WO2005103735A1 - Sheet-shaped probe, manufacturing method thereof and application thereof - Google Patents

Sheet-shaped probe, manufacturing method thereof and application thereof Download PDF

Info

Publication number
WO2005103735A1
WO2005103735A1 PCT/JP2005/007811 JP2005007811W WO2005103735A1 WO 2005103735 A1 WO2005103735 A1 WO 2005103735A1 JP 2005007811 W JP2005007811 W JP 2005007811W WO 2005103735 A1 WO2005103735 A1 WO 2005103735A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating film
sheet
probe
film
Prior art date
Application number
PCT/JP2005/007811
Other languages
French (fr)
Japanese (ja)
Inventor
Katsumi Sato
Kazuo Inoue
Mutsuhiko Yoshioka
Hitoshi Fujiyama
Hisao Igarashi
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2005103735A1 publication Critical patent/WO2005103735A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Definitions

  • Sheet-shaped probe Method of manufacturing the same, and application thereof
  • the present invention relates to a sheet-like probe for making an electrical connection to a circuit such as an integrated circuit in an electrical inspection of the circuit, for example, a method of manufacturing the same, and an application thereof.
  • the circuit is arranged according to a pattern corresponding to a pattern of an electrode to be inspected of the circuit device to be inspected.
  • a probe card having a large number of test electrodes is used.
  • a probe card in which detection electrodes formed of pins or blades are arranged is used.
  • the circuit device to be inspected is a wafer on which a large number of integrated circuits are formed, it is necessary to arrange a very large number of inspection electrodes when manufacturing a probe card for inspecting the wafer. Therefore, the probe card becomes extremely expensive. If the wafer to be inspected has a large number of electrodes to be inspected arranged at a small pitch, it becomes difficult to fabricate the probe card itself. Furthermore, since the wafer is generally warped, and the state of the warp is different for each product (e.g., wafer), a large number of electrodes to be inspected on the wafer are required for each of the inspection electrodes of the probe card. It is practically difficult to make stable and reliable contact.
  • a probe card for inspecting an integrated circuit formed on a wafer As a probe card for inspecting an integrated circuit formed on a wafer, a probe card having a plurality of inspection electrodes formed on one surface in accordance with a pattern corresponding to a pattern of an electrode to be inspected has been developed.
  • a device comprising a sheet-like probe in which electrode structures are arranged has been proposed (for example, see Patent Document 1).
  • FIG. 39 does not include an inspection circuit board, an anisotropic conductive sheet, and a sheet probe.
  • FIG. 5 is an explanatory cross-sectional view illustrating a configuration of an example of a conventional probe card.
  • an inspection circuit board 85 having a large number of inspection electrodes 86 formed on one surface in accordance with a pattern corresponding to an electrode to be inspected of a circuit device to be inspected is provided.
  • a sheet-like probe 90 is arranged on one side of the substrate via an anisotropic conductive sheet 80.
  • the anisotropic conductive sheet 80 has conductivity only in the thickness direction, or has a pressurized conductive portion that has conductivity only in the thickness direction when pressed in the thickness direction.
  • Various structures are known as a strong anisotropic conductive sheet.
  • Patent Document 2 and the like disclose an anisotropic conductive sheet obtained by uniformly dispersing metal particles in an elastomer. (Hereinafter, referred to as a “dispersed anisotropic conductive sheet”), and Patent Document 3 and the like disclose a method of dispersing conductive magnetic particles non-uniformly in an elastomer to obtain a thickness.
  • An anisotropic conductive sheet (hereinafter, referred to as a “distributed anisotropic conductive sheet”) in which a large number of conductive portions extending in a direction and insulating portions for insulating the conductive portions from each other are formed.
  • Patent Document 4 and the like disclose a step between the surface of the conductive portion and the insulating portion.
  • An unevenly distributed anisotropic conductive sheet in which a difference is formed is disclosed.
  • the sheet-like probe 90 has a flexible insulating film 91 made of, for example, resin, and a plurality of electrode structures 95 extending in the thickness direction of the insulating film 91 are provided with electrodes to be inspected of a circuit device to be inspected. It is arranged and configured according to the pattern corresponding to the above pattern.
  • a protruding front surface electrode portion 96 exposed on the surface of the insulating film 91 and a plate-shaped rear surface electrode portion 97 exposed on the back surface of the insulating film 91 form the insulating film 91 with its thickness. They are integrally connected via a short-circuit portion 98 extending through the direction.
  • Such a sheet probe 90 is generally manufactured as follows.
  • a laminated body 90A having a metal layer 92 formed on one surface of an insulating film 91 is prepared, and as shown in FIG. A through-hole 98H penetrating through is formed.
  • a resist film 93 is formed on the metal layer 92 of the insulating film 91, and an electrolytic plating process is performed using the metal layer 92 as a common electrode, thereby forming the insulating film 91.
  • a metal deposit is filled in the through-hole 98H and is connected to the metal layer 92 as a single piece.
  • a protruding surface electrode portion 96 integrally connected to the short-circuit portion 98 is formed on the surface of the insulating film 91.
  • the resist film 93 is removed from the metal layer 92, and a resist film 94A is formed on the surface of the insulating film 91 including the surface electrode portion 96, as shown in FIG.
  • a resist film 94B is formed in accordance with a pattern corresponding to the pattern of the back electrode portion to be formed, and the metal layer 92 is subjected to an etching process, as shown in FIG. The exposed portion of is removed to form the back electrode portion 97, thereby forming the electrode structure 95.
  • the sheet probe 90 is obtained.
  • the surface electrode section 96 of the electrode structure 95 of the sheet-like probe 90 is arranged on the surface of the circuit device to be inspected, for example, the wafer, so as to be located on the electrode to be inspected of the wafer.
  • the anisotropic conductive sheet 80 is pressed by the back surface electrode portion 97 of the electrode structure 95 in the sheet-like probe 90.
  • a conductive path is formed in the thickness direction between the back electrode portion 97 and the test electrode 86 of the test circuit board 85, and as a result, the test electrode of the wafer and the test circuit board 85 are tested. An electrical connection with electrode 86 is achieved. Then, in this state, a required electrical inspection is performed on the wafer.
  • the anisotropic conductive sheet is deformed in accordance with the degree of warpage of the wafer, so that a large number of electrodes to be inspected on the wafer are formed. A good electrical connection can be reliably achieved for each of the two.
  • the sheet-like probe in the above probe card has the following problems.
  • FIG. As shown, in the obtained surface electrode portion 96, the distance w from the periphery of the surface electrode portion 96 to the periphery of the short-circuit portion 98 is equal to the protrusion height h of the surface electrode portion 96. . Accordingly, the diameter R of the obtained surface electrode portion 96 is considerably larger than twice the protruding height h.
  • the electrodes to be inspected in the circuit device to be inspected are arranged at a very small and extremely small pitch, it is not possible to secure a sufficient separation distance between the adjacent electrode structures 95. As a result, in the obtained sheet probe, the flexibility of the insulating film 91 is lost, so that it is difficult to achieve stable electrical connection to the circuit device under test.
  • means for reducing the diameter of the obtained surface electrode portion 96 include means for reducing the protruding height h of the surface electrode portion 96, and the diameter of the short-circuit portion 98 (when the cross-sectional shape is not circular). Indicates the shortest length.)
  • a method of reducing r that is, reducing the diameter of the through-hole 98H of the insulating film 91 can be considered, but the sheet-like probe obtained by the former method has a
  • the latter means makes it difficult to form the short-circuit portion 98 and the surface electrode portion 96 by electrolytic plating.
  • Patent Document 5 In order to solve such a problem, in Patent Document 5 and Patent Document 6, a large number of electrode structures each having a tapered surface electrode portion having a smaller diameter toward the distal end are arranged. A sheet-like probe has been proposed.
  • the resist film 93A and the surface side metal layer 92 are formed on the surface of the insulating film 91.
  • a force S A laminate 90B is formed in this order, in which a back surface side metal layer 92B is laminated on the back surface of the insulating film 91, and as shown in FIG. 42 (b), the back surface of the laminate 90B is prepared.
  • An electrode structure forming recess 90K having a tapered shape adapted to the surface electrode portion is formed.
  • the surface-side metal layer 92A in the laminated body 90B is subjected to a plating process as an electrode, so that the electrode structure forming recess 9OK is filled with metal and the surface electrode portion 96 And a short circuit 98 is formed. Then, by etching the backside metal layer of the laminate and removing a part thereof, a backside electrode portion 97 is formed as shown in FIG. 42 (d), thereby obtaining a sheet probe.
  • a plating process as an electrode
  • a front-side metal layer 92A is formed on the surface of an insulating film material 91A having a thickness larger than the insulating film in the sheet-like probe to be formed, and is formed on the back surface of the insulating film material 91A.
  • a laminated body 90C formed by laminating the back side metal layer 92B is prepared, and as shown in FIG. 43 (b), communicates with each of the back side metal layer 92B and the insulating film material 91A in the laminated body 90C.
  • Form 90K a metal is filled into the electrode structure forming recess 90K by performing a plating process using the surface-side metal layer 92A of the laminated body 90C as an electrode. 96 and short circuit 98 are formed. Thereafter, by removing the surface-side metal layer 92A of the laminate 90C and etching the insulating film material 91A to remove the surface-side portion of the insulating film, as shown in FIG.
  • An insulating film 91 having a thickness of 3 mm is formed, and the surface electrode section 96 is exposed. Then, by etching the back side metal layer 92B, as shown in FIG. 43 (e), a back side electrode portion 97 is formed, whereby a sheet probe is obtained.
  • the surface electrode portion has a tapered shape, the surface electrode portion having a small diameter S and a high protruding height is connected to the surface electrode portion of the adjacent electrode structure. Can be formed in a state where the distance between the electrodes is sufficiently secured, and the electrode structure can be formed. Since each of the surface electrode portions is formed with the cavity for forming the electrode structure formed in the laminate as a cavity, an electrode structure with a small variation in the protruding height of the surface electrode portion can be obtained.
  • the diameter of the surface electrode portion of the electrode structure is equal to or smaller than the diameter of the short-circuit portion, that is, the diameter of the through hole formed in the insulating film. Is dropped from the back surface of the insulating film, and it is difficult to actually use the sheet-like probe.
  • the sheet-like probe in the conventional probe card has the following problem.
  • a sheet probe for such a wafer inspection has a large area corresponding to the wafer and has 5000 or 10,000 or more electrode structures arranged at a pitch of 160 ⁇ m or less. It is necessary to use the one that is.
  • the linear thermal expansion coefficient of the material for example silicon constituting the wafer 3. a 3 X 10- 6 ZK extent
  • the linear thermal expansion coefficient of the material such as polyimide for the insulating film in the sheet-like probe 4. is about 5 ⁇ 10- 5 ⁇ . Therefore, if, for example, a wafer and a sheet probe each having a diameter of 30 cm at 25 ° C are heated to 120 ° C from a force of 20 ° C, the change in wafer diameter is theoretically 99%. Although it is only / zm, the change in the diameter of the insulating film in the sheet probe reaches 1350 m, and the difference in thermal expansion between the two is 1251 / zm.
  • the peripheral portion of the insulating film has a linear thermal expansion coefficient equal to the linear thermal expansion coefficient of the wafer. Even if it is fixed by a support member having an expansion coefficient, it is difficult to reliably prevent the electrode structure from being displaced from the electrode to be inspected due to a temperature change in the burn-in test. I can't keep it stable! / ,.
  • the inspection target is a small circuit device, if the pitch of the electrode to be inspected is 50 m or less, the electrode structure due to temperature change in the burn-in test It is difficult to reliably prevent displacement between the electrode and the electrode to be inspected, so that a good electrical connection state cannot be stably maintained.
  • Patent Document 7 proposes means for reducing thermal expansion of the insulating film by fixing the insulating film to a holding member while applying tension to the insulating film. ing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-231019
  • Patent Document 2 JP-A-51-93393
  • Patent Document 3 JP-A-53-147772
  • Patent Document 4 JP-A-61-250906
  • Patent Document 5 JP-A-11-326378
  • Patent Document 6 JP-A-2002-196018
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2001-15565
  • the present invention has been made based on the above-described circumstances, and a first object of the present invention is to form an electrode structure having a small diameter and a surface electrode portion. ,small! ⁇ A stable electrical connection state can be reliably achieved even for circuit devices with electrodes formed at a pitch, and high durability is obtained without the electrode structure falling off the insulating film. Furthermore, even if the inspection target is a large-area wafer with a diameter of 8 inches or more or a circuit device with a very small pitch of the electrode to be inspected, the electrode structure and the inspected electrode due to temperature change in the burn-in test It is therefore an object of the present invention to provide a sheet-like probe which can surely prevent a displacement with respect to an electrode and can stably maintain a good electrical connection state.
  • a second object of the present invention is to provide an electrode structure having a surface electrode portion having a small diameter and a small variation in a protruding height, and to a circuit device in which electrodes are formed at a small pitch. In this way, a stable electrical connection state can be reliably achieved, and the electrode structure has high durability without the electrode structure falling off from the insulating film. In a burn-in test, it is possible to reliably prevent the electrode structure from being displaced from the electrode to be inspected due to a temperature change even in a wafer having a large area of an inch or more or a circuit device having an extremely small pitch between the electrodes to be inspected.
  • a third object of the present invention is to provide a probe card provided with the above-mentioned sheet-like probe.
  • a fourth object of the present invention is to provide a circuit device inspection device and a wafer inspection device provided with the above-described probe card.
  • a plurality of electrode structures extending through the insulating film made of a flexible resin in the thickness direction of the insulating film according to the pattern corresponding to the electrode to be connected, respectively.
  • a contact film arranged and a supporting film made of a metal supporting the contact film Comprising a contact film arranged and a supporting film made of a metal supporting the contact film,
  • Each of the electrode structures is exposed on the surface of the insulating film and protrudes from the surface of the insulating film, a back electrode portion exposed on the back surface of the insulating film, and a base of the surface electrode portion.
  • the insulating film extends continuously from the end in the thickness direction thereof and extends along the surface of the insulating film continuously from the short-circuit portion connected to the back electrode portion and the base end portion of the front electrode portion. And a holding portion extending outward.
  • the sheet-like probe of the present invention is a sheet-like probe used for an electrical inspection of a circuit device
  • the contact film is made of an insulating film made of a flexible resin, and the insulating film is A plurality of electrode structures arranged in accordance with the pattern corresponding to the turn and extending through the thickness direction of the insulating film, and each of the electrode structures is located in each opening of the support film. It is arranged as
  • Each of the electrode structures is exposed on the surface of the insulating film and protrudes from the surface of the insulating film, a back electrode portion exposed on the back surface of the insulating film, and a base of the surface electrode portion.
  • the insulating film extends continuously from the end in the thickness direction thereof and extends along the surface of the insulating film continuously from the short-circuit portion connected to the back electrode portion and the base end portion of the front electrode portion. And a holding portion extending outward.
  • a plurality of contact films independent of each other may be arranged along the surface of the support film.
  • the sheet-like probe of the present invention is a sheet-like probe used for an electrical inspection of a circuit device
  • Each of the contact films is an insulating film made of a flexible resin, and is disposed on the insulating film according to a pattern corresponding to a pattern of an electrode to be inspected in an electrode region of the circuit device. And a plurality of electrode structures that are arranged so that each of the electrode structures is located in each of the openings of the support film.
  • a short-circuit portion that extends through and is connected to the back electrode portion; and a holding portion that extends outward from the base end portion of the front electrode portion along the surface of the insulating film.
  • the sheet-like probe of the present invention can be suitably used for performing an electrical inspection of each integrated circuit formed on a wafer in a state of the wafer.
  • the surface electrode portion of the electrode structure Proximal force It is preferable that the shape be such that the diameter becomes smaller toward the distal end.
  • the tip of the surface electrode portion with respect to the diameter R of the base end of the surface electrode portion in the electrode structure.
  • the value of the ratio R / R of the diameter R be 0.11 to 0.55.
  • the value of the ratio hZR of the height h is 0.2 to 3.
  • the short-circuit portion in the electrode structure has a shape having a smaller diameter toward the rear surface of the insulating film.
  • the insulating film is preferably made of an etchable polymer material, and is particularly preferably made of polyimide.
  • the coefficient of linear thermal expansion of the support film is preferably 3 ⁇ 10—so K or less.
  • the method for producing a sheet-like probe of the present invention is a method for producing the above-mentioned sheet-like probe
  • a through hole is formed on the back surface of the laminate.
  • Each of the electrode structure forming recesses is filled with metal by performing a plating process using the plating electrode layer in the laminate as an electrode, thereby forming a surface electrode portion projecting from the surface of the insulating film and a base of the surface electrode portion. Forming a short-circuit portion extending continuously through the insulating film in the thickness direction thereof, and a back-electrode portion connected to the short-circuit portion and exposed on the back surface of the insulating film;
  • a support film having an opening formed therein is formed,
  • the laminated body force exposes the surface electrode portion and the holding portion forming layer, and then performs an etching process on the holding portion forming layer.
  • a step of forming a holding portion extending outward along the surface of the insulating film continuously with the base partial force of the surface electrode portion is provided.
  • the through hole of the holding part forming layer in the electrode structure forming recess has a smaller diameter as it goes toward the back surface of the holding part forming layer. It is preferable to be formed in the shape which becomes.
  • the holding portion forming layer is made of a polymer material which can be etched as the laminate, and the through hole of the holding portion forming layer in the electrode structure forming recess is formed by etching. Better ,.
  • the through-hole of the insulating film in the recess for forming an electrode structure is formed in such a shape that the back surface force of the insulating film becomes smaller in diameter toward the surface.
  • the laminated body is made of a polymer material whose insulating film can be etched, and the through-hole of the insulating film in the electrode structure forming recess is formed by etching.
  • a probe card of the present invention includes the above-mentioned sheet-like probe.
  • a probe card according to the present invention includes a sheet-like probe manufactured by the above method.
  • the probe card of the present invention is a probe card used for performing an electrical inspection of each of a plurality of integrated circuits formed on a wafer in a state of the wafer. So,
  • An inspection circuit board having inspection electrodes formed on the surface thereof in accordance with a pattern corresponding to the pattern of the electrodes to be inspected of all or some of the integrated circuits formed on the wafer to be inspected, and on the surface of the inspection circuit board Characterized in that it comprises an anisotropically conductive connector arranged on the substrate and the above-mentioned sheet-like probe arranged on the anisotropically conductive connector.
  • the probe card of the present invention can be applied to each of a plurality of integrated circuits formed on a wafer.
  • An inspection circuit board having inspection electrodes formed on the surface thereof in accordance with a pattern corresponding to the pattern of the electrodes to be inspected of all or some of the integrated circuits formed on the wafer to be inspected, and on the surface of the inspection circuit board Characterized by comprising an anisotropically conductive connector arranged in the above manner, and a sheet-like probe produced by the above-mentioned method, arranged on the anisotropically conductive connector.
  • a circuit device inspection apparatus includes the above-described probe card.
  • a wafer inspection device of the present invention is a wafer inspection device that performs an electrical inspection of each of a plurality of integrated circuits formed on a wafer in a state of the wafer, wherein the probe card It is characterized by being equipped.
  • the electrode structure is formed with the holding portion extending outward from the base end portion of the surface electrode portion continuously along the surface of the insulating film. Even if the diameter of the surface electrode portion is small, the electrode structure does not fall off the insulating film, and high durability can be obtained.
  • the burn-in test is performed. ! In addition, it is possible to reliably prevent the electrode structure from being displaced from the electrode to be inspected due to a temperature change, and to stably maintain a good electrical connection state.
  • the electrode structure forming recess is formed in advance in the laminate having the insulating film, and the electrode structure forming recess is used as a cavity to form the surface electrode portion.
  • the electrode structure forming recess is used as a cavity to form the surface electrode portion.
  • the holding portion forming layer formed on the surface of the insulating film is continuously formed at the base end of the surface electrode portion. Therefore, even if the diameter of the surface electrode portion is small, the electrode structure does not fall off the insulating film and a sheet-like probe having high durability can be manufactured. .
  • the burn-in can be performed.
  • a displacement of the electrode structure and the electrode to be inspected due to a temperature change is reliably prevented, and therefore, a sheet-like probe in which a good electrical connection state is stably maintained can be manufactured.
  • the probe card of the present invention since the probe card is provided with the above-mentioned sheet-shaped probe, it is possible to reliably achieve a stable electric connection state even to a circuit device having electrodes formed at a small pitch. Since the electrode structure of the sheet-shaped probe does not fall off, high durability is obtained, and the inspection target is a large area wafer with a diameter of 8 inches or more. Even in a circuit device having a very small value, a good electrical connection state can be stably maintained in the burn-in test.
  • the probe device inspection device and the wafer inspection device of the present invention since the probe device is provided with the above-described probe force, a stable electrical connection state is ensured even for a circuit device having electrodes formed at a small pitch. In addition, even when a large number of circuit devices are tested, a highly reliable test can be performed over a long period of time.
  • FIG. 1 is a plan view showing a first example of a sheet-like probe according to the present invention.
  • FIG. 2 is an enlarged plan view showing a part of a contact film in the sheet-like probe of the first example.
  • FIG. 3 is an explanatory cross-sectional view showing a part of a contact film in the sheet-like probe of the first example in an enlarged manner.
  • FIG. 4 is an explanatory cutaway showing a configuration of a laminate for manufacturing the sheet-like probe of the first example.
  • FIG. 5 is an explanatory cross-sectional view showing a state where resist films for etching are formed on both surfaces of the laminate shown in FIG. 4.
  • FIG. 6 is an explanatory cross-sectional view showing a state in which a through-hole is formed in a support film forming layer in the laminate.
  • FIG. 9 is an explanatory cross-sectional view showing a state in which a through hole is formed in an electrode portion forming layer of the laminate to form an electrode structure forming recess.
  • FIG. 10 is an explanatory cross-sectional view showing a state where a resist film for plating is formed on both surfaces of a laminate in which a recess for forming an electrode structure is formed.
  • FIG. 11 is an explanatory cross-sectional view showing a state in which a metal is filled in a recess for forming an electrode structure to form a surface electrode portion and a short-circuit portion.
  • FIG. 12 is an explanatory cross-sectional view showing a state where the resist film on the back surface of the support film forming layer has been removed.
  • FIG. 13 is an explanatory cross-sectional view showing a state where an etching resist film is formed on the back surface of the support film forming layer.
  • FIG. 14 is an explanatory cross-sectional view showing a state in which the resist film has been removed from the surface force of the plating electrode layer.
  • FIG. 15 is an explanatory cross-sectional view showing a state where a part of the support film forming layer is removed to form a plurality of back electrode portions separated from each other and the support film is formed.
  • FIG. 16 is an explanatory cross-sectional view showing a state where a resist film is formed so as to cover the back surface of the support film, the back surface of the insulating film, and the back electrode portion.
  • FIG. 17 is also an explanatory cross-sectional view showing a state in which the electrode body forming layer is removed from the laminate body force.
  • FIG. 18 is an explanatory cross-sectional view showing a state where a resist film is formed so as to cover a part of the surface electrode portion and the holding film forming layer.
  • FIG. 19 is an explanatory cross-sectional view showing a state in which the holding portion forming layer is etched to form the holding portion.
  • FIG. 20 is a plan view showing a second example of the sheet probe according to the present invention.
  • FIG. 21 is an enlarged plan view showing a part of a contact film in the sheet-like probe of the second example.
  • FIG. 22 is an explanatory cross-sectional view showing a part of a contact film in the sheet-like probe of the second example in an enlarged manner.
  • FIG. 23 is an explanatory cross-sectional view showing a state where a resist film is formed to cover a part of the insulating film, the surface electrode portion, and the holding portion.
  • FIG. 24 is an explanatory cross-sectional view showing a state in which a part of the insulating film is removed to form a plurality of divided insulating films.
  • FIG. 25 is a plan view showing a third example of the sheet-like probe according to the present invention.
  • FIG. 26 is an enlarged plan view showing a part of the contact film in the sheet-like probe of the third example.
  • FIG. 27 is an explanatory cross-sectional view showing a part of a contact film in a sheet-like probe of a third example in an enlarged manner.
  • FIG. 28 is an explanatory cross-sectional view showing a state where a resist film is formed to cover a part of the insulating film, the surface electrode portion, and the holding portion.
  • FIG. 29 is an explanatory cross-sectional view showing a state in which a part of the insulating film is removed to form a plurality of divided insulating films.
  • FIG. 30 is an explanatory sectional view showing a configuration of an example of a circuit device inspection device according to the present invention.
  • FIG. 31 is an explanatory sectional view showing a probe card in the inspection device shown in FIG. 30 in an enlarged manner.
  • FIG. 32 is a plan view of an anisotropic conductive connector in a probe card.
  • FIG. 33 is a plan view showing another example of the sheet-like probe according to the present invention.
  • FIG. 34 is a plan view showing the test wafer manufactured in the example.
  • FIG. 35 shows the position of the electrode area to be inspected of the integrated circuit formed on the test wafer shown in FIG. FIG.
  • FIG. 36 is an explanatory diagram showing an arrangement pattern of electrodes to be inspected of the integrated circuit formed on the test wafer shown in FIG.
  • FIG. 37 is a plan view showing a frame plate of the anisotropic conductive connector manufactured in the example.
  • FIG. 38 is an explanatory view showing a part of the frame plate shown in FIG. 37 in an enlarged manner.
  • FIG. 39 is an explanatory cross-sectional view showing a configuration of an example of a conventional probe card.
  • Fig. 40 is an explanatory cross-sectional view showing a production example of a conventional sheet-like probe.
  • FIG. 41 is an explanatory cross-sectional view showing, on an enlarged scale, a sheet-like probe in the probe card shown in FIG. 39.
  • FIG. 42 is an explanatory cross-sectional view showing another example of manufacturing a conventional sheet-like probe.
  • FIG. 43 is an explanatory cross-sectional view showing still another example of manufacturing a conventional sheet-like probe. Explanation of symbols
  • FIG. 1 is a partially cutaway plan view showing a first example of a sheet-like probe according to the present invention
  • FIG. 2 is an enlarged plan view showing a contact film in the sheet-like probe of the first example
  • FIGS. 3 and 3 are enlarged cross-sectional views illustrating a contact film in the sheet-like probe of the first example.
  • the sheet-like probe 10 of the first example is used, for example, for a wafer on which a plurality of integrated circuits are formed, for performing an electrical inspection of each of the integrated circuits in a wafer state, It has a support film 11 made of metal in which a plurality of openings 11H are formed.
  • the opening 11H of the support film 11 is provided for the electrode to be inspected of the integrated circuit on the wafer to be inspected. Are formed corresponding to the pattern of the electrode region in which is formed. Further, in the support film 11 in this example, a positioning hole 11K for positioning the anisotropic conductive connector and the inspection circuit board in the probe card described later is formed.
  • Iron, copper, nickel, titanium, or an alloy or alloy steel thereof can be used as a metal constituting the support film 11, but in the manufacturing method described later, the opening 11H can be easily formed by etching. Iron-nickel alloy steels such as alloy 42, invar and kovar are preferred because they can be formed! /.
  • the material forming the support film 11 include an alloy such as an Invar alloy such as Invar, an Elinvar alloy such as Elinvar, an alloy such as Super Invar, Kovar, and 42 alloy, or an alloy steel.
  • the thickness of the support film 11 is preferably 3 to: LOO m, and more preferably 5 to 50 ⁇ m.
  • the thickness is less than 3 ⁇ m, the strength required as a supporting film for supporting the contact film 12 may not be obtained. On the other hand, when the thickness exceeds 100 m, it may be difficult to easily form the opening 11H by etching in a manufacturing method described later.
  • the contact film 12 has a flexible insulating film 13 on which a plurality of electrode structures 15 extending in the thickness direction of the insulating film 13 are all formed on a wafer to be inspected.
  • the insulating film 13 is disposed apart from each other in the surface direction of the insulating film 13, and the contact film 12 is formed of the 1S support film 11 of each of the electrode structures 15. It is arranged to be located in each opening 11H.
  • Each of the electrode structures 15 is exposed on the surface of the insulating film 13 and has a protruding surface electrode portion 16 protruding from the surface of the insulating film 13, and a rectangular flat plate exposed on the back surface of the insulating film 13.
  • the base force of the back electrode section 17 and the front electrode section 16 also extends continuously through the insulating film 13 in the thickness direction thereof and is connected to the back electrode section 17, and the short circuit section 18 and the front electrode section 16 Peripheral surface force at base end portion
  • the support portion is constituted by a circular ring-plate-shaped holding portion 19 that continuously extends radially outward along the surface of the insulating film 13.
  • the surface electrode portion 16 is formed in a tapered shape having a smaller diameter as the base force is directed toward the distal end following the short-circuit portion 18 and is formed in a truncated cone shape as a whole.
  • the short-circuit portion 18 continuous to the base end of the front electrode portion 16 is tapered so that the diameter decreases toward the rear surface of the insulating film 13 and is formed in a truncated cone as a whole.
  • the end diameter R is
  • the insulating film 13 is not particularly limited as long as it is flexible and has insulating properties.
  • a resin sheet or fiber made of polyimide resin, liquid crystal polymer, polyester, fluorine resin, or the like is knitted. It is possible to use a sheet or the like impregnated with the above resin for the cloth.Because the through hole for forming the short-circuit portion 18 can be easily formed by etching, it must be made of an etchable material. Particularly preferred is polyimide.
  • the thickness d of the insulating film 13 is not particularly limited as long as the insulating film 13 is flexible, but is preferably 10 to 50 m, more preferably 10 to 25 / ⁇ . .
  • the electrode structure 15 nickel, copper, gold, silver, palladium, iron, or the like can be used.
  • the electrode structure 15 is entirely made of a single metal. Alternatively, it may be one made of an alloy of two or more metals or one made by laminating two or more metals.
  • gold, silver, and noradium are used in order to prevent oxidation of the electrode portion and obtain an electrode portion having low contact resistance.
  • a chemically stable metal film having high conductivity may be formed.
  • the front end of the surface electrode portion 16 with respect to the diameter R at the base end is located.
  • the ratio of the diameter R (R / R) is preferably 0.11-0.55, more preferably 0.1
  • the diameter R of the base end of the surface electrode portion 16 is 30 to 70% of the pitch of the electrode structure 15.
  • the ratio hZR of the protruding height h to the diameter R at the base end of the surface electrode portion 16 is 0.2
  • the electrode structure 15 having a pattern corresponding to the pattern of the electrode to be inspected is formed. It can be easily formed, and a stable electrical connection state to the wafer can be obtained more reliably.
  • the diameter R of the base end of the surface electrode section 16 depends on the above-mentioned conditions and the power to be inspected of the wafer to be inspected.
  • Force set in consideration of the diameter of the pole and the like is, for example, 30 to 80 / ⁇ , and preferably 30 to 50 ⁇ m.
  • the height of the protruding height h of the surface electrode portion 16 is preferably 15 to 50 m from the viewpoint that stable electrical connection can be achieved to the electrode to be inspected of the wafer to be inspected, More preferably, it is 15 to 30 ⁇ m.
  • the outer diameter R of the back electrode portion 17 is equal to that of the short-circuit portion 18 connected to the back electrode portion 17.
  • This is preferably as large as possible, so that a stable electrical connection can be reliably achieved, for example, even for an anisotropic conductive sheet.
  • the thickness D of the back electrode portion 17 is such that the strength is sufficiently high and excellent repetition durability is obtained.
  • the distance is preferably 10 to 40 m, more preferably 15 to 35 m.
  • the ratio R / R of the diameter R of one end to the diameter R of the other end of the short-circuit portion 18 is 0.45-1.
  • the diameter R of one end of the short-circuit portion 18 is 30 to 70% of the pitch of the electrode structure 15.
  • the diameter R of the holding portion 19 may be 30 to 70% of the pitch of the electrode structure 15.
  • the thickness D of the holding portion 19 is preferably 3 to 12 / zm, more preferably 5 to 9 / zm. ⁇ m.
  • the electrode structure 15 in the contact film 12 also has the base partial force of the surface electrode portion 16 continuously along the surface of the insulating film 11. Since the holding portion 19 extending outward is formed, even if the front surface electrode portion 16 has a small diameter, the electrode structure 16 does not lose the back surface force of the insulating film 13 and has high durability. Is obtained.
  • a plurality of openings 11H are formed in the support film 11 corresponding to the electrode regions where the electrodes to be inspected of the wafer to be inspected are formed.
  • the contact film 12 is arranged so that each of the contact films is located in each opening 11H of the support film 11, and the contact film 12 is supported by the support film 11 over the entire surface. Even if the insulating film 13 has a large area, the thermal expansion in the plane direction of the insulating film 13 can be reliably restricted by the support film 11. Therefore, even if the wafer to be inspected has a large area of, for example, 8 inches or more in diameter and the pitch of the electrodes to be inspected is extremely small, the burn-in test is performed! In addition, it is possible to reliably prevent the displacement between the electrode structure 15 and the electrode to be inspected due to a temperature change, and as a result, it is possible to stably maintain a good electrical connection state to the wafer.
  • the sheet-like probe 10 of the first example described above can be manufactured, for example, as follows.
  • FIG. 4 a circular support film forming layer 11A made of metal and a diameter of the support film forming layer 11A integrally laminated on the surface of the support film forming layer 11A are shown.
  • a circular insulating film 13 having a small diameter, a holding portion forming layer 19A made of metal integrally laminated on the surface of the insulating film 13, and an integral portion on the surface of the holding portion forming layer 19A.
  • a laminated body 10A having a laminated insulating electrode portion forming layer 16B and a plating electrode layer 16A integrally laminated on the surface of the electrode portion forming layer 16B is produced.
  • a protective tape 11T is provided on the surface of the support film forming layer 11A along the periphery thereof.
  • the holding portion forming layer 19A has a thickness equivalent to the thickness of the holding portion 19 in the electrode structure 15 to be formed.
  • the total thickness of the electrode portion forming layer 16B and the thickness of the holding portion forming layer 19A is such that the total thickness of the electrode portion forming layer 16B and the thickness of the holding portion forming layer 19A protrudes from the surface electrode portion 16 in the electrode structure 15 to be formed. It is assumed to be equivalent to height.
  • the support film forming layer 11A has a thickness equivalent to the thickness of the support film 11 to be formed.
  • the insulating film 13 As a material constituting the insulating film 13, it is preferable to use a polymer material which can be etched, and more preferably, polyimide.
  • the insulating material constituting the electrode portion forming layer 16B it is preferable to use an etchable high molecular material, and more preferably, polyimide.
  • a resist film 14A for etching is formed on the entire surface of the plating electrode layer 16A on the laminated body 10A, and on the back surface of the support film forming layer 11A, as shown in FIG. Then, an etching resist film 14B in which a plurality of pattern holes K1 are formed is formed in accordance with a pattern corresponding to the pattern of the electrode structure 15 to be formed.
  • the material for forming the resist films 14A and 14B various materials used as a photoresist for etching can be used.
  • the portion of the support film forming layer 11A exposed through the pattern hole K1 of the resist film 14B is subjected to an etching treatment to remove the portion, whereby the support film is formed as shown in FIG.
  • a plurality of through holes 17H communicating with the pattern holes K1 of the resist film 14B are formed in the film forming layer 11A.
  • a portion of the insulating film 13 exposed through each of the pattern holes K1 of the resist film 14B and each of the through holes 17H of the support film forming layer 11A is subjected to a etching process to remove the portions. As shown in FIG.
  • the insulating film 13 has a plurality of tapered through holes which communicate with the through holes 17H of the support film forming layer 11A, and the back surface of the insulating film 13 also has a smaller diameter according to the direction of the front surface. 13H is formed. Thereafter, the portions exposed through the respective pattern holes Kl of the resist film 14B, the respective through holes 17H of the support film forming layer 11A, and the respective through holes 13H of the insulating film 13 with respect to the holding portion forming layer 19A. As shown in FIG. 8, a plurality of through-holes 19H communicating with the through-holes 13H of the insulating film 13 are formed in the holding portion forming layer 19A by removing the portions by performing an etching process. Is done.
  • each pattern hole Kl of the resist film 14B, each through hole 17 ⁇ of the support film forming layer 11A, each through hole 13H of the insulating film 13, and each through hole of the holding portion forming layer 19A By etching the portion exposed through the hole 19H and removing the portion, as shown in FIG. 9, the through hole of the holding portion forming layer 19 # is formed in the electrode portion forming layer 16B as shown in FIG. A plurality of tapered through holes 16H communicating with 19H and having a smaller diameter as going from the back surface to the front surface of the electrode forming layer 16B are formed.
  • the through holes 17H of the support film forming layer 11A, the through holes 13H of the insulating film 13, the through holes 19H of the holding portion forming layer 19A, and the electrode portion forming layer 16B are formed on the back surface of the laminate 10A.
  • a plurality of electrode structure forming recesses 10K formed by communicating the through holes 16H are formed.
  • the etching agent for etching the support film forming layer 11A and the holding portion forming layer is appropriately selected according to the material constituting these metal layers.
  • the metal layer is made of, for example, 42 alloy or copper, an aqueous ferric chloride solution or the like can be used.
  • etching solution for etching the insulating film 13 and the electrode portion forming layer 16B a hydrazine-based aqueous solution, a potassium hydroxide aqueous solution, an amine-based etchant, or the like can be used.
  • tapered through holes 13H and 16H having a smaller diameter toward the back surface can be formed in the insulating film 13 and the electrode portion forming layer 16B.
  • the laminated body 10A having the electrode structure forming recesses 10K formed in this manner is used to remove the resist films 14A and 14B. Thereafter, as shown in FIG. A resist film 14C for plating is formed so as to cover the entire surface of the plating electrode layer 16A, and a pattern of the back electrode portion 17 of the electrode structure 15 to be formed is formed on the back surface of the support film forming layer 11A. A resist film 14D for plating having a plurality of pattern holes K2 formed in accordance with the corresponding pattern is formed.
  • a photoresist for plating is used as a material for forming the resist films 14C and 14D.
  • Various types can be used.
  • an electrolytic plating process is performed on the laminate 10A using the plating electrode layer 16A as an electrode to fill a metal into each of the electrode structure forming recesses 10K and each of the pattern holes K2 of the resist film 14D.
  • a plurality of projecting surface electrode portions 16 protruding from the surface of the insulating film 13, and the insulating film 13
  • a short-circuit portion 18 that extends through and a back electrode portion 17 connected to the other end of each of the short-circuit portions 18 is formed.
  • each of the back electrode portions 17 is in a state of being connected to each other via the support film forming layer 11A.
  • the back surface of the support film forming layer 11A is removed.
  • a notched etching resist film 14E is formed so as to cover the portion to be the supporting film 11 in the back electrode portion 17 and the supporting film forming layer 11A, as shown in FIG.
  • the resist film 14C is exposed.
  • the exposed portions of the plating electrode layer 16A and the support film forming layer 11A are etched to remove the entire plating electrode layer 16A and to expose the exposed portions of the support film forming layer 11A.
  • a plurality of back electrode portions 17 separated from each other are formed, and a plurality of openings 11H corresponding to the electrode regions of the integrated circuit formed on the wafer to be inspected are formed. Is formed.
  • the resist film 14E is removed from the back surface electrode portion 17 and the support film 11, and thereafter, as shown in FIG. 16, the back surface of the support film 11, the back surface of the insulating film 13, and the back surface electrode portion 17 are covered. Then, a resist film 14F is formed.
  • the electrode portion forming layer 16B is subjected to an etching treatment to remove the whole, thereby exposing the surface electrode portion 16 and the holding portion forming layer 19A as shown in FIG.
  • a patterned etching resist film 14G is formed so as to cover a portion to be the holding portion 19 in the surface electrode portion 16 and the holding portion forming layer 17A.
  • the exposed portion is removed by performing an etching process on the holding portion forming layer 17A, thereby removing the exposed portion from the peripheral surface of the base end portion of the surface electrode portion 16 as shown in FIG.
  • a holding portion 19 is formed to extend radially outward along the surface of the insulating film 11 continuously, thereby forming an electrode structure 15.
  • the resist film 14G while removing the resist film 14G from the front electrode portion 16 and the holding portion 19, the resist film 14F is removed from the back surface of the support film 11, the back surface of the insulating film 13 and the back electrode portion 17, and the surface of the support film 11 is further removed.
  • the protective tape 11T see FIG. 4
  • the sheet-like lobe 10 of the first example shown in FIGS. 1 to 3 is obtained.
  • the electrode structure forming recess 10K is previously formed in the laminate 10A having the insulating film 13, and the electrode structure forming recess 10K is used as a cavity to form the surface electrode portion. Since the surface electrode portion 16 is formed, the surface electrode portion 16 having a small diameter and a small variation in the protruding height can be obtained.
  • the base partial force of the surface electrode portion 16 is also continuously extended outward along the surface of the insulating film 13. Since the portion 19 can be formed reliably, even if the surface electrode portion 16 has a small diameter, the electrode structure 15 does not fall off the insulating film 13 and has high durability.
  • the probe 10 can be manufactured.
  • the insulating film 13 is integrally laminated on the support film forming layer 11A.
  • the support film forming layer 11 is etched. Since the opening 11H is formed by the ching process, the contact film 12 can be integrally formed on the support film 11 with high positional accuracy.
  • FIG. 20 is a plan view showing a second example of the sheet-like probe according to the present invention
  • FIG. 21 is a plan view showing an enlarged main part of the contact film in the sheet-like probe of the second example.
  • FIG. 22 is an enlarged cross-sectional view illustrating a main part of the sheet-like probe of the second example.
  • the sheet-like probe 10 of the second example is used, for example, for a wafer on which a plurality of integrated circuits are formed, for performing an electrical inspection of each of the integrated circuits in a wafer state, A support film 11 having the same configuration as the sheet-like probe 10 of the first example is provided.
  • the branch It is provided integrally with the membrane 11 and is supported.
  • Each of the contact films 12a has a flexible insulating film 13a, and a plurality of electrode structures 15 extending in the thickness direction of the insulating film 13a are formed on the insulating film 13a on a wafer to be inspected. According to the pattern corresponding to the pattern of the electrode to be inspected in some of the integrated circuits described above, the contact films 12a are arranged apart from each other in the surface direction of the insulating film 13a. Are arranged in each opening 11H of the support film 11.
  • Each of the electrode structures 15 is exposed on the surface of the insulating film 13a and protrudes from the surface of the insulating film 13a, and has a protruding surface electrode portion 16 and a rectangular flat back surface exposed on the back surface of the insulating film 13a.
  • the base portions of the electrode portion 17 and the front electrode portion 16 also extend continuously through the insulating film 13a in the thickness direction and are connected to the back electrode portion 17, and the base end of the front electrode portion 16.
  • the peripheral force of the portion is also constituted by a circular ring plate-shaped holding portion 19 which extends continuously and radially outward along the surface of the insulating film 13a.
  • the surface electrode portion 16 is formed in a tapered shape that becomes smaller in diameter toward the distal end of the base force following the short-circuit portion 18 and is formed in a truncated cone shape as a whole.
  • the short-circuit portion 18 continuous with the base end of the surface electrode portion 16 is tapered so that the back surface force of the insulating film 13a becomes smaller as going toward the surface, and the whole is formed in a truncated cone shape.
  • the material of the insulating film 13a and the material and dimensions of the electrode structure 15 are the same as those of the insulating film 13 and the electrode structure 15 of the sheet probe of the first example. .
  • the sheet-like probe 10 of the second example can be manufactured, for example, as follows.
  • the supporting film 11 and the electrode structure 15 are formed from the laminate 10A having the structure shown in FIG. 4 in the same manner as in the method of manufacturing the sheet-like probe 10 of the first example described above (see FIGS. 5 to 19). .).
  • the contact to be formed is formed on the surface of the insulating film 13, the surface electrode portion 16 and the holding portion 19.
  • a resist film 14H is formed in accordance with the pattern corresponding to the pattern of the film 12a, and the insulating film 13 is subjected to an etching process to remove an exposed portion, whereby the insulating film 13 is divided, as shown in FIG.
  • a plurality of insulating films 13a independent of each other are formed, thereby forming a plurality of contact films 12a in which a plurality of electrode structures 15 extending through the insulating film 13a in the thickness direction thereof are arranged.
  • the resist film 14F is removed from the back surface of the support film 11, the back surface of the insulating film 13a, and the back electrode portion 17, and the resist film 14H is removed from the surface of the insulating film 13a, the front electrode portion 16 and the holding portion 19, Further, by removing the protective tape from the surface force of the support film 11, the sheet-like lobe 10 of the second example shown in FIGS. 20 to 22 can be obtained.
  • the electrode structure 15 in each of the contact films 12a also has the base partial force of the surface electrode portion 16 continuously. Since the holding portion 19 extending outward along the surface is formed, even if the diameter of the front surface electrode portion 16 is small, the electrode structure 16 does not lose the back surface force of the insulating film 13a. High durability can be obtained.
  • the surface electrode portion 16 having a small diameter, a sufficient separation distance between the adjacent surface electrode portions 16 is ensured, so that the flexibility of the insulating film 13a is sufficiently exhibited, and as a result, the small pitch Thus, a stable electrical connection state can be reliably achieved even on the wafer on which the electrode to be inspected is formed.
  • a plurality of openings 11H are formed in the support film 11 corresponding to the electrode regions where the electrodes to be inspected of the circuit device to be inspected are formed.
  • FIG. 25 is a plan view showing a third example of the sheet-like probe according to the present invention.
  • FIG. 26 is an enlarged plan view showing a main part of the contact film in the sheet-like probe of the third example.
  • FIG. 27 and FIG. 27 are explanatory cross-sectional views showing the main parts of the sheet-like probe of the third example in an enlarged manner.
  • the sheet-like probe 10 of the third example is used for performing an electrical inspection of each of the integrated circuits on a wafer on which a plurality of integrated circuits are formed, for example, in a wafer state.
  • a support film 11 having the same configuration as the sheet-like probe 10 of the first example is provided.
  • a plurality of contact films 12b are supported by the opening edges so as to cover each of the openings 11H of the support film 11, and the contact films 12b are adjacent to each other. They are arranged independently of each other.
  • Each of the contact films 12b has a flexible insulating film 13b, and a plurality of electrode structures 15 made of metal extending in the thickness direction of the insulating film 13b are inspected on the insulating film 13b.
  • the insulating film 13b is disposed apart from each other in the surface direction of the insulating film 13b. Are arranged so as to be located in the openings 11H of the support film 11.
  • Each of the electrode structures 15 is exposed on the surface of the insulating film 13b and protrudes from the surface of the insulating film 13b, and a rectangular flat back surface exposed on the back surface of the insulating film 13b.
  • the base portion force of the electrode portion 17 and the surface electrode portion 16 also extends continuously through the insulating film 13b in the thickness direction thereof and is connected to the back surface electrode portion 17, and the base end of the surface electrode portion 16
  • the peripheral force of the portion is also constituted by a circular ring plate-like holding portion 19 that extends continuously and radially outward along the surface of the insulating film 13b.
  • the surface electrode portion 16 is formed in a tapered shape that becomes smaller in diameter toward the distal end of the base force following the short-circuit portion 18 and is formed in a truncated cone shape as a whole.
  • the short-circuit portion 18 continuous with the base end of the front surface electrode portion 16 is tapered so that the back surface force of the insulating film 13b becomes smaller in diameter toward the front surface, and the whole is formed in a truncated cone shape.
  • the material of the insulating film 13b, the electrode structure 15 are the same as those of the insulating film 13 and the electrode structure 15 of the sheet-like probe of the first example.
  • the sheet probe 10 of the third example can be manufactured, for example, as follows.
  • the support film 11 and the electrode structure 15 are formed from the laminate 10A having the configuration shown in FIG. 4 in the same manner as in the method of manufacturing the sheet-like probe 10 of the first example described above. ).
  • a resist film 14H is formed according to a pattern corresponding to the above, and a plurality of insulating films 13b independent of each other are formed as shown in FIG. 29 by etching the insulating film 13 and removing the exposed portions.
  • a plurality of contact films 12b each having the plurality of electrode structures 15 extending through the insulating film 13b in the thickness direction thereof are formed on the insulating film 13b.
  • the resist film 14F is removed from the back surface of the support film 11, the back surface of the insulating film 13b, and the back electrode portion 17, the resist film 14H is removed from the surface of the insulating film 13b, the front electrode portion 16 and the holding portion 19, Further, by removing the protective tape from the support film 11, the sheet-like flow valve 10 of the third example shown in FIGS. 25 to 27 can be obtained.
  • the electrode structure 15 in each of the contact films 12b has the base partial force of the surface electrode portion 16 continuously. Since the holding portion 19 extending outward along the surface is formed, even if the diameter of the front surface electrode portion 16 is small, the electrode structure 16 does not lose the back surface force of the insulating film 13b. High durability can be obtained.
  • the surface electrode portion 16 having a small diameter, a sufficient separation distance between the adjacent surface electrode portions 16 is ensured, so that the flexibility of the insulating film 13b is sufficiently exhibited, and as a result, the small pitch Thus, a stable electrical connection state can be reliably achieved even on the wafer on which the electrode to be inspected is formed.
  • the support film 11 has an electrode on which an electrode to be inspected is formed on a wafer to be inspected.
  • a plurality of openings 11H are formed corresponding to the polar regions, and the contact films 12b disposed in each of these openings 11H have a small area, and the contact films 12b having a small area are formed by the insulating film 13b. Since the absolute amount of thermal expansion in the plane direction is small, the thermal expansion of the insulating film 13b can be reliably restricted by the support film 11.
  • the wafer to be inspected is a large area having a diameter of 8 inches or more and the pitch of the electrodes to be inspected is extremely small, in the burn-in test, the distance between the electrode structure 17 and the electrode to be inspected due to a temperature change is increased. Displacement can be reliably prevented, and as a result, a good electrical connection state to the wafer can be stably maintained.
  • FIG. 30 is an explanatory cross-sectional view showing a configuration of an example of a circuit device inspection device according to the present invention.
  • the circuit device inspection device performs the above-described operation for each of a plurality of integrated circuits formed on a wafer.
  • This is a wafer inspection device for performing electrical inspection of integrated circuits in a wafer state.
  • This inspection apparatus has a probe card 1 for electrically connecting each of the electrodes 7 to be inspected of a wafer 6 which is a circuit apparatus to be inspected, to a tester.
  • a pressure plate 3 for pressing the probe card 1 downward is provided on the rear surface (the upper surface in the figure) of the probe card 1, and a wafer mounting surface on which the wafer 6 is mounted is provided below the probe card 1.
  • a mounting table 4 is provided, and a heater 5 is connected to each of the pressure plate 3 and the wafer mounting table 4.
  • the probe card 1 has a plurality of test electrodes 21 on the surface thereof in accordance with the pattern corresponding to the pattern of the test electrodes 7 in all the integrated circuits formed on the wafer 6, as also shown in FIG.
  • the inspection circuit board 20 formed on the lower surface (in the figure), the anisotropic conductive connector 30 disposed on the surface of the inspection circuit board 20, and the surface of the anisotropic conductive connector 30 And a sheet probe 10 having the configuration shown in FIG.
  • the electrode structure 15 in the sheet-like probe 10 has the configuration shown in FIG. 1 in which a plurality of electrode structures 15 are arranged according to the pattern corresponding to the pattern of the electrode 7 to be inspected in all the integrated circuits formed on the wafer 6.
  • a sheet probe 10 is arranged.
  • the anisotropic conductive connector 30 has all the integrated portions formed on the wafer 6.
  • a frame plate 31 in which a plurality of openings 32 are formed corresponding to the electrode regions where the electrodes 7 to be inspected in the circuit are formed, and the frame plate 31 is disposed so as to cover one opening 32, and A plurality of anisotropic conductive sheets 35 fixed and supported at the opening edge of the opening 31 are provided.
  • Each of the anisotropic conductive sheets 35 is formed of an elastic polymer material, and has a pattern corresponding to the pattern of the electrode 7 to be inspected in one electrode region formed on the wafer 6 which is the circuit device to be inspected. And a plurality of conductive portions 36 extending in the thickness direction, and an insulating portion 37 for insulating each of these conductive portions 36 from each other. Further, in the illustrated example, on both surfaces of the anisotropic conductive sheet 35, at the location where the conductive portion 36 and its peripheral portion are located, protruding portions 38 from which other surface forces also protrude are formed.
  • Each of the conductive portions 36 in the anisotropic conductive sheet 35 contains conductive particles P exhibiting magnetism densely in a state of being aligned in the thickness direction.
  • the insulating portion 37 contains no or almost no conductive particles P.
  • the anisotropic conductive connector 30 is arranged on the surface of the inspection circuit board 20 such that each of the conductive portions 36 is located on the inspection electrode 21, and the sheet probe 10 is connected to the anisotropic conductive connector 30.
  • On the front surface each of the back electrode portions 17 of the electrode structure 15 is arranged so as to be located on the conductive portion 36.
  • guide holes are formed in positioning holes (not shown) formed in the support film 11 of the sheet-like probe 10 and positioning holes (not shown) formed in the frame plate 31 of the anisotropic conductive connector 30. The pin 2 is inserted, and in this state, the sheet probe 10 and the anisotropic conductive connector 30 are fixed to each other.
  • substrate materials can be used as the substrate material constituting the inspection circuit board 20, and specific examples thereof include glass fiber reinforced epoxy resin, glass fiber reinforced phenol resin, glass fiber Examples include composite resin materials such as reinforced polyimide resin and glass fiber reinforced bismaleimide triazine resin, and ceramic materials such as glass, silicon dioxide, and alumina.
  • instrument linear thermal expansion coefficient used the following 3 X 10- 5 ⁇ 1 X 10- 7 ⁇ 1 X 10 "VK, Particularly preferably 1 X 10- b ⁇ 6 X 10- 6 ⁇ .
  • Such a substrate material include Pyrex (registered trademark) glass, quartz glass, alumina, beryllia, silicon carbide, aluminum nitride, and boron nitride.
  • the frame plate 31 in the anisotropic conductive connector 30 As a material forming the frame plate 31 in the anisotropic conductive connector 30, if the frame plate 31 does not easily deform and has a rigidity enough to maintain its shape stably.
  • a material forming the frame plate 31 in the anisotropic conductive connector 30 if the frame plate 31 does not easily deform and has a rigidity enough to maintain its shape stably.
  • various materials such as a metal material, a ceramic material, and a resin material can be used.
  • the frame plate 31 is made of, for example, a metal material, the surface of the frame plate 31 is insulated. A functional coating may be formed.
  • the metal material forming the frame plate 31 include iron, copper, nickel, chromium, cobalt, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tungsten, aluminum, gold, platinum, silver, and the like. Metal or an alloy or alloy steel obtained by combining two or more of these metals.
  • resin material forming the frame plate 31 examples include a liquid crystal polymer and a polyimide resin.
  • the material for forming the frame plate 31 a coefficient of linear thermal expansion 3 X 10- 5 ZK following ones more preferably it is preferred instrument using an 1 X ⁇ - 7 ⁇ X IO K , particularly good Mashiku 1 X 10- 6 ⁇ 8 X 10- 6 ⁇ .
  • Such a material include an invar-type alloy such as invar, an elinvar-type alloy such as elinvar, an alloy of magnetic metals such as Super Invar, Kovar, and 42 alloy or alloy steel.
  • the thickness of the frame plate 31 is not particularly limited as long as its shape is maintained and the anisotropic conductive sheet 35 can be supported. For example, it is preferably from 25 to 600 ⁇ m, more preferably from 40 to 400 ⁇ m.
  • the total thickness of the anisotropic conductive sheet 35 in the anisotropic conductive connector 30 is preferably 50 to 2000111, and more preferably 70 to 2000. : L0 00 ⁇ m, particularly preferably 80-500 ⁇ m.
  • the thickness is 50 ⁇ m or more, the anisotropic conductive sheet 35 has sufficient strength.
  • the thickness is 2000 / zm or less, the conductive portion 36 having required conductive characteristics can be obtained without fail.
  • the total height of the protrusions 38 is preferably at least 10% of the thickness of the protrusion 38, more preferably at least 15%.
  • the height of the projection 38 is preferably 100% or less of the shortest width or diameter of the projection 38, more preferably 70% or less.
  • the elastic polymer material forming the anisotropic conductive sheet 35 a heat-resistant polymer material having a crosslinked structure is preferable.
  • a curable polymer substance forming material that can be used to obtain a strong crosslinked polymer substance a liquid silicone rubber that can use various materials is preferable.
  • the liquid silicone rubber may be an addition type or a condensation type, but an addition type liquid silicone rubber is preferable.
  • This addition-type liquid silicone rubber is cured by a reaction between a bullet group and a SiH bond, and is a one-pack type (one-component type) made of a polysiloxane containing both a vinyl group and a Si—H bond.
  • a two-component type (two-component type), which also has a polysiloxane containing a butyl group and a polysiloxane containing a Si—H bond.
  • the two-component addition type liquid is used. It is preferable to use silicone rubber.
  • the anisotropic conductive sheet 35 is formed from a cured product of liquid silicone rubber (hereinafter, referred to as “cured silicone rubber”)
  • the cured silicone rubber has a compression set at 150 ° C.
  • the content is preferably 10% or less, more preferably 8% or less, and even more preferably 6% or less. If the compression set exceeds 10%, the conductive part 36 may be subject to permanent set when the obtained anisotropic conductive connector is used repeatedly many times or in a high temperature environment. to this As a result, the chain of the conductive particles P in the conductive portion 36 is disturbed, so that it becomes difficult to maintain the required conductivity.
  • the compression set of the cured silicone rubber can be determined by a method based on JIS K 6249.
  • the cured silicone rubber preferably has a durometer A hardness of 10 to 60 at 23 ° C, more preferably 15 to 55, and particularly preferably 20 to 50.
  • the insulation 37 which insulates the conductive parts 36 from each other when pressurized, is excessively distorted and immediately maintains the required insulation between the conductive parts 36. Can be difficult.
  • the durometer A hardness exceeds 60, a considerably large load is required to apply an appropriate strain to the conductive portion 36, and thus the wafer as the circuit device to be inspected may be greatly deformed or broken. Is more likely to occur.
  • the cured silicone rubber forming the anisotropic conductive sheet 35 has a durometer A hardness at 23 ° C. of 25 to 40. Is preferred! / ,.
  • the durometer A hardness of the cured silicone rubber can be measured by a method based on JIS K 6249.
  • the cured silicone rubber preferably has a tear strength at 23 ° C. of 8 kNZm or more, more preferably 10 kNZm or more, and even more preferably 15 kNZm or more. Above, particularly preferably 20 kNZm or more. If the tear strength is less than 8 kNZm, the durability tends to decrease when the anisotropic conductive sheet 35 is subjected to excessive strain.
  • the tear strength of the cured silicone rubber can be determined by a method based on JIS K 6249.
  • an appropriate curing catalyst can be used to cure the addition-type liquid silicone rubber.
  • a platinum-based curing catalyst can be used, and specific examples thereof include chloroplatinic acid and a salt thereof, a platinum-unsaturated group-containing siloxane complex, a complex of bulletsiloxane and platinum, Known complexes such as a complex of platinum with 1,3-dibutyltetramethyldisiloxane, triorganophosphine, a complex of phosphite and platinum, an acetyl acetate platinum chelate, a complex of cyclic gen and platinum, etc. .
  • the amount of the curing catalyst to be used is appropriately selected in consideration of the type of the curing catalyst and other curing conditions, but is usually 3 to 15 parts by weight based on 100 parts by weight of the addition type liquid silicone rubber.
  • the addition-type liquid silicone rubber is required to improve the thixotropy of the addition-type liquid silicone rubber, adjust the viscosity, improve the dispersion stability of the conductive particles, or obtain a base material having high strength.
  • an inorganic filler such as ordinary silica powder, colloidal silica, air-port gel silica, alumina or the like can be contained as necessary.
  • conductive particles P contained in conductive portion 36 particles obtained by coating the surface of core particles exhibiting magnetism (hereinafter, also referred to as “magnetic core particles”) with a highly conductive metal are used.
  • the “highly conductive metal” refers to a metal having a conductivity at 0 ° C. of 5 ⁇ 10 6 ⁇ 1 or more.
  • the magnetic core particles for obtaining the conductive particles P preferably have a number average particle diameter of 3 to 40 ⁇ m.
  • the number average particle diameter of the magnetic core particles refers to a value measured by a laser diffraction scattering method.
  • the number average particle diameter is 3 ⁇ m or more, deformation under pressure is easy, and the resistance It is easy to obtain conductive parts 36 with high reliability.
  • the number average particle diameter is 40 m or less, the fine conductive portion 36 can be easily formed, and the obtained conductive portion 36 tends to have stable conductivity.
  • the magnetic core particles preferably have a BET specific surface area of 10 to 500 m 2 ZKG, more preferably 20 to 500 m 2 ZKG, particularly preferably 50 to 400 m 2 ZKG.
  • the magnetic core particles have a sufficiently large area in which plating can be performed, so that a required amount of plating can be reliably performed on the magnetic core particles. Therefore, the conductive particles P having high conductivity can be obtained, and the contact area between the conductive particles P is sufficiently large, so that stable and high conductivity can be obtained.
  • the BET specific surface area is 500 m 2 Zkg or less, the magnetic core particles do not become brittle, and maintain high stability and high conductivity with little breakage when a physical stress is applied. Is done.
  • the magnetic core particles preferably have a particle diameter variation coefficient of 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. .
  • the coefficient of variation of the particle diameter is determined by the formula: ( ⁇ ZDn) ⁇ 100 (where ⁇ indicates the value of the standard deviation of the particle diameter, and Dn indicates the number average particle diameter of the particles).
  • indicates the value of the standard deviation of the particle diameter
  • Dn indicates the number average particle diameter of the particles.
  • the saturation magnetic force is 0.1 W b / m 2 or more. And more preferably 0.3 Wb / m 2 or more, particularly preferably 0.5 WbZm 2 or more, and specifically, iron, nickel, cobalt, or an alloy thereof. Is mentioned.
  • the highly conductive metal coated on the surface of the magnetic core particles can be used as the highly conductive metal coated on the surface of the magnetic core particles, and among these, they are chemically stable and have high conductivity. It is preferable to use gold for the point.
  • the ratio of the highly conductive metal to the core particles [(mass of the highly conductive metal Z mass of the core particles) X 100] is 15% by mass or more, and preferably 25 to 35% by mass. It is said.
  • the proportion of the highly conductive metal is less than 15% by mass, when the obtained anisotropically conductive connector is repeatedly used in a high temperature environment, the conductivity of the conductive particles P is significantly reduced. , The required conductivity cannot be maintained.
  • the conductive particles P preferably have a BET specific surface area of 10 to 500 m 2 Zkg.
  • the surface area of the coating layer is sufficiently large, so that the coating layer having a high total weight of the highly conductive metal can be formed. Particles having high properties can be obtained, and the contact area between the conductive particles P is sufficiently large, so that stable and high conductivity can be obtained.
  • the BET specific surface area is 500 m 2 Zkg or less, the conductive particles do not become brittle, and stable and high conductivity is maintained with little breakage when a physical stress is applied. You. Further, the number average particle diameter of the conductive particles P is preferably 3 to 40 / ⁇ , more preferably 6 to 25 ⁇ .
  • the anisotropic conductive sheet 35 obtained can be easily deformed under pressure, and sufficient electric contact can be obtained between the conductive particles in the conductive portion 36.
  • the shape of the conductive particles is not particularly limited. However, since they can be easily dispersed in the polymer-forming material, they are spherical, star-shaped, or aggregated. It is preferable that the particles are in a lump formed by the secondary particles.
  • the water content of the conductive particles is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 2% by mass or less, and particularly preferably 1% by mass or less.
  • the conductive particles may be those whose surfaces have been treated with a coupling agent such as a silane coupling agent.
  • a coupling agent such as a silane coupling agent.
  • the adhesion between the conductive particles ⁇ and the elastic polymer substance is increased, and as a result, the obtained conductive particles are obtained.
  • the anisotropic conductive sheet 35 has high durability in repeated use.
  • the amount of the coupling agent to be used is appropriately selected within a range that does not affect the conductivity of the conductive particles P, but the coating ratio of the coupling agent on the surface of the conductive particles P (coupling relative to the surface area of the conductive particles P). More preferably, the coverage is 7 to: LOO%, more preferably 10 to: LOO%, particularly preferably 20 to 100. %.
  • Such conductive particles P can be obtained, for example, by the following method.
  • a ferromagnetic material is formed into particles by a conventional method, or commercially available ferromagnetic particles are prepared, and the particles are subjected to a classification process to prepare magnetic core particles having a required particle diameter.
  • the classification process of the particles can be performed by a classification device such as an air classification device and a sonic sieve device.
  • the specific conditions of the classification process are appropriately set according to the number average particle diameter of the target magnetic core particles, the type of the classification device, and the like.
  • the surface of the magnetic core particles is treated with an acid, and further, for example, washed with pure water to remove impurities such as dirt, foreign matter, and oxide film present on the surface of the magnetic core particles.
  • impurities such as dirt, foreign matter, and oxide film present on the surface of the magnetic core particles.
  • examples of the acid used for treating the surface of the magnetic core particles include hydrochloric acid.
  • the method for coating the surface of the magnetic core particles with the highly conductive metal is not limited to these methods, and can be an electroless plating method or a replacement plating method.
  • a method for producing conductive particles by an electroless plating method or a displacement plating method will be described.
  • an acid-treated and washed magnetic core particle is added to a plating solution to form a slurry.
  • the magnetic core particles are prepared and subjected to electroless plating or substitution plating while stirring the slurry.
  • the particles in the slurry are separated by hydraulic separation, and thereafter, the particles are washed with, for example, pure water to obtain conductive particles having the surface of the magnetic core particles coated with a highly conductive metal.
  • a plating layer made of a highly conductive metal may be formed on the surface of the lower plating layer.
  • the method of forming the base plating layer and the plating layer formed on the surface thereof is not particularly limited, but the base plating layer is formed on the surface of the magnetic core particles by an electroless plating method, and thereafter, by the displacement plating method. It is preferable to form a plating layer made of a highly conductive metal on the surface of the base plating layer.
  • the plating liquid used for the electroless plating or the replacement plating is not particularly limited, and various commercially available plating liquids can be used. Can be used.
  • the particles may aggregate, thereby generating conductive particles having a large particle diameter. It is preferable to perform the classification treatment of the conductive particles, whereby the conductive particles having the desired particle diameter can be reliably obtained.
  • Examples of the classification device for performing the classification process on the conductive particles include those exemplified as the classification device used in the classification process for preparing the magnetic core particles described above.
  • the content ratio of the conductive particles P in the conductive portion 36 is preferably 10 to 60% by volume, preferably 15 to 50%. If this ratio is less than 10%, the conductive portion 36 having a sufficiently low electric resistance may not be obtained. On the other hand, if this ratio exceeds 60%, the resulting conductive portion 36 may be fragile, and the elasticity required for the conductive portion 36 may not be obtained immediately.
  • the anisotropic conductive connector as described above can be manufactured, for example, by the method described in JP-A-2002-324600.
  • the wafer 6 to be inspected is mounted on the wafer mounting table 4, and then the probe card 1 is pressed downward by the pressing plate 3, so that the sheet probe
  • the force of each of the surface electrode portions 16 in the electrode structure 15 of 10 comes into contact with each of the electrodes 7 to be inspected of the wafer 6, and each of the surface electrode portions 16 presses each of the electrodes 7 to be inspected of the wafer 6. Is done.
  • each of the conductive portions 36 in the anisotropic conductive sheet 35 of the anisotropic conductive connector 30 The electrode 21 and the back surface electrode portion 17 of the electrode structure 15 of the sheet-shaped probe 10 are pressed and compressed in the thickness direction, whereby a conductive path is formed in the conductive portion 36 in the thickness direction.
  • electrical connection between the electrode 7 to be inspected on the wafer 6 and the inspection electrode 21 on the circuit board 20 for inspection is achieved.
  • the wafer 6 is heated to a predetermined temperature via the wafer mounting table 4 and the pressing plate 3 by the calo heater 5, and in this state, a required number of each of the plurality of integrated circuits on the wafer 6 is required. Is performed.
  • each of the openings 32 of the frame plate 31 in the anisotropic conductive connector 30 is formed corresponding to the electrode region where the electrodes 7 to be inspected of all the integrated circuits in the wafer 6 to be inspected are formed.
  • the anisotropic conductive sheet 30 disposed in each of the openings 32 has a small area, and the anisotropic conductive sheet 30 having a small area has a small absolute amount of thermal expansion in the surface direction.
  • the thermal expansion in the plane direction of the conductive sheet 30 is reliably restricted by the frame plate 31, so that the displacement between the conductive portion 36, the electrode structure 15, and the inspection electrode 21 due to a temperature change can be reliably prevented.
  • the inspection apparatus having such a probe card 1, it is possible to reliably achieve a stable electrical connection state even to the wafer 6 on which the electrodes 7 to be inspected are formed at a small pitch. Since the probe card 1 has high durability, even when testing a large number of wafers, a highly reliable test can be performed over a long period of time. In addition, even if the wafer 6 has a large area of at least 8 inches in diameter and the pitch of the electrodes 7 to be inspected is extremely small, it is necessary to stably maintain a good electrical connection state to the wafer 6 in the burn-in test. As a result, the required electrical inspection can be reliably performed for each of the plurality of integrated circuits on the wafer 6.
  • circuit device inspection device of the present invention is not limited to the wafer inspection device of the above example, and various changes can be made as follows.
  • the probe card 1 shown in FIGS. 30 and 31 achieves the electrical connection to the electrodes 7 to be inspected of all the integrated circuits formed on the wafer 6 at one time. It may be electrically connected to the electrodes 7 to be inspected of a plurality of integrated circuits selected from all the formed integrated circuits.
  • the number of integrated circuits to be selected is appropriately selected in consideration of the size of the wafer 6, the number of integrated circuits formed on the wafer 6, the number of electrodes to be inspected in each integrated circuit, and the like. 64 and 128.
  • the probe card 1 is electrically connected to the electrodes 7 to be inspected of a plurality of integrated circuits selected from all the integrated circuits formed on the wafer 6. After that, by repeating the process of electrically connecting the probe card 1 to the electrodes 7 to be inspected of a plurality of integrated circuits selected from other integrated circuits and performing the inspection, the wafer is inspected. Electrical inspection of all the integrated circuits formed in 6 can be performed.
  • an inspection apparatus when an electrical inspection is performed on an integrated circuit formed on a wafer having a diameter of 8 inches or 12 inches with a high V and a high degree of integration, all the integrated circuits are required.
  • the number of test electrodes and the number of wirings on the test circuit board used can be reduced as compared with the method of testing all circuits at once, thereby reducing the manufacturing cost of the test equipment.
  • a dagger can be planned.
  • a ring-shaped holding member 40 may be provided on the periphery of the support film 13.
  • Examples of a material forming such a holding member 40 include an invar alloy such as invar and super invar, an elinvar alloy such as elinvar, a low thermal expansion metal material such as kovar and 42 alloy, or alumina, silicon carbide, and silicon nitride. Such as ceramic materials Can be used.
  • the anisotropic conductive sheet 35 of the anisotropic conductive connector 30 has a conductive portion 36 formed according to a pattern corresponding to the pattern of the electrode 7 to be inspected, and also has an electrode for the electrode 7 to be inspected.
  • the conductive portion for disconnection may not be formed.
  • the inspection device of the present invention is not limited to a wafer inspection device, but is used as an inspection device for circuits formed on semiconductor chips, package LSI such as BGA and CSP, and semiconductor integrated circuit devices such as CMC. Can be configured.
  • each of the integrated circuits L formed on the wafer 6 has an electrode area A to be inspected at the center thereof, and the electrode area A to be inspected has, as shown in FIG. 60 rectangular electrodes 7 with a vertical dimension (vertical direction in Fig. 36) of 200 ⁇ m and a horizontal dimension (horizontal direction in Fig. 36) of 50 ⁇ m are arranged at a pitch of 100 ⁇ m. They are arranged in a line in the direction.
  • the total number of the electrodes 7 to be inspected in the entire wafer 6 is 23580, and all the electrodes 7 to be inspected are electrically insulated from each other.
  • this wafer Wl this wafer is referred to as “test wafer Wl”.
  • test wafer W2 393 integrated circuits (L) having the same configuration as the above-described test wafer W1 were formed on the wafer (6) except that every other two were electrically connected to each other.
  • this wafer is referred to as “test wafer W2”.
  • laminated polyimide sheet with a 20 cm diameter and 5 ⁇ m thick metal layer made of copper on both sides of a 20 cm diameter and 17.5 ⁇ m thick polyimide sheet (hereinafter referred to as “laminated sheet”).
  • laminated sheet B a laminated polyimide sheet in which a 20.4 cm diameter and 12.5 m thick polyimide sheet is laminated on one surface of a metal layer made of 42 alloy having a diameter of 22 cm and a thickness of 10 m
  • an adhesive layer made of a thermoplastic polyimide having a thickness of about 1 ⁇ m is formed on the surface of the polyimide sheet in the laminated sheet B, and the laminated sheet A is disposed on the adhesive layer and the metal layer of the laminated sheet B is formed.
  • a protective tape made of polyethylene terephthalate having an inner diameter of 20.4 cm and an outer diameter of 22 cm is placed on one surface of the peripheral portion, and is subjected to thermocompression bonding in this state to form a laminate (10A) having the configuration shown in FIG. Produced.
  • the obtained laminate (10A) has an insulating film (13) made of polyimide having a thickness of 12.5 ⁇ m on the surface of a supporting film forming layer (11 A) made of 42 alloy having a thickness of 10 m, 5 ⁇ m thick copper holding layer (19A), 17.5 ⁇ m thick polyimide electrode forming layer (16B) and 5 ⁇ m thick copper plating electrode
  • the layer (16A) is laminated in this order, and the protective tape (11T) is further laminated on the peripheral region on the surface of the support film forming layer (11A).
  • a resist film (14A) is formed on the entire surface of the layer for a metal electrode (16A) with a dry film resist having a thickness of 25 ⁇ m on the laminate (10A), and a support film is formed.
  • a resist film (23580) having a circular pattern hole (K1) having a diameter of 60 ⁇ m according to the pattern corresponding to the pattern of the electrode to be inspected formed on the test wafer W1 (231). 14B) (see FIG. 5).
  • the exposure treatment is performed by irradiating 80 mJ of ultraviolet light with a high-pressure mercury lamp, and the development treatment is immersed in a developer consisting of a 1% aqueous sodium hydroxide solution for 40 seconds. The operation was repeated twice.
  • the support film forming layer (11A) is subjected to an etching treatment at 50 ° C. for 30 seconds using a ferric chloride-based etchant to form the support film forming layer (11A). Then, 23580 through holes (17H) communicating with the pattern holes (K1) of the resist film (14B) were formed (see FIG. 6). Thereafter, the insulating film (13) is etched using an amine-based polyimide etchant (“TPE-3000”, manufactured by Toray Engineering Co., Ltd.) at 80 ° C. for 10 minutes to obtain an insulating film (13).
  • TPE-3000 amine-based polyimide etchant
  • each of the through holes (13H) has a tapered shape that becomes smaller in diameter toward the rear surface of the insulating film (13).
  • the caliber was 7 m.
  • the holding portion forming layer (19A) is subjected to an etching treatment at 50 ° C. for 30 seconds using a ferric chloride-based etching solution to form the holding portion forming layer (19A).
  • a ferric chloride-based etching solution to form the holding portion forming layer (19A).
  • 23580 through holes (19H) communicating with the through holes (13H) of the insulating film (13) were formed (see FIG. 8).
  • the electrode forming layer (16B) is etched at 80 ° C for 10 minutes using an amine-based polyimide etchant (“TPE-3000” manufactured by Toray Engineering Co., Ltd.).
  • 23580 through holes (16H) communicating with the through holes (19H) of the holding portion forming layer (19A) were formed in the electrode portion forming layer (16B) (see FIG. 9).
  • Each of the through holes (16H) is tapered so that the back surface force of the electrode forming layer (16B) becomes smaller as it goes to the front surface. Had an opening diameter of 18
  • the through holes (17H) of the support film forming layer (11A), the through holes (13H) of the insulating film (13), and the holding portion forming layer (19A) are formed on the back surface of the laminate (10A).
  • electrode structure forming recesses (10K) were formed by communicating the through holes (19H) of the electrodes and the through holes (16H) of the electrode portion forming layer (16B).
  • the laminate (10A) on which the electrode structure forming recess (10K) was formed was immersed in a sodium hydroxide solution at 45 ° C. for 2 minutes to remove the laminate (10A) from the laminate (10A).
  • the laminated film (10A) is coated with a 25 ⁇ m-thick dry film resist so as to cover the entire surface of the plating electrode layer (16A).
  • 23580 rectangular pattern holes with dimensions of 150 mX m communicating with the through holes (17H) of the support film forming layer (11A) are formed on the back surface of the support film forming layer (11A).
  • a resist film (14D) on which (K2) was formed was formed (see FIG. 10).
  • the exposure treatment was performed by irradiating 80 mJ of ultraviolet light with a high-pressure mercury lamp, and the development treatment was immersed in a developer consisting of a 1% aqueous sodium hydroxide solution for 40 seconds. The operation was repeated twice.
  • the laminate (10A) is immersed in a plating bath containing nickel sulfamate, and the laminate (10A) is subjected to electrolytic plating using the plating electrode layer (16A) as an electrode.
  • a patterning etching resist film (14E) is covered with a 25 m-thick dry film resist so as to cover the portion to be a support film in the support film forming layer (11A) and the back electrode portion (17). Formed (see Figure 13).
  • the exposure treatment was performed by irradiating 80 mJ of ultraviolet light with a high-pressure mercury lamp, and the development treatment was immersed in a developer consisting of a 1% aqueous sodium hydroxide solution for 40 seconds.
  • the protective seal was removed from the resist film (14C) formed on the laminate (10A), and then the resist film (14E) and the support film forming layer were removed.
  • the exposed portion of (11A) was covered with a protective seal made of polyethylene terephthalate having a thickness of 25 m, and the laminate (10A) was immersed in an aqueous sodium hydroxide solution at 45 ° C for 2 minutes.
  • the laminate (10A) also removed the resist film (14C) (see FIG. 14).
  • the protective seal was also removed from the resist film (14E) and the support film forming layer (11A), and then the ammonia-based etching was performed on the plating electrode layer (16A) and the support film forming layer (11A).
  • each of the back electrode portions (17) is separated from each other, and each of the vertical and horizontal dimensions formed according to the pattern corresponding to the electrode region pattern in the integrated circuit formed on the test wafer W1 is 2 mm X 6.
  • a support film (11) having a plurality of 5 mm openings (11H) was formed (see FIG. 15).
  • the laminate (10A) is immersed in an aqueous solution of sodium hydroxide at 45 ° C. for 2 minutes to remove the resist film (14E) on the back surface of the support film (11) and the back electrode portion (17). did. Thereafter, a resist film (14F) was formed using a 25-m-thick dry film resist so as to cover the back surface of the support film (11), the back surface of the insulating film (13), and the back electrode portion (17) (see FIG. 16).
  • the resist film (14F) is covered with a protective seal made of polyethylene terephthalate having a thickness of 25 m, and then the amine-based polyimide etching solution (manufactured by Toray Engineering Co., Ltd., The electrode forming layer (16B) was removed by etching using TPE-3000 ”) at 80 ° C for 10 minutes (see Fig. 17).
  • a 25 ⁇ m-thick dry film resist is used to cover the surface electrode portion (16) and the portion to be the holding portion (19) in the first surface side metal layer (17A).
  • a film (14G) was formed (see FIG. 18).
  • the exposure treatment is performed by irradiating 80 mJ ultraviolet rays with a high-pressure mercury lamp, and the development treatment is immersed in a developer consisting of a 1% aqueous sodium hydroxide solution for 40 seconds. The operation was repeated twice. Thereafter, the holding portion forming layer (19A) is subjected to an etching treatment under a condition of 50 ° C.
  • the resist film (14F) was immersed in a sodium hydroxide solution at 45 ° C. for 2 minutes to remove the surface electrode portion (16) and the holding portion (19). 14G), the back surface of the support film (11), the back surface of the insulating film (13), and the back electrode (17).
  • the resist film (14F) is removed, and the surface force of the support film (11) is protected.
  • the tape (11T) was removed. After that, a ring-shaped holding member (40) made of silicon nitride having an outer diameter of 22 cm, an inner diameter of 20.5 cm and a thickness of 2 mm is disposed on the surface of the peripheral portion of the support film (11).
  • the holding member (40) is bonded to the supporting film (11) by pressing the supporting member (40) and the supporting film (11) at 180 ° C. for 2 hours, thereby forming the sheet-like process according to the present invention.
  • One piece (10) was manufactured (see Fig. 33).
  • the obtained sheet probe (10) has a thickness d of the insulating film (13) in the contact film (12) of 12.5 ⁇ ⁇ , and a thickness of the surface electrode portion (16) of the electrode structure (15).
  • the shape is a truncated cone, with a radius R force of 7 / ⁇ ⁇ at its base end, a radius R force at its tip ⁇ 8 / ⁇ ⁇ , a protruding height h of 22 m, and a short circuit (18).
  • the back electrode (17) is a rectangular flat plate, and its width (diameter R) is 60 ⁇ m
  • the vertical width is 200 / z m
  • the thickness D is m
  • the shape of the holding part (19) is a circular ring plate.
  • the outer diameter R force is 0 m
  • its thickness D force / z m is 10 m thick
  • the supporting film (1) is 10 m thick
  • sheet probe Ml sheet probe M4
  • Example 2 In the same manner as in Example 1, a laminated body (10A) and a support film (11) and an electrode structure (15) were formed (see FIGS. 4 to 19). By immersing the resist film (14G) in the aqueous solution for 2 minutes, the force of the surface electrode portion (16) and the holding portion (19) was also removed.
  • a plurality of contact films (12b) in which a plurality of electrode structures (15) extending through the insulating film (13b) in the thickness direction were formed (see FIGS. 28 and 29).
  • the resist film (14F) is removed from the back surface of the support film (11), the back surface of the insulating film (13b) and the back electrode portion (17), and the surface of the insulating film (13b) and the surface electrode portion (16) are removed.
  • the resist film (14H) was removed from the holding portion (19), and the support film (11) was removed from the protective tape.
  • a ring-shaped silicon nitride holding member (40) having an outer diameter of 22 cm, an inner diameter of 20.5 cm, and a thickness of 2 mm is arranged on the surface of the peripheral portion of the support film (11).
  • (40) and the supporting film (11) are pressurized and maintained at 180 ° C. for 2 hours, so that the holding member (40) is joined to the supporting film (11). 10) Made • la
  • the obtained sheet-like probe (10) has dimensions of the contact film (12b) in the vertical and horizontal directions of the insulating film (13b) 4000 111> ⁇ 7000 111, and the thickness d of the insulating film (13b).
  • the shape of the surface electrode part (16) of the electrode structure (15) is frusto-conical, with a diameter R at the base end of 7111,
  • the diameter R is 18; ⁇ ⁇ , the protruding height h is 22 m, and the short-circuit part (18) has a truncated cone shape.
  • the diameter R force at one end on the front surface side is 7 ⁇ m
  • the diameter R force at the other end on the rear surface is 1 ⁇ 20 ⁇ m
  • the back electrode (1
  • 7) is a rectangular flat plate with a width (diameter R) of 60 ⁇ m, a vertical width of 200 ⁇ m, and a thickness D.
  • the shape of the holding part (19) is a circular ring plate, its outer diameter R is m, and its thickness is
  • sheet probe Ll sheet probe L4
  • the entire support film forming layer was removed by etching to prevent formation of the support film, and the entire holding portion forming layer was removed by etching.
  • a sheet-like probe was manufactured in the same manner as in Example 1, except that the holding portion was not formed and the holding member was provided on the surface of the peripheral portion of the insulating film.
  • the obtained sheet probe had an insulating film thickness d of 12.5 / ⁇ , a surface electrode of the electrode structure with a truncated cone shape, a base diameter of 47 m, and a tip diameter of 47 m. Is 18 m, its protruding height is 25 m, the shape of the short-circuited part is a truncated cone, the diameter of one end on the front side is 47 m, the diameter of the other end on the back side is 60 m, and the shape of the back electrode is It is a rectangular flat plate with a width of 60 ⁇ m, a vertical width of ⁇ m, and a thickness of 30 ⁇ m.
  • sheet probe Nl sheet probe N4
  • the obtained nickel particles have a number average particle size of 7.4 / zm, a variation coefficient of the particle size of 27%, a BET specific surface area of 0.46 X 10 3 m 2 Zkg, and a saturation magnetization of 0.6 Wb / m 2 Met.
  • the nickel particles are referred to as “magnetic core particles [A]”.
  • the obtained conductive particles had a number average particle diameter of 7.3 m, a BET specific surface area of 0.38 ⁇ 10 3 m 2 / kg, (mass of gold forming the coating layer) / (magnetic core particles [A ] Is 0.3).
  • conductive particles are referred to as “conductive particles (a)”.
  • this frame plate (31) In the material of this frame plate (31) is Kovar (coefficient of linear thermal expansion 5 X 10- 6 ZK), its thickness is 60 m.
  • Each of the openings (32) has a dimension of 6400 ⁇ m in the horizontal direction (the horizontal direction in FIGS. 37 and 38) and 320 ⁇ m in the vertical direction (the vertical direction in FIGS. 37 and 38).
  • a circular air inlet (33) is formed at a central position between the vertically adjacent openings (32) and has a diameter of 1000 ⁇ m.
  • the addition type liquid silicone rubber used was a two-part type composed of liquid A and liquid B each having a viscosity of 250 Pa's, and the cured product had a compression set of 5% and a durometer A hardness of 32. It has a tear strength of 25 kNZm.
  • Durometer A hardness is measured at 23 ⁇ 2 ° C according to JIS K 6249 by stacking five sheets prepared in the same manner as in (iii) above and using the obtained stack as a test piece. Values were measured.
  • each of the frame plates (31) was formed according to the method described in JP-A-2002-324600.
  • 393 anisotropic conductive sheets (35) having the configuration shown in FIG. 31 are arranged so as to close the openings (32) of the frame plate (31) and fixed and supported by the opening edges of the frame plate (31).
  • an anisotropic conductive connector was manufactured.
  • the curing treatment of the molding material layer was performed at 100 ° C. for 1 hour while applying a magnetic field of 2 T in the thickness direction with an electromagnetic stone.
  • the obtained anisotropic conductive sheet (35) was obtained.
  • each of the anisotropic conductive sheets (35) has a horizontal dimension of 7000 m and a vertical dimension of 1200 m, and 60 conductive sections (36) are arranged at a pitch of 100 m in the horizontal direction.
  • Each of the conductive parts (36) has a horizontal dimension of 40 ⁇ m, a vertical dimension of 200 ⁇ m, a thickness of 150 m, and a protrusion height of the protrusion (38). Is 25 ⁇ m, and the thickness of the insulating part (37) is 100 ⁇ m. Also, there is no gap between the outermost conductive portion (36) in the horizontal direction and the opening edge of the frame plate.
  • a conductive portion for connection is arranged.
  • Each of the conductive parts for non-connection has a lateral dimension
  • the volume fraction of all the conductive portions (36) was about 25%.
  • anisotropically conductive connector Cl anisotropically conductive connector
  • anisotropically conductive connector C12 anisotropically conductive connector C12
  • the inspection circuit board (20) is a rectangle measuring 30 cm ⁇ 30 cm overall, and its inspection electrodes have a horizontal dimension of 60 m and a vertical dimension of 200 m.
  • the obtained inspection circuit board is referred to as “inspection circuit board Tl”.
  • Test 1 insulation between adjacent electrode structures
  • the insulation between the adjacent electrode structures is determined as follows. An evaluation was performed.
  • the test wafer W1 is placed on a test table, and a sheet-like probe is placed on the surface of the test wafer W2 so that each of its surface electrodes is inspected by the test wafer W1.
  • An anisotropic conductive connector is positioned and positioned on the sheet probe so that each conductive part is positioned on the back electrode of the sheet probe.
  • the inspection circuit board T1 is positioned and arranged such that each of the inspection electrodes is positioned on the conductive portion of the anisotropically conductive connector, and further, the inspection circuit board T1.
  • T1 was pressed downward with a load of 118 kg (an average load applied to one electrode structure was about 5 g).
  • an anisotropic conductive connector was used. Then, a voltage is sequentially applied to each of the 23580 test electrodes on the test circuit board Tl, and the electric resistance between the test electrode to which the voltage is applied and another test electrode is measured by the electrode of the sheet probe. It is measured as the electrical resistance between structures (hereinafter referred to as “insulation resistance”), and the ratio of measurement points where the insulation resistance at all measurement points is 10 ⁇ ⁇ or less (hereinafter referred to as “insulation failure rate”) is determined.
  • insulation resistance the electrical resistance between structures
  • insulation failure rate the ratio of measurement points where the insulation resistance at all measurement points is 10 ⁇ ⁇ or less
  • the insulation resistance is less than 10 ⁇ ⁇ , it is practically difficult to use the integrated circuit formed on the wafer for electrical inspection.
  • test wafer W2 At room temperature (25 ° C), place the test wafer W2 on a test table equipped with an electric heater, and place a sheet-shaped probe on the surface of the test wafer W2 so that each of its surface electrodes is subjected to the test.
  • the anisotropic conductive connector is placed on the sheet-shaped probe, and each conductive part is positioned on the back electrode of the sheet-shaped probe.
  • the test circuit board T1 is positioned on the anisotropic conductive connector so that each of the test electrodes is positioned on the conductive part of the anisotropic conductive connector. And then add the inspection circuit board T1 It was pressurized downward with a load of 118 kg (the load applied to one electrode structure was about 5 g on average).
  • Table 2 was used as the anisotropic conductive connector.
  • test electrodes on the test circuit board T1 two test electrodes electrically connected to each other via a sheet probe, an anisotropic conductive connector, a test ueno, and W2.
  • the electrical resistance between the test electrodes of the test circuit board T1 and the test electrode of the test wafer W2 is referred to as 2 of the measured electrical resistance value. This was recorded as “conduction resistance”), and the ratio of measurement points that were equal to or higher than the conduction resistance at all measurement points (hereinafter, referred to as “connection failure ratio”) was determined. This operation is referred to as “operation (1)”.
  • test circuit board T1 is released, and then the test table is heated to 150 ° C and left until the temperature is stabilized, and then the test circuit board T1 is loaded downward by a load of 118 kg.
  • the load applied to one electrode structure was about 5 g on average), and the connection failure rate was determined in the same manner as in the above operation (1). This operation is referred to as “operation (2)”.
  • test table was cooled to room temperature (25 ° C.), and the pressure applied to the test circuit board T1 was released. This operation is referred to as “operation (3)”.
  • the operation (1), the operation (2) and the operation (3) were performed as one cycle, and a total of 300 cycles were continuously performed.
  • the conduction resistance is 1 ⁇ or more, it is practically difficult to use it for electrical inspection of an integrated circuit formed on a wafer.
  • the sheet-shaped probe M3, the sheet-shaped probe M4, the sheet-shaped probe L3, and the sheet-shaped probe L4 were observed.As a result, none of the electrode structures was dropped from the insulating film. High and durability were confirmed. On the other hand, for the sheet-like probe N3, 48 electrode structures out of the 23850 electrode structures dropped out of the insulating film, and for the sheet-like probe N4, 23850 electrode structures Among them, 27 electrode structures were dropped from the insulating film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A sheet-shaped probe, a method for manufacturing the probe and application of the probe are provided, by which a small-diameter surface electrode part can be formed, a stable connecting status can be attained even for a circuit device having a small-pitch electrode, a high durability can be obtained by preventing an electrode structure from dropping from an insulating film, a positional shift of the electrode structure from an electrode to be inspected due to temperature change in a burn-in test can be surely prevented for large-area wafers and the circuit devices having the small-pitch electrode to be tested, and excellent connecting status can be stably maintained. The sheet-shaped probe is provided with a contact point film having an insulating film and a plurality of the electrode structures extending in a thickness direction of the insulating film, and a supporting film made of a metal for supporting the contact point film. The electrode structure is composed of the front surface electrode part protruding from a front surface of the insulating film, a rear surface electrode part exposing on a rear surface of the insulating film, a short-circuiting part which extends continuously from a base edge of the front surface electrode part in the thickness direction of the insulating film and is connected to the rear surface electrode part, and a supporting part which extends continuously outward from the base edge part of the front surface electrode part along the front surface of the insulating film.

Description

明 細 書  Specification
シート状プローブおよびその製造方法並びにその応用  Sheet-shaped probe, method of manufacturing the same, and application thereof
技術分野  Technical field
[0001] 本発明は、例えば集積回路などの回路の電気的検査において、当該回路に対す る電気的接続を行うためのシート状プローブおよびその製造方法並びにその応用に 関する。  The present invention relates to a sheet-like probe for making an electrical connection to a circuit such as an integrated circuit in an electrical inspection of the circuit, for example, a method of manufacturing the same, and an application thereof.
背景技術  Background art
[0002] 例えば、多数の集積回路が形成されたウェハや、半導体素子等の電子部品などの 回路装置の電気的検査においては、被検査回路装置の被検査電極のパターンに対 応するパターンに従って配置された多数の検査電極を有するプローブカードが用い られている。かかるプローブカードとしては、従来、ピンまたはブレードよりなる検查電 極が配列されてなるものが使用されている。  [0002] For example, in an electrical inspection of a circuit device such as a wafer on which a large number of integrated circuits are formed or an electronic component such as a semiconductor device, the circuit is arranged according to a pattern corresponding to a pattern of an electrode to be inspected of the circuit device to be inspected. A probe card having a large number of test electrodes is used. As such a probe card, conventionally, a probe card in which detection electrodes formed of pins or blades are arranged is used.
然るに、被検査回路装置が多数の集積回路が形成されたウェハである場合におい て、当該ウェハを検査するためのプローブカードを作製する場合には、非常に多数 の検査電極を配列することが必要となるので、当該プローブカードは極めて高価なも のとなる。また、検査対象であるウェハが小さいピッチで配置された多数の被検査電 極を有するものである場合には、プローブカードを作製すること自体が困難となる。更 に、ウェハには、一般に反りが生じており、その反りの状態も製品(ウエノ、)毎に異な るため、当該ウェハにおける多数の被検査電極に対して、プローブカードの検査電 極の各々を安定にかつ確実に接触させることは実際上困難である。  However, when the circuit device to be inspected is a wafer on which a large number of integrated circuits are formed, it is necessary to arrange a very large number of inspection electrodes when manufacturing a probe card for inspecting the wafer. Therefore, the probe card becomes extremely expensive. If the wafer to be inspected has a large number of electrodes to be inspected arranged at a small pitch, it becomes difficult to fabricate the probe card itself. Furthermore, since the wafer is generally warped, and the state of the warp is different for each product (e.g., wafer), a large number of electrodes to be inspected on the wafer are required for each of the inspection electrodes of the probe card. It is practically difficult to make stable and reliable contact.
[0003] 以上のような理由から、近年、ウェハに形成された集積回路を検査するためのプロ ーブカードとして、一面に被検査電極のパターンに対応するパターンに従って複数 の検査電極が形成された検査用回路基板と、この検査用回路基板の一面上に配置 された異方導電性シートと、この異方導電性シート上に配置された、柔軟な絶縁膜に その厚み方向に貫通して伸びる複数の電極構造体が配列されてなるシート状プロ一 ブとを具えてなるものが提案されている (例えば特許文献 1参照。 ) o  [0003] For the reasons described above, in recent years, as a probe card for inspecting an integrated circuit formed on a wafer, a probe card having a plurality of inspection electrodes formed on one surface in accordance with a pattern corresponding to a pattern of an electrode to be inspected has been developed. A circuit board, an anisotropic conductive sheet disposed on one surface of the inspection circuit board, and a plurality of flexible insulating films disposed on the anisotropic conductive sheet and extending through the flexible insulating film in the thickness direction thereof. A device comprising a sheet-like probe in which electrode structures are arranged has been proposed (for example, see Patent Document 1).
[0004] 図 39は、検査用回路基板、異方導電性シートおよびシート状プローブを具えてな る従来のプローブカードの一例における構成を示す説明用断面図である。このプロ ーブカードにおいては、一面に被検査回路装置の被検査電極のパターンに対応す るパターンに従って形成された多数の検査電極 86を有する検査用回路基板 85が設 けられ、この検査用回路基板 85の一面上に、異方導電性シート 80を介してシート状 プローブ 90が配置されて!ヽる。 [0004] FIG. 39 does not include an inspection circuit board, an anisotropic conductive sheet, and a sheet probe. FIG. 5 is an explanatory cross-sectional view illustrating a configuration of an example of a conventional probe card. In this probe card, an inspection circuit board 85 having a large number of inspection electrodes 86 formed on one surface in accordance with a pattern corresponding to an electrode to be inspected of a circuit device to be inspected is provided. A sheet-like probe 90 is arranged on one side of the substrate via an anisotropic conductive sheet 80.
[0005] 異方導電性シート 80は、厚み方向にのみ導電性を示すもの、または厚み方向に加 圧されたときに厚み方向にのみ導電性を示す加圧導電性導電部を有するものであり 、力かる異方導電性シートとしては、種々の構造のものが知られており、例えば特許 文献 2等には、金属粒子をエラストマ一中に均一に分散して得られる異方導電性シ ート (以下、これを「分散型異方導電性シート」という。)が開示され、また、特許文献 3 等には、導電性磁性体粒子をエラストマ一中に不均一に分布させることにより、厚み 方向に伸びる多数の導電部と、これらを相互に絶縁する絶縁部とが形成されてなる 異方導電性シート (以下、これを「偏在型異方導電性シート」という。)が開示され、更 に、特許文献 4等には、導電部の表面と絶縁部との間に段差が形成された偏在型異 方導電性シートが開示されている。  [0005] The anisotropic conductive sheet 80 has conductivity only in the thickness direction, or has a pressurized conductive portion that has conductivity only in the thickness direction when pressed in the thickness direction. Various structures are known as a strong anisotropic conductive sheet. For example, Patent Document 2 and the like disclose an anisotropic conductive sheet obtained by uniformly dispersing metal particles in an elastomer. (Hereinafter, referred to as a “dispersed anisotropic conductive sheet”), and Patent Document 3 and the like disclose a method of dispersing conductive magnetic particles non-uniformly in an elastomer to obtain a thickness. An anisotropic conductive sheet (hereinafter, referred to as a “distributed anisotropic conductive sheet”) in which a large number of conductive portions extending in a direction and insulating portions for insulating the conductive portions from each other are formed. In addition, Patent Document 4 and the like disclose a step between the surface of the conductive portion and the insulating portion. An unevenly distributed anisotropic conductive sheet in which a difference is formed is disclosed.
[0006] シート状プローブ 90は、例えば榭脂よりなる柔軟な絶縁膜 91を有し、この絶縁膜 9 1に、その厚み方向に伸びる複数の電極構造体 95が被検査回路装置の被検査電極 のパターンに対応するパターンに従って配置されて構成されて 、る。この電極構造 体 95の各々は、絶縁膜 91の表面に露出する突起状の表面電極部 96と、絶縁膜 91 の裏面に露出する板状の裏面電極部 97とが、絶縁膜 91をその厚み方向に貫通して 伸びる短絡部 98を介して一体に連結されて構成されている。  [0006] The sheet-like probe 90 has a flexible insulating film 91 made of, for example, resin, and a plurality of electrode structures 95 extending in the thickness direction of the insulating film 91 are provided with electrodes to be inspected of a circuit device to be inspected. It is arranged and configured according to the pattern corresponding to the above pattern. In each of the electrode structures 95, a protruding front surface electrode portion 96 exposed on the surface of the insulating film 91 and a plate-shaped rear surface electrode portion 97 exposed on the back surface of the insulating film 91 form the insulating film 91 with its thickness. They are integrally connected via a short-circuit portion 98 extending through the direction.
[0007] このようなシート状プローブ 90は、一般に、以下のようにして製造される。  [0007] Such a sheet probe 90 is generally manufactured as follows.
先ず、図 40 (a)に示すように、絶縁膜 91の一面に金属層 92が形成されてなる積層 体 90Aを用意し、図 40 (b)に示すように、絶縁膜 91にその厚み方向に貫通する貫通 孔 98Hを形成する。  First, as shown in FIG. 40 (a), a laminated body 90A having a metal layer 92 formed on one surface of an insulating film 91 is prepared, and as shown in FIG. A through-hole 98H penetrating through is formed.
次いで、図 40 (c)に示すように、絶縁膜 91の金属層 92上にレジスト膜 93を形成し たうえで、金属層 92を共通電極として電解メツキ処理を施すことにより、絶縁膜 91の 貫通孔 98Hの内部に金属の堆積体が充填されて金属層 92に一体に連結された短 絡部 98が形成されると共に、当該絶縁膜 91の表面に、短絡部 98に一体に連結され た突起状の表面電極部 96が形成される。 Next, as shown in FIG. 40 (c), a resist film 93 is formed on the metal layer 92 of the insulating film 91, and an electrolytic plating process is performed using the metal layer 92 as a common electrode, thereby forming the insulating film 91. A metal deposit is filled in the through-hole 98H and is connected to the metal layer 92 as a single piece. At the same time as the entangled portion 98 is formed, a protruding surface electrode portion 96 integrally connected to the short-circuit portion 98 is formed on the surface of the insulating film 91.
その後、金属層 92からレジスト膜 93を除去し、更に、図 40 (d)に示すように、表面 電極部 96を含む絶縁膜 91の表面にレジスト膜 94Aを形成すると共に、金属層 92上 に、形成すべき裏面電極部のパターンに対応するパターンに従ってレジスト膜 94B を形成し、当該金属層 92に対してエッチング処理を施することにより、図 40 (e)に示 すように、金属層 92における露出する部分が除去されて裏面電極部 97が形成され、 以て電極構造体 95が形成される。  Thereafter, the resist film 93 is removed from the metal layer 92, and a resist film 94A is formed on the surface of the insulating film 91 including the surface electrode portion 96, as shown in FIG. Then, a resist film 94B is formed in accordance with a pattern corresponding to the pattern of the back electrode portion to be formed, and the metal layer 92 is subjected to an etching process, as shown in FIG. The exposed portion of is removed to form the back electrode portion 97, thereby forming the electrode structure 95.
そして、絶縁膜 91および表面電極部 96上に形成されたレジスト膜 94Aを除去する と共に、裏面電極部 97上に形成されたレジスト膜 94Bを除去することにより、シート状 プローブ 90が得られる。  Then, by removing the resist film 94A formed on the insulating film 91 and the front electrode portion 96 and removing the resist film 94B formed on the back electrode portion 97, the sheet probe 90 is obtained.
[0008] 上記のプローブカードにおいては、被検査回路装置例えばウェハの表面に、シー ト状プローブ 90における電極構造体 95の表面電極部 96が当該ウェハの被検査電 極上に位置するよう配置され、この状態で、ウェハがプローブカードによって押圧さ れることにより、異方導電性シート 80が、シート状プローブ 90における電極構造体 95 の裏面電極部 97によって押圧され、これにより、当該異方導電性シート 80には、当 該裏面電極部 97と検査用回路基板 85の検査電極 86との間にその厚み方向に導電 路が形成され、その結果、ウェハの被検査電極と検査用回路基板 85の検査電極 86 との電気的接続が達成される。そして、この状態で、当該ウェハについて所要の電気 的検査が実行される。 In the above-described probe card, the surface electrode section 96 of the electrode structure 95 of the sheet-like probe 90 is arranged on the surface of the circuit device to be inspected, for example, the wafer, so as to be located on the electrode to be inspected of the wafer. In this state, when the wafer is pressed by the probe card, the anisotropic conductive sheet 80 is pressed by the back surface electrode portion 97 of the electrode structure 95 in the sheet-like probe 90. In 80, a conductive path is formed in the thickness direction between the back electrode portion 97 and the test electrode 86 of the test circuit board 85, and as a result, the test electrode of the wafer and the test circuit board 85 are tested. An electrical connection with electrode 86 is achieved. Then, in this state, a required electrical inspection is performed on the wafer.
そして、このようなプローブカードによれば、ウェハがプローブカードによって押圧さ れたときに、当該ウェハの反りの大きさに応じて異方導電性シートが変形するため、 ウェハにおける多数の被検査電極の各々に対して良好な電気的接続を確実に達成 することができる。  According to such a probe card, when the wafer is pressed by the probe card, the anisotropic conductive sheet is deformed in accordance with the degree of warpage of the wafer, so that a large number of electrodes to be inspected on the wafer are formed. A good electrical connection can be reliably achieved for each of the two.
[0009] しかしながら、上記のプローブカードにおけるシート状プローブにおいては、以下の ような問題がある。  [0009] However, the sheet-like probe in the above probe card has the following problems.
上記のシート状プローブの製造方法における短絡部 98および表面電極部 96を形 成する工程においては、電解メツキによるメツキ層が等方的に成長するため、図 41に 示すように、得られる表面電極部 96においては、当該表面電極部 96の周縁から短 絡部 98の周縁までの距離 wは、当該表面電極部 96の突出高さ hと同等の大きさとな る。従って、得られる表面電極部 96の径 Rは、突出高さ hの 2倍を超えて相当に大き いものとなる。そのため、被検査回路装置における被検査電極が微小で極めて小さ いピッチで配置されてなるものである場合には、隣接する電極構造体 95間の離間距 離を十分に確保することができず、その結果、得られるシート状プローブにおいては 、絶縁膜 91による柔軟性が失われるため、被検査回路装置に対して安定した電気的 接続を達成することが困難となる。 In the step of forming the short-circuit portion 98 and the surface electrode portion 96 in the above-described method for manufacturing a sheet-like probe, since the plating layer grows isotropically by electrolytic plating, FIG. As shown, in the obtained surface electrode portion 96, the distance w from the periphery of the surface electrode portion 96 to the periphery of the short-circuit portion 98 is equal to the protrusion height h of the surface electrode portion 96. . Accordingly, the diameter R of the obtained surface electrode portion 96 is considerably larger than twice the protruding height h. Therefore, if the electrodes to be inspected in the circuit device to be inspected are arranged at a very small and extremely small pitch, it is not possible to secure a sufficient separation distance between the adjacent electrode structures 95. As a result, in the obtained sheet probe, the flexibility of the insulating film 91 is lost, so that it is difficult to achieve stable electrical connection to the circuit device under test.
また、電解メツキ処理において、金属層 92の全面に対して電流密度分布が均一な 電流を供給することは実際上困難であり、この電流密度分布の不均一性により、絶縁 膜 91の貫通孔 98H毎にメツキ層の成長速度が異なるため、形成される表面電極部 9 6の突出高さ hや、表面電極部 96の周縁から短絡部 98の周縁までの距離 wすなわち 径 Rに大きなバラツキが生じる。そして、表面電極部 96の突出高さ hに大きなバラッ キがある場合には、被検査回路装置に対して安定した電気的接続が困難となり、一 方、表面電極部 96の径に大きなバラツキがある場合には、隣接する表面電極部 96 同士が短絡する恐れがある。  In addition, it is practically difficult to supply a current having a uniform current density distribution to the entire surface of the metal layer 92 in the electrolytic plating process, and the non-uniformity of the current density distribution causes the through holes 98H Since the growth rate of the plating layer is different for each, a large variation occurs in the protruding height h of the formed surface electrode part 96 and the distance w from the periphery of the surface electrode part 96 to the periphery of the short-circuit part 98, that is, the diameter R. . If there is a large variation in the protrusion height h of the surface electrode portion 96, it is difficult to make a stable electrical connection to the circuit device to be inspected, while a large variation in the diameter of the surface electrode portion 96 occurs. In some cases, adjacent surface electrode portions 96 may be short-circuited.
[0010] 以上において、得られる表面電極部 96の径を小さくする手段としては、当該表面電 極部 96の突出高さ hを小さくする手段、短絡部 98の径 (断面形状が円形でない場合 には、最短の長さを示す。)rを小さくする、すなわち絶縁膜 91の貫通孔 98Hの径を 小さくする手段が考えられるが、前者の手段によって得られるシート状プローブにお いては、被検査電極に対して安定な電気的接続を確実に達成することが困難となり、 一方、後者の手段では、電解メツキ処理によって短絡部 98および表面電極部 96を 形成すること自体が困難となる。  [0010] In the above, means for reducing the diameter of the obtained surface electrode portion 96 include means for reducing the protruding height h of the surface electrode portion 96, and the diameter of the short-circuit portion 98 (when the cross-sectional shape is not circular). Indicates the shortest length.) A method of reducing r, that is, reducing the diameter of the through-hole 98H of the insulating film 91 can be considered, but the sheet-like probe obtained by the former method has a On the other hand, it is difficult to reliably attain stable electrical connection to the electrodes. On the other hand, the latter means makes it difficult to form the short-circuit portion 98 and the surface electrode portion 96 by electrolytic plating.
[0011] このような問題を解決するため、特許文献 5および特許文献 6において、それぞれ 基端力 先端に向かって小径となるテーパ状の表面電極部を有する多数の電極構 造体が配置されてなるシート状プローブが提案されている。  [0011] In order to solve such a problem, in Patent Document 5 and Patent Document 6, a large number of electrode structures each having a tapered surface electrode portion having a smaller diameter toward the distal end are arranged. A sheet-like probe has been proposed.
[0012] 特許文献 5に記載されたシート状プローブは、以下のようにして製造される。  [0012] The sheet probe described in Patent Document 5 is manufactured as follows.
図 42 (a)に示すように、絶縁膜 91の表面にレジスト膜 93Aおよび表面側金属層 92 A力 Sこの順で形成され、当該絶縁膜 91の裏面に裏面側金属層 92Bが積層されてな る積層体 90Bを用意し、図 42 (b)に示すように、この積層体 90Bにおける裏面側金 属層 92B、絶縁膜 91およびレジスト膜 93Aの各々に互いに連通する厚み方向に伸 びる貫通孔を形成することにより、当該積層体 90Bの裏面に、形成すべき電極構造 体の短絡部および表面電極部に適合するテーパ状の形態を有する電極構造体形成 用凹所 90Kを形成する。次いで、図 42 (c)に示すように、この積層体 90Bにおける 表面側金属層 92Aを電極としてメツキ処理することにより、電極構造体形成用凹所 9 OKに金属を充填して表面電極部 96および短絡部 98を形成する。そして、この積層 体における裏面側金属層にエッチング処理を施してその一部を除去することにより、 図 42 (d)に示すように、裏面電極部 97を形成し、以てシート状プローブが得られる。 As shown in FIG. 42A, the resist film 93A and the surface side metal layer 92 are formed on the surface of the insulating film 91. A force S A laminate 90B is formed in this order, in which a back surface side metal layer 92B is laminated on the back surface of the insulating film 91, and as shown in FIG. 42 (b), the back surface of the laminate 90B is prepared. By forming through holes extending in the thickness direction communicating with each other in each of the side metal layer 92B, the insulating film 91, and the resist film 93A, a short circuit portion of the electrode structure to be formed is formed on the back surface of the laminate 90B. An electrode structure forming recess 90K having a tapered shape adapted to the surface electrode portion is formed. Next, as shown in FIG. 42 (c), the surface-side metal layer 92A in the laminated body 90B is subjected to a plating process as an electrode, so that the electrode structure forming recess 9OK is filled with metal and the surface electrode portion 96 And a short circuit 98 is formed. Then, by etching the backside metal layer of the laminate and removing a part thereof, a backside electrode portion 97 is formed as shown in FIG. 42 (d), thereby obtaining a sheet probe. Can be
[0013] また、特許文献 6に記載されたシート状プローブは、以下のようにして製造される。  [0013] The sheet-like probe described in Patent Document 6 is manufactured as follows.
図 43 (a)に示すように、形成すべきシート状プローブにおける絶縁膜より大きい厚 みを有する絶縁膜材 91Aの表面に表面側金属層 92Aが形成され、当該絶縁膜材 9 1Aの裏面に裏面側金属層 92Bが積層されてなる積層体 90Cを用意し、図 43 (b)に 示すように、この積層体 90Cにおける裏面側金属層 92Bおよび絶縁膜材 91 Aの各 々に互いに連通する厚み方向に伸びる貫通孔を形成することにより、当該積層体 90 Cの裏面に、形成すべき電極構造体の短絡部および表面電極部に適合するテーパ 状の形態を有する電極構造体形成用凹所 90Kを形成する。次いで、この積層体 90 Cにおける表面側金属層 92Aを電極としてメツキ処理することにより、図 43 (c)に示 すように、電極構造体形成用凹所 90Kに金属を充填して表面電極部 96および短絡 部 98を形成する。その後、この積層体 90Cにおける表面側金属層 92Aを除去すると 共に、絶縁膜材 91Aをエッチング処理して当該絶縁膜の表面側部分を除去すること により、図 43 (d)に示すように、所要の厚みの絶縁膜 91を形成すると共に、表面電極 部 96を露出させる。そして、裏面側金属層 92Bをエッチング処理することにより、図 4 3 (e)に示すように、裏面電極部 97を形成し、以てシート状プローブが得られる。  As shown in FIG. 43 (a), a front-side metal layer 92A is formed on the surface of an insulating film material 91A having a thickness larger than the insulating film in the sheet-like probe to be formed, and is formed on the back surface of the insulating film material 91A. A laminated body 90C formed by laminating the back side metal layer 92B is prepared, and as shown in FIG. 43 (b), communicates with each of the back side metal layer 92B and the insulating film material 91A in the laminated body 90C. By forming a through hole extending in the thickness direction, a concave portion for forming an electrode structure having a tapered shape adapted to a short-circuit portion and a surface electrode portion of the electrode structure to be formed on the back surface of the laminate 90C. Form 90K. Next, as shown in FIG. 43 (c), a metal is filled into the electrode structure forming recess 90K by performing a plating process using the surface-side metal layer 92A of the laminated body 90C as an electrode. 96 and short circuit 98 are formed. Thereafter, by removing the surface-side metal layer 92A of the laminate 90C and etching the insulating film material 91A to remove the surface-side portion of the insulating film, as shown in FIG. An insulating film 91 having a thickness of 3 mm is formed, and the surface electrode section 96 is exposed. Then, by etching the back side metal layer 92B, as shown in FIG. 43 (e), a back side electrode portion 97 is formed, whereby a sheet probe is obtained.
[0014] このようなシート状プローブによれば、表面電極部がテーパ状のものであるため、径 力 S小さくて突出高さが高い表面電極部を、隣接する電極構造体の表面電極部との離 間距離が十分に確保された状態で形成することができると共に、当該電極構造体の 各々の表面電極部は、積層体に形成された電極構造体形成用凹所をキヤビティとし て成形されるため、表面電極部の突出高さのバラツキが小さい電極構造体が得られ る。 According to such a sheet-like probe, since the surface electrode portion has a tapered shape, the surface electrode portion having a small diameter S and a high protruding height is connected to the surface electrode portion of the adjacent electrode structure. Can be formed in a state where the distance between the electrodes is sufficiently secured, and the electrode structure can be formed. Since each of the surface electrode portions is formed with the cavity for forming the electrode structure formed in the laminate as a cavity, an electrode structure with a small variation in the protruding height of the surface electrode portion can be obtained.
しかしながら、これらのシート状プローブにおいては、電極構造体における表面電 極部の径が短絡部の径すなわち絶縁膜に形成された貫通孔の径と同等またはそれ より小さいものであるため、電極構造体が絶縁膜の裏面から脱落してしまい、当該シ ート状プローブを実際上使用することは困難である。  However, in these sheet-shaped probes, the diameter of the surface electrode portion of the electrode structure is equal to or smaller than the diameter of the short-circuit portion, that is, the diameter of the through hole formed in the insulating film. Is dropped from the back surface of the insulating film, and it is difficult to actually use the sheet-like probe.
更に、従来のプローブカードにおけるシート状プローブにおいては、以下のような 問題がある。  Further, the sheet-like probe in the conventional probe card has the following problem.
例えば直径が 8インチ以上のウェハにおいては、 5000個または 10000個以上の 被検査電極が形成されており、当該被検査電極のピッチは 160 m以下である。こ のようなウェハの検査を行うためのシート状プローブとしては、当該ウェハに対応した 大面積のものであって、 5000個または 10000個以上の電極構造体が 160 μ m以下 のピッチで配置されてなるものを用いることが必要となる。  For example, in a wafer having a diameter of 8 inches or more, 5000 or 10,000 electrodes to be inspected are formed, and the pitch of the electrodes to be inspected is 160 m or less. A sheet probe for such a wafer inspection has a large area corresponding to the wafer and has 5000 or 10,000 or more electrode structures arranged at a pitch of 160 μm or less. It is necessary to use the one that is.
而して、ウェハを構成する材料例えばシリコンの線熱膨張係数は 3. 3 X 10— 6ZK程 度であり、一方、シート状プローブにおける絶縁膜を構成する材料例えばポリイミドの 線熱膨張係数は 4. 5 Χ 10— 5ΖΚ程度である。従って、例えば 25°Cにおいて、それぞ れ直径が 30cmのウェハおよびシート状プローブの各々を、 20°C力ら 120°Cまでに 加熱した場合には、理論上、ウェハの直径の変化は 99 /z mにすぎないが、シート状 プローブにおける絶縁膜の直径の変化は 1350 mに達し、両者の熱膨張の差は、 1251 /z mとなる。 And Thus, the linear thermal expansion coefficient of the material for example silicon constituting the wafer 3. a 3 X 10- 6 ZK extent, whereas, the linear thermal expansion coefficient of the material such as polyimide for the insulating film in the sheet-like probe 4. is about 5 Χ 10- 5 ΖΚ. Therefore, if, for example, a wafer and a sheet probe each having a diameter of 30 cm at 25 ° C are heated to 120 ° C from a force of 20 ° C, the change in wafer diameter is theoretically 99%. Although it is only / zm, the change in the diameter of the insulating film in the sheet probe reaches 1350 m, and the difference in thermal expansion between the two is 1251 / zm.
このように、ウェハとシート状プローブにおける絶縁膜との間で、面方向における熱 膨張の絶対量に大きな差が生じると、絶縁膜の周縁部をウェハの線熱膨張係数と同 等の線熱膨張係数を有する支持部材によって固定しても、バーンイン試験において 、温度変化による電極構造体と被検査電極との位置ずれを確実に防止することは困 難であるため、良好な電気的接続状態を安定に維持することができな!/、。  As described above, when a large difference occurs in the absolute amount of thermal expansion in the surface direction between the wafer and the insulating film of the sheet-shaped probe, the peripheral portion of the insulating film has a linear thermal expansion coefficient equal to the linear thermal expansion coefficient of the wafer. Even if it is fixed by a support member having an expansion coefficient, it is difficult to reliably prevent the electrode structure from being displaced from the electrode to be inspected due to a temperature change in the burn-in test. I can't keep it stable! / ,.
また、検査対象が小型の回路装置であっても、その被検査電極のピッチが 50 m 以下のものである場合には、バーンイン試験において、温度変化による電極構造体 と被検査電極との位置ずれを確実に防止することは困難であるため、良好な電気的 接続状態を安定に維持することができな 、。 Even if the inspection target is a small circuit device, if the pitch of the electrode to be inspected is 50 m or less, the electrode structure due to temperature change in the burn-in test It is difficult to reliably prevent displacement between the electrode and the electrode to be inspected, so that a good electrical connection state cannot be stably maintained.
[0016] このような問題点に対して、特許文献 7には、絶縁膜に張力を作用させた状態で保 持部材に固定することにより、当該絶縁膜の熱膨張を緩和する手段が提案されてい る。  [0016] In order to solve such a problem, Patent Document 7 proposes means for reducing thermal expansion of the insulating film by fixing the insulating film to a holding member while applying tension to the insulating film. ing.
然るに、このような手段においては、絶縁膜に対してその面方向における全ての方 向について均一に張力を作用させることは極めて困難であり、また、電極構造体を形 成することによって絶縁膜に作用する張力のバランスが変化し、その結果、当該絶縁 膜は熱膨張について異方性を有するものとなるため、面方向における一方向の熱膨 張を抑制することが可能であっても、当該一方向と交差する他の方向の熱膨張を抑 制することができず、結局、温度変化による電極構造体と被検査電極との位置ずれ を防止することができない。  However, in such a means, it is extremely difficult to uniformly apply tension to the insulating film in all directions in the plane direction.In addition, by forming the electrode structure, the insulating film is formed on the insulating film. The balance of the acting tensions changes, and as a result, the insulating film becomes anisotropic with respect to thermal expansion. It is impossible to suppress thermal expansion in another direction that intersects with one direction, and as a result, it is not possible to prevent displacement of the electrode structure and the electrode to be inspected due to a temperature change.
[0017] 特許文献 1 :特開平 7— 231019号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 7-231019
特許文献 2:特開昭 51— 93393号公報  Patent Document 2: JP-A-51-93393
特許文献 3:特開昭 53— 147772号公報  Patent Document 3: JP-A-53-147772
特許文献 4:特開昭 61 - 250906号公報  Patent Document 4: JP-A-61-250906
特許文献 5:特開平 11― 326378号公報  Patent Document 5: JP-A-11-326378
特許文献 6 :特開 2002— 196018号公報  Patent Document 6: JP-A-2002-196018
特許文献 7:特開 2001— 15565号公報  Patent Document 7: Japanese Patent Application Laid-Open No. 2001-15565
発明の開示  Disclosure of the invention
[0018] 本発明は、以上のような事情に基づいてなされたものであって、その第 1の目的は、 径が小さ!/ヽ表面電極部を有する電極構造体を形成することが可能で、小さ!ヽピッチ で電極が形成された回路装置に対しても安定な電気的接続状態を確実に達成する ことができ、し力も、電極構造体が絶縁膜から脱落することがなくて高い耐久性が得ら れ、更に、検査対象が、直径が 8インチ以上の大面積のウェハや被検査電極のピッ チが極めて小さい回路装置であっても、バーンイン試験において、温度変化による電 極構造体と被検査電極との位置ずれを確実に防止することができ、従って、良好な 電気的接続状態を安定に維持することができるシート状プローブを提供することにあ る。 The present invention has been made based on the above-described circumstances, and a first object of the present invention is to form an electrode structure having a small diameter and a surface electrode portion. ,small!安定 A stable electrical connection state can be reliably achieved even for circuit devices with electrodes formed at a pitch, and high durability is obtained without the electrode structure falling off the insulating film. Furthermore, even if the inspection target is a large-area wafer with a diameter of 8 inches or more or a circuit device with a very small pitch of the electrode to be inspected, the electrode structure and the inspected electrode due to temperature change in the burn-in test It is therefore an object of the present invention to provide a sheet-like probe which can surely prevent a displacement with respect to an electrode and can stably maintain a good electrical connection state. The
本発明の第 2の目的は、径が小さくて突出高さのバラツキが小さい表面電極部を有 する電極構造体を形成することができ、小さ 、ピッチで電極が形成された回路装置 に対しても安定な電気的接続状態を確実に達成することができ、しカゝも、電極構造体 が絶縁膜から脱落することのなくて高い耐久性が得られ、更に、検査対象が、直径が 8インチ以上の大面積のウェハや被検査電極のピッチが極めて小さい回路装置であ つても、バーンイン試験において、温度変化による電極構造体と被検査電極との位 置ずれを確実に防止することができ、従って、良好な電気的接続状態を安定に維持 することができるシート状プローブを製造することができる方法を提供することにある。 本発明の第 3の目的は、上記のシート状プローブを具えたプローブカードを提供す ることにめる。  A second object of the present invention is to provide an electrode structure having a surface electrode portion having a small diameter and a small variation in a protruding height, and to a circuit device in which electrodes are formed at a small pitch. In this way, a stable electrical connection state can be reliably achieved, and the electrode structure has high durability without the electrode structure falling off from the insulating film. In a burn-in test, it is possible to reliably prevent the electrode structure from being displaced from the electrode to be inspected due to a temperature change even in a wafer having a large area of an inch or more or a circuit device having an extremely small pitch between the electrodes to be inspected. Accordingly, it is an object of the present invention to provide a method for manufacturing a sheet-like probe capable of stably maintaining a good electrical connection state. A third object of the present invention is to provide a probe card provided with the above-mentioned sheet-like probe.
本発明の第 4の目的は、上記のプローブカードを具えた回路装置の検査装置およ びウェハ検査装置を提供することにある。  A fourth object of the present invention is to provide a circuit device inspection device and a wafer inspection device provided with the above-described probe card.
[0019] 本発明のシート状プローブは、柔軟な榭脂よりなる絶縁膜に、それぞれ接続すべき 電極に対応するパターンに従つて当該絶縁膜の厚み方向に貫通して伸びる複数の 電極構造体が配置されてなる接点膜と、この接点膜を支持する金属よりなる支持膜と を具えてなり、  In the sheet-like probe of the present invention, a plurality of electrode structures extending through the insulating film made of a flexible resin in the thickness direction of the insulating film according to the pattern corresponding to the electrode to be connected, respectively. Comprising a contact film arranged and a supporting film made of a metal supporting the contact film,
前記電極構造体の各々は、前記絶縁膜の表面に露出し、当該絶縁膜の表面から 突出する表面電極部と、前記絶縁膜の裏面に露出する裏面電極部と、前記表面電 極部の基端から連続して前記絶縁膜をその厚み方向に貫通して伸び、前記裏面電 極部に連結された短絡部と、前記表面電極部の基端部分から連続して前記絶縁膜 の表面に沿って外方に伸びる保持部とよりなることを特徴とする。  Each of the electrode structures is exposed on the surface of the insulating film and protrudes from the surface of the insulating film, a back electrode portion exposed on the back surface of the insulating film, and a base of the surface electrode portion. The insulating film extends continuously from the end in the thickness direction thereof and extends along the surface of the insulating film continuously from the short-circuit portion connected to the back electrode portion and the base end portion of the front electrode portion. And a holding portion extending outward.
[0020] また、本発明のシート状プローブは、回路装置の電気的検査に用いられるシート状 プローブであって、 The sheet-like probe of the present invention is a sheet-like probe used for an electrical inspection of a circuit device,
検査対象である回路装置の被検査電極が形成された電極領域に対応して複数の 開口が形成された金属よりなる支持膜と、この支持膜の表面上に配置されて支持さ れた接点膜とを具えてなり、  A supporting film made of metal having a plurality of openings formed corresponding to the electrode regions of the circuit device to be inspected where the electrodes to be inspected are formed, and a contact film disposed and supported on the surface of the supporting film. And
前記接点膜は、柔軟な榭脂よりなる絶縁膜と、この絶縁膜に前記被検査電極のパ ターンに対応するパターンに従って配置された、当該絶縁膜の厚み方向に貫通して 伸びる複数の電極構造体とを有してなり、当該電極構造体の各々が前記支持膜の 各開口内に位置するよう配置されており、 The contact film is made of an insulating film made of a flexible resin, and the insulating film is A plurality of electrode structures arranged in accordance with the pattern corresponding to the turn and extending through the thickness direction of the insulating film, and each of the electrode structures is located in each opening of the support film. It is arranged as
前記電極構造体の各々は、前記絶縁膜の表面に露出し、当該絶縁膜の表面から 突出する表面電極部と、前記絶縁膜の裏面に露出する裏面電極部と、前記表面電 極部の基端から連続して前記絶縁膜をその厚み方向に貫通して伸び、前記裏面電 極部に連結された短絡部と、前記表面電極部の基端部分から連続して前記絶縁膜 の表面に沿って外方に伸びる保持部とよりなることを特徴とする。  Each of the electrode structures is exposed on the surface of the insulating film and protrudes from the surface of the insulating film, a back electrode portion exposed on the back surface of the insulating film, and a base of the surface electrode portion. The insulating film extends continuously from the end in the thickness direction thereof and extends along the surface of the insulating film continuously from the short-circuit portion connected to the back electrode portion and the base end portion of the front electrode portion. And a holding portion extending outward.
[0021] このようなシート状プローブにおいては、互いに独立した複数の接点膜が、支持膜 の表面に沿って並ぶよう配置されて 、てもよ 、。  [0021] In such a sheet-like probe, a plurality of contact films independent of each other may be arranged along the surface of the support film.
[0022] また、本発明のシート状プローブは、回路装置の電気的検査に用いられるシート状 プローブであって、 Further, the sheet-like probe of the present invention is a sheet-like probe used for an electrical inspection of a circuit device,
検査対象である回路装置の被検査電極が形成された電極領域に対応して複数の 開口が形成された金属よりなる支持膜と、この支持膜の開口の各々を塞ぐよう配置さ れ、当該開口縁部に支持された複数の接点膜とを具えてなり、  A support film made of metal having a plurality of openings formed corresponding to the electrode regions of the circuit device to be inspected where the electrodes to be inspected are formed; and a support film arranged to close each of the openings in the support film, and A plurality of contact films supported on the edge,
前記接点膜の各々は、柔軟な榭脂よりなる絶縁膜と、この絶縁膜に前記回路装置 の電極領域における被検査電極のパターンに対応するパターンに従って配置された 、当該絶縁膜の厚み方向に貫通して伸びる複数の電極構造体とを有してなり、当該 電極構造体の各々が前記支持膜の各開口内に位置するよう配置されており、 前記電極構造体の各々は、前記絶縁膜の表面に露出し、当該絶縁膜の表面から 突出する表面電極部と、前記絶縁膜の裏面に露出する裏面電極部と、前記表面電 極部の基端から連続して前記絶縁膜をその厚み方向に貫通して伸び、前記裏面電 極部に連結された短絡部と、前記表面電極部の基端部分から連続して前記絶縁膜 の表面に沿って外方に伸びる保持部とよりなることを特徴とする。  Each of the contact films is an insulating film made of a flexible resin, and is disposed on the insulating film according to a pattern corresponding to a pattern of an electrode to be inspected in an electrode region of the circuit device. And a plurality of electrode structures that are arranged so that each of the electrode structures is located in each of the openings of the support film. A front electrode portion exposed to the front surface and protruding from the front surface of the insulating film; a back electrode portion exposed to the back surface of the insulating film; and the insulating film continuously extending from the base end of the front electrode portion in the thickness direction. A short-circuit portion that extends through and is connected to the back electrode portion; and a holding portion that extends outward from the base end portion of the front electrode portion along the surface of the insulating film. Features.
[0023] 本発明のシート状プローブは、ウェハに形成された複数の集積回路の各々につい て、当該集積回路の電気的検査をウェハの状態で行うために好適に用いることがで きる。 [0023] The sheet-like probe of the present invention can be suitably used for performing an electrical inspection of each integrated circuit formed on a wafer in a state of the wafer.
[0024] 本発明のシート状プローブにおいては、電極構造体における表面電極部は、その 基端力 先端に向かうに従って小径となる形状のものであることが好ましい。 In the sheet-like probe of the present invention, the surface electrode portion of the electrode structure Proximal force It is preferable that the shape be such that the diameter becomes smaller toward the distal end.
また、電極構造体における表面電極部の基端の径 Rに対する表面電極部の先端  In addition, the tip of the surface electrode portion with respect to the diameter R of the base end of the surface electrode portion in the electrode structure.
1  1
の径 Rの比 R /Rの値が 0. 11〜0. 55であることが好ましい。 It is preferable that the value of the ratio R / R of the diameter R be 0.11 to 0.55.
2 2 1  2 2 1
また、電極構造体における表面電極部の基端の径 Rに対する表面電極部の突出  In addition, the protrusion of the surface electrode portion with respect to the diameter R of the base end of the surface electrode portion in the electrode structure.
1  1
高さ hの比 hZRの値が 0. 2〜3であることが好ましい。 It is preferable that the value of the ratio hZR of the height h is 0.2 to 3.
1  1
また、電極構造体における短絡部は、絶縁膜の裏面力 表面に向かうに従って小 径となる形状のものであることが好ま U、。  In addition, it is preferable that the short-circuit portion in the electrode structure has a shape having a smaller diameter toward the rear surface of the insulating film.
また、絶縁膜はエッチング可能な高分子材料よりなることが好ましぐ特にポリイミド よりなることが好ましい。  The insulating film is preferably made of an etchable polymer material, and is particularly preferably made of polyimide.
また、支持膜の線熱膨張係数が 3 X 10—ソ K以下であることが好ましい。  Further, the coefficient of linear thermal expansion of the support film is preferably 3 × 10—so K or less.
本発明のシート状プローブの製造方法は、上記のシート状プローブを製造する方 法であって、  The method for producing a sheet-like probe of the present invention is a method for producing the above-mentioned sheet-like probe,
金属よりなる支持膜形成用層と、この支持膜形成用層の表面に一体的に積層され た絶縁膜と、この絶縁膜の表面に一体的に積層された金属よりなる保持部形成用層 と、この保持部形成用層の表面に一体的に積層された絶縁性の電極部成形用層と、 この電極部成形用層の表面に一体的に積層された金属よりなるメツキ電極用層とを 有する積層体を用意し、  A support film forming layer made of a metal, an insulating film integrally laminated on the surface of the support film forming layer, and a holding portion forming layer made of a metal integrally laminated on the surface of the insulating film. An insulating electrode part forming layer integrally laminated on the surface of the holding part forming layer, and a metal electrode layer made of metal integrally laminated on the surface of the electrode part forming layer. Prepare a laminate having
この積層体における支持膜形成用層、絶縁膜、保持部形成用層および電極部成 形用層の各々に互いに連通する厚み方向に伸びる貫通孔を形成することにより、当 該積層体の裏面に、形成すべき電極構造体のパターンに対応するパターンに従つ て複数の電極構造体形成用凹所を形成し、  By forming through-holes extending in the thickness direction communicating with each other in the support film forming layer, the insulating film, the holding portion forming layer, and the electrode portion forming layer in the laminate, a through hole is formed on the back surface of the laminate. Forming a plurality of electrode structure forming recesses according to a pattern corresponding to the pattern of the electrode structure to be formed;
この積層体におけるメツキ電極用層を電極としてメツキ処理を施して電極構造体形 成用凹所の各々に金属を充填することにより、絶縁膜の表面から突出する表面電極 部、当該表面電極部の基端力 連続して当該絶縁膜をその厚み方向に貫通して伸 びる短絡部、およびこの短絡部に連結された、当該絶縁膜の裏面に露出する裏面電 極部を形成し、  Each of the electrode structure forming recesses is filled with metal by performing a plating process using the plating electrode layer in the laminate as an electrode, thereby forming a surface electrode portion projecting from the surface of the insulating film and a base of the surface electrode portion. Forming a short-circuit portion extending continuously through the insulating film in the thickness direction thereof, and a back-electrode portion connected to the short-circuit portion and exposed on the back surface of the insulating film;
この積層体における支持膜形成用層をエッチング処理することにより、開口が形成 された支持膜を形成し、 この積層体力 前記メツキ電極用層および前記電極部成形用層を除去することに より、前記表面電極部および前記保持部形成用層を露出させ、その後、当該保持部 形成用層にエッチング処理を施すことにより、前記表面電極部の基端部分力 連続 して前記絶縁膜の表面に沿って外方に伸びる保持部を形成する工程を有することを 特徴とする。 By etching the support film forming layer in this laminate, a support film having an opening formed therein is formed, By removing the plating electrode layer and the electrode portion forming layer, the laminated body force exposes the surface electrode portion and the holding portion forming layer, and then performs an etching process on the holding portion forming layer. In this case, a step of forming a holding portion extending outward along the surface of the insulating film continuously with the base partial force of the surface electrode portion is provided.
[0026] 本発明のシート状プローブの製造方法においては、電極構造体形成用凹所にお ける保持部成形用層の貫通孔が、当該保持部成形用層の裏面力 表面に向かうに 従って小径となる形状に形成されることが好ましい。  [0026] In the method for manufacturing a sheet-like probe of the present invention, the through hole of the holding part forming layer in the electrode structure forming recess has a smaller diameter as it goes toward the back surface of the holding part forming layer. It is preferable to be formed in the shape which becomes.
また、積層体としてその保持部成形用層がエッチング可能な高分子材料よりなるも のを用い、電極構造体形成用凹所における保持部成形用層の貫通孔がエッチング により形成されることが好まし 、。  Further, it is preferable that the holding portion forming layer is made of a polymer material which can be etched as the laminate, and the through hole of the holding portion forming layer in the electrode structure forming recess is formed by etching. Better ,.
また、電極構造体形成用凹所における絶縁膜の貫通孔が、当該絶縁膜の裏面力も 表面に向かうに従って小径となる形状に形成されることが好ましい。  Further, it is preferable that the through-hole of the insulating film in the recess for forming an electrode structure is formed in such a shape that the back surface force of the insulating film becomes smaller in diameter toward the surface.
また、積層体としてその絶縁膜がエッチング可能な高分子材料よりなるものを用い、 電極構造体形成用凹所における絶縁膜の貫通孔がエッチングにより形成されること が好ましい。  Further, it is preferable that the laminated body is made of a polymer material whose insulating film can be etched, and the through-hole of the insulating film in the electrode structure forming recess is formed by etching.
[0027] 本発明のプローブカードは、上記のシート状プローブを具えてなることを特徴とする [0027] A probe card of the present invention includes the above-mentioned sheet-like probe.
。 また、本発明のプローブカードは、上記の方法によって製造されたシート状プロ一 ブを具えてなることを特徴とする。 . Further, a probe card according to the present invention includes a sheet-like probe manufactured by the above method.
[0028] また、本発明のプローブカードは、ウェハに形成された複数の集積回路の各々に つ!、て、当該集積回路の電気的検査をウェハの状態で行うために用いられるプロ一 ブカードであって、 [0028] Further, the probe card of the present invention is a probe card used for performing an electrical inspection of each of a plurality of integrated circuits formed on a wafer in a state of the wafer. So,
検査対象であるウェハに形成された全てのまたは一部の集積回路の被検査電極 のパターンに対応するパターンに従って検査電極が表面に形成された検査用回路 基板と、この検査用回路基板の表面上に配置された異方導電性コネクターと、この異 方導電性コネクター上に配置された、上記のシート状プローブとを具えてなることを 特徴とする。  An inspection circuit board having inspection electrodes formed on the surface thereof in accordance with a pattern corresponding to the pattern of the electrodes to be inspected of all or some of the integrated circuits formed on the wafer to be inspected, and on the surface of the inspection circuit board Characterized in that it comprises an anisotropically conductive connector arranged on the substrate and the above-mentioned sheet-like probe arranged on the anisotropically conductive connector.
[0029] また、本発明のプローブカードは、ウェハに形成された複数の集積回路の各々に つ!、て、当該集積回路の電気的検査をウェハの状態で行うために用いられるプロ一 ブカードであって、 [0029] Further, the probe card of the present invention can be applied to each of a plurality of integrated circuits formed on a wafer. A probe card used for performing an electrical inspection of the integrated circuit in a wafer state,
検査対象であるウェハに形成された全てのまたは一部の集積回路の被検査電極 のパターンに対応するパターンに従って検査電極が表面に形成された検査用回路 基板と、この検査用回路基板の表面上に配置された異方導電性コネクターと、この異 方導電性コネクター上に配置された、上記の方法によって製造されたシート状プロ一 ブとを具えてなることを特徴とする。  An inspection circuit board having inspection electrodes formed on the surface thereof in accordance with a pattern corresponding to the pattern of the electrodes to be inspected of all or some of the integrated circuits formed on the wafer to be inspected, and on the surface of the inspection circuit board Characterized by comprising an anisotropically conductive connector arranged in the above manner, and a sheet-like probe produced by the above-mentioned method, arranged on the anisotropically conductive connector.
[0030] 本発明の回路装置の検査装置は、上記のプローブカードを具えてなることを特徴と する。  [0030] A circuit device inspection apparatus according to the present invention includes the above-described probe card.
[0031] 本発明のウェハ検査装置は、ウェハに形成された複数の集積回路の各々につい て、当該集積回路の電気的検査をウェハの状態で行うウェハ検査装置であって、 上記のプローブカードを具えてなることを特徴とする。  [0031] A wafer inspection device of the present invention is a wafer inspection device that performs an electrical inspection of each of a plurality of integrated circuits formed on a wafer in a state of the wafer, wherein the probe card It is characterized by being equipped.
[0032] 本発明のシート状プローブによれば、電極構造体には、表面電極部の基端部分か ら連続して絶縁膜の表面に沿って外方に伸びる保持部が形成されているため、当該 表面電極部の径が小さいものであっても、当該電極構造体が絶縁膜から脱落するこ とがなくて高 、耐久性が得られる。  [0032] According to the sheet-like probe of the present invention, the electrode structure is formed with the holding portion extending outward from the base end portion of the surface electrode portion continuously along the surface of the insulating film. Even if the diameter of the surface electrode portion is small, the electrode structure does not fall off the insulating film, and high durability can be obtained.
また、小さい径の表面電極部を形成することが可能であることにより、隣接する表面 電極部の間の離間距離が十分に確保されるため、絶縁膜による柔軟性が十分に発 揮され、その結果、小さいピッチで電極が形成された回路装置に対しても安定な電 気的接続状態を確実に達成することができる。  In addition, since it is possible to form a surface electrode portion having a small diameter, a sufficient separation distance between adjacent surface electrode portions is ensured, so that the flexibility of the insulating film is sufficiently exerted. As a result, a stable electrical connection state can be reliably achieved even for a circuit device having electrodes formed at a small pitch.
[0033] また、本発明のシート状プローブによれば、検査対象が、直径が 8インチ以上の大 面積のウェハや被検査電極のピッチが極めて小さい回路装置であっても、バーンィ ン試験にお!ヽて、温度変化による電極構造体と被検査電極との位置ずれを確実に 防止することができ、従って、良好な電気的接続状態を安定に維持することができる  Further, according to the sheet-like probe of the present invention, even if the inspection target is a large-area wafer having a diameter of 8 inches or more or a circuit device having an extremely small pitch of the electrodes to be inspected, the burn-in test is performed. ! In addition, it is possible to reliably prevent the electrode structure from being displaced from the electrode to be inspected due to a temperature change, and to stably maintain a good electrical connection state.
[0034] 本発明のシート状プローブの製造方法によれば、絶縁膜を有する積層体に予め電 極構造体形成用凹所を形成し、当該電極構造体形成用凹所をキヤビティとして表面 電極部を形成するため、径が小さくて突出高さのバラツキが小さい表面電極部が得 られる。 According to the method of manufacturing a sheet-shaped probe of the present invention, the electrode structure forming recess is formed in advance in the laminate having the insulating film, and the electrode structure forming recess is used as a cavity to form the surface electrode portion. To form a surface electrode with a small diameter and a small variation in protrusion height. Can be
また、絶縁膜の表面に形成された保持部形成用層をエッチング処理することにより 、表面電極部の基端部分力 連続して絶縁膜の表面に沿って外方に伸びる保持部 を確実に形成することができるため、当該表面電極部の径が小さいものであっても、 当該電極構造体が絶縁膜から脱落することがなくて高い耐久性を有するシート状プ ローブを製造することがでさる。  Also, by etching the holding portion forming layer formed on the surface of the insulating film, the holding portion extending continuously outward along the surface of the insulating film is continuously formed at the base end of the surface electrode portion. Therefore, even if the diameter of the surface electrode portion is small, the electrode structure does not fall off the insulating film and a sheet-like probe having high durability can be manufactured. .
[0035] また、本発明に係るシート状プローブの製造方法によれば、検査対象が、直径が 8 インチ以上の大面積のウェハや被検査電極のピッチが極めて小さい回路装置であつ ても、バーンイン試験において、温度変化による電極構造体と被検査電極との位置 ずれが確実に防止され、従って、良好な電気的接続状態が安定に維持されるシート 状プローブを製造することができる。  Further, according to the method of manufacturing a sheet-shaped probe according to the present invention, even if the inspection target is a large-area wafer having a diameter of 8 inches or more or a circuit device having an extremely small pitch of electrodes to be inspected, the burn-in can be performed. In the test, a displacement of the electrode structure and the electrode to be inspected due to a temperature change is reliably prevented, and therefore, a sheet-like probe in which a good electrical connection state is stably maintained can be manufactured.
[0036] 本発明のプローブカードによれば、上記のシート状フローブを具えてなるため、小さ いピッチで電極が形成された回路装置に対しても安定な電気的接続状態を確実に 達成することができ、し力も、シート状プローブにおける電極構造体が脱落することが ないので、高い耐久性が得られ、検査対象が、直径が 8インチ以上の大面積のゥェ ハゃ被検査電極のピッチが極めて小さい回路装置であっても、バーンイン試験にお V、て、良好な電気的接続状態を安定に維持することができる。  According to the probe card of the present invention, since the probe card is provided with the above-mentioned sheet-shaped probe, it is possible to reliably achieve a stable electric connection state even to a circuit device having electrodes formed at a small pitch. Since the electrode structure of the sheet-shaped probe does not fall off, high durability is obtained, and the inspection target is a large area wafer with a diameter of 8 inches or more. Even in a circuit device having a very small value, a good electrical connection state can be stably maintained in the burn-in test.
本発明の回路装置の検査装置およびウェハ検査装置によれば、上記のプローブ力 ードを具えてなるため、小さいピッチで電極が形成された回路装置に対しても安定な 電気的接続状態を確実に達成することができ、しかも、多数の回路装置の検査を行う 場合でも、長期間にわたって信頼性の高い検査を実行することができる。  According to the circuit device inspection device and the wafer inspection device of the present invention, since the probe device is provided with the above-described probe force, a stable electrical connection state is ensured even for a circuit device having electrodes formed at a small pitch. In addition, even when a large number of circuit devices are tested, a highly reliable test can be performed over a long period of time.
図面の簡単な説明  Brief Description of Drawings
[0037] [図 1]本発明に係るシート状プローブの第 1の例を示す平面図である。 FIG. 1 is a plan view showing a first example of a sheet-like probe according to the present invention.
[図 2]第 1の例のシート状プローブにおける接点膜の一部を拡大して示す平面図であ る。  FIG. 2 is an enlarged plan view showing a part of a contact film in the sheet-like probe of the first example.
[図 3]第 1の例のシート状プローブにおける接点膜の一部を拡大して示す説明用断 面図である。  FIG. 3 is an explanatory cross-sectional view showing a part of a contact film in the sheet-like probe of the first example in an enlarged manner.
[図 4]第 1の例のシート状プローブを製造するための積層体の構成を示す説明用断 面図である。 FIG. 4 is an explanatory cutaway showing a configuration of a laminate for manufacturing the sheet-like probe of the first example. FIG.
[図 5]図 4に示す積層体の両面にエッチング用のレジスト膜が形成された状態を示す 説明用断面図である。  FIG. 5 is an explanatory cross-sectional view showing a state where resist films for etching are formed on both surfaces of the laminate shown in FIG. 4.
圆 6]積層体における支持膜形成用層に貫通孔が形成された状態を示す説明用断 面図である。 [6] FIG. 6 is an explanatory cross-sectional view showing a state in which a through-hole is formed in a support film forming layer in the laminate.
圆 7]積層体における絶縁膜に貫通孔が形成された状態を示す説明用断面図である 圆 8]積層体における保持部形成用層に貫通孔が形成された状態を示す説明用断 面図である。 [7] An explanatory cross-sectional view showing a state in which a through-hole is formed in the insulating film in the laminate. [8] An explanatory cross-sectional view showing a state in which a through-hole is formed in the holding portion forming layer in the laminate. It is.
[図 9]積層体における電極部成形用層に貫通孔が形成されて電極構造体形成用凹 所が形成された状態を示す説明用断面図である。  FIG. 9 is an explanatory cross-sectional view showing a state in which a through hole is formed in an electrode portion forming layer of the laminate to form an electrode structure forming recess.
[図 10]電極構造体形成用凹所が形成された積層体の両面にメツキ用のレジスト膜が 形成された状態を示す説明用断面図である。  FIG. 10 is an explanatory cross-sectional view showing a state where a resist film for plating is formed on both surfaces of a laminate in which a recess for forming an electrode structure is formed.
[図 11]電極構造体形成用凹所に金属が充填されて表面電極部および短絡部が形成 された状態を示す説明用断面図である。  FIG. 11 is an explanatory cross-sectional view showing a state in which a metal is filled in a recess for forming an electrode structure to form a surface electrode portion and a short-circuit portion.
圆 12]支持膜形成用層の裏面カゝらレジスト膜が除去された状態を示す説明用断面図 である。 [12] FIG. 12 is an explanatory cross-sectional view showing a state where the resist film on the back surface of the support film forming layer has been removed.
圆 13]支持膜形成用層の裏面にエッチング用のレジスト膜が形成された状態を示す 説明用断面図である。 [13] FIG. 13 is an explanatory cross-sectional view showing a state where an etching resist film is formed on the back surface of the support film forming layer.
圆 14]メツキ電極用層の表面力もレジスト膜が除去された状態を示す説明用断面図 である。 [14] FIG. 14 is an explanatory cross-sectional view showing a state in which the resist film has been removed from the surface force of the plating electrode layer.
圆 15]支持膜形成層の一部が除去されて互いに分離した複数の裏面電極部が形成 されると共に支持膜が形成された状態を示す説明用断面図である。 [15] FIG. 15 is an explanatory cross-sectional view showing a state where a part of the support film forming layer is removed to form a plurality of back electrode portions separated from each other and the support film is formed.
圆 16]支持膜の裏面、絶縁膜の裏面およひ裏面電極部を覆うよう、レジスト膜が形成 された状態を示す説明用断面図である。 [16] FIG. 16 is an explanatory cross-sectional view showing a state where a resist film is formed so as to cover the back surface of the support film, the back surface of the insulating film, and the back electrode portion.
圆 17]積層体力も電極部成形用層が除去された状態を示す説明用断面図である。 圆 18]表面電極部および保持膜形成用層の一部を覆うよう、レジスト膜が形成された 状態を示す説明用断面図である。 [図 19]保持部形成用層がエッチング処理されて保持部が形成された状態を示す説 明用断面図である。 [17] FIG. 17 is also an explanatory cross-sectional view showing a state in which the electrode body forming layer is removed from the laminate body force. [18] FIG. 18 is an explanatory cross-sectional view showing a state where a resist film is formed so as to cover a part of the surface electrode portion and the holding film forming layer. FIG. 19 is an explanatory cross-sectional view showing a state in which the holding portion forming layer is etched to form the holding portion.
圆 20]本発明に係るシート状プローブの第 2の例を示す平面図である。 [20] FIG. 20 is a plan view showing a second example of the sheet probe according to the present invention.
圆 21]第 2の例のシート状プローブにおける接点膜の一部を拡大して示す平面図で ある。 [21] FIG. 21 is an enlarged plan view showing a part of a contact film in the sheet-like probe of the second example.
圆 22]第 2の例のシート状プローブにおける接点膜の一部を拡大して示す説明用断 面図である。 [22] FIG. 22 is an explanatory cross-sectional view showing a part of a contact film in the sheet-like probe of the second example in an enlarged manner.
圆 23]絶縁膜の一部、表面電極部および保持部を覆うようレジスト膜が形成された状 態を示す説明用断面図である。 [23] FIG. 23 is an explanatory cross-sectional view showing a state where a resist film is formed to cover a part of the insulating film, the surface electrode portion, and the holding portion.
圆 24]絶縁膜の一部が除去されて分割された複数の絶縁膜が形成された状態を示 す説明用断面図である。 [24] FIG. 24 is an explanatory cross-sectional view showing a state in which a part of the insulating film is removed to form a plurality of divided insulating films.
圆 25]本発明に係るシート状プローブの第 3の例を示す平面図である。 [25] FIG. 25 is a plan view showing a third example of the sheet-like probe according to the present invention.
圆 26]第 3の例のシート状プローブにおける接点膜の一部を拡大して示す平面図で ある。 [26] FIG. 26 is an enlarged plan view showing a part of the contact film in the sheet-like probe of the third example.
圆 27]第 3の例のシート状プローブにおける接点膜の一部を拡大して示す説明用断 面図である。 [27] FIG. 27 is an explanatory cross-sectional view showing a part of a contact film in a sheet-like probe of a third example in an enlarged manner.
圆 28]絶縁膜の一部、表面電極部および保持部を覆うようレジスト膜が形成された状 態を示す説明用断面図である。 [28] FIG. 28 is an explanatory cross-sectional view showing a state where a resist film is formed to cover a part of the insulating film, the surface electrode portion, and the holding portion.
圆 29]絶縁膜の一部が除去されて分割された複数の絶縁膜が形成された状態を示 す説明用断面図である。 [29] FIG. 29 is an explanatory cross-sectional view showing a state in which a part of the insulating film is removed to form a plurality of divided insulating films.
[図 30]本発明に係る回路装置の検査装置の一例における構成を示す説明用断面図 である。  FIG. 30 is an explanatory sectional view showing a configuration of an example of a circuit device inspection device according to the present invention.
圆 31]図 30に示す検査装置におけるプローブカードを拡大して示す説明用断面図 である。 [31] FIG. 31 is an explanatory sectional view showing a probe card in the inspection device shown in FIG. 30 in an enlarged manner.
[図 32]プローブカードにおける異方導電性コネクターの平面図である。  FIG. 32 is a plan view of an anisotropic conductive connector in a probe card.
[図 33]本発明に係るシート状プローブの他の例を示す平面図である。 FIG. 33 is a plan view showing another example of the sheet-like probe according to the present invention.
圆 34]実施例で作製した試験用ウェハを示す平面図である。 [34] FIG. 34 is a plan view showing the test wafer manufactured in the example.
[図 35]図 34に示す試験用ウェハに形成された集積回路の被検査電極領域の位置を 示す説明図である。 FIG. 35 shows the position of the electrode area to be inspected of the integrated circuit formed on the test wafer shown in FIG. FIG.
圆 36]図 34に示す試験用ウェハに形成された集積回路の被検査電極の配置パター ンを示す説明図である。 [36] FIG. 36 is an explanatory diagram showing an arrangement pattern of electrodes to be inspected of the integrated circuit formed on the test wafer shown in FIG.
[図 37]実施例で作製した異方導電性コネクターにおけるフレーム板を示す平面図で ある。  FIG. 37 is a plan view showing a frame plate of the anisotropic conductive connector manufactured in the example.
[図 38]図 37に示すフレーム板の一部を拡大して示す説明図である。  FIG. 38 is an explanatory view showing a part of the frame plate shown in FIG. 37 in an enlarged manner.
[図 39]従来のプローブカードの一例における構成を示す説明用断面図である。 圆 40]従来のシート状プローブの製造例を示す説明用断面図である。  FIG. 39 is an explanatory cross-sectional view showing a configuration of an example of a conventional probe card. [40] Fig. 40 is an explanatory cross-sectional view showing a production example of a conventional sheet-like probe.
[図 41]図 39に示すプローブカードにおけるシート状プローブを拡大して示す説明用 断面図である。  FIG. 41 is an explanatory cross-sectional view showing, on an enlarged scale, a sheet-like probe in the probe card shown in FIG. 39.
圆 42]従来のシート状プローブの他の製造例を示す説明用断面図である。 [42] FIG. 42 is an explanatory cross-sectional view showing another example of manufacturing a conventional sheet-like probe.
圆 43]従来のシート状プローブの更に他の製造例を示す説明用断面図である。 符号の説明 [43] FIG. 43 is an explanatory cross-sectional view showing still another example of manufacturing a conventional sheet-like probe. Explanation of symbols
1 プローブカード  1 Probe card
2 ガイドピン  2 Guide pin
3 加圧板  3 Pressure plate
4 ウェハ載置台  4 Wafer mounting table
5 加熱器  5 heater
6 ウエノヽ  6 Ueno
7 被検査電極  7 Test electrode
10 シート状プローブ 10 Sheet probe
10A 積層体 10A laminate
10K 電極構造体形成用凹所  10K electrode structure forming recess
11 支持膜  11 Support membrane
11A 支持膜形成用層  11A Support film formation layer
11H 開口  11H opening
11K 位置決め孔  11K positioning hole
11T 保護テープ , 12a, 12b 接点膜 11T protective tape , 12a, 12b Contact film
, 13a, 13b 絶縁膜, 13a, 13b Insulating film
H 貫通孔H Through hole
A, 14B, 14C, 14D, 14E, 14F, 14G, 14H レジスト膜 電極構造体 A, 14B, 14C, 14D, 14E, 14F, 14G, 14H Resist film Electrode structure
表面電極部 Surface electrode
B 電極部成形用層B Electrode molding layer
A メツキ電極用層A Layer for plating electrode
H 貫通孔 H Through hole
裏面電極部 Back electrode
H 貫通孔 H Through hole
短絡部  Short circuit
保持部 Holder
A 保持部形成用層A Holder forming layer
H 貫通孔 H Through hole
検査用回路基板  Inspection circuit board
検査電極  Inspection electrode
異方導電性コネクター  Anisotropic conductive connector
フレーム板  Frame board
開口  Opening
空気流入孔  Air inlet
異方導電性シート  Anisotropic conductive sheet
導電部  Conductive part
絶縁部  Insulation
突出部  Protrusion
保持部材  Holding member
異方導電性シート  Anisotropic conductive sheet
検査用回路基板 86 検査電極 Inspection circuit board 86 Test electrode
90 シート状プローブ  90 sheet probe
90A, 90B, 90C 積層体  90A, 90B, 90C laminate
90K 電極構造体形成用凹所  90K recess for forming electrode structure
91 絶縁膜  91 Insulation film
91 A 絶縁膜材  91 A Insulating film material
92, 92A, 92B 金属層  92, 92A, 92B Metal layer
93, 93A レジスト膜  93, 93A resist film
94A, 94B レジスト膜 94A, 94B resist film
95 電極構造体 95 Electrode structure
96 表面電極部  96 Surface electrode
97 裏面電極部 97 Back electrode
98 短絡部 98 Short circuit
98H 貫通孔 98H Through hole
Kl, K2 パターン孔 Kl, K2 pattern hole
L 集積回路  L integrated circuit
P 導電性粒子  P conductive particles
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
〔シート状プローブ〕 [Sheet probe]
図 1は、本発明に係るシート状プローブの第 1の例を一部を破断して示す平面図で あり、図 2は、第 1の例のシート状プローブにおける接点膜を拡大して示す平面図、 図 3は、第 1の例のシート状プローブにおける接点膜を拡大して示す説明用断面図 である。  FIG. 1 is a partially cutaway plan view showing a first example of a sheet-like probe according to the present invention, and FIG. 2 is an enlarged plan view showing a contact film in the sheet-like probe of the first example. FIGS. 3 and 3 are enlarged cross-sectional views illustrating a contact film in the sheet-like probe of the first example.
この第 1の例のシート状プローブ 10は、例えば複数の集積回路が形成されたゥェ ハについて当該集積回路の各々の電気的検査をウェハの状態で行うために用いら れるものであって、複数の開口 11Hが形成された金属よりなる支持膜 11を有する。こ の支持膜 11の開口 11Hは、検査対象であるウェハにおける集積回路の被検査電極 が形成された電極領域のパターンに対応して形成されている。また、この例における 支持膜 11には、後述するプローブカードにおける異方導電性コネクターおよび検査 用回路基板との位置決めを行うための位置決め孔 11Kが形成されて 、る。 The sheet-like probe 10 of the first example is used, for example, for a wafer on which a plurality of integrated circuits are formed, for performing an electrical inspection of each of the integrated circuits in a wafer state, It has a support film 11 made of metal in which a plurality of openings 11H are formed. The opening 11H of the support film 11 is provided for the electrode to be inspected of the integrated circuit on the wafer to be inspected. Are formed corresponding to the pattern of the electrode region in which is formed. Further, in the support film 11 in this example, a positioning hole 11K for positioning the anisotropic conductive connector and the inspection circuit board in the probe card described later is formed.
[0040] 支持膜 11を構成する金属としては、鉄、銅、ニッケル、チタン、またはこれらの合金 若しくは合金鋼を用いることができるが、後述する製造方法において、エッチング処 理によって容易に開口 11Hを形成することができる点で、 42合金、インバー、コバー ルなどの鉄 ニッケル合金鋼が好まし!/、。 [0040] Iron, copper, nickel, titanium, or an alloy or alloy steel thereof can be used as a metal constituting the support film 11, but in the manufacturing method described later, the opening 11H can be easily formed by etching. Iron-nickel alloy steels such as alloy 42, invar and kovar are preferred because they can be formed! /.
また、支持膜 11としては、その線熱膨張係数が 3 X 10—ソ K以下のものを用いるこ と力 S好ましく、より好ましくは一 1 X 10— 7〜1 X 10" 5/Κ,特に好ましくは一 1 X 10— 6〜8 X 10— 6Ζκである。 Further, as the supporting film 11, the linear thermal expansion coefficient of preferably Mochiiruko and power S to the following 3 X 10- Seo K, more preferably one 1 X 10- 7 ~1 X 10 " 5 / Κ, especially preferably an 1 X 10- 6 ~8 X 10- 6 Ζκ.
このような支持膜 11を構成する材料の具体例としては、インバーなどのインバー型 合金、エリンバーなどのエリンバー型合金、スーパーインバー、コバール、 42合金な どの合金または合金鋼が挙げられる。  Specific examples of the material forming the support film 11 include an alloy such as an Invar alloy such as Invar, an Elinvar alloy such as Elinvar, an alloy such as Super Invar, Kovar, and 42 alloy, or an alloy steel.
[0041] また、支持膜 11の厚みは、 3〜: LOO mであることが好ましぐより好ましくは 5〜50 μ mであ 。 The thickness of the support film 11 is preferably 3 to: LOO m, and more preferably 5 to 50 μm.
この厚みが 3 μ m未満である場合には、接点膜 12を支持する支持膜として必要な 強度が得られないことがある。一方、この厚みが 100 mを超える場合には、後述す る製造方法において、エッチング処理によって開口 11Hを容易に形成することが困 難となることがある。  If the thickness is less than 3 μm, the strength required as a supporting film for supporting the contact film 12 may not be obtained. On the other hand, when the thickness exceeds 100 m, it may be difficult to easily form the opening 11H by etching in a manufacturing method described later.
[0042] この支持膜 11の表面(図 3において上面)上には、当該支持膜 11の径より小さい径 の円形の単一の接点膜 12が当該支持膜 11に一体的に設けられて支持されている。 この接点膜 12は、柔軟な絶縁膜 13を有し、この絶縁膜 13には、当該絶縁膜 13の 厚み方向に伸びる複数の電極構造体 15が、検査対象であるウェハに形成された全 ての集積回路における被検査電極のパターンに対応するパターンに従って、当該絶 縁膜 13の面方向に互いに離間して配置されており、当該接点膜 12は、電極構造体 15の各々 1S 支持膜 11の各開口 11H内に位置するよう配置されている。  On the surface (upper surface in FIG. 3) of the support film 11, a single circular contact film 12 having a diameter smaller than the diameter of the support film 11 is provided integrally with the support film 11 and supported. Have been. The contact film 12 has a flexible insulating film 13 on which a plurality of electrode structures 15 extending in the thickness direction of the insulating film 13 are all formed on a wafer to be inspected. In accordance with the pattern corresponding to the pattern of the electrode to be inspected in the integrated circuit, the insulating film 13 is disposed apart from each other in the surface direction of the insulating film 13, and the contact film 12 is formed of the 1S support film 11 of each of the electrode structures 15. It is arranged to be located in each opening 11H.
電極構造体 15の各々は、絶縁膜 13の表面に露出し、当該絶縁膜 13の表面から 突出する突起状の表面電極部 16と、絶縁膜 13の裏面に露出する矩形の平板状の 裏面電極部 17と、表面電極部 16の基端力も連続して前記絶縁膜 13をその厚み方 向に貫通して伸びて裏面電極部 17に連結された短絡部 18と、表面電極部 16の基 端部分の周面力 連続して絶縁膜 13の表面に沿って外方に放射状に伸びる円形リ ング板状の保持部 19とにより構成されている。この例の電極構造体 15においては、 表面電極部 16が、短絡部 18に連続して基端力も先端に向かうに従って小径となるテ ーパ状とされて全体が円錐台状に形成され、当該表面電極部 16の基端に連続する 短絡部 18が、絶縁膜 13の裏面力 表面に向かうに従って小径となるテーパ状とされ て全体が円錐台状に形成されており、表面電極部 16の基端の径 Rが当該基端に Each of the electrode structures 15 is exposed on the surface of the insulating film 13 and has a protruding surface electrode portion 16 protruding from the surface of the insulating film 13, and a rectangular flat plate exposed on the back surface of the insulating film 13. The base force of the back electrode section 17 and the front electrode section 16 also extends continuously through the insulating film 13 in the thickness direction thereof and is connected to the back electrode section 17, and the short circuit section 18 and the front electrode section 16 Peripheral surface force at base end portion The support portion is constituted by a circular ring-plate-shaped holding portion 19 that continuously extends radially outward along the surface of the insulating film 13. In the electrode structure 15 of this example, the surface electrode portion 16 is formed in a tapered shape having a smaller diameter as the base force is directed toward the distal end following the short-circuit portion 18 and is formed in a truncated cone shape as a whole. The short-circuit portion 18 continuous to the base end of the front electrode portion 16 is tapered so that the diameter decreases toward the rear surface of the insulating film 13 and is formed in a truncated cone as a whole. The end diameter R is
1  1
連続する短絡部 18の一端の径 Rと同一とされている。  It is the same as the diameter R of one end of the continuous short-circuit portion 18.
3  Three
[0043] 絶縁膜 13としては、絶縁性を有する柔軟なものであれば特に限定されるものでは なぐ例えばポリイミド榭脂、液晶ポリマー、ポリエステル、フッ素系榭脂などよりなる榭 脂シート、繊維を編んだクロスに上記の榭脂を含浸したシートなどを用いることができ る力 短絡部 18を形成するための貫通孔をエッチングにより容易に形成することがで きる点で、エッチング可能な材料よりなることが好ましぐ特にポリイミドが好ましい。 また、絶縁膜 13の厚み dは、当該絶縁膜 13が柔軟なものであれば特に限定されな いが、 10〜50 mであることが好ましぐより好ましくは 10〜25 /ζ πιである。  The insulating film 13 is not particularly limited as long as it is flexible and has insulating properties. For example, a resin sheet or fiber made of polyimide resin, liquid crystal polymer, polyester, fluorine resin, or the like is knitted. It is possible to use a sheet or the like impregnated with the above resin for the cloth.Because the through hole for forming the short-circuit portion 18 can be easily formed by etching, it must be made of an etchable material. Particularly preferred is polyimide. The thickness d of the insulating film 13 is not particularly limited as long as the insulating film 13 is flexible, but is preferably 10 to 50 m, more preferably 10 to 25 / ζπι. .
[0044] 電極構造体 15を構成する金属としては、ニッケル、銅、金、銀、パラジウム、鉄など を用いることができ、電極構造体 15としては、全体が単一の金属よりなるものであつ ても、 2種以上の金属の合金よりなるものまたは 2種以上の金属が積層されてなるもの であってもよい。  [0044] As the metal constituting the electrode structure 15, nickel, copper, gold, silver, palladium, iron, or the like can be used. The electrode structure 15 is entirely made of a single metal. Alternatively, it may be one made of an alloy of two or more metals or one made by laminating two or more metals.
また、電極構造体 15における表面電極部 16および裏面電極部 17の表面には、当 該電極部の酸ィ匕を防止すると共に、接触抵抗の小さい電極部を得るために、金、銀 、 ノラジウムなどの化学的に安定で高導電性を有する金属被膜が形成されていても よい。  In addition, on the surfaces of the front electrode portion 16 and the back electrode portion 17 in the electrode structure 15, gold, silver, and noradium are used in order to prevent oxidation of the electrode portion and obtain an electrode portion having low contact resistance. For example, a chemically stable metal film having high conductivity may be formed.
[0045] 電極構造体 15において、表面電極部 16の基端における径 Rに対する先端にお  [0045] In the electrode structure 15, the front end of the surface electrode portion 16 with respect to the diameter R at the base end is located.
1  1
ける径 Rの比(R /R )は、0. 11-0. 55であることが好ましぐより好ましくは 0· 1 The ratio of the diameter R (R / R) is preferably 0.11-0.55, more preferably 0.1
2 2 1 2 2 1
5〜0. 4である。このような条件を満足することにより、接続すべき回路装置がピッチ 力 、さくて微小な電極を有するものであっても、当該回路装置に対して安定な電気 的接続状態が確実に得られる。 It is 5 to 0.4. By satisfying such conditions, even if a circuit device to be connected has a pitch force and small electrodes, stable electric power can be supplied to the circuit device. A reliable connection state is obtained.
また、表面電極部 16の基端の径 Rは、当該電極構造体 15のピッチの 30〜70%  The diameter R of the base end of the surface electrode portion 16 is 30 to 70% of the pitch of the electrode structure 15.
1  1
であることが好ましぐより好ましくは 35〜60%である。 Is more preferably 35 to 60%.
また、表面電極部 16の基端における径 Rに対する突出高さ hの比 hZRは、 0. 2  The ratio hZR of the protruding height h to the diameter R at the base end of the surface electrode portion 16 is 0.2
1 1 1 1
〜3であることが好ましぐより好ましくは 0. 25-0. 6である。このような条件を満足す ることにより、検査対象であるウェハがピッチが小さくて微小な被検査電極を有するも のであっても、当該被検査電極のパターンに対応するパターンの電極構造体 15を容 易に形成することができ、当該ウェハに対して安定な電気的接続状態が一層確実に 得られる。 It is preferably from 0.2 to 0.3, more preferably from 0.25 to 0.6. By satisfying such conditions, even if the wafer to be inspected has a small pitch and a small electrode to be inspected, the electrode structure 15 having a pattern corresponding to the pattern of the electrode to be inspected is formed. It can be easily formed, and a stable electrical connection state to the wafer can be obtained more reliably.
表面電極部 16の基端の径 Rは、上記の条件や検査対象であるウェハの被検査電  The diameter R of the base end of the surface electrode section 16 depends on the above-mentioned conditions and the power to be inspected of the wafer to be inspected.
1  1
極の直径などを勘案して設定される力 例えば 30〜80 /ζ πιであり、好ましくは 30〜5 0 μ mである。 Force set in consideration of the diameter of the pole and the like is, for example, 30 to 80 / ζπι, and preferably 30 to 50 μm.
表面電極部 16の突出高さ hの高さは、検査対象であるウェハの被検査電極に対し て安定な電気的接続を達成することができる点で、 15〜50 mであることが好ましく 、より好ましくは 15〜30 μ mである。  The height of the protruding height h of the surface electrode portion 16 is preferably 15 to 50 m from the viewpoint that stable electrical connection can be achieved to the electrode to be inspected of the wafer to be inspected, More preferably, it is 15 to 30 μm.
また、裏面電極部 17の外径 Rは、当該裏面電極部 17に連結された短絡部 18の  Further, the outer diameter R of the back electrode portion 17 is equal to that of the short-circuit portion 18 connected to the back electrode portion 17.
5  Five
他端の径 Rより大きぐかつ、電極構造体 15のピッチより小さいものであればよいが It is sufficient if it is larger than the diameter R of the other end and smaller than the pitch of the electrode structure 15.
4  Four
、可能な限り大きいものであることが好ましぐこれにより、例えば異方導電性シートに 対しても安定な電気的接続を確実に達成することができる。  This is preferably as large as possible, so that a stable electrical connection can be reliably achieved, for example, even for an anisotropic conductive sheet.
また、裏面電極部 17の厚み Dは、強度が十分に高くて優れた繰り返し耐久性が得  In addition, the thickness D of the back electrode portion 17 is such that the strength is sufficiently high and excellent repetition durability is obtained.
2  2
られる点で、 10〜40 mであることが好ましぐより好ましくは 15〜35 mである。 また、短絡部 18の他端の径 Rに対する一端の径 Rの比 R /Rは、 0. 45〜1で In this regard, the distance is preferably 10 to 40 m, more preferably 15 to 35 m. The ratio R / R of the diameter R of one end to the diameter R of the other end of the short-circuit portion 18 is 0.45-1.
4 3 3 4  4 3 3 4
あることが好ましぐより好ましくは 0. 7〜0. 9である。 It is more preferably 0.7 to 0.9.
また、短絡部 18の一端の径 Rは、当該電極構造体 15のピッチの 30〜70%である  The diameter R of one end of the short-circuit portion 18 is 30 to 70% of the pitch of the electrode structure 15.
3  Three
ことが好ましぐより好ましくは 35〜60%である。 More preferably, it is 35 to 60%.
また、保持部 19の径 Rは、当該電極構造体 15のピッチの 30〜70%であることが  Further, the diameter R of the holding portion 19 may be 30 to 70% of the pitch of the electrode structure 15.
6  6
好ましぐより好ましくは 40〜60%である。 More preferably, it is 40 to 60%.
また、保持部 19の厚み Dは、 3〜 12 /z mであることが好ましぐより好ましくは 5〜9 μ mである。 The thickness D of the holding portion 19 is preferably 3 to 12 / zm, more preferably 5 to 9 / zm. μm.
[0047] このような第 1の例のシート状プローブ 10によれば、接点膜 12における電極構造体 15には、表面電極部 16の基端部分力も連続して絶縁膜 11の表面に沿って外方に 伸びる保持部 19が形成されているため、当該表面電極部 16の径が小さいものであ つても、当該電極構造体 16が絶縁膜 13の裏面力も脱落することがなくて高い耐久性 が得られる。  According to such a sheet-like probe 10 of the first example, the electrode structure 15 in the contact film 12 also has the base partial force of the surface electrode portion 16 continuously along the surface of the insulating film 11. Since the holding portion 19 extending outward is formed, even if the front surface electrode portion 16 has a small diameter, the electrode structure 16 does not lose the back surface force of the insulating film 13 and has high durability. Is obtained.
また、径の小さい表面電極部 16を有することにより、隣接する表面電極部 16の間 の離間距離が十分に確保されるため、絶縁膜 13による柔軟性が十分に発揮され、そ の結果、小さ ヽピッチで被検査電極が形成されたウェハに対しても安定な電気的接 続状態を確実に達成することができる。  In addition, by having the surface electrode portion 16 having a small diameter, a sufficient separation distance between the adjacent surface electrode portions 16 is ensured, so that the flexibility of the insulating film 13 is sufficiently exerted.ヽ A stable electrical connection can be reliably achieved even on a wafer on which electrodes to be inspected are formed at a pitch.
[0048] また、支持膜 11には、検査対象であるウェハの被検査電極が形成された電極領域 に対応して複数の開口 11Hが形成され、この支持膜 11上には、電極構造体 15の各 々が支持膜 11の各開口 11H内に位置するよう接点膜 12が配置されることにより、こ の接点膜 12は、その全面にわたって支持膜 11に支持されるため、当該接点膜 12が 大面積のものであっても、その絶縁膜 13の面方向における熱膨張を支持膜 11によ つて確実に規制することができる。従って、検査対象であるウェハが例えば直径が 8 インチ以上の大面積で被検査電極のピッチが極めて小さいものであっても、バーンィ ン試験にお!ヽて、温度変化による電極構造体 15と被検査電極との位置ずれを確実 に防止することができ、その結果、ウェハに対する良好な電気的接続状態を安定に 維持することができる。 [0048] Further, a plurality of openings 11H are formed in the support film 11 corresponding to the electrode regions where the electrodes to be inspected of the wafer to be inspected are formed. The contact film 12 is arranged so that each of the contact films is located in each opening 11H of the support film 11, and the contact film 12 is supported by the support film 11 over the entire surface. Even if the insulating film 13 has a large area, the thermal expansion in the plane direction of the insulating film 13 can be reliably restricted by the support film 11. Therefore, even if the wafer to be inspected has a large area of, for example, 8 inches or more in diameter and the pitch of the electrodes to be inspected is extremely small, the burn-in test is performed! In addition, it is possible to reliably prevent the displacement between the electrode structure 15 and the electrode to be inspected due to a temperature change, and as a result, it is possible to stably maintain a good electrical connection state to the wafer.
[0049] 上記の第 1の例のシート状プローブ 10は、例えば以下のようにして製造することが できる。  [0049] The sheet-like probe 10 of the first example described above can be manufactured, for example, as follows.
先ず、図 4に示すように、金属よりなる円形の支持膜形成用層 11Aと、この支持膜 形成用層 11Aの表面上に一体的に積層された、当該支持膜形成用層 11Aの径より 小さい径を有する円形の絶縁膜 13と、この絶縁膜 13の表面上に一体的に積層され た金属よりなる保持部形成用層 19Aと、この保持部形成用層 19Aの表面上に一体 的に積層された絶縁性の電極部成形用層 16Bと、この電極部成形用層 16Bの表面 上に一体的に積層されたメツキ電極用層 16Aとを有する積層体 10Aを作製する。図 示の例の積層体 10Aにお 、ては、支持膜形成用層 11Aの表面にその周縁部に沿 つて保護テープ 11Tが設けられて 、る。 First, as shown in FIG. 4, a circular support film forming layer 11A made of metal and a diameter of the support film forming layer 11A integrally laminated on the surface of the support film forming layer 11A are shown. A circular insulating film 13 having a small diameter, a holding portion forming layer 19A made of metal integrally laminated on the surface of the insulating film 13, and an integral portion on the surface of the holding portion forming layer 19A. A laminated body 10A having a laminated insulating electrode portion forming layer 16B and a plating electrode layer 16A integrally laminated on the surface of the electrode portion forming layer 16B is produced. Figure In the laminated body 10A of the illustrated example, a protective tape 11T is provided on the surface of the support film forming layer 11A along the periphery thereof.
この積層体 10Aにおいて、保持部形成用層 19Aは、形成すべき電極構造体 15〖こ おける保持部 19の厚みと同等の厚みを有するものとされている。また、電極部成形 用層 16Bは、当該電極部成形用層 16Bの厚みと保持部形成用層 19Aの厚みとの合 計の厚みが、形成すべき電極構造体 15における表面電極部 16の突出高さと同等と なるものとされている。また、支持膜形成用層 11Aは、形成すべき支持膜 11の厚みと 同等の厚みを有するものとされて ヽる。  In the laminate 10A, the holding portion forming layer 19A has a thickness equivalent to the thickness of the holding portion 19 in the electrode structure 15 to be formed. The total thickness of the electrode portion forming layer 16B and the thickness of the holding portion forming layer 19A is such that the total thickness of the electrode portion forming layer 16B and the thickness of the holding portion forming layer 19A protrudes from the surface electrode portion 16 in the electrode structure 15 to be formed. It is assumed to be equivalent to height. The support film forming layer 11A has a thickness equivalent to the thickness of the support film 11 to be formed.
絶縁膜 13を構成する材料としては、エッチング可能な高分子材料を用いることが好 ましぐより好ましくはポリイミドである。  As a material constituting the insulating film 13, it is preferable to use a polymer material which can be etched, and more preferably, polyimide.
また、電極部成形用層 16Bを構成する絶縁性の材料としては、エッチング可能な高 分子材料を用いることが好ましぐより好ましくはポリイミドである。  As the insulating material constituting the electrode portion forming layer 16B, it is preferable to use an etchable high molecular material, and more preferably, polyimide.
[0050] このような積層体 10Aに対し、図 5に示すように、そのメツキ電極用層 16Aの表面全 面にエッチング用のレジスト膜 14Aを形成すると共に、支持膜形成用層 11Aの裏面 に、形成すべき電極構造体 15のパターンに対応するパターンに従って複数のパタ ーン孔 K1が形成されたエッチング用のレジスト膜 14Bを形成する。 As shown in FIG. 5, a resist film 14A for etching is formed on the entire surface of the plating electrode layer 16A on the laminated body 10A, and on the back surface of the support film forming layer 11A, as shown in FIG. Then, an etching resist film 14B in which a plurality of pattern holes K1 are formed is formed in accordance with a pattern corresponding to the pattern of the electrode structure 15 to be formed.
ここで、レジスト膜 14A, 14Bを形成する材料としては、エッチング用のフォトレジス トとして使用されて 、る種々のものを用いることができる。  Here, as the material for forming the resist films 14A and 14B, various materials used as a photoresist for etching can be used.
[0051] 次いで、支持膜形成用層 11Aに対し、レジスト膜 14Bのパターン孔 K1を介して露 出した部分にエッチング処理を施して当該部分を除去することにより、図 6に示すよう に、支持膜形成用層 11Aに、それぞれレジスト膜 14Bのパターン孔 K1に連通する複 数の貫通孔 17Hが形成される。その後、絶縁膜 13に対し、レジスト膜 14Bの各バタ ーン孔 K1および支持膜形成用層 11Aの各貫通孔 17Hを介して露出した部分にェ ツチング処理を施して当該部分を除去することにより、図 7に示すように、絶縁膜 13に 、それぞれ支持膜形成用層 11Aの貫通孔 17Hに連通する、当該絶縁膜 13の裏面 力も表面に向力 に従って小径となるテーパ状の複数の貫通孔 13Hが形成される。 その後、保持部形成用層 19Aに対し、レジスト膜 14Bの各パターン孔 Kl、支持膜形 成用層 11Aの各貫通孔 17Hおよび絶縁膜 13の各貫通孔 13Hを介して露出した部 分にエッチング処理を施して当該部分を除去することにより、図 8に示すように、保持 部形成用層 19 Aに、それぞれ絶縁膜 13の貫通孔 13Hに連通する複数の貫通孔 19 Hが形成される。更に、電極部成形用層 16Bに対し、レジスト膜 14Bの各パターン孔 Kl、支持膜形成用層 11Aの各貫通孔 17Η、絶縁膜 13の各貫通孔 13Hおよび保持 部形成用層 19Aの各貫通孔 19Hを介して露出した部分にエッチング処理を施して 当該部分を除去することにより、図 9に示すように、電極部成形用層 16Bに、それぞ れ保持部形成用層 19 Αの貫通孔 19Hに連通する、電極部成形用層 16Bの裏面か ら表面に向力うに従って小径となるテーパ状の複数の貫通孔 16Hが形成される。こ れにより、積層体 10Aの裏面に、それぞれ支持膜形成用層 11Aの貫通孔 17H、絶 縁膜 13の貫通孔 13H、保持部形成用層 19Aの貫通孔 19Hおよび電極部成形用層 16Bの貫通孔 16Hが連通されてなる複数の電極構造体形成用凹所 10Kが形成さ れる。 Next, the portion of the support film forming layer 11A exposed through the pattern hole K1 of the resist film 14B is subjected to an etching treatment to remove the portion, whereby the support film is formed as shown in FIG. A plurality of through holes 17H communicating with the pattern holes K1 of the resist film 14B are formed in the film forming layer 11A. Thereafter, a portion of the insulating film 13 exposed through each of the pattern holes K1 of the resist film 14B and each of the through holes 17H of the support film forming layer 11A is subjected to a etching process to remove the portions. As shown in FIG. 7, the insulating film 13 has a plurality of tapered through holes which communicate with the through holes 17H of the support film forming layer 11A, and the back surface of the insulating film 13 also has a smaller diameter according to the direction of the front surface. 13H is formed. Thereafter, the portions exposed through the respective pattern holes Kl of the resist film 14B, the respective through holes 17H of the support film forming layer 11A, and the respective through holes 13H of the insulating film 13 with respect to the holding portion forming layer 19A. As shown in FIG. 8, a plurality of through-holes 19H communicating with the through-holes 13H of the insulating film 13 are formed in the holding portion forming layer 19A by removing the portions by performing an etching process. Is done. Furthermore, with respect to the electrode portion forming layer 16B, each pattern hole Kl of the resist film 14B, each through hole 17Η of the support film forming layer 11A, each through hole 13H of the insulating film 13, and each through hole of the holding portion forming layer 19A. By etching the portion exposed through the hole 19H and removing the portion, as shown in FIG. 9, the through hole of the holding portion forming layer 19 # is formed in the electrode portion forming layer 16B as shown in FIG. A plurality of tapered through holes 16H communicating with 19H and having a smaller diameter as going from the back surface to the front surface of the electrode forming layer 16B are formed. As a result, the through holes 17H of the support film forming layer 11A, the through holes 13H of the insulating film 13, the through holes 19H of the holding portion forming layer 19A, and the electrode portion forming layer 16B are formed on the back surface of the laminate 10A. A plurality of electrode structure forming recesses 10K formed by communicating the through holes 16H are formed.
[0052] 以上にお ヽて、支持膜形成用層 11Aおよび保持部形成用層をエッチング処理す るためのエッチング剤としては、これらの金属層を構成する材料に応じて適宜選択さ れ、これらの金属層が例えば 42合金や銅よりなるものである場合には、塩化第二鉄 水溶液などを用いることができる。  [0052] As described above, the etching agent for etching the support film forming layer 11A and the holding portion forming layer is appropriately selected according to the material constituting these metal layers. When the metal layer is made of, for example, 42 alloy or copper, an aqueous ferric chloride solution or the like can be used.
また、絶縁膜 13および電極部成形用層 16Bをエッチング処理するためのエツチン グ液としては、ヒドラジン系水溶液、水酸ィ匕カリウム水溶液、アミン系エッチング液など を用いることができ、エッチング処理条件を選択することにより、絶縁膜 13および電極 部成形用層 16Bに、それぞれ裏面力 表面に向かうに従って小径となるテーパ状の 貫通孔 13H, 16Hを形成することができる。  In addition, as an etching solution for etching the insulating film 13 and the electrode portion forming layer 16B, a hydrazine-based aqueous solution, a potassium hydroxide aqueous solution, an amine-based etchant, or the like can be used. By selection, tapered through holes 13H and 16H having a smaller diameter toward the back surface can be formed in the insulating film 13 and the electrode portion forming layer 16B.
[0053] このようにして電極構造体形成用凹所 10Kが形成された積層体 10Aカゝらレジスト膜 14A, 14Bを除去し、その後、図 10に示すように、当該積層体 10Aに、そのメツキ電 極用層 16Aの表面全面を覆うよう、メツキ用のレジスト膜 14Cを形成すると共に、支持 膜形成用層 11Aの裏面に、形成すべき電極構造体 15における裏面電極部 17のパ ターンに対応するパターンに従って複数のパターン孔 K2が形成されたメツキ用のレ ジスト膜 14Dを形成する。  [0053] The laminated body 10A having the electrode structure forming recesses 10K formed in this manner is used to remove the resist films 14A and 14B. Thereafter, as shown in FIG. A resist film 14C for plating is formed so as to cover the entire surface of the plating electrode layer 16A, and a pattern of the back electrode portion 17 of the electrode structure 15 to be formed is formed on the back surface of the support film forming layer 11A. A resist film 14D for plating having a plurality of pattern holes K2 formed in accordance with the corresponding pattern is formed.
ここで、レジスト膜 14C, 14Dを形成する材料としては、メツキ用のフォトレジストとし て使用されて 、る種々のものを用いることができる。 Here, as a material for forming the resist films 14C and 14D, a photoresist for plating is used. Various types can be used.
[0054] 次いで、積層体 10Aに対し、メツキ電極用層 16Aを電極として、電解メツキ処理を 施して各電極構造体形成用凹所 10Kおよびレジスト膜 14Dの各パターン孔 K2内に 金属を充填することにより、図 11に示すように、絶縁膜 13の表面から突出する突起 状の複数の表面電極部 16、当該表面電極部 16の各々の基端に連続して絶縁膜 13 をその厚み方向に貫通して伸びる短絡部 18および当該短絡部 18の各々の他端に 連結された裏面電極部 17が形成される。ここで、裏面電極部 17の各々は、支持膜 形成用層 11 Aを介して互いに連結された状態である。  Next, an electrolytic plating process is performed on the laminate 10A using the plating electrode layer 16A as an electrode to fill a metal into each of the electrode structure forming recesses 10K and each of the pattern holes K2 of the resist film 14D. As a result, as shown in FIG. 11, a plurality of projecting surface electrode portions 16 protruding from the surface of the insulating film 13, and the insulating film 13 A short-circuit portion 18 that extends through and a back electrode portion 17 connected to the other end of each of the short-circuit portions 18 is formed. Here, each of the back electrode portions 17 is in a state of being connected to each other via the support film forming layer 11A.
このようにして表面電極部 16、短絡部 18および裏面電極部 17が形成された積層 体 10Aからレジスト膜 14Dを除去することにより、図 12に示すように、支持膜形成用 層 11Aの裏面を露出させ、その後、図 13に示すように、裏面電極部 17および支持 膜形成用層 11 Aにおける支持膜 11となる部分を覆うよう、ノターユングされたエッチ ング用のレジスト膜 14Eを形成し、更に、積層体 10Aからレジスト膜 14Cを除去する ことにより、図 14に示すように、メツキ電極用層 16Aを露出させる。そして、メツキ電極 用層 16Aおよび支持膜形成用層 11Aにおける露出した部分にエッチング処理を施 すことにより、メツキ電極用層 16Aの全部を除去すると共に、支持膜形成用層 11Aに おける露出した部分を除去し、これにより、図 15に示すように、互いに分離した複数 の裏面電極部 17が形成されると共に、検査対象であるウェハに形成された集積回路 の電極領域に対応する複数の開口 11Hを有する支持膜 11が形成される。  By removing the resist film 14D from the laminated body 10A on which the front electrode portion 16, the short-circuit portion 18 and the back electrode portion 17 are formed as described above, as shown in FIG. 12, the back surface of the support film forming layer 11A is removed. Then, as shown in FIG. 13, a notched etching resist film 14E is formed so as to cover the portion to be the supporting film 11 in the back electrode portion 17 and the supporting film forming layer 11A, as shown in FIG. Then, by removing the resist film 14C from the laminated body 10A, as shown in FIG. 14, the plating electrode layer 16A is exposed. Then, the exposed portions of the plating electrode layer 16A and the support film forming layer 11A are etched to remove the entire plating electrode layer 16A and to expose the exposed portions of the support film forming layer 11A. As a result, as shown in FIG. 15, a plurality of back electrode portions 17 separated from each other are formed, and a plurality of openings 11H corresponding to the electrode regions of the integrated circuit formed on the wafer to be inspected are formed. Is formed.
[0055] 次いで、裏面電極部 17および支持膜 11からレジスト膜 14Eを除去し、その後、図 1 6に示すように、支持膜 11の裏面、絶縁膜 13の裏面および裏面電極部 17を覆うよう 、レジスト膜 14Fを形成する。  Next, the resist film 14E is removed from the back surface electrode portion 17 and the support film 11, and thereafter, as shown in FIG. 16, the back surface of the support film 11, the back surface of the insulating film 13, and the back surface electrode portion 17 are covered. Then, a resist film 14F is formed.
そして、電極部成形用層 16Bに対してエッチング処理を施してその全部を除去する ことにより、図 17に示すように、表面電極部 16および保持部形成用層 19Aを露出し 、その後、図 18に示すように、表面電極部 16および保持部形成用層 17Aにおける 保持部 19となるべき部分を覆うよう、パターユングされたエッチング用のレジスト膜 14 Gを形成する。次いで、保持部形成用層 17Aにエッチング処理を施して露出した部 分を除去することにより、図 19に示すように、表面電極部 16の基端部分の周面から 連続して当該絶縁膜 11の表面に沿って外方に放射状に伸びる保持部 19が形成さ れ、以て電極構造体 15が形成される。 Then, the electrode portion forming layer 16B is subjected to an etching treatment to remove the whole, thereby exposing the surface electrode portion 16 and the holding portion forming layer 19A as shown in FIG. As shown in FIG. 7, a patterned etching resist film 14G is formed so as to cover a portion to be the holding portion 19 in the surface electrode portion 16 and the holding portion forming layer 17A. Next, the exposed portion is removed by performing an etching process on the holding portion forming layer 17A, thereby removing the exposed portion from the peripheral surface of the base end portion of the surface electrode portion 16 as shown in FIG. A holding portion 19 is formed to extend radially outward along the surface of the insulating film 11 continuously, thereby forming an electrode structure 15.
そして、表面電極部 16および保持部 19からレジスト膜 14Gを除去すると共に、支 持膜 11の裏面、絶縁膜 13の裏面および裏面電極部 17からレジスト膜 14Fを除去し 、更に支持膜 11の表面力も保護テープ 11T (図 4参照)を除去することにより、図 1〜 図 3に示す第 1の例のシート状フローブ 10が得られる。  Then, while removing the resist film 14G from the front electrode portion 16 and the holding portion 19, the resist film 14F is removed from the back surface of the support film 11, the back surface of the insulating film 13 and the back electrode portion 17, and the surface of the support film 11 is further removed. By removing the protective tape 11T (see FIG. 4), the sheet-like lobe 10 of the first example shown in FIGS. 1 to 3 is obtained.
[0056] このような製造方法によれば、絶縁膜 13を有する積層体 10Aに予め電極構造体形 成用凹所 10Kを形成し、当該電極構造体形成用凹所 10Kをキヤビティとして表面電 極部 16を形成するため、径が小さくて突出高さのバラツキが小さい表面電極部 16が 得られる。 According to such a manufacturing method, the electrode structure forming recess 10K is previously formed in the laminate 10A having the insulating film 13, and the electrode structure forming recess 10K is used as a cavity to form the surface electrode portion. Since the surface electrode portion 16 is formed, the surface electrode portion 16 having a small diameter and a small variation in the protruding height can be obtained.
また、絶縁膜 13の表面に形成された保持部形成用層 19Aをエッチング処理するこ とにより、表面電極部 16の基端部分力も連続して絶縁膜 13の表面に沿って外方に 伸びる保持部 19を確実に形成することができるため、当該表面電極部 16の径が小 さいものであっても、当該電極構造体 15が絶縁膜 13から脱落することがなくて高い 耐久性を有するシート状プローブ 10を製造することができる。  Also, by etching the holding portion forming layer 19A formed on the surface of the insulating film 13, the base partial force of the surface electrode portion 16 is also continuously extended outward along the surface of the insulating film 13. Since the portion 19 can be formed reliably, even if the surface electrode portion 16 has a small diameter, the electrode structure 15 does not fall off the insulating film 13 and has high durability. The probe 10 can be manufactured.
また、積層体 10Aには、絶縁膜 13が支持膜形成用層 11Aに一体的に積層されて おり、当該絶縁膜 13に電極構造体 15を形成したうえで、支持膜形成用層 11をエツ チング処理して開口 11Hを形成するため、支持膜 11上に接点膜 12を高い位置精度 で一体的に形成することができる。  Further, in the laminate 10A, the insulating film 13 is integrally laminated on the support film forming layer 11A. After the electrode structure 15 is formed on the insulating film 13, the support film forming layer 11 is etched. Since the opening 11H is formed by the ching process, the contact film 12 can be integrally formed on the support film 11 with high positional accuracy.
[0057] 図 20は、本発明に係るシート状プローブの第 2の例を示す平面図であり、図 21は、 第 2の例のシート状プローブにおける接点膜の要部を拡大して示す平面図、図 22は 、第 2の例のシート状プローブの要部を拡大して示す説明用断面図である。 FIG. 20 is a plan view showing a second example of the sheet-like probe according to the present invention, and FIG. 21 is a plan view showing an enlarged main part of the contact film in the sheet-like probe of the second example. FIG. 22 is an enlarged cross-sectional view illustrating a main part of the sheet-like probe of the second example.
この第 2の例のシート状プローブ 10は、例えば複数の集積回路が形成されたゥェ ハについて当該集積回路の各々の電気的検査をウェハの状態で行うために用いら れるものであって、第 1の例のシート状プローブ 10と同様の構成の支持膜 11を有す る。  The sheet-like probe 10 of the second example is used, for example, for a wafer on which a plurality of integrated circuits are formed, for performing an electrical inspection of each of the integrated circuits in a wafer state, A support film 11 having the same configuration as the sheet-like probe 10 of the first example is provided.
[0058] この支持膜 11の表面(図 22において上面)上には、その表面に沿って並ぶよう互 いに独立した状態で配置された複数 (図示の例では 9つ)の接点膜 12aが、当該支 持膜 11に一体的に設けられて支持されて 、る。 On the surface (upper surface in FIG. 22) of the support film 11, a plurality (nine in the illustrated example) of contact films 12a arranged independently from each other so as to be arranged along the surface. , The branch It is provided integrally with the membrane 11 and is supported.
この接点膜 12aの各々は、柔軟な絶縁膜 13aを有し、この絶縁膜 13aには、当該絶 縁膜 13aの厚み方向に伸びる複数の電極構造体 15が、検査対象であるウェハに形 成された一部の集積回路における被検査電極のパターンに対応するパターンに従 つて、当該絶縁膜 13aの面方向に互いに離間して配置されており、当該接点膜 12a は、電極構造体 15の各々が、支持膜 11の各開口 11H内に位置するよう配置されて いる。  Each of the contact films 12a has a flexible insulating film 13a, and a plurality of electrode structures 15 extending in the thickness direction of the insulating film 13a are formed on the insulating film 13a on a wafer to be inspected. According to the pattern corresponding to the pattern of the electrode to be inspected in some of the integrated circuits described above, the contact films 12a are arranged apart from each other in the surface direction of the insulating film 13a. Are arranged in each opening 11H of the support film 11.
電極構造体 15の各々は、絶縁膜 13aの表面に露出し、当該絶縁膜 13aの表面か ら突出する突起状の表面電極部 16と、絶縁膜 13aの裏面に露出する矩形の平板状 の裏面電極部 17と、表面電極部 16の基端力も連続して前記絶縁膜 13aをその厚み 方向に貫通して伸びて裏面電極部 17に連結された短絡部 18と、表面電極部 16の 基端部分の周面力も連続して絶縁膜 13aの表面に沿って外方に放射状に伸びる円 形リング板状の保持部 19とにより構成されて 、る。この例の電極構造体 15にお 、て は、表面電極部 16が、短絡部 18に連続して基端力 先端に向かうに従って小径とな るテーパ状とされて全体が円錐台状に形成され、当該表面電極部 16の基端に連続 する短絡部 18が、絶縁膜 13aの裏面力も表面に向かうに従って小径となるテーパ状 とされて全体が円錐台状に形成されており、表面電極部 16の基端の径 Rが当該基  Each of the electrode structures 15 is exposed on the surface of the insulating film 13a and protrudes from the surface of the insulating film 13a, and has a protruding surface electrode portion 16 and a rectangular flat back surface exposed on the back surface of the insulating film 13a. The base portions of the electrode portion 17 and the front electrode portion 16 also extend continuously through the insulating film 13a in the thickness direction and are connected to the back electrode portion 17, and the base end of the front electrode portion 16. The peripheral force of the portion is also constituted by a circular ring plate-shaped holding portion 19 which extends continuously and radially outward along the surface of the insulating film 13a. In the electrode structure 15 of this example, the surface electrode portion 16 is formed in a tapered shape that becomes smaller in diameter toward the distal end of the base force following the short-circuit portion 18 and is formed in a truncated cone shape as a whole. The short-circuit portion 18 continuous with the base end of the surface electrode portion 16 is tapered so that the back surface force of the insulating film 13a becomes smaller as going toward the surface, and the whole is formed in a truncated cone shape. Of the base end of
1 端に連続する短絡部 18の一端の径 Rと同一とされている。  It is the same as the diameter R of one end of the short-circuit portion 18 continuous to one end.
3  Three
この第 2の例のシート状プローブ 10において、絶縁膜 13aの材質、電極構造体 15 の材質および寸法などは、第 1の例のシート状プローブの絶縁膜 13および電極構造 体 15と同様である。  In the sheet probe 10 of the second example, the material of the insulating film 13a and the material and dimensions of the electrode structure 15 are the same as those of the insulating film 13 and the electrode structure 15 of the sheet probe of the first example. .
この第 2の例のシート状プローブ 10は、例えば以下のようにして製造することができ る。  The sheet-like probe 10 of the second example can be manufactured, for example, as follows.
先ず、前述の第 1の例のシート状プローブ 10の製造方法と同様にして、図 4に示す 構成の積層体 10Aから支持膜 11および電極構造体 15およびを形成する(図 5乃至 図 19参照。)。  First, the supporting film 11 and the electrode structure 15 are formed from the laminate 10A having the structure shown in FIG. 4 in the same manner as in the method of manufacturing the sheet-like probe 10 of the first example described above (see FIGS. 5 to 19). .).
次いで、表面電極部 16および保持部 19からレジスト膜 14Gを除去した後、図 23に 示すように、絶縁膜 13の表面、表面電極部 16および保持部 19に、形成すべき接点 膜 12aのパターンに対応するパターンに従ってレジスト膜 14Hを形成し、絶縁膜 13 に対してエッチング処理を施して露出した部分を除去することにより、絶縁膜 13が分 割されて、図 24に示すように、互いに独立した複数の絶縁膜 13aが形成され、これに より、それぞれ絶縁膜 13aにその厚み方向に貫通して伸びる複数の電極構造体 15 が配置されてなる複数の接点膜 12aが形成される。 Next, after the resist film 14G is removed from the surface electrode portion 16 and the holding portion 19, as shown in FIG. 23, the contact to be formed is formed on the surface of the insulating film 13, the surface electrode portion 16 and the holding portion 19. A resist film 14H is formed in accordance with the pattern corresponding to the pattern of the film 12a, and the insulating film 13 is subjected to an etching process to remove an exposed portion, whereby the insulating film 13 is divided, as shown in FIG. In addition, a plurality of insulating films 13a independent of each other are formed, thereby forming a plurality of contact films 12a in which a plurality of electrode structures 15 extending through the insulating film 13a in the thickness direction thereof are arranged. You.
そして、支持膜 11の裏面、絶縁膜 13aの裏面および裏面電極部 17からレジスト膜 14Fを除去すると共に、絶縁膜 13aの表面、表面電極部 16および保持部 19からレ ジスト膜 14Hを除去し、更に支持膜 11の表面力も保護テープを除去することにより、 図 20〜図 22に示す第 2の例のシート状フローブ 10が得られる。  Then, the resist film 14F is removed from the back surface of the support film 11, the back surface of the insulating film 13a, and the back electrode portion 17, and the resist film 14H is removed from the surface of the insulating film 13a, the front electrode portion 16 and the holding portion 19, Further, by removing the protective tape from the surface force of the support film 11, the sheet-like lobe 10 of the second example shown in FIGS. 20 to 22 can be obtained.
[0060] このような第 2の例のシート状プローブ 10によれば、接点膜 12aの各々における電 極構造体 15には、表面電極部 16の基端部分力も連続して絶縁膜 11の表面に沿つ て外方に伸びる保持部 19が形成されているため、当該表面電極部 16の径が小さい ものであっても、当該電極構造体 16が絶縁膜 13aの裏面力も脱落することがなくて 高い耐久性が得られる。  According to the sheet-like probe 10 of the second example, the electrode structure 15 in each of the contact films 12a also has the base partial force of the surface electrode portion 16 continuously. Since the holding portion 19 extending outward along the surface is formed, even if the diameter of the front surface electrode portion 16 is small, the electrode structure 16 does not lose the back surface force of the insulating film 13a. High durability can be obtained.
また、径の小さい表面電極部 16を有することにより、隣接する表面電極部 16の間 の離間距離が十分に確保されるため、絶縁膜 13aによる柔軟性が十分に発揮され、 その結果、小さいピッチで被検査電極が形成されたウェハに対しても安定な電気的 接続状態を確実に達成することができる。  In addition, by having the surface electrode portion 16 having a small diameter, a sufficient separation distance between the adjacent surface electrode portions 16 is ensured, so that the flexibility of the insulating film 13a is sufficiently exhibited, and as a result, the small pitch Thus, a stable electrical connection state can be reliably achieved even on the wafer on which the electrode to be inspected is formed.
[0061] また、支持膜 11には,検査対象である回路装置の被検査電極が形成された電極 領域に対応して複数の開口 11Hが形成され、この支持膜 11の表面上には、互いに 独立した複数の接点膜 12aが、電極構造体 15の各々が支持膜 11の各開口 11H内 に位置するよう配置されることにより、接点膜 12aの各々は、その全面にわたって支持 膜 11に支持されるため、当該接点膜 12aが大面積のものであっても、その絶縁膜 13 aの面方向における熱膨張を支持膜 11によって確実に規制することができる。従って 、検査対象であるウェハが例えば直径が 8インチ以上の大面積で被検査電極のピッ チが極めて小さいものであっても、バーンイン試験において、温度変化による電極構 造体 17と被検査電極との位置ずれを確実に防止することができ、その結果、ウェハ に対する良好な電気的接続状態を安定に維持することができる。 [0062] 図 25は、本発明に係るシート状プローブの第 3の例を示す平面図であり、図 26は、 第 3の例のシート状プローブにおける接点膜の要部を拡大して示す平面図、図 27は 、第 3の例のシート状プローブの要部を拡大して示す説明用断面図である。 Further, a plurality of openings 11H are formed in the support film 11 corresponding to the electrode regions where the electrodes to be inspected of the circuit device to be inspected are formed. By disposing a plurality of independent contact films 12a such that each of the electrode structures 15 is located in each opening 11H of the support film 11, each of the contact films 12a is supported by the support film 11 over the entire surface thereof. Therefore, even if the contact film 12a has a large area, the thermal expansion in the plane direction of the insulating film 13a can be reliably restricted by the support film 11. Therefore, even if the wafer to be inspected has a large area of, for example, 8 inches or more in diameter and the pitch of the electrode to be inspected is extremely small, in the burn-in test, the electrode structure 17 and the electrode to be inspected due to a temperature change are generated. Misalignment can be reliably prevented, and as a result, a good electrical connection state to the wafer can be stably maintained. FIG. 25 is a plan view showing a third example of the sheet-like probe according to the present invention. FIG. 26 is an enlarged plan view showing a main part of the contact film in the sheet-like probe of the third example. FIG. 27 and FIG. 27 are explanatory cross-sectional views showing the main parts of the sheet-like probe of the third example in an enlarged manner.
この第 3の例のシート状プローブ 10は、例えば複数の集積回路が形成されたゥェ ハについて当該集積回路の各々の電気的検査をウェハの状態で行うために用いら れるものであって、第 1の例のシート状プローブ 10と同様の構成の支持膜 11を有す る。  The sheet-like probe 10 of the third example is used for performing an electrical inspection of each of the integrated circuits on a wafer on which a plurality of integrated circuits are formed, for example, in a wafer state. A support film 11 having the same configuration as the sheet-like probe 10 of the first example is provided.
[0063] 支持膜 11の表面上には、複数の接点膜 12bが、それぞれ支持膜 11の開口 11Hの 各々を塞ぐよう当該開口縁部に支持された状態で、かつ、隣接する接点膜 12bと互 いに独立した状態で配置されて 、る。  [0063] On the surface of the support film 11, a plurality of contact films 12b are supported by the opening edges so as to cover each of the openings 11H of the support film 11, and the contact films 12b are adjacent to each other. They are arranged independently of each other.
接点膜 12bの各々は、柔軟な絶縁膜 13bを有し、当該絶縁膜 13bには、当該絶縁 膜 13bの厚み方向に伸びる金属よりなる複数の電極構造体 15が、検査対象であるゥ ェハに形成された一の集積回路の電極領域における被検査電極のパターンに対応 するパターンに従って、当該絶縁膜 13bの面方向に互いに離間して配置されており 、当該接点膜 12bは、電極構造体 15の各々が、支持膜 11の開口 11H内に位置する よう配置されている。  Each of the contact films 12b has a flexible insulating film 13b, and a plurality of electrode structures 15 made of metal extending in the thickness direction of the insulating film 13b are inspected on the insulating film 13b. According to the pattern corresponding to the pattern of the electrode to be inspected in the electrode region of one integrated circuit formed in the above, the insulating film 13b is disposed apart from each other in the surface direction of the insulating film 13b. Are arranged so as to be located in the openings 11H of the support film 11.
電極構造体 15の各々は、絶縁膜 13bの表面に露出し、当該絶縁膜 13bの表面か ら突出する突起状の表面電極部 16と、絶縁膜 13bの裏面に露出する矩形の平板状 の裏面電極部 17と、表面電極部 16の基端力も連続して前記絶縁膜 13bをその厚み 方向に貫通して伸びて裏面電極部 17に連結された短絡部 18と、表面電極部 16の 基端部分の周面力も連続して絶縁膜 13bの表面に沿って外方に放射状に伸びる円 形リング板状の保持部 19とにより構成されて 、る。この例の電極構造体 15にお 、て は、表面電極部 16が、短絡部 18に連続して基端力 先端に向かうに従って小径とな るテーパ状とされて全体が円錐台状に形成され、当該表面電極部 16の基端に連続 する短絡部 18が、絶縁膜 13bの裏面力も表面に向かうに従って小径となるテーパ状 とされて全体が円錐台状に形成されており、表面電極部 16の基端の径 Rが当該基  Each of the electrode structures 15 is exposed on the surface of the insulating film 13b and protrudes from the surface of the insulating film 13b, and a rectangular flat back surface exposed on the back surface of the insulating film 13b. The base portion force of the electrode portion 17 and the surface electrode portion 16 also extends continuously through the insulating film 13b in the thickness direction thereof and is connected to the back surface electrode portion 17, and the base end of the surface electrode portion 16 The peripheral force of the portion is also constituted by a circular ring plate-like holding portion 19 that extends continuously and radially outward along the surface of the insulating film 13b. In the electrode structure 15 of this example, the surface electrode portion 16 is formed in a tapered shape that becomes smaller in diameter toward the distal end of the base force following the short-circuit portion 18 and is formed in a truncated cone shape as a whole. The short-circuit portion 18 continuous with the base end of the front surface electrode portion 16 is tapered so that the back surface force of the insulating film 13b becomes smaller in diameter toward the front surface, and the whole is formed in a truncated cone shape. Of the base end of
1 端に連続する短絡部 18の一端の径 Rと同一とされている。  It is the same as the diameter R of one end of the short-circuit portion 18 continuous to one end.
3  Three
この第 3の例のシート状プローブ 10において、絶縁膜 13bの材質、電極構造体 15 の材質および寸法などは、第 1の例のシート状プローブの絶縁膜 13および電極構造 体 15と同様である。 In the sheet-like probe 10 of the third example, the material of the insulating film 13b, the electrode structure 15 The material, dimensions, etc. of this are the same as those of the insulating film 13 and the electrode structure 15 of the sheet-like probe of the first example.
[0064] この第 3の例のシート状プローブ 10は、例えば以下のようにして製造することができ る。  [0064] The sheet probe 10 of the third example can be manufactured, for example, as follows.
先ず、前述の第 1の例のシート状プローブ 10の製造方法と同様にして、図 4に示す 構成の積層体 10Aから支持膜 11および電極構造体 15を形成する(図 5乃至図 19 参照。)。  First, the support film 11 and the electrode structure 15 are formed from the laminate 10A having the configuration shown in FIG. 4 in the same manner as in the method of manufacturing the sheet-like probe 10 of the first example described above. ).
次いで、表面電極部 16および保持部 19からレジスト膜 14Gを除去した後、図 28に 示すように、絶縁膜 13の表面、表面電極部 16および保持部 19に、形成すべき接点 膜 12bのパターンに対応するパターンに従ってレジスト膜 14Hを形成し、絶縁膜 13 に対してエッチング処理を施して露出した部分を除去することにより、図 29に示すよ うに、互いに独立した複数の絶縁膜 13bが形成され、これにより、それぞれ絶縁膜 13 bにその厚み方向に貫通して伸びる複数の電極構造体 15が配置されてなる複数の 接点膜 12bが形成される。  Next, after removing the resist film 14G from the surface electrode portion 16 and the holding portion 19, as shown in FIG. 28, the pattern of the contact film 12b to be formed on the surface of the insulating film 13, the surface electrode portion 16 and the holding portion 19, as shown in FIG. A resist film 14H is formed according to a pattern corresponding to the above, and a plurality of insulating films 13b independent of each other are formed as shown in FIG. 29 by etching the insulating film 13 and removing the exposed portions. As a result, a plurality of contact films 12b each having the plurality of electrode structures 15 extending through the insulating film 13b in the thickness direction thereof are formed on the insulating film 13b.
そして、支持膜 11の裏面、絶縁膜 13bの裏面および裏面電極部 17からレジスト膜 14Fを除去すると共に、絶縁膜 13bの表面、表面電極部 16および保持部 19からレ ジスト膜 14Hを除去し、更に支持膜 11から保護テープを除去することにより、図 25〜 図 27に示す第 3の例のシート状フローブ 10が得られる。  Then, while removing the resist film 14F from the back surface of the support film 11, the back surface of the insulating film 13b, and the back electrode portion 17, the resist film 14H is removed from the surface of the insulating film 13b, the front electrode portion 16 and the holding portion 19, Further, by removing the protective tape from the support film 11, the sheet-like flow valve 10 of the third example shown in FIGS. 25 to 27 can be obtained.
[0065] このような第 3の例のシート状プローブ 10によれば、接点膜 12bの各々における電 極構造体 15には、表面電極部 16の基端部分力も連続して絶縁膜 11の表面に沿つ て外方に伸びる保持部 19が形成されているため、当該表面電極部 16の径が小さい ものであっても、当該電極構造体 16が絶縁膜 13bの裏面力も脱落することがなくて 高い耐久性が得られる。 [0065] According to the sheet-like probe 10 of the third example, the electrode structure 15 in each of the contact films 12b has the base partial force of the surface electrode portion 16 continuously. Since the holding portion 19 extending outward along the surface is formed, even if the diameter of the front surface electrode portion 16 is small, the electrode structure 16 does not lose the back surface force of the insulating film 13b. High durability can be obtained.
また、径の小さい表面電極部 16を有することにより、隣接する表面電極部 16の間 の離間距離が十分に確保されるため、絶縁膜 13bによる柔軟性が十分に発揮され、 その結果、小さいピッチで被検査電極が形成されたウェハに対しても安定な電気的 接続状態を確実に達成することができる。  In addition, by having the surface electrode portion 16 having a small diameter, a sufficient separation distance between the adjacent surface electrode portions 16 is ensured, so that the flexibility of the insulating film 13b is sufficiently exhibited, and as a result, the small pitch Thus, a stable electrical connection state can be reliably achieved even on the wafer on which the electrode to be inspected is formed.
[0066] また、支持膜 11には,検査対象であるウェハにおける被検査電極が形成された電 極領域に対応して複数の開口 11Hが形成されており、これらの開口 11Hの各々に 配置される接点膜 12bは面積の小さいものでよぐ面積の小さい接点膜 12bは、その 絶縁膜 13bの面方向における熱膨張の絶対量が小さいため、絶縁膜 13bの熱膨張 を支持膜 11によって確実に規制することが可能となる。従って、検査対象であるゥェ ハが直径が 8インチ以上の大面積で被検査電極のピッチが極めて小さいものであつ ても、バーンイン試験において、温度変化による電極構造体 17と被検査電極との位 置ずれを確実に防止することができ、その結果、ウェハに対する良好な電気的接続 状態を安定に維持することができる。 The support film 11 has an electrode on which an electrode to be inspected is formed on a wafer to be inspected. A plurality of openings 11H are formed corresponding to the polar regions, and the contact films 12b disposed in each of these openings 11H have a small area, and the contact films 12b having a small area are formed by the insulating film 13b. Since the absolute amount of thermal expansion in the plane direction is small, the thermal expansion of the insulating film 13b can be reliably restricted by the support film 11. Therefore, even if the wafer to be inspected is a large area having a diameter of 8 inches or more and the pitch of the electrodes to be inspected is extremely small, in the burn-in test, the distance between the electrode structure 17 and the electrode to be inspected due to a temperature change is increased. Displacement can be reliably prevented, and as a result, a good electrical connection state to the wafer can be stably maintained.
[0067] 〔プローブカードおよび回路装置の検査装置〕 [Inspection Device for Probe Card and Circuit Device]
図 30は、本発明に係る回路装置の検査装置の一例における構成を示す説明用断 面図であり、この回路装置の検査装置は、ウェハに形成された複数の集積回路の各 々について、当該集積回路の電気的検査をウェハの状態で行うためのウェハ検査 装置である。  FIG. 30 is an explanatory cross-sectional view showing a configuration of an example of a circuit device inspection device according to the present invention. The circuit device inspection device performs the above-described operation for each of a plurality of integrated circuits formed on a wafer. This is a wafer inspection device for performing electrical inspection of integrated circuits in a wafer state.
この検査装置は、被検査回路装置であるウェハ 6の被検査電極 7の各々とテスター との電気的接続を行うプローブカード 1を有する。このプローブカード 1の裏面(図に おいて上面)には、当該プローブカード 1を下方に加圧する加圧板 3が設けられ、プ ローブカード 1の下方には、ウェハ 6が載置されるウェハ載置台 4が設けられており、 加圧板 3およびウェハ載置台 4の各々には、加熱器 5が接続されている。  This inspection apparatus has a probe card 1 for electrically connecting each of the electrodes 7 to be inspected of a wafer 6 which is a circuit apparatus to be inspected, to a tester. A pressure plate 3 for pressing the probe card 1 downward is provided on the rear surface (the upper surface in the figure) of the probe card 1, and a wafer mounting surface on which the wafer 6 is mounted is provided below the probe card 1. A mounting table 4 is provided, and a heater 5 is connected to each of the pressure plate 3 and the wafer mounting table 4.
[0068] プローブカード 1は、図 31にも拡大して示すように、ウェハ 6に形成された全ての集 積回路における被検査電極 7のパターンに対応するパターンに従って複数の検査電 極 21が表面(図において下面)に形成された検査用回路基板 20と、この検査用回路 基板 20の表面上に配置された異方導電性コネクター 30と、この異方導電性コネクタ 一 30の表面(図において下面)上に配置された、図 1に示す構成のシート状プローブ 10とにより構成されている。 The probe card 1 has a plurality of test electrodes 21 on the surface thereof in accordance with the pattern corresponding to the pattern of the test electrodes 7 in all the integrated circuits formed on the wafer 6, as also shown in FIG. The inspection circuit board 20 formed on the lower surface (in the figure), the anisotropic conductive connector 30 disposed on the surface of the inspection circuit board 20, and the surface of the anisotropic conductive connector 30 And a sheet probe 10 having the configuration shown in FIG.
シート状プローブ 10における電極構造体 15は、ウェハ 6に形成された全ての集積 回路における被検査電極 7のパターンに対応するパターンに従って複数の電極構造 体 15が配置された、図 1に示す構成のシート状プローブ 10が配置されている。 異方導電性コネクター 30は、図 32に示すように、ウェハ 6に形成された全ての集積 回路における被検査電極 7が配置された電極領域に対応して複数の開口 32が形成 されたフレーム板 31と、このフレーム板 31に、それぞれ一の開口 32を塞ぐよう配置さ れ、当該フレーム板 31の開口縁部に固定されて支持された複数の異方導電性シー ト 35とにより構成されている。異方導電性シート 35の各々は、弾性高分子物質によつ て形成されており、被検査回路装置であるウェハ 6に形成された一の電極領域の被 検査電極 7のパターンに対応するパターンに従って形成された、それぞれ厚み方向 に伸びる複数の導電部 36と、これらの導電部 36の各々を相互に絶縁する絶縁部 37 とにより構成されている。また、図示の例では、異方導電性シート 35の両面には、導 電部 36およびその周辺部分が位置する個所に、それ以外の表面力も突出する突出 部 38が形成されている。異方導電性シート 35における導電部 36の各々には、磁性 を示す導電性粒子 Pが厚み方向に並ぶよう配向した状態で密に含有されて 、る。こ れに対して、絶縁部 37は、導電性粒子 Pが全く或いは殆ど含有されていないもので ある。 The electrode structure 15 in the sheet-like probe 10 has the configuration shown in FIG. 1 in which a plurality of electrode structures 15 are arranged according to the pattern corresponding to the pattern of the electrode 7 to be inspected in all the integrated circuits formed on the wafer 6. A sheet probe 10 is arranged. As shown in FIG. 32, the anisotropic conductive connector 30 has all the integrated portions formed on the wafer 6. A frame plate 31 in which a plurality of openings 32 are formed corresponding to the electrode regions where the electrodes 7 to be inspected in the circuit are formed, and the frame plate 31 is disposed so as to cover one opening 32, and A plurality of anisotropic conductive sheets 35 fixed and supported at the opening edge of the opening 31 are provided. Each of the anisotropic conductive sheets 35 is formed of an elastic polymer material, and has a pattern corresponding to the pattern of the electrode 7 to be inspected in one electrode region formed on the wafer 6 which is the circuit device to be inspected. And a plurality of conductive portions 36 extending in the thickness direction, and an insulating portion 37 for insulating each of these conductive portions 36 from each other. Further, in the illustrated example, on both surfaces of the anisotropic conductive sheet 35, at the location where the conductive portion 36 and its peripheral portion are located, protruding portions 38 from which other surface forces also protrude are formed. Each of the conductive portions 36 in the anisotropic conductive sheet 35 contains conductive particles P exhibiting magnetism densely in a state of being aligned in the thickness direction. On the other hand, the insulating portion 37 contains no or almost no conductive particles P.
そして、異方導電性コネクター 30は、検査用回路基板 20の表面上に、導電部 36 の各々が検査電極 21上に位置するよう配置され、シート状プローブ 10は、異方導電 性コネクター 30の表面上に、電極構造体 15の裏面電極部 17の各々が導電部 36上 に位置するよう配置されている。図示の例では、シート状プローブ 10における支持膜 11に形成された位置決め孔(図示省略)並びに異方導電性コネクター 30におけるフ レーム板 31に形成された位置決め孔(図示省略)の各々に、ガイドピン 2が挿通され 、この状態で、シート状プローブ 10および異方導電性コネクター 30が互いに固定さ れている。  Then, the anisotropic conductive connector 30 is arranged on the surface of the inspection circuit board 20 such that each of the conductive portions 36 is located on the inspection electrode 21, and the sheet probe 10 is connected to the anisotropic conductive connector 30. On the front surface, each of the back electrode portions 17 of the electrode structure 15 is arranged so as to be located on the conductive portion 36. In the illustrated example, guide holes are formed in positioning holes (not shown) formed in the support film 11 of the sheet-like probe 10 and positioning holes (not shown) formed in the frame plate 31 of the anisotropic conductive connector 30. The pin 2 is inserted, and in this state, the sheet probe 10 and the anisotropic conductive connector 30 are fixed to each other.
検査用回路基板 20を構成する基板材料としては、従来公知の種々の基板材料を 用いることができ、その具体例としては、ガラス繊維補強型エポキシ榭脂、ガラス繊維 補強型フエノール榭脂、ガラス繊維補強型ポリイミド榭脂、ガラス繊維補強型ビスマレ イミドトリアジン榭脂等の複合榭脂材料、ガラス、二酸化珪素、アルミナ等のセラミック ス材料などが挙げられる。  Various conventionally known substrate materials can be used as the substrate material constituting the inspection circuit board 20, and specific examples thereof include glass fiber reinforced epoxy resin, glass fiber reinforced phenol resin, glass fiber Examples include composite resin materials such as reinforced polyimide resin and glass fiber reinforced bismaleimide triazine resin, and ceramic materials such as glass, silicon dioxide, and alumina.
また、 WLBI試験を行うための検査装置を構成する場合には、線熱膨張係数が 3 X 10— 5Ζκ以下のものを用いることが好ましぐより好ましくは 1 X 10— 7〜1 X 10" VK, 特に好ましくは 1 X 10— b〜6 X 10— 6Ζκである。 Further, when configuring an inspection apparatus for performing the WLBI test, more preferably it is preferred instrument linear thermal expansion coefficient used the following 3 X 10- 5 Ζκ 1 X 10- 7 ~1 X 10 "VK, Particularly preferably 1 X 10- b ~6 X 10- 6 Ζκ.
このような基板材料の具体例としては、パイレックス (登録商標)ガラス、石英ガラス、 アルミナ、ベリリア、炭化ケィ素、窒化アルミニウム、窒化ホウ素などが挙げられる。  Specific examples of such a substrate material include Pyrex (registered trademark) glass, quartz glass, alumina, beryllia, silicon carbide, aluminum nitride, and boron nitride.
[0070] 異方導電性コネクター 30におけるフレーム板 31を構成する材料としては、当該フレ ーム板 31が容易に変形せず、その形状が安定に維持される程度の剛性を有するも のであれば特に限定されず、例えば、金属材料、セラミックス材料、榭脂材料などの 種々の材料を用いることができ、フレーム板 31を例えば金属材料により構成する場 合には、当該フレーム板 31の表面に絶縁性被膜が形成されていてもよい。 [0070] As a material forming the frame plate 31 in the anisotropic conductive connector 30, if the frame plate 31 does not easily deform and has a rigidity enough to maintain its shape stably. There is no particular limitation. For example, various materials such as a metal material, a ceramic material, and a resin material can be used. When the frame plate 31 is made of, for example, a metal material, the surface of the frame plate 31 is insulated. A functional coating may be formed.
フレーム板 31を構成する金属材料の具体例としては、鉄、銅、ニッケル、クロム、コ ノルト、マグネシウム、マンガン、モリブデン、インジウム、鉛、パラジウム、チタン、タン ダステン、アルミニウム、金、白金、銀などの金属またはこれらを 2種以上組み合わせ た合金若しくは合金鋼などが挙げられる。  Specific examples of the metal material forming the frame plate 31 include iron, copper, nickel, chromium, cobalt, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tungsten, aluminum, gold, platinum, silver, and the like. Metal or an alloy or alloy steel obtained by combining two or more of these metals.
フレーム板 31を構成する榭脂材料の具体例としては、液晶ポリマー、ポリイミド榭脂 などが挙げられる。  Specific examples of the resin material forming the frame plate 31 include a liquid crystal polymer and a polyimide resin.
また、この検査装置が WLBI (Wafer Lebel Burn— in)試験を行うためのもので ある場合には、フレーム板 31を構成する材料としては、線熱膨張係数が 3 X 10— 5ZK 以下のものを用いることが好ましぐより好ましくは一 1 X ιο—7〜ι X IO K,特に好 ましくは 1 X 10— 6〜8 X 10— 6Ζκである。 Further, when the inspection device is for performing WLBI (Wafer Lebel Burn- in) test, the material for forming the frame plate 31, a coefficient of linear thermal expansion 3 X 10- 5 ZK following ones more preferably it is preferred instrument using an 1 X ιο- 7 ~ι X IO K , particularly good Mashiku 1 X 10- 6 ~8 X 10- 6 Ζκ.
このような材料の具体例としては、インバーなどのインバー型合金、エリンバーなど のエリンバー型合金、スーパーインバー、コバール、 42ァロイなどの磁性金属の合金 または合金鋼などが挙げられる。  Specific examples of such a material include an invar-type alloy such as invar, an elinvar-type alloy such as elinvar, an alloy of magnetic metals such as Super Invar, Kovar, and 42 alloy or alloy steel.
フレーム板 31の厚みは、その形状が維持されると共に、異方導電性シート 35を支 持することが可能であれば、特に限定されるものではなぐ具体的な厚みは材質によ つて異なるが、例えば 25〜600 μ mであることが好ましぐより好ましくは 40〜400 μ mである。  The thickness of the frame plate 31 is not particularly limited as long as its shape is maintained and the anisotropic conductive sheet 35 can be supported. For example, it is preferably from 25 to 600 μm, more preferably from 40 to 400 μm.
[0071] 異方導電性コネクター 30における異方導電性シート 35の全厚(図示の例では導電 部 36における厚み)は、 50〜2000 111でぁることカ 子ましく、より好ましくは 70〜: L0 00 μ m、特に好ましくは 80〜500 μ mである。この厚みが 50 μ m以上であれば、当 該異方導電性シート 35には十分な強度が得られる。一方、この厚みが 2000 /z m以 下であれば、所要の導電性特性を有する導電部 36が確実に得られる。 [0071] The total thickness of the anisotropic conductive sheet 35 in the anisotropic conductive connector 30 (the thickness of the conductive portion 36 in the illustrated example) is preferably 50 to 2000111, and more preferably 70 to 2000. : L0 00 μm, particularly preferably 80-500 μm. When the thickness is 50 μm or more, the anisotropic conductive sheet 35 has sufficient strength. On the other hand, when the thickness is 2000 / zm or less, the conductive portion 36 having required conductive characteristics can be obtained without fail.
突出部 38の突出高さは、その合計が当該突出部 38における厚みの 10%以上で あることが好ましぐより好ましくは 15%以上である。このような突出高さを有する突出 部 38を形成することにより、小さい加圧力で導電部 36が十分に圧縮されるため、良 好な導電性が確実に得られる。  The total height of the protrusions 38 is preferably at least 10% of the thickness of the protrusion 38, more preferably at least 15%. By forming the protruding portion 38 having such a protruding height, the conductive portion 36 is sufficiently compressed with a small pressing force, so that good conductivity is reliably obtained.
また、突出部 38の突出高さは、当該突出部 38の最短幅または直径の 100%以下 であることが好ましぐより好ましくは 70%以下である。このような突出高さを有する突 出部 38を形成することにより、当該突出部 38が加圧されたときに座屈することがない ため、所期の導電性が確実に得られる。  The height of the projection 38 is preferably 100% or less of the shortest width or diameter of the projection 38, more preferably 70% or less. By forming the protruding portion 38 having such a protruding height, the protruding portion 38 does not buckle when pressed, so that the intended conductivity is reliably obtained.
[0072] 異方導電性シート 35を形成する弾性高分子物質としては、架橋構造を有する耐熱 性の高分子物質が好まし 、。力かる架橋高分子物質を得るために用いることができる 硬化性の高分子物質形成材料としては、種々のものを用いることができる力 液状シ リコーンゴムが好ましい。 As the elastic polymer material forming the anisotropic conductive sheet 35, a heat-resistant polymer material having a crosslinked structure is preferable. As the curable polymer substance forming material that can be used to obtain a strong crosslinked polymer substance, a liquid silicone rubber that can use various materials is preferable.
液状シリコーンゴムは、付加型のものであっても縮合型のものであってもよいが、付 加型液状シリコーンゴムが好ましい。この付加型液状シリコーンゴムは、ビュル基と Si H結合との反応によって硬化するものであって、ビニル基および Si— H結合の両 方を含有するポリシロキサンからなる一液型(一成分型)のものと、ビュル基を含有す るポリシロキサンおよび Si— H結合を含有するポリシロキサン力もなる二液型(二成分 型)のものがあるが、本発明においては、二液型の付加型液状シリコーンゴムを用い ることが好ましい。  The liquid silicone rubber may be an addition type or a condensation type, but an addition type liquid silicone rubber is preferable. This addition-type liquid silicone rubber is cured by a reaction between a bullet group and a SiH bond, and is a one-pack type (one-component type) made of a polysiloxane containing both a vinyl group and a Si—H bond. And a two-component type (two-component type), which also has a polysiloxane containing a butyl group and a polysiloxane containing a Si—H bond. In the present invention, the two-component addition type liquid is used. It is preferable to use silicone rubber.
[0073] 異方導電性シート 35を液状シリコーンゴムの硬化物(以下、「シリコーンゴム硬化物 」という。)によって形成する場合において、当該シリコーンゴム硬化物は、その 150°C における圧縮永久歪みが 10%以下であることが好ましぐより好ましくは 8%以下、さ らに好ましくは 6%以下である。この圧縮永久歪みが 10%を超える場合には、得られ る異方導電性コネクターを多数回にわたって繰り返し使用したとき或いは高温環境 下において繰り返し使用したときには、導電部 36に永久歪みが発生しやすぐこれに より、導電部 36における導電性粒子 Pの連鎖に乱れが生じる結果、所要の導電性を 維持することが困難となる。 When the anisotropic conductive sheet 35 is formed from a cured product of liquid silicone rubber (hereinafter, referred to as “cured silicone rubber”), the cured silicone rubber has a compression set at 150 ° C. The content is preferably 10% or less, more preferably 8% or less, and even more preferably 6% or less. If the compression set exceeds 10%, the conductive part 36 may be subject to permanent set when the obtained anisotropic conductive connector is used repeatedly many times or in a high temperature environment. to this As a result, the chain of the conductive particles P in the conductive portion 36 is disturbed, so that it becomes difficult to maintain the required conductivity.
ここで、シリコーンゴム硬化物の圧縮永久歪みは、 JIS K 6249に準拠した方法に よって柳』定することができる。  Here, the compression set of the cured silicone rubber can be determined by a method based on JIS K 6249.
[0074] また、シリコーンゴム硬化物は、その 23°Cにおけるデュロメーター A硬度が 10〜60 のものであることが好ましぐさらに好ましくは 15〜55、特に好ましくは 20〜50のもの である。 [0074] The cured silicone rubber preferably has a durometer A hardness of 10 to 60 at 23 ° C, more preferably 15 to 55, and particularly preferably 20 to 50.
このデュロメーター A硬度が 10未満である場合には、加圧されたときに、導電部 36 を相互に絶縁する絶縁部 37が過度に歪みやすぐ導電部 36間の所要の絶縁性を 維持することが困難となることがある。一方、このデュロメーター A硬度が 60を超える 場合には、導電部 36に適正な歪みを与えるために相当に大きい荷重による加圧力 が必要となるため、被検査回路装置であるウェハに大きな変形や破壊が生じやすく なる。  If the durometer A hardness is less than 10, the insulation 37, which insulates the conductive parts 36 from each other when pressurized, is excessively distorted and immediately maintains the required insulation between the conductive parts 36. Can be difficult. On the other hand, if the durometer A hardness exceeds 60, a considerably large load is required to apply an appropriate strain to the conductive portion 36, and thus the wafer as the circuit device to be inspected may be greatly deformed or broken. Is more likely to occur.
また、シリコーンゴム硬化物として、デュロメーター A硬度が上記の範囲外のものを 用いる場合には、得られる異方導電性コネクターを多数回にわたって繰り返し使用し たときには、導電部 36に永久歪みが発生しやすぐこれにより、導電部 36における導 電性粒子の連鎖に乱れが生じる結果、所要の導電性を維持することが困難となる。  When a silicone rubber cured product having a durometer A hardness outside the above range is used, permanent deformation occurs in the conductive portion 36 when the obtained anisotropic conductive connector is used repeatedly many times. As soon as this occurs, the chain of conductive particles in the conductive portion 36 is disturbed, and it becomes difficult to maintain the required conductivity.
[0075] また、 WLBI試験を行うための検査装置を構成する場合には、異方導電性シート 3 5を形成するシリコーンゴム硬化物は、その 23°Cにおけるデュロメーター A硬度が 25 〜40のものであることが好まし!/、。 When configuring an inspection apparatus for performing a WLBI test, the cured silicone rubber forming the anisotropic conductive sheet 35 has a durometer A hardness at 23 ° C. of 25 to 40. Is preferred! / ,.
シリコーンゴム硬化物として、デュロメーター A硬度が上記の範囲外のものを用いる 場合には、 WLBI試験を繰り返し行ったときに、導電部 36に永久歪みが発生しやす ぐこれにより、導電部 36における導電性粒子の連鎖に乱れが生じる結果、所要の 導電性を維持することが困難となる。  When a silicone rubber cured product having a durometer A hardness outside the above range is used, permanent set is easily generated in the conductive portion 36 when the WLBI test is repeatedly performed. As a result of the disorder in the chain of the conductive particles, it is difficult to maintain the required conductivity.
ここで、シリコーンゴム硬化物のデュロメーター A硬度は、 JIS K 6249に準拠した 方法によって測定することができる。  Here, the durometer A hardness of the cured silicone rubber can be measured by a method based on JIS K 6249.
[0076] また、シリコーンゴム硬化物は、その 23°Cにおける引き裂き強度が 8kNZm以上の ものであることが好ましぐさらに好ましくは lOkNZm以上、より好ましくは 15kNZm 以上、特に好ましくは 20kNZm以上のものである。この引き裂き強度が 8kNZm未 満である場合には、異方導電性シート 35に過度の歪みが与えられたときに、耐久性 の低下を起こしやすい。 The cured silicone rubber preferably has a tear strength at 23 ° C. of 8 kNZm or more, more preferably 10 kNZm or more, and even more preferably 15 kNZm or more. Above, particularly preferably 20 kNZm or more. If the tear strength is less than 8 kNZm, the durability tends to decrease when the anisotropic conductive sheet 35 is subjected to excessive strain.
ここで、シリコーンゴム硬化物の引き裂き強度は、 JIS K 6249に準拠した方法に よって柳』定することができる。  Here, the tear strength of the cured silicone rubber can be determined by a method based on JIS K 6249.
[0077] 本発明においては、付加型液状シリコーンゴムを硬化させるために適宜の硬化触 媒を用いることができる。このような硬化触媒としては、白金系のものを用いることがで き、その具体例としては、塩化白金酸およびその塩、白金—不飽和基含有シロキサ ンコンプレックス、ビュルシロキサンと白金とのコンプレックス、白金と 1, 3—ジビュル テトラメチルジシロキサンとのコンプレックス、トリオルガノホスフィンある 、はホスフアイ トと白金とのコンプレックス、ァセチルアセテート白金キレート、環状ジェンと白金との コンプレックスなどの公知のものが挙げられる。 [0077] In the present invention, an appropriate curing catalyst can be used to cure the addition-type liquid silicone rubber. As such a curing catalyst, a platinum-based curing catalyst can be used, and specific examples thereof include chloroplatinic acid and a salt thereof, a platinum-unsaturated group-containing siloxane complex, a complex of bulletsiloxane and platinum, Known complexes such as a complex of platinum with 1,3-dibutyltetramethyldisiloxane, triorganophosphine, a complex of phosphite and platinum, an acetyl acetate platinum chelate, a complex of cyclic gen and platinum, etc. .
硬化触媒の使用量は、硬化触媒の種類、その他の硬化処理条件を考慮して適宜 選択されるが、通常、付加型液状シリコーンゴム 100重量部に対して 3〜15重量部 である。  The amount of the curing catalyst to be used is appropriately selected in consideration of the type of the curing catalyst and other curing conditions, but is usually 3 to 15 parts by weight based on 100 parts by weight of the addition type liquid silicone rubber.
また、付加型液状シリコーンゴム中には、付加型液状シリコーンゴムのチクソトロピ 一性の向上、粘度調整、導電性粒子の分散安定性の向上、或いは高い強度を有す る基材を得ることなどを目的として、必要に応じて、通常のシリカ粉、コロイダルシリカ 、エア口ゲルシリカ、アルミナなどの無機充填材を含有させることができる。  In addition, the addition-type liquid silicone rubber is required to improve the thixotropy of the addition-type liquid silicone rubber, adjust the viscosity, improve the dispersion stability of the conductive particles, or obtain a base material having high strength. For the purpose, an inorganic filler such as ordinary silica powder, colloidal silica, air-port gel silica, alumina or the like can be contained as necessary.
[0078] 導電部 36に含有される導電性粒子 Pとしては、磁性を示す芯粒子 (以下、「磁性芯 粒子」とも 、う。)の表面に高導電性金属が被覆されてなるものを用いることが好まし い。 ここで、「高導電性金属」とは、 0°Cにおける導電率が 5 X 106 Ω— 1以上のも のをいう。 [0078] As conductive particles P contained in conductive portion 36, particles obtained by coating the surface of core particles exhibiting magnetism (hereinafter, also referred to as "magnetic core particles") with a highly conductive metal are used. Is preferred. Here, the “highly conductive metal” refers to a metal having a conductivity at 0 ° C. of 5 × 10 6 Ω− 1 or more.
[0079] 導電性粒子 Pを得るための磁性芯粒子は、その数平均粒子径が 3〜40 μ mのもの であることが好ましい。  [0079] The magnetic core particles for obtaining the conductive particles P preferably have a number average particle diameter of 3 to 40 µm.
ここで、磁性芯粒子の数平均粒子径は、レーザー回折散乱法によって測定された ものをいう。  Here, the number average particle diameter of the magnetic core particles refers to a value measured by a laser diffraction scattering method.
上記数平均粒子径が 3 μ m以上であれば、加圧変形が容易で、抵抗値が低くて接 続信頼性の高い導電部 36が得られやすい。一方、上記数平均粒子径が 40 m以 下であれば、微細な導電部 36を容易に形成することができ、また、得られる導電部 3 6は、安定な導電性を有するものとなりやすい。 When the number average particle diameter is 3 μm or more, deformation under pressure is easy, and the resistance It is easy to obtain conductive parts 36 with high reliability. On the other hand, if the number average particle diameter is 40 m or less, the fine conductive portion 36 can be easily formed, and the obtained conductive portion 36 tends to have stable conductivity.
また、磁性芯粒子は、その BET比表面積が 10〜500m2 Zkgであることが好ましく 、より好ましくは 20〜500m2 Zkg、特に好ましくは 50〜400m2 Zkgである。 Further, the magnetic core particles preferably have a BET specific surface area of 10 to 500 m 2 ZKG, more preferably 20 to 500 m 2 ZKG, particularly preferably 50 to 400 m 2 ZKG.
この BET比表面積が 10m2 /kg以上であれば、当該磁性芯粒子はメツキ可能な領 域が十分に大きいものであるため、当該磁性芯粒子に所要の量のメツキを確実に行 うことができ、従って、導電性の大きい導電性粒子 Pを得ることができると共に、当該 導電性粒子 P間において、接触面積が十分に大きいため、安定で高い導電性が得ら れる。一方、この BET比表面積が 500m2 Zkg以下であれば、当該磁性芯粒子が脆 弱なものとならず、物理的な応力が加わった際に破壊することが少なぐ安定で高い 導電性が保持される。 If the BET specific surface area is 10 m 2 / kg or more, the magnetic core particles have a sufficiently large area in which plating can be performed, so that a required amount of plating can be reliably performed on the magnetic core particles. Therefore, the conductive particles P having high conductivity can be obtained, and the contact area between the conductive particles P is sufficiently large, so that stable and high conductivity can be obtained. On the other hand, if the BET specific surface area is 500 m 2 Zkg or less, the magnetic core particles do not become brittle, and maintain high stability and high conductivity with little breakage when a physical stress is applied. Is done.
また、磁性芯粒子は、その粒子径の変動係数が 50%以下のものであることが好ま しぐより好ましくは 40%以下、更に好ましくは 30%以下、特に好ましくは 20%以下 のものである。  The magnetic core particles preferably have a particle diameter variation coefficient of 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. .
ここで、粒子径の変動係数は、式:( σ ZDn) X 100 (但し、 σは、粒子径の標準偏 差の値を示し、 Dnは、粒子の数平均粒子径を示す。)によって求められるものである 上記粒子径の変動係数が 50%以下であれば、粒子径の均一性が大きいため、導 電性のバラツキの小さい導電部 36を形成することかできる。  Here, the coefficient of variation of the particle diameter is determined by the formula: (σZDn) × 100 (where σ indicates the value of the standard deviation of the particle diameter, and Dn indicates the number average particle diameter of the particles). When the variation coefficient of the particle diameter is 50% or less, the uniformity of the particle diameter is large, and thus the conductive portion 36 with small variation in conductivity can be formed.
磁性芯粒子を構成する材料としては、鉄、ニッケル、コバルト、これらの金属を銅、 榭脂によってコーティングしたものなどを用いことができる力 その飽和磁ィ匕が 0. 1W b/m2以上のものを好ましく用いることができ、より好ましくは 0. 3Wb/m2以上、特 に好ましくは 0. 5WbZm2以上のものであり、具体的には、鉄、ニッケル、コバルトま たはそれらの合金などが挙げられる。 As a material constituting the magnetic core particles, iron, nickel, cobalt, or a material obtained by coating these metals with copper or resin can be used. The saturation magnetic force is 0.1 W b / m 2 or more. And more preferably 0.3 Wb / m 2 or more, particularly preferably 0.5 WbZm 2 or more, and specifically, iron, nickel, cobalt, or an alloy thereof. Is mentioned.
磁性芯粒子の表面に被覆される高導電性金属としては、金、銀、ロジウム、白金、ク ロムなどを用いることができ、これらの中では、化学的に安定でかつ高い導電率を有 する点で金を用いるが好ま 、。 [0081] 導電性粒子 Pは、芯粒子に対する高導電性金属の割合〔 (高導電性金属の質量 Z 芯粒子の質量) X 100〕が 15質量%以上とされ、好ましくは 25〜35質量%とされる。 高導電性金属の割合が 15質量%未満である場合には、得られる異方導電性コネ クタ一を高温環境下に繰り返し使用したとき、当該導電性粒子 Pの導電性が著しく低 下する結果、所要の導電性を維持することができない。 Gold, silver, rhodium, platinum, chromium, etc. can be used as the highly conductive metal coated on the surface of the magnetic core particles, and among these, they are chemically stable and have high conductivity. It is preferable to use gold for the point. [0081] In the conductive particles P, the ratio of the highly conductive metal to the core particles [(mass of the highly conductive metal Z mass of the core particles) X 100] is 15% by mass or more, and preferably 25 to 35% by mass. It is said. When the proportion of the highly conductive metal is less than 15% by mass, when the obtained anisotropically conductive connector is repeatedly used in a high temperature environment, the conductivity of the conductive particles P is significantly reduced. , The required conductivity cannot be maintained.
また、導電性粒子 Pは、その BET比表面積が 10〜500m2 Zkgであることが好まし い。 The conductive particles P preferably have a BET specific surface area of 10 to 500 m 2 Zkg.
この BET比表面積が 10m2 /kg以上であれば、被覆層の表面積が十分に大きい ものであるため、高導電性金属の総重量が大きい被覆層を形成することができ、従つ て、導電性の大きいを粒子を得ることができると共に、当該導電性粒子 P間において 、接触面積が十分に大きいため、安定で高い導電性が得られる。一方、この BET比 表面積が 500m2 Zkg以下であれば、当該導電性粒子が脆弱なものとならず、物理 的な応力が加わった際に破壊することが少なぐ安定で高い導電性が保持される。 また、導電性粒子 Pの数平均粒子径は、 3〜40 /ζ πιであることが好ましぐより好ま しくは 6〜25 πιである。 When the BET specific surface area is 10 m 2 / kg or more, the surface area of the coating layer is sufficiently large, so that the coating layer having a high total weight of the highly conductive metal can be formed. Particles having high properties can be obtained, and the contact area between the conductive particles P is sufficiently large, so that stable and high conductivity can be obtained. On the other hand, if the BET specific surface area is 500 m 2 Zkg or less, the conductive particles do not become brittle, and stable and high conductivity is maintained with little breakage when a physical stress is applied. You. Further, the number average particle diameter of the conductive particles P is preferably 3 to 40 / ιπι, more preferably 6 to 25πι.
このような導電性粒子 Ρを用いることにより、得られる異方導電性シート 35は、加圧 変形が容易なものとなり、また、導電部 36において導電性粒子 Ρ間に十分な電気的 接触が得られる。  By using such conductive particles, the anisotropic conductive sheet 35 obtained can be easily deformed under pressure, and sufficient electric contact can be obtained between the conductive particles in the conductive portion 36. Can be
また、導電性粒子 Ρの形状は、特に限定されるものではないが、高分子物質形成材 料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれ らが凝集した 2次粒子による塊状のものであることが好ましい。  The shape of the conductive particles is not particularly limited. However, since they can be easily dispersed in the polymer-forming material, they are spherical, star-shaped, or aggregated. It is preferable that the particles are in a lump formed by the secondary particles.
[0082] 導電性粒子 Ρの含水率は、 5質量%以下であることが好ましぐより好ましくは 3質量 %以下、さらに好ましくは 2質量%以下、特に好ましくは 1質量%以下である。このよう な条件を満足することにより、異方導電性シート 35の形成において、硬化処理する 際に気泡が生ずることが防止または抑制される。 [0082] The water content of the conductive particles is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 2% by mass or less, and particularly preferably 1% by mass or less. By satisfying these conditions, the formation of bubbles during the curing treatment in the formation of the anisotropic conductive sheet 35 is prevented or suppressed.
また、導電性粒子 Ρは、その表面がシランカップリング剤などのカップリング剤で処 理されたものあってもよ 、。導電性粒子 Ρの表面がカップリング剤で処理されることに より、当該導電性粒子 Ρと弾性高分子物質との接着性が高くなり、その結果、得られ る異方導電性シート 35は、繰り返しの使用における耐久性が高いものとなる。 Further, the conductive particles may be those whose surfaces have been treated with a coupling agent such as a silane coupling agent. When the surface of the conductive particles Ρ is treated with the coupling agent, the adhesion between the conductive particles Ρ and the elastic polymer substance is increased, and as a result, the obtained conductive particles are obtained. The anisotropic conductive sheet 35 has high durability in repeated use.
カップリング剤の使用量は、導電性粒子 Pの導電性に影響を与えな 、範囲で適宜 選択されるが、導電性粒子 Pの表面におけるカップリング剤の被覆割合 (導電性粒子 の表面積に対するカップリング剤の被覆面積の割合)が 5%以上となる量であること が好ましぐより好ましくは上記被覆率が 7〜: LOO%、さらに好ましくは 10〜: LOO%、 特に好ましくは 20〜100%となる量である。  The amount of the coupling agent to be used is appropriately selected within a range that does not affect the conductivity of the conductive particles P, but the coating ratio of the coupling agent on the surface of the conductive particles P (coupling relative to the surface area of the conductive particles P). More preferably, the coverage is 7 to: LOO%, more preferably 10 to: LOO%, particularly preferably 20 to 100. %.
[0083] このような導電性粒子 Pは、例えば以下の方法によって得ることができる。 [0083] Such conductive particles P can be obtained, for example, by the following method.
先ず、強磁性体材料を常法により粒子化し或いは市販の強磁性体粒子を用意し、 この粒子に対して分級処理を行うことにより、所要の粒子径を有する磁性芯粒子を調 製する。  First, a ferromagnetic material is formed into particles by a conventional method, or commercially available ferromagnetic particles are prepared, and the particles are subjected to a classification process to prepare magnetic core particles having a required particle diameter.
ここで、粒子の分級処理は、例えば空気分級装置、音波ふるい装置などの分級装 置によって行うことができる。  Here, the classification process of the particles can be performed by a classification device such as an air classification device and a sonic sieve device.
また、分級処理の具体的な条件は、目的とする磁性芯粒子の数平均粒子径、分級 装置の種類などに応じて適宜設定される。  The specific conditions of the classification process are appropriately set according to the number average particle diameter of the target magnetic core particles, the type of the classification device, and the like.
次いで、磁性芯粒子の表面を酸によって処理し、更に、例えば純水によって洗浄す ることにより、磁性芯粒子の表面に存在する汚れ、異物、酸化膜などの不純物を除去 し、その後、当該磁性芯粒子の表面に高導電性金属を被覆することによって、導電 性粒子が得られる。  Next, the surface of the magnetic core particles is treated with an acid, and further, for example, washed with pure water to remove impurities such as dirt, foreign matter, and oxide film present on the surface of the magnetic core particles. By coating the surface of the core particles with a highly conductive metal, conductive particles can be obtained.
ここで、磁性芯粒子の表面を処理するために用いられる酸としては、塩酸などを挙 げることができる。  Here, examples of the acid used for treating the surface of the magnetic core particles include hydrochloric acid.
高導電性金属を磁性芯粒子の表面に被覆する方法としては、無電解メツキ法、置 換メツキ法等を用いることができる力 これらの方法に限定されるものではない。  The method for coating the surface of the magnetic core particles with the highly conductive metal is not limited to these methods, and can be an electroless plating method or a replacement plating method.
[0084] 無電解メツキ法または置換メツキ法によって導電性粒子を製造する方法にっ 、て説 明すると、先ず、メツキ液中に、酸処理および洗浄処理された磁性芯粒子を添加して スラリーを調製し、このスラリーを攪拌しながら当該磁性芯粒子の無電解メツキまたは 置換メツキを行う。次いで、スラリー中の粒子をメツキ液力 分離し、その後、当該粒 子を例えば純水によって洗浄処理することにより、磁性芯粒子の表面に高導電性金 属が被覆されてなる導電性粒子が得られる。 また、磁性芯粒子の表面に下地メツキを行って下地メツキ層を形成した後、当該下 地メツキ層の表面に高導電性金属よりなるメツキ層を形成してもよ ヽ。下地メツキ層お よびその表面に形成されるメツキ層を形成する方法は、特に限定されないが、無電解 メツキ法により、磁性芯粒子の表面に下地メツキ層を形成し、その後、置換メツキ法に より、下地メツキ層の表面に高導電性金属よりなるメツキ層を形成することが好ましい 無電解メツキまたは置換メツキに用いられるメツキ液としては、特に限定されるもので はなぐ種々の巿販のものを用いることができる。 [0084] A method for producing conductive particles by an electroless plating method or a displacement plating method will be described. First, an acid-treated and washed magnetic core particle is added to a plating solution to form a slurry. The magnetic core particles are prepared and subjected to electroless plating or substitution plating while stirring the slurry. Next, the particles in the slurry are separated by hydraulic separation, and thereafter, the particles are washed with, for example, pure water to obtain conductive particles having the surface of the magnetic core particles coated with a highly conductive metal. Can be Alternatively, after a base plating is formed on the surface of the magnetic core particles to form a base plating layer, a plating layer made of a highly conductive metal may be formed on the surface of the lower plating layer. The method of forming the base plating layer and the plating layer formed on the surface thereof is not particularly limited, but the base plating layer is formed on the surface of the magnetic core particles by an electroless plating method, and thereafter, by the displacement plating method. It is preferable to form a plating layer made of a highly conductive metal on the surface of the base plating layer. The plating liquid used for the electroless plating or the replacement plating is not particularly limited, and various commercially available plating liquids can be used. Can be used.
[0085] また、磁性芯粒子の表面に高導電性金属を被覆する際に、粒子が凝集すること〖こ より、粒子径の大きい導電性粒子が発生することがあるため、必要に応じて、導電性 粒子の分級処理を行うことが好ましぐこれにより、所期の粒子径を有する導電性粒 子が確実に得られる。  [0085] In addition, when the surface of the magnetic core particles is coated with a highly conductive metal, the particles may aggregate, thereby generating conductive particles having a large particle diameter. It is preferable to perform the classification treatment of the conductive particles, whereby the conductive particles having the desired particle diameter can be reliably obtained.
導電性粒子の分級処理を行うための分級装置としては、前述の磁性芯粒子を調製 するための分級処理に用いられる分級装置として例示したものを挙げることができる  Examples of the classification device for performing the classification process on the conductive particles include those exemplified as the classification device used in the classification process for preparing the magnetic core particles described above.
[0086] 導電部 36における導電性粒子 Pの含有割合は、体積分率で 10〜60%、好ましく は 15〜50%となる割合で用いられることが好ましい。この割合が 10%未満の場合に は、十分に電気抵抗値の小さい導電部 36が得られないことがある。一方、この割合 が 60%を超える場合には、得られる導電部 36は脆弱なものとなりやすぐ導電部 36 として必要な弾性が得られな 、ことがある。 [0086] The content ratio of the conductive particles P in the conductive portion 36 is preferably 10 to 60% by volume, preferably 15 to 50%. If this ratio is less than 10%, the conductive portion 36 having a sufficiently low electric resistance may not be obtained. On the other hand, if this ratio exceeds 60%, the resulting conductive portion 36 may be fragile, and the elasticity required for the conductive portion 36 may not be obtained immediately.
[0087] 以上のような異方導電性コネクタ一は、例えば特開 2002— 324600号公報に記載 された方法によって製造することができる。  [0087] The anisotropic conductive connector as described above can be manufactured, for example, by the method described in JP-A-2002-324600.
[0088] 上記の検査装置においては、ウェハ載置台 4上に検査対象であるウェハ 6が載置 され、次いで、加圧板 3によってプローブカード 1が下方に加圧されることにより、その シート状プローブ 10の電極構造体 15における表面電極部 16の各々力 ウェハ 6の 被検査電極 7の各々に接触し、更に、当該表面電極部 16の各々によって、ウェハ 6 の被検査電極 7の各々が加圧される。この状態においては、異方導電性コネクター 3 0の異方導電性シート 35における導電部 36の各々は、検査用回路基板 20の検査 電極 21とシート状プローブ 10の電極構造体 15の裏面電極部 17とによって挟圧され て厚み方向に圧縮されており、これにより、当該導電部 36にはその厚み方向に導電 路が形成され、その結果、ウェハ 6の被検査電極 7と検査用回路基板 20の検査電極 21との電気的接続が達成される。その後、カロ熱器 5によって、ウェハ載置台 4および 加圧板 3を介してウェハ 6が所定の温度に加熱され、この状態で、当該ウェハ 6にお ける複数の集積回路の各々につ 、て所要の電気的検査が実行される。 In the above-described inspection apparatus, the wafer 6 to be inspected is mounted on the wafer mounting table 4, and then the probe card 1 is pressed downward by the pressing plate 3, so that the sheet probe The force of each of the surface electrode portions 16 in the electrode structure 15 of 10 comes into contact with each of the electrodes 7 to be inspected of the wafer 6, and each of the surface electrode portions 16 presses each of the electrodes 7 to be inspected of the wafer 6. Is done. In this state, each of the conductive portions 36 in the anisotropic conductive sheet 35 of the anisotropic conductive connector 30 The electrode 21 and the back surface electrode portion 17 of the electrode structure 15 of the sheet-shaped probe 10 are pressed and compressed in the thickness direction, whereby a conductive path is formed in the conductive portion 36 in the thickness direction. As a result, electrical connection between the electrode 7 to be inspected on the wafer 6 and the inspection electrode 21 on the circuit board 20 for inspection is achieved. Thereafter, the wafer 6 is heated to a predetermined temperature via the wafer mounting table 4 and the pressing plate 3 by the calo heater 5, and in this state, a required number of each of the plurality of integrated circuits on the wafer 6 is required. Is performed.
[0089] 上記のプローブカード 1によれば、以下の効果が奏される。 According to the above probe card 1, the following effects can be obtained.
(1)図 1に示すシート状プローブ 10を具えてなるため、小さいピッチで被検査電極 7 が形成されたウェハ 6に対しても安定な電気的接続状態を確実に達成することができ 、し力も、シート状プローブ 10における電極構造体 15が脱落することがないので、高 い耐久性が得られる。  (1) Since it has the sheet-like probe 10 shown in FIG. 1, a stable electrical connection state can be reliably achieved even with the wafer 6 on which the electrodes 7 to be inspected are formed at a small pitch. As for the force, the electrode structure 15 of the sheet-like probe 10 does not fall off, so that high durability can be obtained.
(2)シート状プローブ 10における接点膜 12全体が支持膜 11に支持されて 、るため 、温度変化による電極構造体 15と被検査電極 7との位置ずれを確実に防止すること ができる。  (2) Since the entire contact film 12 of the sheet-like probe 10 is supported by the support film 11, the displacement between the electrode structure 15 and the electrode 7 to be inspected due to a temperature change can be reliably prevented.
また、異方導電性コネクター 30におけるフレーム板 31の開口 32の各々は、検査対 象であるウェハ 6における全ての集積回路の被検査電極 7が形成された電極領域に 対応して形成されており、当該開口 32の各々に配置される異方導電性シート 30は 面積が小さいものでよぐ面積の異方導電性シート 30は、その面方向における熱膨 張の絶対量が少ないため、異方導電性シート 30の面方向における熱膨張がフレー ム板 31によって確実に規制される結果、温度変化による導電部 36と電極構造体 15 および検査電極 21との位置ずれを確実に防止することができる。  Also, each of the openings 32 of the frame plate 31 in the anisotropic conductive connector 30 is formed corresponding to the electrode region where the electrodes 7 to be inspected of all the integrated circuits in the wafer 6 to be inspected are formed. However, the anisotropic conductive sheet 30 disposed in each of the openings 32 has a small area, and the anisotropic conductive sheet 30 having a small area has a small absolute amount of thermal expansion in the surface direction. As a result, the thermal expansion in the plane direction of the conductive sheet 30 is reliably restricted by the frame plate 31, so that the displacement between the conductive portion 36, the electrode structure 15, and the inspection electrode 21 due to a temperature change can be reliably prevented. .
従って、検査対象であるウェハ 6が直径が 8インチ以上の大面積で被検査電極のピ ツチが極めて小さいものであっても、バーンイン試験において、ウェハに対する良好 な電気的接続状態を安定に維持することができる。  Therefore, even if the wafer 6 to be inspected has a large area of at least 8 inches in diameter and an extremely small pitch of the electrode to be inspected, a good electrical connection state to the wafer is stably maintained in the burn-in test. be able to.
[0090] そして、このようなプローブカード 1を有する検査装置によれば、小さいピッチで被 検査電極 7が形成されたウェハ 6に対しても安定な電気的接続状態を確実に達成す ることができ、し力も、プローブカード 1が高い耐久性を有するため、多数のウェハの 検査を行う場合でも、長期間にわたって信頼性の高い検査を実行することができ、更 に、ウェハ 6が、直径が 8インチ以上の大面積で被検査電極 7のピッチが極めて小さ いものであっても、バーンイン試験において、ウェハ 6に対する良好な電気的接続状 態を安定に維持することができ、ウェハ 6における複数の集積回路の各々について 所要の電気的検査を確実に実行することができる。 According to the inspection apparatus having such a probe card 1, it is possible to reliably achieve a stable electrical connection state even to the wafer 6 on which the electrodes 7 to be inspected are formed at a small pitch. Since the probe card 1 has high durability, even when testing a large number of wafers, a highly reliable test can be performed over a long period of time. In addition, even if the wafer 6 has a large area of at least 8 inches in diameter and the pitch of the electrodes 7 to be inspected is extremely small, it is necessary to stably maintain a good electrical connection state to the wafer 6 in the burn-in test. As a result, the required electrical inspection can be reliably performed for each of the plurality of integrated circuits on the wafer 6.
[0091] 本発明の回路装置の検査装置は、上記の例のウェハ検査装置に限定されず、以 下のように、種々の変更をカ卩えることが可能である。 [0091] The circuit device inspection device of the present invention is not limited to the wafer inspection device of the above example, and various changes can be made as follows.
(1)図 30および図 31に示すプローブカード 1は、ウェハ 6に形成された全ての集積 回路の被検査電極 7に対して一括して電気的接続を達成するものであるが、ウェハ 6 に形成された全ての集積回路の中から選択された複数の集積回路の被検査電極 7 に電気的に接続されるものであってもよい。選択される集積回路の数は、ウェハ 6の サイズ、ウェハ 6に形成された集積回路の数、各集積回路における被検査電極の数 などを考慮して適宜選択され、例えば 16個、 32個、 64個、 128個である。  (1) The probe card 1 shown in FIGS. 30 and 31 achieves the electrical connection to the electrodes 7 to be inspected of all the integrated circuits formed on the wafer 6 at one time. It may be electrically connected to the electrodes 7 to be inspected of a plurality of integrated circuits selected from all the formed integrated circuits. The number of integrated circuits to be selected is appropriately selected in consideration of the size of the wafer 6, the number of integrated circuits formed on the wafer 6, the number of electrodes to be inspected in each integrated circuit, and the like. 64 and 128.
このようなプローブカード 1を有する検査装置においては、ウェハ 6に形成された全 ての集積回路の中から選択された複数の集積回路の被検査電極 7に、プローブカー ド 1を電気的に接続して検査を行い、その後、他の集積回路の中から選択された複 数の集積回路の被検査電極 7に、プローブカード 1を電気的に接続して検査を行う 工程を繰り返すことにより、ウェハ 6に形成された全ての集積回路の電気的検査を行 うことができる。  In an inspection apparatus having such a probe card 1, the probe card 1 is electrically connected to the electrodes 7 to be inspected of a plurality of integrated circuits selected from all the integrated circuits formed on the wafer 6. After that, by repeating the process of electrically connecting the probe card 1 to the electrodes 7 to be inspected of a plurality of integrated circuits selected from other integrated circuits and performing the inspection, the wafer is inspected. Electrical inspection of all the integrated circuits formed in 6 can be performed.
そして、このような検査装置によれば、直径が 8インチまたは 12インチのウェハに高 V、集積度で形成された集積回路につ 、て電気的検査を行う場合にぉ 、て、全ての 集積回路につ!/、て一括して検査を行う方法と比較して、用いられる検査用回路基板 の検査電極数や配線数を少なくすることができ、これにより、検査装置の製造コストの 低減ィ匕を図ることができる。  According to such an inspection apparatus, when an electrical inspection is performed on an integrated circuit formed on a wafer having a diameter of 8 inches or 12 inches with a high V and a high degree of integration, all the integrated circuits are required. The number of test electrodes and the number of wirings on the test circuit board used can be reduced as compared with the method of testing all circuits at once, thereby reducing the manufacturing cost of the test equipment. A dagger can be planned.
[0092] (2)シート状プローブ 10においては、図 33に示すように、支持膜 13の周縁部にリン グ状の保持部材 40が設けられて 、てもよ 、。 (2) In the sheet probe 10, as shown in FIG. 33, a ring-shaped holding member 40 may be provided on the periphery of the support film 13.
このような保持部材 40を構成する材料としては、インバー、スーパーインバーなどの インバー型合金、エリンバーなどのエリンバー型合金、コバール、 42ァロイなどの低 熱膨張金属材料、またはアルミナ、炭化珪素、窒化珪素などのセラミックス材料など を用いることができる。 Examples of a material forming such a holding member 40 include an invar alloy such as invar and super invar, an elinvar alloy such as elinvar, a low thermal expansion metal material such as kovar and 42 alloy, or alumina, silicon carbide, and silicon nitride. Such as ceramic materials Can be used.
[0093] (3)異方導電性コネクター 30における異方導電性シート 35には、被検査電極 7のパ ターンに対応するパターンに従って形成された導電部 36の他に、被検査電極 7に電 気的に接続されな ヽ非接続用の導電部が形成されて ヽてもよ ヽ。  [0093] (3) The anisotropic conductive sheet 35 of the anisotropic conductive connector 30 has a conductive portion 36 formed according to a pattern corresponding to the pattern of the electrode 7 to be inspected, and also has an electrode for the electrode 7 to be inspected. The conductive portion for disconnection may not be formed.
(4)本発明の検査装置は、ウェハ検査装置に限定されるものではなぐ半導体チップ や、 BGA、 CSPなどのパッケージ LSI、 CMCなどの半導体集積回路装置などに形 成された回路の検査装置として構成することができる。  (4) The inspection device of the present invention is not limited to a wafer inspection device, but is used as an inspection device for circuits formed on semiconductor chips, package LSI such as BGA and CSP, and semiconductor integrated circuit devices such as CMC. Can be configured.
実施例  Example
[0094] 以下、本発明の具体的な実施例について説明する力 本発明はこれらの実施例に 限定されるものではない。  [0094] Hereinafter, specific examples of the present invention will be described. The present invention is not limited to these examples.
[0095] 〔試験用ウェハの作製〕  [Production of Test Wafer]
図 34に示すように、直径が 8インチのシリコン (線熱膨張係数 3. 3 X 10— 6ZK)製の ウェハ 6上に、それぞれ寸法が 8mm X 8mmの正方形の集積回路 Lを合計で 393個 形成した。ウェハ 6に形成された集積回路 Lの各々は、図 35に示すように、その中央 に被検査電極領域 Aを有し、この被検査電極領域 Aには、図 36に示すように、それ ぞれ縦方向(図 36において上下方向)の寸法が 200 μ mで横方向(図 36において 左右方向)の寸法が 50 μ mの矩形の 60個の被検査電極 7が 100 μ mのピッチで横 方向に一列に配列されている。このウェハ 6全体の被検査電極 7の総数は 23580個 であり、全ての被検査電極 7は互いに電気的に絶縁されている。以下、このウェハを「 試験用ウェハ Wl」という。 As shown in FIG. 34, a diameter of 8 inch silicon (coefficient of linear thermal expansion 3. 3 X 10- 6 ZK) made on the wafer 6, dimensions respectively in a total integrated circuits L square 8 mm X 8 mm 393 Individually formed. As shown in FIG. 35, each of the integrated circuits L formed on the wafer 6 has an electrode area A to be inspected at the center thereof, and the electrode area A to be inspected has, as shown in FIG. 60 rectangular electrodes 7 with a vertical dimension (vertical direction in Fig. 36) of 200 µm and a horizontal dimension (horizontal direction in Fig. 36) of 50 µm are arranged at a pitch of 100 µm. They are arranged in a line in the direction. The total number of the electrodes 7 to be inspected in the entire wafer 6 is 23580, and all the electrodes 7 to be inspected are electrically insulated from each other. Hereinafter, this wafer is referred to as “test wafer Wl”.
また、全ての被検査電極 (7)を互いに電気的に絶縁することに代えて、集積回路( L)における 60個の被検査電極のうち最も外側の被検査電極(7)から数えて 1個おき に 2個ずつを互 ヽに電気的に接続したこと以外は、上記試験用ウェハ W1と同様の 構成の 393個の集積回路 (L)をウェハ(6)上に形成した。以下、このウェハを「試験 用ウェハ W2」という。  Also, instead of electrically insulating all the electrodes to be inspected (7) from each other, one of the 60 electrodes to be inspected in the integrated circuit (L) is counted from the outermost electrode to be inspected (7). 393 integrated circuits (L) having the same configuration as the above-described test wafer W1 were formed on the wafer (6) except that every other two were electrically connected to each other. Hereinafter, this wafer is referred to as “test wafer W2”.
[0096] 〈実施例 1〉  [0096] <Example 1>
直径が 20cmで厚みが 17. 5 μ mのポリイミドシートの両面にそれぞれ直径が 20cm で厚みが 5 μ mの銅よりなる金属層が積層された積層ポリイミドシート(以下、「積層シ 一 A」という。)と、直径が 22cmで厚みが 10 mの 42ァロイよりなる金属層の一面 に直径が 20. 4cmで厚みが 12. 5 mのポリイミドシートが積層された積層ポリイミド シート(以下、「積層シート B」という。)とを用意した。次いで、積層シート Bにおけるポ リイミドシートの表面に、厚みが約 1 μ mの熱可塑性ポリイミドからなる接着層を形成し 、この接着層上に積層シート Aを配置すると共に、積層シート Bの金属層における周 縁部分の一面に、内径が 20. 4cmで外径が 22cmのポリエチレンテレフタレートより なる保護テープを配置し、この状態で熱圧着処理することにより、図 4に示す構成の 積層体 (10A)を作製した。 A laminated polyimide sheet with a 20 cm diameter and 5 μm thick metal layer made of copper on both sides of a 20 cm diameter and 17.5 μm thick polyimide sheet (hereinafter referred to as “laminated sheet”). One A ". ) And a laminated polyimide sheet in which a 20.4 cm diameter and 12.5 m thick polyimide sheet is laminated on one surface of a metal layer made of 42 alloy having a diameter of 22 cm and a thickness of 10 m (hereinafter referred to as “laminated sheet B”). "). Next, an adhesive layer made of a thermoplastic polyimide having a thickness of about 1 μm is formed on the surface of the polyimide sheet in the laminated sheet B, and the laminated sheet A is disposed on the adhesive layer and the metal layer of the laminated sheet B is formed. A protective tape made of polyethylene terephthalate having an inner diameter of 20.4 cm and an outer diameter of 22 cm is placed on one surface of the peripheral portion, and is subjected to thermocompression bonding in this state to form a laminate (10A) having the configuration shown in FIG. Produced.
得られた積層体(10A)は、厚みが 10 mの 42ァロイよりなる支持膜形成用層(11 A)の表面上に、厚みが 12. 5 μ mのポリイミドよりなる絶縁膜(13)、厚みが 5 μ mの 銅よりなる保持部形成用層(19A)、厚みが 17. 5 μ mのポリイミドよりなる電極部成形 用層(16B)および厚みが 5 μ mの銅よりなるメツキ電極用層(16A)がこの順で積層さ れ、更に支持膜形成用層(11A)の表面における周縁領域に保護テープ(11T)が積 層されてなるものである。  The obtained laminate (10A) has an insulating film (13) made of polyimide having a thickness of 12.5 μm on the surface of a supporting film forming layer (11 A) made of 42 alloy having a thickness of 10 m, 5 μm thick copper holding layer (19A), 17.5 μm thick polyimide electrode forming layer (16B) and 5 μm thick copper plating electrode The layer (16A) is laminated in this order, and the protective tape (11T) is further laminated on the peripheral region on the surface of the support film forming layer (11A).
[0097] 上記の積層体(10A)に対し、厚みが 25 μ mのドライフィルムレジストによって、メッ キ電極用層(16A)の表面全面にレジスト膜(14A)を形成すると共に、支持膜形成 用層(11A)の裏面全面に、試験用ウェハ W1に形成された被検査電極のパターン に対応するパターンに従って直径が 60 μ mの円形の 23580個のパターン孔(K1) が形成されたレジスト膜(14B)を形成した(図 5参照)。ここで、レジスト膜(14B)の形 成において、露光処理は、高圧水銀灯によって 80mJの紫外線を照射することにより 行い、現像処理は、 1%水酸ィ匕ナトリウム水溶液よりなる現像剤に 40秒間浸漬する操 作を 2回繰り返すことによって行った。  [0097] A resist film (14A) is formed on the entire surface of the layer for a metal electrode (16A) with a dry film resist having a thickness of 25 µm on the laminate (10A), and a support film is formed. On the entire back surface of the layer (11A), there is formed a resist film (23580) having a circular pattern hole (K1) having a diameter of 60 μm according to the pattern corresponding to the pattern of the electrode to be inspected formed on the test wafer W1 (231). 14B) (see FIG. 5). Here, in the formation of the resist film (14B), the exposure treatment is performed by irradiating 80 mJ of ultraviolet light with a high-pressure mercury lamp, and the development treatment is immersed in a developer consisting of a 1% aqueous sodium hydroxide solution for 40 seconds. The operation was repeated twice.
[0098] 次いで、支持膜形成用層(11A)に対し、塩化第二鉄系エッチング液を用い、 50°C 、 30秒間の条件でエッチング処理を施すことにより、支持膜形成用層(11A)に、そ れぞれレジスト膜(14B)のパターン孔 (K1)に連通する 23580個の貫通孔(17H)を 形成した(図 6参照)。その後、絶縁膜(13)に対し、アミン系ポリイミドエッチング液( 東レエンジニアリング株式会社製、「TPE— 3000」)を用い、 80°C、 10分間の条件 でエッチング処理を施すことにより、絶縁膜(13)に、それぞれ支持膜形成用層(11A )の貫通孔(17H)に連通する 23580個の貫通孔(13H)を形成した(図 7参照)。こ の貫通孔(13H)の各々は,絶縁膜(13)の裏面力 表面に向力うに従って小径とな るテーパ状のものであって、裏面側の開口径が 60 m、表面側の開口径力 7 m のものであった。 Next, the support film forming layer (11A) is subjected to an etching treatment at 50 ° C. for 30 seconds using a ferric chloride-based etchant to form the support film forming layer (11A). Then, 23580 through holes (17H) communicating with the pattern holes (K1) of the resist film (14B) were formed (see FIG. 6). Thereafter, the insulating film (13) is etched using an amine-based polyimide etchant (“TPE-3000”, manufactured by Toray Engineering Co., Ltd.) at 80 ° C. for 10 minutes to obtain an insulating film (13). 13) has a supporting film forming layer (11A 23580 through-holes (13H) communicating with the through-holes (17H) were formed (see FIG. 7). Each of the through holes (13H) has a tapered shape that becomes smaller in diameter toward the rear surface of the insulating film (13). The caliber was 7 m.
その後、保持部形成用層(19A)に対し、塩ィ匕第二鉄系エッチング液を用い、 50°C 、 30秒間の条件でエッチング処理を施すことにより、保持部形成用層(19A)に、そ れぞれ絶縁膜( 13)の貫通孔( 13H)に連通する 23580個の貫通孔( 19H)を形成し た(図 8参照)。更に、電極部成形用層(16B)に対し、アミン系ポリイミドエッチング液 (東レエンジニアリング株式会社製、「TPE— 3000」)を用い、 80°C、 10分間の条件 でエッチング処理を施すことにより、電極部成形用層(16B)に、それぞれ保持部形 成用層( 19 A)の貫通孔( 19H)に連通する 23580個の貫通孔( 16H)を形成した( 図 9参照)。この貫通孔(16H)の各々は,電極部成形用層(16B)の裏面力も表面に 向力うに従って小径となるテーパ状のものであって、裏面側の開口径が 47 m、表 面側の開口径が 18 μ mのものであった。  Thereafter, the holding portion forming layer (19A) is subjected to an etching treatment at 50 ° C. for 30 seconds using a ferric chloride-based etching solution to form the holding portion forming layer (19A). In each case, 23580 through holes (19H) communicating with the through holes (13H) of the insulating film (13) were formed (see FIG. 8). Furthermore, the electrode forming layer (16B) is etched at 80 ° C for 10 minutes using an amine-based polyimide etchant (“TPE-3000” manufactured by Toray Engineering Co., Ltd.). 23580 through holes (16H) communicating with the through holes (19H) of the holding portion forming layer (19A) were formed in the electrode portion forming layer (16B) (see FIG. 9). Each of the through holes (16H) is tapered so that the back surface force of the electrode forming layer (16B) becomes smaller as it goes to the front surface. Had an opening diameter of 18 μm.
このようにして、積層体(10A)の裏面に、それぞれ支持膜形成用層(11A)の貫通 孔( 17H)、絶縁膜( 13)の貫通孔( 13H)、保持部形成用層( 19A)の貫通孔( 19H) および電極部成形用層(16B)の貫通孔(16H)が連通されてなる 23580個の電極 構造体形成用凹所( 10K)を形成した。  In this manner, the through holes (17H) of the support film forming layer (11A), the through holes (13H) of the insulating film (13), and the holding portion forming layer (19A) are formed on the back surface of the laminate (10A). 23580 electrode structure forming recesses (10K) were formed by communicating the through holes (19H) of the electrodes and the through holes (16H) of the electrode portion forming layer (16B).
次 、で、電極構造体形成用凹所(10K)が形成された積層体(10A)を、 45°Cの水 酸ィ匕ナトリウム溶液に 2分間浸漬させることにより、当該積層体(10A)からレジスト膜( 14A, 14B)を除去し、その後、積層体(10A)に対し、厚みが 25 μ mのドライフィル ムレジストによって、メツキ電極用層(16A)の表面全面を覆うよう、レジスト膜(14C) を形成すると共に、支持膜形成用層(11A)の裏面に、当該支持膜形成用層(11A) の貫通孔(17H)に連通する寸法が 150 mX mの矩形の 23580個のパター ン孔 (K2)が形成されたレジスト膜(14D)を形成した(図 10参照)。ここで、レジスト膜 (14D)の形成において、露光処理は、高圧水銀灯によって 80mJの紫外線を照射す ることにより行い、現像処理は、 1%水酸ィ匕ナトリウム水溶液よりなる現像剤に 40秒間 浸漬する操作を 2回繰り返すことによって行った。 次いで、積層体(10A)をスルファミン酸ニッケルを含有するメツキ浴中に浸漬し、当 該積層体(10A)に対し、メツキ電極用層(16A)を電極として、電解メツキ処理を施し て各電極構造体形成用凹所( 10K)およびレジスト膜( 14D)の各パターン孔 (K2)内 に金属を充填することにより、表面電極部(16)、短絡部(18)および支持膜形成用 層( 11 A)によって互 、に連結された裏面電極部( 17)を形成した (図 11参照)。 次いで、積層体(10A)に形成されたレジスト膜(14C)の表面全面を、厚みが 25 mのポリエチレンテレフタレートよりなる保護シールによって覆い、当該積層体(10A) を、 45°Cの水酸ィ匕ナトリウム溶液に 2分間浸漬させることにより、当該積層体(10A) 力もレジスト膜(14D)を除去した(図 12参照)。その後、厚みが 25 mのドライフィル ムレジストによって、支持膜形成用層(11A)における支持膜となる部分および裏面 電極部(17)を覆うよう、パターユングされたエッチング用のレジスト膜(14E)を形成し た(図 13参照)。ここで、レジスト膜(14B)の形成において、露光処理は、高圧水銀 灯によって 80mJの紫外線を照射することにより行い、現像処理は、 1%水酸化ナトリ ゥム水溶液よりなる現像剤に 40秒間浸漬する操作を 2回繰り返すことによって行った 次いで、積層体(10A)に形成されたレジスト膜(14C)カゝら保護シールを除去し、そ の後、レジスト膜(14E)および支持膜形成用層(11A)における露出した部分を、厚 みが 25 mのポリエチレンテレフタレートよりなる保護シールによって覆い、当該積 層体(10A)を 45°Cの水酸ィ匕ナトリウム水溶液に 2分間浸漬することにより、当該積層 体( 10A)力もレジスト膜( 14C)を除去した (図 14参照)。 Next, the laminate (10A) on which the electrode structure forming recess (10K) was formed was immersed in a sodium hydroxide solution at 45 ° C. for 2 minutes to remove the laminate (10A) from the laminate (10A). After removing the resist film (14A, 14B), the laminated film (10A) is coated with a 25 μm-thick dry film resist so as to cover the entire surface of the plating electrode layer (16A). ) And 23580 rectangular pattern holes with dimensions of 150 mX m communicating with the through holes (17H) of the support film forming layer (11A) are formed on the back surface of the support film forming layer (11A). A resist film (14D) on which (K2) was formed was formed (see FIG. 10). Here, in the formation of the resist film (14D), the exposure treatment was performed by irradiating 80 mJ of ultraviolet light with a high-pressure mercury lamp, and the development treatment was immersed in a developer consisting of a 1% aqueous sodium hydroxide solution for 40 seconds. The operation was repeated twice. Next, the laminate (10A) is immersed in a plating bath containing nickel sulfamate, and the laminate (10A) is subjected to electrolytic plating using the plating electrode layer (16A) as an electrode. By filling metal into each pattern hole (K2) of the structure forming recess (10K) and the resist film (14D), the surface electrode portion (16), the short-circuit portion (18), and the support film forming layer ( Back electrode portions (17) connected to each other were formed by 11A) (see FIG. 11). Next, the entire surface of the resist film (14C) formed on the laminate (10A) is covered with a protective seal made of polyethylene terephthalate having a thickness of 25 m , and the laminate (10A) is subjected to a 45 ° C. By immersing the laminate (10A) in the sodium chloride solution for 2 minutes, the resist film (14D) was also removed (see FIG. 12). Thereafter, a patterning etching resist film (14E) is covered with a 25 m-thick dry film resist so as to cover the portion to be a support film in the support film forming layer (11A) and the back electrode portion (17). Formed (see Figure 13). Here, in the formation of the resist film (14B), the exposure treatment was performed by irradiating 80 mJ of ultraviolet light with a high-pressure mercury lamp, and the development treatment was immersed in a developer consisting of a 1% aqueous sodium hydroxide solution for 40 seconds. Then, the protective seal was removed from the resist film (14C) formed on the laminate (10A), and then the resist film (14E) and the support film forming layer were removed. The exposed portion of (11A) was covered with a protective seal made of polyethylene terephthalate having a thickness of 25 m, and the laminate (10A) was immersed in an aqueous sodium hydroxide solution at 45 ° C for 2 minutes. The laminate (10A) also removed the resist film (14C) (see FIG. 14).
次 、で、レジスト膜( 14E)および支持膜形成用層( 11 A)力も保護シールを除去し 、その後、メツキ電極用層(16A)および支持膜形成用層(11A)に対し、アンモニア 系エッチング液を用い、 50°C、 30秒間の条件でエッチング処理を施すことにより、メ ツキ電極用層(16A)の全部を除去すると共に、支持膜形成用層(11A)における露 出した部分を除去し、これにより、裏面電極部(17)の各々を互いに分離させると共に 、試験用ウェハ W1に形成された集積回路における電極領域のパターンに対応する パターンに従って形成された、それぞれ縦横の寸法が 2mm X 6. 5mmの複数の開 口( 11 H)を有する支持膜 (11)を形成した (図 15参照)。 次いで、積層体(10A)を 45°Cの水酸ィ匕ナトリウム水溶液に 2分間浸漬することによ り、支持膜(11)の裏面および裏面電極部(17)力 レジスト膜(14E)を除去した。そ の後、厚みが 25 mのドライフィルムレジストによって、支持膜(11)の裏面、絶縁膜 ( 13)の裏面および裏面電極部(17)を覆うよう、レジスト膜(14F)を形成した(図 16参 照)。このレジスト膜(14F)を、厚みが 25 mのポリエチレンテレフタレートよりなる保 護シールによって覆い、その後、電極部成形用層(16B)に対し、アミン系ポリイミドエ ツチング液 (東レエンジニアリング株式会社製、「TPE— 3000」)を用い、 80°C、 10 分間の条件でエッチング処理を施すことにより、電極部成形用層(16B)を除去した( 図 17参照)。 Next, the protective seal was also removed from the resist film (14E) and the support film forming layer (11A), and then the ammonia-based etching was performed on the plating electrode layer (16A) and the support film forming layer (11A). Performing an etching process at 50 ° C for 30 seconds using a solution to remove all of the plating electrode layer (16A) and the exposed part of the support film forming layer (11A). Thereby, each of the back electrode portions (17) is separated from each other, and each of the vertical and horizontal dimensions formed according to the pattern corresponding to the electrode region pattern in the integrated circuit formed on the test wafer W1 is 2 mm X 6. A support film (11) having a plurality of 5 mm openings (11H) was formed (see FIG. 15). Next, the laminate (10A) is immersed in an aqueous solution of sodium hydroxide at 45 ° C. for 2 minutes to remove the resist film (14E) on the back surface of the support film (11) and the back electrode portion (17). did. Thereafter, a resist film (14F) was formed using a 25-m-thick dry film resist so as to cover the back surface of the support film (11), the back surface of the insulating film (13), and the back electrode portion (17) (see FIG. 16). The resist film (14F) is covered with a protective seal made of polyethylene terephthalate having a thickness of 25 m, and then the amine-based polyimide etching solution (manufactured by Toray Engineering Co., Ltd., The electrode forming layer (16B) was removed by etching using TPE-3000 ”) at 80 ° C for 10 minutes (see Fig. 17).
次いで、厚みが 25 μ mのドライフィルムレジストによって、表面電極部(16)および 第 1の表面側金属層(17A)における保持部(19)となるべき部分を覆うよう、パター二 ングされたレジスト膜(14G)を形成した(図 18参照)。ここで、レジスト膜(14G)の形 成において、露光処理は、高圧水銀灯によって 80mJの紫外線を照射することにより 行い、現像処理は、 1%水酸ィ匕ナトリウム水溶液よりなる現像剤に 40秒間浸漬する操 作を 2回繰り返すことによって行った。その後、保持部形成用層(19A)に対し、塩ィ匕 第二鉄系エッチング液を用い、 50°C、 30秒間の条件でエッチング処理を施すことに より、表面電極部(16)の基端部分の周面力 連続して絶縁膜(11)の表面に沿って 外方に放射状に伸びる円板リング状の保持部(19)を形成し、以て電極構造体(15) を形成した (図 19参照)。  Next, a 25 μm-thick dry film resist is used to cover the surface electrode portion (16) and the portion to be the holding portion (19) in the first surface side metal layer (17A). A film (14G) was formed (see FIG. 18). Here, in the formation of the resist film (14G), the exposure treatment is performed by irradiating 80 mJ ultraviolet rays with a high-pressure mercury lamp, and the development treatment is immersed in a developer consisting of a 1% aqueous sodium hydroxide solution for 40 seconds. The operation was repeated twice. Thereafter, the holding portion forming layer (19A) is subjected to an etching treatment under a condition of 50 ° C. for 30 seconds using a ferric chloride-based etching solution, whereby the base of the surface electrode portion (16) is formed. Circumferential force at end portion A disk ring-shaped holding part (19) is formed to extend continuously and radially outward along the surface of the insulating film (11), thereby forming an electrode structure (15) (See Figure 19).
そして、レジスト膜(14F)力も保護シールを除去した後、 45°Cの水酸ィ匕ナトリウム水 溶液に 2分間浸漬することにより、表面電極部(16)および保持部(19)力 レジスト 膜 (14G)を除去すると共に、支持膜 (11)の裏面、絶縁膜 (13)の裏面および裏面電 極部(17)力 レジスト膜 (14F)を除去し、更に支持膜 (11)の表面力 保護テープ( 11T)を除去した。その後、支持膜(11)における周縁部分の表面に、外径が 22cm、 内径が 20. 5cmで厚みが 2mmのリング状の窒化シリコンよりなる保持部材 (40)を配 置した後、保持部材 (40)と支持膜 (11)とを加圧し、 180°Cで 2時間保持することによ り、保持部材 (40)を支持膜(11)に接合することにより、本発明に係るシート状プロ一 ブ(10)を製造した(図 33参照)。 [0102] 得られたシート状プローブ(10)は、接点膜(12)における絶縁膜(13)の厚み dが 1 2. 5 ^ πι,電極構造体(15)の表面電極部(16)の形状が円錐台状で、その基端の 径 R力 7 /ζ πι、その先端の径 R力 ^8 /ζ πι、その突出高さ hが 22 m、短絡部(18)After removing the protective seal, the resist film (14F) was immersed in a sodium hydroxide solution at 45 ° C. for 2 minutes to remove the surface electrode portion (16) and the holding portion (19). 14G), the back surface of the support film (11), the back surface of the insulating film (13), and the back electrode (17). The resist film (14F) is removed, and the surface force of the support film (11) is protected. The tape (11T) was removed. After that, a ring-shaped holding member (40) made of silicon nitride having an outer diameter of 22 cm, an inner diameter of 20.5 cm and a thickness of 2 mm is disposed on the surface of the peripheral portion of the support film (11). The holding member (40) is bonded to the supporting film (11) by pressing the supporting member (40) and the supporting film (11) at 180 ° C. for 2 hours, thereby forming the sheet-like process according to the present invention. One piece (10) was manufactured (see Fig. 33). [0102] The obtained sheet probe (10) has a thickness d of the insulating film (13) in the contact film (12) of 12.5 ^ πι, and a thickness of the surface electrode portion (16) of the electrode structure (15). The shape is a truncated cone, with a radius R force of 7 / ζ πι at its base end, a radius R force at its tip ^ 8 / ζ πι, a protruding height h of 22 m, and a short circuit (18).
1 2 1 2
の形状が円錐台状で、その表面側の一端の径 R力 7 ;ζ ΐη、裏面側の他端の径 R  Has a truncated cone shape, and a diameter R at one end on the front side of the surface 7; ζ ΐη, and a diameter R at the other end on the rear side.
3 4 が 60 μ m、裏面電極部(17)の形状が矩形の平板状で、その横幅 (径 R )が 60 μ m  3 4 is 60 μm, the back electrode (17) is a rectangular flat plate, and its width (diameter R) is 60 μm
5  Five
、縦幅が 200 /z m、厚み D が m、保持部(19)の形状が円形リング板状で、そ  The vertical width is 200 / z m, the thickness D is m, and the shape of the holding part (19) is a circular ring plate.
2  2
の外径 R力 0 m、その厚み D 力 / z m、支持膜(11)の厚みが 10 m、支持膜(  The outer diameter R force is 0 m, its thickness D force / z m, the supporting film (11) is 10 m thick, and the supporting film (
6 1  6 1
11 )の開口の縦横の寸法が 2mm X 6. 5mmのものである。  11) The vertical and horizontal dimensions of the opening are 2mm X 6.5mm.
このようにして、合計で 4枚のシート状プローブを製造した。これらのシート状プロ一 ブを「シート状プローブ Ml」〜「シート状プローブ M4」とする。  Thus, a total of four sheet-like probes were manufactured. These sheet probes are referred to as “sheet probe Ml” to “sheet probe M4”.
[0103] 〈実施例 2〉 [0103] <Example 2>
実施例 1と同様にして、積層体(10A)カゝら支持膜 (11)および電極構造体(15)を 形成し(図 4乃至図 19参照。)、 45°Cの水酸ィ匕ナトリウム水溶液に 2分間浸漬すること により、表面電極部(16)および保持部(19)力もレジスト膜(14G)を除去した。  In the same manner as in Example 1, a laminated body (10A) and a support film (11) and an electrode structure (15) were formed (see FIGS. 4 to 19). By immersing the resist film (14G) in the aqueous solution for 2 minutes, the force of the surface electrode portion (16) and the holding portion (19) was also removed.
次いで、絶縁膜(13)の表面、表面電極部(16)および保持部(19)に、形成すべき 接点膜のパターンに対応するパターンに従って、それぞれ縦横の寸法が 4000 m X 7000 mのレジスト膜(14H)を形成し、その後、絶縁膜(13)に対してエッチング 処理を施して露出した部分を除去することにより、互いに独立した複数の絶縁膜(13 b)を形成し、これにより、それぞれ絶縁膜(13b)にその厚み方向に貫通して伸びる 複数の電極構造体(15)が配置されてなる複数の接点膜( 12b)を形成した(図 28お よび図 29参照)。  Next, on the surface of the insulating film (13), the surface electrode portion (16) and the holding portion (19), a resist film having a length and width of 4000 mx 7000 m according to the pattern corresponding to the pattern of the contact film to be formed. (14H) is formed, and then the insulating film (13) is subjected to an etching process to remove the exposed portions, thereby forming a plurality of insulating films (13b) independent of each other. A plurality of contact films (12b) in which a plurality of electrode structures (15) extending through the insulating film (13b) in the thickness direction were formed (see FIGS. 28 and 29).
そして、支持膜(11)の裏面、絶縁膜(13b)の裏面および裏面電極部(17)からレ ジスト膜(14F)を除去すると共に、絶縁膜(13b)の表面、表面電極部(16)および保 持部(19)力 レジスト膜 (14H)を除去し、更に支持膜 (11)力 保護テープを除去し た。その後、支持膜(11)における周縁部分の表面に、外径が 22cm、内径が 20. 5c mで厚みが 2mmのリング状の窒化シリコンよりなる保持部材 (40)を配置した後、保 持部材 (40)と支持膜 (11)とを加圧し、 180°Cで 2時間保持することにより、保持部材 (40)を支持膜(11)に接合することにより、本発明に係るシート状プローブ(10)を製 •laした。 Then, the resist film (14F) is removed from the back surface of the support film (11), the back surface of the insulating film (13b) and the back electrode portion (17), and the surface of the insulating film (13b) and the surface electrode portion (16) are removed. The resist film (14H) was removed from the holding portion (19), and the support film (11) was removed from the protective tape. Thereafter, a ring-shaped silicon nitride holding member (40) having an outer diameter of 22 cm, an inner diameter of 20.5 cm, and a thickness of 2 mm is arranged on the surface of the peripheral portion of the support film (11). (40) and the supporting film (11) are pressurized and maintained at 180 ° C. for 2 hours, so that the holding member (40) is joined to the supporting film (11). 10) Made • la
[0104] 得られたシート状プローブ(10)は、接点膜(12b)における絶縁膜(13b)の縦横の 寸法カ 4000 111 >< 7000 111、絶縁膜(13b)の厚み d力 S 12. 5 m、電極構造体(1 5)の表面電極部(16)の形状が円錐台状で、その基端の径 R力 7 111、その先端  [0104] The obtained sheet-like probe (10) has dimensions of the contact film (12b) in the vertical and horizontal directions of the insulating film (13b) 4000 111> <7000 111, and the thickness d of the insulating film (13b). m, the shape of the surface electrode part (16) of the electrode structure (15) is frusto-conical, with a diameter R at the base end of 7111,
1  1
の径 Rが 18 ;ζ ΐη、その突出高さ hが 22 m、短絡部(18)の形状が円錐台状で、そ The diameter R is 18; ΐ ΐη, the protruding height h is 22 m, and the short-circuit part (18) has a truncated cone shape.
2 2
の表面側の一端の径 R力 7 μ m、裏面側の他端の径 R力 ½0 μ m、裏面電極部(1  The diameter R force at one end on the front surface side is 7 μm, the diameter R force at the other end on the rear surface is ½0 μm, and the back electrode (1
3 4  3 4
7)の形状が矩形の平板状で、その横幅 (径 R )が 60 μ m、縦幅が 200 μ m、厚み D  7) is a rectangular flat plate with a width (diameter R) of 60 μm, a vertical width of 200 μm, and a thickness D.
5 2 が m、保持部(19)の形状が円形リング板状で、その外径 Rが m、その厚  5 2 is m, the shape of the holding part (19) is a circular ring plate, its outer diameter R is m, and its thickness is
6  6
み D 力 ; z m、支持膜(11)の厚みが lO /z m、支持膜(11)の開口の縦横の寸法が  Only D force; z m, thickness of the support membrane (11) is lO / z m, vertical and horizontal dimensions of the opening of the support membrane (11)
1  1
2mm X 6. 5mmのものである。  It is 2mm X 6.5mm.
このようにして、合計で 4枚のシート状プローブを製造した。これらのシート状プロ一 ブを「シート状プローブ Ll」〜「シート状プローブ L4」とする。  Thus, a total of four sheet-like probes were manufactured. These sheet probes are referred to as “sheet probe Ll” to “sheet probe L4”.
[0105] 〈比較例 1〉 <Comparative Example 1>
シート状プローブの作製にぉ 、て、支持膜形成用層の全部をエッチング処理によ つて除去して支持膜を形成しなカゝつたこと、保持部形成用層の全部をエッチング処 理によって除去して保持部を形成しな力つたこと、および、保持部材を絶縁膜におけ る周縁部分の表面に設けたこと以外は、実施例 1と同様にしてシート状プローブを作 製した。  Before the production of the sheet-like probe, the entire support film forming layer was removed by etching to prevent formation of the support film, and the entire holding portion forming layer was removed by etching. A sheet-like probe was manufactured in the same manner as in Example 1, except that the holding portion was not formed and the holding member was provided on the surface of the peripheral portion of the insulating film.
得られたシート状プローブは、絶縁膜の厚み dが 12. 5 /ζ πι、電極構造体の表面電 極部の形状が円錐台状で、その基端の径が 47 m、その先端の径が 18 m、その 突出高さが 25 m、短絡部の形状が円錐台状で、その表面側の一端の径が 47 m 、裏面側の他端の径が 60 m、裏面電極部の形状が矩形の平板状で、その横幅が 60 μ m、縦幅力 μ m、厚みが 30 μ mのものである。  The obtained sheet probe had an insulating film thickness d of 12.5 / ζπι, a surface electrode of the electrode structure with a truncated cone shape, a base diameter of 47 m, and a tip diameter of 47 m. Is 18 m, its protruding height is 25 m, the shape of the short-circuited part is a truncated cone, the diameter of one end on the front side is 47 m, the diameter of the other end on the back side is 60 m, and the shape of the back electrode is It is a rectangular flat plate with a width of 60 μm, a vertical width of μm, and a thickness of 30 μm.
このようにして、合計で 5枚のシート状プローブを製造した。これらのシート状プロ一 ブを「シート状プローブ Nl」〜「シート状プローブ N4」とする。  In this way, a total of five sheet-like probes were manufactured. These sheet probes are referred to as “sheet probe Nl” to “sheet probe N4”.
[0106] 〈異方導電性コネクターの作製〉 <Production of Anisotropic Conductive Connector>
(1)磁性芯粒子の調製:  (1) Preparation of magnetic core particles:
市販のニッケル粒子(Westaim社製, 「FC1000」)を用い、以下のようにして磁性 芯粒子を調製した。 Using commercially available nickel particles (Westaim, "FC1000"), Core particles were prepared.
日清エンジニアリング株式会社製の空気分級機「ターボクラシファイア TC— 15N 」によって、ニッケル粒子 2kgを、比重が 8. 9、風量が 2. 5m3 Zmin、ローター回転 数が 2, 250rpm、分級点が 15 m、ニッケル粒子の供給速度が 60gZminの条件 で分級処理し、粒子径が 15 μ m以下のニッケル粒子 0. 8kgを捕集し、更に、この- ッケル粒子 0. 8kgを、比重が 8. 9、風量が 2. 5m3 Zmin、ローター回転数が 2, 93 Orpm、分級点が 10 m、ニッケル粒子の供給速度が 30gZminの条件で分級処理 し、ニッケル粒子 0. 5kgを捕集した。 Nisshin Engineering air classifier Co., Ltd. by the "Turbo Classifier TC- 15N" nickel particles 2 kg, specific gravity of 8.9, air flow rate 2. 5 m 3 Zmin, the rotor speed is 2, 250 rpm, a classification point of 15 Classify the particles under the conditions that the feed rate of the nickel particles is 60 gZmin and collect 0.8 kg of nickel particles having a particle diameter of 15 μm or less. Classification was performed under the conditions of an air volume of 2.5 m 3 Zmin, a rotor rotation speed of 2,93 Orpm, a classification point of 10 m, and a supply speed of nickel particles of 30 gZmin, to collect 0.5 kg of nickel particles.
得られたニッケル粒子は、数平均粒子径が 7. 4 /z m、粒子径の変動係数が 27%、 BET比表面積が 0. 46 X 103 m2 Zkg、飽和磁化が 0. 6Wb/m2であった。 The obtained nickel particles have a number average particle size of 7.4 / zm, a variation coefficient of the particle size of 27%, a BET specific surface area of 0.46 X 10 3 m 2 Zkg, and a saturation magnetization of 0.6 Wb / m 2 Met.
このニッケル粒子を「磁性芯粒子 [A]」とする。  The nickel particles are referred to as “magnetic core particles [A]”.
(2)導電性粒子の調製: (2) Preparation of conductive particles:
粉末メツキ装置の処理槽内に、磁性芯粒子 [A] 100gを投入し、更に、 0. 32Nの 塩酸水溶液 2Lを加えて攪拌し、磁性芯粒子 [A]を含有するスラリーを得た。このスラ リーを常温で 30分間攪拌することにより、磁性芯粒子 [A]の酸処理を行い、その後、 1分間静置して磁性芯粒子 [A]を沈殿させ、上澄み液を除去した。  100 g of the magnetic core particles [A] were charged into the treatment tank of the powder coating apparatus, and 2 L of a 0.32N aqueous hydrochloric acid solution was added thereto and stirred to obtain a slurry containing the magnetic core particles [A]. The slurry was stirred at room temperature for 30 minutes to perform an acid treatment on the magnetic core particles [A], and then allowed to stand for 1 minute to precipitate the magnetic core particles [A], and the supernatant was removed.
次いで、酸処理が施された磁性芯粒子 [A]に純水 2Lを加え、常温で 2分間攪拌し 、その後、 1分間静置して磁性芯粒子 [A]を沈殿させ、上澄み液を除去した。この操 作を更に 2回繰り返すことにより、磁性芯粒子 [A]の洗浄処理を行った。  Next, 2 L of pure water is added to the acid-treated magnetic core particles [A], and the mixture is stirred at room temperature for 2 minutes, and then left standing for 1 minute to precipitate the magnetic core particles [A], and the supernatant is removed. did. By repeating this operation twice more, the magnetic core particles [A] were washed.
そして、酸処理および洗浄処理が施された磁性芯粒子 [A]に、金の含有割合が 20 g/Lの金メッキ液 2Lをカ卩え、処理層内の温度を 90°Cに昇温して攪拌することにより 、スラリーを調製した。この状態で、スラリーを攪拌しながら、磁性芯粒子 [A]に対して 金の置換メツキを行った。その後、スラリーを放冷しながら静置して粒子を沈殿させ、 上澄み液を除去することにより、導電性粒子を調製した。  Then, 2 L of a gold plating solution containing 20 g / L of gold is added to the magnetic core particles [A] that have been subjected to the acid treatment and the washing treatment, and the temperature in the treatment layer is raised to 90 ° C. And stirred to prepare a slurry. In this state, the magnetic core particles [A] were replaced with gold while stirring the slurry. Thereafter, the slurry was allowed to stand while cooling, and the particles were precipitated, and the supernatant was removed to prepare conductive particles.
このようにして得られた導電性粒子に純水 2Lをカ卩え、常温で 2分間攪拌し、その後 、 1分間静置して導電性粒子を沈殿させ、上澄み液を除去した。この操作を更に 2回 繰り返し、その後、 90°Cに加熱した純水 2Lをカ卩えて攪拌し、得られたスラリーを濾紙 によって濾過して導電性粒子を回収した。そして、この導電性粒子を、 90°Cに設定さ れた乾燥機によって乾燥処理した。 2 L of pure water was added to the conductive particles thus obtained, stirred at room temperature for 2 minutes, and then allowed to stand for 1 minute to precipitate the conductive particles, and the supernatant was removed. This operation was repeated twice more, and then 2 L of pure water heated to 90 ° C. was stirred and stirred, and the obtained slurry was filtered with filter paper to collect conductive particles. Then, set the conductive particles at 90 ° C. It was dried by a drier.
得られた導電性粒子は、数平均粒子径が 7. 3 m、 BET比表面積が 0. 38 X 103 m2 /kg、(被覆層を形成する金の質量) / (磁性芯粒子 [A]の質量)の値が 0. 3で めつに。 The obtained conductive particles had a number average particle diameter of 7.3 m, a BET specific surface area of 0.38 × 10 3 m 2 / kg, (mass of gold forming the coating layer) / (magnetic core particles [A ] Is 0.3).
この導電性粒子を「導電性粒子 (a)」とする。  The conductive particles are referred to as “conductive particles (a)”.
[0108] (3)フレーム板の作製: [0108] (3) Production of frame plate:
図 37および図 38に示す構成に従い、下記の条件により、上記の試験用ウェハ W1 における各被検査電極領域に対応して形成された 393個の開口(32)を有する直径 力 ¾インチのフレーム板(31)を作製した。  According to the configuration shown in FIG. 37 and FIG. 38, under the following conditions, a frame plate having a diameter of ¾ inch and having 393 openings (32) formed corresponding to each electrode area to be inspected in the above-described test wafer W1. (31) was produced.
このフレーム板(31)の材質はコバール (線熱膨張係数 5 X 10— 6ZK)で、その厚み は、 60 mである。 In the material of this frame plate (31) is Kovar (coefficient of linear thermal expansion 5 X 10- 6 ZK), its thickness is 60 m.
開口(32)の各々は、その横方向(図 37および図 38において左右方向)の寸法が 6 400 μ mで縦方向(図 37および図 38において上下方向)の寸法が 320 μ mである。 縦方向に隣接する開口(32)の間の中央位置には、円形の空気流入孔(33)が形 成されており、その直径は 1000 μ mである。  Each of the openings (32) has a dimension of 6400 μm in the horizontal direction (the horizontal direction in FIGS. 37 and 38) and 320 μm in the vertical direction (the vertical direction in FIGS. 37 and 38). A circular air inlet (33) is formed at a central position between the vertically adjacent openings (32) and has a diameter of 1000 μm.
[0109] (4)異方導電性シート用成形材料の調製: (4) Preparation of molding material for anisotropic conductive sheet:
付加型液状シリコーンゴム 100重量部に、導電性粒子 [a] 30重量部を添加して混 合し、その後、減圧による脱泡処理を施すことにより、異方導電性シート用の成形材 料を調製した。  30 parts by weight of the conductive particles [a] are added to 100 parts by weight of the addition-type liquid silicone rubber, mixed, and then subjected to defoaming treatment under reduced pressure to obtain a molding material for an anisotropic conductive sheet. Prepared.
以上において、使用した付加型液状シリコーンゴムは、それぞれ粘度が 250Pa's である A液および B液よりなる二液型のものであって、その硬化物の圧縮永久歪みが 5%、デュロメーター A硬度が 32、引裂強度が 25kNZmのものである。  In the above, the addition type liquid silicone rubber used was a two-part type composed of liquid A and liquid B each having a viscosity of 250 Pa's, and the cured product had a compression set of 5% and a durometer A hardness of 32. It has a tear strength of 25 kNZm.
ここで、付加型液状シリコーンゴムおよびその硬化物の特性は、以下のようにして測 定されたものである。  Here, the properties of the addition-type liquid silicone rubber and the cured product thereof were measured as follows.
(i)付加型液状シリコーンゴムの粘度は、 B型粘度計により、 23±2°Cにおける値を測 し 7こ。  (i) The viscosity of the addition-type liquid silicone rubber was measured at 23 ± 2 ° C using a B-type viscometer.
(ii)シリコーンゴム硬化物の圧縮永久歪みは、次のようにして測定した。  (ii) The compression set of the cured silicone rubber was measured as follows.
二液型の付加型液状シリコーンゴムにおける A液と B液とを等量となる割合で攪拌 混合した。次いで、この混合物を金型に流し込み、当該混合物に対して減圧による 脱泡処理を行った後、 120°C、 30分間の条件で硬化処理を行うことにより、厚みが 1 2. 7mm、直径が 29mmのシリコーンゴム硬化物よりなる円柱体を作製し、この円柱 体に対して、 200°C、 4時間の条件でポストキュアを行った。このようにして得られた円 柱体を試験片として用い、 JIS K 6249に準拠して 150± 2°Cにおける圧縮永久歪 みを測定した。 Stir A liquid and B liquid in two-part addition type liquid silicone rubber in equal proportions Mixed. Next, the mixture is poured into a mold, and the mixture is subjected to a defoaming treatment under reduced pressure, and then a curing treatment is performed at 120 ° C. for 30 minutes to have a thickness of 12.7 mm and a diameter of 12.7 mm. A cylindrical body made of a 29 mm silicone rubber cured product was prepared, and post-curing was performed on the cylindrical body at 200 ° C. for 4 hours. Using the cylinder thus obtained as a test piece, the compression set at 150 ± 2 ° C was measured in accordance with JIS K 6249.
(iii)シリコーンゴム硬化物の引裂強度は、次のようにして測定した。  (iii) The tear strength of the cured silicone rubber was measured as follows.
上記 (ii)と同様の条件で付加型液状シリコーンゴムの硬化処理およびポストキュア を行うことにより、厚みが 2. 5mmのシートを作製した。このシートから打ち抜きによつ てタレセント形の試験片を作製し、 JIS K 6249に準拠して 23± 2°Cにおける引裂 強度を測定した。  By subjecting the addition type liquid silicone rubber to curing treatment and post-curing under the same conditions as in (ii) above, a sheet having a thickness of 2.5 mm was produced. A turret-shaped test piece was prepared from this sheet by punching, and the tear strength at 23 ± 2 ° C was measured in accordance with JIS K 6249.
(iv)デュロメーター A硬度は、上記 (iii)と同様にして作製されたシートを 5枚重ね合わ せ、得られた積重体を試験片として用い、 JIS K 6249に準拠して 23± 2°Cにおけ る値を測定した。  (iv) Durometer A hardness is measured at 23 ± 2 ° C according to JIS K 6249 by stacking five sheets prepared in the same manner as in (iii) above and using the obtained stack as a test piece. Values were measured.
(5)異方導電性コネクターの作製: (5) Preparation of anisotropic conductive connector:
上記(3)で作製したフレーム板 (31)および上記 (4)で調製した成形材料を用い、 特開 2002— 324600号公報に記載された方法に従って、フレーム板(31)に、それ ぞれ一の開口(32)を塞ぐよう配置され、当該フレーム板(31)の開口縁部に固定さ れて支持された、図 31に示す構成の 393個の異方導電性シート(35)を形成するこ とにより、異方導電性コネクターを製造した。ここで、成形材料層の硬化処理は、電磁 石によって厚み方向に 2Tの磁場を作用させながら、 100°C、 1時間の条件で行った 得られた異方導電性シート (35)について具体的に説明すると、異方導電性シート ( 35)の各々は、横方向の寸法が 7000 m、縦方向の寸法が 1200 mであり、 60個 の導電部(36)が 100 mのピッチで横方向に一列に配列されており、導電部(36) の各々は、横方向の寸法が 40 μ m、縦方向の寸法が 200 μ m、厚みが 150 m、突 出部(38)の突出高さが 25 μ m、絶縁部 (37)の厚みが 100 μ mである。また、横方 向において最も外側に位置する導電部(36)とフレーム板の開口縁との間には、非 接続用の導電部が配置されている。非接続用の導電部の各々は、横方向の寸法がUsing the frame plate (31) produced in the above (3) and the molding material prepared in the above (4), each of the frame plates (31) was formed according to the method described in JP-A-2002-324600. 393 anisotropic conductive sheets (35) having the configuration shown in FIG. 31 are arranged so as to close the openings (32) of the frame plate (31) and fixed and supported by the opening edges of the frame plate (31). Thus, an anisotropic conductive connector was manufactured. Here, the curing treatment of the molding material layer was performed at 100 ° C. for 1 hour while applying a magnetic field of 2 T in the thickness direction with an electromagnetic stone.Specifically, the obtained anisotropic conductive sheet (35) was obtained. To explain, each of the anisotropic conductive sheets (35) has a horizontal dimension of 7000 m and a vertical dimension of 1200 m, and 60 conductive sections (36) are arranged at a pitch of 100 m in the horizontal direction. Each of the conductive parts (36) has a horizontal dimension of 40 μm, a vertical dimension of 200 μm, a thickness of 150 m, and a protrusion height of the protrusion (38). Is 25 μm, and the thickness of the insulating part (37) is 100 μm. Also, there is no gap between the outermost conductive portion (36) in the horizontal direction and the opening edge of the frame plate. A conductive portion for connection is arranged. Each of the conductive parts for non-connection has a lateral dimension
60 μ m、 ¾方向の寸去力 200 μ m、 み力 150 μ mである。 60 μm, wiping force in the ¾ direction 200 μm, force 150 μm
また、各異方導電性シート(35)における導電部(36)中の導電性粒子の含有割合 を調べたところ、全ての導電部(36)について体積分率で約 25%であった。  Further, when the content ratio of the conductive particles in the conductive portion (36) in each anisotropic conductive sheet (35) was examined, the volume fraction of all the conductive portions (36) was about 25%.
このようにして、合計で 12枚の異方導電性コネクターを製造した。これらの異方導 電性コネクターを「異方導電性コネクター Cl」〜「異方導電性コネクター C12」とする  In this way, a total of 12 anisotropic conductive connectors were manufactured. These anisotropically conductive connectors are referred to as “anisotropically conductive connector Cl” to “anisotropically conductive connector C12”.
[0111] 〈検査用回路基板の作製〉 <Production of inspection circuit board>
基板材料としてアルミナセラミックス (線熱膨張係数 4. 8 X 10—ソ K)を用い、試験 用ウエノ、 W1における被検査電極のパターンに対応するパターンに従って検査電極 (21)が形成された検査用回路基板 (20)を作製した。この検査用回路基板 (20)は、 全体の寸法が 30cm X 30cmの矩形であり、その検査電極は、横方向の寸法が 60 mで縦方向の寸法が 200 mである。得られた検査用回路基板を「検査用回路基板 Tl」とする。  Inspection circuit using alumina ceramics (linear thermal expansion coefficient: 4.8 x 10—so K) as substrate material and test electrodes (21) formed according to the pattern corresponding to the pattern of the electrode to be tested in W1 A substrate (20) was produced. The inspection circuit board (20) is a rectangle measuring 30 cm × 30 cm overall, and its inspection electrodes have a horizontal dimension of 60 m and a vertical dimension of 200 m. The obtained inspection circuit board is referred to as “inspection circuit board Tl”.
[0112] 〈シート状フローブの評価〉 [0112] <Evaluation of sheet-shaped float>
(1)試験 1 (隣接する電極構造体間の絶縁性):  (1) Test 1 (insulation between adjacent electrode structures):
シート状プローブ Ml、シート状プローブ Μ2、シート状プローブ Ll、シート状プロ一 ブ L2、シート状プローブ N1およびシート状プローブ N2の各々について、以下のよう にして隣接する電極構造体間の絶縁性の評価を行った。  For each of the sheet probe Ml, the sheet probe Μ2, the sheet probe Ll, the sheet probe L2, the sheet probe N1, and the sheet probe N2, the insulation between the adjacent electrode structures is determined as follows. An evaluation was performed.
室温(25°C)下において、試験用ウェハ W1を試験台に配置し、この試験用ウェハ W2の表面上に、シート状プローブをその表面電極部の各々が当該試験用ウェハ W 1の被検査電極上に位置するよう位置合わせして配置し、このシート状プローブ上に 、異方導電性コネクターをその導電部の各々が当該シート状プローブの裏面電極部 上に位置するよう位置合わせして配置し、この異方導電性コネクター上に、検査用回 路基板 T1をその検査電極の各々が当該異方導電性コネクターの導電部上に位置 するよう位置合わせして配置し、更に検査用回路基板 T1を下方に 118kgの荷重 (電 極構造体 1個当たりに加わる荷重が平均で約 5g)で加圧した。ここで、異方導電性コ ネクターとしては下記表 1に示すものを使用した。 そして、検査用回路基板 Tlにおける 23580個の検査電極の各々に順次電圧を印 加すると共に、電圧が印加された検査電極と他の検査電極との間の間の電気抵抗を シート状プローブにおける電極構造体間の電気抵抗 (以下、「絶縁抵抗」という。)とし て測定し、全測定点における絶縁抵抗が 10Μ Ω以下である測定点の割合 (以下、「 絶縁不良割合」という。)を求めた。 At room temperature (25 ° C.), the test wafer W1 is placed on a test table, and a sheet-like probe is placed on the surface of the test wafer W2 so that each of its surface electrodes is inspected by the test wafer W1. An anisotropic conductive connector is positioned and positioned on the sheet probe so that each conductive part is positioned on the back electrode of the sheet probe. Then, on the anisotropically conductive connector, the inspection circuit board T1 is positioned and arranged such that each of the inspection electrodes is positioned on the conductive portion of the anisotropically conductive connector, and further, the inspection circuit board T1. T1 was pressed downward with a load of 118 kg (an average load applied to one electrode structure was about 5 g). Here, as shown in Table 1 below, an anisotropic conductive connector was used. Then, a voltage is sequentially applied to each of the 23580 test electrodes on the test circuit board Tl, and the electric resistance between the test electrode to which the voltage is applied and another test electrode is measured by the electrode of the sheet probe. It is measured as the electrical resistance between structures (hereinafter referred to as “insulation resistance”), and the ratio of measurement points where the insulation resistance at all measurement points is 10 で Ω or less (hereinafter referred to as “insulation failure rate”) is determined. Was.
ここで、絶縁抵抗が 10Μ Ω以下である場合には、実際上、ウェハに形成された集 積回路の電気的検査に使用することが困難である。  Here, if the insulation resistance is less than 10Μ Ω, it is practically difficult to use the integrated circuit formed on the wafer for electrical inspection.
以上の結果を下記結果を表 1に示す。  Table 1 shows the above results.
[0113] [表 1] [0113] [Table 1]
Figure imgf000056_0001
Figure imgf000056_0001
[0114] (2)試験 2 (電極構造体の接続安定性):  (2) Test 2 (connection stability of electrode structure):
シート状プローブ M3、シート状プローブ M4、シート状プローブ L3、シート状プロ一 ブ L4、シート状プローブ N3およびシート状プローブ N4の各々について、以下のよう にして被検査電極に対する電極構造体の接続安定性の評価を行った。  For each of the sheet-shaped probe M3, sheet-shaped probe M4, sheet-shaped probe L3, sheet-shaped probe L4, sheet-shaped probe N3, and sheet-shaped probe N4, the connection of the electrode structure to the electrode to be inspected is stabilized as follows. The sex was evaluated.
室温(25°C)下において、試験用ウェハ W2を、電熱ヒーターを具えた試験台に配 置し、この試験用ウェハ W2の表面上に、シート状プローブをその表面電極部の各々 が当該試験用ウェハ W2の被検査電極上に位置するよう位置合わせして配置し、こ のシート状プローブ上に、異方導電性コネクターをその導電部の各々が当該シート 状プローブの裏面電極部上に位置するよう位置合わせして配置し、この異方導電性 コネクター上に、検査用回路基板 T1をその検査電極の各々が当該異方導電性コネ クタ一の導電部上に位置するよう位置合わせして配置し、更に検査用回路基板 T1を 下方に 118kgの荷重 (電極構造体 1個当たりに加わる荷重が平均で約 5g)で加圧し た。ここで、異方導電性コネクタ一としては下記表 2に示すものを使用した。 At room temperature (25 ° C), place the test wafer W2 on a test table equipped with an electric heater, and place a sheet-shaped probe on the surface of the test wafer W2 so that each of its surface electrodes is subjected to the test. The anisotropic conductive connector is placed on the sheet-shaped probe, and each conductive part is positioned on the back electrode of the sheet-shaped probe. The test circuit board T1 is positioned on the anisotropic conductive connector so that each of the test electrodes is positioned on the conductive part of the anisotropic conductive connector. And then add the inspection circuit board T1 It was pressurized downward with a load of 118 kg (the load applied to one electrode structure was about 5 g on average). Here, the one shown in Table 2 below was used as the anisotropic conductive connector.
そして、検査用回路基板 T1における 23580個の検査電極について、シート状プロ ーブ、異方導電性コネクターおよび試験用ウエノ、 W2を介して互 ヽに電気的に接続 された 2個の検査電極の間の電気抵抗を順次測定し、測定された電気抵抗値の 2分 の 1の値を、検査用回路基板 T1の検査電極と試験用ウェハ W2の被検査電極との間 の電気抵抗 (以下、「導通抵抗」という。)として記録し、全測定点における導通抵抗 力 以上である測定点の割合 (以下、「接続不良割合」という。)を求めた。この操作 を「操作 (1)」とする。  Then, for the 23580 test electrodes on the test circuit board T1, two test electrodes electrically connected to each other via a sheet probe, an anisotropic conductive connector, a test ueno, and W2. The electrical resistance between the test electrodes of the test circuit board T1 and the test electrode of the test wafer W2 is referred to as 2 of the measured electrical resistance value. This was recorded as “conduction resistance”), and the ratio of measurement points that were equal to or higher than the conduction resistance at all measurement points (hereinafter, referred to as “connection failure ratio”) was determined. This operation is referred to as “operation (1)”.
次いで、検査用回路基板 T1に対する加圧を解除し、その後、試験台を 150°Cに昇 温してその温度が安定するまで放置し、その後、検査用回路基板 T1を下方に 118k gの荷重 (電極構造体 1個当たりに加わる荷重が平均で約 5g)で加圧し、上記操作 ( 1 )と同様にして接続不良割合を求めた。この操作を「操作 (2)」とする。  Next, the pressurization of the test circuit board T1 is released, and then the test table is heated to 150 ° C and left until the temperature is stabilized, and then the test circuit board T1 is loaded downward by a load of 118 kg. (The load applied to one electrode structure was about 5 g on average), and the connection failure rate was determined in the same manner as in the above operation (1). This operation is referred to as “operation (2)”.
次いで、試験台を室温 (25°C)まで冷却し、検査用回路基板 T1に対する加圧を解 除した。この操作を「操作 (3)」とする。  Next, the test table was cooled to room temperature (25 ° C.), and the pressure applied to the test circuit board T1 was released. This operation is referred to as “operation (3)”.
そして、上記の操作(1)、操作 (2)および操作 (3)を 1サイクルとして合計で 300サ イタル連続して行った。  The operation (1), the operation (2) and the operation (3) were performed as one cycle, and a total of 300 cycles were continuously performed.
ここで、導通抵抗が 1 Ω以上である場合には、実際上、ウェハに形成された集積回 路の電気的検査に使用することが困難である。  Here, if the conduction resistance is 1 Ω or more, it is practically difficult to use it for electrical inspection of an integrated circuit formed on a wafer.
以上の結果を下記結果を表 2に示す。  The results are shown in Table 2 below.
[表 2] [Table 2]
Figure imgf000058_0001
Figure imgf000058_0001
また、試験 2が終了した後、シート状プローブ M3、シート状プローブ M4、シート状 プローブ L3およびシート状プローブ L4の各々を観察したところ、いずれの電極構造 体も絶縁膜から脱落しておらず、高 、耐久性を有することが確認された。 これに対し、シート状プローブ N3については、 23850個の電極構造体のうち 48個 の電極構造体が絶縁膜から脱落しており、また、シート状プローブ N4については、 2 3850個の電極構造体のうち 27個の電極構造体が絶縁膜から脱落していた。 After the test 2, the sheet-shaped probe M3, the sheet-shaped probe M4, the sheet-shaped probe L3, and the sheet-shaped probe L4 were observed.As a result, none of the electrode structures was dropped from the insulating film. High and durability were confirmed. On the other hand, for the sheet-like probe N3, 48 electrode structures out of the 23850 electrode structures dropped out of the insulating film, and for the sheet-like probe N4, 23850 electrode structures Among them, 27 electrode structures were dropped from the insulating film.

Claims

請求の範囲 The scope of the claims
[1] 柔軟な榭脂よりなる絶縁膜に、それぞれ接続すべき電極に対応するパターンに従 つて当該絶縁膜の厚み方向に貫通して伸びる複数の電極構造体が配置されてなる 接点膜と、この接点膜を支持する金属よりなる支持膜とを具えてなり、  [1] a contact film in which a plurality of electrode structures extending through the insulating film made of a flexible resin in the thickness direction of the insulating film according to a pattern corresponding to the electrode to be connected are arranged; A supporting film made of a metal that supports the contact film,
前記電極構造体の各々は、前記絶縁膜の表面に露出し、当該絶縁膜の表面から 突出する表面電極部と、前記絶縁膜の裏面に露出する裏面電極部と、前記表面電 極部の基端から連続して前記絶縁膜をその厚み方向に貫通して伸び、前記裏面電 極部に連結された短絡部と、前記表面電極部の基端部分から連続して前記絶縁膜 の表面に沿って外方に伸びる保持部とよりなることを特徴とするシート状プローブ。  Each of the electrode structures is exposed on the surface of the insulating film and protrudes from the surface of the insulating film, a back electrode portion exposed on the back surface of the insulating film, and a base of the surface electrode portion. The insulating film extends continuously from the end in the thickness direction of the insulating film, and extends along the surface of the insulating film continuously from the short-circuit portion connected to the back electrode portion and the base end portion of the front electrode portion. A sheet-like probe comprising a holding portion extending outward.
[2] 回路装置の電気的検査に用いられるシート状プローブであって、  [2] A sheet-like probe used for electrical inspection of a circuit device,
検査対象である回路装置の被検査電極が形成された電極領域に対応して複数の 開口が形成された金属よりなる支持膜と、この支持膜の表面上に配置されて支持さ れた接点膜とを具えてなり、  A supporting film made of metal having a plurality of openings formed corresponding to the electrode regions of the circuit device to be inspected where the electrodes to be inspected are formed, and a contact film disposed and supported on the surface of the supporting film. And
前記接点膜は、柔軟な榭脂よりなる絶縁膜と、この絶縁膜に前記被検査電極のパ ターンに対応するパターンに従って配置された、当該絶縁膜の厚み方向に貫通して 伸びる複数の電極構造体とを有してなり、当該電極構造体の各々が前記支持膜の 各開口内に位置するよう配置されており、  The contact film includes an insulating film made of a flexible resin, and a plurality of electrode structures disposed on the insulating film according to a pattern corresponding to the pattern of the electrode to be inspected and extending through the insulating film in a thickness direction thereof. And each of the electrode structures is disposed so as to be located in each opening of the support film,
前記電極構造体の各々は、前記絶縁膜の表面に露出し、当該絶縁膜の表面から 突出する表面電極部と、前記絶縁膜の裏面に露出する裏面電極部と、前記表面電 極部の基端から連続して前記絶縁膜をその厚み方向に貫通して伸び、前記裏面電 極部に連結された短絡部と、前記表面電極部の基端部分から連続して前記絶縁膜 の表面に沿って外方に伸びる保持部とよりなることを特徴とするシート状プローブ。  Each of the electrode structures is exposed on the surface of the insulating film and protrudes from the surface of the insulating film, a back electrode portion exposed on the back surface of the insulating film, and a base of the surface electrode portion. The insulating film extends continuously from the end in the thickness direction thereof and extends along the surface of the insulating film continuously from the short-circuit portion connected to the back electrode portion and the base end portion of the front electrode portion. A sheet-like probe comprising a holding portion extending outward.
[3] 互いに独立した複数の接点膜が、支持膜の表面に沿って並ぶよう配置されている ことを特徴とする請求項 2に記載のシート状プローブ。 [3] The sheet-like probe according to claim 2, wherein a plurality of mutually independent contact films are arranged along the surface of the support film.
[4] 回路装置の電気的検査に用いられるシート状プローブであって、 [4] A sheet-like probe used for electrical inspection of a circuit device,
検査対象である回路装置の被検査電極が形成された電極領域に対応して複数の 開口が形成された金属よりなる支持膜と、この支持膜の開口の各々を塞ぐよう配置さ れ、当該開口縁部に支持された複数の接点膜とを具えてなり、 前記接点膜の各々は、柔軟な榭脂よりなる絶縁膜と、この絶縁膜に前記回路装置 の電極領域における被検査電極のパターンに対応するパターンに従って配置された 、当該絶縁膜の厚み方向に貫通して伸びる複数の電極構造体とを有してなり、当該 電極構造体の各々が前記支持膜の各開口内に位置するよう配置されており、 前記電極構造体の各々は、前記絶縁膜の表面に露出し、当該絶縁膜の表面から 突出する表面電極部と、前記絶縁膜の裏面に露出する裏面電極部と、前記表面電 極部の基端から連続して前記絶縁膜をその厚み方向に貫通して伸び、前記裏面電 極部に連結された短絡部と、前記表面電極部の基端部分から連続して前記絶縁膜 の表面に沿って外方に伸びる保持部とよりなることを特徴とするシート状プローブ。 A support film made of metal having a plurality of openings formed corresponding to the electrode regions of the circuit device to be inspected where the electrodes to be inspected are formed; and a support film arranged to close each of the openings in the support film, and A plurality of contact films supported on the edge, Each of the contact films is an insulating film made of a flexible resin, and is disposed on the insulating film according to a pattern corresponding to a pattern of an electrode to be inspected in an electrode region of the circuit device. And a plurality of electrode structures that are arranged so that each of the electrode structures is located in each of the openings of the support film. A front electrode portion exposed to the front surface and protruding from the front surface of the insulating film; a back electrode portion exposed to the back surface of the insulating film; and the insulating film continuously extending from the base end of the front electrode portion in the thickness direction. A short-circuit portion that extends through and is connected to the back electrode portion; and a holding portion that extends outward from the base end portion of the front electrode portion along the surface of the insulating film. Characteristic sheet-shaped probe.
[5] ウェハに形成された複数の集積回路の各々について、当該集積回路の電気的検 查をウェハの状態で行うために用いられるものであることを特徴とする請求項 2乃至 請求項 4のいずれか一に記載のシート状プローブ。  [5] The method according to claims 2 to 4, wherein each of the plurality of integrated circuits formed on the wafer is used to perform an electrical inspection of the integrated circuit in a state of the wafer. The sheet probe according to any one of the above.
[6] 電極構造体における表面電極部は、その基端力 先端に向かうに従って小径とな る形状のものであることを特徴とする請求項 1乃至請求項 5のいずれか一に記載のシ ート状プローブ。  [6] The sheet according to any one of claims 1 to 5, wherein the surface electrode portion in the electrode structure has a shape having a smaller diameter toward the distal end of the base force. G-shaped probe.
[7] 電極構造体における表面電極部の基端の径 Rに対する表面電極部の先端の径 R  [7] Diameter R at the tip of the surface electrode part relative to diameter R at the base end of the surface electrode part in the electrode structure
1  1
の比 R /Rの値が 0. 11〜0. 55であることを特徴とする請求項 6に記載のシート The sheet according to claim 6, wherein the ratio R / R is 0.11 to 0.55.
2 2 1 2 2 1
状プローブ。  Probe.
[8] 電極構造体における表面電極部の基端の径 Rに対する表面電極部の突出高さ h  [8] Protruding height h of the surface electrode with respect to the diameter R of the base end of the surface electrode in the electrode structure
1  1
の比 hZRの値が 0. 2〜3であることを特徴とする請求項 1乃至請求項 7のいずれか  The value of the ratio hZR of 0.2 to 3 is 0.2 to 3.
1  1
一に記載のシート状プローブ。  The sheet-shaped probe according to one of the above.
[9] 電極構造体における短絡部は、絶縁膜の裏面力 表面に向かうに従って小径とな る形状のものであることを特徴とする請求項 1乃至請求項 8のいずれか一に記載のシ ート状プローブ。  [9] The sheet according to any one of claims 1 to 8, wherein the short-circuit portion in the electrode structure has a shape having a smaller diameter toward the rear surface of the insulating film. G-shaped probe.
[10] 絶縁膜はエッチング可能な高分子材料よりなることを特徴とする請求項 1乃至請求 項 9のいずれか一に記載のシート状プローブ。  [10] The sheet-like probe according to any one of claims 1 to 9, wherein the insulating film is made of an etchable polymer material.
[11] 絶縁膜はポリイミドよりなることを特徴とする請求項 10に記載のシート状フローブ。 [11] The sheet-shaped float according to claim 10, wherein the insulating film is made of polyimide.
[12] 支持膜の線熱膨張係数が 3 X 10— 5ZK以下であることを特徴とする請求項 1乃至請 求項 11のいずれか一に記載のシート状プローブ。 [12] a sheet-like probe according to any one of claims 1 to請Motomeko 11, wherein the linear thermal expansion coefficient of the support film is less than 3 X 10- 5 ZK.
[13] 請求項 1乃至請求項 12のいずれか一に記載のシート状プローブを製造する方法 であって、 [13] A method for producing the sheet-like probe according to any one of claims 1 to 12, wherein
金属よりなる支持膜形成用層と、この支持膜形成用層の表面に一体的に積層され た絶縁膜と、この絶縁膜の表面に一体的に積層された金属よりなる保持部形成用層 と、この保持部形成用層の表面に一体的に積層された絶縁性の電極部成形用層と、 この電極部成形用層の表面に一体的に積層された金属よりなるメツキ電極用層とを 有する積層体を用意し、  A support film forming layer made of a metal, an insulating film integrally laminated on the surface of the support film forming layer, and a holding portion forming layer made of a metal integrally laminated on the surface of the insulating film. An insulating electrode part forming layer integrally laminated on the surface of the holding part forming layer, and a metal electrode layer made of metal integrally laminated on the surface of the electrode part forming layer. Prepare a laminate having
この積層体における支持膜形成用層、絶縁膜、保持部形成用層および電極部成 形用層の各々に互いに連通する厚み方向に伸びる貫通孔を形成することにより、当 該積層体の裏面に、形成すべき電極構造体のパターンに対応するパターンに従つ て複数の電極構造体形成用凹所を形成し、  By forming through-holes extending in the thickness direction communicating with each other in the support film forming layer, the insulating film, the holding portion forming layer, and the electrode portion forming layer in the laminate, a through hole is formed on the back surface of the laminate. Forming a plurality of electrode structure forming recesses according to a pattern corresponding to the pattern of the electrode structure to be formed;
この積層体におけるメツキ電極用層を電極としてメツキ処理を施して電極構造体形 成用凹所の各々に金属を充填することにより、絶縁膜の表面から突出する表面電極 部、当該表面電極部の基端力 連続して当該絶縁膜をその厚み方向に貫通して伸 びる短絡部、およびこの短絡部に連結された、当該絶縁膜の裏面に露出する裏面電 極部を形成し、  Each of the electrode structure forming recesses is filled with metal by performing a plating process using the plating electrode layer in the laminate as an electrode, thereby forming a surface electrode portion projecting from the surface of the insulating film and a base of the surface electrode portion. Forming a short-circuit portion extending continuously through the insulating film in the thickness direction thereof, and a back-electrode portion connected to the short-circuit portion and exposed on the back surface of the insulating film;
この積層体における支持膜形成用層をエッチング処理することにより、開口が形成 された支持膜を形成し、  By etching the support film forming layer in this laminate, a support film having an opening formed therein is formed,
この積層体力 前記メツキ電極用層および前記電極部成形用層を除去することに より、前記表面電極部および前記保持部形成用層を露出させ、その後、当該保持部 形成用層にエッチング処理を施すことにより、前記表面電極部の基端部分力 連続 して前記絶縁膜の表面に沿って外方に伸びる保持部を形成する工程を有することを 特徴とするシート状プローブの製造方法。  By removing the plating electrode layer and the electrode portion forming layer, the laminated body force exposes the surface electrode portion and the holding portion forming layer, and then performs an etching process on the holding portion forming layer. A step of forming a holding portion extending outward along the surface of the insulating film continuously with the base partial force of the surface electrode portion.
[14] 電極構造体形成用凹所における保持部成形用層の貫通孔が、当該保持部成形用 層の裏面力 表面に向かうに従って小径となる形状に形成されることを特徴とする請 求項 13に記載のシート状プローブの製造方法。 [14] The claim, wherein the through-hole of the holding portion forming layer in the electrode structure forming recess is formed in a shape having a smaller diameter toward the back surface of the holding portion forming layer. 14. The method for producing a sheet probe according to item 13.
[15] 積層体としてその保持部成形用層がエッチング可能な高分子材料よりなるものを用 い、電極構造体形成用凹所における保持部成形用層の貫通孔がエッチングにより形 成されることを特徴とする請求項 14に記載のシート状プローブの製造方法。 [15] A laminate in which the holding portion forming layer is made of an etchable polymer material and the through hole of the holding portion forming layer in the electrode structure forming recess is formed by etching. 15. The method for producing a sheet-like probe according to claim 14, wherein:
[16] 電極構造体形成用凹所における絶縁膜の貫通孔が、当該絶縁膜の裏面から表面 に向かうに従って小径となる形状に形成されることを特徴とする請求項 13乃至請求 項 15のいずれか一に記載のシート状プローブの製造方法。 16. The method according to claim 13, wherein the through hole of the insulating film in the recess for forming an electrode structure is formed in a shape having a smaller diameter from the back surface to the front surface of the insulating film. A method for producing a sheet-like probe according to any one of the preceding claims.
[17] 積層体としてその絶縁膜がエッチング可能な高分子材料よりなるものを用い、電極 構造体形成用凹所における絶縁膜の貫通孔がエッチングにより形成されることを特 徴とする請求項 16に記載のシート状プローブの製造方法。 [17] The laminate according to claim 16, wherein the insulating film is made of a polymer material which can be etched, and the through-hole of the insulating film in the recess for forming the electrode structure is formed by etching. 3. The method for producing a sheet-like probe according to item 1.
[18] 請求項 1乃至請求項 12のいずれか一に記載のシート状プローブを具えてなること を特徴とするプローブカード。 [18] A probe card comprising the sheet probe according to any one of claims 1 to 12.
[19] 請求項 13乃至請求項 17のいずれか一に記載の方法によって製造されたシート状 プローブを具えてなることを特徴とするプローブカード。 [19] A probe card comprising a sheet-like probe manufactured by the method according to any one of claims 13 to 17.
[20] ウェハに形成された複数の集積回路の各々について、当該集積回路の電気的検 查をウェハの状態で行うために用いられるプローブカードであって、  [20] A probe card used for performing electrical inspection of each of a plurality of integrated circuits formed on a wafer in a state of the wafer,
検査対象であるウェハに形成された全てのまたは一部の集積回路の被検査電極 のパターンに対応するパターンに従って検査電極が表面に形成された検査用回路 基板と、この検査用回路基板の表面上に配置された異方導電性コネクターと、この異 方導電性コネクター上に配置された、請求項 1乃至請求項 12のいずれか一に記載 のシート状プローブとを具えてなることを特徴とするプローブカード。  An inspection circuit board having inspection electrodes formed on the surface thereof in accordance with a pattern corresponding to the pattern of the electrodes to be inspected of all or some of the integrated circuits formed on the wafer to be inspected, and on the surface of the inspection circuit board And a sheet probe according to any one of claims 1 to 12 disposed on the anisotropic conductive connector. Probe card.
[21] ウェハに形成された複数の集積回路の各々について、当該集積回路の電気的検 查をウェハの状態で行うために用いられるプローブカードであって、 [21] A probe card used for performing electrical inspection of each of a plurality of integrated circuits formed on a wafer in a state of the wafer,
検査対象であるウェハに形成された全てのまたは一部の集積回路の被検査電極 のパターンに対応するパターンに従って検査電極が表面に形成された検査用回路 基板と、この検査用回路基板の表面上に配置された異方導電性コネクターと、この異 方導電性コネクター上に配置された、請求項 13乃至請求項 17のいずれか一に記載 の方法によって製造されたシート状プローブとを具えてなることを特徴とするプローブ カード。 An inspection circuit board having inspection electrodes formed on the surface thereof in accordance with a pattern corresponding to the pattern of the electrodes to be inspected of all or some of the integrated circuits formed on the wafer to be inspected, and on the surface of the inspection circuit board And a sheet-like probe manufactured by the method according to any one of claims 13 to 17, which is disposed on the anisotropic conductive connector. A probe card, characterized in that:
[22] 請求項 18または請求項 19に記載のプローブカードを具えてなることを特徴とする 回路装置の検査装置。 [22] An inspection device for a circuit device, comprising the probe card according to claim 18 or 19.
[23] ウェハに形成された複数の集積回路の各々について、当該集積回路の電気的検 查をウェハの状態で行うウェハ検査装置であって、  [23] A wafer inspection apparatus that performs an electrical inspection of each of a plurality of integrated circuits formed on a wafer in a state of the wafer,
請求項 20または請求項 21に記載のプローブカードを具えてなることを特徴とするゥ ェハ検査装置。  A wafer inspection device comprising the probe card according to claim 20 or claim 21.
PCT/JP2005/007811 2004-04-27 2005-04-25 Sheet-shaped probe, manufacturing method thereof and application thereof WO2005103735A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004131763 2004-04-27
JP2004-131763 2004-04-27

Publications (1)

Publication Number Publication Date
WO2005103735A1 true WO2005103735A1 (en) 2005-11-03

Family

ID=35197108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007811 WO2005103735A1 (en) 2004-04-27 2005-04-25 Sheet-shaped probe, manufacturing method thereof and application thereof

Country Status (2)

Country Link
TW (1) TWI388843B (en)
WO (1) WO2005103735A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208776A (en) * 2000-01-28 2001-08-03 Toppan Printing Co Ltd Semiconductor inspection jig and its manufacturing method
JP2002076074A (en) * 2000-09-04 2002-03-15 Hoya Corp Contact component for wafer batch contact board and manufacturing method of the same
JP2002289277A (en) * 2001-03-27 2002-10-04 Jsr Corp Anisotropic conductive connector and applied product thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208776A (en) * 2000-01-28 2001-08-03 Toppan Printing Co Ltd Semiconductor inspection jig and its manufacturing method
JP2002076074A (en) * 2000-09-04 2002-03-15 Hoya Corp Contact component for wafer batch contact board and manufacturing method of the same
JP2002289277A (en) * 2001-03-27 2002-10-04 Jsr Corp Anisotropic conductive connector and applied product thereof

Also Published As

Publication number Publication date
TWI388843B (en) 2013-03-11
TW200540429A (en) 2005-12-16

Similar Documents

Publication Publication Date Title
JP3649239B2 (en) Manufacturing method of sheet-like connector
JP3685192B2 (en) Anisotropic conductive connector, conductive paste composition, probe member, wafer inspection apparatus and wafer inspection method
WO2005111632A1 (en) Sheet-like probe, method of producing the probe, and application of the probe
WO2005103730A1 (en) Sheet-like probe, method of producing the probe, and application of the probe
WO2004102208A1 (en) Sheet-like probe, process for producing the same and its application
WO2004015761A1 (en) Anisotropic conductivity connector, conductive paste composition, probe member, wafer inspecting device, and wafer inspecting method
WO2006046650A1 (en) Probe member for wafer inspection, probe card for wafer inspection and wafer inspection equipment
JP3736572B2 (en) Sheet probe, method for manufacturing the same, and application thereof
KR101167748B1 (en) Probe member for wafer inspection, probe card for wafer inspection and wafer inspection apparatus
JP3760950B2 (en) Manufacturing method of sheet-like probe
JP3788476B2 (en) Wafer inspection probe member, probe card for wafer inspection, and wafer inspection apparatus
JP3649245B2 (en) Manufacturing method of sheet-like probe
JP4423991B2 (en) Anisotropic conductive connector, probe member, wafer inspection apparatus and wafer inspection method
JP3788477B1 (en) Wafer inspection probe member, probe card for wafer inspection, and wafer inspection apparatus
WO2005103735A1 (en) Sheet-shaped probe, manufacturing method thereof and application thereof
JP3781048B2 (en) Sheet probe and its application
JP2006038874A (en) Sheet-shaped probe and application thereof
KR20070018064A (en) Sheet-like probe, method of producing the probe, and application of the probe
JP2006138777A (en) Sheet-like connector, its manufacturing method, and its application
JP2006098395A (en) Anisotropic conductive connector for wafer inspection, production method and application therefor
JP2004096107A (en) Anisotropic conductive connector, conductive paste composition, probe component, device and method for wafer inspection
JP2006162604A (en) Sheet-like probe, probe card, and wafer inspection method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP