] 本発明の可動部は、その運動が 1自由度に制限されるように、静圧空気直動軸受 や磁気直動軸受等の直動軸受で支持することが望ましい。静圧空気直動軸受は、高 い運動精度 (運動軸以外の 5軸に関する高い安定性)と小さな摩擦という 2つの大き な特徴を有している。この 2つの特徴を持つ静圧空気直動軸受を用いることにより、 物体に作用する摩擦力を極力小さくして物体の慣性力と被測定物間に作用する摩 擦力との偏差を極めて小さな値に減少できると共に、 2つの被測定物の相対運動の 精度 (摩擦測定を高精度に行うためには、 2つの被測定物の相対運動の幾何学的精 度も、非常に重要である。)を高めることが可能となり、計測精度を向上することができ る。
[0015] 本発明では、前記第 2の被測定物に作用する押圧力を検出する押圧力検出手段 を更に設け、前記物理量検出手段によって、前記摩擦に関する物理量として、前記 押圧力検出手段によって検出された押圧力に対する前記第 1の被測定物と前記第 2 の被測定物との間に作用する摩擦力の比で表される摩擦係数を検出するようにして ちょい。
[0016] この場合、ガイド部等で構成した可動軸を測定した ヽ摩擦力の主成分の方向に対 して垂直に設置した直動軸受機構を設けて可動軸に第 2の被被測定物を取り付け、 測定した!/、摩擦力の主成分の方向に対して垂直の方向の力成分を光波干渉計で検 出することにより、摩擦力の主成分と垂直な成分の測定を、力センサを用いることなく 、高精度に行うことが可能になる。
[0017] 本発明では、可動部及び光波干渉計を含む計測ユニットを一対設けて摩擦試験装 置を以下のように構成することができる。すなわち、第 1のガイド部に沿って移動可能 に該第 1のガイド部に取付けられると共に第 1の被測定物が取り付け可能な第 1の可 動部と、前記第 1のガイド部に対して並列配置された第 2のガイド部に沿って移動可 能に該第 2のガイド部に取付けられると共に前記第 1の被測定物に押圧される第 2の 被測定物が取り付け可能な第 2の可動部と、前記第 1の可動部に固定された第 1の 反射部材及び該第 1の反射部材に光を入射させる第 1の光源を備え、前記第 1の可 動部に取付けられた第 1の被測定物と前記第 2の可動部に取付けられた第 2の被測 定物とを押圧させた状態で、前記第 1の反射部材、前記第 1の可動部、及び前記第 1 の被測定物を一体とした物体が前記第 2の被測定物に対して相対移動したときの該 第 1の反射部材力 の反射光の状態変化を検出する第 1の光波干渉計と、前記第 2 の可動部に固定された第 2の反射部材及び該第 2の反射部材に光を入射させる第 2 の光源を備え、前記第 1の可動部に取付けられた第 1の被測定物と前記第 2の可動 部に取付けられた第 2の被測定物とを押圧させた状態で、前記第 2の反射部材、前 記第 2の可動部、及び前記第 2の被測定物を一体とした物体が前記第 1の被測定物 に対して相対移動したときの該第 2の反射部材からの反射光の状態変化を検出する 第 2の光波干渉計と、前記第 1の光波干渉計及び前記第 2の光波干渉計の少なくと も一方で検出された反射光の状態変化に基づいて、前記第 1の被測定物と前記第 2 の被測定物との間に作用する摩擦に関する物理量を検出する物理量検出手段と、を 含んで構成することができる。
[0018] この場合、前記第 2の可動部に該第 2の可動部に対して移動可能な第 3の可動部 を設け、前記第 2の可動部に該第 3の可動部を介して前記第 2の被測定物を取り付 けることちでさる。
[0019] 本発明では、流体中に挿入される挿入部を備え、ガイド部に沿って移動可能に該 ガイド部に取付けられた可動部と、前記可動部に固定された反射部材及び該反射部 材に光を入射させる光源を備え、前記挿入部を流体中に挿入させた状態で、前記反 射部材、前記可動部、及び前記挿入部を一体とした物体が前記流体に対して相対 移動したときの該反射部材からの反射光の状態変化を検出する光波干渉計と、前記 光波干渉計で検出された反射光の状態変化に基づいて、前記挿入部に作用する流 体の摩擦に関する物理量を検出する検出手段と、を含んで構成することにより、挿入 部に作用する流体の摩擦に関する物理量を検出することができる。
[0020] また、ガイド部に回転可能に設けられた回転体と、前記回転体と共に回転可能に該 回転体に取付けられたフライホイールと、前記フライホイールの外周面に押圧される 被測定物を取り付けるための取り付け部材と、前記フライホイールの外周面に被測定 物を押圧させた状態で、前記回転体と共に前記フライホイールを回転させたときの該 回転体及び該フライホイール力 なる物体の角加速度を検出する角加速度検出手 段と、前記検出手段で検出された角速度に基づいて、前記被測定物と前記フライホ ィールとの間に作用する摩擦に関する物理量を検出する物理量検出手段と、を含ん で構成することにより、被測定物とフライホイールとの間に作用する摩擦に関する物 理量を検出することができる。
[0021] 被測定物とフライホイールとの間に作用する摩擦に関する物理量として摩擦カを検 出する場合には、摩擦力は、慣性モーメントを予め測定した静圧空気回転軸受を用 いて測定することが可能である。この場合、 1軸のモーメント(トルク)測定の為に、 1個 の静圧空気回転軸受けが必要になる。モーメント測定原理は、参考文献 (Y. Fujii, K. Ogushi、 Τ. Γο』ο、 A proposal for a dynamic— response— evaluation method ror torque transducers", Meas. Sci. TechnoU Vol.10、 No.12、 pp. N142 - N144、 1999) に記載されている。
[0022] また、本発明の摩擦試験方法は、ガイド部に沿って移動可能に設けられた錘体に 第 1の被測定物を取付けると共に前記錘体に取り付けられた第 1の被測定物に第 2 の被測定物を押圧し、第 1の被測定物に第 2の被測定物を押圧した状態で前記第 1 の被測定物及び前記錘体を一体とした物体を移動させ、その物体を移動させたとき のその物体の慣性力を、前記第 1の被測定物と前記第 2の被測定物との間に作用す る摩擦力として検出するようにしたものである。
[0023] また、ガイド部に回転可能に設けられたフライホイールを回転させると共に該フライ ホイールの外周面に被測定物を押圧し、前記フライホイール及び前記フライホイール と一体に回転する回転体力 なる物体の慣性モーメント及び前記フライホイールの角 加速度に基づ!、て、前記フライホイールと前記被測定物との間に作用する摩擦力を 検出するよう〖こすることちでさる。
発明の効果
[0024] 以上説明したように本発明の摩擦試験装置によれば、力センサを用いることなく摩 擦に関する物理量を検出しているので、被測定物間の摩擦特性を示す摩擦力等の 摩擦に関する物理量を動的な状態でも正確に検出することができる、という効果が得 られる。
[0025] また、本発明の摩擦試験方法によれば、物体の慣性力、または物体の慣性モーメ ント及びフライホイールの角加速度に基づ 、て摩擦力を検出して 、るので、摩擦力を 動的な状態でも正確に検出することができる、という効果が得られる。
図面の簡単な説明
[0026] [図 1]本発明の第 1の実施の形態の摩擦試験装置を示すブロック図である。
[図 2]図 1の II II線端面図である。 [図 3]第 1の実施の形態の摩擦力等を検出する処理ルーチンを示す流れ図である。
[図 4A]ビート周波数の測定データを示すグラフである。
[図 4B]ビート周波数の測定データ力 算出した錘体の変位速度を示すグラフである。
[図 4C]変位速度力 算出した錘体の変位を示すグラフである。
[図 4D]変位速度力も算出した錘体の加速度を示すグラフである。
[図 4E]加速度力も算出した錘体の慣性力を示すグラフである。
[図 5A]慣性力として測定された摩擦力 F、及び力センサで測定された垂直力 Fの変
F N
位を横軸として示したグラフである。
[図 5B]摩擦係数の変化 μの変位を横軸として示したグラフである。
[図 6]2回の測定実験における慣性力として測定された摩擦力を示すグラフである。
[図 7]本発明の第 2の実施の形態の摩擦試験装置を示すブロック図である。
[図 8]本発明の第 3の実施の形態の摩擦試験装置を示すブロック図である。
[図 9]本発明の第 4の実施の形態の摩擦試験装置を示すブロック図である。
[図 10]本発明の第 5の実施の形態の摩擦試験装置を示すブロック図である。
発明を実施するための最良の形態
[0027] 以下、図面を参照して本発明の実施の形態を詳細に説明する。
[0028] 図 1に示すように、本発明の第 1の実施の形態には、金属板等の第 1の被測定物 2 1を取付けるための直動軸受 10、及び光波干渉計 12を備えた計測ユニットが設けら れている。直動軸受 10は、摩擦抵抗の小さい直動静圧空気軸受で構成されており、 直動静圧空気軸受としては、例えば、 ΝΤΝ株式会社製のエアスライド (登録商標)を 使用することができる。
[0029] 直動軸受 10には、水平方向を向くようにベース(図 7参照)に固定された直線状の ガイド部 10Bと、ガイド部 10Bに沿って移動可能にガイド部 10Bに取付けられると共 に錘体の一部として機能するブロック状の可動部 10Cとが設けられている。可動部 1 OCには、貫通孔が穿設されており、図 2に示すように、ガイド部 10Bはこの貫通孔を 貫通して設けられている。この貫通孔の内周面とガイド部 10Bの外周面との間には、 ガイド部 10Bの外周面全周に亘つて圧縮空気層(約 5〜: LO /z m)が形成されている。 これにより、可動部 10Cは、極めて小さい摩擦抵抗でガイド部 10Bの長さ方向に直進 運動することが可能である。なお、図示を省略したが、圧縮空気はガイド部 10Bの一 端力も導入されて、ガイド部 10Bの中央部に形成された出口力も可動部 10Cの内周 に形成された溝を介して可動部 10Cの中央部に形成された入口に導かれ、可動部 1 OCの内部配管を介して上記間隙に供給される。可動部 10Cに給気チューブを介し て圧縮空気を直接導入すれば、給気通路の構造は更に簡単になるが、本実施の形 態では給気チューブ力もの外力が可動部 10Cに作用することを防止するため、ガイ ド部 10B力も圧縮空気を導入している。
[0030] また、可動部 10Cの上面 10Aは、金属板等の第 1の被測定物 21を取付け可能に 構成されており、可動部 10Cの側面後方には、光波干渉計を構成するコーナ ·キュ 一ブ'プリズム 10Dが光入出射側を後方に向けて固定されている。
[0031] ガイド部 10Bの端部に対向するようにベース 14が立設されており、ベース 14のガイ ド部 10B側の側面上方には、可動部 10Cが当接するゴムブロック等で構成された緩 衝材 14Aが固定されている。
[0032] ベース 14と可動部 10Cとの間の可動部 10Cに接近した位置に設定された基準位 置には、基準位置で鉛直方向に沿った光路を形成するように、レーザダイオード 16 Aとフォトダイオード 16Bとで構成された基準位置センサ 16が配置されている。基準 位置センサ 16のフォトダイオード 16Bは、アナログ信号をデジタル信号に変換する A Dコンバータ 18を介してパーソナルコンピュータ 20に接続されて!、る。パーソナルコ ンピュータ 20には、後述する計測ルーチンのプログラムを記憶した ROM、計測され た時系列データを記憶するハードディスク等で構成された記憶媒体、及び記憶した 時系列データを表示する LCDや CRT等で構成された表示装置が設けられている。
[0033] 可動部 10Cの上方には、可動部 10Cに取り付けられた第 1の被測定物 21に押圧さ れる、例えばミニチュアカー等の第 2の被測定物 22を取り付けるための取付け部材 2 4が設けられている。取付け部材 24は、第 2の被測定物 22に対して鉛直方向に作用 する押圧力(垂直力 Fn)を検出する力センサ 26を介して摩擦試験装置のベースに 上下方向に移動可能に取付けられて 、る。
[0034] 力センサ 26は、力センサ出力を増幅する増幅器 28及び増幅器力も出力された電 流値を検出するデジタルマルチメータ 30を介してパーソナルコンピュータ 20及びパ 一ソナルコンピュータ 20に接続された DAコンバータ 32に接続されている。デジタル マルチメータに代えて、電圧計 (例えば、 HP製 3458A)を使用してもよい。
[0035] 光波干渉計 12は、ゼーマンタイプのヘリウムネオンレーザ等力 構成された光源 3 2を備えており、この光源 32から出射された光は偏光ビームスプリッタ 34で測定光と 参照光とに分光される。測定光は、可動部 10Cに固定されたたコーナ ·キューブ'プリ ズム 10Dに入射され、コーナ'キューブ 'プリズム 10Dで反転されて光路が 180° 変 更され、再度偏光ビームスプリッタ 34に入射される。ここで、偏光ビームスプリッタ 34 とコーナ.キューブ.プリズム 10Dとの間の光路の方向は、ガイド 10Bの長さ方向、す なわち可動部 10Cの移動方向と平行なるように設定されており、測定光は、コーナ- キューブ 'プリズム 10Dで反転する際に、可動部 10Cのガイドに沿った変位速度に応 じたドッブラシフト (ドッブラ効果による周波数変化または位相変化)を生じ、反射光の 状態が変化する。
[0036] 一方、参照光は偏光ビームスプリッタ 34から第 2のコーナ'キューブ 'プリズム 36方 向に反射され、第 2のコーナ ·キューブ ·プリズム 36で反転されて再度偏光ビームスプ リツタ 34に入射され、偏光ビームスプリッタ 34で第 1のコーナ'キューブ 'プリズム 10D からの反射光 (信号光)と干渉し、信号光と参照光との周波数の差分の周波数のビー トを生ずる干渉光が生じる。すなわち、信号光に生じた状態変化 (信号光の周波数の ドップラーシフト、または信号光の位相の変化)が、干渉により光波干渉計によって検 出される。
[0037] 干渉光は、偏光ビームスプリッタ 34から反射ミラー 38と偏光板 (例えば、グラン'トン プソン'プリズム) 40とを介してフォトダイオードで構成された光検出器 42に入射され、 光検出器 42で干渉光のビート周波数 fbeatに応じた電気信号に変換されて第 1周波 数カウンタ 44に入力される。そして、第 1周波数カウンタ 44によりビート周波数 fbeat の値を表すデジタルデータが生成され、このデジタルデータがパーソナルコンビユー タ 20に入力される。
[0038] また、光源 32に内蔵された光検出器から、可動部 10Cの静止状態に対応する基準 周波数 frestの電気信号が生成され、この電気信号が第 2周波数カウンタ 46に入力さ れる。そして、第 2周波数カウンタ 46により基準周波数 frestの値を表すデジタルデー タが生成され、このデジタルデータがコンピュータ 20に入力される。
[0039] 次に、本実施の形態の計測ルーチンを図 3を参照して説明する。まず、可動部 10C の上面に第 1の被測定物(例えば、金属板) 21を取付けると共に、取付け部材 24に 第 2の被測定物 (例えば、ミニチュアカー) 22を取り付ける。これにより、第 2の被測定 物 22等の自重により、第 2の被測定物 22によって第 1の被測定物が押圧される。この 場合、所定の押圧力が得られるように取付け部材 24を下方に移動させて第 2の被測 定物に鉛直下向きに荷重を加えて第 1の被測定物が押圧するようにしても良い。
[0040] また、パーソナルコンピュータを立ち上げ、図 3の計測処理ルーチンを起動させると 共に、フォトダイオード 16B及び検出部 42にレーザ光が入射されるように、レーザダ ィオード 16A及び光源 32からレーザ光を発振させておく。このように第 1の被測定物 と第 2の被測定物とを押圧させた状態で、可動部 10Cをベース 14の長さ方向に初期 の段階に手で押して、可動部 10Cを慣性で移動させる。これにより、第 1のコーナ'キ ユーブ'プリズム、可動部、及び第 1の被測定物を一体とした物体 (以下、錘体という) が慣性でガイド部に沿ってガイド部の長さ方向に移動する。なお、ァクチユエータを 設けてこのァクチユエ一タで錘体に初速 (または、初期運動量、または初期運動エネ ルギ一)を与えても良い。
[0041] ステップ 100において、基準位置センサ 16から基準位置信号が入力された力否か を判断し、基準位置信号が入力されたと判断されると、ステップ 102においてトリガ信 号をデジタルマルチメータ 30、第 1周波数カウンタ 44、及び第 2周波数カウンタ 46に 入力し、これらを起動する。これによつて、デジタルマルチメータによる垂直力、カウン タによる周波数が同期して検出される。
[0042] 次のステップ 104では、デジタルマルチメータ 30、第 1周波数カウンタ 44、及び第 2 周波数カウンタ 46から出力される信号を所定のサンプル時間間隔で取込み、ステツ プ 106において錘体(第 1のコーナ'キューブ 'プリズム 10D、可動部 10C、及び第 1 の被測定物を一体とした物体)の速度 Vを以下の(1)式に従って演算し、錘体の変位 速度 Vを検出する。錘体は、ガイド部に沿って移動するため、運動の自由度は、水平 の一軸方向に制限されて 、る。
[0043] ν= λ air- (fbeat-frest)/2 · · · (!) ここで、 λ airは、空気の屈折率である。
[0044] 次のステップ 108では、この変位速度 Vをサンプル時間間隔で積分することによりガ イド部の長さ方向の錘体の変位 (すなわち、基準位置を基準とした位置) Xを検出する
。また、ステップ 110において、変位速度 Vをサンプル時間間隔で微分することにより ガイド部の長さ方向の錘体の加速度 ocを検出する。
[0045] ここで、錘体が直動静圧空気軸受のガイド部等で支持されて!ヽて、錘体とガイド部 との間に作用する摩擦力を無視できる場合には、錘体の慣性力 Fは、 2つの被測定 物間に作用する摩擦力に等しくなる。なお、錘体の慣性力 Fは、錘体の質量を M、錘 体の加速度を aとして、 F = M ' αで表すことができる。
[0046] したがって、ステップ 1 12では、検出された加速度 αと予め記憶されている錘体の 質量 Μとを乗算することにより、ガイド部の長さ方向の錘体の慣性力 Fを摩擦力として 検出する。
[0047] 次のステップ 114では、慣性力 Fを力センサ 26で検出された垂直力 Fnで除算する ことにより摩擦係数 を検出する。そして、ステップ 116において、上記の演算によつ て検出した被測定物間に作用する摩擦に関する物理量である変位速度 V、加速度 OC 、位置 x、慣性力 F、及び摩擦係数 の各データを時系列的にハードディスク等の記 憶媒体に記憶保持する。
[0048] 次のステップ 118では、錘体が基準位置を通過して力も所定時間経過した力否か を判断することにより、計測終了時期カゝ否かを判断し、計測終了時期でなければ上 記のサンプル時間間隔で変位速度 v、加速度 oc、位置 x、慣性力 F、及び摩擦係数 μの各データの検出を継続する。
[0049] 錘体が基準位置を通過して力 所定時間経過して計測が終了したと判断されたと きは、ステップ 120において、キーボードの操作等により時系列データの表示指示が あった力否かを判断し、表示指示があった場合にはステップ 122において記憶媒体 から時系列データを読み出して表示装置に表示する。また、時系列データをプリンタ 等力も適宜出力するようにしてもょ 、。
[0050] なお、上記では、サンプル時間間隔で変位速度 V等を検出する例について説明し たが、測定は高速測定 (周波数測定では、デッドタイム (休止時間)ゼロの測定)が望 ま 、ので、予めサンプリング数 (測定記録データ数)を示すデータを通信回線 (GPI B等)を介してパーソナルコンピュータからデジタルマルチメータやカウンタ等の測定 器に送信し、測定器で予め定められたサンプリング数のデータを測定した後、測定器 力 パーソナルコンピュータに測定データを転送し、転送された測定データに基づい て変位速度 V等の摩擦に関する物理量を検出するようにしてもよい。このサンプリング 数としては、例えば、 1000個、 1400個とすることができる。
[0051] また、上記では周波数カウンタを用いた例について説明した力 周波数カウンタを 用いずに、光検出器 42から出力される電気信号を高性能の波形記録装置により記 録し、記録した後に、記録された波形力 時間変化に対する周波数変化、すなわち ビート周波数 fbeatの時間変化を求めるようにしてもよい。このようにビート周波数 f beatの時間変化を求めるようにすれば、より高精度な周波数測定が可能になる。
[0052] 次に、ミニチュアカーと金属板とを用いて上記の摩擦試験装置によってサンプリン グ数を予め送信して摩擦に関する物理量を計測した結果を図 4A〜図 4Eに示す。こ の計測では、錘体の質量は約 8. 9kgとした。図 4A〜図 4Eにビート周波数 fbeat、ビ ート周波数 fbeatカゝら算出した錘体の変位速度 V、変位速度 Vを積分して算出した錘 体の変位 x、変位速度 Vを微分して算出した錘体の加速度 a、錘体の質量 Mに加速 度 (Xを乗算して算出した錘体の慣性力 Fの計測結果を示す。図 4Eに示す慣性力は 、 2つの被測定物 (ミニカーと金属板)間に作用する摩擦力に等 ヽ大きさを持って!/、 る。
[0053] また、図 5Aに、慣性力として測定された摩擦力 F、力センサで計測された垂直力 F
F
の変位に対する変化を示し、図 5Bに摩擦係数; zの変位に対する変化を示す。そし
N
て、図 6に、 2回の計測実験における慣性力として測定された摩擦力の変化を重ねて 示す。
[0054] 次に、本発明の第 2の実施の形態について説明する。図 7に示すように、第 2の実 施の形態には、直動静圧空気軸受で構成された直動軸受 F及び光波干渉計からな る一対の計測ユニット 50、 52が設けられている。一対の計測ユニット 50、 52は、相互 に接近する方向及び離反する方向に移動可能に設けられて 、る。
[0055] 計測ユニット 50は、第 1の実施の形態の計測ユニットと同一構成であるので、直動 軸受部分のみ図示し、他の部分は図示を省略する。また、計測ユニット 50の直動軸 受部分の第 1の実施の形態と対応する部分には同一の符号を付して説明を省略す る。
[0056] 計測ユニット 52には、計測ユニット 50と略同様の構成であるので、対応する部分に 添字 1を付した符号を付して説明すると、ガイド部 10Bと平行になるように設けられた 直線状の上側ガイド部 10Bと、上側ガイド部 10Bの長さ方向に沿って移動可能に
1 1
上側ガイド部 10Bに取付けられたブロック状の上側可動部 10Cとを備えた直動静
1 1
圧空気軸受等で構成された直動軸受が設けられている。上側可動部 10C
1の下面に は、力センサ 54が鉛直下方を向くように固定されて 、る。
[0057] 本実施の形態では、パーソナルコンピュータは 1台設けられており、一対の光波干 渉計の各々に設けられているデジタルマルチメータ、第 1周波数カウンタ、及び第 2 周波数カウンタの各々は、このパーソナルコンピュータに接続されている。
[0058] 本実施の形態において摩擦に関する物理量を計測する場合には、可動部の上面 に支持板 58を介して第 1の被測定物 60を取付け、力センサ 54の下端部に第 2の被 測定物 56を取付ける。そして、計測ユニットの各々が接近するように押圧し、この状 態で可動部、力センサ、及び第 1の被測定物を一体とした物体、または可動部、カセ ンサ、及び第 2の被測定物を一体とした物体 (各々の物体は、第 1の実施の形態の錘 体に相当する)を慣性で移動させ、第 1の実施の形態と同様に、 2つの光波干渉計に よって摩擦に関する物理量を検出する。
[0059] 本実施の形態において用紙とボールペンとの摩擦に関する物理量を検出する場合 には、図 6に示すように、可動部の上面に支持板を介して用紙を取付け、力センサ 5 4の下端部にボールペンを取付ける。そして、用紙とボールペンの先とが押圧される ように計測ユニットの各々に荷重をカ卩えて相互に押圧する。この状態で、可動部 10C または可動部 10Cを手で押して可動部 10Cまたは可動部 10Cを慣性で移動させる
1 1
。これにより、コーナ'キューブ'プリズムを備えた可動部、支持板、及び用紙を一体と した物体、またはコーナ ·キューブ'プリズムを備えた可動部、力センサ、及びボール ペンを一体とした物体が慣性でガイド部に沿ってガイド部の長さ方向に変位する。
[0060] したがって、第 1の実施の形態と同様に、 2つの光波干渉計によって摩擦に関する 物理量を検出することができる。
[0061] 本実施の形態では、摩擦を計測するための一対の計測ユニットを用いて 2つの被 測定物間に作用する変位速度、変位、加速度、及び摩擦力等の摩擦に関する物理 量を計測して!/、るので、任意の相対運動での摩擦状態を計測することがより容易に なる。また、直動軸受の内部抵抗等の外力が無視できる条件下では、 2つの錘体の 各々に作用する慣性力は、大きさが等しぐ向きが逆になることになる (作用と反作用 の法則)ので、種々の条件下での 2つの錘体の各々に作用する慣性力を測定して比 較することにより、軸受の内部抵抗等の外力が無視できると仮定したことが妥当か否 かを評価することができる。また、本実施の形態は、予期せぬ外力の存在 (例えば、 見過ごされた不確力さ要因)の探索等に有効な手法である。
[0062] 次に、本発明の第 3の実施の形態を図 8を参照して説明する。図に示すように、第 3 の実施の形態には、直動軸受及び光波干渉計力もなる一対の計測ユニット 70、 72 が設けられている。計測ユニット 70は、第 1の実施の形態の計測ユニットと同一構成 であるので、直動軸受部分のみ図示し、他の部分は図示を省略する。また、計測ュ ニット 70の直動軸受部分の第 1の実施の形態と対応する部分には同一の符号を付し て説明を省略する。
[0063] 計測ユニット 70は、計測ユニット 50と略同様の構成であるので、対応する部分には 同一の符号を付して示す。計測ユニット 72には、計測ユニット 70のガイド部 10Bと所 定間隔隔てて水平方向を向きかつガイド部 10Bと直交するようにベースに固定され た直線状の上側ガイド部 10Bと、上側ガイド部 10Bに沿って移動可能に上側ガイド
2 2
部 10Bに取付けられたブロック状の上側可動部 10Cとを備えた直動静圧空気軸受
2 2
等で構成された直動軸受が設けられて ヽる。
[0064] 上側可動部 10Cの上面には、光波干渉計を構成するコーナ'キューブ 'プリズム 1
2
0Dが固定されている。また、上側可動部 10Cの側面には、鉛直方向に貫通した貫
2 2
通孔が穿設された軸受 62が固定されている。この軸受 62には、鉛直方向に移動可 能に鉛直ガイド部 64が挿入されている。この鉛直ガイド部 64の上端には、力センサ 2 6と同様に鉛直方向に作用する押圧力である垂直力 Fnを検出する力センサ 66が固 定されている。 [0065] 次に、本実施の形態における摩擦状態の計測方法について説明する。可動部 10 Cの上面に第 1の被測定物 21を取付け、鉛直ガイド部 64の下端面に第 2の被測定 物 22を取付ける。このとき、鉛直ガイド部 64の自重により第 1の被計測部材と第 2の 被計測部材とが押圧される。なお、力センサ 66を介して荷重を作用させることにより、 第 1の被計測部材と第 2の被計測部材とが押圧されるようにしてもよい。
[0066] この状態で、可動部 10Cまたは上側可動部 10C、あるいは可動部 10C及び上側
2
可動部 10Cの両方を手で押して可動部 10Cまたは上側可動部 10C、あるいは可
2 2
動部 10C及び上側可動部 10Cの両方を慣性で移動させる。これにより、コーナ'キ
2
ユーブ.プリズム 10D、可動部; L0C、第 1の被測定物 21を一体とした物体、またはコ ーナ 'キューブ 'プリズム 10D、上側可動部 10C、力センサ 66、軸受 62及び第 2の
2 2
被測定物 22を一体とした物体 (各々の物体は、第 1の実施の形態の錘体に相当する )が慣性でガイド部に沿ってガイド部の長さ方向に変位する。
[0067] したがって、第 1の実施の形態と同様に、 2つの光波干渉計によって摩擦に関する 物理量を検出することができる。本実施の形態では、可動部 10C及び上側可動部 1 OCの両方を移動させることで、第 1の被測定物と第 2の被測定物とを相対的に 2次
2
元状に移動させたときの摩擦に関する物理量を検出することができる。また、第 1の 被測定物と第 2の被測物との移動速度を異ならせたり、往復移動させることで、種々 の軌跡に応じた運動状態における摩擦に関する物理量を検出することができる。
[0068] 本実施の形態において、直動軸受に対してエアをガイド部 10Bから供給すると、ェ
2
ァは可動部 10Cに導かれる。このエアの一部を、ガイド部 64に供給するようにすれ
2
ば、可動するガイド部 64へのエアパイプの接続をなくすことが可能になる。
[0069] 上記では、力センサを用いて垂直力 Fnを検出する例について説明した力 力セン サ 66に代えて光波干渉計を用いて垂直力 Fnを検出するようにしてもょ 、。この場合 、垂直力は、ガイド部 64及び第 2の被測定物からなる物体の慣性力 Maとこの物体に 作用する重力 Mgの和として測定する。これにより、力センサを用いずに、垂直力を高 精度に測定することができる。光波干渉計を用いて垂直力を検出する場合、光波干 渉計は可動部 10Cに固定することができる。この場合の光波干渉計の光源は He—
2
Neレーザではなぐ LDが好適である。また、光波干渉計をガイド部 64の上方に配置 し、可動部 IOCの移動を計測する光波干渉計からの信号に基づいて、ガイド部 64
2
の上方に配置した光波干渉計をガイド部 10Bの長さ方向に可動部 10Cの移動に追
2 2 随するよう〖こ移動させることち好適である。
[0070] 本実施の形態では、ガイド部が直交するように配置された 2つの計測ユニットを用い て 2つの被測定物間に作用する変位速度、変位、加速度、及び摩擦力等の摩擦に 関する物理量を計測して!/、るので、任意の軌跡での摩擦状態を計測することがより容 易になる。
[0071] 次に、本発明の第 4の実施の形態を図 9を参照して説明する。図に示すように、第 4 の実施の形態には、直動軸受及び光波干渉計力もなる計測ユニット 80が設けられて いるが、計測ユニット 80は、第 1の実施の形態の計測ユニットと同一構成であるので、 直動軸受部分のみ図示し、他の部分は図示を省略する。また、計測ユニット 80の直 動軸受部分の第 1の実施の形態と対応する部分には同一の符号を付して説明を省 略する。
[0072] 本実施の形態では、可動部 10Cの底面に鉛直方向に延びる棒状の挿入部 82の 基端が固定されている。
[0073] 本実施の形態では、水槽に貯留された水等の流体中に挿入部 82の先端部分を挿 入させた状態で、可動部 10Cを手でガイド部に沿って移動させる。これによつて、コ 一ナ'キューブ'プリズム 10D、可動部 10C、及び挿入部 82を一体とした物体が慣性 で移動し、この物体が移動したときのコーナ'キューブ'プリズム 10Dからの反射光の 状態変化が光波干渉計によって検出され、第 1の実施の形態で説明したのと同様に 、挿入部に作用する流体摩擦抵抗に関する物理量を検出することができる。
[0074] 本実施の形態によれば、流体工学の分野における自由表面を持つ流体中での海 洋構造物、船舶、その他流体機械一般に代表される物体の流体抵抗を高精度に測 定することができる。
[0075] また、本実施の形態において、ガイド部を水平方向に対して傾けて設置すると共に 、挿入部の先端に被測定物を取り付け、可動部をガイド部に沿って自重でスライドさ せ被測定物を流体中に突入させれば、重力のために自由な角度での設置が難しい 被測定物 (例えば、流体の自由表面、または、砂面など)に対する突入時の摩擦抵 抗の計測等に利用することができる。
[0076] また、本実施の形態では、挿入部を可動部に対して着脱可能し、種々の形状の挿 入部と交換して摩擦抵抗を計測するようにすれば、種々の形状の挿入部に対する摩 擦抵抗を計測することができる。例えば、挿入部として船体モデルを用いれば、船体 の流体に対する摩擦抵抗等を計測することができる。
[0077] 次に本発明の第 5の実施の形態について、図 10を参照して説明する。
[0078] 上記の各実施の形態では、計測ユニットに直動軸受を用いる例について説明した 力 タイヤと路面との間に作用する摩擦力や路面摩擦抵抗 等を計測する場合、タ ィャの転動する距離を長くして計測しょうとすると、可動部の上面の長さやガイド部の 長さを長くする必要がある。このため、第 5の実施の形態では、静圧空気直動軸受に 代えて静圧空気回転軸受 (ラジアル 'スラスト軸受)等の回転軸受を用い、水平方向 に移動する錘体に作用する慣性力を検出する代わりに、回転する錘体の角加速度を 用いて摩擦に関する物理量を検出するようにしたものである。
[0079] 図 10に示すように、本実施の形態は、貫通孔が形成されたガイド部 90Bと、ガイド 部 90Bの貫通孔に回転可能に挿入された回転体 90Cとから構成された静圧空気回 転軸受 90が設けられて 、る。
[0080] 回転体 90Cの一端には、フライホイール 92が回転体 90Cと一体に回転可能に取 付けられている。この場合、回転体とフライホイールとは、一体となった剛体と見なせ ることが好ましい。この回転体とフライホイールとは、一つの金属塊から削り出しにより 製作しても良い。なお、回転体とフライホイールとの区別は、便宜上のものである。す なわち、回転体は回転軸受の回転部を意味し、フライホイールはその回転体と一体と なって回転し、全体(回転体及びフライホイール)の慣性モーメントを大きくする目的、 及び摩擦試験面を便利な位置にする目的の少なくとも一方の目的で導入される。
[0081] フライホイール 92の上方には、フライホイール 92の周面に被測定物を押圧可能に 取付けるための取付部材 94が設けられている。本実施の形態においてタイヤ等の回 転する被測定物を用いる場合には、取付部材 94に被測定物を回転可能に取付ける
[0082] また、本実施の形態には、回転体及びフライホイールカゝらなる錘体の角加速度を検 出する検出装置が設けれている。この検出装置は、錐体の角速度をフライホール外 周面の速度力 検出するレーザードップラー速度計と、角速度から角加速度 αを検 出する角加速度検出装置とから構成されている。角加速度 αは、角速度 aをフライホ ィールの半径 rで乗算して、 a =a/rとして求めることができる。
[0083] また、レーザードップラー速度計に代えて、非接触型の高精度ロータリーェンコ一 ダを回転体に取り付けて角度を検出するようにしてもよい。この場合、角度を 2回微分 して角加速度を求めればょ 、。
[0084] 以下本実施の形態においてタイヤとフライホイール外周部との間に作用する摩擦 力を測定する場合について説明する。静圧空気回転軸受内部の摩擦トルク等が無 視できる条件下では、下記の式が有り立つ。
[0085] Τ+Ι α =0 · · · (2)
ここで、 Τは、フライホイール外周面に作用する回転方向の力(フライホイール外周 面に押し付けられた物体とフライホイール外周面との間に作用する摩擦力)によるト ルク、 Iはフライホイールと回転体を含めた回転体全体(回転する錘体)の慣性モーメ ント、 aは回転する錘体の角加速度である。なお、 Fを被測定物であるタイヤとフライ ホイールとの間に作用する摩擦力、 rをフライホイール外周面と回転中心との距離 (す なわち、フライホイールの半径)とすると、 T=rFである。
[0086] フライホイールの半径 r及び慣性モーメント Iは既知の値であるので、角加速度 aを 検出することで、被測定物であるタイヤとフライホイールとの間に作用する摩擦力 Fを 検出することができる。
[0087] なお、本実施の形態では、回転する錘体を剛体とみなした力 見なせない場合に は、 FEM解析等によって補正することが望ましい。
[0088] なお、上記各実施の形態の摩擦試験装置において、被測定物の内部の加速度分 布、速度分布、及び変位分布等を計測するため、各種全視野測定機器を導入するこ とも可能である。また、有限要素法等の数値解析法と組み合わせることも可能であり、 これにより、一層高度な摩擦特性評価が可能になる。また、錘体として lg程度のもの を用いることにより、 1 N以下の微小な力に対する摩擦試験を行うことができる。従 つて、マイクロマシン、ナノマシン等で用いられる各種材料の力学的特性を試験する ことも可會 になる。
[0089] なお、上記の各実施の形態では、摩擦試験装置の振動の影響を防止するため、ベ ースとして床に固定された重い定盤 (例えば、铸鉄製定盤)を用い、摩擦試験装置全 体を強固に構成すると共に、光波干渉計をベースに対し緩衝材ゃ防振材等を介して 支持させか吊り下げ支持する等の防振対策を講ずることが望ましい。
[0090] また、例えば、ワイパーの摩擦測定、自由表面を含む液体中での摩擦抵抗の想定 等、形状の変化が予想される摩擦測定においては、 CCDカメラ等での画像の撮影を 同時に行うことが現象の多角的把握を行う上で有効である。
符号の説明
10 直動軸受
10B ガイド部
10C 可動部
10D コーナ ·キューブ ·プリズム
12 光波干渉計
14 ベース
16 基準位置センサ
26 力センサ
32 光源
34 偏光ビームスプリッタ
50 計測ユニット
52 計測ユニット
54 力センサ

Claims

請求の範囲
[1] ガイド部に沿って移動可能に該ガイド部に取付けられると共に第 1の被測定物が取 り付け可能な可動部と、
前記可動部に取り付けられた前記第 1の被測定物に押圧される第 2の被測定物を 取り付けるための取り付け部材と、
前記可動部に固定された反射部材及び該反射部材に光を入射させる光源を備え 、前記可動部に取付けられた第 1の被測定物と前記取り付け部材に取付けられた第 2の被測定物とを押圧させた状態で、前記反射部材、前記可動部、及び前記第 1の 被測定物を一体とした物体が前記第 2の被測定物に対して相対移動したときの該反 射部材からの反射光の状態変化を検出する光波干渉計と、
前記光波干渉計で検出された反射光の状態変化に基づいて、前記第 1の被測定 物と前記第 2の被測定物との間に作用する摩擦に関する物理量を検出する物理量 検出手段と、
を含む摩擦試験装置。
[2] 第 1のガイド部に沿って移動可能に該第 1のガイド部に取付けられると共に第 1の被 測定物が取り付け可能な第 1の可動部と、
前記第 1のガイド部に対して並列配置された第 2のガイド部に沿って移動可能に該 第 2のガイド部に取付けられると共に前記第 1の被測定物に押圧される第 2の被測定 物が取り付け可能な第 2の可動部と、
前記第 1の可動部に固定された第 1の反射部材及び該第 1の反射部材に光を入射 させる第 1の光源を備え、前記第 1の可動部に取付けられた第 1の被測定物と前記第 2の可動部に取付けられた第 2の被測定物とを押圧させた状態で、前記第 1の反射 部材、前記第 1の可動部、及び前記第 1の被測定物を一体とした物体が前記第 2の 被測定物に対して相対移動したときの該第 1の反射部材力 の反射光の状態変化を 検出する第 1の光波干渉計と、
前記第 2の可動部に固定された第 2の反射部材及び該第 2の反射部材に光を入射 させる第 2の光源を備え、前記第 1の可動部に取付けられた第 1の被測定物と前記第 2の可動部に取付けられた第 2の被測定物とを押圧させた状態で、前記第 2の反射 部材、前記第 2の可動部、及び前記第 2の被測定物を一体とした物体が前記第 1の 被測定物に対して相対移動したときの該第 2の反射部材力 の反射光の状態変化を 検出する第 2の光波干渉計と、
前記第 1の光波干渉計及び前記第 2の光波干渉計の少なくとも一方で検出された 反射光の状態変化に基づいて、前記第 1の被測定物と前記第 2の被測定物との間に 作用する摩擦に関する物理量を検出する物理量検出手段と、
を含む摩擦試験装置。
[3] 前記第 2の可動部に該第 2の可動部に対して移動可能な第 3の可動部を設け、前 記第 2の可動部に該第 3の可動部を介して前記第 2の被測定物を取り付け可能とし た請求項 2記載の摩擦試験装置。
[4] 前記第 2の被測定物に作用する押圧力を検出する押圧力検出手段を更に設け、 前記物理量検出手段によって、前記摩擦に関する物理量として、前記押圧力検出 手段によって検出された押圧力に対する前記第 1の被測定物と前記第 2の被測定物 との間に作用する摩擦力の比で表される摩擦係数を検出する請求項 1〜請求項 3の
V、ずれか 1項記載の摩擦試験装置。
[5] 前記物理量検出手段は、前記摩擦に関する物理量として、前記第 1の被測定物と 前記第 2の被測定物との間に作用する摩擦力、前記物体の基準位置を基準とした変 位、前記物体の速度、及び前記物体の加速度の少なくとも 1つを検出する請求項 1
〜請求項 4の ヽずれか 1項記載の摩擦試験装置。
[6] 前記物理量検出手段は、前記物体の慣性力を前記摩擦力として検出する請求項 4 または請求項 5記載の摩擦試験装置。
[7] 流体中に挿入される挿入部を備え、ガイド部に沿って移動可能に該ガイド部に取 付けられた可動部と、
前記可動部に固定された反射部材及び該反射部材に光を入射させる光源を備え
、前記挿入部を流体中に挿入させた状態で、前記反射部材、前記可動部、及び前 記挿入部を一体とした物体が前記流体に対して相対移動したときの該反射部材から の反射光の状態変化を検出する光波干渉計と、
前記光波干渉計で検出された反射光の状態変化に基づいて、前記挿入部に作用 する流体の摩擦に関する物理量を検出する検出手段と、
を含む摩擦試験装置。
[8] ガイド部に回転可能に設けられた回転体と、
前記回転体と共に回転可能に該回転体に取付けられたフライホイールと、 前記フライホイールの外周面に押圧される被測定物を取り付けるための取り付け部 材と、
前記フライホイールの外周面に被測定物を押圧させた状態で、前記回転体と共に 前記フライホイールを回転させたときの該回転体及び該フライホイールカゝらなる物体 の角加速度を検出する角加速度検出手段と、
前記検出手段で検出された角速度に基づいて、前記被測定物と前記フライホイ一 ルとの間に作用する摩擦に関する物理量を検出する物理量検出手段と、
を含む摩擦試験装置。
[9] ガイド部に沿って移動可能に設けられた錘体に第 1の被測定物を取付けると共に 前記錘体に取り付けられた第 1の被測定物に第 2の被測定物を押圧し、
第 1の被測定物に第 2の被測定物を押圧した状態で前記第 1の被測定物及び前記 錘体を一体とした物体を移動させ、
該物体を移動させたときの該物体の慣性力を、前記第 1の被測定物と前記第 2の被 測定物との間に作用する摩擦力として検出する摩擦試験方法。
[10] ガイド部に回転可能に設けられたフライホイールを回転させると共に該フライホイ一 ルの外周面に被測定物を押圧し、
前記フライホイール及び前記フライホイールと一体に回転する回転体力 なる物体 の慣性モーメント及び前記フライホイールの角加速度に基づ ヽて、前記フライホイ一 ルと前記被測定物との間に作用する摩擦力を検出する摩擦試験方法。
[11] 前記ガイド部及び前記可動部が直動軸受を構成して 、る、請求項 1に記載の摩擦 試験装置。
[12] 前記第 1のガイド部及び前記第 1の可動部が第 1の直動軸受を構成しており、前記 第 2のガイド部及び前記第 2の可動部が第 2の直動軸受を構成している、請求項 2に 記載の摩擦試験装置。 前記ガイド部及び前記可動部が直動軸受を構成して!/ヽる、請求項 7に記載の摩擦試
PCT/JP2005/008929 2004-05-18 2005-05-17 摩擦試験装置及び摩擦試験方法 WO2005111576A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/569,344 US20070169539A1 (en) 2004-05-18 2005-05-17 Friction testing apparatus and friction testing method
EP05741447A EP1754966A1 (en) 2004-05-18 2005-05-17 Device for testing friction and method for testing friction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-147977 2004-05-18
JP2004147977A JP4200216B2 (ja) 2004-05-18 2004-05-18 摩擦試験装置及び摩擦試験方法

Publications (1)

Publication Number Publication Date
WO2005111576A1 true WO2005111576A1 (ja) 2005-11-24

Family

ID=35394270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008929 WO2005111576A1 (ja) 2004-05-18 2005-05-17 摩擦試験装置及び摩擦試験方法

Country Status (4)

Country Link
US (1) US20070169539A1 (ja)
EP (1) EP1754966A1 (ja)
JP (1) JP4200216B2 (ja)
WO (1) WO2005111576A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072189A (ja) * 2013-10-03 2015-04-16 株式会社アドヴィックス 荷重測定装置
CN113049154A (zh) * 2021-03-10 2021-06-29 上海交通大学 空间动量轮轴承摩擦力矩试验机及其试验方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833051B2 (ja) * 2006-12-20 2011-12-07 トヨタ自動車株式会社 摩擦試験装置及び摩擦試験方法
US7788965B2 (en) * 2007-10-31 2010-09-07 The Goodyear Tire + Rubber Company, Inc. Portable friction testing device
CN101726458B (zh) * 2009-12-15 2011-06-15 清华大学 电力机车受电弓碳板与铜导线摩擦性能测试***及方法
US8442777B1 (en) * 2012-10-15 2013-05-14 King Fahd University Of Petroleum And Minerals System and method for measuring rolling resistance
FR3038721B1 (fr) * 2015-07-09 2018-12-07 Centre National De La Recherche Scientifique Tribometre pour la mesure de champs de deplacements a l'interface de deux elements
US11435244B2 (en) 2017-11-30 2022-09-06 Koc Universitesi Force sensor for measuring static and dynamic friction coefficients
CN108645785A (zh) * 2018-03-09 2018-10-12 重庆海立云科技有限公司 纳米金刚石润滑油往复摩擦磨损试验装置及试验方法
US11454586B2 (en) * 2019-05-16 2022-09-27 National Oilwell Varco, L.P. Real-time breakover detection during pickup weight step for friction test using machine learning techniques
CN110849583B (zh) * 2019-12-09 2024-06-11 浙江工业大学 一种基于水下测量的非光滑壁面摩擦阻力测试装置
CN117664962B (zh) * 2023-11-17 2024-05-28 暨南大学 单摩擦轮滑滚状态的光学测算模型与评估方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514876U (ja) * 1991-08-12 1993-02-26 日本電子機器株式会社 車両の駆動トルク検出装置
JPH1062273A (ja) * 1996-08-15 1998-03-06 Nippon Seiko Kk 摩擦力測定装置
JP2725682B2 (ja) * 1989-06-16 1998-03-11 株式会社トキメック 摩擦計測装置
JP2000283873A (ja) * 1999-03-31 2000-10-13 Agency Of Ind Science & Technol 力センサーの衝撃応答の評価装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4377343A (en) * 1981-07-10 1983-03-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Dual-beam skin friction interferometer
US5178004A (en) * 1991-08-08 1993-01-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reflection type skin friction meter
US5400647A (en) * 1992-11-12 1995-03-28 Digital Instruments, Inc. Methods of operating atomic force microscopes to measure friction
US6446486B1 (en) * 1999-04-26 2002-09-10 Sandia Corporation Micromachine friction test apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725682B2 (ja) * 1989-06-16 1998-03-11 株式会社トキメック 摩擦計測装置
JPH0514876U (ja) * 1991-08-12 1993-02-26 日本電子機器株式会社 車両の駆動トルク検出装置
JPH1062273A (ja) * 1996-08-15 1998-03-06 Nippon Seiko Kk 摩擦力測定装置
JP2000283873A (ja) * 1999-03-31 2000-10-13 Agency Of Ind Science & Technol 力センサーの衝撃応答の評価装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJII Y TE AL: "Seiatsu Kuki Chokudo Jikuuke no Masatsu Tokusei Hyoka.", JAPANESE SOCIETY OF TRIBOLOGISTS., 20 April 2001 (2001-04-20), pages 285 - 286, XP002997005 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072189A (ja) * 2013-10-03 2015-04-16 株式会社アドヴィックス 荷重測定装置
CN113049154A (zh) * 2021-03-10 2021-06-29 上海交通大学 空间动量轮轴承摩擦力矩试验机及其试验方法

Also Published As

Publication number Publication date
US20070169539A1 (en) 2007-07-26
JP2005331280A (ja) 2005-12-02
JP4200216B2 (ja) 2008-12-24
EP1754966A1 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
WO2005111576A1 (ja) 摩擦試験装置及び摩擦試験方法
Fujii et al. Proposal for material viscoelasticity evaluation method under impact load
CN110231006A (zh) 空气耦合超声干涉法
Fujii Method for measuring transient friction coefficients for rubber wiper blades on glass surface
Fujii Method for generating and measuring the micro-Newton level forces
JP3944558B2 (ja) 材料試験方法
Fujii et al. A method for determining the impact force in crash testing
Fujii et al. Optical method for evaluating material friction
Fujii et al. Method of evaluating the force controllability of the human finger
JP5286524B2 (ja) 周波数測定装置及び周波数測定方法
Fujii A method of evaluating the dynamic response of materials to forced oscillation
JP3177681B2 (ja) 力センサーの衝撃応答の評価装置
JPS6117406Y2 (ja)
Schetz Direct measurement of skin friction in complex flows using movable wall elements
Fujii Dynamic three-point bending tester using inertial mass and optical interferometer
Fujii et al. Review of the Levitation Mass Method (LMM)–A precision method for measuring mechanical quantities using an optical interferometer
Fujii Precision materials tester using a pendulum and a digitizer
Bruns et al. Traceability of dynamic force and torque calibrations by means of laser Doppler interferometry
Grekov et al. IST-1 and IST-1M current-velocity meters under the sea and river conditions
Casem et al. Measurements of particle velocity within a Kolsky Bar with applications to wave separation
Chigira et al. Direct measurement of friction acting between a ballpoint pen and a paper
Suzuki et al. Strength test of a mobile phone screen by means of the levitated-mass method
JP2016017951A (ja) 落下試験装置および落下試験方法
Watanabe et al. Impact response measurement of contact lenses
RU2373519C1 (ru) Устройство для изучения анизотропии трения

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007169539

Country of ref document: US

Ref document number: 11569344

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005741447

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005741447

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11569344

Country of ref document: US