WO2005109042A1 - 光学素子及びその製造方法 - Google Patents

光学素子及びその製造方法 Download PDF

Info

Publication number
WO2005109042A1
WO2005109042A1 PCT/JP2005/008436 JP2005008436W WO2005109042A1 WO 2005109042 A1 WO2005109042 A1 WO 2005109042A1 JP 2005008436 W JP2005008436 W JP 2005008436W WO 2005109042 A1 WO2005109042 A1 WO 2005109042A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin pattern
exposure
resin
structural unit
production method
Prior art date
Application number
PCT/JP2005/008436
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Tanaka
Makoto Umetani
Hiroshi Yamaguchi
Motonobu Yoshikawa
Katsuhiko Hayashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/596,283 priority Critical patent/US8184373B2/en
Priority to JP2006513016A priority patent/JPWO2005109042A1/ja
Publication of WO2005109042A1 publication Critical patent/WO2005109042A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0018Reflow, i.e. characterized by the step of melting microstructures to form curved surfaces, e.g. manufacturing of moulds and surfaces for transfer etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/38Anti-reflection arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24405Polymer or resin [e.g., natural or synthetic rubber, etc.]

Definitions

  • the present invention relates to a structure, an element, an optical element, and a method for manufacturing the same.
  • the present invention relates to a structure, element, and optical element suitable for a member including a microlens in an image pickup element such as a CCD and a C-MOS, a liquid crystal device, and the like, and a method of manufacturing these.
  • a thin film of SiO, TiO, or the like is formed on the optically functional surface of an optical element by, for example, a method such as vapor deposition, sputtering, or painting to suppress the entry of unnecessary reflected light or scattered light.
  • the area (opening) that contributes to the photoelectric conversion of the light receiving section in the image sensor is limited to about 20 to 40% of the total area of the force that usually depends on the element size and the number of pixels. Since a small opening that is powerful leads directly to a decrease in the sensitivity of the image sensor, a microlens for condensing light is generally formed on the light receiving unit to compensate for the decrease in sensitivity due to the small opening. .
  • FIG. 10 schematically shows the structure of a conventionally proposed imaging device.
  • the imaging device 100 includes a photoelectric conversion element 82, a light shielding portion 83, a flat filter layer 84a, a color filter 85, and a flat filter layer sequentially formed on a semiconductor substrate 81.
  • An imaging device body 80 composed of 84b and an undercoat layer 86, and a microlens composed of a resin lens 91 formed on the undercoat layer 86 and a porous layer 92 formed on the surface of the resin lens 91. 90.
  • the porous resin layer 92 is formed by applying a transparent resin on the resin lens 91 and dry-etching the transparent resin layer so that the voids and the thickness of the resin surface are about 1Z4 of the wavelength of light. It is formed so that it becomes.
  • the apparent refractive index of the porous layer 92 can be reduced, and the micro lens 90 can have an anti-reflection / scattering effect. As a result, it is possible to solve to some extent the problem relating to an increase in noise such as flare and ghost in the image sensor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-261261
  • the transparent resin layer is dry-etched to form the porous layer 92, which is a component of the microlens 90, two steps of coating the transparent resin and dry-etching are required, resulting in poor work efficiency and cost. There is a problem that also rises.
  • the micro lens 90 provided with the porous layer 92 has a certain degree of anti-reflection / scattering effect, but does not exhibit the effect of reaching the level required for the high-definition imaging device, for example. Also, it depends on the aperture ratio. The existing sensitivity does not satisfy the level required for the high-definition imaging device.
  • the present invention has been made in view of powerful situations, and has solved the conventional problems such as a decrease in aperture ratio, an increase in noise such as flare and ghost, and an imaging device such as an imaging device or the like. It is an object of the present invention to provide a structure suitable for a member including a microlens in a liquid crystal device or the like, an element and an optical element including the structure, and a method for easily and efficiently manufacturing them.
  • the present invention provides a resin pattern (A) having a structural unit of a predetermined shape formed on a base material, and a pitch formed on the surface of the resin pattern (A) and being equal to or less than a wavelength region of a used light beam. And a resin pattern (B) having a fine structure unit of a predetermined shape arranged in
  • the present invention provides steps (i) and (ii): (i) forming a resin layer on a base material, and subjecting the resin layer to exposure and image processing to have a structural unit having a predetermined shape.
  • the present invention relates to a method for manufacturing a structure, comprising sequentially performing a step of forming a fat pattern (B).
  • the present invention also relates to a duplicate mold for a structure, which is manufactured by an electrode from the structure manufactured by the manufacturing method.
  • the present invention also relates to a method of manufacturing a structure, wherein the method is performed using the duplicated mold for a structure.
  • an element main body including a substrate, a portion formed on the element main body and having a resin pattern (A) force having a structural unit of a predetermined shape, and a resin pattern (A) force are also provided.
  • the present invention relates to an element having a resin pattern (B) formed on the surface of a part and having a fine structure unit of a predetermined shape arranged at a pitch equal to or less than the wavelength region of a used light beam.
  • the present invention provides steps (I) and (II): (I) forming a resin layer on an element body including a substrate, and subjecting the resin layer to exposure and development to form a structural unit having a predetermined shape; (A) a step of forming a resin pattern (A) having a strong force, and (II) a step of exposing the surface of the resin pattern (A) also having a strong force.
  • the present invention also provides an optical element main body including a substrate, and a convex lens-shaped structural unit formed on the optical element main body and periodically arranged in an array at a position corresponding to the photoelectric conversion element of the optical element main body.
  • A a resin part having a color and a fine uneven structure unit formed on the surface of the lens part and having a predetermined shape that is periodically arranged in an array at a pitch equal to or less than the wavelength region of the light beam used.
  • the present invention relates to an optical element having a reflection / scattering prevention portion composed of a resin pattern (B).
  • the present invention provides steps (1) and (2): (1) forming a resin layer on an optical element main body including a substrate, and subjecting the resin layer to exposure and development processing, After forming a resin pattern (A) having structural units periodically arranged in an array at a position corresponding to the photoelectric conversion element of the main body, the structural units of the resin pattern (A) are subjected to heat flow. Forming a lens portion as a convex lens shape, (2) subjecting the surface of the lens portion to exposure and development processing, and forming a predetermined shape of fine concave-convex structural units periodically arranged in an array at a pitch equal to or less than the wavelength region of the used light beam.
  • the present invention relates to a method for manufacturing an optical element, which comprises sequentially performing a step of forming a strong reflection / scattering prevention portion having a resin pattern (B).
  • the structure, element and optical element of the present invention solve the conventional problems such as a decrease in aperture ratio, an increase in noise such as flare and ghost, and achieve a remarkable improvement in sensitivity and a reduction in noise. can do. Therefore, they are suitable for a member including a microlens in an image pickup device or a liquid crystal device, for example. Further, according to the manufacturing method of the present invention, such an excellent structure, element, and optical element can be easily and efficiently manufactured at low cost.
  • FIG. 1 is a schematic cross-sectional view schematically showing one example of a structure according to a first embodiment of the present invention.
  • FIG. 2 schematically shows an example of a method for manufacturing a structure according to the first embodiment of the present invention. It is a schematic sectional drawing explaining.
  • FIG. 3 is a schematic enlarged view showing one example of a resin pattern (B) in the present invention.
  • FIG. 4 is a schematic enlarged view showing one example of a resin pattern (B) in the present invention.
  • FIG. 5 is a schematic cross-sectional view schematically illustrating an example of a method of manufacturing a duplicate mold for a structure according to the second embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view schematically showing one example of a device according to a third embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view schematically explaining one example of the method for manufacturing an element according to the third embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view schematically showing one example of an optical element according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a two-beam interference exposure apparatus used in the manufacturing method of the present invention.
  • FIG. 10 is a schematic cross-sectional view schematically showing the structure of a conventional imaging device.
  • the structure according to the first embodiment includes a resin pattern (A) formed on a base material and having a structural unit of a predetermined shape, and a resin pattern (A) formed on the surface of the resin pattern (A), the light beam being used. And a resin pattern (B) having a fine structure unit of a predetermined shape arranged at a pitch equal to or less than the wavelength region.
  • the wavelength region of the light beam used means the wavelength region of the light beam under the environment where the structure is used. It also includes the wavelength range of light rays in the environment in which the structure is manufactured. Accordingly, various rays such as, for example, visible rays, ultraviolet rays, and infrared rays correspond to the used rays depending on the case.
  • FIG. 1 is a schematic cross-sectional view schematically showing one example of the structure according to the first embodiment.
  • a resin pattern (A) 3 having a structural unit of a predetermined shape is formed on the surface of the substrate 1, and a fine pattern of a predetermined shape is formed on the surface of the resin pattern (A) 3.
  • a resin pattern (B) 5 having a structural unit is formed.
  • FIG. 2 is a schematic cross-sectional view schematically illustrating an example of the method for manufacturing a structure according to the first embodiment of the present invention.
  • a resin solution is applied to the surface of the substrate 1 by spin coating or the like, and dried to form a resin layer 2.
  • the substrate 1 include a quartz glass substrate, a Si substrate, and a SiC substrate.
  • the resin used for forming the resin layer 2 may be an ultraviolet light, which is a photosensitive resin, considering that the resin layer 2 is to be exposed and developed.
  • a photoresist for use is preferably used.
  • a resin pattern (B) 5 having a fine structural unit can be easily formed by using a two-beam interference exposure process described later.
  • the resin used for the resin layer 2 has excellent light transmittance.
  • two or more kinds of solvents may be added to the resin solution in order to improve the applicability and dispersibility.
  • two or more kinds of resins whose molecular weight and molecular weight distribution can be adjusted may be mixed.
  • the resin layer 2 is exposed and developed to form a resin pattern (A) 3 having a structural unit of a predetermined shape as shown in FIG. 2 (b).
  • the conditions of the exposure and development processing may be appropriately changed according to the purpose so that the structural unit of the resin pattern (A) 3 has a predetermined shape.
  • the exposure processing in the exposure and development processing for example, a mask exposure processing for forming and exposing a photomask of a desired pattern and a two-beam interference shown in FIG. 9 suitable for forming a resin pattern (B) 5 described later. Two-beam interference exposure processing using an exposure device or the like can be performed.
  • the structural unit of the resin pattern (A) 3 is not extremely small as compared with the fine structural unit of the resin pattern (B) 5 described later, It is preferable to perform a mask exposure treatment because a structural unit having the shape of the above can be formed.
  • the exposure and development processing in the present embodiment includes at least the exposure processing and the development processing, and finally forms the intended three-dimensional resin pattern (A) or resin pattern (B).
  • the process up to is included.
  • the structural unit of the resin pattern (A) 3 is, as shown in Figs. 1 and 2 (b), periodically arrayed in consideration of using the structure for an optical element such as an imaging element. It is preferable to arrange them in a shape.
  • the structural units of the resin pattern (A) 3 are preferably arranged at a pitch of, for example, 10 / zm or less, more preferably 8 ⁇ m or less, or 1 ⁇ m or more, and further preferably 1.5 ⁇ m or less. It is preferable to arrange at a pitch of at least m! / ,!
  • the shape of the structural unit of the resin pattern (A) 3 is not particularly limited, and the shape may be appropriately determined according to the intended use of the structure.
  • a photomask in which circular patterns are arranged in an array for example, is used as shown in FIGS. 1 and 2 (b).
  • the structural unit of the fat pattern (A) 3 has a columnar shape.
  • the structural unit of the resin pattern (A) 3 shown in FIGS. 1 and 2 (b) is, for example, a column having a height of 2 m and a diameter of 4 ⁇ m.
  • the structural unit of the resin pattern (A) 3 is preferably a lens, particularly a convex lens.
  • a resin pattern (A) 3 having a columnar structural unit shown in FIG. 2 (b) is subjected to heat flow to obtain a convex lens-shaped structural unit.
  • the surface of the resin pattern (A) 3 is exposed and developed to form a resin pattern (B) 5 having a fine structure unit of a predetermined shape as shown in FIG. 2 (c).
  • the fine structural units are arranged at a pitch equal to or less than the wavelength region of the light beam used, and it is preferable that the fine structural units are periodically arranged in an array form in consideration of using the structure for an optical element such as an image sensor. Better.
  • the fine structural unit is a concavo-convex structural unit periodically arranged in an array.
  • the effect of preventing reflection and scattering includes an effect of preventing reflection and scattering, which is not limited to an effect of completely reflecting and scattering light beams to be used for preventing reflection and scattering.
  • the conditions of the exposure and development processing may be appropriately changed depending on the purpose so that the fine structural units of the resin pattern (B) 5 have a predetermined shape.
  • a fine pattern can be simultaneously formed over a wide range, so that the resin pattern (B) 5 of an extremely small and fine structural unit is replaced with the resin pattern (A) 3
  • FIG. 9 shows a schematic diagram of a two-beam interference exposure apparatus that can be used in the two-beam interference exposure process.
  • the two-beam interference exposure apparatus 200 includes a KrF excimer laser (wavelength: 248 ⁇ m) 101, and a condensing lens 103 for expanding a laser beam 102 emitted from the KrF excimer laser 101
  • Two parallel beams 108 and 109 respectively It comprises mirrors 110 and 112 that reflect and generate two parallel light beams 111 and 113.
  • the two light beams (the two parallel light beams 111 and 113) are combined to generate an interference fringe.
  • the opening angle of the two light beams needs to be about 60 degrees.
  • the base 1 on which the resin pattern (A) 3 is formed is positioned at a position where the two beams (two parallel beams 111 and 113) are synthesized (reference numeral 114 in FIG. 9). (Indicated by). Then, the substrate 1 (114) is exposed by emitting a laser beam 102 from the semiconductor laser 101, and is appropriately subjected to a development process and the like, as shown in FIG. Next, a resin pattern (B) 5 having a fine structure unit of a predetermined shape arranged at a pitch equal to or less than the wavelength region of the used light beam is formed.
  • the base material 1 (114) on which the resin pattern (A) 3 is formed is rotated 90 degrees and exposed to a plurality of times, for example, two times, to thereby obtain a resin pattern (A).
  • the substrate 1 (114) on which the resin pattern (A) is formed is vertically (in the vertical direction, as indicated by an arrow in FIG. 9). ).
  • the pitch (p in FIGS. 3 and 4 to be described later) and the height of the convex portion of the concave-convex structure unit are obtained. Can be set arbitrarily (h in Figs. 3 and 4 described later).
  • a mask exposure process may be performed as the exposure process in the exposure and development process.
  • a photomask having a desired pattern may be formed on the surface of the resin pattern (A) 3 and exposed.
  • the conditions of the mask exposure treatment may be appropriately changed so that the fine structural units of the resin pattern (B) 5 have a predetermined shape and a desired pitch and height.
  • a development process or the like is appropriately performed, and as shown in FIGS. 1 and 2 (c), a fine structure unit having a predetermined shape is formed on the surface of the resin pattern (A) 3.
  • An existing resin pattern (B) 5 is formed.
  • the fine structural unit of the resin pattern (B) 5 is preferably an uneven structural unit, for example, a conical structural unit shown in a schematic enlarged view of FIG. Outline enlargement
  • An example is a regular hexagonal pyramid-shaped structural unit shown in the figure.
  • pyramid-shaped structural units such as quadrangular pyramids, columnar structural units such as cylinders and prisms, bell-shaped structural units with rounded tips, truncated cones and truncated pyramids.
  • a frustum-shaped structural unit is also exemplified. Further, each structural unit does not have to have a strict geometric shape as shown in FIGS.
  • FIG. 3 and FIG. 4 show a resin pattern (B) 5 having a protruding fine structural unit.
  • the resin pattern (B) 5 has such a protruding fine structural unit.
  • a resin pattern (B) having a depressed microstructure unit such as a cone, a column, a bell, or a frustum is formed on the surface of the resin pattern (A)!
  • the protruding microstructure unit and the depressed microstructure unit may be simultaneously present in one resin pattern (B).
  • the sum of the height of the protruding portion and the depth of the depressed portion is determined by the concavo-convex structural unit described later. Is the height (h) of the convex part of.
  • the resin pattern (B) has fine structural units arranged at a pitch equal to or less than the wavelength region of the used light beam, and if the resin pattern (B) sufficiently imparts the antireflection scattering effect,
  • the shape of the microstructure unit is not particularly limited.
  • the wavelength of the light beam used (E), the pitch of the unevenly structured units (P), and the The height (h) of the convex portion is calculated by the following equations (a) and (b):
  • wavelengths ( ⁇ ), the pitch (p), and the height (h) satisfy the above-mentioned expressions (a) and (b), the incident angle of the light beam used particularly in the entire wavelength region of visible light. In the range of 0 to 50 degrees, the reflectance of the used light beam can be suppressed to about 1% or less. Note that these wavelengths ( ⁇ ), pitch (P) and height (h) are especially calculated by the following equations (al) and (bl):
  • the resin pattern (B) shown in FIGS. 3 and 4 has a conical shape with a pitch (p) of about 0.25 / zm and a height (h) of about 0.8 ⁇ m (FIG. 3). ) Or regular hexagonal pyramid (Fig. 4).
  • the fine structural units are arranged at a pitch of a wavelength region (420 to 680 nm) or less when the light beam used is, for example, a visible light beam.
  • the resin pattern (B) 5 in which the conical microstructure units are periodically arranged in an array as shown in FIG. Are formed on the surface of the resin pattern (A) 3 in which the structural units are periodically arranged in an array.
  • the pitch is defined as the pitch in the densest arrangement direction when the resin pattern (B) is constituted by a two-dimensional arrangement of a large number of fine structural units. Means pitch.
  • the fine structural unit of the predetermined shape arranged at a pitch equal to or less than the wavelength region of the used light beam is provided.
  • the structure 10 having the resin pattern (B) 5 formed therein can be easily manufactured.
  • the structure according to the present embodiment is not limited to the structure 10 having the configuration shown in FIG. 1, but includes the resin pattern (A) and the resin pattern (B) described above. You only need to have it.
  • the structure according to the present embodiment includes an optical element including a microlens such as an image sensor such as a CCD and a CMOS and a liquid crystal device, for example, a two-dimensional optical switch, an IR sensor, a membrane sensor, a micro gripper, and the like. It can be suitably used as a member of various elements such as a microelectromechanical element such as a micro knife.
  • a microlens such as an image sensor such as a CCD and a CMOS and a liquid crystal device, for example, a two-dimensional optical switch, an IR sensor, a membrane sensor, a micro gripper, and the like. It can be suitably used as a member of various elements such as a microelectromechanical element such as a micro knife.
  • the optical element includes all components such as a lens element, a prism element, and a mirror element that are disposed in the optical path and have an optical function surface.
  • the duplicated mold for a structure according to the second embodiment is manufactured by an electrode from the structure manufactured by the method for manufacturing a structure according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view schematically illustrating one example of a method for manufacturing a duplicate mold for a structure according to the second embodiment of the present invention.
  • the steps and various conditions until the resin pattern (B) is formed on the surface of the resin pattern (A) on the substrate are all the same as those in the first embodiment. Same as manufacturing method of structure
  • a resin solution is applied to the surface of the substrate 1 by spin coating or the like, and dried to form a resin layer 2.
  • the resin layer 2 is exposed and developed to form a resin pattern (A) 3.
  • the structural unit of the resin pattern (A) 3 shown in FIG. 5 (b) has a columnar shape, and a heat flow is applied to the resin pattern (A) 3 to obtain the structure shown in FIG. 5 (c).
  • the resin pattern (A) 3a having the structural unit of the convex lens shape can be formed.
  • the surface of the resin pattern (A) 3a is exposed and developed to form a resin pattern (B) 5 having a fine structural unit of a predetermined shape as shown in FIG. 5 (d).
  • the structure 7 is manufactured.
  • the fine structural units are arranged at a pitch equal to or less than the wavelength region of the used light beam.
  • the fine structural units are irregular structural units periodically arranged in an array. It is preferred that there be.
  • the surface of the resin pattern (A) 3a having a structural unit in the shape of a convex lens is subjected to an activation treatment using, for example, a palladium.
  • the structure 7 is immersed in an electrolytic nickel-ring plating solution, and as shown in FIG. 5 (e), the electroless nickel-ring plating layer having a thickness of about 8 to 12 nm Form 8 to give conductivity.
  • electroless nickel - re Nmetsuki layer 8 forces cathode electrode, a platinum plate as the counter electrode, in a nickel sulfamate plated solution, under conditions of a current density of about 0. 5 ⁇ 5AZdm 2, the thickness of the plated portion about Conduct electric plating until l ⁇ 3mm.
  • the structure 7 is peeled off in a base solution to produce an electrode-type replication mold 9 for a structure as shown in FIG. 5 (f).
  • the structure according to the first embodiment can be manufactured.
  • No particular limitation is imposed on the method of the powerful molding, and for example, an injection molding method, a press molding method, a nanoimprinting method, or the like can be appropriately adopted depending on the case.
  • the surface of the resin pattern (A) 3a having a structural unit of a predetermined shape on one surface of the base material is provided with a pitch equal to or less than the wavelength range of the light beam used.
  • the structure 7 on which the resin pattern (B) 5 having the fine structure unit of the predetermined shape arranged in the manner described above can be easily manufactured.
  • the structure replication mold manufactured by the manufacturing method according to the present embodiment is not limited to the structure replication mold 9 having the structure shown in FIG. 5 (f). If it is manufactured by the manufacturing method described above.
  • the structure manufactured by the manufacturing method according to the present embodiment is, for example, an optical element including a microlens, such as an image sensor such as a CCD or a CMOS, or a liquid crystal device, for example, a two-dimensional optical switch, an IR sensor, or a membrane. It can be suitably used as a member of various elements such as a microelectromechanical element such as a sensor, a micro gripper, and a micro knife.
  • a microlens such as an image sensor such as a CCD or a CMOS
  • a liquid crystal device for example, a two-dimensional optical switch, an IR sensor, or a membrane.
  • a microelectromechanical element such as a sensor, a micro gripper, and a micro knife.
  • the optical element includes all components such as a lens element, a prism element, and a mirror element, which are disposed in the optical path and have an optical function surface.
  • the element according to the third embodiment includes an element body including a substrate, a portion formed on the element body and including a resin pattern (A) having a structural unit of a predetermined shape, and a resin pattern (A). And a resin pattern (B) having a fine structure unit having a predetermined shape and formed on the surface of the part and having a pitch equal to or less than the wavelength region of the used light beam.
  • the wavelength region of the used light beam means the wavelength region of the light beam under the environment where the element is used. It also includes the wavelength range of light under the environment in which the device is manufactured. Therefore, various rays such as visible rays, ultraviolet rays, and infrared rays correspond to the used rays, as the case may be.
  • FIG. 6 is a schematic cross-sectional view schematically showing one example of the device according to the third embodiment.
  • a portion composed of the resin pattern (A) 3a having a structural unit of a predetermined shape is formed on the element main body la including the substrate, and is composed of the resin pattern (A) 3a.
  • a part composed of a resin pattern (B) 5 having a fine structural unit of a predetermined shape is formed on the surface of the part.
  • FIG. 7 is a schematic cross-sectional view schematically illustrating one example of the method for manufacturing an element according to the third embodiment of the present invention.
  • a resin solution is applied on the element body la including the substrate by spin coating or the like, and dried to form the resin layer 2.
  • the substrate include a quartz glass substrate, a Si substrate, and a SiC substrate.
  • the element body la differs depending on the type of the element, and cannot be unambiguously determined.For example, when the element is an imaging element, for example, a photoelectric conversion element, a light shielding portion, a color filter, etc. An element body or the like sequentially stacked on top is used.
  • a photosensitive resin such as a photoresist for ultraviolet light is preferably used in consideration of the subsequent exposure and development of the resin layer 2. .
  • the photosensitive resin for example, a resin pattern (B) 5 having a fine structural unit and having a strong force can be easily formed by using a two-beam interference exposure process described later.
  • the resin used for the resin layer 2 is preferably excellent in light transmittance.
  • a surfactant may be added to the resin solution, or two or more solvents may be mixed. You can also adjust the molecular weight and molecular weight distribution of the resin by mixing two or more resins.
  • the resin layer 2 is subjected to an exposure and development process to form a portion composed of a resin pattern (A) 3 having a structural unit of a predetermined shape, as shown in FIG. 7 (b).
  • the conditions of the exposure and development processing may be appropriately changed depending on the purpose so that the structural unit of the resin pattern (A) 3 has a predetermined shape.
  • the exposure processing in the exposure and development processing for example, a mask exposure processing for forming and exposing a photomask of a desired pattern and a two-beam interference shown in FIG. 9 suitable for forming a resin pattern (B) 5 described later. Two-beam interference exposure processing using an exposure device or the like can be performed.
  • the structural unit of the resin pattern (A) 3 is not extremely small as compared with the fine structural unit of the resin pattern (B) 5 described later, It is preferable to perform a mask exposure treatment because a structural unit having the shape of the above can be formed.
  • the exposure processing and the development processing are also included in the exposure development processing in the present embodiment. It includes the steps up to the formation of the target three-dimensional resin pattern (A) force part or the resin pattern (B) force part.
  • the structural unit of the resin pattern (A) 3 is periodically arrayed as shown in Figs. 6 and 7 (b). Preferably, they are arranged in the same manner. Further, the structural units of the resin pattern (A) 3 are preferably arranged at a pitch of, for example, 10 / zm or less, more preferably 8 ⁇ m or less, or 1 ⁇ m or more, and further preferably 1.5 or more. It is preferable to arrange at a pitch of at least ⁇ m.
  • the shape of the structural unit of the resin pattern (A) 3 is not particularly limited, and the shape may be appropriately determined according to the purpose of use of the element and the like. For example, when a photomask in which circular patterns are arranged in an array is used, as shown in FIG. 7B, the structural unit of the resin pattern (A) 3 has a columnar shape.
  • the structural unit of the resin pattern (A) 3 is preferably a lens, particularly a convex lens.
  • a convex lens-shaped structural unit as shown in FIG. 7 (c) is obtained.
  • a portion composed of the fat pattern (A) 3a can be formed.
  • the surface of the resin pattern (A) 3a is exposed and developed, and as shown in FIG. 7 (d), a portion composed of the resin pattern (B) 5 having a fine structural unit having a predetermined shape.
  • the microstructure units are arranged at a pitch equal to or smaller than the wavelength region of the light beam used.
  • the microstructure units may be periodically arranged in an array. preferable.
  • the fine structural unit is a concavo-convex structural unit periodically arranged in an array. .
  • the effect of preventing reflection and scattering includes an effect of preventing reflection and scattering, which is not only an effect of not completely reflecting and scattering the light beam to be prevented from being reflected and scattered.
  • the conditions of the exposure and development processing may be appropriately changed according to the purpose so that the fine structural units of the resin pattern (B) 5 have a predetermined shape.
  • the exposure process in the exposure and development process it is possible to simultaneously form a fine pattern over a wide range, so that a portion composed of the resin pattern (B) 5 in an extremely small and fine structural unit is formed in the resin pattern (A).
  • a two-beam interference exposure apparatus shown in FIG. 9 can be used as in the first embodiment.
  • an element body la in which a portion composed of the resin pattern (A) 3a is formed at a position where the two beams (two parallel beams 111 and 113) are combined see FIG. 9) , 114).
  • a laser beam 102 is emitted from the semiconductor laser 101 to expose the element body la (114), and subjected to appropriate development processing and the like, as shown in FIG. 7 (d), comprising a resin pattern (A) 3a.
  • a part comprising a resin pattern (B) 5 having a fine structure unit of a predetermined shape arranged at a pitch equal to or less than the wavelength region of the used light beam is formed.
  • the element body la (114) on which the portion composed of the resin pattern (A) 3a is formed is rotated by 90 degrees, and is exposed a plurality of times, for example, two times. It is also possible to appropriately change the shape of the fine structure unit of the fat pattern (B) 5.
  • the element body la (114) in which the resin pattern (A) 3a is also formed with a portion having a force is formed in the vertical direction (vertical direction, FIG. (Indicated by arrows).
  • the pitch (p in FIGS. 3 and 4) of the fine structure unit, which is the uneven structure unit, and the height of the convex portion of the uneven structure unit are obtained. (H in Figs. 3 and 4 above) can be set arbitrarily.
  • a mask exposure process can be performed in addition to the two-beam interference exposure process.
  • a photomask having a desired pattern may be formed on the surface of the portion composed of the resin pattern (A) 3a and exposed.
  • the conditions of the mask exposure treatment may be appropriately changed so that the fine structure unit of the resin pattern (B) 5 has a predetermined shape and a desired pitch and height.
  • the substrate is appropriately subjected to a development process and the like, as shown in FIG. 6 and FIG. 7 (d), on the surface of the resin pattern (A) 3a portion.
  • a portion composed of the resin pattern (B) 5 having a fine structural unit of a predetermined shape is formed.
  • the fine structural unit of the resin pattern (B) for example, similar to the fine structural unit of the resin pattern (B) in the first embodiment, for example, a conical structural unit or a regular hexagonal pyramid-shaped Structural unit, pyramid-shaped structural unit such as quadrangular pyramid, columnar structural unit such as cylindrical or prismatic, bell-shaped structural unit with rounded tip, frustum such as truncated cone or truncated pyramid And the like structural unit.
  • each structural unit need not be a strict geometric shape.
  • the resin pattern (B) in the present embodiment similarly to the fine structure unit of the resin pattern (B) in the first embodiment, only the portion composed of the resin pattern (B) having the protruding fine structure unit is used.
  • the resin pattern (B) which has a depressed microstructure unit such as a cone, a column, a bell, or a frustum, is also formed on the surface of the resin pattern (A), which also has a force. ⁇ ⁇ Also, the microstructure unit having the protruding shape, the microstructure unit having the depressed shape, and the force may be simultaneously present in the resin pattern (B).
  • the sum of the height of the protruding portion and the depth of the depressed portion is determined by the The height (h) of the projection.
  • the resin pattern (B) has fine structure units arranged at a pitch equal to or less than the wavelength region of the used light beam, as long as the resin pattern (B) sufficiently imparts an antireflection scattering effect.
  • the shape of the microstructure unit is not particularly limited.
  • the wavelength (E) of the light beam used, the pitch (P) of the unevenly structured units, and the The height (h) of the convex portion is calculated by the following equations (a) and (b):
  • wavelengths ( ⁇ ), the pitch (p), and the height (h) satisfy the above-mentioned expressions (a) and (b), the incident angle of the light beam used particularly in the entire wavelength region of visible light. In the range of 0 to 50 degrees, the reflectance of the used light beam can be suppressed to about 1% or less. Note that these wavelengths ( ⁇ ), pitch (P) and height (h) are especially calculated by the following equations (al) and (bl): 0.15 ⁇ p ⁇ 0.75 (al)
  • the structural unit of the resin pattern (A) 3a shown in Figs. 6 and 7 (d) is, for example, a circular flat surface having a diameter of about 3.5 m on the lower surface and a spherical surface having a radius of curvature of about 7 m on the upper surface. It is a plano-convex lens-shaped structural unit.
  • the fine structural unit of the resin pattern (B) 5 has a conical shape as shown in Fig. 3 and has a pitch of about 0.25111 (pitch within the visible light wavelength range of 420 to 68011111) and a height. It is a unit of irregular structure of about 0.8 m, which is perpendicular to the substrate surface of the element body la.
  • the convex lens-shaped structural units are formed on the surface of a portion composed of the resin non-turn (A) 3a periodically arranged in an array.
  • the pitch is the pitch in the densest arrangement direction. Means.
  • the element 11 in which the portion composed of the resin pattern (B) 5 having the structural unit is formed can be easily manufactured.
  • the element according to the present embodiment is not limited to the element 11 having the configuration shown in FIG. 6, but the element body, the portion composed of the resin pattern (A), and the resin (B) Anything that has a powerful part!
  • the device according to the present embodiment can be suitably used as an imaging device such as a CCD or a C-MOS or an optical device including a microlens such as a liquid crystal device.
  • an imaging device such as a CCD or a C-MOS
  • an optical device including a microlens such as a liquid crystal device.
  • 2D optical switch, IR sensor, membrane sensor, micro gripper It can also be suitably used as a microelectromechanical element such as a micro knife.
  • the optical element includes all components, such as a lens element, a prism element, and a mirror element, which are disposed in the optical path and have an optical function surface.
  • the optical element according to the fourth embodiment has an optical element main body including a substrate, and a convex lens shape formed on the optical element main body and periodically arranged in an array at a position corresponding to the photoelectric conversion element of the optical element main body.
  • an anti-reflection scattering site comprising a resin pattern (B) having a unit.
  • the wavelength region of the light beam used means the wavelength region of the light beam under the environment where the optical element is used. That is, the wavelength region of the used light beam is a wavelength region of transmitted light (incident light) to the lens portion, such as a visible light beam.
  • the wavelength range includes the wavelength range of light rays, for example, ultraviolet rays in an environment in which an optical element is manufactured.
  • FIG. 8 is a schematic sectional view schematically showing an example of the optical element according to the fourth embodiment.
  • the optical element body 20 is configured as follows. That is, a plurality of photoelectric conversion elements 22 are formed in an array on the substrate 21, and a light shielding portion 23 is provided between the adjacent photoelectric conversion elements 22 and 22.
  • a flat layer 24a is formed so as to cover the photoelectric conversion element 22 and the light shielding portion 23.
  • a plurality of color filters 25 are formed in an array at positions corresponding to the photoelectric conversion elements 22.
  • a flat layer 24b is formed on the flat layer 24a so as to cover the color filter 25, and an undercoat layer 26 is formed on the flat layer 24b.
  • the optical element body 20 is composed of the substrate 21, the photoelectric conversion element 22, the light blocking part 23, the flat layer 24 a, the color filter 25, the flat layer 24 b and the undercoat layer 26.
  • a lens portion made of a resin pattern (A) 4 having a convex lens-shaped structural unit periodically arranged in an array at a position corresponding to the photoelectric conversion element 22 is formed on the optical element body 20 .
  • a reflection / scattering prevention portion composed of 6 is formed.
  • a photoelectric conversion element 22 and a light shielding section 23 are provided on a substrate 21 such as a semiconductor substrate such as a Si substrate or a SiC substrate. Then, the flat element layer 24a, the color filter 25, the flat element layer 24b, and the undercoat layer 26 are sequentially formed by an ordinary method to manufacture the optical element body 20. Next, a resin layer is formed on the optical element main body 20, and the resin layer is subjected to exposure and development processing, and the structural units are periodically arrayed at positions corresponding to the photoelectric conversion elements 22 of the optical element main body 20.
  • the resin pattern (A) having, for example, a columnar structural unit is formed so as to be arranged in a pattern.
  • the resin pattern (A) 4 of the optical element 12 according to the fourth embodiment is shaped such that its structural unit is periodically arranged in an array at a position corresponding to the photoelectric conversion element 22 of the optical element body 20. Other than that, it can be manufactured in the same manner as in the third embodiment.
  • a resin solution is applied on the optical element body 20 by a spin coating method or the like, and dried to form a resin layer.
  • a photosensitive resin such as a photoresist for ultraviolet light is preferably used.
  • the photosensitive resin for example, the two-beam interference described later can be performed. It is possible to easily form the anti-reflection / scattering portion composed of the resin pattern (B) 6 having the fine uneven structure unit by using the exposure treatment.
  • the resin used for the resin layer preferably has excellent light transmittance.
  • a surfactant is added to the resin solution, two or more solvents are mixed, the molecular weight and molecular weight distribution of the resin are adjusted, Fats may be mixed.
  • the resin layer is exposed and developed to form a resin pattern (A) having a structural unit of a predetermined shape.
  • the conditions of the exposure and development processing may be appropriately changed according to the purpose so that the structural unit of the resin pattern (A) has a predetermined shape.
  • the exposure process in the exposure development process for example, a mask exposure process of forming and exposing a photomask of a desired pattern or a resin pattern (B) 6 described later, which is suitable for forming a photomask shown in FIG.
  • a two-beam interference exposure process or the like using the two-beam interference exposure apparatus or the like can be performed.
  • the structural unit of the resin pattern (A) is not extremely small as compared with the fine unevenness structural unit of the resin pattern (B) 6 described later, It is preferable to perform a mask exposure treatment because a structural unit having the shape of the above can be formed.
  • the exposure and development processing in the present embodiment also includes at least the exposure processing and the development processing, and finally the three-dimensional resin pattern (A) that is the objective lens part or resin pattern (B )
  • the process up to the formation of the anti-reflection and anti-scattering part which also becomes strong is included.
  • the structural units of the resin pattern (A) are preferably arranged at a pitch of, for example, 10 ⁇ m or less, and further preferably 8 ⁇ m or less. Preferably, they are arranged at a pitch of at least 1 ⁇ m, and more preferably at least 1.5 m.
  • a lens portion made of a resin pattern (A) 4 having a structural unit in a convex lens shape is formed by performing a heat flow on the resin pattern (A) having a columnar structural unit. I do. Since the structural units of the convex lens shape at the large lens portion are periodically arranged in an array at positions corresponding to the photoelectric conversion elements, they function as, for example, a micro aperture lens in the imaging element.
  • the surface of the lens portion is subjected to an exposure and development treatment, and a resin pattern (B) 6 having a finely-shaped uneven structure unit of a predetermined shape periodically arranged in an array at a pitch equal to or less than the wavelength region of the used light beam.
  • the anti-reflection / scattering portion made of The anti-reflection / scattering portion composed of the resin pattern (B) 6 having the specific fine unevenness structural unit can provide an excellent reflection / scattering prevention effect to the lens portion composed of the resin pattern (A) 4. .
  • the effect of preventing reflection and scattering includes an effect of preventing reflection and scattering, which is not only an effect of not completely reflecting and scattering a light beam to be prevented from being reflected and scattered.
  • the conditions of the exposure and development processing may be appropriately changed according to the purpose so that the fine unevenness structural units of the resin pattern (B) 6 have a predetermined shape. . Since a fine pattern can be simultaneously formed over a wide range as an exposure process in a powerful exposure development process, an anti-reflection and anti-scattering portion composed of a resin pattern (B) 6 of an extremely small fine uneven structure unit is used. ⁇ Resin pattern (A) It is preferable to perform, for example, a two-beam interference exposure process from the viewpoint that workability is further improved when forming on the surface. For the two-beam interference exposure process, for example, a two-beam interference exposure apparatus shown in FIG. 9 can be used as in the first and third embodiments.
  • an optical element body shown as a substrate 114 in Fig. 9 having a lens portion is installed at a position where the two beams (two parallel beams 111 and 113) are combined. I do. Then, a laser beam 102 is emitted from the semiconductor laser 101 to expose the optical element main body (substrate 114), and an appropriate development process or the like is performed to form a reflection / scattering preventing portion on the surface of the lens portion.
  • the optical element body (substrate 114) on which the lens portion is formed is rotated 90 degrees at a time, and is exposed a plurality of times, for example, twice, thereby forming the resin pattern (B). It is also possible to appropriately change the shape of the fine uneven structure unit.
  • the optical element body (substrate 114) on which the lens portion is formed is shifted in the vertical direction (vertical direction, indicated by an arrow in FIG. 9). be able to.
  • the pitch of the fine uneven structure unit (p in FIGS. 3 and 4) and the height of the convex portion of the fine uneven structure unit (p H) in Figs. 3 and 4 can be set arbitrarily.
  • a mask exposure processing can also be performed in addition to the two-beam interference exposure processing.
  • a photomask having a desired pattern may be formed on the surface of the lens portion and exposed.
  • the conditions of the mask exposure treatment may be appropriately changed so that the fine unevenness structural unit of the resin pattern (B) has a predetermined shape and a desired pitch and height.
  • a development process or the like is appropriately performed to form an anti-reflection / scattering portion composed of a resin pattern (B) having a finely uneven structure unit having a predetermined shape on the surface of the lens portion. .
  • the fine unevenness structural unit of the resin pattern (B) for example, like the fine structural unit of the resin pattern (B) in the first and third embodiments, a conical structural unit, a positive Structural unit of hexagonal pyramid, pyramid-shaped structural unit such as quadrangular pyramid, columnar structural unit such as cylindrical or prismatic, bell-shaped structural unit with rounded tip, truncated cone And a truncated pyramid-shaped structural unit such as a truncated pyramid and the like.
  • each structural unit need not be a strict geometric shape.
  • the resin pattern in the first and third embodiments is used.
  • the resin pattern has protruding fine unevenness structural units.It can be formed only by the anti-reflection and anti-scattering part consisting of (B), such as cone, column, bell, truncated cone, etc.
  • a reflection / scattering prevention portion composed of a resin pattern (B) having a fine concave-convex structural unit having a depressed shape may be formed on the surface of the lens portion.
  • the projecting-shaped fine unevenness structural unit and the depressed-shaped fine unevenness structural unit may be simultaneously present in one resin pattern (B).
  • the resin pattern (B) in which the micro-rough structure unit of the protruding shape and the micro-rough structure unit of the depressed shape exist simultaneously, the sum of the height of the protruding portion and the depth of the depressed portion is the fine It is the height (h) of the convex portion of the concave / convex structural unit.
  • the resin pattern (B) has fine concave-convex structural units arranged at a pitch equal to or smaller than the wavelength region of the used light beam, as long as the resin pattern (B) sufficiently imparts an antireflection scattering effect.
  • the shape of the fine uneven structure unit is not particularly limited.
  • the wavelength ( ⁇ ) of the light beam used, the pitch (p) of the fine uneven structure unit, and the height (h) of the convex portion of the fine uneven structure unit are expressed by the following formula (a). And (b):
  • wavelengths ( ⁇ ), the pitch (p), and the height (h) satisfy the above-mentioned expressions (a) and (b), the incident angle of the light beam used particularly in the entire wavelength region of visible light. In the range of 0 to 50 degrees, the reflectance of the used light beam can be suppressed to about 1% or less. Note that these wavelengths ( ⁇ ), pitch (P) and height (h) are especially calculated by the following equations (al) and (bl):
  • the pitch is the pitch in the densest arrangement direction. Means pitch.
  • the fine irregularities of the resin pattern (B) 6 have a conical shape with a pitch of about 0.25111 (pitch within the visible light wavelength range of 420 to 68011111) as shown in FIG. Is a structural unit of about 0.8 m, and is oriented perpendicular to the surface of the substrate 21.
  • the plano-convex lens-shaped structural units are formed on the surface of the lens portion composed of the resin pattern (A) 4 which is periodically arranged in an array.
  • the resin pattern (A) is formed.
  • An excellent anti-reflection / scattering effect can be imparted to the lens portion composed of 4.
  • the lens portion made of the resin pattern (A) 4 to which the excellent antireflection / scattering effect is imparted is extremely effective as a microlens, and increases the amount of incident light to increase the sensitivity of the optical element. It is also possible to prevent an increase in noise such as flare and ghost caused by the incident light that only increases the noise. Further, noise caused by re-reflected light or scattered light from the surface of the optical element 12 (the surface of the lens portion) and the inner surface of the cover glass can be reduced. Therefore, the optical element 12 having a lens portion having such a reflection / scattering prevention portion requires high sensitivity and a reduction in noise due to unnecessary reflected light or scattered light such as flare and ghost, for example, for a high-definition imaging device. It can fully satisfy the required level.
  • the resin pattern having the structural unit of the convex lens shape on the optical element body 20 including the substrate 21 (A) is formed on the surface of the lens portion having four forces with a pitch equal to or less than the wavelength region of the light beam used. It is possible to easily manufacture the optical element 12 having the reflection / scattering prevention portion formed of the resin pattern (B) 6 having the fine irregularities structured in a predetermined shape.
  • the optical element according to the present embodiment is not limited to the optical element 12 having the configuration shown in FIG. 8, but the optical element body, the lens portion, and the anti-reflection / scattering section as described above. If it has a rank,
  • the optical element according to the present embodiment can be suitably used as an optical element including a microlens, such as an imaging element such as a CCD or a CMOS, or a liquid crystal device.
  • a microlens such as an imaging element such as a CCD or a CMOS, or a liquid crystal device.
  • the optical element includes all components, such as a lens element, a prism element, and a mirror element, which are disposed in the optical path and have an optical function surface.
  • the structure, element, and optical element of the present invention can be suitably used, for example, in the field of devices that require excellent optical functions such as high sensitivity and low noise. Further, according to the manufacturing method of the present invention, it is possible to significantly improve the productivity of such excellent structures, elements, and optical elements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Micromachines (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 本発明の目的は、開口率の低下及びノイズの増加が改善された構造体、素子及び光学素子、並びにこれらを簡易に低コストで効率的に製造する方法を提供することである。本発明は、基材(1)上に形成された、所定形状の構造単位を有する樹脂パターン(A)(3)と、樹脂パターン(A)(3)の表面に形成され、使用光線の波長領域以下のピッチで配列した所定形状の微細構造単位を有する樹脂パターン(B)(5)とを備えた構造体、並びに基材(1)上に樹脂層(2)を形成し、該樹脂層(2)に露光現像処理を施して所定形状の構造単位を有する樹脂パターン(A)(3)を形成する工程(i)、及び樹脂パターン(A)(3)の表面に露光現像処理を施し、使用光線の波長領域以下のピッチで配列した所定形状の微細構造単位を有する樹脂パターン(B)(5)を形成する工程(ii)を順次行うことを特徴とする、構造体の製造方法に関する。

Description

明 細 書
光学素子及びその製造方法
技術分野
[0001] 本発明は、構造体、素子及び光学素子並びにこれらの製造方法に関する。特に、 CCD、C— MOSなどの撮像素子や液晶デバイスなどにおけるマイクロレンズを含む 部材などに好適な構造体、素子及び光学素子、並びにこれらの製造方法に関する。 背景技術
[0002] 一般に光学素子において、有効な光のみを効率よく利用し、例えば不要な反射光 、散乱光などは除去するか、又は光の反射や散乱そのものを抑制して、その光学機 能をより向上させることが必須であり、力かる光学機能の向上のために種々の方法が 提案されてきている。
[0003] 従来では、例えば蒸着、スパッタリング、塗装などの方法によって光学素子の光学 機能面に SiO、 TiOなどの薄膜を形成し、不要な反射光や散乱光の進入を抑制す
2 2
る方法が採用されている。し力しながら、力かる薄膜を形成するには複雑な工程が必 要であるため、生産性が悪ぐコストが上昇してしまう。さらにかかる薄膜は波長依存 性が大きいため、所定の波長以外の光に対する反射散乱防止効果が小さい。したが つて、例えば撮像素子などの光学素子において多用される可視光線の全領域では、 不要な反射光や散乱光の進入は充分に抑制され得ない。
[0004] このように、例えば撮像素子の場合、不要な反射光や散乱光、特にマイクロレンズ の表面とカバーガラスの内面とからの再反射光や散乱光力 ノイズの一因となること が大きな問題の 1つである力 この問題を解決する有効な手段は見出されていない。
[0005] さらに撮像素子には、前記不要な反射光や散乱光によるノイズの他にも、例えば次 のような問題が考えられる。撮像素子における受光部の光電変換に寄与する領域( 開口部)は、素子サイズや画素数にも依存する力 通常その全面積に対して 20〜40 %程度に限られる。力かる開口部が小さいことは、そのまま撮像素子の感度低下に 繋がるので、この開口部の小ささによる感度低下を補うために、一般に、受光部上に 集光用のマイクロレンズが形成されている。し力しながら、近年、例えば 200万画素を 超える高精細撮像素子への要求は高まる一方であり、力かる高精細撮像素子に形 成されたマイクロレンズにおいても、やはり開口率の低下が原因で感度低下が生じて いる。し力もこのような高精細撮像素子では、感度低下に加え、フレア、ゴーストなど の不要な反射光や散乱光によるノイズの増力 tlも勿論大きな問題である。
[0006] そこで、前記開口率の低下、フレア、ゴーストなどのノイズの増加と!/、つた問題を解 決するために、例えば次のような撮像素子が提案されている(特許文献 1参照)。
[0007] 図 10に、従来提案されている撮像素子の構造を模式的に示す。図 10の概略断面 図に示すように、撮像素子 100は、半導体基板 81上に順次形成された、光電変換素 子 82、遮光部 83、平坦ィ匕層 84a、カラーフィルタ 85、平坦ィ匕層 84b及びアンダーコ ート層 86からなる撮像素子本体 80と、アンダーコート層 86上に形成された、榭脂レ ンズ 91及び該榭脂レンズ 91の表面に形成されたポーラス層 92からなるマイクロレン ズ 90とにより構成されている。ここで、ポーラス層 92は、榭脂レンズ 91上に透明榭脂 を塗布して形成した透明榭脂層をドライエッチングすることにより、榭脂表面のボイド 及び厚さが光の波長の約 1Z4となるように形成されている。そして、榭脂レンズ 91上 にこのポーラス層 92を形成することにより、ポーラス層 92での見かけ上の屈折率を低 下させ、マイクロレンズ 90に反射散乱防止効果を付与することができる。その結果、 撮像素子におけるフレア、ゴーストなどのノイズの増加に関する問題をある程度は解 決することができる。
特許文献 1:特開 2002— 261261号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、例えば図 10に示す構造の撮像素子を製造する際には、前記したよう に、榭脂レンズ 91上に透明榭脂を塗布して透明榭脂層を形成した後、該透明樹脂 層をドライエッチングして、マイクロレンズ 90の構成部材であるポーラス層 92を形成し ているので、透明樹脂の塗布及びドライエッチングの 2工程が必要であり、作業効率 が悪ぐコストも上昇するという問題がある。し力も、該ポーラス層 92が設けられたマイ クロレンズ 90は、ある程度の反射散乱防止効果は有するが、例えば前記高精細撮像 素子に要求されるレベルに達する効果を発現するものではない。また、開口率に依 存した感度に関しても、該高精細撮像素子に要求されるレベルを満足するものでは ない。
[0009] 本発明は、力かる実情に鑑みてなされたものであり、開口率の低下、フレア、ゴース トなどのノイズの増加と!/ヽつた従来の問題が解決された、例えば撮像素子や液晶デ バイスなどにおけるマイクロレンズを含む部材などに好適な構造体、該構造体を含む 素子及び光学素子、並びにこれらを簡易に低コストで効率的に製造する方法を提供 することを目的とする。
課題を解決するための手段
[0010] 本発明は、基材上に形成された、所定形状の構造単位を有する榭脂パターン (A) と、榭脂パターン (A)の表面に形成され、使用光線の波長領域以下のピッチで配列 した所定形状の微細構造単位を有する榭脂パターン (B)とを備えた構造体に関する
[0011] また本発明は、工程 (i)及び (ii): (i)基材上に榭脂層を形成し、該榭脂層に露光現 像処理を施して所定形状の構造単位を有する榭脂パターン (A)を形成する工程、 (ii )榭脂パターン (A)の表面に露光現像処理を施し、使用光線の波長領域以下のピッ チで配列した所定形状の微細構造単位を有する榭脂パターン (B)を形成する工程 を順次行うことを特徴とする、構造体の製造方法に関する。
[0012] また本発明は、前記製造方法にて製造された構造体から電铸によって製造した、 構造体用複製金型に関する。
[0013] また本発明は、前記構造体用複製金型を用いて成形を行う、構造体の製造方法に 関する。
[0014] また本発明は、基板を含む素子本体と、素子本体上に形成された、所定形状の構 造単位を有する榭脂パターン (A)力もなる部位と、榭脂パターン (A)力もなる部位の 表面に形成され、使用光線の波長領域以下のピッチで配列した所定形状の微細構 造単位を有する榭脂パターン (B)からなる部位とを備えた素子に関する。
[0015] また本発明は、工程 (I)及び (II): (I)基板を含む素子本体上に榭脂層を形成し、 該榭脂層に露光現像処理を施して所定形状の構造単位を有する榭脂パターン (A) 力もなる部位を形成する工程、 (II)榭脂パターン (A)力もなる部位の表面に露光現 像処理を施し、使用光線の波長領域以下のピッチで配列した所定形状の微細構造 単位を有する榭脂パターン (B)カゝらなる部位を形成する工程を順次行うことを特徴と する、素子の製造方法に関する。
[0016] また本発明は、基板を含む光学素子本体と、光学素子本体上に形成され、該光学 素子本体の光電変換素子と対応する位置に周期的にアレイ状に配列した凸レンズ 形状の構造単位を有する榭脂パターン (A)カゝらなるレンズ部位と、レンズ部位の表面 に形成され、使用光線の波長領域以下のピッチで周期的にアレイ状に配列した所定 形状の微細凹凸構造単位を有する榭脂パターン (B)からなる反射散乱防止部位とを 備えた光学素子に関する。
[0017] さらに本発明は、工程(1)及び (2): (1)基板を含む光学素子本体上に榭脂層を形 成し、該榭脂層に露光現像処理を施して、光学素子本体の光電変換素子と対応す る位置に周期的にアレイ状に配列した構造単位を有する榭脂パターン (A)を形成し た後、該榭脂パターン (A)の構造単位を熱フローにて凸レンズ形状としてレンズ部位 を形成する工程、(2)レンズ部位の表面に露光現像処理を施し、使用光線の波長領 域以下のピッチで周期的にアレイ状に配列した所定形状の微細凹凸構造単位を有 する榭脂パターン (B)力 なる反射散乱防止部位を形成する工程を順次行うことを 特徴とする、光学素子の製造方法に関する。
発明の効果
[0018] 本発明の構造体、素子及び光学素子は、開口率の低下、フレア、ゴーストなどのノ ィズの増加といった従来の問題を解決し、著しい感度の向上、かつノイズの減少を実 現することができる。したがって、これらは、例えば撮像素子や液晶デバイスなどにお けるマイクロレンズなどを含む部材に好適である。また本発明の製造方法によれば、 このように優れた構造体、素子及び光学素子を簡易に低コストで効率的に製造する ことができる。
図面の簡単な説明
[0019] [図 1]図 1は、本発明の第 1の実施形態に係る構造体の一例を模式的に示す概略断 面図である。
[図 2]図 2は、本発明の第 1の実施形態に係る構造体の製造方法の一例を模式的に 説明する概略断面図である。
[図 3]図 3は、本発明における榭脂パターン (B)の一例を示す概略拡大図である。
[図 4]図 4は、本発明における榭脂パターン (B)の一例を示す概略拡大図である。
[図 5]図 5は、本発明の第 2の実施形態に係る構造体用複製金型の製造方法の一例 を模式的に説明する概略断面図である。
[図 6]図 6は、本発明の第 3の実施形態に係る素子の一例を模式的に示す概略断面 図である。
[図 7]図 7は、本発明の第 3の実施形態に係る素子の製造方法の一例を模式的に説 明する概略断面図である。
[図 8]図 8は、本発明の第 4の実施形態に係る光学素子の一例を模式的に示す概略 断面図である。
[図 9]図 9は、本発明の製造方法に使用される 2光束干渉露光装置を示す模式図で ある。
[図 10]図 10は、従来の撮像素子の構造を模式的に示す概略断面図である。
符号の説明
1 基材
la 素子本体
2 榭脂層
3、 3a, 4 榭脂パターン (A)
5、 6 榭脂パターン (B)
7、 10 構造体
8 無電解ニッケル リンメツキ層
9 構造体用複製金型
11 素子
12 光学素子
20 光学素子本体
21 基板
22 光電変換素子 23 遮光部
24a、 24b 平坦化層
25 カラーフィルタ
26 アンダーコート層
200 2光束干渉露光装置
発明を実施するための最良の形態
[0021] 以下に本発明の構造体、素子及び光学素子並びにこれらの製造方法を図面を用 いてさらに詳細に説明する。
[0022] (第 1の実施形態)
第 1の実施形態に係る構造体は、基材上に形成された、所定形状の構造単位を有 する榭脂パターン (A)と、榭脂パターン (A)の表面に形成され、使用光線の波長領 域以下のピッチで配列した所定形状の微細構造単位を有する榭脂パターン (B)とを 備えたものである。
[0023] なお本実施形態において、使用光線の波長領域とは、構造体が使用される環境下 での光線の波長領域を意味する。また構造体を製造する環境下での光線の波長領 域も含まれる。したがって、使用光線には、場合に応じて、例えば可視光線、紫外線 、赤外線などの種々の光線が相当する。
[0024] 図 1に、第 1の実施形態に係る構造体の一例を模式的に示す概略断面図を示す。
図 1に示す構造体 10において、基材 1の表面には所定形状の構造単位を有する榭 脂パターン (A) 3が形成され、該榭脂パターン (A) 3の表面には所定形状の微細構 造単位を有する榭脂パターン (B) 5が形成されて 、る。
[0025] 図 1に示される第 1の実施形態に係る構造体 10は、以下の製造方法によって製造 することができる。図 2に、本発明の第 1の実施形態に係る構造体の製造方法の一例 を模式的に説明する概略断面図を示す。
[0026] まず、図 2 (a)に示すように、基材 1の表面に榭脂の溶液をスピンコート法などによつ て塗布し、乾燥させて榭脂層 2を形成する。基材 1としては、例えば石英ガラス基材、 Si基材、 SiC基材などがあげられる。榭脂層 2を形成する際に用いる榭脂としては、 次に該榭脂層 2に露光現像処理を施すことを考慮すると、感光性榭脂である紫外光 用フォトレジストなどが好適に用いられる。また該感光性榭脂を用いることにより、例え ば後述する 2光束干渉露光処理を利用して微細構造単位を有する榭脂パターン (B) 5を容易に形成することが可能となる。さらに構造体を例えば撮像素子などの光学素 子に用 、ることを考慮すると、榭脂層 2に用 、る榭脂は光透過性に優れたものである ことが好ましい。榭脂層 2を形成する際には、塗布性や分散性を向上させるために、 榭脂の溶液に界面活性剤を添加してもよぐ 2種以上の溶剤を混合してもよい。また 榭脂の分子量や分子量分布を調整してもよぐ 2種以上の榭脂を混合してもよい。
[0027] 次に、榭脂層 2に露光現像処理を施して、図 2 (b)に示すように、所定形状の構造 単位を有する榭脂パターン (A) 3を形成する。
[0028] 露光現像処理を行う際には、榭脂パターン (A) 3の構造単位が所定形状となるよう に、目的に応じて露光処理や現像処理の条件を適宜変更すればよい。なおかかる 露光現像処理における露光処理として、例えば、所望パターンのフォトマスクを形成 して露光するマスク露光処理や、後述する榭脂パターン (B) 5の形成に好適な、図 9 に示す 2光束干渉露光装置などを用いた 2光束干渉露光処理などを行うことができる 。力かる榭脂パターン (A) 3を形成する際には、榭脂パターン (A) 3の構造単位が後 述する樹脂パターン (B) 5の微細構造単位ほど極めて小さくないことや、比較的種々 の形状の構造単位を形成し得ることから、マスク露光処理を行うことが好まし 、。
[0029] なお本実施形態における露光現像処理には、少なくとも露光処理及び現像処理が 含まれ、最終的に目的とする三次元的な榭脂パターン (A)又は榭脂パターン (B)を 形成するまでの工程が含まれる。
[0030] 榭脂パターン (A) 3の構造単位は、構造体を例えば撮像素子などの光学素子に用 いることを考慮すると、図 1及び図 2 (b)に示すように、周期的にアレイ状に配列して いることが好ましい。また該榭脂パターン (A) 3の構造単位は、例えば 10 /z m以下、 さらには 8 μ m以下のピッチで配列していることが好ましぐまた 1 μ m以上、さらには 1. 5 μ m以上のピッチで配列して!/、ることが好まし!/、。
[0031] 榭脂パターン (A) 3の構造単位の形状には特に限定がなぐ該形状は構造体の使 用目的などに応じて適宜決定すればよい。フォトマスクとして、例えば円形のパター ンがアレイ状に配置されたものを用いた場合には、図 1及び図 2 (b)に示すように、榭 脂パターン (A) 3の構造単位は円柱形状となる。図 1及び図 2 (b)に示す榭脂パター ン (A) 3の構造単位は、例えば高さ 2 m、直径 4 μ mの円柱形状である。
[0032] なお、構造体を例えば撮像素子などの光学素子に用いることを考慮すると、榭脂パ ターン (A) 3の構造単位がレンズ形状、特に凸レンズ形状であることが好ましい。例え ば図 2 (b)に示す円柱形状の構造単位を有する榭脂パターン (A) 3に対して熱フロ 一を行うことにより、凸レンズ形状の構造単位とすることができる。
[0033] 次に榭脂パターン (A) 3の表面に露光現像処理を施し、図 2 (c)に示すように、所 定形状の微細構造単位を有する榭脂パターン (B) 5を形成する。該微細構造単位は 、使用光線の波長領域以下のピッチで配列しており、構造体を例えば撮像素子など の光学素子に用いることを考慮すると、周期的にアレイ状に配列していることが好まし い。また榭脂パターン (A) 3により優れた反射散乱防止効果が付与されるという点か ら、該微細構造単位は周期的にアレイ状に配列した凹凸構造単位であることが好ま しい。
[0034] なお本実施形態において、反射散乱防止効果には、反射、散乱を防止すべき使用 光線を完全に反射、散乱させない効果だけでなぐ反射、散乱を防止する効果も含 まれる。
[0035] 前記露光現像処理を行う際には、榭脂パターン (B) 5の微細構造単位が所定形状 となるように、目的に応じて露光処理や現像処理の条件を適宜変更すればよい。か かる露光現像処理における露光処理として、精細なパターンを同時に広範囲にわた つて形成することが可能であるので、極めて小さ 、微細構造単位の榭脂パターン (B ) 5を榭脂パターン (A) 3の表面に形成する際に作業性がより向上するという点から、 例えば 2光束干渉露光処理などを行うことが好ましい。図 9に、 2光束干渉露光処理 に用いることができる 2光束干渉露光装置の模式図を示す。
[0036] 図 9に示すように、 2光束干渉露光装置 200は、 KrFエキシマレーザ(波長: 248η m) 101と、 KrFエキシマレーザ 101から射出されたレーザ光 102を広げるための集 光レンズ 103と、集光レンズ 103によって広げられたレーザ光 104を平行光束 106に 変換するためのコリメートレンズ 105と、平行光束 106を振幅が等しい 2つの平行光 束 108、 109に分割するハーフミラー 107と、 2つの平行光束 108、 109をそれぞれ 反射させ、 2つの平行光束 111、 113を発生させるミラー 110、 112とから構成されて いる。そして、 2光束(2つの平行光束 111、 113)が合成され、干渉縞が生じる。なお 、このように波長 248nmの KrFエキシマレーザを使用した場合、例えばピッチが 0. 2 5 mの干渉縞を得るためには、 2光束の開き角度は約 60度必要である。
[0037] 2光束干渉露光装置 200において、 2光束(2つの平行光束 111、 113)が合成され る位置に、榭脂パターン (A) 3が形成された基材 1 (図 9中、符号 114で示す)を設置 する。そして半導体レーザ 101からレーザ光 102を射出させて該基材 1 (114)を露光 し、適宜現像処理などを施して、図 2 (c)に示すように、榭脂パターン (A) 3の表面に 、使用光線の波長領域以下のピッチで配列した所定形状の微細構造単位を有する 榭脂パターン (B) 5を形成する。
[0038] 2光束干渉露光処理として、例えば榭脂パターン (A) 3が形成された基材 1 (114) を 90度ずつ回転させ、例えば 2回など複数回露光することにより、榭脂パターン (B) 5の微細構造単位の形状を適宜変更することも可能である。
[0039] また、例えば図 9に示す 2光束干渉露光装置 200において、榭脂パターン (A)が形 成された基材 1 (114)は、垂直方向(上下方向、図 9中、矢印で示す)にシフトさせる ことができる。該基材 1 (114)の垂直方向の位置を調整することにより、凹凸構造単 位である微細構造単位のピッチ (後述する図 3、図 4中の p)及び凹凸構造単位の凸 部の高さ(後述する図 3、図 4中の h)を任意に設定することができる。
[0040] 露光現像処理における露光処理として、前記 2光束干渉露光処理の他に、例えば マスク露光処理を行うこともできる。
[0041] マスク露光処理として、例えば榭脂パターン (A) 3の表面に所望パターンのフォトマ スクを形成して露光すればよい。マスク露光処理の条件は、榭脂パターン (B) 5の微 細構造単位が所定形状で、かつ所望ピッチ及び高さとなるように、適宜変更すれば よい。そして力かるマスク露光処理を行った後、適宜現像処理などを施して、図 1及 び図 2 (c)に示すように、榭脂パターン (A) 3の表面に所定形状の微細構造単位を有 する榭脂パターン (B) 5が形成される。
[0042] 榭脂パターン (B) 5の微細構造単位は、前記したように、凹凸構造単位であることが 好ましぐ例えば図 3の概略拡大図に示す円錐形状の構造単位や、図 4の概略拡大 図に示す正六角錐形状の構造単位などが例示される。これらの他にも、四角錐形状 などの角錐形状の構造単位、円柱形状や角柱形状などの柱状の構造単位、先端が 丸くなっている釣鐘状の構造単位、円錐台形状や角錐台形状などの錐台状の構造 単位なども例示される。また各構造単位は、図 3や図 4に示すような厳密な幾何学的 形状でなくてもよい。
[0043] さらに図 3や図 4には、突出形状の微細構造単位を有する榭脂パターン (B) 5を示 しているが、本実施形態においては、このような突出形状の微細構造単位に限定さ れることはない。例えば錐状、柱状、釣鐘状、錐台状などの陥没形状の微細構造単 位を有する榭脂パターン (B)が榭脂パターン (A)の表面に形成されて!、てもよ 、。ま た突出形状の微細構造単位と陥没形状の微細構造単位とが 1つの榭脂パターン (B )中に同時に存在していてもよい。なお、突出形状の微細構造単位と陥没形状の微 細構造単位とが同時に存在した榭脂パターン (B)の場合、その突出部の高さと陥没 部の深さとの合計が、後述する凹凸構造単位の凸部の高さ (h)である。このように、 本実施形態では、榭脂パターン (B)は、使用光線の波長領域以下のピッチで配列し た微細構造単位を有し、反射散乱防止効果を充分に付与するものであれば、該微 細構造単位の形状には特に限定がな 、。
[0044] 榭脂パターン (B)の微細構造単位が周期的にアレイ状に配列した凹凸構造単位で ある場合、使用光線の波長(え)、凹凸構造単位のピッチ (P)及び凹凸構造単位の 凸部の高さ (h)は、以下の式 (a)及び (b):
0. 1 λ < ρ < 0. 8 λ (a)
0. 5 X < < 5 X (b)
を満足する関係であることが好ましい。波長(λ )、ピッチ (p)及び高さ (h)が前記式( a)及び (b)を満足する関係である場合、特に可視光線の波長領域全域において、ま た使用光線の入射角度が 0〜50度の範囲にぉ 、て、使用光線の反射率を約 1 %以 下に抑えることができる。なおこれら波長(λ )、ピッチ (P)及び高さ (h)は、特に以下 の式 (al)及び (bl) :
0. 15 < p < 0. 75 (al)
0. 6 X < < 4 X (bl) を満足する関係であることがさらに好ましい。
[0045] 例えば図 3及び図 4に示される榭脂パターン (B)は、ピッチ (p)が約 0. 25 /z m、高 さ (h)が約 0. 8 μ mの円錐形状(図 3)又は正六角錐形状(図 4)の微細構造単位を 有するものである。この微細構造単位は、使用光線が例えば可視光線の場合の波長 領域 (420〜680nm)以下のピッチで配列している。図 1及び図 2 (c)に示される構 造体 10では、図 3に示されるような円錐形状の微細構造単位が周期的にアレイ状に 配列した榭脂パターン (B) 5が、円柱形状の構造単位が周期的にアレイ状に配列し た榭脂パターン (A) 3の表面に形成されている。このような微細構造単位を有する榭 脂パターン (B) 5を榭脂パターン (A) 3の表面に形成することにより、榭脂パターン( A) 3に優れた反射散乱防止効果を付与することができる。
[0046] なお本実施形態にお!、て、ピッチとは、榭脂パターン (B)が多数の微細構造単位 の二次元的な配列により構成されている場合には、最も密な配列方向におけるピッ チを意味する。
[0047] このようにして、基材 1面上の所定形状の構造単位を有する榭脂パターン (A) 3の 表面に、使用光線の波長領域以下のピッチで配列した所定形状の微細構造単位を 有する榭脂パターン (B) 5が形成された構造体 10を容易に製造することができる。
[0048] なお本実施形態に係る構造体は、図 1に示される構成の構造体 10に限定されるも のではなぐ以上説明したような榭脂パターン (A)及び榭脂パターン (B)を備えたも のであればよい。
[0049] 本実施形態に係る構造体は、例えば CCD、 C MOSなどの撮像素子や液晶デバ イスなど、マイクロレンズを含む光学素子、例えば 2次元光スィッチ、 IRセンサー、メン ブレンセンサー、マイクログリッパー、マイクロナイフなどの微小電気機械素子などの 各種素子の部材などとして好適に使用することができる。
[0050] また本実施形態において、光学素子には、光路中に配置され光学機能面を有する 、例えばレンズ素子、プリズム素子、ミラー素子などのすベての部品が含まれる。
[0051] (第 2の実施形態)
第 2の実施形態に係る構造体用複製金型は、前記第 1の実施形態に係る構造体の 製造方法にて製造された構造体から、電铸によって製造するものである。 [0052] 図 5に、本発明の第 2の実施形態に係る構造体用複製金型の製造方法の一例を模 式的に説明する概略断面図を示す。なお本実施形態に係る製造方法において、基 材上の樹脂パターン (A)の表面に榭脂パターン (B)を形成するまでの工程及び種 々の条件などは、全て前記第 1の実施形態における構造体の製造方法と同様である
[0053] まず、図 5 (a)に示すように、基材 1の表面に榭脂の溶液をスピンコート法などによつ て塗布し、乾燥させて榭脂層 2を形成する。次に、図 5 (b)に示すように、該榭脂層 2 に露光現像処理を施して榭脂パターン (A) 3を形成する。図 5 (b)に示す榭脂パター ン (A) 3の構造単位は円柱形状であり、該榭脂パターン (A) 3に対して熱フローを行 うことにより、図 5 (c)に示すように、凸レンズ形状の構造単位を有する榭脂パターン( A) 3aを形成することができる。
[0054] 次に、榭脂パターン (A) 3aの表面に露光現像処理を施し、図 5 (d)に示すように、 所定形状の微細構造単位を有する榭脂パターン (B) 5を形成して構造体 7を製造す る。該微細構造単位は、使用光線の波長領域以下のピッチで配列している。また榭 脂パターン (A) 3aにより優れた反射散乱防止効果が付与されるという点から、図 5 (d )に示すように、該微細構造単位は周期的にアレイ状に配列した凹凸構造単位であ ることが好ましい。
[0055] 次に、凸レンズ形状の構造単位を有する榭脂パターン (A) 3aの表面を例えばパラ ジゥムにより活性ィ匕処理する。この後、構造体 7を電解ニッケル—リンメツキ溶液に浸 漬し、図 5 (e)に示すように、榭脂パターン (B) 5の表面に厚さ約 8〜12nmの無電解 ニッケル—リンメツキ層 8を形成して、導電性を付与する。さらに、無電解ニッケル—リ ンメツキ層 8を力ソード電極、白金板を対極とし、スルファミン酸ニッケルメツキ液中で、 電流密度約 0. 5〜5AZdm2の条件下で、メツキ部分の厚さが約 l〜3mmになるま で電気メツキを行う。この後、塩基溶液中で構造体 7を剥離し、図 5 (f)に示すような、 電铸型である構造体用複製金型 9を製造する。
[0056] 前記構造体用複製金型を用いて成形を行!ヽ、第 1の実施形態に係る構造体を製 造することができる。力かる成形の方法には特に限定がなぐ例えば射出成形法、プ レス成形法、ナノインプリント法などを、場合に応じて適宜採用することができる。 [0057] このようにして、構造体用複製金型 9から、基材 1面上の所定形状の構造単位を有 する榭脂パターン (A) 3aの表面に、使用光線の波長領域以下のピッチで配列した 所定形状の微細構造単位を有する榭脂パターン (B) 5が形成された構造体 7を容易 に製造することができる。
[0058] なお本実施形態に係る製造方法にて製造される構造体用複製金型は、図 5 (f)に 示される構造の構造体用複製金型 9に限定されるものではなぐ以上説明したような 製造方法にて製造されるものであればょ 、。
[0059] 本実施形態に係る製造方法にて製造される構造体は、例えば CCD、 C MOSな どの撮像素子や液晶デバイスなど、マイクロレンズを含む光学素子、例えば 2次元光 スィッチ、 IRセンサー、メンブレンセンサー、マイクログリッパー、マイクロナイフなどの 微小電気機械素子などの各種素子の部材などとして好適に使用することができる。
[0060] また本実施形態において、光学素子には、光路中に配置され光学機能面を有する 、例えばレンズ素子、プリズム素子、ミラー素子などのすベての部品が含まれる。
[0061] (第 3の実施形態)
第 3の実施形態に係る素子は、基板を含む素子本体と、素子本体上に形成された 、所定形状の構造単位を有する榭脂パターン (A)からなる部位と、榭脂パターン (A) 力 なる部位の表面に形成され、使用光線の波長領域以下のピッチで配列した所定 形状の微細構造単位を有する榭脂パターン (B)力 なる部位とを備えたものである。
[0062] なお本実施形態においても、使用光線の波長領域とは、素子が使用される環境下 での光線の波長領域を意味する。また素子を製造する環境下での光線の波長領域 も含まれる。したがって、使用光線には、場合に応じて、例えば可視光線、紫外線、 赤外線などの種々の光線が相当する。
[0063] 図 6に、第 3の実施形態に係る素子の一例を模式的に示す概略断面図を示す。図 6に示す素子 11において、基板を含む素子本体 la上には、所定形状の構造単位を 有する榭脂パターン (A) 3aからなる部位が形成され、該榭脂パターン (A) 3aからな る部位の表面には所定形状の微細構造単位を有する榭脂パターン (B) 5からなる部 位が形成されている。
[0064] 図 6に示される第 3の実施形態に係る素子 11は、以下の製造方法によって製造す ることができる。図 7に、本発明の第 3の実施形態に係る素子の製造方法の一例を模 式的に説明する概略断面図を示す。
[0065] まず、図 7 (a)に示すように、基板を含む素子本体 la上に樹脂の溶液をスピンコート 法などによって塗布し、乾燥させて榭脂層 2を形成する。基板としては、例えば石英 ガラス基板、 Si基板、 SiC基板などがあげられる。素子本体 laは、素子の種類によつ て異なるので、一概には決定することができないが、例えば素子が撮像素子である場 合には、例えば光電変換素子、遮光部位、カラーフィルタなどが基板上に順次積層 された素子本体などが用いられる。榭脂層 2を形成する際に用いる榭脂としては、次 に該榭脂層 2に露光現像処理を施すことを考慮すると、感光性榭脂である紫外光用 フォトレジストなどが好適に用いられる。また該感光性榭脂を用いることにより、例えば 後述する 2光束干渉露光処理を利用して微細構造単位を有する榭脂パターン (B) 5 力もなる部位を容易に形成することが可能となる。さらに素子を例えば撮像素子など の光学素子に用!ヽることを考慮すると、榭脂層 2に用 ヽる榭脂は光透過性に優れた ものであることが好ましい。榭脂層 2を形成する際には、塗布性や分散性を向上させ るために、榭脂の溶液に界面活性剤を添加してもよぐ 2種以上の溶剤を混合しても よい。また樹脂の分子量や分子量分布を調整してもよぐ 2種以上の榭脂を混合して ちょい。
[0066] 次に、榭脂層 2に露光現像処理を施して、図 7 (b)に示すように、所定形状の構造 単位を有する榭脂パターン (A) 3からなる部位を形成する。
[0067] 露光現像処理を行う際には、榭脂パターン (A) 3の構造単位が所定形状となるよう に、目的に応じて露光処理や現像処理の条件を適宜変更すればよい。なおかかる 露光現像処理における露光処理として、例えば、所望パターンのフォトマスクを形成 して露光するマスク露光処理や、後述する榭脂パターン (B) 5の形成に好適な、図 9 に示す 2光束干渉露光装置などを用いた 2光束干渉露光処理などを行うことができる 。力かる榭脂パターン (A) 3を形成する際には、榭脂パターン (A) 3の構造単位が後 述する樹脂パターン (B) 5の微細構造単位ほど極めて小さくないことや、比較的種々 の形状の構造単位を形成し得ることから、マスク露光処理を行うことが好まし 、。
[0068] なお本実施形態における露光現像処理にも、少なくとも露光処理及び現像処理が 含まれ、最終的に目的とする三次元的な榭脂パターン (A)力もなる部位又は榭脂パ ターン (B)力 なる部位を形成するまでの工程が含まれる。
[0069] 榭脂パターン (A) 3の構造単位は、素子を例えば撮像素子などの光学素子に用い ることを考慮すると、図 6及び図 7 (b)に示すように、周期的にアレイ状に配列している ことが好ましい。また該榭脂パターン (A) 3の構造単位は、例えば 10 /z m以下、さら には 8 μ m以下のピッチで配列していることが好ましぐまた 1 μ m以上、さらには 1. 5 μ m以上のピッチで配列して 、ることが好まし 、。
[0070] 榭脂パターン (A) 3の構造単位の形状には特に限定がなぐ該形状は素子の使用 目的などに応じて適宜決定すればよい。フォトマスクとして、例えば円形のパターンが アレイ状に配置されたものを用いた場合には、図 7 (b)に示すように、榭脂パターン( A) 3の構造単位は円柱形状となる。
[0071] なお、素子を例えば撮像素子などの光学素子に用いることを考慮すると、榭脂バタ ーン (A) 3の構造単位がレンズ形状、特に凸レンズ形状であることが好ましい。図 7 (b )に示す円柱形状の構造単位を有する榭脂パターン (A) 3に対して熱フローを行うこ とにより、図 7 (c)に示すように、凸レンズ形状の構造単位を有する榭脂パターン (A) 3aからなる部位を形成することができる。
[0072] 次に榭脂パターン (A) 3aの表面に露光現像処理を施し、図 7 (d)に示すように、所 定形状の微細構造単位を有する榭脂パターン (B) 5からなる部位を形成する。該微 細構造単位は、使用光線の波長領域以下のピッチで配列しており、素子を例えば撮 像素子などの光学素子に用いることを考慮すると、周期的にアレイ状に配列している ことが好ましい。また榭脂パターン (A) 3aからなる部位により優れた反射散乱防止効 果が付与されるという点から、該微細構造単位は周期的にアレイ状に配列した凹凸 構造単位であることが好まし 、。
[0073] なお本実施形態においても、反射散乱防止効果には、反射、散乱を防止すべき使 用光線を完全に反射、散乱させない効果だけでなぐ反射、散乱を防止する効果も 含まれる。
[0074] 前記露光現像処理を行う際には、榭脂パターン (B) 5の微細構造単位が所定形状 となるように、目的に応じて露光処理や現像処理の条件を適宜変更すればよい。か かる露光現像処理における露光処理として、精細なパターンを同時に広範囲にわた つて形成することが可能であるので、極めて小さ 、微細構造単位の榭脂パターン (B ) 5からなる部位を榭脂パターン (A) 3aからなる部位の表面に形成する際に作業性が より向上するという点から、例えば 2光束干渉露光処理などを行うことが好ましい。該 2 光束干渉露光処理には、前記第 1の実施形態と同様に、例えば図 9に示す 2光束干 渉露光装置を用いることができる。
[0075] 2光束干渉露光装置 200において、 2光束(2つの平行光束 111、 113)が合成され る位置に、榭脂パターン (A) 3aからなる部位が形成された素子本体 la (図 9中、符号 114で示す)を設置する。そして半導体レーザ 101からレーザ光 102を射出させて該 素子本体 la (114)を露光し、適宜現像処理などを施して、図 7 (d)に示すように、榭 脂パターン (A) 3aからなる部位の表面に、使用光線の波長領域以下のピッチで配列 した所定形状の微細構造単位を有する榭脂パターン (B) 5からなる部位を形成する。
[0076] 2光束干渉露光処理として、例えば榭脂パターン (A) 3aからなる部位が形成された 素子本体 la (114)を 90度ずつ回転させ、例えば 2回など複数回露光することにより 、榭脂パターン (B) 5の微細構造単位の形状を適宜変更することも可能である。
[0077] また、例えば図 9に示す 2光束干渉露光装置 200において、榭脂パターン (A) 3a 力もなる部位が形成された素子本体 la (114)は、垂直方向(上下方向、図 9中、矢 印で示す)にシフトさせることができる。該素子本体 la (114)の垂直方向の位置を調 整することにより、凹凸構造単位である微細構造単位のピッチ (前記図 3、図 4中の p) 及び凹凸構造単位の凸部の高さ(前記図 3、図 4中の h)を任意に設定することができ る。
[0078] 露光現像処理における露光処理として、前記 2光束干渉露光処理の他に、例えば マスク露光処理を行うこともできる。
[0079] マスク露光処理として、例えば榭脂パターン (A) 3aからなる部位の表面に所望パタ ーンのフォトマスクを形成して露光すればよい。マスク露光処理の条件は、榭脂パタ ーン (B) 5の微細構造単位が所定形状で、かつ所望ピッチ及び高さとなるように、適 宜変更すればよい。そして力かるマスク露光処理を行った後、適宜現像処理などを 施して、図 6及び図 7 (d)に示すように、榭脂パターン (A) 3aからなる部位の表面に 所定形状の微細構造単位を有する榭脂パターン (B) 5からなる部位が形成される。
[0080] 榭脂パターン (B)の微細構造単位としては、前記第 1の実施形態における榭脂バタ ーン (B)の微細構造単位と同様に、例えば円錐形状の構造単位、正六角錐形状の 構造単位、四角錐形状などの角錐形状の構造単位、円柱形状や角柱形状などの柱 状の構造単位、先端が丸くなっている釣鐘状の構造単位、円錐台形状や角錐台形 状などの錐台状の構造単位などが例示される。また各構造単位は、厳密な幾何学的 形状でなくてもよい。
[0081] さらに本実施形態においても、前記第 1の実施形態における榭脂パターン (B)の微 細構造単位と同様に、突出形状の微細構造単位を有する榭脂パターン (B)からなる 部位だけでなぐ例えば錐状、柱状、釣鐘状、錐台状などの陥没形状の微細構造単 位を有する榭脂パターン (B)力もなる部位が榭脂パターン (A)力もなる部位の表面 に形成されて ヽてもよ ヽ。また突出形状の微細構造単位と陥没形状の微細構造単位 と力^つの榭脂パターン (B)中に同時に存在していてもよい。なお、突出形状の微細 構造単位と陥没形状の微細構造単位とが同時に存在した榭脂パターン (B)の場合、 その突出部の高さと陥没部の深さとの合計が、後述する凹凸構造単位の凸部の高さ (h)である。このように、本実施形態でも、榭脂パターン (B)は、使用光線の波長領域 以下のピッチで配列した微細構造単位を有し、反射散乱防止効果を充分に付与す るものであれば、該微細構造単位の形状には特に限定がな 、。
[0082] 榭脂パターン (B)の微細構造単位が周期的にアレイ状に配列した凹凸構造単位で ある場合、使用光線の波長(え)、凹凸構造単位のピッチ (P)及び凹凸構造単位の 凸部の高さ (h)は、以下の式 (a)及び (b):
0. 1 λ < ρ < 0. 8 λ (a)
0. 5 X < < 5 X (b)
を満足する関係であることが好ましい。波長(λ )、ピッチ (p)及び高さ (h)が前記式( a)及び (b)を満足する関係である場合、特に可視光線の波長領域全域において、ま た使用光線の入射角度が 0〜50度の範囲にぉ 、て、使用光線の反射率を約 1 %以 下に抑えることができる。なおこれら波長(λ )、ピッチ (P)及び高さ (h)は、特に以下 の式 (al)及び (bl) : 0. 15 < p < 0. 75 (al)
0. 6 X < < 4 X (bl)
を満足する関係であることがさらに好ましい。
[0083] 例えば図 6及び図 7 (d)に示される榭脂パターン (A) 3aの構造単位は、例えば下面 が直径約 3. 5 mの円形平面、上面が曲率半径約 7 mの球面である平凸レンズ形 状の構造単位である。また榭脂パターン (B) 5の微細構造単位は、図 3に示されるよ うな、円錐形状で、ピッチが約 0. 25 111(可視光線の波長領域420〜68011111以下 のピッチ)、高さが約 0. 8 mの凹凸構造単位であり、素子本体 laの基板の表面に 対して垂直方向を向いている。図 6及び図 7 (d)に示される素子 11では、図 3に示さ れるような円錐形状の微細構造単位が周期的にアレイ状に配列した榭脂パターン (B ) 5からなる部位が、平凸レンズ形状の構造単位が周期的にアレイ状に配列した榭脂 ノターン (A) 3aからなる部位の表面に形成されている。このような微細構造単位を有 する榭脂パターン (B) 5からなる部位を榭脂パターン (A) 3aからなる部位の表面に形 成することにより、榭脂パターン (A) 3aからなる部位に優れた反射散乱防止効果を 付与することができる。
[0084] 本実施形態にぉ 、ても、ピッチとは、榭脂パターン (B)が多数の微細構造単位の二 次元的な配列により構成されている場合には、最も密な配列方向におけるピッチを意 味する。
[0085] このようにして、素子本体 la上の所定形状の構造単位を有する榭脂パターン (A) 3 aからなる部位の表面に、使用光線の波長領域以下のピッチで配列した所定形状の 微細構造単位を有する榭脂パターン (B) 5からなる部位が形成された素子 11を容易 に製造することができる。
[0086] なお本実施形態に係る素子は、図 6に示される構成の素子 11に限定されるもので はなぐ以上説明したような素子本体、榭脂パターン (A)からなる部位及び榭脂バタ ーン (B)力もなる部位を備えたものであればよ!、。
[0087] 本実施形態に係る素子は、例えば CCD、 C— MOSなどの撮像素子や液晶デバィ スなど、マイクロレンズを含む光学素子などとして好適に使用することができる。この 他、例えば 2次元光スィッチ、 IRセンサー、メンブレンセンサー、マイクログリッパー、 マイクロナイフなどの微小電気機械素子としても好適に使用することができる。
[0088] また本実施形態において、光学素子には、光路中に配置され光学機能面を有する 、例えばレンズ素子、プリズム素子、ミラー素子などのすベての部品が含まれる。
[0089] (第 4の実施形態)
第 4の実施形態に係る光学素子は、基板を含む光学素子本体と、光学素子本体上 に形成され、該光学素子本体の光電変換素子と対応する位置に周期的にアレイ状 に配列した凸レンズ形状の構造単位を有する榭脂パターン (A)力もなるレンズ部位と 、レンズ部位の表面に形成され、使用光線の波長領域以下のピッチで周期的にァレ ィ状に配列した所定形状の微細凹凸構造単位を有する榭脂パターン (B)からなる反 射散乱防止部位とを備えたものである。
[0090] なお本実施形態において、使用光線の波長領域とは、光学素子が使用される環境 下での光線の波長領域を意味する。すなわち、使用光線の波長領域とは、例えば可 視光線などの、レンズ部位への透過光 (入射光)の波長領域である。また光学素子を 製造する環境下での光線、例えば紫外線の波長領域も含まれる。
[0091] 図 8に、第 4の実施形態に係る光学素子の一例を模式的に示す概略断面図を示す 。図 8に示す光学素子 12において、光学素子本体 20は次のように構成されている。 すなわち、基板 21上に複数の光電変換素子 22がアレイ状に形成されており、隣接 する光電変換素子 22、 22間には遮光部 23が設けられている。基板 21上には、光電 変換素子 22と遮光部 23とを覆うように平坦ィ匕層 24aが形成されている。平坦化層 24 a上には、光電変換素子 22と対応する位置に複数のカラーフィルタ 25がアレイ状に 形成されている。また平坦ィ匕層 24a上には、カラーフィルタ 25を覆うように平坦ィ匕層 2 4bが形成され、平坦ィ匕層 24b上にはアンダーコート層 26が形成されている。このよう に、基板 21、光電変換素子 22、遮光部 23、平坦ィ匕層 24a、カラーフィルタ 25、平坦 化層 24b及びアンダーコート層 26から光学素子本体 20が構成されている。
[0092] 光学素子本体 20上には、光電変換素子 22と対応する位置に周期的にアレイ状に 配列した凸レンズ形状の構造単位を有する榭脂パターン (A) 4からなるレンズ部位が 形成されており、該レンズ部位の表面には、使用光線の波長領域以下のピッチで周 期的にアレイ状に配列した所定形状の微細凹凸構造単位を有する榭脂パターン (B ) 6からなる反射散乱防止部位が形成されて 、る。
[0093] 図 8に示される第 4の実施形態に係る光学素子 12を製造するには、まず例えば Si 基板、 SiC基板といった半導体基板などの基板 21上に、光電変換素子 22、遮光部 2 3、平坦ィ匕層 24a、カラーフィルタ 25、平坦ィ匕層 24b及びアンダーコート層 26を通常 の方法にて順次形成して光学素子本体 20を製造する。次に該光学素子本体 20上 に榭脂層を形成し、該榭脂層に露光現像処理を施して、構造単位が光学素子本体 20の光電変換素子 22と対応する位置に周期的にアレイ状に配置するように、例え ば円柱形状の構造単位を有する榭脂パターン (A)を形成する。そして例えば円柱形 状の構造単位を有する榭脂パターン (A)に対して熱フローを行うことにより、凸レンズ 形状の構造単位を有する榭脂パターン (A) 4からなるレンズ部位を形成する。該第 4 の実施形態に係る光学素子 12の榭脂パターン (A) 4は、その構造単位が光学素子 本体 20の光電変換素子 22と対応する位置に周期的にアレイ状に配置するように形 成する他は、前記第 3の実施形態と同様にして製造することができる。
[0094] すなわち、まず光学素子本体 20上に樹脂の溶液をスピンコート法などによって塗 布し、乾燥させて榭脂層を形成する。榭脂層を形成する際に用いる榭脂としては、感 光性榭脂である紫外光用フォトレジストなどが好適に用いられ、該感光性榭脂を用い ることにより、例えば後述する 2光束干渉露光処理を利用して微細凹凸構造単位を 有する榭脂パターン (B) 6からなる反射散乱防止部位を容易に形成することが可能と なる。さらに榭脂層に用いる榭脂は、光透過性に優れたものであることが好ましい。榭 脂層を形成する際には、榭脂の溶液に界面活性剤を添加したり、 2種以上の溶剤を 混合したり、榭脂の分子量や分子量分布を調整したり、 2種以上の榭脂を混合しても よい。
[0095] 次に、榭脂層に露光現像処理を施して所定形状の構造単位を有する榭脂パター ン (A)を形成する。
[0096] 露光現像処理を行う際には、榭脂パターン (A)の構造単位が所定形状となるように 、目的に応じて露光処理や現像処理の条件を適宜変更すればよい。なおかかる露 光現像処理における露光処理として、例えば、所望パターンのフォトマスクを形成し て露光するマスク露光処理や、後述する榭脂パターン (B) 6の形成に好適な、図 9〖こ 示す 2光束干渉露光装置などを用いた 2光束干渉露光処理などを行うことができる。 力かる榭脂パターン (A)を形成する際には、榭脂パターン (A)の構造単位が後述す る榭脂パターン (B) 6の微細凹凸構造単位ほど極めて小さくないことや、比較的種々 の形状の構造単位を形成し得ることから、マスク露光処理を行うことが好まし 、。
[0097] なお本実施形態における露光現像処理にも、少なくとも露光処理及び現像処理が 含まれ、最終的に目的とする三次元的な榭脂パターン (A)力もなるレンズ部位又は 榭脂パターン (B)力もなる反射散乱防止部位を形成するまでの工程が含まれる。
[0098] 榭脂パターン (A)の構造単位は、得られる光学素子の用途を考慮すると、例えば 1 0 μ m以下、さらには 8 μ m以下のピッチで配列していることが好ましぐまた 1 μ m以 上、さらには 1. 5 m以上のピッチで配列していることが好ましい。
[0099] 次に、例えば円柱形状の構造単位を有する榭脂パターン (A)に対して熱フローを 行うことにより、凸レンズ形状の構造単位を有する榭脂パターン (A) 4からなるレンズ 部位を形成する。カゝかるレンズ部位の凸レンズ形状の構造単位は、光電変換素子と 対応する位置に周期的にアレイ状に配列しているので、例えば撮像素子におけるマ イク口レンズとして作用する。
[0100] 次にレンズ部位の表面に露光現像処理を施し、使用光線の波長領域以下のピッチ で周期的にアレイ状に配列した所定形状の微細凹凸構造単位を有する榭脂パター ン (B) 6からなる反射散乱防止部位を形成する。このような特定の微細凹凸構造単位 を有する榭脂パターン (B) 6からなる反射散乱防止部位は、榭脂パターン (A) 4から なるレンズ部位に優れた反射散乱防止効果を付与することができる。
[0101] なお本実施形態においても、反射散乱防止効果には、反射、散乱を防止すべき使 用光線を完全に反射、散乱させない効果だけでなぐ反射、散乱を防止する効果も 含まれる。
[0102] 前記露光現像処理を行う際には、榭脂パターン (B) 6の微細凹凸構造単位が所定 形状となるように、目的に応じて露光処理や現像処理の条件を適宜変更すればよい 。力かる露光現像処理における露光処理として、精細なパターンを同時に広範囲に わたって形成することが可能であるので、極めて小さい微細凹凸構造単位の榭脂パ ターン (B) 6からなる反射散乱防止部位を榭脂パターン (A) 4からなるレンズ部位の 表面に形成する際に作業性がより向上するという点から、例えば 2光束干渉露光処 理などを行うことが好ましい。該 2光束干渉露光処理には、前記第 1及び第 3の実施 形態と同様に、例えば図 9に示す 2光束干渉露光装置を用いることができる。
[0103] 2光束干渉露光装置 200において、 2光束(2つの平行光束 111、 113)が合成され る位置に、レンズ部位が形成された光学素子本体(図 9中、基板 114で示す)を設置 する。そして半導体レーザ 101からレーザ光 102を射出させて該光学素子本体 (基 板 114)を露光し、適宜現像処理などを施して、レンズ部位の表面に反射散乱防止 部位を形成する。
[0104] 2光束干渉露光処理として、例えばレンズ部位が形成された光学素子本体 (基板 1 14)を 90度ずつ回転させ、例えば 2回など複数回露光することにより、榭脂パターン( B)の微細凹凸構造単位の形状を適宜変更することも可能である。
[0105] また、例えば図 9に示す 2光束干渉露光装置 200において、レンズ部位が形成され た光学素子本体 (基板 114)は、垂直方向(上下方向、図 9中、矢印で示す)にシフト させることができる。該光学素子本体 (基板 114)の垂直方向の位置を調整することに より、微細凹凸構造単位のピッチ (前記図 3、図 4中の p)及び微細凹凸構造単位の凸 部の高さ(前記図 3、図 4中の h)を任意に設定することができる。
[0106] 露光現像処理における露光処理として、前記 2光束干渉露光処理の他に、例えば マスク露光処理を行うこともできる。
[0107] マスク露光処理として、例えばレンズ部位の表面に所望パターンのフォトマスクを形 成して露光すればよい。マスク露光処理の条件は、榭脂パターン (B)の微細凹凸構 造単位が所定形状で、かつ所望ピッチ及び高さとなるように、適宜変更すればよい。 そしてカゝかるマスク露光処理を行った後、適宜現像処理などを施して、レンズ部位の 表面に所定形状の微細凹凸構造単位を有する榭脂パターン (B)からなる反射散乱 防止部位が形成される。
[0108] 榭脂パターン (B)の微細凹凸構造単位としては、前記第 1及び第 3の実施形態に おける榭脂パターン (B)の微細構造単位と同様に、例えば円錐形状の構造単位、正 六角錐形状の構造単位、四角錐形状などの角錐形状の構造単位、円柱形状や角柱 形状などの柱状の構造単位、先端が丸くなっている釣鐘状の構造単位、円錐台形状 や角錐台形状などの錐台状の構造単位などが例示される。また各構造単位は、厳密 な幾何学的形状でなくてもよ 、。
[0109] さらに本実施形態においても、前記第 1及び第 3の実施形態における榭脂パターン
(B)の微細構造単位と同様に、突出形状の微細凹凸構造単位を有する榭脂パター ン (B)からなる反射散乱防止部位だけでなぐ例えば錐状、柱状、釣鐘状、錐台状な どの陥没形状の微細凹凸構造単位を有する榭脂パターン (B)からなる反射散乱防 止部位がレンズ部位の表面に形成されていてもよい。また突出形状の微細凹凸構造 単位と陥没形状の微細凹凸構造単位とが 1つの榭脂パターン (B)中に同時に存在し ていてもよい。なお、突出形状の微細凹凸構造単位と陥没形状の微細凹凸構造単 位とが同時に存在した榭脂パターン (B)の場合、その突出部の高さと陥没部の深さと の合計が、後述する微細凹凸構造単位の凸部の高さ(h)である。このように、本実施 形態でも、榭脂パターン (B)は、使用光線の波長領域以下のピッチで配列した微細 凹凸構造単位を有し、反射散乱防止効果を充分に付与するものであれば、該微細 凹凸構造単位の形状には特に限定がない。
[0110] 榭脂パターン (B)について、使用光線の波長(λ )、微細凹凸構造単位のピッチ (p )及び微細凹凸構造単位の凸部の高さ (h)は、以下の式 (a)及び (b):
0. 1 λ < ρ < 0. 8 λ (a)
0. 5 X < < 5 X (b)
を満足する関係であることが好ましい。波長(λ )、ピッチ (p)及び高さ (h)が前記式( a)及び (b)を満足する関係である場合、特に可視光線の波長領域全域において、ま た使用光線の入射角度が 0〜50度の範囲にぉ 、て、使用光線の反射率を約 1 %以 下に抑えることができる。なおこれら波長(λ )、ピッチ (P)及び高さ (h)は、特に以下 の式 (al)及び (bl) :
0. 15 < p < 0. 75 (al)
0. 6 X < < 4 X (bl)
を満足する関係であることがさらに好ましい。
[0111] なお本実施形態においても、ピッチとは、榭脂パターン (B)が多数の微細凹凸構造 単位の二次元的な配列により構成されている場合には、最も密な配列方向における ピッチを意味する。
[0112] 例えば図 8に示される榭脂パターン (A) 4の構造単位は、例えば下面が直径約 3.
5 mの円形平面、上面が曲率半径約 7 mの球面である平凸レンズ形状の構造単 位である。また榭脂パターン (B) 6の微細凹凸構造単位は、図 3に示されるような、円 錐形状で、ピッチが約 0. 25 111(可視光線の波長領域420〜68011111以下のピッチ )、高さが約 0. 8 mの構造単位であり、基板 21の表面に対して垂直方向を向いて いる。図 8に示される光学素子 12では、図 3に示されるような円錐形状の微細凹凸構 造単位が周期的にアレイ状に配列した榭脂パターン (B) 6からなる反射散乱防止部 位が、平凸レンズ形状の構造単位が周期的にアレイ状に配列した榭脂パターン (A) 4からなるレンズ部位の表面に形成されている。このような微細凹凸構造単位を有す る榭脂パターン (B) 6からなる反射散乱防止部位を榭脂パターン (A) 4からなるレン ズ部位の表面に形成することにより、榭脂パターン (A) 4からなるレンズ部位に優れ た反射散乱防止効果を付与することができる。
[0113] このように優れた反射散乱防止効果が付与された榭脂パターン (A) 4からなるレン ズ部位は、マイクロレンズとして極めて有効であり、入射光の光量を増加させて光学 素子の感度を向上させるだけでなぐ入射光に起因して生じるフレア、ゴーストなどの ノイズの増加を防止することもできる。また、光学素子 12の表面(レンズ部位の表面) とカバーガラスの内面とからの再反射光や散乱光に起因したノイズも減少させること ができる。したがって、このような反射散乱防止部位を備えたレンズ部位を有する光 学素子 12は、高感度及びフレア、ゴーストなどの不要な反射光や散乱光によるノイズ の低減に関して、例えば高精細撮像素子に要求されるレベルを充分に満足し得るも のである。
[0114] このようにして、基板 21を含む光学素子本体 20上の凸レンズ形状の構造単位を有 する榭脂パターン (A) 4力もなるレンズ部位の表面に、使用光線の波長領域以下の ピッチで配列した所定形状の微細凹凸構造単位を有する榭脂パターン (B) 6からな る反射散乱防止部位が形成された光学素子 12を容易に製造することができる。
[0115] なお本実施形態に係る光学素子は、図 8に示される構成の光学素子 12に限定され るものではなぐ以上説明したような光学素子本体、レンズ部位及び反射散乱防止部 位を備えたものであればょ 、。
[0116] 本実施形態に係る光学素子は、例えば CCD、 C MOSなどの撮像素子や液晶デ バイスなど、マイクロレンズを含む光学素子として好適に使用することができる。
[0117] また本実施形態において、光学素子には、光路中に配置され光学機能面を有する 、例えばレンズ素子、プリズム素子、ミラー素子などのすベての部品が含まれる。 産業上の利用可能性
[0118] 本発明の構造体、素子及び光学素子は、例えば、特に高感度、低ノイズといった優 れた光学機能を要するデバイス分野に好適に利用し得る。また本発明の製造方法に より、このような優れた構造体、素子及び光学素子の生産性を著しく向上させることが 可能である。

Claims

請求の範囲
[1] 基材上に形成された、所定形状の構造単位を有する榭脂パターン (A)と、
榭脂パターン (A)の表面に形成され、使用光線の波長領域以下のピッチで配列した 所定形状の微細構造単位を有する榭脂パターン (B)
とを備えた構造体。
[2] 榭脂パターン (A)の構造単位が、周期的にアレイ状に配列している、請求項 1に記 載の構造体。
[3] 榭脂パターン (A)の構造単位が、 10 μ m以下のピッチで配列して 、る、請求項 1に 記載の構造体。
[4] 榭脂パターン (A)の構造単位が凸レンズ形状である、請求項 1に記載の構造体。
[5] 榭脂パターン (B)の微細構造単位が、周期的にアレイ状に配列した凹凸構造単位 である、請求項 1に記載の構造体。
[6] 使用光線の波長(え)、凹凸構造単位のピッチ (P)及び凹凸構造単位の凸部の高 さ (h)が、式 (a)及び (b) :
0. 1 λ < ρ < 0. 8 λ (a)
0. 5 X < < 5 X (b)
を満足する関係である、請求項 5に記載の構造体。
[7] 工程 (i)及び (ii) :
(i)基材上に榭脂層を形成し、該榭脂層に露光現像処理を施して所定形状の構造 単位を有する榭脂パターン (A)を形成する工程
(ii)榭脂パターン (A)の表面に露光現像処理を施し、使用光線の波長領域以下のピ ツチで配列した所定形状の微細構造単位を有する榭脂パターン (B)を形成する工程 を順次行うことを特徴とする、構造体の製造方法。
[8] 工程 (i)において、榭脂パターン (A)を、その構造単位が周期的にアレイ状に配列 するように形成する、請求項 7に記載の製造方法。
[9] 工程 (i)において、榭脂パターン (A)を、その構造単位が凸レンズ形状となるように 形成する、請求項 7に記載の製造方法。
[10] 榭脂パターン (A)の構造単位を熱フローにて凸レンズ形状とする、請求項 9に記載 の製造方法。
[11] 工程 (i)において、感光性榭脂で榭脂層を形成する、請求項 7に記載の製造方法。
[12] X@ (ii)において、榭脂パターン (B)を、その微細構造単位が周期的にアレイ状に 配列した凹凸構造単位となるように形成する、請求項 7に記載の製造方法。
[13] 工程 (ii)にお 、て、露光現像処理における露光処理が 2光束干渉露光処理である
、請求項 7に記載の製造方法。
[14] 2光束干渉露光処理が、榭脂パターン (A)が形成された基材を 90度回転させて 2 回露光する処理である、請求項 13に記載の製造方法。
[15] 工程 (ii)にお 、て、露光現像処理における露光処理がマスク露光処理である、請 求項 7に記載の製造方法。
[16] 請求項 7に記載の製造方法にて製造された構造体力 電铸によって製造した、構 造体用複製金型。
[17] 請求項 16に記載の構造体用複製金型を用いて成形を行う、構造体の製造方法。
[18] 基板を含む素子本体と、
素子本体上に形成された、所定形状の構造単位を有する榭脂パターン (A)からなる 部位と、
榭脂パターン (A)力もなる部位の表面に形成され、使用光線の波長領域以下のピッ チで配列した所定形状の微細構造単位を有する榭脂パターン (B)力 なる部位 とを備えた素子。
[19] 榭脂パターン (A)の構造単位が、周期的にアレイ状に配列している、請求項 18に 記載の素子。
[20] 榭脂パターン (A)の構造単位が凸レンズ形状である、請求項 18に記載の素子。
[21] 榭脂パターン (B)の微細構造単位が、周期的にアレイ状に配列した凹凸構造単位 である、請求項 18記載の素子。
[22] 使用光線の波長(え)、凹凸構造単位のピッチ (P)及び凹凸構造単位の凸部の高 さ (h)が、式 (a)及び (b) :
0. 1 λ < ρ < 0. 8 λ (a)
0. 5 X < < 5 X (b) を満足する関係である、請求項 21に記載の素子。
[23] 工程 (I)及び (Π) :
(I)基板を含む素子本体上に榭脂層を形成し、該榭脂層に露光現像処理を施して所 定形状の構造単位を有する榭脂パターン (A)からなる部位を形成する工程
(II)榭脂パターン (A)力もなる部位の表面に露光現像処理を施し、使用光線の波長 領域以下のピッチで配列した所定形状の微細構造単位を有する榭脂パターン (B) カゝらなる部位を形成する工程
を順次行うことを特徴とする、素子の製造方法。
[24] 工程 (I)において、榭脂パターン (A)を、その構造単位が周期的にアレイ状に配列 するように形成する、請求項 23に記載の製造方法。
[25] 工程 (I)において、榭脂パターン (A)を、その構造単位が凸レンズ形状となるように 形成する、請求項 23に記載の製造方法。
[26] 榭脂パターン (A)の構造単位を熱フローにて凸レンズ形状とする、請求項 25に記 載の製造方法。
[27] 工程 (I)において、感光性榭脂で榭脂層を形成する、請求項 23に記載の製造方法
[28] 工程 (Π)において、榭脂パターン (B)を、その微細構造単位が周期的にアレイ状に 配列した凹凸構造単位となるように形成する、請求項 23に記載の製造方法。
[29] 工程 (II)にお 、て、露光現像処理における露光処理が 2光束干渉露光処理である
、請求項 23に記載の製造方法。
[30] 2光束干渉露光処理が、榭脂パターン (A)からなる部位が形成された素子本体を 9
0度回転させて 2回露光する処理である、請求項 29に記載の製造方法。
[31] 工程 (II)にお 、て、露光現像処理における露光処理がマスク露光処理である、請 求項 23に記載の製造方法。
[32] 基板を含む光学素子本体と、
光学素子本体上に形成され、該光学素子本体の光電変換素子と対応する位置に周 期的にアレイ状に配列した凸レンズ形状の構造単位を有する榭脂パターン (A)から なるレンズ部位と、 レンズ部位の表面に形成され、使用光線の波長領域以下のピッチで周期的にアレイ 状に配列した所定形状の微細凹凸構造単位を有する榭脂パターン (B)からなる反 射散乱防止部位
とを備えた光学素子。
[33] 使用光線の波長(λ )、微細凹凸構造単位のピッチ (p)及び微細凹凸構造単位の 凸部の高さ (h)が、式 (a)及び (b):
0. 1 λ < ρ < 0. 8 λ (a)
0. 5 X < < 5 X (b)
を満足する関係である、請求項 32に記載の光学素子。
[34] 工程(1)及び (2) :
( 1)基板を含む光学素子本体上に榭脂層を形成し、該榭脂層に露光現像処理を施 して、光学素子本体の光電変換素子と対応する位置に周期的にアレイ状に配列した 構造単位を有する榭脂パターン (A)を形成した後、該榭脂パターン (A)の構造単位 を熱フローにて凸レンズ形状としてレンズ部位を形成する工程
(2)レンズ部位の表面に露光現像処理を施し、使用光線の波長領域以下のピッチで 周期的にアレイ状に配列した所定形状の微細凹凸構造単位を有する榭脂パターン( B)力 なる反射散乱防止部位を形成する工程
を順次行うことを特徴とする、光学素子の製造方法。
[35] 工程(1)において、感光性榭脂で榭脂層を形成する、請求項 34に記載の製造方 法。
[36] 工程 (2)にお 、て、露光現像処理における露光処理が 2光束干渉露光処理である
、請求項 34に記載の製造方法。
[37] 2光束干渉露光処理が、レンズ部位が形成された光学素子本体を 90度回転させて
2回露光する処理である、請求項 36に記載の製造方法。
[38] 工程 (2)にお 、て、露光現像処理における露光処理がマスク露光処理である、請 求項 34に記載の製造方法。
PCT/JP2005/008436 2004-05-12 2005-05-09 光学素子及びその製造方法 WO2005109042A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/596,283 US8184373B2 (en) 2004-05-12 2005-05-09 Optical element and method for producing the same
JP2006513016A JPWO2005109042A1 (ja) 2004-05-12 2005-05-09 光学素子及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004142769 2004-05-12
JP2004-142769 2004-05-12

Publications (1)

Publication Number Publication Date
WO2005109042A1 true WO2005109042A1 (ja) 2005-11-17

Family

ID=35320345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008436 WO2005109042A1 (ja) 2004-05-12 2005-05-09 光学素子及びその製造方法

Country Status (4)

Country Link
US (1) US8184373B2 (ja)
JP (1) JPWO2005109042A1 (ja)
CN (1) CN1950724A (ja)
WO (1) WO2005109042A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066702A (ja) * 2006-08-10 2008-03-21 Matsushita Electric Ind Co Ltd 固体撮像素子及びカメラ
JP2009034630A (ja) * 2007-08-03 2009-02-19 Oji Paper Co Ltd 非平面上単粒子膜の製造方法、該単粒子膜エッチングマスクを用いた微細構造体の製造方法および該製造方法で得られた微細構造体。
JP2009162831A (ja) * 2007-12-28 2009-07-23 Oji Paper Co Ltd 凹凸パターンシート及びその製造方法、光学シートの製造方法、並びに光学装置
WO2009123051A1 (ja) 2008-03-31 2009-10-08 ダイキン工業株式会社 含フッ素共重合体ならびに紙用処理剤および化粧品用被膜形成剤
JP2010113310A (ja) * 2008-11-10 2010-05-20 Keio Gijuku 反射防止膜、その形成方法、光学素子、交換レンズ及び撮像装置
US7755835B2 (en) * 2006-05-31 2010-07-13 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Nano-structured zero-order diffractive filter
EP2237318A2 (en) 2009-03-31 2010-10-06 Sony Corporation Solid-state imaging device, fabrication method thereof, imaging apparatus, and fabrication method of anti-reflection structure
US20110003121A1 (en) * 2008-05-27 2011-01-06 Kazuhiko Tsuda Reflection-preventing film and display device
JP2012058584A (ja) * 2010-09-10 2012-03-22 Tohoku Univ 反射防止光学構造付き基板および反射防止光学構造付き基板の製造方法
JP2013083997A (ja) * 2012-12-13 2013-05-09 Oji Holdings Corp 凹凸パターンシート、及び光学装置
WO2013084470A1 (ja) * 2011-12-06 2013-06-13 富士フイルム株式会社 微細凹凸構造の形成方法、該形成方法を用いた構造体の製造方法および構造体
JP5359270B2 (ja) * 2006-06-30 2013-12-04 王子ホールディングス株式会社 単粒子膜エッチングマスクを用いた微細構造体の製造方法およびナノインプリント用または射出成型用モールドの製造方法
JP5512269B2 (ja) * 2007-09-03 2014-06-04 パナソニック株式会社 反射防止構造体、光学ユニット及び光学装置
JP2014102311A (ja) * 2012-11-19 2014-06-05 Seiko Epson Corp マイクロレンズアレイ基板、マイクロレンズアレイ基板の製造方法、電気光学装置、電子機器
JP2016197733A (ja) * 2009-09-17 2016-11-24 サイオニクス、エルエルシー 感光撮像素子および関連方法
JP2017011091A (ja) * 2015-06-22 2017-01-12 凸版印刷株式会社 固体撮像素子および電子機器
JPWO2014162374A1 (ja) * 2013-04-02 2017-02-16 パナソニックIpマネジメント株式会社 光学部材および光学装置
JP2017129889A (ja) * 2011-04-19 2017-07-27 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 反射防止階層構造
JP2017130642A (ja) * 2016-01-20 2017-07-27 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited イメージセンサー
WO2020144971A1 (ja) * 2019-01-10 2020-07-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8040270B2 (en) 2009-02-26 2011-10-18 General Electric Company Low-noise data acquisition system for medical imaging
JP5490216B2 (ja) * 2010-03-02 2014-05-14 パナソニック株式会社 光学素子及び光学素子の製造方法
US20120057235A1 (en) * 2010-09-03 2012-03-08 Massachusetts Institute Of Technology Method for Antireflection in Binary and Multi-Level Diffractive Elements
JP5760566B2 (ja) * 2011-03-23 2015-08-12 ソニー株式会社 光学素子、光学系、撮像装置、光学機器、および原盤
JP2012212019A (ja) * 2011-03-31 2012-11-01 Konica Minolta Advanced Layers Inc 光学要素アレイの製造方法、光学要素アレイ、レンズユニット、及びカメラモジュール
WO2014104972A1 (en) 2012-12-27 2014-07-03 Heptagon Micro Optics Pte. Ltd. Fabrication of optical elements and modules incorporating the same
KR101745080B1 (ko) * 2015-04-17 2017-06-09 연세대학교 산학협력단 알루미나 기반 광 디퓨저 제조방법 및 이를 통해 제작된 광 디퓨저
US20160307881A1 (en) * 2015-04-20 2016-10-20 Advanced Semiconductor Engineering, Inc. Optical sensor module and method for manufacturing the same
US10310144B2 (en) * 2016-06-09 2019-06-04 Intel Corporation Image sensor having photodetectors with reduced reflections
US11402669B2 (en) 2018-04-27 2022-08-02 Apple Inc. Housing surface with tactile friction features
US11112827B2 (en) 2018-07-20 2021-09-07 Apple Inc. Electronic device with glass housing member
US11691912B2 (en) 2018-12-18 2023-07-04 Apple Inc. Chemically strengthened and textured glass housing member
US11372137B2 (en) * 2019-05-29 2022-06-28 Apple Inc. Textured cover assemblies for display applications
US11109500B2 (en) 2019-06-05 2021-08-31 Apple Inc. Textured glass component for an electronic device enclosure
US10827635B1 (en) 2019-06-05 2020-11-03 Apple Inc. Electronic device enclosure having a textured glass component
US11897809B2 (en) 2020-09-02 2024-02-13 Apple Inc. Electronic devices with textured glass and glass ceramic components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250692A (ja) * 2000-03-07 2001-09-14 Nec Corp 回折格子を含む有機el素子
JP2003057422A (ja) * 2001-08-17 2003-02-26 Japan Science & Technology Corp フェムト秒レーザー照射による周期微細構造の作成方法
WO2004031815A1 (ja) * 2002-10-07 2004-04-15 Nalux Co., Ltd. 反射防止用回折格子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1462618A (en) * 1973-05-10 1977-01-26 Secretary Industry Brit Reducing the reflectance of surfaces to radiation
DE19708776C1 (de) 1997-03-04 1998-06-18 Fraunhofer Ges Forschung Entspiegelungsschicht sowie Verfahren zur Herstellung derselben
JP4123667B2 (ja) * 2000-01-26 2008-07-23 凸版印刷株式会社 固体撮像素子の製造方法
WO2001071410A2 (en) * 2000-03-17 2001-09-27 Zograph, Llc High acuity lens system
JP3921952B2 (ja) * 2001-02-28 2007-05-30 凸版印刷株式会社 撮像素子及びその製造方法
JP2003240903A (ja) 2002-02-20 2003-08-27 Dainippon Printing Co Ltd 反射防止物品
JP2003279706A (ja) 2002-03-25 2003-10-02 Sanyo Electric Co Ltd 反射防止部材
JP4250906B2 (ja) * 2002-04-23 2009-04-08 コニカミノルタホールディングス株式会社 光学素子
US6903877B2 (en) * 2002-05-29 2005-06-07 Nippon Sheet Glass Co., Ltd. Gradient-index lens, and method for producing the same
US20050093210A1 (en) * 2003-10-29 2005-05-05 Matsushita Electric Industrial Co., Ltd. Method for producing optical element having antireflection structure, and optical element having antireflection structure produced by the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250692A (ja) * 2000-03-07 2001-09-14 Nec Corp 回折格子を含む有機el素子
JP2003057422A (ja) * 2001-08-17 2003-02-26 Japan Science & Technology Corp フェムト秒レーザー照射による周期微細構造の作成方法
WO2004031815A1 (ja) * 2002-10-07 2004-04-15 Nalux Co., Ltd. 反射防止用回折格子

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755835B2 (en) * 2006-05-31 2010-07-13 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Nano-structured zero-order diffractive filter
JP5359270B2 (ja) * 2006-06-30 2013-12-04 王子ホールディングス株式会社 単粒子膜エッチングマスクを用いた微細構造体の製造方法およびナノインプリント用または射出成型用モールドの製造方法
JP2008066702A (ja) * 2006-08-10 2008-03-21 Matsushita Electric Ind Co Ltd 固体撮像素子及びカメラ
JP2009034630A (ja) * 2007-08-03 2009-02-19 Oji Paper Co Ltd 非平面上単粒子膜の製造方法、該単粒子膜エッチングマスクを用いた微細構造体の製造方法および該製造方法で得られた微細構造体。
JP5512269B2 (ja) * 2007-09-03 2014-06-04 パナソニック株式会社 反射防止構造体、光学ユニット及び光学装置
JP2009162831A (ja) * 2007-12-28 2009-07-23 Oji Paper Co Ltd 凹凸パターンシート及びその製造方法、光学シートの製造方法、並びに光学装置
WO2009123051A1 (ja) 2008-03-31 2009-10-08 ダイキン工業株式会社 含フッ素共重合体ならびに紙用処理剤および化粧品用被膜形成剤
US20110003121A1 (en) * 2008-05-27 2011-01-06 Kazuhiko Tsuda Reflection-preventing film and display device
JP2010113310A (ja) * 2008-11-10 2010-05-20 Keio Gijuku 反射防止膜、その形成方法、光学素子、交換レンズ及び撮像装置
EP2237318A2 (en) 2009-03-31 2010-10-06 Sony Corporation Solid-state imaging device, fabrication method thereof, imaging apparatus, and fabrication method of anti-reflection structure
US8685856B2 (en) 2009-03-31 2014-04-01 Sony Corporation Solid-state imaging device, fabrication method thereof, imaging apparatus, and fabrication method of anti-reflection structure
JP2016197733A (ja) * 2009-09-17 2016-11-24 サイオニクス、エルエルシー 感光撮像素子および関連方法
JP2012058584A (ja) * 2010-09-10 2012-03-22 Tohoku Univ 反射防止光学構造付き基板および反射防止光学構造付き基板の製造方法
JP2017129889A (ja) * 2011-04-19 2017-07-27 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 反射防止階層構造
WO2013084470A1 (ja) * 2011-12-06 2013-06-13 富士フイルム株式会社 微細凹凸構造の形成方法、該形成方法を用いた構造体の製造方法および構造体
JP2014102311A (ja) * 2012-11-19 2014-06-05 Seiko Epson Corp マイクロレンズアレイ基板、マイクロレンズアレイ基板の製造方法、電気光学装置、電子機器
JP2013083997A (ja) * 2012-12-13 2013-05-09 Oji Holdings Corp 凹凸パターンシート、及び光学装置
JPWO2014162374A1 (ja) * 2013-04-02 2017-02-16 パナソニックIpマネジメント株式会社 光学部材および光学装置
JP2017011091A (ja) * 2015-06-22 2017-01-12 凸版印刷株式会社 固体撮像素子および電子機器
JP2017130642A (ja) * 2016-01-20 2017-07-27 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited イメージセンサー
US9837455B2 (en) 2016-01-20 2017-12-05 Visera Technologies Company Limited Image sensor
WO2020144971A1 (ja) * 2019-01-10 2020-07-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
US11996427B2 (en) 2019-01-10 2024-05-28 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic apparatus

Also Published As

Publication number Publication date
US8184373B2 (en) 2012-05-22
JPWO2005109042A1 (ja) 2008-03-21
CN1950724A (zh) 2007-04-18
US20080055728A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
WO2005109042A1 (ja) 光学素子及びその製造方法
CN109154681B (zh) 扩散板以及投影式放映装置
CN107430219B (zh) 扩散板
KR100415714B1 (ko) 마이크로릴리프엘리먼트및그제조방법
US7094452B2 (en) Antireflective member and electronic equipment using same
KR102458998B1 (ko) 확산판 및 확산판의 설계 방법
WO2002073249A1 (fr) Element lentille de diffraction et systeme d&#39;eclairage utilisant ce dernier
JP6804830B2 (ja) 拡散板
CN1611320A (zh) 基板的加工方法、微透镜片的制造方法、透射型屏幕
EP3757628B1 (en) Diffusion plate
JP2009128538A (ja) 反射防止構造体の製造方法
JP5391670B2 (ja) 微細構造体の製造方法
JP6012692B2 (ja) マイクロレンズアレイの形成方法および固体撮像装置の製造方法
KR20150020994A (ko) 광학 소자, 광학계, 촬상 장치, 광학 기기, 및 원반과 그 제조 방법
JP2009128539A (ja) 反射防止構造体の製造方法
US20220128742A1 (en) Diffuser plate
JP2009128540A (ja) 反射防止構造体の製造方法
WO2022172918A1 (ja) 拡散板
JPH07113906A (ja) 回折光学素子
JP2002040623A (ja) 濃度分布マスクの製造方法
JP2007144899A (ja) 凹部付き基板の製造方法、凹部付き基板、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2002162747A (ja) 多段階露光による三次元構造体製造方法
JP2004054253A (ja) 屈折率分布型レンズおよびその製造方法
JPH06250002A (ja) マイクロレンズ・マイクロレンズアレイ及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580014872.2

Country of ref document: CN

Ref document number: 2006513016

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11596283

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11596283

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05737278

Country of ref document: EP

Kind code of ref document: A1