WO2005106930A1 - Exposure method, exposure system, and method for fabricating device - Google Patents

Exposure method, exposure system, and method for fabricating device Download PDF

Info

Publication number
WO2005106930A1
WO2005106930A1 PCT/JP2005/007696 JP2005007696W WO2005106930A1 WO 2005106930 A1 WO2005106930 A1 WO 2005106930A1 JP 2005007696 W JP2005007696 W JP 2005007696W WO 2005106930 A1 WO2005106930 A1 WO 2005106930A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
exposure
shot area
liquid
shot
Prior art date
Application number
PCT/JP2005/007696
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Hirukawa
Yasuhiro Omura
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2006512760A priority Critical patent/JPWO2005106930A1/en
Publication of WO2005106930A1 publication Critical patent/WO2005106930A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning

Definitions

  • Exposure method Exposure method, exposure apparatus and device manufacturing method
  • the present invention relates to an exposure method, an exposure apparatus, and a device manufacturing method for exposing a substrate by irradiating the substrate with exposure light via a liquid.
  • Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate.
  • An exposure apparatus used in the photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and projects the pattern of the mask onto the substrate via a projection optical system. Is exposed.
  • further improvement in the resolution of the projection optical system has been desired in order to cope with higher integration of device patterns.
  • the resolution of the projection optical system increases as the wavelength of the exposure light used decreases and as the numerical aperture of the projection optical system increases. Therefore, the wavelength of the exposure light used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing.
  • the wavelength of exposure light which is 248 nm of KrF excimer laser, and 193 nm of ArF excimer laser with shorter wavelength are also in practical use.
  • the depth of focus (DOF) is as important as the resolution.
  • the resolution R and the depth of focus ⁇ are respectively represented by the following equations.
  • is the exposure wavelength
  • is the numerical aperture of the projection optical system
  • k and k are process coefficients.
  • a liquid immersion method disclosed in Patent Document 1 below has been proposed.
  • This immersion method uses a projection optical system.
  • the space between the lower surface of the substrate and the surface of the substrate is filled with a liquid such as water or an organic solvent to form an immersion area, and the wavelength of the exposure light in the liquid becomes The resolution is improved by utilizing the fact that it is about 1.2 to 1.6), and the depth of focus is increased by about n times.
  • Patent Document 1 International Publication No. 99Z49504 pamphlet
  • a substrate including a film on a substrate constituting the substrate
  • the heat causes the liquid in an immersion area on the substrate to change in temperature or temperature. Distribution may occur. Since a change in temperature or a temperature distribution of the liquid causes a change in the refractive index of the liquid, it affects the imaging characteristics of the projection optical system via the liquid, and there is a possibility that a pattern cannot be accurately formed on the substrate.
  • the present invention has been made in view of such circumstances, and even when an immersion method is applied, an exposure method, an exposure apparatus, and an exposure method capable of accurately forming a pattern on a substrate. It is an object to provide a device manufacturing method.
  • the present invention employs the following configuration corresponding to Figs. 1 to 10 shown in the embodiment.
  • reference numerals in parentheses attached to each element are merely examples of the element, and there is no intention to limit each element.
  • the exposure method of the present invention irradiates a substrate (P) with exposure light (EL) via a projection optical system (PL) and a liquid (LQ), thereby forming a plurality of shot areas on the substrate (P).
  • EL exposure light
  • PL projection optical system
  • LQ liquid
  • S1 to S45 sequentially exposing
  • adjacent shots of the plurality of shot areas (S1 to S45) on the substrate (P) are used.
  • the exposure order of a plurality of shot areas on the substrate (P) is determined so that the exposure areas are not continuously exposed.
  • the adjacent shot area of the plurality of shot areas on the substrate is not continuously exposed, so that the temperature change of the liquid on the shot area to be exposed can be prevented.
  • the occurrence of temperature distribution is suppressed. That is, for example, when the exposure light is irradiated to expose the first shot area on the substrate, the first shot area on the substrate is heated, and the heat causes the liquid on or near the first shot area to be exposed. There is a possibility that temperature changes and temperature distribution may occur. In that case, the liquid on the second shot area adjacent to the first shot area may have a temperature change or a temperature distribution due to the exposure of the first shot area.
  • the liquid in the second shot area has already undergone a temperature change or temperature distribution.
  • a pattern cannot be formed with high accuracy on the second shot area. Therefore, by not continuously exposing adjacent shot regions among a plurality of shot regions on the substrate, a pattern can be formed on the substrate with high accuracy.
  • the exposure method of the present invention includes irradiating the substrate (P) with exposure light (EL) via the projection optical system (PL) and the liquid (LQ), thereby forming a shot area (EL) on the substrate (P).
  • the detection light (La) is projected onto the surface of the shot area (S1) via the liquid (LQ), and the shot area (S1) is projected based on the reflected light.
  • the surface position information of the surface is detected, and based on the detected surface position information, the positional relationship between the image plane and the shot area (SI) surface by the projection optical system (PL) is adjusted.
  • the irradiation of the exposure light (EL) on the shot area (S1) starts, and during the exposure of the shot area (S1), the surface position obtained by projecting the detection light (La) onto the surface of the shot area (S1) It is characterized in that the adjustment of the positional relationship based on the information is stopped.
  • optical detection and detection of surface position information of a shot area surface using detection light without being affected by a temperature change or temperature distribution of a liquid caused by exposure light exposure It is possible to accurately adjust the positional relationship between the image plane and the shot area surface by the projection optical system based on the obtained plane position information.
  • the substrate is heated by the exposure light irradiation, and the heat causes the liquid on the substrate in the vicinity of the exposure light irradiation region to undergo a temperature change or temperature distribution. Can cause. Therefore, if the detection of the surface position information of the shot area surface and the adjustment of the positional relationship are performed in parallel with the exposure of the substrate (irradiation of exposure light), the temperature of the liquid will change and the temperature distribution will occur.
  • the surface position information of the shot area surface cannot be accurately detected due to the temperature change and the temperature distribution of the liquid.
  • the position of the shot area surface cannot be accurately aligned with the image plane via the liquid of the projection optical system, and a pattern may not be accurately formed on the substrate. Therefore, before irradiating the next shot area with exposure light, the surface position information of the next shot area surface to be exposed is optically detected through the liquid using the detection light, and the detected surface is detected.
  • the positional relationship between the image plane and the surface of the shot area by the projection optical system is adjusted based on the position information, and after the adjustment is completed, irradiation of the shot area with exposure light is started. Then, during the exposure of the shot area, the adjusting operation of the positional relationship based on the surface position information obtained by projecting the detection light onto the shot area is stopped. By doing so, it is possible to expose the shot area in a state where the shot area surface and the image plane of the projection optical system via the liquid are accurately aligned. Therefore, a pattern can be accurately formed on the substrate.
  • the exposure method of the present invention is directed to an exposure method for irradiating a substrate (P) with exposure light (EL) via a liquid (LQ) to expose a shot area (for example, S1) on the substrate.
  • LQ the detection light (La) is projected onto the surface of the shot area (S1), surface information of the surface of the shot area (S1) is detected based on the reflected light, and the detected surface position information is detected.
  • the position of the surface of the shot area (S1) is adjusted based on the position, and after the adjustment of the positional relationship is completed, the irradiation of the exposure light onto the shot area (S1) is started. Is characterized in that the position adjustment based on the surface position information obtained by projecting the detection light (La) on the shot area surface is stopped.
  • the exposure apparatus of the present invention irradiates the substrate (P) with exposure light (EL) through the liquid (LQ).
  • an exposure apparatus (EX) that exposes a shot area (for example, S1) on the substrate (P)
  • the detection light (La) is projected onto the surface of the shot area (S1) via the liquid (LQ), and the reflected light is reflected.
  • a detection system (4) that detects the surface position information of the surface of the shot area (S1) based on light, and adjusts the position of the surface of the shot area (S1) based on the detected surface position information!
  • An adjustment system (52), a detection system (4), and a control system (CONT) for controlling the adjustment system (52) are provided.
  • the exposure of the exposure light (EL) onto (S1) starts, and during the exposure of the shot area (S1), the surface position obtained by projecting the detection light (La) onto the surface of the shot area (S1).
  • the feature is to stop the position adjustment based on the information.
  • a device manufacturing method uses the above-described exposure method and exposure apparatus. According to the present invention, it is possible to provide a device having a pattern formed with good pattern transfer accuracy and capable of exhibiting desired performance.
  • a pattern when exposing a substrate based on the liquid immersion method, a pattern can be accurately formed on the substrate.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of an exposure apparatus according to the present invention.
  • FIG. 2 is a plan view of the substrate stage as viewed from above.
  • FIG. 3 is a diagram for explaining a relationship between a liquid supply mechanism and a liquid recovery mechanism and a projection area.
  • FIG. 4 is a schematic view for explaining an embodiment of the exposure method of the present invention.
  • FIG. 5 is a schematic diagram for explaining an embodiment of the exposure method of the present invention.
  • FIG. 6 is a schematic diagram for explaining an embodiment of the exposure method of the present invention.
  • FIG. 7 is a diagram for explaining the relationship between a liquid supply mechanism and a liquid recovery mechanism and a projection area.
  • FIG. 8 is a schematic diagram for explaining another embodiment of the exposure method of the present invention.
  • FIG. 9 is a schematic diagram for explaining a moving direction of a mask and a substrate in the scanning exposure apparatus.
  • FIG. 10 is a flowchart illustrating an example of a semiconductor device manufacturing process.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of an exposure apparatus according to the present invention
  • FIG. 2 is a plan view of a substrate stage PST.
  • the exposure apparatus EX includes a mask stage MST supporting a mask M, a substrate stage PST supporting a substrate P, and a mask M supported by the mask stage MST.
  • An illumination optical system IL that illuminates with the exposure light EL
  • a projection optical system PL that projects an image of the pattern of the mask M illuminated with the exposure light EL onto the substrate P supported by the substrate stage PST
  • a control device CONT for controlling the entire operation.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to substantially shorten the wavelength of exposure light to improve resolution and to substantially increase the depth of focus.
  • pure water is used for the liquid LQ.
  • the exposure apparatus EX projects at least a portion of the pattern image of the mask M onto the substrate P including the projection area AR1 of the projection optical system PL by the liquid LQ supplied from the liquid supply mechanism 10 while projecting the pattern image on the substrate P.
  • the liquid immersion area AR2 of the liquid LQ is formed.
  • the exposure apparatus EX fills the liquid LQ between the optical element 2 at the tip of the projection optical system PL and the surface (exposure surface) of the substrate P, and fills the space between the projection optical system PL and the substrate P.
  • the pattern image of the mask M is projected onto the substrate P via the liquid LQ and the projection optical system PL, and the substrate P is exposed.
  • the projection area AR1 of the projection optical system PL is set to have a substantially square shape, and has substantially the same shape as the shot area set on the substrate P.
  • the exposure apparatus EX the pattern of the mask M is collectively projected on one shot area while the mask M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • a step-and-repeat projection exposure apparatus for exposing a shot area is used will be described.
  • the predetermined direction in the horizontal plane is the X-axis direction
  • the direction perpendicular to the X-axis direction in the horizontal plane is the Y-axis direction
  • Direction is the Z-axis direction.
  • substrate used herein includes a substrate such as a semiconductor wafer coated with a photosensitive material (resist) or a material provided with a protective film (top coat) on the photosensitive material. Includes a reticle on which a device pattern to be reduced and projected on a substrate is formed.
  • the illumination optical system IL illuminates the mask ⁇ supported by the mask stage MST with the exposure light EL.
  • the illumination light system IL is used to make the illuminance of the exposure light source and the light flux emitted from the exposure light source uniform. It has an integrator, a condenser lens that collects the exposure light EL from the optical integrator, a relay lens system, and a variable field stop that sets the illumination area on the mask ⁇ ⁇ ⁇ with the exposure light EL.
  • a predetermined illumination area on the mask ⁇ is illuminated by the illumination optical system IL with exposure light EL having a uniform illuminance distribution.
  • Exposure exposure light EL includes, for example, a deep ultraviolet light (DUV) such as a bright line (g line, h line, i line) emitted from a mercury lamp and a KrF excimer laser beam (wavelength 248 nm). Light) and vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm).
  • DUV deep ultraviolet light
  • VUV light vacuum ultraviolet light
  • ArF excimer laser light is used.
  • the liquid LQ in the present embodiment is pure water, and can transmit even if the exposure light EL is ArF excimer laser light. Pure water can also transmit the above-mentioned bright lines (g-line, h-line, i-line) and far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm).
  • the mask stage MST is movable while holding the mask M, is two-dimensionally movable in a plane perpendicular to the optical axis AX of the projection optical system PL, ie, in the XY plane, and is minute in the ⁇ Z direction. It is rotatable.
  • the mask stage MST is driven by a mask stage driving device MSTD such as a linear motor.
  • the mask stage drive MSTD is controlled by the controller CONT.
  • the movable mirror 150 is provided on the mask stage MST.
  • a laser interferometer 151 is provided at a predetermined position.
  • the position and the rotation angle of the mask M on the mask stage MST in the two-dimensional direction are measured in real time by the laser interferometer 151 using the movable mirror 150, and the measurement result is output to the control device CONT.
  • the controller CONT controls the position of the mask M supported by the mask stage MST by driving the mask stage driving device MSTD based on the measurement result of the laser interferometer 151.
  • the projection optical system PL is for projecting an image of the pattern of the mask M onto the substrate ⁇ at a predetermined projection magnification ⁇ , and includes an optical element (lens) 2 provided at the tip of the substrate ⁇ . Including a plurality of optical elements, and these optical elements are supported by a lens barrel.
  • a reduction system with a projection magnification j8 of, for example, 1Z4, 1/5, or 1Z8 can be used.
  • the projection optical system PL is composed of, for example, a refraction projection optical system that does not include a reflective element at a 1Z8 reduction magnification.
  • the projection optical system PL may be either a unity magnification system or an enlargement system.
  • projection optical system PL may be a reflection system that does not include a refractive element, or may be a catadioptric system that includes a refractive element and a reflective element.
  • the optical element 2 at the distal end of the projection optical system PL of the present embodiment is provided so as to be detachable (replaceable) from the lens barrel PK. Further, the optical element 2 at the tip is exposed from the lens barrel PK, and the liquid LQ in the liquid immersion area AR2 comes into contact with the optical element 2. This prevents corrosion of the lens barrel PK, which also has metallic strength.
  • the optical element 2 is formed of fluorite. Since pure water used as the liquid LQ in the present embodiment has a high affinity for fluorite, the liquid LQ can be brought into close contact with almost the entire liquid contact surface 2A of the optical element 2. That is, in the present embodiment, the affinity for the liquid contact surface 2A of the optical element 2 is high, and the liquid (water) LQ is supplied, so that the liquid contact surface 2A of the optical element 2 and the liquid LQ Adhesion can be increased.
  • the optical element 2 has a high affinity for the liquid LQ (water), and may be quartz. Further, the liquid contact surface 2A of the optical element 2 may be subjected to a hydrophilic (lyophilic) treatment to further enhance the affinity with the liquid LQ.
  • the substrate stage PST is capable of holding and moving the substrate P, and includes a Z stage 52 that holds the substrate P via a substrate holder PH, and an XY stage 53 that supports the Z stage 52. .
  • the XY stage 53 is supported on a base 54.
  • the substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor.
  • the substrate stage drive PSTD is controlled by the controller CONT.
  • the Z stage 52 is movable in the Z axis direction and in the 0X and 0Y directions.
  • the XY stage 53 is movable in the XY direction and the ⁇ Z direction. It goes without saying that the Z stage and the XY stage may be provided integrally.
  • a movable mirror 55 is provided on the substrate stage PST (Z stage 52).
  • a laser interferometer 56 is provided at a predetermined position. The position of the substrate P on the substrate stage PST in the two-dimensional direction (XY direction) and the rotation angle ( ⁇ Z) are measured in real time by a laser interferometer 56 using a moving mirror 55, and the measurement results are transmitted to a control unit. Output to CONT.
  • the control device CONT drives the XY stage 53 via the substrate stage driving device PSTD based on the measurement result of the laser interferometer 56, and thereby the XY direction of the substrate P held by the substrate holder PH. (A position in a direction substantially parallel to the image plane of the projection optical system PL), and a position in the Z direction.
  • the exposure apparatus EX has a focus detection system 4.
  • the focus detection system 4 has a projection unit 4A and a light receiving unit 4B.
  • the focus detection system 4 projects the detection light La from the projection unit 4A to the surface of the substrate P (exposed surface) via the liquid LQ from an oblique direction, receives the reflected light at the light receiving unit 4B, and receives the reflected light at the light receiving unit 4B. Based on the reflected light of the detected light La, surface position information of the surface of the substrate P is detected.
  • the control device CONT controls the operation of the focus detection system 4 and, based on the light receiving result of the light receiving unit 4B, the position of the surface of the substrate P with respect to a predetermined reference plane (for example, the image plane of the projection optical system PL) in the Z-axis direction. (Focus position). Further, the focus detection system 4 can also obtain the attitude of the substrate P in the tilt direction (0X, ⁇ Y) by obtaining each focus position at each of a plurality of points on the surface of the substrate P.
  • a predetermined reference plane for example, the image plane of the projection optical system PL
  • the control device CONT is held by the substrate holder PH by driving the Z stage 52 via the substrate stage driving device PSTD based on the detection result of the focus detection system 4. Controls the position of the substrate P in the z-axis direction (focus position) and the positions in the ⁇ X and ⁇ Y directions. That is, the control device CONT adjusts the positional relationship between the image plane by the projection optical system PL and the substrate P surface based on the surface position information of the substrate P surface detected using the focus detection system 4.
  • control device CONT based on the surface position information of the surface of the substrate P detected using the focus detection system 4, and the image plane formed via the projection optical system PL and the liquid LQ and the substrate P
  • the Z stage 52 is driven so as to match the surface (exposure surface), or the imaging characteristic adjusting device provided in the projection optical system PL disclosed in, for example, JP-A-60-78454. Drive to adjust the imaging characteristics (image plane position) of the projection optical system.
  • a concave portion 50 is provided on Z stage 52, and substrate holder PH is arranged in concave portion 50.
  • the upper surface 51 of the Z stage 52 other than the concave portion 50 has a flat surface (flat portion) which is almost the same height (level) as the surface of the substrate P held by the substrate holder PH. That is, the substrate stage PST has a configuration in which a flat surface 51 substantially flush with the surface of the substrate P is provided around the substrate P held by the substrate holder PH.
  • the liquid LQ hardly flows into the gap due to the surface tension of the liquid LQ.
  • the liquid LQ can be held under the projection optical system PL by the upper surface 51.
  • the upper surface of the movable mirror 55 and the upper surface 51 of the Z stage 52 are also flush. Note that there may be a step between the surface of the substrate P and the upper surface 51 of the substrate stage PST as long as the liquid LQ can be held below the projection optical system.
  • the liquid supply mechanism 10 supplies the liquid LQ onto the substrate P.
  • the liquid supply mechanism 10 is capable of sending out the liquid LQ, the first liquid supply unit 11 and the second liquid supply unit 12, and the first liquid supply unit 11
  • a first supply member 13 having a supply port for supplying the liquid LQ sent from the first liquid supply section 11 onto the substrate P
  • a second liquid supply A second supply member 14 connected to the unit 12 via a supply pipe 12A having a flow path and having a supply port for supplying the liquid LQ sent from the second liquid supply unit 12 onto the substrate P.
  • the first and second supply members 13 and 14 are arranged close to the surface of the substrate P, and are provided at different positions in the plane direction of the substrate P (within the XY plane).
  • the liquid feeder The first supply member 13 of the structure 10 is provided on one side (one X side) with respect to the projection area AR1, and the second supply member 14 is provided on the other side (+ X side).
  • Each of the first and second liquid supply units 11, 12 includes a tank for accommodating the liquid LQ, a foreign matter removal filter, a pressurizing pump, and the like, and includes supply pipes 11A, 12A and supply members 13, 12, The liquid LQ is supplied onto the substrate P via each of the fourteen. Further, the liquid supply operation of the first and second liquid supply units 11 and 12 is controlled by the control device CONT, and the control device CONT controls the first and second liquid supply units 11 and 12 on the substrate P per unit time. The liquid supply can be independently controlled. In addition, each of the first and second liquid supply units 11 and 12 has a liquid temperature adjustment mechanism, and supplies a liquid LQ having substantially the same temperature (for example, 23 ° C.) as the temperature in the chamber in which the device is housed.
  • first and second liquid supply units 11 and 12 of the exposure apparatus EX it is supplied on the substrate P. It is not necessary for the first and second liquid supply units 11 and 12 of the exposure apparatus EX to have all of the tank, foreign matter removing filter, pressure pump, temperature adjustment mechanism, and the like. May be replaced by equipment such as a factory where the is installed!
  • the liquid recovery mechanism 30 recovers the liquid LQ on the substrate P, and includes first and second recovery members 31 and 32 having a recovery port arranged close to the surface of the substrate P, First and second liquid recovery sections 33 and 34 are connected to first and second recovery members 31 and 32 via recovery pipes 33A and 34A having flow paths, respectively.
  • the first and second liquid recovery sections 33 and 34 include, for example, a suction device such as a vacuum pump and a tank for storing the recovered liquid LQ, and collect the liquid LQ on the substrate P into first and second recovery members. Recover through 31, 32 and recovery tubes 33A, 34A.
  • the liquid recovery operation of the first and second liquid recovery units 33 and 34 is controlled by a control device CONT.
  • the control device CONT can control the amount of liquid recovered per unit time by the first and second liquid recovery units 33 and 34. is there. It is not necessary for the first and second liquid recovery sections 33 and 34 of the exposure apparatus EX to have all of the suction devices and tanks. Equipment may be used instead.
  • FIG. 3 is a plan view showing a schematic configuration of the liquid supply mechanism 10 and the liquid recovery mechanism 30.
  • the liquid immersion area AR2 of the liquid LQ is formed on a part of the substrate P so as to include the substantially square projection area AR1.
  • the first supply member 13 of the liquid supply mechanism 10 for forming the liquid immersion area AR2 is provided on one side (one X side) with respect to the projection area AR1, and the second supply member 14 is provided on the other side. (+ X side).
  • Each of the first and second supply members 13 and 14 is formed in a linear shape in a plan view having the Y-axis direction as a long direction, and its supply port is provided so as to face the surface of the substrate P. Is formed in a slit shape having a longitudinal direction.
  • the liquid supply mechanism 10 simultaneously supplies the liquid LQ from the supply ports of the first and second supply members 13 and 14 on both sides of the projection area AR1.
  • Each of the first and second recovery members 31 and 32 of the liquid recovery mechanism 30 has a recovery port continuously formed in an arc shape facing the surface of the substrate P.
  • the first and second recovery members 31 and 32 arranged to face each other form a substantially annular recovery port.
  • the recovery ports of the first and second recovery members 31 and 32 are arranged so as to surround the first and second supply members 13 and 14 of the liquid supply mechanism 10 and the projection area AR1. Further, a plurality of partition members 35 are provided inside the collection port continuously formed so as to surround the projection area AR1.
  • the liquid LQ supplied to the substrate P is also supplied from the first and second supply members 13, 14 to the lower end surface (2A) of the front end (optical element 2) of the projection optical system PL and the substrate P. Supplied so that it spreads between and. Further, the liquid LQ that has flowed out of the first and second supply members 13 and 14 with respect to the projection area AR1 is located outside (farther from) the projection area AR1 than the first and second supply members 13 and 14.
  • the first and second collection members 31 and 32 disposed in the first and second collection members are collected from the collection ports.
  • the arrangement of the liquid supply mechanism 10 and the arrangement of the liquid recovery mechanism 30 are not limited to those described above. If the liquid LQ can be locally held on the image plane side of the projection optical system PL, Various forms can be adopted.
  • the exposure apparatus EX in the present embodiment is a step-and-repeat type projection exposure apparatus (so-called stepper) as described above.
  • stepper a step-and-repeat type projection exposure apparatus (so-called stepper) as described above.
  • stepper a step-and-repeat type projection exposure apparatus
  • the size of the projection area A R1 of the projection optical system PL corresponds to the size of each of the shot areas S1 to S32.
  • the projection area AR1 of the projection optical system PL is aligned with one of the plurality of shot areas S1 to S32 on the substrate P, and the pattern of the mask M is kept in a state where the substrate P is stationary.
  • the projection images are collectively projected onto the shot area.
  • the exposure processing for each of the shot areas S1 to S32 is sequentially performed by the step-and-repeat method.
  • the controller CONT supplies the liquid LQ onto the substrate P using the liquid supply mechanism 10
  • the liquid LQ on the substrate P is recovered by using the liquid recovery mechanism 30, and the liquid immersion area AR2 of the liquid LQ is formed on the substrate P.
  • the control device CONT controls the immersion area AR2 of the liquid LQ on the substrate! ⁇ (Between the substrate P and the liquid contact surface 2A of the projection optical system PL). To form Then, before exposing the first shot area S1 on the substrate P, surface position information of the surface of the first shot area S1 of the substrate P is detected using the focus detection system 4 via the liquid LQ. That is, the control device CONT emits the detection light La from the projection unit 4A of the focus detection system 4, and outputs the substrate P corresponding to the first shot region S1 via the liquid LQ of the liquid immersion region AR2 formed on the substrate P.
  • the detection light La is projected on the surface, and the reflected light is received by the light receiving section 4B.
  • the light receiving section 4B receives the reflected light via the liquid LQ in the liquid immersion area AR2.
  • the control device CONT obtains surface position information of the surface of the first shot area S1 of the substrate P based on the result of light reception by the light receiving section 4B.
  • the movement of the substrate P in the XY direction may be stopped. You can go while moving in the XY direction!
  • control device CONT forms the image via the projection optical system PL and the liquid LQ based on the surface position information of the surface of the first shot area S1 of the substrate P detected using the focus detection system 4.
  • the Z stage 52 is driven so that the position of the substrate P (Z position) is adjusted so that the image plane to be formed matches the surface of the first shot area S1.
  • the controller CONT starts irradiating the first shot area S1 on the substrate P with the exposure light EL, and passes the mask M onto the first shot area S1 on the substrate P. Project a turn image.
  • the exposure process is performed by the step 'and' repeat method as described above, when exposing the first shot area S1 on the substrate P, the substrate P is exposed in a stationary state. .
  • the focus detection system 4 detects the surface position information on the surface of the substrate P, and the projection optical system PL performs the operation based on the detected surface position information.
  • the operation of adjusting the positional relationship between the image plane and the surface of the substrate P (specifically, driving of the Z stage 52) is stopped.
  • the exposure processing is performed by the step-and-repeat method, and since the substrate P is stationary during the exposure, the image plane and the image plane are exposed before the first shot area S1 is exposed.
  • the positional relationship between the substrate P and the surface of the substrate P is adjusted in advance, and the exposure is performed while maintaining the adjusted positional relationship, so that the image plane by the projection optical system PL and the surface of the substrate P are aligned with each other.
  • One shot area S1 can be exposed.
  • the operation of detecting the surface position information using the focus detection system 4 and the positional relationship between the image plane and the surface of the substrate P by the projection optical system PL are performed.
  • the surface position information of the substrate P can be detected and detected using the detection light La without being affected by the temperature change or temperature distribution of the liquid LQ due to the exposure light EL irradiation. It is possible to accurately adjust the positional relationship between the surface of the substrate P and the image plane based on the obtained surface position information. Therefore, the substrate P can be exposed in a state where the surface of the substrate P and the image plane via the liquid LQ of the projection optical system PL are accurately aligned, and a pattern is formed on the substrate P with high accuracy. be able to.
  • the control device CONT controls the third shot area to expose a shot area that is not adjacent to the first shot area S1, for example, the third shot area S3.
  • the step S3 is moved under the projection optical system PL to form a liquid immersion area AR2 of the liquid LQ on the third shot area S3 of the substrate P.
  • the surface position of the surface of the third shot area S3 of the substrate P is used. Detect information via liquid LQ.
  • the control device CONT calculates the position between the image plane by the projection optical system PL and the substrate P surface corresponding to the third shot area S3. Reconcile relationships. Then, after completing the positional adjustment, the substrate P The irradiation of the third shot area S3 with the exposure light EL is started. When the third shot area S3 is exposed, similarly to the case where the first shot area S1 is exposed, the detection operation of the surface position information using the focus detection system 4 and the position based on the detected surface position information are performed. The relationship adjustment operation is stopped.
  • FIG. 4 shows the exposure order codes (1), (2), (3),..., (32).
  • the first shot area S1 is exposed first ( (See reference numeral (1))
  • the third shot area S3 is exposed second (see reference numeral (2))
  • the 16th shot area S16 is exposed third (see reference numeral (3)), and so on up to the 32nd.
  • An adjacent shot area is not continuously exposed.
  • the shot areas on the substrate P to be exposed are The shot area can be exposed in a state where there is almost no temperature change or temperature distribution of the liquid LQ.
  • the exposure light EL is irradiated to expose the first shot area S1 on the substrate P
  • the first shot area S1 on the substrate P is heated, and the heat causes the first shot area S1 to be exposed.
  • Temperature change or temperature distribution may occur in the liquid LQ on or near S1.
  • the first shot area S1 is adjacent to the first shot area S1.
  • the liquid LQ on the second shot area S2 may also have a temperature change and a temperature distribution due to the exposure of the first shot area S1. There is. In other words, the heat of the first shot area S1 or the heated liquid LQ on the first shot area S1 may cause a temperature change or temperature distribution of the liquid LQ on the second shot area S2. .
  • the second shot area S2 will be exposed due to the temperature change of the liquid LQ on the second shot area S2.
  • the image forming characteristics of the projection optical system PL via the liquid LQ when exposing the area S2 fluctuate, and the pattern cannot be accurately formed on the substrate P. May occur. Therefore, as shown in FIG. 6, when the exposure order of the plurality of shot areas on the substrate P is determined so that adjacent shot areas are continuously exposed, the above-described inconvenience occurs. The likelihood increases.
  • the liquid LQ on the second shot area S2 may have changed in temperature due to the exposure of the first shot area S1, as shown in FIG.
  • exposing the shot area S1 by exposing a shot area (for example, S3) at a position distant from the first shot area S1, the shot areas S3, S16, etc., at positions distant from the first shot area S1 are exposed.
  • the first shot area S1 of the substrate P is stabilized at a desired temperature, and the temperature of the liquid LQ near the first shot area S1 can be stabilized.
  • the shot area to be exposed next to the first shot area S1 is a shot area (for example, S3) located at a position apart from the first shot area S1 (not adjacent to the first shot area S1).
  • the shot region S3 can be exposed in a state where the liquid LQ on the shot region S3 to be exposed has almost no temperature change or temperature distribution.
  • the temperature change or the temperature of the liquid LQ on the shot area to be exposed is increased.
  • the shot area can be exposed with almost no distribution. Therefore, a pattern can be accurately formed on the substrate P.
  • a shot area to be exposed next is determined to be a shot area that is not affected by the heat of the substrate P (first shot area S1) due to the irradiation of the exposure light EL.
  • the shot area can be more appropriately exposed in a state where there is almost no temperature change or temperature distribution of the liquid LQ on the shot area to be exposed.
  • the first shot area S1 irradiated with the exposure light EL is heated, a temperature change or a temperature distribution occurs in the liquid LQ on or near the first shot area S1.
  • the exposure order is set such that the shot area is exposed via the liquid LQ at a remote position which is not affected by the heat of the first shot area S1 of the substrate P. Let's decide! / ,. In this way, by determining the exposure order when exposing the plurality of shot areas S1 to S32 so as not to be affected by the heat of the substrate P due to the irradiation of the exposure light EL, the shot area to be exposed is determined.
  • the liquid LQ has almost no temperature change or temperature distribution, The cut area can be exposed.
  • the direction of the stepping movement of the substrate P can be appropriately determined as shown in FIG.
  • the substrate P is moved in the X-axis direction with respect to the projection area AR1 so that the projection area AR1 jumps over the second shot area S2.
  • the projection area A Rl may be moved to the second position, such as when exposing the 29th shot area S29 after the 18th shot area S18.
  • the substrate P may be moved in the Y-axis direction (row direction) with respect to the projection area ARl by jumping over the 27-shot area S27, or the 23rd shot area S23 may be moved after the twelfth shot area S12. As in the case of exposure, the substrate P may be moved obliquely with respect to the projection area AR1.
  • the control device CONT controls all the shot regions S1 to S32 (or some (Shot area)
  • the surface position information for each is detected using the focus detection system 4, and the detected surface position information is stored.
  • the exposure may be performed by adjusting the positional relationship between the image plane by the projection optical system PL and the surface of the substrate P.
  • the detection operation by the focus detection system 4 also performs the detection operation by the image plane of the projection optical system PL and the surface of the shot area S1.
  • the focus operation is continued by the focus detection system 4, and only the adjustment of the positional relationship between the image plane of the projection optical system PL and the surface of the shot area S1 based on the detection result is performed. You may try to stop.
  • the focus detection system 4 is configured to detect the surface position of the substrate P via the liquid LQ without passing through the projection optical system PL.
  • the surface position of the substrate P can be detected via some or all of the optical elements and the liquid LQ. Further, the detection may be performed via the mask M.
  • the detection operation of the focus detection system 4 is stopped.
  • a non-optical detection system for example, a capacitance sensor, a micrometer, an ultrasonic sensor, etc.
  • the distance between the projection optical system PL and the substrate P may be measured by using a non-optical detection system that is not (and hardly affected) by the heat of the liquid LQ.
  • the detection result of the non-optical detection system may be simply stored as focus information of the shot area during the exposure, or the distance between the projection optical system PL and the substrate P may be adjusted based on the result.
  • the liquid supply operation by the liquid supply mechanism 10 is also performed during the detection operation of the focus detection system 4 before exposure of the shot area (eg, the shot area S1) on the substrate P.
  • the liquid recovery operation by the liquid recovery mechanism 30 is continued, but the liquid supply operation by the liquid supply mechanism 10 and the liquid recovery operation by the liquid recovery mechanism 30 are stopped with the liquid immersion area AR2 formed.
  • the liquid supply operation by the liquid supply mechanism 10 and the liquid recovery operation by the liquid recovery mechanism 30 are continued during the exposure of the shot area (for example, the shot area S1) on the substrate P.
  • the liquid supply operation by the liquid supply mechanism 10 and the liquid recovery operation by the liquid recovery mechanism 30 are stopped, and after the exposure of one shot area is completed, the next shot area
  • the liquid supply operation by the liquid supply mechanism 10 and the liquid recovery operation by the liquid recovery mechanism 30 may be executed when the substrate P is step-moved for the first exposure.
  • the exposure order of a plurality of shot areas is determined so that adjacent shot areas on the substrate P are not continuously exposed. If the influence is small, the adjacent shot area may be exposed. However, also in this case, the exposure of each shot area is started after the operation of detecting the surface position of the substrate P by the focus detection system 4 is completed.
  • the exposure apparatus EX the pattern formed on the mask M is synchronized with the mask M and the substrate P in directions different from each other (reverse direction) in the scanning direction (predetermined direction).
  • a step-and-scan type scanning exposure apparatus (so-called scanning stepper) will be described as an example.
  • the synchronous movement direction (scanning direction, predetermined direction) between the mask M and the substrate P in the horizontal plane is the X-axis direction
  • the direction perpendicular to the X-axis direction is the Y-axis in the horizontal plane.
  • Direction (non-scanning direction) a direction perpendicular to the X-axis and Y-axis directions and coincident with the optical axis AX of the projection optical system PL is defined as a Z-axis direction.
  • the projection area AR1 of the projection optical system PL is set in a slit shape (rectangular shape) whose longitudinal direction is in the Y-axis direction (non-scanning direction).
  • the liquid immersion area AR2 filled with the liquid LQ is formed on a part of the substrate P so as to include the projection area AR1.
  • the first supply member 13 of the liquid supply mechanism 10 for forming the liquid immersion area AR2 is provided on one side (1 X side) in the scanning direction with respect to the projection area AR1, and the second supply member 14 is provided on the other side (+ X side).
  • a pattern image of a part of the mask M corresponding to the illumination area is projected onto a slit-shaped (rectangular) projection area A R1 immediately below the tip of the projection optical system PL.
  • the substrate P moves in the + X direction (or ⁇ X direction) via the XY stage 53. ⁇ ( ⁇ is the projection magnification).
  • a plurality of shot areas S 1 to S 45 are set on the substrate ⁇ .
  • the next shot area S is moved by the stepping movement of the substrate P.
  • the area moves to the scanning start position, and thereafter, scanning exposure processing is sequentially performed on each shot area while moving the substrate P by the step-and-scan method.
  • a plurality of shot areas on the substrate P are exposed so that adjacent shot areas among the plurality of shot areas S1 to S45 on the substrate P are not continuously exposed. The exposure order has been determined.
  • FIG. 8 shows the exposure sequence (1 ;) To (8).
  • the focus detection system 4 can detect the surface position information of all the shot areas S1 to S45 via the liquid LQ.
  • the projection area AR1 when exposing the second shot area S2 after the fifth shot area S5, the projection area AR1 is projected so as to jump over the fourth and third shot areas S4 and S3.
  • the projection area AR1 when the substrate P moves in the X-axis direction with respect to the area AR1, and the ninth shot area S9 is exposed next to the twelfth shot area S12, the projection area AR1 is shifted to the eleventh and tenth shot areas Sl1.
  • the substrate P moves in the X-axis direction with respect to the projection area AR1 so as to jump over S10. That is, in the present embodiment, when continuously exposing a plurality of shot areas selected from a plurality of shot areas arranged in the X-axis direction, the projection area AR1 jumps over two shot areas. As described above, the substrate P moves in the X-axis direction with respect to the projection area AR1.
  • the scanning direction (moving direction) of the substrate P is set to the same direction. ing. That is, when scanning exposure is performed on two shot areas S2 and S5, which are force-selected out of a plurality of shot areas S1 to S5 arranged in the X-axis direction, the substrate P (shot area) is projected with respect to the projection area AR1. Moves in the + X direction (see arrow yl), and scans and exposes three shot areas S12, S9, and S6 in which the force is selected from shot areas S12 to S6.
  • Area moves in the X direction (see arrow y2), and scans and exposes three shot areas S20, S23, and S26 selected from among the shot areas S20 to S26.
  • P shot area moves in the + X direction (see arrow y3).
  • the direction of the arrow in FIG. 8 indicates that the substrate P is stationary, and indicates the moving direction of the projection area AR1 with respect to the substrate P in the stationary state.
  • the mask M is moved in the ⁇ X direction (or + X direction) in synchronization with the projection optical system PL. Then, the substrate P moves in the + X direction (or the ⁇ X direction).
  • the illumination area IA of the exposure light EL on the mask M is set in a slit shape extending in the Y-axis direction in the pattern formation area PA on the mask M, and both ends in the Y-axis direction are provided. Is located on the shading band SB. And The partial pattern included in the illumination area IA on the mask M is projected onto the projection area AR1 of the projection optical system PL.
  • the mask M when the position where the + X side end of the shot area of the substrate P is aligned with the projection area AR1 is the scan start position for the shot area (substrate P), the mask M The position where the —X side end of the mask M and the illumination area IA of the exposure light EL are aligned is the scanning start position for the mask M. Therefore, for example, when the moving direction of the substrate P when exposing the fifth shot area S5 and the second shot area S2 is the same direction yl, the scanning end position force of the fifth shot area S5 While the substrate P moves to the scanning start position in the area S2, the mask M at the scanning end position needs to return to the scanning start position.
  • the substrate P moves by two shot areas to move to the scanning start position for the second shot area. . Therefore, during the movement of the substrate P, the mask M can be returned from the scan end position to the scan start position.
  • the liquid LQ in the present embodiment is pure water.
  • Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that it has no adverse effect on the photoresist on the substrate P, the optical element (lens), and the like.
  • pure water has no adverse effect on the environment and has an extremely low impurity content. Therefore, it is expected that the surface of the substrate P and the surface of the optical element provided on the front end face of the projection optical system PL will be cleaned. it can.
  • the exposure apparatus may have an ultrapure water producing device.
  • the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is said to be approximately 1.44, and an ArF excimer laser beam (wavelength of 193 nm) is used as the light source of the exposure light EL.
  • the wavelength is shortened to lZn, that is, about 134 nm on the substrate P, and a high resolution is obtained.
  • the depth of focus is expanded to about n times, that is, about 1.44 times as compared with that in the air, if it is sufficient to secure the same depth of focus as when using it in the air,
  • the numerical aperture of the projection optical system PL can be increased, and the resolution is improved in this respect as well.
  • the numerical aperture NA of the projection optical system may be 0.9 to 1.3.
  • the numerical aperture NA of the projection optical system is increased as described above, the imaging performance may be deteriorated due to the polarization effect with the random polarized light which has been conventionally used as the power exposure light. It is desirable to use.
  • linearly polarized illumination is performed according to the longitudinal direction of the line pattern of the 'and' space pattern of the mask (reticle), and the S-polarized component (TE-polarized component), ie, the line It is preferable that a large amount of diffracted light of the polarization direction component along the longitudinal direction of the pattern is emitted.
  • the space between the projection optical system PL and the resist applied to the surface of the substrate P is filled with liquid
  • the space between the projection optical system PL and the resist applied to the surface of the substrate P is filled with air (gas).
  • the transmittance of the diffracted light of the S-polarized light component (TE-polarized light component), which contributes to the improvement of contrast, on the resist surface is higher than that of the case where the numerical aperture NA of the projection optical system exceeds 1.0. Even in such a case, high imaging performance can be obtained. Further, it is more effective to appropriately combine a phase shift mask, such as an oblique incidence illumination method (particularly, a dipole illumination method) such as that disclosed in JP-A-6-188169, which is adapted to the longitudinal direction of a line pattern.
  • a fine line-and-space pattern (for example, a line-and-space of about 25 to 50 nm) is formed by using an ArF excimer laser as exposure light and using a projection optical system PL with a reduction ratio of about 1Z4.
  • the mask M acts as a polarizing plate due to the wave guide effect, and reduces the contrast.
  • the above-mentioned linearly polarized light illumination is desirable, but random polarized light is preferable because the amount of diffracted light of the S polarized light component (TE polarized light component) is larger than that of the diffracted light of the component (TM polarized light component).
  • TE polarized light component the amount of diffracted light of the S polarized light component
  • TM polarized light component the amount of diffracted light of the S polarized light component
  • an ArF excimer laser is used as the exposure light, and a projection optical system PL with a reduction ratio of about 1Z4 is used.
  • the diffracted light of the S-polarized component (TE polarized component) is more than the diffracted light of the P-polarized component (TM polarized component), and the mask M is projected. Therefore, even when the numerical aperture NA of the projection optical system PL is as large as 0.9 to 1.3, high V ⁇ resolution performance can be obtained.
  • the optical axis is centered. It is also effective to combine the polarized illumination method and the oblique incidence illumination method, which linearly polarizes in the tangential (circumferential) direction of the circle.
  • S-polarized illumination linearly polarized illumination
  • oblique incidence illumination method which linearly polarizes in the tangential (circumferential) direction of the circle.
  • the optical element 2 is attached to the tip of the projection optical system PL, and the lens is used to adjust the optical characteristics of the projection optical system PL, for example, aberrations (spherical aberration, coma, etc.). be able to.
  • the optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL.
  • a parallel plane plate that can transmit the exposure light EL may be used.
  • the exposure apparatus to which the above-described liquid immersion method is applied has a configuration in which the substrate P is exposed by filling the optical path space on the emission side of the terminal optical element 2 of the projection optical system PL with liquid (pure water).
  • liquid pure water
  • the optical path space on the entrance side of the terminal optical element 2 of the projection optical system PL may be filled with liquid (pure water).
  • the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ V.
  • a cover glass having a plane-parallel plate force on the surface of the substrate P may be used.
  • a configuration in which the liquid LQ is filled in the mounted state may be employed.
  • the liquid LQ of the present embodiment may be a liquid other than water, which is water, for example.
  • the light source of the exposure light EL is an F laser, this F laser light does not pass through water,
  • liquid LQ for example, perfluoropolyether (PFPE) or
  • the part in contact with the liquid LQ has a small polarity, for example, containing fluorine! ⁇ ⁇ Lyophilization treatment is performed by forming a thin film using a substance with a molecular structure.
  • other liquid LQs that are transparent to the exposure optical system EL and have a refractive index as high as possible and are stable to the photo resist coated on the surface of the substrate P (for example, Cedar) Oil) can also be used.
  • the surface treatment is performed according to the polarity of the liquid LQ used.
  • the substrate P in each of the above embodiments not only a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic eno for a thin film magnetic head, or an exposure apparatus is used.
  • An original mask or reticle synthetic quartz, silicon wafer is applied.
  • the present invention is also applicable to a twin-stage type exposure apparatus disclosed in JP-A-10-163099, JP-A-10-214783, JP-T-2000-505958, and the like.
  • a substrate stage for holding a substrate, a reference member on which a reference mark is formed, and a measurement stage on which various sensors are mounted can also be applied to an exposure apparatus provided.
  • an exposure apparatus that locally fills the liquid between the projection optical system PL and the substrate P is adopted!
  • the entire surface of the substrate to be exposed is liquid.
  • the present invention is also applicable to an immersion exposure apparatus covered with.
  • the structure and exposure operation of an immersion exposure apparatus in which the entire surface of a substrate to be exposed is covered with liquid are described in, for example, JP-A-6-124873, JP-A-10-303114, and US Pat. No. 5,825,043. It is described in detail in
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element for exposing a semiconductor element pattern onto a substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin-film magnetic head, Manufacture of imaging device (CCD) or reticle or mask It can be widely applied to an exposure apparatus for manufacturing.
  • a light-transmitting mask in which a predetermined light-shielding pattern (or a phase pattern ⁇ a dimming pattern) is formed on a light-transmitting substrate is used.
  • a predetermined light-shielding pattern or a phase pattern ⁇ a dimming pattern
  • an electronic mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed may be used. .
  • the force of exposing the substrate by projecting the pattern image onto the substrate P by using the projection optical system PL can be applied to an exposure apparatus (lithography system) that exposes a line 'and' space on the substrate P.
  • the projection optical system PL need not be used.
  • a linear motor (USP5,623,853 or
  • each stage PST and MST may be of a type that moves along a guide or a guideless type that does not have a guide.
  • each stage PST, MST As a driving mechanism of each stage PST, MST, a magnet unit having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil are opposed to each other, and each stage PST, MST is driven by an electromagnetic force.
  • a flat motor may be used.
  • one of the magnet unit and the armature unit may be connected to the stages PST and MST, and the other of the magnet unit and the armature unit may be provided on the moving surface side of the stages PST and MST. !,.
  • the exposure apparatus EX As described above, the exposure apparatus EX according to the embodiment of the present application is described in the claims of the present application. It is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical For, adjustments are made to achieve electrical accuracy.
  • Various subsystems The process of assembling into the exposure apparatus includes mechanical connection, electrical circuit wiring connection, and pneumatic circuit piping connection between the various subsystems. Needless to say, there is an assembling process for each subsystem before the assembling process into the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustment is performed, and various precisions of the entire exposure apparatus are secured. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature, cleanliness, etc. are controlled.
  • a micro device such as a semiconductor device has a step 201 for designing a function of a micro device and a performance design, a step 202 for producing a mask (reticle) based on this design step, Step 203 of manufacturing a substrate as a material, wafer processing step 204 of exposing a mask pattern to the substrate using the exposure apparatus EX of the above-described embodiment, and device assembly step (including dicing step, bonding step, and package step) 205 It is manufactured through an inspection step 206 and the like.

Abstract

An exposure method and an exposure system capable of forming an accurate pattern on a substrate even when an immersion method is applied. When a plurality of shot regions (S1-S32) of a substrate P are exposed sequentially by irradiating the substrate (P) with exposure light (EL) through a projection optical system (PL) and a liquid (LQ), order of exposing the plurality of shot regions on the substrate (P) is determined such that adjacent shot regions in the plurality of shot regions on the substrate (P) are not exposed continuously.

Description

明 細 書  Specification
露光方法、露光装置及びデバイス製造方法  Exposure method, exposure apparatus and device manufacturing method
技術分野  Technical field
[0001] 本発明は、液体を介して基板上に露光光を照射することによって基板を露光する露 光方法、露光装置及びデバイス製造方法に関するものである。  The present invention relates to an exposure method, an exposure apparatus, and a device manufacturing method for exposing a substrate by irradiating the substrate with exposure light via a liquid.
背景技術  Background art
[0002] 半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の 基板上に転写する、所謂フォトリソグラフィの手法により製造される。このフォトリソダラ フイエ程で使用される露光装置は、マスクを支持するマスクステージと基板を支持す る基板ステージとを有し、マスクのパターンを投影光学系を介して基板に投影して、 その基板を露光するものである。近年、デバイスパターンのより一層の高集積ィ匕に対 応するために投影光学系の更なる高解像度化が望まれている。投影光学系の解像 度は、使用する露光光の波長が短くなるほど、また投影光学系の開口数が大きいほ ど高くなる。そのため、露光装置で使用される露光光の波長は年々短波長化しており 、投影光学系の開口数も増大している。そして、現在主流の露光光の波長は、 KrF エキシマレーザの 248nmである力 更に短波長の ArFエキシマレーザの 193nmも 実用化されている。また、露光を行う際には、解像度と同様に焦点深度 (DOF)も重 要となる。解像度 R、及び焦点深度 δはそれぞれ以下の式で表される。  [0002] Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate. An exposure apparatus used in the photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and projects the pattern of the mask onto the substrate via a projection optical system. Is exposed. In recent years, further improvement in the resolution of the projection optical system has been desired in order to cope with higher integration of device patterns. The resolution of the projection optical system increases as the wavelength of the exposure light used decreases and as the numerical aperture of the projection optical system increases. Therefore, the wavelength of the exposure light used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing. At present, the wavelength of exposure light, which is 248 nm of KrF excimer laser, and 193 nm of ArF excimer laser with shorter wavelength are also in practical use. When performing exposure, the depth of focus (DOF) is as important as the resolution. The resolution R and the depth of focus δ are respectively represented by the following equations.
[0003] R=k · λ /ΝΑ … (1)  [0003] R = k · λ / ΝΑ… (1)
δ = ±k - λ /ΝΑ2 … (2) δ = ± k-λ / ΝΑ 2 … (2)
2  2
ここで、 λは露光波長、 ΝΑは投影光学系の開口数、 k、 kはプロセス係数である。 (  Here, λ is the exposure wavelength, ΝΑ is the numerical aperture of the projection optical system, and k and k are process coefficients. (
1 2  1 2
1)式、(2)式より、解像度 Rを高めるために、露光波長えを短くして、開口数 NAを大 きくすると、焦点深度 δが狭くなることが分力る。  From the formulas (1) and (2), it is clear that when the exposure wavelength is shortened and the numerical aperture NA is increased to increase the resolution R, the depth of focus δ becomes smaller.
[0004] 焦点深度 δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させるこ とが困難となり、露光動作時のフォーカスマージンが不足する恐れがある。そこで、実 質的に露光光の波長を短くして、且つ焦点深度を広くする方法として、例えば下記 特許文献 1に開示されている液浸法が提案されている。この液浸法は、投影光学系 の下面と基板表面との間を水や有機溶媒等の液体で満たして液浸領域を形成し、液 体中での露光光の波長が、空気中の lZn (nは液体の屈折率で通常 1. 2〜1. 6程 度)になることを利用して解像度を向上させるとともに、焦点深度を約 n倍に拡大する というものである。 If the depth of focus δ becomes too narrow, it becomes difficult to match the substrate surface with the image plane of the projection optical system, and the focus margin during the exposure operation may be insufficient. Therefore, as a method of substantially shortening the wavelength of exposure light and increasing the depth of focus, for example, a liquid immersion method disclosed in Patent Document 1 below has been proposed. This immersion method uses a projection optical system. The space between the lower surface of the substrate and the surface of the substrate is filled with a liquid such as water or an organic solvent to form an immersion area, and the wavelength of the exposure light in the liquid becomes The resolution is improved by utilizing the fact that it is about 1.2 to 1.6), and the depth of focus is increased by about n times.
特許文献 1:国際公開第 99Z49504号パンフレット  Patent Document 1: International Publication No. 99Z49504 pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、液浸法においては、露光光の照射により基板 (基板を構成する基材上の膜 を含む)が加熱され、その熱によって基板上の液浸領域の液体に温度変化や温度分 布が生じる可能性がある。液体の温度変化や温度分布は液体の屈折率変化を引き 起こすため、投影光学系の液体を介した結像特性に影響を与え、基板上に精度良く パターンを形成できな 、おそれがある。  In the immersion method, a substrate (including a film on a substrate constituting the substrate) is heated by irradiation with exposure light, and the heat causes the liquid in an immersion area on the substrate to change in temperature or temperature. Distribution may occur. Since a change in temperature or a temperature distribution of the liquid causes a change in the refractive index of the liquid, it affects the imaging characteristics of the projection optical system via the liquid, and there is a possibility that a pattern cannot be accurately formed on the substrate.
[0006] また、斜入射方式の焦点検出系を用いて基板表面の面位置情報を検出する場合、 すなわち、基板上に形成された液浸領域の液体を介して基板上に検出光を投射す るとともに、その反射光を受光することによって基板表面の面位置情報を検出する場 合、液体の温度変化や温度分布によって基板表面の面位置情報を正確に検出でき ない可能性もある。その結果、基板表面の位置合わせを正確に行うことができず、基 板上に精度良くパターンを形成できないおそれがある。  [0006] Further, when surface position information on the substrate surface is detected by using a focus detection system of an oblique incidence type, that is, detection light is projected onto the substrate via a liquid in an immersion area formed on the substrate. In addition, when detecting the surface position information of the substrate surface by receiving the reflected light, there is a possibility that the surface position information of the substrate surface cannot be accurately detected due to a temperature change or temperature distribution of the liquid. As a result, the alignment of the substrate surface cannot be performed accurately, and a pattern may not be accurately formed on the substrate.
[0007] 本発明はこのような事情に鑑みてなされたものであって、液浸法を適用する場合であ つても、基板上に精度良くパターンを形成することができる露光方法、露光装置及び デバイス製造方法を提供することを目的とする。  [0007] The present invention has been made in view of such circumstances, and even when an immersion method is applied, an exposure method, an exposure apparatus, and an exposure method capable of accurately forming a pattern on a substrate. It is an object to provide a device manufacturing method.
課題を解決するための手段  Means for solving the problem
[0008] 上記の課題を解決するため、本発明は実施の形態に示す図 1〜図 10に対応付けし た以下の構成を採用している。ただし、各要素に付した括弧付きの符号はその要素 の例示に過ぎず、各要素を限定する意図はない。 [0008] In order to solve the above-described problem, the present invention employs the following configuration corresponding to Figs. 1 to 10 shown in the embodiment. However, reference numerals in parentheses attached to each element are merely examples of the element, and there is no intention to limit each element.
[0009] 本発明の露光方法は、投影光学系(PL)と液体 (LQ)とを介して基板 (P)上に露光 光 (EL)を照射して、基板 (P)の複数のショット領域 (S 1〜S45)を順次露光する露光 方法にお 、て、基板 (P)上の複数のショット領域 (S1〜S45)のうちの隣接したショッ ト領域が連続して露光されな 、ように、基板 (P)上の複数のショット領域の露光順序 を決定したことを特徴とする。 [0009] The exposure method of the present invention irradiates a substrate (P) with exposure light (EL) via a projection optical system (PL) and a liquid (LQ), thereby forming a plurality of shot areas on the substrate (P). In the exposure method for sequentially exposing (S1 to S45), adjacent shots of the plurality of shot areas (S1 to S45) on the substrate (P) are used. The exposure order of a plurality of shot areas on the substrate (P) is determined so that the exposure areas are not continuously exposed.
[0010] 本発明によれば、基板上の複数のショット領域のうち隣接したショット領域を連続して 露光しな!ヽようにすることで、露光しょうとするショット領域上の液体の温度変化や温 度分布の発生が抑えられる。すなわち、例えば基板上の第 1のショット領域を露光す るために露光光を照射したとき、その基板上の第 1のショット領域は加熱され、その熱 によって第 1のショット領域上又は近傍の液体に温度変化や温度分布が生じる可能 性がある。その場合、第 1のショット領域に隣接する第 2のショット領域上の液体にも、 第 1のショット領域の露光に起因して温度変化や温度分布が生じる可能性がある。そ の場合、第 1のショット領域の露光を完了した後に、直ちに第 2のショット領域を露光 しょうとすると、第 2のショット領域上の液体にすでに温度変化や温度分布が生じてい るため、第 2のショット領域上に精度良くパターンを形成できないおそれがある。そこ で、基板上の複数のショット領域のうち隣接したショット領域を連続して露光しな 、よう にすることで、基板上に精度良くパターンを形成することができる。  [0010] According to the present invention, the adjacent shot area of the plurality of shot areas on the substrate is not continuously exposed, so that the temperature change of the liquid on the shot area to be exposed can be prevented. The occurrence of temperature distribution is suppressed. That is, for example, when the exposure light is irradiated to expose the first shot area on the substrate, the first shot area on the substrate is heated, and the heat causes the liquid on or near the first shot area to be exposed. There is a possibility that temperature changes and temperature distribution may occur. In that case, the liquid on the second shot area adjacent to the first shot area may have a temperature change or a temperature distribution due to the exposure of the first shot area. In this case, if the second shot area is to be exposed immediately after the exposure of the first shot area is completed, the liquid in the second shot area has already undergone a temperature change or temperature distribution. There is a possibility that a pattern cannot be formed with high accuracy on the second shot area. Therefore, by not continuously exposing adjacent shot regions among a plurality of shot regions on the substrate, a pattern can be formed on the substrate with high accuracy.
[0011] 本発明の露光方法は、投影光学系(PL)と液体 (LQ)とを介して基板 (P)上に露光 光 (EL)を照射して、基板 (P)上のショット領域 (例えば S1)を露光する露光方法にお V、て、液体 (LQ)を介してショット領域 (S 1)表面に検出光 (La)を投射するとともに、 その反射光に基づいてショット領域 (S1)表面の面位置情報を検出し、検出された面 位置情報に基づいて、投影光学系 (PL)による像面とショット領域 (SI)表面との位置 関係を調整し、位置関係の調整完了後に、ショット領域 (S1)上への露光光 (EL)の 照射を開始し、ショット領域 (S1)の露光中は、検出光 (La)をショット領域 (S1)表面 に投射することによって得られる面位置情報に基づく位置関係の調整を停止すること を特徴とする。 [0011] The exposure method of the present invention includes irradiating the substrate (P) with exposure light (EL) via the projection optical system (PL) and the liquid (LQ), thereby forming a shot area (EL) on the substrate (P). For example, in the exposure method for exposing S1), the detection light (La) is projected onto the surface of the shot area (S1) via the liquid (LQ), and the shot area (S1) is projected based on the reflected light. The surface position information of the surface is detected, and based on the detected surface position information, the positional relationship between the image plane and the shot area (SI) surface by the projection optical system (PL) is adjusted. The irradiation of the exposure light (EL) on the shot area (S1) starts, and during the exposure of the shot area (S1), the surface position obtained by projecting the detection light (La) onto the surface of the shot area (S1) It is characterized in that the adjustment of the positional relationship based on the information is stopped.
[0012] 本発明によれば、露光光の照射に起因する液体の温度変化や温度分布の影響を受 けずに、検出光を使ったショット領域表面の面位置情報の光学的な検出、及び検出 した面位置情報に基づく投影光学系による像面とショット領域表面との位置関係の調 整を精度良く行うことができる。すなわち、露光光の照射により基板が加熱され、その 熱によって露光光の照射領域近傍における基板上の液体が温度変化や温度分布を 引き起こす可能性がある。そのため、ショット領域表面の面位置情報の検出、及び前 記位置関係の調整を、基板の露光 (露光光の照射)と並行して行うと、液体の温度変 化や温度分布が生じている状態で前記検出動作及び調整動作を行うことになる。そ の場合、液体の温度変化や温度分布によってショット領域表面の面位置情報を正確 に検出できない可能性がある。その結果、ショット領域表面と投影光学系の液体を介 した像面との位置合わせを正確に行うことができず、基板上に精度良くパターンを形 成できないおそれがある。そこで、次に露光されるショット領域に露光光を照射する前 に、検出光を使って液体を介して次に露光されるショット領域表面の面位置情報を光 学的に検出し、検出した面位置情報に基づいて投影光学系による像面とショット領域 表面との位置関係を調整し、その調整完了後に当該ショット領域への露光光の照射 を開始する。そして、そのショット領域の露光中には、検出光をショット領域に投影す ることによって得られる面位置情報に基づく前記位置関係の調整動作を停止する。こ うすることで、ショット領域表面と投影光学系の液体を介した像面とが正確に位置合 わせされた状態で、そのショット領域を露光することができる。したがって、基板上に 精度良くパターンを形成することができる。 According to the present invention, optical detection and detection of surface position information of a shot area surface using detection light without being affected by a temperature change or temperature distribution of a liquid caused by exposure light exposure It is possible to accurately adjust the positional relationship between the image plane and the shot area surface by the projection optical system based on the obtained plane position information. In other words, the substrate is heated by the exposure light irradiation, and the heat causes the liquid on the substrate in the vicinity of the exposure light irradiation region to undergo a temperature change or temperature distribution. Can cause. Therefore, if the detection of the surface position information of the shot area surface and the adjustment of the positional relationship are performed in parallel with the exposure of the substrate (irradiation of exposure light), the temperature of the liquid will change and the temperature distribution will occur. Performs the detecting operation and the adjusting operation. In such a case, there is a possibility that the surface position information of the shot area surface cannot be accurately detected due to the temperature change and the temperature distribution of the liquid. As a result, the position of the shot area surface cannot be accurately aligned with the image plane via the liquid of the projection optical system, and a pattern may not be accurately formed on the substrate. Therefore, before irradiating the next shot area with exposure light, the surface position information of the next shot area surface to be exposed is optically detected through the liquid using the detection light, and the detected surface is detected. The positional relationship between the image plane and the surface of the shot area by the projection optical system is adjusted based on the position information, and after the adjustment is completed, irradiation of the shot area with exposure light is started. Then, during the exposure of the shot area, the adjusting operation of the positional relationship based on the surface position information obtained by projecting the detection light onto the shot area is stopped. By doing so, it is possible to expose the shot area in a state where the shot area surface and the image plane of the projection optical system via the liquid are accurately aligned. Therefore, a pattern can be accurately formed on the substrate.
本発明の露光方法は、液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して、基 板上のショット領域 (例えば、 S1)を露光する露光方法において、液体 (LQ)を介して ショット領域 (S1)表面に検出光 (La)を投射するとともに、その反射光に基づいてショ ット領域 (S1)表面の面位置情報を検出し、検出された面位置情報に基づいて、ショ ット領域 (S1)表面の位置を調整し、その位置関係の調整完了後に、ショット領域 (S1 )上への露光光の照射を開始し、ショット領域 (S1)の露光中は、検出光 (La)をショッ ト領域表面に投射することによって得られる面位置情報に基づく位置調整を停止す ることを特徴とする。 The exposure method of the present invention is directed to an exposure method for irradiating a substrate (P) with exposure light (EL) via a liquid (LQ) to expose a shot area (for example, S1) on the substrate. LQ), the detection light (La) is projected onto the surface of the shot area (S1), surface information of the surface of the shot area (S1) is detected based on the reflected light, and the detected surface position information is detected. The position of the surface of the shot area (S1) is adjusted based on the position, and after the adjustment of the positional relationship is completed, the irradiation of the exposure light onto the shot area (S1) is started. Is characterized in that the position adjustment based on the surface position information obtained by projecting the detection light (La) on the shot area surface is stopped.
本発明によれば、露光光の照射に起因する液体の温度変化や温度分布の影響を受 けずに、検出光を使ったショット領域表面の面位置情報の光学的な検出、及び検出 した面位置情報に基づく投影光学系による像面とショット領域表面との位置関係の調 整を精度良く行うことができる。 Advantageous Effects of Invention According to the present invention, optically detecting surface position information of a shot area surface using detection light and detecting the detected surface position without being affected by a temperature change or temperature distribution of a liquid caused by exposure light exposure. It is possible to accurately adjust the positional relationship between the image plane and the shot area surface by the projection optical system based on the information.
また本発明の露光装置は、液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して 、基板 (P)上のショット領域 (例えば、 S1)を露光する露光装置 (EX)において、液体 (LQ)を介してショット領域 (S1)表面に検出光 (La)を投射するとともに、その反射光 に基づいてショット領域 (S1)表面の面位置情報を検出する検出系(4)と、検出され た面位置情報に基づ!/、て、ショット領域 (S 1)表面の位置を調整する調整システム(5 2)と、検出系(4)と、調整システム(52)とを制御する制御系(CONT)とを備え、 制 御系(CONT)は、位置関係の調整完了後に、ショット領域 (S1)上への露光光 (EL) の照射を開始するとともに、ショット領域 (S1)の露光中は、検出光 (La)をショット領 域 (S1)表面に投射することによって得られる面位置情報に基づく位置調整を停止 することを特徴とする。 Further, the exposure apparatus of the present invention irradiates the substrate (P) with exposure light (EL) through the liquid (LQ). In an exposure apparatus (EX) that exposes a shot area (for example, S1) on the substrate (P), the detection light (La) is projected onto the surface of the shot area (S1) via the liquid (LQ), and the reflected light is reflected. A detection system (4) that detects the surface position information of the surface of the shot area (S1) based on light, and adjusts the position of the surface of the shot area (S1) based on the detected surface position information! An adjustment system (52), a detection system (4), and a control system (CONT) for controlling the adjustment system (52) are provided. The exposure of the exposure light (EL) onto (S1) starts, and during the exposure of the shot area (S1), the surface position obtained by projecting the detection light (La) onto the surface of the shot area (S1). The feature is to stop the position adjustment based on the information.
本発明によれば、露光光の照射に起因する液体の温度変化や温度分布の影響を受 けずに、検出光を使ったショット領域表面の面位置情報の光学的な検出、及び検出 した面位置情報に基づく投影光学系による像面とショット領域表面との位置関係の調 整を精度良く行うことができる。  Advantageous Effects of Invention According to the present invention, optically detecting surface position information of a shot area surface using detection light and detecting the detected surface position without being affected by a temperature change or temperature distribution of a liquid caused by exposure light exposure. It is possible to accurately adjust the positional relationship between the image plane and the shot area surface by the projection optical system based on the information.
[0013] 本発明のデバイス製造方法は、上記記載の露光方法、露光装置を用いることを特徴 とする。本発明によれば、良好なパターン転写精度で形成されたパターンを有し、所 望の性能を発揮できるデバイスを提供できる。 A device manufacturing method according to the present invention uses the above-described exposure method and exposure apparatus. According to the present invention, it is possible to provide a device having a pattern formed with good pattern transfer accuracy and capable of exhibiting desired performance.
発明の効果  The invention's effect
[0014] 本発明によれば、液浸法に基づいて基板を露光するときに、基板上に精度良くバタ ーンを形成することができる。  According to the present invention, when exposing a substrate based on the liquid immersion method, a pattern can be accurately formed on the substrate.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明に係る露光装置の一実施形態を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing one embodiment of an exposure apparatus according to the present invention.
[図 2]基板ステージを上方力も見た平面図である。  FIG. 2 is a plan view of the substrate stage as viewed from above.
[図 3]液体供給機構及び液体回収機構と投影領域との関係を説明するための図であ る。  FIG. 3 is a diagram for explaining a relationship between a liquid supply mechanism and a liquid recovery mechanism and a projection area.
[図 4]本発明の露光方法の一実施形態を説明するための模式図である。  FIG. 4 is a schematic view for explaining an embodiment of the exposure method of the present invention.
[図 5]本発明の露光方法の一実施形態を説明するための模式図である。  FIG. 5 is a schematic diagram for explaining an embodiment of the exposure method of the present invention.
[図 6]本発明の露光方法の一実施形態を説明するための模式図である。  FIG. 6 is a schematic diagram for explaining an embodiment of the exposure method of the present invention.
[図 7]液体供給機構及び液体回収機構と投影領域との関係を説明するための図であ る。 FIG. 7 is a diagram for explaining the relationship between a liquid supply mechanism and a liquid recovery mechanism and a projection area. The
[図 8]本発明の露光方法の別の実施形態を説明するための模式図である。  FIG. 8 is a schematic diagram for explaining another embodiment of the exposure method of the present invention.
[図 9]走査型露光装置におけるマスク及び基板の移動方向を説明するための模式図 である。  FIG. 9 is a schematic diagram for explaining a moving direction of a mask and a substrate in the scanning exposure apparatus.
[図 10]半導体デバイスの製造工程の一例を示すフローチャート図である。  FIG. 10 is a flowchart illustrating an example of a semiconductor device manufacturing process.
符号の説明  Explanation of symbols
[0016] 10· ··液体供給機構、 30· ··液体回収機構、 AR1…投影領域、 AR2"'液浸領域、 C ONT…制御装置、 EL…露光光、 EX…露光装置、 La…検出光、 LQ…液体、 P…基 板、 PL…投影光学系、 S1〜S45…ショット領域  [0016] 10 ··· liquid supply mechanism, 30 ··· liquid recovery mechanism, AR1 ... projection area, AR2 "'liquid immersion area, CONT ... control unit, EL ... exposure light, EX ... exposure apparatus, La ... detection Light, LQ: liquid, P: substrate, PL: projection optical system, S1-S45: shot area
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明に係る実施形態について図面を参照しながら説明する。図 1は本発明 に係る露光装置の一実施形態を示す概略構成図、図 2は基板ステージ PSTの平面 図である。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of an exposure apparatus according to the present invention, and FIG. 2 is a plan view of a substrate stage PST.
[0018] 図 1にお!/、て、露光装置 EXは、マスク Mを支持するマスクステージ MSTと、基板 Pを 支持する基板ステージ PSTと、マスクステージ MSTに支持されて!、るマスク Mを露 光光 ELで照明する照明光学系 ILと、露光光 ELで照明されたマスク Mのパターンの 像を基板ステージ PSTに支持されて ヽる基板 Pに投影する投影光学系 PLと、露光 装置 EX全体の動作を制御する制御装置 CONTとを備えている。  In FIG. 1, the exposure apparatus EX includes a mask stage MST supporting a mask M, a substrate stage PST supporting a substrate P, and a mask M supported by the mask stage MST. An illumination optical system IL that illuminates with the exposure light EL, a projection optical system PL that projects an image of the pattern of the mask M illuminated with the exposure light EL onto the substrate P supported by the substrate stage PST, and an exposure apparatus EX And a control device CONT for controlling the entire operation.
[0019] 本実施形態の露光装置 EXは、露光光の波長を実質的に短くして解像度を向上する とともに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であつ て、基板 P上に液体 LQを供給する液体供給機構 10と、基板 P上の液体 LQを回収す る液体回収機構 30とを備えている。本実施形態において、液体 LQには純水が用い られる。露光装置 EXは、少なくともマスク Mのパターン像を基板 P上に投影している 間、液体供給機構 10から供給した液体 LQにより投影光学系 PLの投影領域 AR1を 含む基板 P上の少なくとも一部に液体 LQの液浸領域 AR2を形成する。具体的には 、露光装置 EXは、投影光学系 PLの先端部の光学素子 2と基板 Pの表面 (露光面)と の間に液体 LQを満たし、この投影光学系 PLと基板 Pとの間の液体 LQ及び投影光 学系 PLを介してマスク Mのパターン像を基板 P上に投影し、基板 Pを露光する。 [0020] ここで、図 2に示すように、投影光学系 PLの投影領域 AR1はほぼ正方形状に設定さ れており、基板 P上に設定されるショット領域とほぼ同形状となっている。 The exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to substantially shorten the wavelength of exposure light to improve resolution and to substantially increase the depth of focus. A liquid supply mechanism 10 for supplying the liquid LQ onto the substrate P, and a liquid recovery mechanism 30 for collecting the liquid LQ on the substrate P. In the present embodiment, pure water is used for the liquid LQ. The exposure apparatus EX projects at least a portion of the pattern image of the mask M onto the substrate P including the projection area AR1 of the projection optical system PL by the liquid LQ supplied from the liquid supply mechanism 10 while projecting the pattern image on the substrate P. The liquid immersion area AR2 of the liquid LQ is formed. Specifically, the exposure apparatus EX fills the liquid LQ between the optical element 2 at the tip of the projection optical system PL and the surface (exposure surface) of the substrate P, and fills the space between the projection optical system PL and the substrate P. The pattern image of the mask M is projected onto the substrate P via the liquid LQ and the projection optical system PL, and the substrate P is exposed. Here, as shown in FIG. 2, the projection area AR1 of the projection optical system PL is set to have a substantially square shape, and has substantially the same shape as the shot area set on the substrate P.
[0021] 本実施形態では、露光装置 EXとして、マスク Mと基板 Pとを静止した状態でマスク M のパターンを一つのショット領域に一括して投影し、基板 Pを順次ステップ移動させる ことによって複数のショット領域を露光するステップ'アンド'リピート方式の投影露光 装置 (所謂ステツバ)を使用する場合を例にして説明する。以下の説明において、水 平面内における所定方向を X軸方向、水平面内において X軸方向と直交する方向を Y軸方向、 X軸及び Y軸方向に垂直で投影光学系 PLの光軸 AXと一致する方向を Z 軸方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 Θ X 、 Θ Y、及び θ Ζ方向とする。なお、ここでいう「基板」は、半導体ウェハ等の基材上に 感光材 (レジスト)を塗布したもの、あるいはその感光材上に保護膜 (トップコート)を 設けたものを含み、「マスク」は基板上に縮小投影されるデバイスパターンが形成され たレチクルを含む。  In the present embodiment, as the exposure apparatus EX, the pattern of the mask M is collectively projected on one shot area while the mask M and the substrate P are stationary, and the substrate P is sequentially moved stepwise. An example in which a step-and-repeat projection exposure apparatus (so-called stepper) for exposing a shot area is used will be described. In the following description, the predetermined direction in the horizontal plane is the X-axis direction, and the direction perpendicular to the X-axis direction in the horizontal plane is the Y-axis direction, and is perpendicular to the X-axis and Y-axis directions, and coincides with the optical axis AX of the projection optical system PL. Direction is the Z-axis direction. In addition, the directions of rotation (tilt) around the X axis, Y axis, and Z axis are defined as ΘX, ΘY, and θΖ directions, respectively. The term “substrate” used herein includes a substrate such as a semiconductor wafer coated with a photosensitive material (resist) or a material provided with a protective film (top coat) on the photosensitive material. Includes a reticle on which a device pattern to be reduced and projected on a substrate is formed.
[0022] 照明光学系 ILは、マスクステージ MSTに支持されているマスク Μを露光光 ELで照 明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化す るオプティカルインテグレータ、オプティカルインテグレータからの露光光 ELを集光 するコンデンサレンズ、リレーレンズ系、露光光 ELによるマスク Μ上の照明領域を設 定する可変視野絞り等を有している。マスク Μ上の所定の照明領域は照明光学系 IL により均一な照度分布の露光光 ELで照明される。照明光学系 IL力 射出される露 光光 ELとしては、例えば水銀ランプカゝら射出される輝線 (g線、 h線、 i線)及び KrFェ キシマレーザ光(波長 248nm)等の遠紫外光(DUV光)や、 ArFエキシマレーザ光( 波長 193nm)及び Fレーザ光 (波長 157nm)等の真空紫外光 (VUV光)などが用  [0022] The illumination optical system IL illuminates the mask 支持 supported by the mask stage MST with the exposure light EL. The illumination light system IL is used to make the illuminance of the exposure light source and the light flux emitted from the exposure light source uniform. It has an integrator, a condenser lens that collects the exposure light EL from the optical integrator, a relay lens system, and a variable field stop that sets the illumination area on the mask に よ る with the exposure light EL. A predetermined illumination area on the mask Μ is illuminated by the illumination optical system IL with exposure light EL having a uniform illuminance distribution. Illumination optical system IL force Exposure exposure light EL includes, for example, a deep ultraviolet light (DUV) such as a bright line (g line, h line, i line) emitted from a mercury lamp and a KrF excimer laser beam (wavelength 248 nm). Light) and vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm).
2  2
いられる。本実施形態では、 ArFエキシマレーザ光が用いられる。上述したように、本 実施形態における液体 LQは純水であって、露光光 ELが ArFエキシマレーザ光であ つても透過可能である。また、純水は上述の輝線 (g線、 h線、 i線)及び KrFエキシマ レーザ光 (波長 248nm)等の遠紫外光 (DUV光)も透過可能である。  You can. In the present embodiment, ArF excimer laser light is used. As described above, the liquid LQ in the present embodiment is pure water, and can transmit even if the exposure light EL is ArF excimer laser light. Pure water can also transmit the above-mentioned bright lines (g-line, h-line, i-line) and far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm).
[0023] マスクステージ MSTは、マスク Mを保持して移動可能であって、投影光学系 PLの光 軸 AXに垂直な平面内、すなわち XY平面内で 2次元移動可能及び θ Z方向に微小 回転可能である。マスクステージ MSTはリニアモータ等のマスクステージ駆動装置 MSTDにより駆動される。マスクステージ駆動装置 MSTDは制御装置 CONTにより 制御される。マスクステージ MST上には移動鏡 150が設けられている。また、所定位 置にはレーザ干渉計 151が設けられて!/、る。マスクステージ MST上のマスク Mの 2 次元方向の位置、及び回転角は移動鏡 150を用いてレーザ干渉計 151によりリアル タイムで計測され、計測結果は制御装置 CONTに出力される。制御装置 CONTは レーザ干渉計 151の計測結果に基づいてマスクステージ駆動装置 MSTDを駆動す ることでマスクステージ MSTに支持されているマスク Mの位置を制御する。 The mask stage MST is movable while holding the mask M, is two-dimensionally movable in a plane perpendicular to the optical axis AX of the projection optical system PL, ie, in the XY plane, and is minute in the θ Z direction. It is rotatable. The mask stage MST is driven by a mask stage driving device MSTD such as a linear motor. The mask stage drive MSTD is controlled by the controller CONT. The movable mirror 150 is provided on the mask stage MST. A laser interferometer 151 is provided at a predetermined position. The position and the rotation angle of the mask M on the mask stage MST in the two-dimensional direction are measured in real time by the laser interferometer 151 using the movable mirror 150, and the measurement result is output to the control device CONT. The controller CONT controls the position of the mask M supported by the mask stage MST by driving the mask stage driving device MSTD based on the measurement result of the laser interferometer 151.
[0024] 投影光学系 PLは、マスク Mのパターンの像を所定の投影倍率 βで基板 Ρに投影す るものであって、基板 Ρ側の先端部に設けられた光学素子 (レンズ) 2を含む複数の光 学素子で構成されており、これら光学素子は鏡筒 ΡΚで支持されている。投影光学系 PLとしては、投影倍率 j8が例えば 1Z4、 1/5,あるいは 1Z8の縮小系を用いること ができる。本実施形態においては、投影光学系 PLは、例えば 1Z8縮小倍率で反射 素子を含まない屈折型投影光学系により構成されている。なお、投影光学系 PLは等 倍系及び拡大系のいずれでもよい。また、投影光学系 PLは、屈折素子を含まない反 射系であってもよいし、屈折素子と反射素子とを含む反射屈折系であってもよい。ま た、本実施形態の投影光学系 PLの先端部の光学素子 2は鏡筒 PKに対して着脱( 交換)可能に設けられている。また、先端部の光学素子 2は鏡筒 PKより露出しており 、液浸領域 AR2の液体 LQは光学素子 2に接触する。これにより、金属力もなる鏡筒 PKの腐蝕等が防止されている。  The projection optical system PL is for projecting an image of the pattern of the mask M onto the substrate 投影 at a predetermined projection magnification β, and includes an optical element (lens) 2 provided at the tip of the substrate Ρ. Including a plurality of optical elements, and these optical elements are supported by a lens barrel. As the projection optical system PL, a reduction system with a projection magnification j8 of, for example, 1Z4, 1/5, or 1Z8 can be used. In the present embodiment, the projection optical system PL is composed of, for example, a refraction projection optical system that does not include a reflective element at a 1Z8 reduction magnification. Note that the projection optical system PL may be either a unity magnification system or an enlargement system. Further, projection optical system PL may be a reflection system that does not include a refractive element, or may be a catadioptric system that includes a refractive element and a reflective element. Further, the optical element 2 at the distal end of the projection optical system PL of the present embodiment is provided so as to be detachable (replaceable) from the lens barrel PK. Further, the optical element 2 at the tip is exposed from the lens barrel PK, and the liquid LQ in the liquid immersion area AR2 comes into contact with the optical element 2. This prevents corrosion of the lens barrel PK, which also has metallic strength.
[0025] 光学素子 2は蛍石で形成されている。本実施形態において液体 LQとして用いられて いる純水は蛍石との親和性が高いので、光学素子 2の液体接触面 2Aのほぼ全面に 液体 LQを密着させることができる。すなわち、本実施形態においては光学素子 2の 液体接触面 2Aとの親和性が高 、液体 (水) LQを供給するようにして 、るので、光学 素子 2の液体接触面 2Aと液体 LQとの密着性を高くすることができる。なお光学素子 2は液体 LQ (水)との親和性が高 、石英であってもよ 、。また光学素子 2の液体接触 面 2Aに親水化 (親液化)処理を施して、液体 LQとの親和性をより高めるようにしても よい。 [0026] 基板ステージ PSTは、基板 Pを保持して移動可能であって、基板 Pを基板ホルダ PH を介して保持する Zステージ 52と、 Zステージ 52を支持する XYステージ 53とを備え ている。 XYステージ 53はベース 54上に支持されている。基板ステージ PSTはリニア モータ等の基板ステージ駆動装置 PSTDにより駆動される。基板ステージ駆動装置 PSTDは制御装置 CONTにより制御される。 Zステージ 52は Z軸方向、及び 0 X、 0 Y方向に移動可能である。また、 XYステージ 53は XY方向、及び θ Z方向に移動可 能である。なお、 Zステージと XYステージとを一体的に設けてよいことは言うまでもな い。 [0025] The optical element 2 is formed of fluorite. Since pure water used as the liquid LQ in the present embodiment has a high affinity for fluorite, the liquid LQ can be brought into close contact with almost the entire liquid contact surface 2A of the optical element 2. That is, in the present embodiment, the affinity for the liquid contact surface 2A of the optical element 2 is high, and the liquid (water) LQ is supplied, so that the liquid contact surface 2A of the optical element 2 and the liquid LQ Adhesion can be increased. The optical element 2 has a high affinity for the liquid LQ (water), and may be quartz. Further, the liquid contact surface 2A of the optical element 2 may be subjected to a hydrophilic (lyophilic) treatment to further enhance the affinity with the liquid LQ. The substrate stage PST is capable of holding and moving the substrate P, and includes a Z stage 52 that holds the substrate P via a substrate holder PH, and an XY stage 53 that supports the Z stage 52. . The XY stage 53 is supported on a base 54. The substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor. The substrate stage drive PSTD is controlled by the controller CONT. The Z stage 52 is movable in the Z axis direction and in the 0X and 0Y directions. Further, the XY stage 53 is movable in the XY direction and the θZ direction. It goes without saying that the Z stage and the XY stage may be provided integrally.
[0027] 基板ステージ PST(Zステージ 52)上には移動鏡 55が設けられている。また、所定位 置にはレーザ干渉計 56が設けられている。基板ステージ PST上の基板 Pの 2次元方 向(XY方向)の位置、及び回転角( θ Z)は移動鏡 55を用いてレーザ干渉計 56によ りリアルタイムで計測され、計測結果は制御装置 CONTに出力される。  A movable mirror 55 is provided on the substrate stage PST (Z stage 52). A laser interferometer 56 is provided at a predetermined position. The position of the substrate P on the substrate stage PST in the two-dimensional direction (XY direction) and the rotation angle (θZ) are measured in real time by a laser interferometer 56 using a moving mirror 55, and the measurement results are transmitted to a control unit. Output to CONT.
[0028] 制御装置 CONTは、レーザ干渉計 56の計測結果に基づいて、基板ステージ駆動装 置 PSTDを介して XYステージ 53を駆動することにより、基板ホルダ PHに保持されて いる基板 Pの XY方向に関する位置 (投影光学系 PLの像面と実質的に平行な方向の 位置)、及び Θ Z方向に関する位置を制御する。  The control device CONT drives the XY stage 53 via the substrate stage driving device PSTD based on the measurement result of the laser interferometer 56, and thereby the XY direction of the substrate P held by the substrate holder PH. (A position in a direction substantially parallel to the image plane of the projection optical system PL), and a position in the Z direction.
[0029] また、露光装置 EXは、フォーカス検出系 4を有している。フォーカス検出系 4は、投 射部 4Aと受光部 4Bとを有している。フォーカス検出系 4は、投射部 4Aから液体 LQ を介して基板 P表面 (露光面)に斜め方向から検出光 Laを投射するとともに、その反 射光を受光部 4Bで受光し、受光部 4Bで受光した検出光 Laの反射光に基づ 、て基 板 P表面の面位置情報を検出する。制御装置 CONTは、フォーカス検出系 4の動作 を制御するとともに、受光部 4Bの受光結果に基づいて、所定基準面 (例えば、投影 光学系 PLの像面)に対する基板 P表面の Z軸方向における位置 (フォーカス位置)を 求める。また、基板 P表面における複数の各点での各フォーカス位置を求めることに より、フォーカス検出系 4は基板 Pの傾斜方向( 0 X、 θ Y)の姿勢を求めることもでき る。  The exposure apparatus EX has a focus detection system 4. The focus detection system 4 has a projection unit 4A and a light receiving unit 4B. The focus detection system 4 projects the detection light La from the projection unit 4A to the surface of the substrate P (exposed surface) via the liquid LQ from an oblique direction, receives the reflected light at the light receiving unit 4B, and receives the reflected light at the light receiving unit 4B. Based on the reflected light of the detected light La, surface position information of the surface of the substrate P is detected. The control device CONT controls the operation of the focus detection system 4 and, based on the light receiving result of the light receiving unit 4B, the position of the surface of the substrate P with respect to a predetermined reference plane (for example, the image plane of the projection optical system PL) in the Z-axis direction. (Focus position). Further, the focus detection system 4 can also obtain the attitude of the substrate P in the tilt direction (0X, θY) by obtaining each focus position at each of a plurality of points on the surface of the substrate P.
[0030] 制御装置 CONTは、フォーカス検出系 4の検出結果に基づいて、基板ステージ駆動 装置 PSTDを介して Zステージ 52を駆動することにより、基板ホルダ PHに保持され ている基板 Pの z軸方向に関する位置 (フォーカス位置)、及び Θ X、 Θ Y方向に関す る位置を制御する。すなわち、制御装置 CONTは、フォーカス検出系 4を使って検出 した基板 P表面の面位置情報に基づいて、投影光学系 PLによる像面と基板 P表面と の位置関係を調整する。具体的には、制御装置 CONTは、フォーカス検出系 4を使 つて検出した基板 P表面の面位置情報に基づ 、て、投影光学系 PL及び液体 LQを 介して形成される像面と基板 P表面 (露光面)とを合致させるように、 Zステージ 52を 駆動したり、例えば特開昭 60— 78454号公報に開示されているような投影光学系 P Lに設けられた結像特性調整装置を駆動して投影光学系の結像特性 (像面位置)を 調整する。 The control device CONT is held by the substrate holder PH by driving the Z stage 52 via the substrate stage driving device PSTD based on the detection result of the focus detection system 4. Controls the position of the substrate P in the z-axis direction (focus position) and the positions in the ΘX and ΘY directions. That is, the control device CONT adjusts the positional relationship between the image plane by the projection optical system PL and the substrate P surface based on the surface position information of the substrate P surface detected using the focus detection system 4. Specifically, the control device CONT, based on the surface position information of the surface of the substrate P detected using the focus detection system 4, and the image plane formed via the projection optical system PL and the liquid LQ and the substrate P The Z stage 52 is driven so as to match the surface (exposure surface), or the imaging characteristic adjusting device provided in the projection optical system PL disclosed in, for example, JP-A-60-78454. Drive to adjust the imaging characteristics (image plane position) of the projection optical system.
[0031] Zステージ 52上には凹部 50が設けられており、基板ホルダ PHは凹部 50に配置され ている。そして、 Zステージ 52のうち凹部 50以外の上面 51は、基板ホルダ PHに保持 された基板 Pの表面とほぼ同じ高さ(面一)になるような平坦面(平坦部)となっている 。すなわち、基板ステージ PSTは、基板ホルダ PHに保持した基板 Pの周囲に、その 基板 Pの表面とほぼ面一の平坦面 51を有した構成となっている。ここで、基板 Pのェ ッジと上面 51との間には 0. l〜2mm程度の隙間がある力 液体 LQの表面張力によ りその隙間に液体 LQが流れ込むことはほとんどなぐ基板 Pの周縁近傍を露光する 場合にも、上面 51により投影光学系 PLの下に液体 LQを保持することができる。また 、本実施形態においては、移動鏡 55の上面と Zステージ 52の上面 51とも面一となつ ている。なお、投影光学系の下に液体 LQを保持可能であれば、基板 Pの表面と基板 ステージ PSTの上面 51とに段差があってもよい。  [0031] A concave portion 50 is provided on Z stage 52, and substrate holder PH is arranged in concave portion 50. The upper surface 51 of the Z stage 52 other than the concave portion 50 has a flat surface (flat portion) which is almost the same height (level) as the surface of the substrate P held by the substrate holder PH. That is, the substrate stage PST has a configuration in which a flat surface 51 substantially flush with the surface of the substrate P is provided around the substrate P held by the substrate holder PH. Here, there is a gap of about 0.1 to 2 mm between the edge of the substrate P and the upper surface 51. The liquid LQ hardly flows into the gap due to the surface tension of the liquid LQ. Even when exposing the vicinity of the periphery, the liquid LQ can be held under the projection optical system PL by the upper surface 51. In the present embodiment, the upper surface of the movable mirror 55 and the upper surface 51 of the Z stage 52 are also flush. Note that there may be a step between the surface of the substrate P and the upper surface 51 of the substrate stage PST as long as the liquid LQ can be held below the projection optical system.
[0032] 液体供給機構 10は、基板 P上に液体 LQを供給するものであって、液体 LQを送出 可能な第 1液体供給部 11及び第 2液体供給部 12と、第 1液体供給部 11に流路を有 する供給管 11Aを介して接続され、第 1液体供給部 11から送出された液体 LQを基 板 P上に供給する供給口を有する第 1供給部材 13と、第 2液体供給部 12に流路を 有する供給管 12Aを介して接続され、第 2液体供給部 12から送出された液体 LQを 基板 P上に供給する供給口を有する第 2供給部材 14とを備えている。第 1、第 2供給 部材 13、 14は基板 Pの表面に近接して配置されており、基板 Pの面方向において( XY平面内において)互いに異なる位置に設けられている。具体的には、液体供給機 構 10の第 1供給部材 13は投影領域 AR1に対して一方側(一 X側)に設けられ、第 2 供給部材 14は他方側(+X側)に設けられている。 [0032] The liquid supply mechanism 10 supplies the liquid LQ onto the substrate P. The liquid supply mechanism 10 is capable of sending out the liquid LQ, the first liquid supply unit 11 and the second liquid supply unit 12, and the first liquid supply unit 11 A first supply member 13 having a supply port for supplying the liquid LQ sent from the first liquid supply section 11 onto the substrate P, and a second liquid supply A second supply member 14 connected to the unit 12 via a supply pipe 12A having a flow path and having a supply port for supplying the liquid LQ sent from the second liquid supply unit 12 onto the substrate P. The first and second supply members 13 and 14 are arranged close to the surface of the substrate P, and are provided at different positions in the plane direction of the substrate P (within the XY plane). Specifically, the liquid feeder The first supply member 13 of the structure 10 is provided on one side (one X side) with respect to the projection area AR1, and the second supply member 14 is provided on the other side (+ X side).
[0033] 第 1、第 2液体供給部 11、 12のそれぞれは、液体 LQを収容するタンク、異物除去フ ィルタ、及び加圧ポンプ等を備えており、供給管 11A、 12A及び供給部材 13、 14の それぞれを介して基板 P上に液体 LQを供給する。また、第 1、第 2液体供給部 11、 1 2の液体供給動作は制御装置 CONTにより制御され、制御装置 CONTは第 1、第 2 液体供給部 11、 12による基板 P上に対する単位時間あたりの液体供給量をそれぞ れ独立して制御可能である。また、第 1、第 2液体供給部 11、 12のそれぞれは液体 の温度調整機構を有しており、装置が収容されるチャンバ内の温度とほぼ同じ温度( 例えば 23°C)の液体 LQを基板 P上に供給するようになっている。なお、タンク、異物 除去フィルタ、加圧ポンプ、温度調整機構などのすベてを露光装置 EXの第 1、第 2 液体供給部 11、 12が備えている必要はなぐ少なくとも一部を露光装置 EXが設置さ れる工場などの設備で代用してもよ!/、。  [0033] Each of the first and second liquid supply units 11, 12 includes a tank for accommodating the liquid LQ, a foreign matter removal filter, a pressurizing pump, and the like, and includes supply pipes 11A, 12A and supply members 13, 12, The liquid LQ is supplied onto the substrate P via each of the fourteen. Further, the liquid supply operation of the first and second liquid supply units 11 and 12 is controlled by the control device CONT, and the control device CONT controls the first and second liquid supply units 11 and 12 on the substrate P per unit time. The liquid supply can be independently controlled. In addition, each of the first and second liquid supply units 11 and 12 has a liquid temperature adjustment mechanism, and supplies a liquid LQ having substantially the same temperature (for example, 23 ° C.) as the temperature in the chamber in which the device is housed. It is supplied on the substrate P. It is not necessary for the first and second liquid supply units 11 and 12 of the exposure apparatus EX to have all of the tank, foreign matter removing filter, pressure pump, temperature adjustment mechanism, and the like. May be replaced by equipment such as a factory where the is installed!
[0034] 液体回収機構 30は基板 P上の液体 LQを回収するものであって、基板 Pの表面に近 接して配置された回収口を有する第 1、第 2回収部材 31、 32と、この第 1、第 2回収 部材 31、 32に流路を有する回収管 33A、 34Aを介してそれぞれ接続された第 1、第 2液体回収部 33、 34とを備えている。第 1、第 2液体回収部 33、 34は例えば真空ポ ンプ等の吸引装置、及び回収した液体 LQを収容するタンク等を備えており、基板 P 上の液体 LQを第 1、第 2回収部材 31、 32、及び回収管 33A、 34Aを介して回収す る。第 1、第 2液体回収部 33、 34の液体回収動作は制御装置 CONTにより制御され 、制御装置 CONTは第 1、第 2液体回収部 33、 34による単位時間あたりの液体回収 量を制御可能である。なお、吸引装置やタンクなどのすベてを露光装置 EXの第 1、 第 2液体回収部 33、 34が備えている必要はなぐそれらの少なくとも一部を露光装置 EXが設置される工場などの設備で代用してもよい。  [0034] The liquid recovery mechanism 30 recovers the liquid LQ on the substrate P, and includes first and second recovery members 31 and 32 having a recovery port arranged close to the surface of the substrate P, First and second liquid recovery sections 33 and 34 are connected to first and second recovery members 31 and 32 via recovery pipes 33A and 34A having flow paths, respectively. The first and second liquid recovery sections 33 and 34 include, for example, a suction device such as a vacuum pump and a tank for storing the recovered liquid LQ, and collect the liquid LQ on the substrate P into first and second recovery members. Recover through 31, 32 and recovery tubes 33A, 34A. The liquid recovery operation of the first and second liquid recovery units 33 and 34 is controlled by a control device CONT. The control device CONT can control the amount of liquid recovered per unit time by the first and second liquid recovery units 33 and 34. is there. It is not necessary for the first and second liquid recovery sections 33 and 34 of the exposure apparatus EX to have all of the suction devices and tanks. Equipment may be used instead.
[0035] 図 3は、液体供給機構 10及び液体回収機構 30の概略構成を示す平面図である。液 体 LQの液浸領域 AR2はほぼ正方形状の投影領域 AR1を含むように基板 P上の一 部に形成される。液浸領域 AR2を形成するための液体供給機構 10の第 1供給部材 13は投影領域 AR1に対して一方側(一 X側)に設けられ、第 2供給部材 14は他方側 (+X側)に設けられている。第 1、第 2供給部材 13、 14のそれぞれは Y軸方向を長 手方向とする平面視直線状に形成されており、その供給口は基板 Pの表面を向くよう に設けられ、 Y軸方向を長手方向とするスリット状に形成されている。液体供給機構 1 0は、第 1、第 2供給部材 13、 14の供給口より投影領域 AR1の両側で液体 LQを同 時に供給する。 FIG. 3 is a plan view showing a schematic configuration of the liquid supply mechanism 10 and the liquid recovery mechanism 30. The liquid immersion area AR2 of the liquid LQ is formed on a part of the substrate P so as to include the substantially square projection area AR1. The first supply member 13 of the liquid supply mechanism 10 for forming the liquid immersion area AR2 is provided on one side (one X side) with respect to the projection area AR1, and the second supply member 14 is provided on the other side. (+ X side). Each of the first and second supply members 13 and 14 is formed in a linear shape in a plan view having the Y-axis direction as a long direction, and its supply port is provided so as to face the surface of the substrate P. Is formed in a slit shape having a longitudinal direction. The liquid supply mechanism 10 simultaneously supplies the liquid LQ from the supply ports of the first and second supply members 13 and 14 on both sides of the projection area AR1.
[0036] 液体回収機構 30の第 1、第 2回収部材 31、 32のそれぞれは基板 Pの表面に向くよう に円弧状に連続的に形成された回収口を有している。そして、互いに向き合うように 配置された第 1、第 2回収部材 31、 32により略円環状の回収口が形成されている。 第 1、第 2回収部材 31、 32それぞれの回収口は液体供給機構 10の第 1、第 2供給部 材 13、 14、及び投影領域 AR1を取り囲むように配置されている。また、投影領域 AR 1を取り囲むように連続的に形成された回収口の内部に複数の仕切部材 35が設けら れている。  Each of the first and second recovery members 31 and 32 of the liquid recovery mechanism 30 has a recovery port continuously formed in an arc shape facing the surface of the substrate P. The first and second recovery members 31 and 32 arranged to face each other form a substantially annular recovery port. The recovery ports of the first and second recovery members 31 and 32 are arranged so as to surround the first and second supply members 13 and 14 of the liquid supply mechanism 10 and the projection area AR1. Further, a plurality of partition members 35 are provided inside the collection port continuously formed so as to surround the projection area AR1.
[0037] 第 1、第 2供給部材 13、 14の供給ロカも基板 P上に供給された液体 LQは、投影光 学系 PLの先端部 (光学素子 2)の下端面(2A)と基板 Pとの間に濡れ拡がるように供 給される。また、投影領域 AR1に対して第 1、第 2供給部材 13、 14の外側に流出し た液体 LQは、この第 1、第 2供給部材 13、 14より投影領域 AR1に対して外側 (遠く) に配置されている第 1、第 2回収部材 31、 32の回収口より回収される。  [0037] The liquid LQ supplied to the substrate P is also supplied from the first and second supply members 13, 14 to the lower end surface (2A) of the front end (optical element 2) of the projection optical system PL and the substrate P. Supplied so that it spreads between and. Further, the liquid LQ that has flowed out of the first and second supply members 13 and 14 with respect to the projection area AR1 is located outside (farther from) the projection area AR1 than the first and second supply members 13 and 14. The first and second collection members 31 and 32 disposed in the first and second collection members are collected from the collection ports.
なお、液体供給機構 10の構成'配置、及び液体回収機構 30の構成'配置は、上述 のものに限られず、投影光学系 PLの像面側に局所的に液体 LQを保持可能であれ ば、種々の形態を採用することができる。  The arrangement of the liquid supply mechanism 10 and the arrangement of the liquid recovery mechanism 30 are not limited to those described above.If the liquid LQ can be locally held on the image plane side of the projection optical system PL, Various forms can be adopted.
[0038] 次に、上述した露光装置 EXを用いてマスク Mのパターン像を基板 Pに投影して、基 板 Pを露光する方法にっ 、て説明する。  Next, a method of exposing the substrate P by projecting a pattern image of the mask M onto the substrate P using the above-described exposure apparatus EX will be described.
[0039] ここで、本実施形態における露光装置 EXは、上述したようにステップ ·アンド'リピート 方式の投影露光装置 (所謂ステツバ)である。図 4に示すように、基板 P上には複数の ショット領域 S1〜S32がマトリクス状に設定されている。投影光学系 PLの投影領域 A R1の大きさと各ショット領域 S1〜S32のそれぞれの大きさとは対応している。露光時 には、投影光学系 PLの投影領域 AR1と基板 P上の複数のショット領域 S1〜S32のう ち一つのショット領域とが位置合わせされ、基板 Pを静止した状態でマスク Mのパタ ーン像がそのショット領域に一括して投影される。そして、そのショット領域への露光 終了後に、基板 Pのステッピング移動によって次のショット領域が投影領域 AR1に位 置合わせされ、露光される。以下、ステップ'アンド'リピート方式で各ショット領域 S1 〜S 32に対する露光処理が順次行われる。 Here, the exposure apparatus EX in the present embodiment is a step-and-repeat type projection exposure apparatus (so-called stepper) as described above. As shown in FIG. 4, on the substrate P, a plurality of shot areas S1 to S32 are set in a matrix. The size of the projection area A R1 of the projection optical system PL corresponds to the size of each of the shot areas S1 to S32. At the time of exposure, the projection area AR1 of the projection optical system PL is aligned with one of the plurality of shot areas S1 to S32 on the substrate P, and the pattern of the mask M is kept in a state where the substrate P is stationary. The projection images are collectively projected onto the shot area. Then, after the exposure of the shot area is completed, the next shot area is aligned with the projection area AR1 by the stepping movement of the substrate P and is exposed. Hereinafter, the exposure processing for each of the shot areas S1 to S32 is sequentially performed by the step-and-repeat method.
[0040] マスク Mがマスクステージ MSTにロードされるとともに、基板 Pが基板ステージ PST にロードされた後、制御装置 CONTは、液体供給機構 10を使って基板 P上に液体 L Qを供給するとともに、液体回収機構 30を使って基板 P上の液体 LQを回収し、基板 P上に液体 LQの液浸領域 AR2を形成する。  After the mask M is loaded on the mask stage MST and the substrate P is loaded on the substrate stage PST, the controller CONT supplies the liquid LQ onto the substrate P using the liquid supply mechanism 10, The liquid LQ on the substrate P is recovered by using the liquid recovery mechanism 30, and the liquid immersion area AR2 of the liquid LQ is formed on the substrate P.
[0041] 例えば第 1ショット領域 S1を液浸露光するときには、制御装置 CONTは、基板 !^上( 基板 Pと投影光学系 PLの液体接触面 2Aとの間)に液体 LQの液浸領域 AR2を形成 する。そして、基板 P上の第 1ショット領域 S1を露光する前に、フォーカス検出系 4を 使って、基板 Pの第 1ショット領域 S1表面の面位置情報を液体 LQを介して検出する 。すなわち、制御装置 CONTは、フォーカス検出系 4の投射部 4Aより検出光 Laを射 出し、基板 P上に形成された液浸領域 AR2の液体 LQを介して第 1ショット領域 S1に 対応する基板 P表面に検出光 Laを投射するとともに、その反射光を受光部 4Bで受 光する。受光部 4Bは、液浸領域 AR2の液体 LQを介して前記反射光を受光する。制 御装置 CONTは、受光部 4Bでの受光結果に基づいて、基板 Pの第 1ショット領域 S1 表面の面位置情報を求める。なお、基板 P上の第 1ショット領域 S1に検出光 Laを照 射して基板 P表面の面位置情報を検出するときには、基板 Pの XY方向への移動を 停止した状態で行ってもょ 、し、 XY方向へ移動しながら行ってもよ!、。  For example, when the first shot area S1 is subjected to immersion exposure, the control device CONT controls the immersion area AR2 of the liquid LQ on the substrate! ^ (Between the substrate P and the liquid contact surface 2A of the projection optical system PL). To form Then, before exposing the first shot area S1 on the substrate P, surface position information of the surface of the first shot area S1 of the substrate P is detected using the focus detection system 4 via the liquid LQ. That is, the control device CONT emits the detection light La from the projection unit 4A of the focus detection system 4, and outputs the substrate P corresponding to the first shot region S1 via the liquid LQ of the liquid immersion region AR2 formed on the substrate P. The detection light La is projected on the surface, and the reflected light is received by the light receiving section 4B. The light receiving section 4B receives the reflected light via the liquid LQ in the liquid immersion area AR2. The control device CONT obtains surface position information of the surface of the first shot area S1 of the substrate P based on the result of light reception by the light receiving section 4B. When detecting the surface position information on the surface of the substrate P by irradiating the detection light La on the first shot area S1 on the substrate P, the movement of the substrate P in the XY direction may be stopped. You can go while moving in the XY direction!
[0042] 次いで制御装置 CONTは、フォーカス検出系 4を使って検出された基板 Pの第 1ショ ット領域 S1表面の面位置情報に基づいて、投影光学系 PL及び液体 LQを介して形 成される像面と第 1ショット領域 S1表面とが合致するように、 Zステージ 52を駆動し、 基板 Pの位置 (Z位置)を調整する。  Next, the control device CONT forms the image via the projection optical system PL and the liquid LQ based on the surface position information of the surface of the first shot area S1 of the substrate P detected using the focus detection system 4. The Z stage 52 is driven so that the position of the substrate P (Z position) is adjusted so that the image plane to be formed matches the surface of the first shot area S1.
[0043] フォーカス検出系 4を使って検出された基板 P表面の面位置情報に基づいて、投影 光学系 PL及び液体 LQを介して形成される像面と基板 P表面との位置関係の調整を 行い、その位置関係の調整完了後に、制御装置 CONTは、基板 P上の第 1ショット領 域 S1への露光光 ELの照射を開始し、基板 P上の第 1ショット領域 S1にマスク Mのパ ターン像を投影する。本実施形態においては、上述したようにステップ 'アンド 'リビー ト方式で露光処理が行われるため、基板 P上の第 1ショット領域 S1を露光するとき、基 板 Pは静止した状態で露光される。 Based on the surface position information of the surface of the substrate P detected using the focus detection system 4, adjustment of the positional relationship between the image plane formed via the projection optical system PL and the liquid LQ and the surface of the substrate P is performed. After completing the positional adjustment, the controller CONT starts irradiating the first shot area S1 on the substrate P with the exposure light EL, and passes the mask M onto the first shot area S1 on the substrate P. Project a turn image. In the present embodiment, since the exposure process is performed by the step 'and' repeat method as described above, when exposing the first shot area S1 on the substrate P, the substrate P is exposed in a stationary state. .
[0044] ここで、基板 P上の第 1ショット領域 S1を露光中、フォーカス検出系 4による基板 P表 面の面位置情報の検出動作、及び検出された面位置情報に基づく投影光学系 PL による像面と基板 P表面との位置関係の調整動作 (具体的には Zステージ 52の駆動) は停止されている。上述したように、本実施形態においてはステップ ·アンド'リピート 方式で露光処理が行われ、露光中には基板 Pは静止しているので、第 1ショット領域 S1を露光する前に、像面と基板 P表面との位置関係の調整を予め行っておき、その 調整された位置関係を維持した状態で露光することで、投影光学系 PLによる像面と 基板 P表面とを合致させた状態で第 1ショット領域 S1を露光することができる。  Here, during the exposure of the first shot area S1 on the substrate P, the focus detection system 4 detects the surface position information on the surface of the substrate P, and the projection optical system PL performs the operation based on the detected surface position information. The operation of adjusting the positional relationship between the image plane and the surface of the substrate P (specifically, driving of the Z stage 52) is stopped. As described above, in the present embodiment, the exposure processing is performed by the step-and-repeat method, and since the substrate P is stationary during the exposure, the image plane and the image plane are exposed before the first shot area S1 is exposed. The positional relationship between the substrate P and the surface of the substrate P is adjusted in advance, and the exposure is performed while maintaining the adjusted positional relationship, so that the image plane by the projection optical system PL and the surface of the substrate P are aligned with each other. One shot area S1 can be exposed.
[0045] また、基板 P (ショット領域 S1)の露光中には、フォーカス検出系 4を使った面位置情 報の検出動作、及び投影光学系 PLによる像面と基板 P表面との位置関係の調整動 作を停止することで、露光光 ELの照射に起因する液体 LQの温度変化や温度分布 の影響を受けずに、検出光 Laを使った基板 P表面の面位置情報の検出、及び検出 した面位置情報に基づく基板 P表面と前記像面との位置関係の調整を精度良く行う ことができる。したがって、基板 P表面と投影光学系 PLの液体 LQを介した像面とを正 確に位置合わせした状態で、基板 Pを露光することができ、基板 P上に精度良くバタ ーンを形成することができる。  Further, during the exposure of the substrate P (shot area S1), the operation of detecting the surface position information using the focus detection system 4 and the positional relationship between the image plane and the surface of the substrate P by the projection optical system PL are performed. By stopping the adjustment operation, the surface position information of the substrate P can be detected and detected using the detection light La without being affected by the temperature change or temperature distribution of the liquid LQ due to the exposure light EL irradiation. It is possible to accurately adjust the positional relationship between the surface of the substrate P and the image plane based on the obtained surface position information. Therefore, the substrate P can be exposed in a state where the surface of the substrate P and the image plane via the liquid LQ of the projection optical system PL are accurately aligned, and a pattern is formed on the substrate P with high accuracy. be able to.
[0046] 第 1ショット領域 S1の露光が完了した後、制御装置 CONTは、第 1ショット領域 S1に 隣接していないショット領域、例えば第 3ショット領域 S3を露光するために、第 3ショッ ト領域 S3を投影光学系 PLの下へステッピング移動させ、基板 Pの第 3ショット領域 S3 上に液体 LQの液浸領域 AR2を形成する。そして、第 3ショット領域 S3上に液浸領域 AR2を形成した後、その第 3ショット領域 S3を露光する前に、フォーカス検出系 4を 使って、基板 Pの第 3ショット領域 S3表面の面位置情報を液体 LQを介して検出する 。そして、制御装置 CONTは、フォーカス検出系 4を使って検出した基板 P表面の面 位置情報に基づいて、投影光学系 PLによる像面と第 3ショット領域 S3に対応する基 板 P表面との位置関係を調整する。そして、前記位置関係の調整完了後に、基板 P の第 3ショット領域 S3への露光光 ELの照射を開始する。第 3ショット領域 S3を露光す るときも、第 1ショット領域 S1を露光したときと同様、フォーカス検出系 4を使った面位 置情報の検出動作、及び検出された面位置情報に基づく前記位置関係の調整動作 は停止される。 After the exposure of the first shot area S1 is completed, the control device CONT controls the third shot area to expose a shot area that is not adjacent to the first shot area S1, for example, the third shot area S3. The step S3 is moved under the projection optical system PL to form a liquid immersion area AR2 of the liquid LQ on the third shot area S3 of the substrate P. Then, after forming the liquid immersion area AR2 on the third shot area S3 and before exposing the third shot area S3, using the focus detection system 4, the surface position of the surface of the third shot area S3 of the substrate P is used. Detect information via liquid LQ. Then, based on the surface position information of the substrate P surface detected using the focus detection system 4, the control device CONT calculates the position between the image plane by the projection optical system PL and the substrate P surface corresponding to the third shot area S3. Reconcile relationships. Then, after completing the positional adjustment, the substrate P The irradiation of the third shot area S3 with the exposure light EL is started. When the third shot area S3 is exposed, similarly to the case where the first shot area S1 is exposed, the detection operation of the surface position information using the focus detection system 4 and the position based on the detected surface position information are performed. The relationship adjustment operation is stopped.
[0047] 以下同様に、基板 P上に設定された複数のショット領域が順次露光される。そして、 本実施形態においては、基板 P上の複数のショット領域 S1〜S32を露光するとき、隣 接したショット領域が連続して露光されな 、ように、基板 P上の複数のショット領域 S1 〜S32の露光順序が決定されている。図 4には露光順序力 符号(1)、(2)、(3)、… 、(32)で示されており、図 4に示す例では、 1番目に第 1ショット領域 S1が露光され( 符号 (1)参照)、 2番目に第 3ショット領域 S3が露光され (符号 (2)参照)、 3番目に第 16ショット領域 S16が露光され (符号 (3)参照)、以下 32番目まで、隣接したショット 領域が連続して露光されな 、ようになって 、る。  [0047] Similarly, a plurality of shot regions set on the substrate P are sequentially exposed. In the present embodiment, when exposing a plurality of shot areas S1 to S32 on the substrate P, a plurality of shot areas S1 to S32 on the substrate P are so exposed that adjacent shot areas are not continuously exposed. The exposure order of S32 has been determined. FIG. 4 shows the exposure order codes (1), (2), (3),..., (32). In the example shown in FIG. 4, the first shot area S1 is exposed first ( (See reference numeral (1)), the third shot area S3 is exposed second (see reference numeral (2)), the 16th shot area S16 is exposed third (see reference numeral (3)), and so on up to the 32nd. An adjacent shot area is not continuously exposed.
[0048] このように、基板 P上の複数のショット領域 S1〜S32のうち隣接したショット領域を連 続して露光しな 、ようにすることで、露光しょうとする基板 Pのショット領域上の液体 L Qの温度変化や温度分布がほぼ無い状態でそのショット領域を露光することができる 。例えば図 5において、基板 P上の第 1ショット領域 S1を露光するために露光光 ELを 照射したとき、その基板 P上の第 1ショット領域 S1が加熱され、その熱によって第 1ショ ット領域 S1上又は近傍の液体 LQに温度変化や温度分布が生じる可能性がある。そ の状態で、露光を終えた第 1ショット領域 S1を投影光学系 PLの下力 退避させ、第 2 ショット領域 S2を投影光学系 PLの下に配置した場合、第 1ショット領域 S1に隣接す る第 2ショット領域 S2上の液体 LQ (第 2ショット領域 S2と投影光学系 PLとの間の液体 LQ)にも、第 1ショット領域 S1の露光に起因して温度変化や温度分布が生じる可能 性がある。換言すれば、第 1ショット領域 S1の熱又はその第 1ショット領域 S1上の加 熱された液体 LQが、第 2ショット領域 S2上の液体 LQの温度変化や温度分布を引き 起こす可能性がある。その場合、第 1ショット領域 S1の露光を完了した後に、隣接す る第 2ショット領域 S2を直ちに露光しょうとすると、第 2ショット領域 S2上の液体 LQの 温度変化に起因して、第 2ショット領域 S2を露光するときの投影光学系 PLの液体 LQ を介した結像特性が変動し、基板 P上に精度良くパターンを形成できない不都合が 生じるおそれがある。そのため、図 6に示すように、隣接したショット領域が連続して露 光されるように基板 P上の複数のショット領域の露光順序が決定されて 、る場合にお いては、上記不都合が生じる可能性が高くなる。 As described above, by not continuously exposing the adjacent shot areas among the plurality of shot areas S 1 to S 32 on the substrate P, the shot areas on the substrate P to be exposed are The shot area can be exposed in a state where there is almost no temperature change or temperature distribution of the liquid LQ. For example, in FIG. 5, when the exposure light EL is irradiated to expose the first shot area S1 on the substrate P, the first shot area S1 on the substrate P is heated, and the heat causes the first shot area S1 to be exposed. Temperature change or temperature distribution may occur in the liquid LQ on or near S1. In this state, if the exposed first shot area S1 is retracted from the projection optical system PL and the second shot area S2 is disposed below the projection optical system PL, the first shot area S1 is adjacent to the first shot area S1. The liquid LQ on the second shot area S2 (the liquid LQ between the second shot area S2 and the projection optical system PL) may also have a temperature change and a temperature distribution due to the exposure of the first shot area S1. There is. In other words, the heat of the first shot area S1 or the heated liquid LQ on the first shot area S1 may cause a temperature change or temperature distribution of the liquid LQ on the second shot area S2. . In this case, if the exposure of the adjacent second shot area S2 is attempted immediately after the exposure of the first shot area S1 is completed, the second shot area S2 will be exposed due to the temperature change of the liquid LQ on the second shot area S2. The image forming characteristics of the projection optical system PL via the liquid LQ when exposing the area S2 fluctuate, and the pattern cannot be accurately formed on the substrate P. May occur. Therefore, as shown in FIG. 6, when the exposure order of the plurality of shot areas on the substrate P is determined so that adjacent shot areas are continuously exposed, the above-described inconvenience occurs. The likelihood increases.
[0049] そこで、例えば第 1ショット領域 S1を露光したことによって第 2ショット領域 S2上の液 体 LQに温度変化が生じた可能性がある場合には、図 4に示したように、第 1ショット 領域 S 1を露光した後に、第 1ショット領域 S 1とは離れた位置にあるショット領域 (例え ば S3)を露光することで、離れた位置にあるショット領域 S3、 S16などを露光している 間に、基板 Pの第 1ショット領域 S1は所望温度に安定化され、その第 1ショット領域 S1 近傍の液体 LQの温度も安定ィ匕することができる。そして、第 1ショット領域 S1の次に 露光するショット領域を、第 1ショット領域 S1とは離れた位置にある (第 1ショット領域 S 1とは隣接していない)ショット領域 (例えば S3)とすることで、露光しょうとするショット 領域 S3上の液体 LQに温度変化や温度分布がほぼ無い状態で、そのショット領域 S 3を露光することができる。このように、基板 P上の複数のショット領域 S1〜S32のうち 隣接したショット領域を連続して露光しな 、ようにすることで、露光しょうとするショット 領域上の液体 LQの温度変化や温度分布がほぼ無 、状態で、そのショット領域を露 光することができる。したがって、基板 P上に精度良くパターンを形成することができる [0049] For example, when there is a possibility that the liquid LQ on the second shot area S2 may have changed in temperature due to the exposure of the first shot area S1, as shown in FIG. After exposing the shot area S1, by exposing a shot area (for example, S3) at a position distant from the first shot area S1, the shot areas S3, S16, etc., at positions distant from the first shot area S1 are exposed. In the meantime, the first shot area S1 of the substrate P is stabilized at a desired temperature, and the temperature of the liquid LQ near the first shot area S1 can be stabilized. Then, the shot area to be exposed next to the first shot area S1 is a shot area (for example, S3) located at a position apart from the first shot area S1 (not adjacent to the first shot area S1). Thus, the shot region S3 can be exposed in a state where the liquid LQ on the shot region S3 to be exposed has almost no temperature change or temperature distribution. As described above, by not continuously exposing the adjacent shot areas among the plurality of shot areas S1 to S32 on the substrate P, the temperature change or the temperature of the liquid LQ on the shot area to be exposed is increased. The shot area can be exposed with almost no distribution. Therefore, a pattern can be accurately formed on the substrate P.
[0050] そして、第 1ショット領域 S1を露光した後、次に露光するショット領域として、露光光 E Lの照射による基板 P (第 1ショット領域 S1)の熱の影響を受けないショット領域に決定 することで、露光しょうとするショット領域上の液体 LQの温度変化や温度分布がほぼ 無い状態で、更に良好にそのショット領域を露光することができる。上述したように、 露光光 ELが照射された第 1ショット領域 S1は加熱されるため、第 1ショット領域 S1上 又は近傍の液体 LQに温度変化や温度分布が生じる。そこで、第 1ショット領域 S1の 露光を完了した後は、基板 Pの第 1ショット領域 S1の熱の影響を受けない離れた位 置にある液体 LQを介してショット領域を露光するように露光順序を決定するとよ!/、。 このように、複数のショット領域 S1〜S32を露光するときの露光順序を、露光光 ELの 照射による基板 Pの熱の影響を受けないように決定することで、露光しょうとするショッ ト領域上の液体 LQの温度変化や温度分布がほぼ無 、状態で、更に良好にそのショ ット領域を露光することができる。 After exposing the first shot area S1, a shot area to be exposed next is determined to be a shot area that is not affected by the heat of the substrate P (first shot area S1) due to the irradiation of the exposure light EL. Thus, the shot area can be more appropriately exposed in a state where there is almost no temperature change or temperature distribution of the liquid LQ on the shot area to be exposed. As described above, since the first shot area S1 irradiated with the exposure light EL is heated, a temperature change or a temperature distribution occurs in the liquid LQ on or near the first shot area S1. Therefore, after the exposure of the first shot area S1 is completed, the exposure order is set such that the shot area is exposed via the liquid LQ at a remote position which is not affected by the heat of the first shot area S1 of the substrate P. Let's decide! / ,. In this way, by determining the exposure order when exposing the plurality of shot areas S1 to S32 so as not to be affected by the heat of the substrate P due to the irradiation of the exposure light EL, the shot area to be exposed is determined. The liquid LQ has almost no temperature change or temperature distribution, The cut area can be exposed.
[0051] なお複数のショット領域 S1〜S32を露光するときの露光順序を決定する場合、図 4に 示すように、基板 Pのステッピング移動の方向は適当に決めることができる。例えば第 1ショット領域 S1の次に第 3ショット領域 S3を露光するときのように、投影領域 AR1が 第 2ショット領域 S2を飛び越えるようにして、投影領域 AR1に対して基板 Pを X軸方 向(マトリクス状に配置されたショット領域の列方向)に移動するようにしてもよいし、第 18ショット領域 S18の次に第 29ショット領域 S29を露光するときのように、投影領域 A Rlが第 27ショット領域 S27を飛び越えるようにして、投影領域 ARlに対して基板 Pを Y軸方向(行方向)に移動するようにしてもよいし、第 12ショット領域 S12の次に第 23 ショット領域 S23を露光するときのように、投影領域 AR1に対して基板 Pを斜め方向 に移動するようにしてもよい。  When determining the exposure order when exposing the plurality of shot areas S1 to S32, the direction of the stepping movement of the substrate P can be appropriately determined as shown in FIG. For example, when exposing the third shot area S3 after the first shot area S1, the substrate P is moved in the X-axis direction with respect to the projection area AR1 so that the projection area AR1 jumps over the second shot area S2. (In the column direction of the shot areas arranged in a matrix), or the projection area A Rl may be moved to the second position, such as when exposing the 29th shot area S29 after the 18th shot area S18. The substrate P may be moved in the Y-axis direction (row direction) with respect to the projection area ARl by jumping over the 27-shot area S27, or the 23rd shot area S23 may be moved after the twelfth shot area S12. As in the case of exposure, the substrate P may be moved obliquely with respect to the projection area AR1.
[0052] なお上述した実施形態においては、複数のショット領域 S1〜S32を順次露光する 際、露光しょうとするショット領域の面位置情報の検出動作と、面位置情報を検出さ れたショット領域に対する露光動作とを交互に行っているが、制御装置 CONTは、基 板 Pの露光前に、液浸領域 AR2を形成した状態で、全てのショット領域 S1〜S32 (あ るいは一部の複数のショット領域)それぞれについての面位置情報をフォーカス検出 系 4を使って検出し、その検出した面位置情報を記憶し、各ショット領域 S1〜S32を 露光するときには、前記記憶した面位置情報に基づいて、投影光学系 PLによる像面 と基板 P表面との位置関係を調整し、露光するようにしてもょ ヽ。  In the above-described embodiment, when sequentially exposing the plurality of shot areas S 1 to S 32, the operation of detecting the surface position information of the shot area to be exposed and the operation of the shot area where the surface position information is detected are performed. Although the exposure operation and the exposure operation are performed alternately, the control device CONT controls all the shot regions S1 to S32 (or some (Shot area) The surface position information for each is detected using the focus detection system 4, and the detected surface position information is stored.When exposing each of the shot areas S1 to S32, based on the stored surface position information, Alternatively, the exposure may be performed by adjusting the positional relationship between the image plane by the projection optical system PL and the surface of the substrate P.
[0053] なお、本実施形態においては、基板 P上のショット領域 (例えばショット領域 S1)の露 光中は、フォーカス検出系 4による検出動作も、投影光学系 PLの像面とショット領域 S1表面との位置関係の調整も停止するようにしている力 フォーカス検出系 4による 検出動作は継続して、その検出結果に基づく投影光学系 PLの像面とショット領域 S1 表面との位置関係の調整のみを停止するようにしてもょ 、。  In this embodiment, during the exposure of the shot area (eg, shot area S1) on the substrate P, the detection operation by the focus detection system 4 also performs the detection operation by the image plane of the projection optical system PL and the surface of the shot area S1. The focus operation is continued by the focus detection system 4, and only the adjustment of the positional relationship between the image plane of the projection optical system PL and the surface of the shot area S1 based on the detection result is performed. You may try to stop.
[0054] また、本実施形態においては、フォーカス検出系 4は、投影光学系 PLを介さずに、 液体 LQを介して基板 Pの面位置を検出する構成になっている力 投影光学系 PLの 一部の光学素子、あるいは全ての光学素子、及び液体 LQを介して基板 Pの面位置 を検出することもできる。さらにマスク Mを介して検出を行うようにしてもよい。 [0055] また、本実施形態にぉ 、ては、基板 P上のショット領域 (例えばショット領域 S1)の露 光中は、フォーカス検出系 4による検出動作を停止するようにしている力 光学的な 検出を行うフォーカス検出系 4とは別に、非光学的な検出系(例えば、静電容量セン サ、マイクロメータ、超音波センサなど)を設けておき、基板 P上のショット領域の露光 中は、液体 LQの熱の影響を受けない (受けにくい)非光学的な検出系を使って投影 光学系 PLと基板 Pとの距離を計測するようにしてもよい。非光学的な検出系の検出 結果は、その露光中のショット領域のフォーカス情報として記憶するだけでもよいし、 その結果に基づ 、て投影光学系 PLと基板 Pとの距離を調整するようにしてもょ 、。 In the present embodiment, the focus detection system 4 is configured to detect the surface position of the substrate P via the liquid LQ without passing through the projection optical system PL. The surface position of the substrate P can be detected via some or all of the optical elements and the liquid LQ. Further, the detection may be performed via the mask M. In the present embodiment, during the exposure of the shot area (eg, shot area S1) on the substrate P, the detection operation of the focus detection system 4 is stopped. In addition to the focus detection system 4 that performs detection, a non-optical detection system (for example, a capacitance sensor, a micrometer, an ultrasonic sensor, etc.) is provided, and during exposure of the shot area on the substrate P, The distance between the projection optical system PL and the substrate P may be measured by using a non-optical detection system that is not (and hardly affected) by the heat of the liquid LQ. The detection result of the non-optical detection system may be simply stored as focus information of the shot area during the exposure, or the distance between the projection optical system PL and the substrate P may be adjusted based on the result. Yeah.
[0056] また、本実施形態にぉ 、ては、基板 P上のショット領域 (例えばショット領域 S1)の露 光前のフォーカス検出系 4による検出動作中も、液体供給機構 10による液体供給動 作と液体回収機構 30による液体回収動作とを継続して ヽるが、液浸領域 AR2を形 成した状態で、液体供給機構 10による液体供給動作と液体回収機構 30による液体 回収動作とを停止させてもょ ヽ。  In the present embodiment, the liquid supply operation by the liquid supply mechanism 10 is also performed during the detection operation of the focus detection system 4 before exposure of the shot area (eg, the shot area S1) on the substrate P. And the liquid recovery operation by the liquid recovery mechanism 30 is continued, but the liquid supply operation by the liquid supply mechanism 10 and the liquid recovery operation by the liquid recovery mechanism 30 are stopped with the liquid immersion area AR2 formed.ょ
[0057] さらに、本実施形態においては、基板 P上のショット領域 (例えばショット領域 S1)の 露光中に液体供給機構 10による液体供給動作と液体回収機構 30による液体回収 動作とを継続しているが、液浸領域 AR2を形成した状態で、液体供給機構 10による 液体供給動作と液体回収機構 30による液体回収動作とを停止させておき、あるショ ット領域の露光完了後、次のショット領域の露光のために基板 Pをステップ移動させる ときに液体供給機構 10による液体供給動作と液体回収機構 30による液体回収動作 とを実行するようにしてもょ 、。  Further, in the present embodiment, the liquid supply operation by the liquid supply mechanism 10 and the liquid recovery operation by the liquid recovery mechanism 30 are continued during the exposure of the shot area (for example, the shot area S1) on the substrate P. However, with the liquid immersion area AR2 formed, the liquid supply operation by the liquid supply mechanism 10 and the liquid recovery operation by the liquid recovery mechanism 30 are stopped, and after the exposure of one shot area is completed, the next shot area The liquid supply operation by the liquid supply mechanism 10 and the liquid recovery operation by the liquid recovery mechanism 30 may be executed when the substrate P is step-moved for the first exposure.
また本実施形態にぉ 、ては、基板 P上の隣接したショット領域が連続して露光され な 、ように複数のショット領域の露光順序が決定されて 、る力 隣のショット領域の露 光の影響が小さければ、隣接するショット領域を露光してもよい。ただし、この場合も、 フォーカス検出系 4による基板 Pの表面位置の検出動作が完了した後に、各ショット 領域の露光が開始される。  Further, in the present embodiment, the exposure order of a plurality of shot areas is determined so that adjacent shot areas on the substrate P are not continuously exposed. If the influence is small, the adjacent shot area may be exposed. However, also in this case, the exposure of each shot area is started after the operation of detecting the surface position of the substrate P by the focus detection system 4 is completed.
[0058] 以下、本発明の別の実施形態について説明する。以下の説明において、上述した実 施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略 もしくは省略する。 [0059] 本実施形態では、露光装置 EXとしてマスク Mと基板 Pとを走査方向(所定方向)にお ける互いに異なる向き (逆方向)に同期移動しつつマスク Mに形成されたパターンを 基板 Pに露光するステップ ·アンド ·スキャン方式の走査型露光装置 (所謂スキヤニン ダステツバ)を使用する場合を例にして説明する。以下の説明において、水平面内に おいてマスク Mと基板 Pとの同期移動方向(走査方向、所定方向)を X軸方向、水平 面内にお!ヽて X軸方向と直交する方向を Y軸方向(非走査方向)、 X軸及び Y軸方向 に垂直で投影光学系 PLの光軸 AXと一致する方向を Z軸方向とする。 Hereinafter, another embodiment of the present invention will be described. In the following description, components that are the same as or equivalent to those in the above-described embodiment are given the same reference numerals, and descriptions thereof will be simplified or omitted. In the present embodiment, as the exposure apparatus EX, the pattern formed on the mask M is synchronized with the mask M and the substrate P in directions different from each other (reverse direction) in the scanning direction (predetermined direction). A step-and-scan type scanning exposure apparatus (so-called scanning stepper) will be described as an example. In the following description, the synchronous movement direction (scanning direction, predetermined direction) between the mask M and the substrate P in the horizontal plane is the X-axis direction, and the direction perpendicular to the X-axis direction is the Y-axis in the horizontal plane. Direction (non-scanning direction), a direction perpendicular to the X-axis and Y-axis directions and coincident with the optical axis AX of the projection optical system PL is defined as a Z-axis direction.
[0060] 図 7に示すように、走査型露光装置 EXにおいては、投影光学系 PLの投影領域 AR1 は Y軸方向(非走査方向)を長手方向とするスリット状 (矩形状)に設定されており、液 体 LQが満たされた液浸領域 AR2は投影領域 AR1を含むように基板 P上の一部に 形成される。液浸領域 AR2を形成するための液体供給機構 10の第 1供給部材 13は 投影領域 AR1に対して走査方向一方側(一 X側)に設けられ、第 2供給部材 14は他 方側( +X側)に設けられて 、る。  As shown in FIG. 7, in the scanning exposure apparatus EX, the projection area AR1 of the projection optical system PL is set in a slit shape (rectangular shape) whose longitudinal direction is in the Y-axis direction (non-scanning direction). Thus, the liquid immersion area AR2 filled with the liquid LQ is formed on a part of the substrate P so as to include the projection area AR1. The first supply member 13 of the liquid supply mechanism 10 for forming the liquid immersion area AR2 is provided on one side (1 X side) in the scanning direction with respect to the projection area AR1, and the second supply member 14 is provided on the other side (+ X side).
[0061] 走査露光時には、投影光学系 PLの先端部直下のスリット状 (矩形状)の投影領域 A R1に、照明領域に応じたマスク Mの一部のパターン像が投影され、投影光学系 PL に対して、マスク Mがー X方向(又は +X方向)に速度 Vで移動するのに同期して、 X Yステージ 53を介して基板 Pが +X方向(又は— X方向)に速度 β ·Υ ( βは投影倍率 )で移動する。  At the time of scanning exposure, a pattern image of a part of the mask M corresponding to the illumination area is projected onto a slit-shaped (rectangular) projection area A R1 immediately below the tip of the projection optical system PL. On the other hand, in synchronization with the movement of the mask M in the −X direction (or + X direction) at the speed V, the substrate P moves in the + X direction (or −X direction) via the XY stage 53.で (β is the projection magnification).
[0062] 図 8に示すように、基板 Ρ上には複数のショット領域 S 1〜S45が設定されており、 1つ のショット領域への露光終了後に、基板 Pのステッピング移動によって次のショット領 域が走査開始位置に移動し、以下、ステップ ·アンド'スキャン方式で基板 Pを移動し ながら各ショット領域に対する走査露光処理が順次行われる。そして、本実施形態に おいても、基板 P上の複数のショット領域 S 1〜S45のうちの隣接したショット領域が連 続して露光されな 、ように、基板 P上の複数のショット領域の露光順序が決定されて いる。  As shown in FIG. 8, a plurality of shot areas S 1 to S 45 are set on the substrate 、. After the exposure of one shot area is completed, the next shot area S is moved by the stepping movement of the substrate P. The area moves to the scanning start position, and thereafter, scanning exposure processing is sequentially performed on each shot area while moving the substrate P by the step-and-scan method. Also in the present embodiment, a plurality of shot areas on the substrate P are exposed so that adjacent shot areas among the plurality of shot areas S1 to S45 on the substrate P are not continuously exposed. The exposure order has been determined.
[0063] 図 8に示す例では、 1番目に第 5ショット領域 S5が露光され、 2番目に第 2ショット領域 S2が露光され、 3番目に第 12ショット領域 S 12が露光され、以下、隣接したショット領 域が連続して露光されないようになっている。なお図 8には、簡単のため露光順序(1 ;)〜(8)番目までを図示している。また、各ショット領域 S1〜S45の露光に先立って、 上述した実施形態同様、フォーカス検出系 4によって全てのショット領域 S1〜S45の 面位置情報を液体 LQを介して検出しておくことができる。 In the example shown in FIG. 8, the first shot area S5 is exposed, the second shot area S2 is exposed second, the twelfth shot area S12 is exposed third, and The shot area is not exposed continuously. FIG. 8 shows the exposure sequence (1 ;) To (8). Prior to the exposure of each of the shot areas S1 to S45, similarly to the above-described embodiment, the focus detection system 4 can detect the surface position information of all the shot areas S1 to S45 via the liquid LQ.
[0064] ところで、本実施形態においては、例えば第 5ショット領域 S5の次に第 2ショット領域 S2を露光するときには、投影領域 AR1が第 4、第 3ショット領域 S4、 S3を飛び越える ように、投影領域 AR1に対して基板 Pが X軸方向に移動し、同様に、第 12ショット領 域 S12の次に第 9ショット領域 S9を露光するときには、投影領域 AR1が第 11、第 10 ショット領域 Sl l、 S 10を飛び越えるように、投影領域 AR1に対して基板 Pが X軸方 向に移動している。すなわち、本実施形態においては、 X軸方向に関して並んだ複 数のショット領域のうちから選択された複数のショット領域を連続して露光するとき、投 影領域 AR1が 2つ分のショット領域を飛び越えるように、投影領域 AR1に対して基板 Pが X軸方向に移動する。  In the present embodiment, for example, when exposing the second shot area S2 after the fifth shot area S5, the projection area AR1 is projected so as to jump over the fourth and third shot areas S4 and S3. Similarly, when the substrate P moves in the X-axis direction with respect to the area AR1, and the ninth shot area S9 is exposed next to the twelfth shot area S12, the projection area AR1 is shifted to the eleventh and tenth shot areas Sl1. The substrate P moves in the X-axis direction with respect to the projection area AR1 so as to jump over S10. That is, in the present embodiment, when continuously exposing a plurality of shot areas selected from a plurality of shot areas arranged in the X-axis direction, the projection area AR1 jumps over two shot areas. As described above, the substrate P moves in the X-axis direction with respect to the projection area AR1.
[0065] また、 X軸方向に関して並んだ複数のショット領域のうちから選択された複数のショッ ト領域を連続して露光するとき、基板 Pの走査方向(移動方向)は同じ方向に設定さ れている。つまり、 X軸方向に関して並んだ複数のショット領域 S1〜S5のうち力 選 択された 2つのショット領域 S2、 S5を走査露光するときは、投影領域 AR1に対して基 板 P (ショット領域)は +X方向に移動し (矢印 yl参照)、ショット領域 S12〜S6のうち 力も選択された 3つのショット領域 S12、 S9、 S6を走査露光するときは、投影領域 AR 1に対して基板 P (ショット領域)は— X方向に移動し (矢印 y2参照)、ショット領域 S20 〜S26のうち力ら選択された 3つのショット領域 S20、 S23、 S26を走査露光するとき は、投影領域 AR1に対して基板 P (ショット領域)は +X方向に移動する(矢印 y3参 照)。なお見やすくするため、図 8の矢印の向きは、基板 Pが静止しているものとし、そ の静止状態の基板 Pに対する投影領域 AR1の移動方向を示して 、る。  When continuously exposing a plurality of shot regions selected from a plurality of shot regions arranged in the X-axis direction, the scanning direction (moving direction) of the substrate P is set to the same direction. ing. That is, when scanning exposure is performed on two shot areas S2 and S5, which are force-selected out of a plurality of shot areas S1 to S5 arranged in the X-axis direction, the substrate P (shot area) is projected with respect to the projection area AR1. Moves in the + X direction (see arrow yl), and scans and exposes three shot areas S12, S9, and S6 in which the force is selected from shot areas S12 to S6. Area) —moves in the X direction (see arrow y2), and scans and exposes three shot areas S20, S23, and S26 selected from among the shot areas S20 to S26. P (shot area) moves in the + X direction (see arrow y3). For the sake of clarity, the direction of the arrow in FIG. 8 indicates that the substrate P is stationary, and indicates the moving direction of the projection area AR1 with respect to the substrate P in the stationary state.
[0066] 図 9の模式図に示すように、本実施形態においては、走査露光時には、投影光学系 PL〖こ対して、マスク Mがー X方向(又は +X方向)に移動するのに同期して、基板 P が +X方向(又は—X方向)に移動する。図 9においては、マスク M上での露光光 EL の照明領域 IAは、マスク M上のパターン形成領域 PA内で Y軸方向に延びたスリット 状に設定されており、その Y軸方向の両端部は遮光帯 SB上に位置している。そして 、マスク M上の照明領域 IA内に含まれる部分パターンは、投影光学系 PLの投影領 域 AR1に投影される。 As shown in the schematic diagram of FIG. 9, in the present embodiment, at the time of scanning exposure, the mask M is moved in the −X direction (or + X direction) in synchronization with the projection optical system PL. Then, the substrate P moves in the + X direction (or the −X direction). In FIG. 9, the illumination area IA of the exposure light EL on the mask M is set in a slit shape extending in the Y-axis direction in the pattern formation area PA on the mask M, and both ends in the Y-axis direction are provided. Is located on the shading band SB. And The partial pattern included in the illumination area IA on the mask M is projected onto the projection area AR1 of the projection optical system PL.
[0067] そして、例えば基板 Pのショット領域の +X側端部と投影領域 AR1とが位置合わせさ れている位置が、そのショット領域 (基板 P)に関する走査開始位置である場合、マス ク Mの—X側端部と露光光 ELの照明領域 IAとが位置合わせされている位置が、マ スク Mに関する走査開始位置となる。そのため、例えば第 5ショット領域 S5と第 2ショ ット領域 S2とを露光するときの基板 Pの移動方向が同じ方向 ylである場合、第 5ショ ット領域 S5の走査終了位置力 第 2ショット領域 S2の走査開始位置まで基板 Pが移 動する間に、走査終了位置にあるマスク Mは走査開始位置まで戻る必要がある。本 実施形態においては、基板 P上の第 5ショット領域 S5を露光した後、第 2ショット領域 に関する走査開始位置に移動するために、基板 Pは 2つ分のショット領域だけ移動す ることになる。したがって、その基板 Pの移動の間に、マスク Mを走査終了位置から走 查開始位置に戻すことができる。  [0067] For example, when the position where the + X side end of the shot area of the substrate P is aligned with the projection area AR1 is the scan start position for the shot area (substrate P), the mask M The position where the —X side end of the mask M and the illumination area IA of the exposure light EL are aligned is the scanning start position for the mask M. Therefore, for example, when the moving direction of the substrate P when exposing the fifth shot area S5 and the second shot area S2 is the same direction yl, the scanning end position force of the fifth shot area S5 While the substrate P moves to the scanning start position in the area S2, the mask M at the scanning end position needs to return to the scanning start position. In the present embodiment, after exposing the fifth shot area S5 on the substrate P, the substrate P moves by two shot areas to move to the scanning start position for the second shot area. . Therefore, during the movement of the substrate P, the mask M can be returned from the scan end position to the scan start position.
[0068] なお、基板 Pを +X方向と— X方向とに交互に移動(走査)しながら、複数のショット領 域を順次走査露光することもできるが、この場合も隣接したショット領域が連続して走 查露光されな!、ように、各ショット領域の露光順序を決定すればょ 、。  It is also possible to sequentially scan and expose a plurality of shot areas while moving (scanning) the substrate P alternately in the + X direction and in the −X direction. Then, do not expose! Determine the exposure order for each shot area.
[0069] 上述したように、本実施形態における液体 LQは純水である。純水は、半導体製造ェ 場等で容易に大量に入手できるとともに、基板 P上のフォトレジストや光学素子(レン ズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないと ともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投影光学系 PLの先 端面に設けられている光学素子の表面を洗浄する作用も期待できる。なお工場等か ら供給される純水の純度が低 ヽ場合には、露光装置が超純水製造器を持つようにし てもよい。  [0069] As described above, the liquid LQ in the present embodiment is pure water. Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that it has no adverse effect on the photoresist on the substrate P, the optical element (lens), and the like. In addition, pure water has no adverse effect on the environment and has an extremely low impurity content. Therefore, it is expected that the surface of the substrate P and the surface of the optical element provided on the front end face of the projection optical system PL will be cleaned. it can. When the purity of pure water supplied from a factory or the like is low, the exposure apparatus may have an ultrapure water producing device.
[0070] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 44 と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm)を用 いた場合、基板 P上では lZn、すなわち約 134nmに短波長化されて高い解像度が 得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡大され るため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学系 PLの開口数をより増カロさせることができ、この点でも解像度が向上する。 [0070] The refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is said to be approximately 1.44, and an ArF excimer laser beam (wavelength of 193 nm) is used as the light source of the exposure light EL. In this case, the wavelength is shortened to lZn, that is, about 134 nm on the substrate P, and a high resolution is obtained. Furthermore, since the depth of focus is expanded to about n times, that is, about 1.44 times as compared with that in the air, if it is sufficient to secure the same depth of focus as when using it in the air, The numerical aperture of the projection optical system PL can be increased, and the resolution is improved in this respect as well.
[0071] なお、上述したように液浸法を用いた場合には、投影光学系の開口数 NAが 0. 9〜1 . 3になることもある。このように投影光学系の開口数 NAが大きくなる場合には、従来 力 露光光として用いられて 、るランダム偏光光では偏光効果によって結像性能が 悪ィ匕することもあるので、偏光照明を用いるのが望ましい。その場合、マスク(レチタ ル)のライン 'アンド'スペースパターンのラインパターンの長手方向に合わせた直線 偏光照明を行い、マスク(レチクル)のパターンからは、 S偏光成分 (TE偏光成分)、 すなわちラインパターンの長手方向に沿った偏光方向成分の回折光が多く射出され るようにするとよい。投影光学系 PLと基板 P表面に塗布されたレジストとの間が液体 で満たされて ヽる場合、投影光学系 PLと基板 P表面に塗布されたレジストとの間が 空気 (気体)で満たされている場合に比べて、コントラストの向上に寄与する S偏光成 分 (TE偏光成分)の回折光のレジスト表面での透過率が高くなるため、投影光学系 の開口数 NAが 1. 0を越えるような場合でも高い結像性能を得ることができる。また、 位相シフトマスクゃ特開平 6— 188169号公報に開示されているようなラインパターン の長手方向に合わせた斜入射照明法 (特にダイポール照明法)等を適宜組み合わ せると更に効果的である。 When the liquid immersion method is used as described above, the numerical aperture NA of the projection optical system may be 0.9 to 1.3. When the numerical aperture NA of the projection optical system is increased as described above, the imaging performance may be deteriorated due to the polarization effect with the random polarized light which has been conventionally used as the power exposure light. It is desirable to use. In this case, linearly polarized illumination is performed according to the longitudinal direction of the line pattern of the 'and' space pattern of the mask (reticle), and the S-polarized component (TE-polarized component), ie, the line It is preferable that a large amount of diffracted light of the polarization direction component along the longitudinal direction of the pattern is emitted. When the space between the projection optical system PL and the resist applied to the surface of the substrate P is filled with liquid, the space between the projection optical system PL and the resist applied to the surface of the substrate P is filled with air (gas). The transmittance of the diffracted light of the S-polarized light component (TE-polarized light component), which contributes to the improvement of contrast, on the resist surface is higher than that of the case where the numerical aperture NA of the projection optical system exceeds 1.0. Even in such a case, high imaging performance can be obtained. Further, it is more effective to appropriately combine a phase shift mask, such as an oblique incidence illumination method (particularly, a dipole illumination method) such as that disclosed in JP-A-6-188169, which is adapted to the longitudinal direction of a line pattern.
[0072] また、例えば ArFエキシマレーザを露光光とし、 1Z4程度の縮小倍率の投影光学系 PLを使って、微細なライン ·アンド'スペースパターン(例えば 25〜50nm程度のライ ン'アンド'スペース)を基板 P上に露光するような場合、マスク Mの構造 (例えばパタ ーンの微細度やクロムの厚み)によっては、 Wave guide効果によりマスク Mが偏光板 として作用し、コントラストを低下させる P偏光成分 (TM偏光成分)の回折光より S偏 光成分 (TE偏光成分)の回折光が多くマスク M力 射出されるようになるので、上述 の直線偏光照明を用いることが望ましいが、ランダム偏光光でマスク Mを照明しても、 投影光学系 PLの開口数 NAが 0. 9〜1. 3のように大きい場合でも高い解像性能を 得ることができる。また、マスク M上の極微細なライン 'アンド'スペースパターンを基 板 P上に露光するような場合、 Wire Grid効果により P偏光成分 (TM偏光成分)が S偏 光成分 (TE偏光成分)よりも大きくなる可能性もあるが、例えば ArFエキシマレーザを 露光光とし、 1Z4程度の縮小倍率の投影光学系 PLを使って、 25nmより大きいライ ン ·アンド'スペースパターンを基板 P上に露光するような場合には、 S偏光成分 (TE 偏光成分)の回折光が P偏光成分 (TM偏光成分)の回折光よりも多くマスク M力 射 出されるので、投影光学系 PLの開口数 NAが 0. 9〜1. 3のように大きい場合でも高 Vヽ解像性能を得ることができる。 Further, for example, a fine line-and-space pattern (for example, a line-and-space of about 25 to 50 nm) is formed by using an ArF excimer laser as exposure light and using a projection optical system PL with a reduction ratio of about 1Z4. When the mask is exposed on the substrate P, depending on the structure of the mask M (for example, the fineness of the pattern and the thickness of chrome), the mask M acts as a polarizing plate due to the wave guide effect, and reduces the contrast. The above-mentioned linearly polarized light illumination is desirable, but random polarized light is preferable because the amount of diffracted light of the S polarized light component (TE polarized light component) is larger than that of the diffracted light of the component (TM polarized light component). Even if the mask M is illuminated by the above, high resolution performance can be obtained even when the numerical aperture NA of the projection optical system PL is as large as 0.9 to 1.3. In the case where an extremely fine line 'and' space pattern on the mask M is exposed on the substrate P, the P polarization component (TM polarization component) is changed from the S polarization component (TE polarization component) by the Wire Grid effect. For example, an ArF excimer laser is used as the exposure light, and a projection optical system PL with a reduction ratio of about 1Z4 is used. When the n-and-space pattern is exposed on the substrate P, the diffracted light of the S-polarized component (TE polarized component) is more than the diffracted light of the P-polarized component (TM polarized component), and the mask M is projected. Therefore, even when the numerical aperture NA of the projection optical system PL is as large as 0.9 to 1.3, high V ヽ resolution performance can be obtained.
[0073] 更に、マスク(レチクル)のラインパターンの長手方向に合わせた直線偏光照明(S偏 光照明)だけでなぐ特開平 6— 53120号公報に開示されているように、光軸を中心 とした円の接線 (周)方向に直線偏光する偏光照明法と斜入射照明法との組み合わ せも効果的である。特に、マスク(レチクル)のパターンが所定の一方向に延びるライ ンパターンだけでなぐ複数の異なる方向に延びるラインパターンが混在する場合に は、同じく特開平 6— 53120号公報に開示されているように、光軸を中心とした円の 接線方向に直線偏光する偏光照明法と輪帯照明法とを併用することによって、投影 光学系の開口数 NAが大き ヽ場合でも高!ヽ結像性能を得ることができる。  Further, as disclosed in Japanese Patent Application Laid-Open No. 6-53120, which uses only linearly polarized illumination (S-polarized illumination) aligned with the longitudinal direction of the line pattern of the mask (reticle), the optical axis is centered. It is also effective to combine the polarized illumination method and the oblique incidence illumination method, which linearly polarizes in the tangential (circumferential) direction of the circle. In particular, in the case where a plurality of line patterns extending in different directions, in which the pattern of the mask (reticle) is formed by only the line patterns extending in a predetermined direction, are also disclosed in Japanese Patent Application Laid-Open No. 6-53120. In addition, by using a combination of the polarized illumination method that linearly polarizes the light in the tangential direction of the circle around the optical axis and the annular illumination method, even when the numerical aperture NA of the projection optical system is large, it is high!ヽ Imaging performance can be obtained.
[0074] 本実施形態では、投影光学系 PLの先端に光学素子 2が取り付けられており、このレ ンズにより投影光学系 PLの光学特性、例えば収差 (球面収差、コマ収差等)の調整 を行うことができる。なお、投影光学系 PLの先端に取り付ける光学素子としては、投 影光学系 PLの光学特性の調整に用いる光学プレートであってもよい。あるいは露光 光 ELを透過可能な平行平面板であってもよ ヽ。  In the present embodiment, the optical element 2 is attached to the tip of the projection optical system PL, and the lens is used to adjust the optical characteristics of the projection optical system PL, for example, aberrations (spherical aberration, coma, etc.). be able to. Note that the optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL. Alternatively, a parallel plane plate that can transmit the exposure light EL may be used.
[0075] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pとの 間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧力 によって光学素子が動かな 、ように堅固に固定してもよ 、。  If the pressure between the optical element at the tip of the projection optical system PL and the substrate P caused by the flow of the liquid LQ is large, the optical element is not replaced by the pressure, but the optical element is not replaced. It doesn't move, so it can be fixed firmly.
また、上述の液浸法を適用した露光装置は、投影光学系 PLの終端光学素子 2の射 出側の光路空間を液体 (純水)で満たして基板 Pを露光する構成になって ヽる力 国 際公開第 2004Z019128号に開示されているように、投影光学系 PLの終端光学素 子 2の入射側の光路空間も液体 (純水)で満たすようにしてもょ 、。  The exposure apparatus to which the above-described liquid immersion method is applied has a configuration in which the substrate P is exposed by filling the optical path space on the emission side of the terminal optical element 2 of the projection optical system PL with liquid (pure water). As disclosed in International Publication No. 2004Z019128, the optical path space on the entrance side of the terminal optical element 2 of the projection optical system PL may be filled with liquid (pure water).
[0076] なお、本実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満たされて V、る構成であるが、例えば基板 Pの表面に平行平面板力 なるカバーガラスを取り付 けた状態で液体 LQを満たす構成であってもよい。  In the present embodiment, the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ V. However, for example, a cover glass having a plane-parallel plate force on the surface of the substrate P may be used. A configuration in which the liquid LQ is filled in the mounted state may be employed.
[0077] なお、本実施形態の液体 LQは水である力 水以外の液体であってもよい、例えば、 露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過しないので、 [0077] The liquid LQ of the present embodiment may be a liquid other than water, which is water, for example. When the light source of the exposure light EL is an F laser, this F laser light does not pass through water,
2 2  twenty two
液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル (PFPE)や  As liquid LQ, for example, perfluoropolyether (PFPE) or
2  2
フッ素系オイル等のフッ素系流体であってもよい。この場合、液体 LQと接触する部分 には、例えばフッ素を含む極性の小さ!ヽ分子構造の物質で薄膜を形成することで親 液化処理する。また、液体 LQとしては、その他にも、露光光 ELに対する透過性があ つてできるだけ屈折率が高ぐ投影光学系 PLや基板 P表面に塗布されているフオトレ ジストに対して安定なもの(例えばセダー油)を用いることも可能である。この場合も表 面処理は用いる液体 LQの極性に応じて行われる。  It may be a fluorine-based fluid such as a fluorine-based oil. In this case, the part in contact with the liquid LQ has a small polarity, for example, containing fluorine!す る Lyophilization treatment is performed by forming a thin film using a substance with a molecular structure. In addition, other liquid LQs that are transparent to the exposure optical system EL and have a refractive index as high as possible and are stable to the photo resist coated on the surface of the substrate P (for example, Cedar) Oil) can also be used. Also in this case, the surface treatment is performed according to the polarity of the liquid LQ used.
[0078] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハの みならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミツクウ エノ、、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコ ンウェハ)等が適用される。 As the substrate P in each of the above embodiments, not only a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic eno for a thin film magnetic head, or an exposure apparatus is used. An original mask or reticle (synthetic quartz, silicon wafer) is applied.
[0079] また、本発明は、特開平 10— 163099号公報、特開平 10— 214783号公報、特表 2 000— 505958号公報などに開示されているツインステージ型の露光装置にも適用 できる。  [0079] The present invention is also applicable to a twin-stage type exposure apparatus disclosed in JP-A-10-163099, JP-A-10-214783, JP-T-2000-505958, and the like.
また、特開平 11— 135400号公報ゃ特開 2000— 164504号公報に開示されてい るように、基板を保持する基板ステージと基準マークが形成された基準部材ゃ各種 センサを搭載した計測ステージとを備えた露光装置にも本発明を適用することができ る。  Further, as disclosed in Japanese Patent Application Laid-Open No. 11-135400 and Japanese Patent Application Laid-Open No. 2000-164504, a substrate stage for holding a substrate, a reference member on which a reference mark is formed, and a measurement stage on which various sensors are mounted. The present invention can also be applied to an exposure apparatus provided.
[0080] また、上述の実施形態においては、投影光学系 PLと基板 Pとの間に局所的に液体を 満たす露光装置を採用して!/ヽるが、露光対象の基板の表面全体が液体で覆われる 液浸露光装置にも本発明を適用可能である。露光対象の基板の表面全体が液体で 覆われる液浸露光装置の構造及び露光動作は、例えば特開平 6— 124873号公報 、特開平 10— 303114号公報、米国特許第 5, 825, 043号などに詳細に記載され ている。  Further, in the above-described embodiment, an exposure apparatus that locally fills the liquid between the projection optical system PL and the substrate P is adopted! However, the entire surface of the substrate to be exposed is liquid. The present invention is also applicable to an immersion exposure apparatus covered with. The structure and exposure operation of an immersion exposure apparatus in which the entire surface of a substrate to be exposed is covered with liquid are described in, for example, JP-A-6-124873, JP-A-10-303114, and US Pat. No. 5,825,043. It is described in detail in
[0081] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素子 製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露 光装置や、薄膜磁気ヘッド、撮像素子 (CCD)あるいはレチクル又はマスクなどを製 造するための露光装置などにも広く適用できる。 The type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element for exposing a semiconductor element pattern onto a substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin-film magnetic head, Manufacture of imaging device (CCD) or reticle or mask It can be widely applied to an exposure apparatus for manufacturing.
また、上述の実施形態においては、光透過性の基材上に所定の遮光パターン (又は 位相パターン '減光パターン)を形成した光透過型マスクを用いている力 このマスク に替えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光す べきパターンの電子データに基づ 、て透過パターン又は反射パターン、あるいは発 光パターンを形成する電子マスクを用いてもよ 、。  Further, in the above-described embodiment, a light-transmitting mask in which a predetermined light-shielding pattern (or a phase pattern 減 a dimming pattern) is formed on a light-transmitting substrate is used. As disclosed in Japanese Patent No. 6,778,257, an electronic mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed may be used. .
また、上述の実施形態においては、投影光学系 PLを使ってパターン像を基板 P上に 投影することによって基板を露光している力 国際公開第 2001Z035168号パンフ レットに開示されているように、干渉縞を基板 P上に形成することによって、基板 P上 にライン 'アンド'スペースを露光する露光装置(リソグラフィシステム)にも本発明を適 用することができる。この場合、投影光学系 PLを使わなくても良い。  Further, in the above-described embodiment, the force of exposing the substrate by projecting the pattern image onto the substrate P by using the projection optical system PL, as disclosed in International Publication No. 2001Z035168 pamphlet, By forming stripes on the substrate P, the present invention can be applied to an exposure apparatus (lithography system) that exposes a line 'and' space on the substrate P. In this case, the projection optical system PL need not be used.
[0082] 基板ステージ PSTやマスクステージ MSTにリニアモータ(USP5,623,853または  [0082] A linear motor (USP5,623,853 or
USP5,528,118参照)を用いる場合は、エアベアリングを用いたエア浮上型およびロー レンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、各 ステージ PST、 MSTは、ガイドに沿って移動するタイプでもよぐガイドを設けないガ イドレスタイプであってもよ 、。  US Pat. No. 5,528,118), either an air levitation type using an air bearing or a magnetic levitation type using a Lorentz force or a reactance force may be used. Further, each stage PST and MST may be of a type that moves along a guide or a guideless type that does not have a guide.
[0083] 各ステージ PST、 MSTの駆動機構としては、二次元に磁石を配置した磁石ユニット と、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージ P ST、 MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ュ ニットとのいずれか一方をステージ PST、 MSTに接続し、磁石ユニットと電機子ュ- ットとの他方をステージ PST、 MSTの移動面側に設ければよ!、。  [0083] As a driving mechanism of each stage PST, MST, a magnet unit having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil are opposed to each other, and each stage PST, MST is driven by an electromagnetic force. Alternatively, a flat motor may be used. In this case, one of the magnet unit and the armature unit may be connected to the stages PST and MST, and the other of the magnet unit and the armature unit may be provided on the moving surface side of the stages PST and MST. !,.
[0084] 基板ステージ PSTの移動により発生する反力は、投影光学系 PLに伝わらないように 、特開平 8— 166475号公報(USP5,528,118)に記載されているように、フレーム部材 を用いて機械的に床 (大地)に逃がしてもよい。  As described in Japanese Patent Application Laid-Open No. 8-166475 (US Pat. No. 5,528,118), a reaction force generated by the movement of the substrate stage PST is not transmitted to the projection optical system PL by using a frame member. You may mechanically escape to the floor (ground).
[0085] マスクステージ MSTの移動により発生する反力は、投影光学系 PLに伝わらないよう に、特開平 8— 330224号公報(US S/N 08/416,558)に記載されているように、フレ 一ム部材を用いて機械的に床(大地)に逃がしてもよ 、。  As described in Japanese Patent Application Laid-Open No. 8-330224 (US S / N 08 / 416,558), a reaction force generated by the movement of the mask stage MST is not transmitted to the projection optical system PL. It is also possible to mechanically escape to the floor (ground) using one member.
[0086] 以上のように、本願実施形態の露光装置 EXは、本願特許請求の範囲に挙げられた 各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的 精度を保つように、組み立てることで製造される。これら各種精度を確保するために、 この組み立ての前後には、各種光学系については光学的精度を達成するための調 整、各種機械系については機械的精度を達成するための調整、各種電気系につい ては電気的精度を達成するための調整が行われる。各種サブシステム力 露光装置 への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接 続、気圧回路の配管接続等が含まれる。この各種サブシステム力 露光装置への組 み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない 。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ 、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およ びクリーン度等が管理されたクリーンルームで行うことが望ましい。 [0086] As described above, the exposure apparatus EX according to the embodiment of the present application is described in the claims of the present application. It is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical For, adjustments are made to achieve electrical accuracy. Various subsystems The process of assembling into the exposure apparatus includes mechanical connection, electrical circuit wiring connection, and pneumatic circuit piping connection between the various subsystems. Needless to say, there is an assembling process for each subsystem before the assembling process into the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustment is performed, and various precisions of the entire exposure apparatus are secured. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature, cleanliness, etc. are controlled.
半導体デバイス等のマイクロデバイスは、図 10に示すように、マイクロデバイスの機能 '性能設計を行うステップ 201、この設計ステップに基づ!/ヽたマスク(レチクル)を製作 するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した実 施形態の露光装置 EXによりマスクのパターンを基板に露光するウェハ処理ステップ 204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージェ 程を含む) 205、検査ステップ 206等を経て製造される。 As shown in FIG. 10, a micro device such as a semiconductor device has a step 201 for designing a function of a micro device and a performance design, a step 202 for producing a mask (reticle) based on this design step, Step 203 of manufacturing a substrate as a material, wafer processing step 204 of exposing a mask pattern to the substrate using the exposure apparatus EX of the above-described embodiment, and device assembly step (including dicing step, bonding step, and package step) 205 It is manufactured through an inspection step 206 and the like.

Claims

請求の範囲 The scope of the claims
[1] 投影光学系と液体とを介して基板上に露光光を照射して、前記基板の複数のショット 領域を順次露光する露光方法にぉ 、て、  [1] An exposure method for irradiating exposure light onto a substrate via a projection optical system and a liquid to sequentially expose a plurality of shot areas of the substrate,
前記基板上の複数のショット領域のうちの隣接したショット領域が連続して露光されな An adjacent shot area of the plurality of shot areas on the substrate is not continuously exposed.
V、ように、前記基板上の複数のショット領域の露光順序を決定したことを特徴とする 露光方法。 V. An exposure method, wherein the order of exposure of a plurality of shot areas on the substrate is determined.
[2] 前記露光光の照射による前記基板の熱の影響を受けな!/、ように、前記露光順序を決 定することを特徴とする請求項 1記載の露光方法。  2. The exposure method according to claim 1, wherein the exposure sequence is determined so as not to be affected by the heat of the substrate due to the exposure light irradiation.
[3] 前記液体を介して前記基板表面に検出光を投射するとともに、その反射光に基づい て前記基板表面の面位置情報を検出し、 [3] While projecting detection light onto the substrate surface via the liquid, detecting surface position information on the substrate surface based on the reflected light,
前記検出された面位置情報に基づいて、前記投影光学系による像面と前記基板の 表面との位置関係を調整することを特徴とする請求項 1又は 2記載の露光方法。  3. The exposure method according to claim 1, wherein a positional relationship between an image plane by the projection optical system and a surface of the substrate is adjusted based on the detected surface position information.
[4] 前記基板上の各ショット領域の露光を開始する前に前記位置関係の調整を行!ヽ、そ の調整完了後に、前記基板上の各ショット領域への露光光の照射を開始することを 特徴とする請求項 3記載の露光方法。 [4] Adjust the positional relationship before starting exposure of each shot area on the substrate! 4. The exposure method according to claim 3, wherein, after the adjustment is completed, irradiation of exposure light to each shot area on the substrate is started.
[5] 投影光学系と液体とを介して基板上に露光光を照射して、前記基板上のショット領域 を露光する露光方法にぉ 、て、 [5] An exposure method for irradiating a substrate with exposure light through a projection optical system and a liquid to expose a shot area on the substrate,
前記液体を介して前記ショット領域表面に検出光を投射するとともに、その反射光に 基づいて前記ショット領域表面の面位置情報を検出し、  Projecting detection light onto the shot area surface via the liquid, detecting surface position information of the shot area surface based on the reflected light,
前記検出された面位置情報に基づいて、前記投影光学系による像面と前記ショット 領域表面との位置関係を調整し、  Adjusting the positional relationship between the image plane by the projection optical system and the shot area surface based on the detected surface position information,
前記位置関係の調整完了後に、前記ショット領域上への露光光の照射を開始し、 前記ショット領域の露光中は、前記検出光を前記ショット領域表面に投射することに よって得られる面位置情報に基づく前記位置関係の調整を停止することを特徴とす る露光方法。  After the adjustment of the positional relationship is completed, irradiation of the exposure light onto the shot area is started.During the exposure of the shot area, the surface position information obtained by projecting the detection light onto the surface of the shot area is used. Adjusting the positional relationship based on the exposure method.
[6] 前記基板上の各ショット領域は、前記基板をほぼ静止させた状態で露光されることを 特徴とする請求項 1〜5のいずれか一項記載の露光方法。  [6] The exposure method according to any one of claims 1 to 5, wherein each shot area on the substrate is exposed while the substrate is substantially stationary.
[7] 液体を介して基板上に露光光を照射して、前記基板上のショット領域を露光する露 光方法において、 [7] Exposure light for irradiating exposure light onto the substrate through the liquid to expose a shot area on the substrate. In the optical method,
前記液体を介して前記ショット領域表面に検出光を投射するとともに、その反射光に 基づいて前記ショット領域表面の面位置情報を検出し、  Projecting detection light onto the shot area surface via the liquid, detecting surface position information of the shot area surface based on the reflected light,
前記検出された面位置情報に基づ!、て、前記ショット領域表面の位置を調整し、 前記位置関係の調整完了後に、前記ショット領域上への露光光の照射を開始し、 前記ショット領域の露光中は、前記検出光を前記ショット領域表面に投射することに よって得られる面位置情報に基づく前記位置調整を停止することを特徴とする露光 方法。  Based on the detected surface position information, adjust the position of the surface of the shot area.After completing the adjustment of the positional relationship, start irradiating the shot area with exposure light. An exposure method, wherein during the exposure, the position adjustment based on surface position information obtained by projecting the detection light onto the shot area surface is stopped.
[8] 前記液体を介して、前記ショット領域を含む前記基板上の複数のショット領域の表面 位置情報を取得した後に、前記ショット領域の露光を開始する請求項 7記載の露光 方法。  8. The exposure method according to claim 7, wherein the exposure of the shot area is started after acquiring surface position information of a plurality of shot areas on the substrate including the shot area via the liquid.
[9] 前記ショット領域の露光中に、前記ショット領域表面の面位置情報を検出する請求項 [9] A method of detecting surface position information of a surface of the shot area during exposure of the shot area.
7または 8記載の露光方法。 Exposure method according to 7 or 8.
[10] 前記ショット領域の露光中に、前記ショット領域表面の面位置情報を非光学的に検出 する請求項 9記載の露光方法。 10. The exposure method according to claim 9, wherein surface position information of the surface of the shot area is non-optically detected during the exposure of the shot area.
[11] 前記ショット領域の露光を開始する前に、前記ショット領域表面の面位置情報を光学 的に検出する請求項 10記載の露光方法。 11. The exposure method according to claim 10, wherein surface position information of the surface of the shot area is optically detected before exposure of the shot area is started.
[12] 請求項 1、 5, 7のいずれか一項記載の露光方法を用いることを特徴とするデバイス製 造方法。 [12] A device manufacturing method using the exposure method according to any one of claims 1, 5, and 7.
[13] 液体を介して基板上に露光光を照射して、前記基板上のショット領域を露光する露 光装置において、  [13] In an exposure apparatus for irradiating a substrate with exposure light through a liquid to expose a shot area on the substrate,
前記液体を介して前記ショット領域表面に検出光を投射するとともに、その反射光 に基づいて前記ショット領域表面の面位置情報を検出する検出系と、  A detection system that projects detection light onto the shot area surface via the liquid and detects surface position information of the shot area surface based on the reflected light;
前記検出された面位置情報に基づ!、て、前記ショット領域表面の位置を調整する 調整システムと、  An adjustment system for adjusting the position of the shot area surface based on the detected surface position information;
前記検出系と、前記調整システムとを制御する制御系とを備え、  The detection system, comprising a control system for controlling the adjustment system,
前記制御系は、前記位置関係の調整完了後に、前記ショット領域上への露光光の 照射を開始するとともに、前記ショット領域の露光中は、前記検出光を前記ショット領 域表面に投射することによって得られる面位置情報に基づく前記位置調整を停止す ることを特徴とする露光装置。 After the adjustment of the positional relationship is completed, the control system starts irradiating the shot area with exposure light, and during the exposure of the shot area, transmits the detection light to the shot area. An exposure apparatus, comprising: stopping the position adjustment based on surface position information obtained by projecting an image on an area surface.
[14] 前記基板の上方から前記液体を供給するための供給口と前記基板の上方から前記 液体を回収するための回収口とを有する液浸機構をさらに備えた請求項 13記載の 露光装置。  14. The exposure apparatus according to claim 13, further comprising a liquid immersion mechanism having a supply port for supplying the liquid from above the substrate and a recovery port for collecting the liquid from above the substrate.
[15] 請求項 13または 14記載の露光装置を用いることを特徴とするデバイス製造方法。  [15] A device manufacturing method using the exposure apparatus according to claim 13 or 14.
PCT/JP2005/007696 2004-04-27 2005-04-22 Exposure method, exposure system, and method for fabricating device WO2005106930A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512760A JPWO2005106930A1 (en) 2004-04-27 2005-04-22 Exposure method, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-131130 2004-04-27
JP2004131130 2004-04-27

Publications (1)

Publication Number Publication Date
WO2005106930A1 true WO2005106930A1 (en) 2005-11-10

Family

ID=35241921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007696 WO2005106930A1 (en) 2004-04-27 2005-04-22 Exposure method, exposure system, and method for fabricating device

Country Status (2)

Country Link
JP (1) JPWO2005106930A1 (en)
WO (1) WO2005106930A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114765A (en) * 2004-10-15 2006-04-27 Toshiba Corp Exposure method and exposure equipment
EP1850371A1 (en) * 2005-01-31 2007-10-31 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
EP1903398A1 (en) 2006-09-20 2008-03-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2011029644A (en) * 2009-07-27 2011-02-10 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
CN103176370A (en) * 2013-03-13 2013-06-26 华中科技大学 Immersion liquid temperature control system for immersion lithography

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283109A (en) * 1994-04-07 1995-10-27 Matsushita Electron Corp Exposure method of semiconductor device and aligner
JPH10340846A (en) * 1997-06-10 1998-12-22 Nikon Corp Aligner, its manufacture, exposing method and device manufacturing method
JPH11176727A (en) * 1997-12-11 1999-07-02 Nikon Corp Projection aligner
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
WO2000001001A1 (en) * 1998-06-29 2000-01-06 Nikon Corporation Scanning exposure method, scanning exposure apparatus and method for producing the same, and device and method for manufacturing the same
JP2000058436A (en) * 1998-08-11 2000-02-25 Nikon Corp Projection aligner and exposure method
JP2001313241A (en) * 2000-04-28 2001-11-09 Canon Inc Aligner and aligning method
EP1524555A1 (en) * 2003-10-16 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283109A (en) * 1994-04-07 1995-10-27 Matsushita Electron Corp Exposure method of semiconductor device and aligner
JPH10340846A (en) * 1997-06-10 1998-12-22 Nikon Corp Aligner, its manufacture, exposing method and device manufacturing method
JPH11176727A (en) * 1997-12-11 1999-07-02 Nikon Corp Projection aligner
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
WO2000001001A1 (en) * 1998-06-29 2000-01-06 Nikon Corporation Scanning exposure method, scanning exposure apparatus and method for producing the same, and device and method for manufacturing the same
JP2000058436A (en) * 1998-08-11 2000-02-25 Nikon Corp Projection aligner and exposure method
JP2001313241A (en) * 2000-04-28 2001-11-09 Canon Inc Aligner and aligning method
EP1524555A1 (en) * 2003-10-16 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114765A (en) * 2004-10-15 2006-04-27 Toshiba Corp Exposure method and exposure equipment
JP4625673B2 (en) * 2004-10-15 2011-02-02 株式会社東芝 Exposure method and exposure apparatus
EP1850371A1 (en) * 2005-01-31 2007-10-31 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
EP1850371A4 (en) * 2005-01-31 2011-01-19 Nikon Corp Exposure method, exposure apparatus and method for manufacturing device
EP1903398A1 (en) 2006-09-20 2008-03-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US8330936B2 (en) 2006-09-20 2012-12-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2011029644A (en) * 2009-07-27 2011-02-10 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
CN103176370A (en) * 2013-03-13 2013-06-26 华中科技大学 Immersion liquid temperature control system for immersion lithography
CN103176370B (en) * 2013-03-13 2015-04-15 华中科技大学 Immersion liquid temperature control system for immersion lithography

Also Published As

Publication number Publication date
JPWO2005106930A1 (en) 2008-03-21

Similar Documents

Publication Publication Date Title
KR101166007B1 (en) Aligner, device manufacturing method, maintenance method and aligning method
JP5541308B2 (en) Exposure apparatus, exposure apparatus control method, and device manufacturing method
US7852456B2 (en) Exposure apparatus, exposure method, and method for producing device
JP5273163B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4655763B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US20090021709A1 (en) Exposure apparatus, exposure method, and method for producing device
JP2010118714A (en) Exposure apparatus, exposure method, and method for manufacturing device
JP2009105414A (en) Exposure method, and device manufacturing method
JP2005012201A (en) Exposure method, aligner and device manufacturing method
WO2005081292A1 (en) Exposure apparatus, supply method and recovery method, exposure method, and device producing method
JP2010135832A (en) Exposure apparatus and device fabrication method
JP4852951B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2005209705A (en) Exposure device and manufacturing method for device
JP2005209706A (en) Exposure method, aligner and manufacturing method therefor
JP4701606B2 (en) Exposure method, exposure apparatus, and device manufacturing method
WO2005106930A1 (en) Exposure method, exposure system, and method for fabricating device
JP5765415B2 (en) Immersion exposure apparatus, immersion exposure method, and device manufacturing method
JP2005203681A (en) Aligner and exposure method, and device manufacturing method
JP2005166997A (en) Exposure system and method and device manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512760

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase