WO2005103237A1 - 組換え単純ヘルペスウイルスの作製方法 - Google Patents

組換え単純ヘルペスウイルスの作製方法 Download PDF

Info

Publication number
WO2005103237A1
WO2005103237A1 PCT/JP2005/006396 JP2005006396W WO2005103237A1 WO 2005103237 A1 WO2005103237 A1 WO 2005103237A1 JP 2005006396 W JP2005006396 W JP 2005006396W WO 2005103237 A1 WO2005103237 A1 WO 2005103237A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
virus
hsv
genome
protein
Prior art date
Application number
PCT/JP2005/006396
Other languages
English (en)
French (fr)
Other versions
WO2005103237A9 (ja
Inventor
Tomoki Todo
Hiroshi Fukuhara
Original Assignee
Tomoki Todo
Hiroshi Fukuhara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoki Todo, Hiroshi Fukuhara filed Critical Tomoki Todo
Priority to JP2006512495A priority Critical patent/JPWO2005103237A1/ja
Priority to CA002561691A priority patent/CA2561691A1/en
Priority to EP05727508A priority patent/EP1731599A4/en
Priority to AU2005235826A priority patent/AU2005235826A1/en
Priority to US10/594,962 priority patent/US20070196336A1/en
Publication of WO2005103237A1 publication Critical patent/WO2005103237A1/ja
Publication of WO2005103237A9 publication Critical patent/WO2005103237A9/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1774Immunoglobulin superfamily (e.g. CD2, CD4, CD8, ICAM molecules, B7 molecules, Fc-receptors, MHC-molecules)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/208IL-12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16632Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16641Use of virus, viral particle or viral elements as a vector
    • C12N2710/16643Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/20Pseudochromosomes, minichrosomosomes
    • C12N2800/202Pseudochromosomes, minichrosomosomes of bacteriophage origin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT

Definitions

  • the present invention relates to a method for producing a recombinant herpes simplex virus capable of expressing a target protein in target cells, and a pharmaceutical composition containing the recombinant herpes virus.
  • a cancer therapeutic virus modified to selectively replicate only in cancer cells by genetic recombination replicates in situ when infected with cancer cells, and kills the host cancer cells in the process.
  • the replicated virus scatters around and infects cancer cells again, and then repeats replication ⁇ cell death ⁇ infection to exhibit an antitumor effect.
  • the therapeutic virus that has infected normal cells does not replicate, and therefore does not harm normal tissues.
  • HSV simple herpesvirus type I
  • a virus for cancer treatment also has a function of inducing antitumor immunity not only exhibiting a cell killing effect.
  • the present inventors have conducted studies using mice with a normal immune system, and found that recombinant HSV-1 administered intratumorally not only proliferates in tumors and exhibits cell killing effect, but also exhibits specific anti-tumor immunity. Were found to enhance the antitumor effect (see, for example, Non-Patent Documents 6, 7, and 16).
  • N18 tumor neuroblastoma
  • CTL cytotoxic T lymphocytes
  • Mice cured by G207 treatment acquired tumor-specific protective immunity, and N18 cell-specific elevated CTL activity was maintained for over a year.
  • intratumoral administration of HSV-1 for cancer treatment also acts as an in situ cancer vaccine, does not require identification of tumor antigens, and is simpler than the ex vivo method, which requires culturing of tumor cells. Indeed, treating the primary lesion is a clinically significant advantage, as it may also be possible to control metastatic lesions through systemic antitumor immunity.
  • the present inventors have shown that the combination of a virus for cancer treatment with the expression of an immunostimulatory gene enhances the antitumor effect, and concluded that the non-proliferative HSV-1 vector HSV-1 amplicon (amplicon) Confirmed using.
  • An amplicon that expresses the secreted T-cell co-stimulatory factor B7.1-Ig was created using G207 as a helper, and the resulting mixed vector was used to transform immunogenic low-V, neuro2a (mouse neuroblastoma) brain tumor Yes! /, Was administered directly to the subcutaneous tumor.
  • G207 replicates in tumor cells and shows cell killing effect, while amplicon continuously secretes B7.1-Ig from infected tumor cells to the surroundings, which has strong antitumor effect and specificity. Induction of antitumor immunity was obtained (see, for example, Non-patent Document 17).
  • the combination of interleukin (IL) -12-expressing amplicon and G207 can also enhance the antitumor effect (for example, see Non-patent Document 18).
  • IL interleukin
  • a gene encoding a protein involved in cancer treatment is directly incorporated into the genome of recombinant HSV-1 for therapeutic use.
  • a method of making the virus function as an amplification type vector is also conceivable.
  • Therapeutic recombinants such as G207 and G47A are not combined with amplicons. Incorporation of genes encoding therapeutic-related proteins into the genome of HSV-1 will not only provide amplified gene distribution in tumors, but also stabilize them. The advantage is that a large amount of vector can always be obtained.
  • HSV-1 has been conventionally produced by the homologous recombination method.
  • Homologous recombination refers to recombination in which a foreign gene is integrated at a higher degree of homology at a higher probability when the gene is integrated into the genome. Therefore, when there are a plurality of places with high homology in one genome, it is difficult to control where the foreign gene is integrated.
  • a large amount of labor is required for screening, selecting and purifying tens of thousands of candidate virus strains, and confirming at the molecular cell level, in order to obtain the target recombinant having a large genome. It usually took one to two years to produce one recombinant HSV-1.
  • Non-Patent Document 19 a method for efficiently incorporating a cancer therapeutic gene such as an immunostimulatory gene into the genome of a recombinant cancer therapeutic virus called MGH-1, which is similar in structure to G207, has been developed using bacteria.
  • a method using an artificial chromosome (Bacterial Artificial chromosome; BAC) has been proposed (Non-Patent Document 19).
  • BAC Bacterial Artificial chromosome
  • BAC Bacterial Artificial chromosome
  • the Flp-FRT system which does not use homologous recombination, is used to insert a shuttle vector containing the desired therapeutic gene into this genome. This increases the probability of obtaining the desired recombinant.
  • the virus genome obtained in this manner is transformed into vegetative cells, and unnecessary regions of the genome are cut out using the Cre- ⁇ system to produce a virus.
  • Patent Document 1 US2002Z0187163A1
  • Non-patent literature l Martuza, RL et al .; Science 252: 854-6 (1991)
  • Non-patent document 2 Chahlavi, A. et al .; Neoplasia 1: 162-169 (1999)
  • Non-patent document 3 Hunter, WD et al .; J Virol 73: 6319-6326 (1999)
  • Non-Patent Document 4 Chahlavi, A. et al .; Gene Ther 6: 1751-1758 (1999)
  • Non-Patent Document 5 Nakamura, S. et al .; Glia 28: 53-65 (1999)
  • Non-Patent Document 6 Todo, T. et al ,; Hum Gene Ther 10: 2741-2755 (1999)
  • Non-Patent Document 7 Todo, T. et al ,; Hum Gene Ther 10: 2869-2878 (1999)
  • Non-Patent Document 8 Todo, T. et al ,; Cancer Gene Ther. 7: 939-946 (2000)
  • Non-Patent Document 9 Markert, JM. Et al ,; Gene Ther. 7: 867-874 (2000)
  • Non-Patent Document 10 Todo, T. et al ,; Mol.Ther. 2: 588-595 (2000)
  • Non-patent literature ll Nakano, K. et al ,; Mol.Ther. 3: 431-437 (2001)
  • Non-patent document 12 Vargese, S. et al ,; Hum.Gene Ther. 12: 999-1010 (2001)
  • Non-patent document 13 Jorgensen, TJ. Et al ,; Neoplasia 3: 451-456 (2001)
  • Non-patent document 14 Todo, T. et al ,; Tumor Suppressing Viruses, Genes, and Drugs- Alternative Cancer Therapy Approaches.San Diego, Academic Press: 45-75 (2001)
  • Non-patent document 15 Todo, T. et al Natl.Acad.Sci. USA 98: 6396-6401 (2001)
  • Non-Patent Document 16 Toda, M. et al ,; Hum.Gene Ther., 10: 385-393 (1999)
  • Non-Patent Document 17 Todo, T. et al .; Cancer Res 61: 153-161 (2001)
  • Non-Patent Document 18 Toda, M. et al .; J Immunol 160: 4457-4464 (1998)
  • Non-Patent Document 19 Saeki, Y. et al .; Mol.Ther. 3: S45-46 (2001)
  • Non-Patent Document 19 uses the Flp-FRT system when inserting a shuttle vector, this reaction must be performed in Escherichia coli having a plasmid that expresses Flp recombinase. . Therefore, both the plasmid expressing the Flp recombinase and the shuttle vector plasmid must be transformed into E. coli, but the transformation rate into E. coli is not high. The probability of transforming two plasmids is the product of the probabilities of two independent events, and the probability of obtaining E. coli containing both is very low. The E. coli also contains a virus genome into which the above-described BAC plasmid has been inserted. It is difficult to prepare such a large amount of special E. coli.
  • Non-Patent Document 19 a gene encoding a green fluorescent protein (hereinafter referred to as "GFP") is left on a virus genome as a final product, but GFP has immunogenicity. Due to its high toxicity, it can be a great hindrance for application to human cancer treatment.
  • GFP green fluorescent protein
  • a red fluorescent protein (hereinafter, referred to as "RFP") gene is inserted into a portion that is finally cut out by the operation of the Cre- ⁇ system, and the disappearance of the red fluorescence causes the final product to disappear.
  • RFP red fluorescent protein
  • RFP is not optimal for detection because its onset of expression is slow and its power and fluorescence are not bright enough.
  • a virus genome in which Cre- ⁇ does not function properly and an unnecessary sequence is not cut out may be selected as a target genome. This hinders human application, particularly when the sequence to be excised contains genes encoding immunogenic or toxic proteins.
  • Non-patent Document 19 also has a problem that an unexpected mutation is likely to occur due to homologous recombination since a sequence specific to Herpesvirus is used as a promoter of a therapeutic gene. Was.
  • the present invention solves the above-mentioned problems, and enables the expression of a target protein in cancer cells, and it is a dramatic advance in safety, virus replication ability in cancer cells, and antitumor effect. It is an object of the present invention to provide a method for rapidly and reliably producing a practical recombinant simple herpes virus.
  • the present inventors have conducted intensive studies in view of the above problems, and as a result, compared with the conventional method, using the Cre - ⁇ system when inserting a shuttle vector into the HSV genome. It has been found that a recombinant HSV capable of expressing a target protein at a dramatically high speed can be obtained.
  • the virus of the final product has the lacZ gene instead of GFP as a marker gene; uses the loss of GFP for selection and confirmation of the final product; Uses sequences that are not present in the virus genome; assigns stuffers to regions cut by the Flp-FRT system in the final step It has been found that the method according to the present invention can be made more useful by designing such as incorporating columns.
  • the third generation G47A virus genome in which G207 is further modified as a basic skeleton is used to provide safety, ability to replicate virus in cancer cells, and antitumor effect. It was confirmed that a practical recombinant simple virus, which was extremely excellent in terms of the above, could be obtained, and the present invention was completed.
  • the present invention provides [1] a method for producing a recombinant simple herpes virus capable of expressing a target protein in a cancer cell, wherein the method comprises a ⁇ site and an FRT site, BAC plasmid with at least one marker gene expression cassette having a structure in which a marker gene is operatively linked downstream of the promoter between the FRT site and the FRT site, is simply inserted into the virus genome.
  • the host is co-infected with the simple herpes virus genome obtained in two steps and a vector capable of expressing Flp recombinase, and a region flanked by FRT sites on the genome is cut out to obtain a target gene set.
  • a second step of producing a recombinant herpes simplex virus [2] the method of [1], wherein the second step is performed in a liquid phase; [3] a first step of The method according to the above [1] or [2], wherein the ⁇ 34.5 gene and the ICP6 gene of the simple herpes virus are deleted or inactivated before the step [4].
  • the herpesvirus ICP47 gene is deleted. Is the method according to the above [3], which is inactivated; [5]
  • the marker gene inserted into the BAC plasmid is a gene encoding a green fluorescent protein (GFP) and a gene or an antibiotic resistance gene.
  • GFP green fluorescent protein
  • the promoter comprising the sequence is a CMV promoter; [8] the lac Z gene and Z, or a marker gene inserted into the shuttle vector; The method according to any one of the above (1) to (7), which is a resistance gene; (9) a marker gene inserted into the shuttle vector; and an antibiotic resistance gene inserted into the BAC plasmid.
  • the present invention it has become possible to obtain a target recombinant HSV in a short period of time and with a high yield.
  • the production of a recombinant virus which conventionally required one to two years, can be performed, for example, for two to three times. It can be performed monthly, and 4-5 different recombinant HSVs can be produced simultaneously.
  • the effect of the present invention can be further enhanced by using the G47A HSV-1 genome in the skeleton, and a practical HSV for cancer treatment with even higher safety and antitumor effect can be obtained.
  • recombinant HSV exhibiting a cell killing effect on tumor cells is imparted with an effect of inducing antitumor immunity in situ, a cancer suppressing effect, an antiangiogenic effect, and the like. And enhance the anti-tumor effect of the virus therapy.
  • a ⁇ site and an FRT site are inserted into the HSV genome using a BAC system.
  • a gene encoding a target protein to be expressed in a cancer cell is inserted into a shuttle vector together with a functionally linked promoter.
  • the shuttle vector is first inserted into the HSV genomic using Cre recombinase, and then this is inserted using Flp recombinase. Unnecessary portions can be cut out from the HSV genome to obtain an HSV genome having the desired mutation.
  • the "recombinant simple virus” is a simple herpes virus modified by a gene recombination technique so that a target protein can be expressed in cancer cells.
  • HSV herpes virus modified by a gene recombination technique so that a target protein can be expressed in cancer cells.
  • the serotype may be type I (HSV-1) or type II (HSV-II), but preferably HSV-1 is used.
  • HSV-1 is classified as an enveloped double-stranded DNA virus and has the following characteristics that are useful for treating cancer. 1) can infect all types of cells in humans; 2) elucidate the viral life cycle and genomic sequence; 3) most of the viral genes are known to function and are genetically engineered. 4) Due to the large size of the viral genome (about 152 kb), large genes or multiple genes can be integrated.
  • HSV-1 has the following advantages that are suitable for clinical applications; 5) relatively low ⁇ multiplicity of infection (MOI) to kill all cells; 6) antiviral drugs that inhibit proliferation 7) Blood anti-HSV-1 antibody does not affect the spread of the virus to cellular cells; 8) Due to the presence of HSV-1 susceptible mice and monkeys, Preclinical evaluation of safety and efficacy can be performed; 9) Viral DNA is not integrated into the host cell genome and exists outside the chromosome.
  • MOI multiplicity of infection
  • HSV used in the present invention has been modified by genetic recombination technology or has been spontaneously mutated so that it cannot grow in normal cells but can grow only in cancer cells.
  • recombinant HSV it is simply referred to as “recombinant HSV”.
  • recombinant HSV since the recombinant HSV is amplified in cancer cells, more target proteins can be expressed.
  • Such viruses include HSV in which the ⁇ 34.5 gene and the ICP6 gene are deleted or inactivated, and HSV in which these two genes are deleted and the ICP47 gene is deleted or inactivated. HSV, etc., which can be used as a dagger.
  • the y34.5 gene product is a protein that antagonizes the function of double-stranded RNA-activated protein kinase (PKR).
  • PPKR RNA-activated protein kinase
  • HSV-1 infection phosphorylates the translation initiation factor elF-2 ⁇ , which suppresses viral protein synthesis. Therefore, if the 34.5 gene does not function, virus replication is suppressed in normal cells.
  • PKR is already suppressed in cancer cells, particularly cells in which the Ras signaling pathway is activated, the mutant HSV-1 lacking ⁇ 34.5 can replicate the virus.
  • the ICP6 gene is a gene encoding a large subunit of ribonucleotide reductase (RR).
  • RR ribonucleotide reductase
  • the ICP47 protein acts to reduce the expression of MHC Class I in infected cells by inhibiting transporter associated with antigen processing (TAP) and to allow the virus to escape from the host's immune surveillance system. Therefore, inactivating the ICP47 gene maintains MHC Class I expression in infected cancer cells and enhances antitumor immunity.
  • TAP transporter associated with antigen processing
  • HSV in which the ⁇ 34.5 gene and the ICP6 gene have been deleted or inactivated include, for example, G207 described above and MGH-1 having a similar structure to G207, and ⁇ 34.5, ICP6
  • Examples of HSV in which three ICP47 genes have been deleted or inactivated include G47A described above. Among them, G47A is suitable for virus therapy because of its triple mutation, which enhances tumor specificity and safety of replication.
  • the method for suppressing the expression of the above genes is not particularly limited. Those skilled in the art can appropriately select a method such as a method of inactivating by inserting another DNA during the process.
  • the BAC plasmid is an artificial chromosome that has a single copy of the E. coli F-factor plasmid and can stably retain a relatively large DNA fragment, so that a desired foreign gene can be integrated into the genomic DNA of an organism.
  • the BAC plasmid into which the desired foreign gene has been incorporated can be propagated in Escherichia coli, and further co-transfected into a host (eg, Vero cells ⁇ ⁇ ⁇ Escherichia coli) together with the HSV genome by homologous recombination. Can be integrated into the HSV genome.
  • a host eg, Vero cells ⁇ ⁇ ⁇ Escherichia coli
  • the operation of incorporating the ⁇ site and the FRT site into the BAC plasmid, and the co-transfecting of the linearized BAC plasmid and HSV can be easily performed by those skilled in the art according to a method known per se or a method analogous thereto.
  • the marker gene for example, one whose gene product emits light or a drug resistance gene can be used.
  • Genes that can be used as markers by detecting the luminescence of the gene product include GFP gene, RFP gene, luciferase gene and the like.
  • the drug resistance gene is preferably an antibiotic resistance gene, for example, tetracycline resistance gene, ampicillin resistance gene, chloramphenicol resistance gene, streptomycin resistance gene, puromycin resistance gene, kanamycin resistance gene, neomycin Resistance gene and the like.
  • the lacZ gene encoding j8-galatatosidase and the gusA gene encoding ⁇ -Dark mouth-idase can also be used as marker genes.
  • the product of these genes, j8-galactosidase or j8-Darc mouth nidase is easy to detect because the reaction for decomposing the substrate is a color reaction.
  • the marker genes are obtained by the Flp-FRT system in the third step. HSV genome power is cut out. Therefore, by detecting the disappearance of these marker gene products, it can be used to confirm whether the Flp-FRT system has functioned. Finally, since the HSV genome power is finally cut out, the marker protein may be harmful to living organisms such as humans!
  • an expression cassette for a marker gene having a structure in which the above-described marker gene is operably linked downstream of the promoter is inserted.
  • "operably linked” means that the promoter and the gene are linked so that the transcription of the gene downstream thereof is initiated by binding of the transcription factor to the promoter.
  • the promoter sequence used in the present invention can be appropriately selected from known promoters depending on the type of marker gene to be expressed and the like. For example, cytomegalowinores (CMV) -derived promoter, EF-1 ⁇ promoter, j8 actin promoter 1, SV40 promoter, TK promoter, P promoter, SRa promoter, R
  • the insertion of the ⁇ F site, the FRT site, and the marker gene expression cassette into the BAC plasmid can be performed, for example, by the method of Kim et al. (Kim SY. Et al .; Genome Res. 8: 404-12, 1998. ), The method of Kaname et al. (Kaname T., Huxley C; Gene 266: 147-53, 2001.), the method of Lee et al. (Lee EC. Et al .; Genomics 73: 56-65, 2001.), etc. It can be appropriately performed by a known method or a method analogous thereto.
  • a "gene encoding a target protein” is inserted into the shuttle vector.
  • the “gene encoding the target protein” is not particularly limited as long as it encodes a protein that exhibits an advantageous effect for treating or preventing cancer by being expressed in cancer cells.
  • genes include, for example, immunostimulatory genes, genes encoding anti-angiogenic proteins that inhibit cancer angiogenesis and effectively suppress cancer growth, tumor suppressor genes, cell membrane fusion proteins And the like.
  • immunostimulatory genes include costimulatory factors including secreted B7.1 (B7.1-Ig), interleukins such as IL-12, IL-18, IL-23 and IL-27, and transporter associated Examples include genes encoding with antigen processing (TAP) and the like. The expression of these genes in cancer cells induces antitumor immunity and enhances the antitumor effect of virus therapy.
  • B7.1-Ig secreted B7.1
  • interleukins such as IL-12, IL-18, IL-23 and IL-27
  • transporter associated Examples include genes encoding with antigen processing (TAP) and the like. The expression of these genes in cancer cells induces antitumor immunity and enhances the antitumor effect of virus therapy.
  • TRIP antigen processing
  • Examples of the gene encoding the anti-angiogenic protein include endostatin, angiostatin, dominant negative FGF receptor ⁇ / J, plate factor 4 and the like. By expressing these proteins in cancer cells, angiogenesis in cancer tissues can be inhibited and cancer growth can be suppressed.
  • Tumor suppressor genes include p53, RB, WT1, NF1, NF2, DCC, APC, prohibitin, pl6, BRCA1, MSH2, MLH1, PMS1, PMS2, VHL, IRF-1 and other genes. And genes encoding fusion proteins containing them.
  • tumor suppressor genes are inactivated, and cell growth is not restricted. By introducing these genes into cancer cells, it is possible to suppress unrestricted growth of cancer cells. Becomes possible.
  • a gene encoding a cell membrane fusion protein a gene encoding a virus surface protein or the like can be used.
  • examples of such a gene include GALV which is a membrane fusion protein derived from gibbon leukemia virus or a mutation thereof.
  • GALV-FMG Genes encoding the type GALV.fos (GALV-FMG) (X, Fu et al, Molecular Therapy Vol. 7, No. 6, June 2003); Measles virus proteins F and H (MV-F and MV-H ) (Bateman A.
  • the gene encoding the target protein described above is inserted into a shuttle vector as an expression cassette having a structure in which the gene is operably linked downstream of the promoter.
  • the promoter of the gene encoding the target protein it is preferable to use a promoter that does not exist in the natural HSV genomic DNA!
  • the promoter to be inserted into the BAC plasmid described above can be used, and among them, the CMV promoter is preferable.
  • the use of a promoter sequence can further increase the probability of obtaining a target recombinant HSV that is less susceptible to unexpected mutations due to homologous recombination.
  • the shuttle vector used in the present invention includes the ⁇ site and the FRT site as described above. Is incorporated. This allows the shuttle vector to be integrated into the HSV genome using the Cre- ⁇ system, and the HSV genomica can also cut out unnecessary sequences using the Flp-FRT system.
  • one or more marker genes are also inserted into the shuttle vector according to the present invention in order to confirm that the shuttle vector has been incorporated into the HSV virus.
  • the marker gene for example, a gene gene product of which emits light or a drug resistance gene can be used.
  • the marker gene is not particularly limited, and can be appropriately selected and used as the marker gene to be inserted into the above-described BAC plasmid.
  • Examples of the lacZ gene, gasA gene, GFP gene, RFP gene and the like can be used. Can be used. Since the marker to be incorporated into the shuttle vector is not cut out from the HSV genome by the Flp-FRT system and remains in the final product, a marker that does not encode a protein harmful to humans is preferable.
  • One that is harmless to humans and fulfills its purpose as a marker gene includes, for example, the lacZ gene.
  • the marker gene inserted into the shuttle vector and the marker gene inserted into the BAC plasmid preferably have different properties. This makes it possible to clearly confirm whether or not the shuttle vector has been inserted.
  • marker genes may be inserted into a shuttle vector as a marker gene expression cassette containing a operably linked promoter, or only one gene may be inserted into the shuttle vector, May be expressed using the promoter described in (1).
  • the shuttle vector used in the recombinant HSV production method according to the present invention preferably has a stuffer sequence.
  • a stuffer sequence is a DNA sequence that is not necessary for the growth of the virus and has no effect.
  • the genome of the native HSV is about 152 kb, and when the size of the genome exceeds about 170 kb, it has the property of not forming a virus.
  • an unnecessary portion of the HSV genome is cut out using the Flp-FRT system.
  • the stuffer sequence inserted in the present invention preferably has a length of about 5000 bases or more, more preferably about 5500 bases or more, more preferably about 5700 bases or more, and most preferably 5790 bases or more. is there.
  • a recombinant virus a huge amount of time and effort is spent in the process of selecting those that have succeeded in recombination and those that have failed.
  • the present method which can automatically remove an unusual vibrating virus, is very useful.
  • the expression cassette of the gene encoding the target protein, the ⁇ site, the FRT site, the expression cassette of the marker gene and the stuffer sequence can be inserted into a shuttle vector by a method known to those skilled in the art or a method analogous thereto. It is possible.
  • the shuttle vector is used to insert CreV into the HSV genome into which the BAC plasmid has been inserted.
  • the HSV genome obtained by integration using the ⁇ ⁇ ⁇ ⁇ ⁇ system is co-infected into a host together with a vector capable of expressing Flp recombinase.
  • the host cell is not particularly limited as long as it is a cell which can be cultured with HSV and can be cultured.Tumor cells and Vero cells can be used, and cells derived from mammals such as humans and monkeys are preferable. Can be
  • Flp recombinase When Flp recombinase is expressed in Vero cells, it acts on two FRT sites on the HSV genome and cuts out a region sandwiched between both FRT sites from the HSV genome. As a result, the desired recombinant HSV genome is obtained, and HSV is produced.
  • the final virus strain can be isolated, for example, by the limiting dilution method, and can be confirmed by digesting the viral DNA with a restriction enzyme and analyzing by Southern blotting.
  • the present invention also provides a pharmaceutical composition comprising the recombinant HSV produced by the method for producing a recombinant HSV according to the present invention.
  • the pharmaceutical composition according to the present invention contains the above-mentioned recombinant HSV as an active ingredient, and is useful for treating or preventing various cancer diseases.
  • the administration form is not particularly limited, and it may be administered orally or parenterally.
  • mammals eg, humans, mice, rats, guinea pigs, rabbits, dogs, dogs, monkeys, etc.
  • the dosage depends on the severity of the symptoms, the age, gender, weight, and sensitivity of the patient.
  • the method of administration, timing of administration, administration interval, nature of the pharmaceutical preparation, dispensing, kind but are not limited to vary depending on the type of active ingredient, from about 10 3 pfu To about 10 12 pfu, preferably from about lO pfu to about 10 1Q pfu, more preferably can be from about 10 8 pfu to about 5 X 10 9 pfu, administered once to several times each with injection administration .
  • the pharmaceutical composition according to the present invention may be prepared by using a recombinant HSV as it is, or by mixing it with a pharmaceutically acceptable carrier, stabilizer, emulsifier, or the like known per se, and using a conventional method. It may be formulated.
  • the dosage form is not particularly limited, and includes capsules, syrups, inhalants, injections, ointments, eye ointments, eye drops, nasal drops, ear drops, lotions and the like, with injections being particularly preferred. Agent.
  • the oral preparation is prepared by adding excipients and, if necessary, a binder, a disintegrant, a lubricant, a coloring agent, a flavoring agent and the like, and then powdering, fine granules, granules, Tablets, coated tablets, capsules, etc.
  • a lyophilized product can be used, and the injection can be administered to a tumor, a vein, an artery, a subcutaneous, a muscle, an intraperitoneal cavity, or a pleural cavity.
  • the above-mentioned pharmaceutical composition is useful for prevention or treatment of various cancer diseases. It has already been known that virus therapy using recombinant HSV is effective for all kinds of solid cancers (for example, see Non-patent Document 14 described above). All can be used. Specific diseases include, for example, brain tumor, head and neck cancer, esophageal cancer, stomach cancer, colon cancer, liver cancer, knee cancer, lung cancer, breast cancer, skin cancer, ovarian cancer, prostate cancer, renal cancer, bladder cancer, melanoma, neuroblast. Tumors and the like.
  • FIG. 1 shows an outline of the recombinant HSV production method according to the present invention.
  • the target protein The gene encoding the quality is denoted by " transgene ".
  • the upper part of Fig. 1 shows the expression cassette in which the transgene is operably linked downstream of the CMV promoter, at the loxP site of the plasmid into which the ICP6 gene and the lacZ gene have been deleted from the G47A virus genome and the BAC sequence has been inserted, and the marker gene ( (lacZ and Kan) and the steps of inserting a shuttle vector into which a loxP site and an FRT site have been inserted.
  • the middle and lower parts of FIG. 1 show the outline of the step of excision of an unnecessary region flanked by FRT sites by Flp recombinase from the thus prepared construct.
  • each step will be described in detail.
  • the G47 ⁇ virus genome was used as the backbone of the recombinant HSV, and the IL-18 and / or B7.1-Ig genes were inserted as the genes encoding the target protein.
  • pBelobacl 1 (7507 base pairs) purchased from ResGen.
  • the pBel obac 11 plasmid has a loxP site and a chloramuecole (Cm) resistance gene as a marker gene.
  • a BAC plasmid (pBAC-ICP6EF) was prepared by inserting a sequence containing the FRT site, the GFP gene and the ICP6 gene of G47A DNA into the pBelobaclI plasmid.
  • Figure 2 shows the structure of pBAC-ICP6EF.
  • sequences having the 5 'end (about 1300 base pairs) and the 3' end (about 1200 base pairs) of the ICP6 gene at both ends can be obtained by digestion with the restriction enzyme Ascl. .
  • a replication site of BAC plasmid, a Cm resistance gene and a GFP gene are arranged so as to be sandwiched between the loxP site and the FRT site.
  • Escherichia coli was co-infected with G47A DNA and pBAC-ICP6EF, and the BAC plasmid was inserted into the ICP6 site of G47 ⁇ DNA by homologous recombination. Since the pBAC-ICP6EF plasmid has only the 5 'and 3' ends of the ICP6 site, the G47A ZBAC construct ( Figure 1, upper panel; hereinafter referred to as "T-BAC”) lacks about lkb in the center of the ICP6 site. are doing. G-47A was 153 kb while T-BAC was 157.7 kb.
  • T-BAC expressing GFP was selected. Subsequently, the strain was inserted into electrocompetent Escherichia coli DH10B, and Cm-resistant strains were selectively grown. The obtained T BAC was purified and its structure was confirmed using a restriction enzyme.
  • FIG. 3 shows the plasmid (pVec9; 10569 bp) before inserting the gene encoding the target protein.
  • the lacZ gene and the kanamycin (Kan) resistance gene as marker genes are each expressively integrated, and include a loxP site, an FRT site, and a stuffer region. A part of the lambda sequence was used as the stuffer region.
  • the gene encoding the target protein can be incorporated into the restriction enzyme recognition region located downstream of the CMV promoter in the upper right of the figure.
  • the restriction enzyme recognition region includes restriction sites for BamHU Avrll, Stul, NotI, and SacII, and is designed so that many genes can be incorporated.
  • FIG. 4 shows a shuttle vector incorporating a gene encoding mIL-18 as a target protein
  • FIG. 5 shows a shuttle vector incorporating B7.1-Ig as a target protein
  • FIG. The shuttle vector into which the gene encoding the fusion protein of mIL-18 and B7.1-Ig is inserted is shown.
  • an internal ribosomal entry site (IRES) of encephalomyocarditis virus (ECMV) was used.
  • the shuttle vector was inserted into the loxP site of T-BAC using the Cre-loxP system (see the upper and middle panels in Fig. 1).
  • 150 ng of the shuttle vector incorporating the target gene, 1500 ng of T-BAC, and Cre recombinase purchased from NewEngland were mixed in a 1.5 ml eppendorf tube and placed at 37 ° C for 30 minutes.
  • the reaction was completed only by this process, and E. coli was transformed as usual.
  • the labor of recombination in E. coli was required, and the complicated steps could be omitted.
  • This method of reaction in a solution is considered to contribute not only to rapidity but also to the reduction of the risk of selecting the wrong virus.
  • target products were selected on LB plates by Kan resistance and Cm resistance. It was confirmed that the target recombination occurred in about 80%.
  • the T-BAC into which the shuttle vector was inserted was co-infected with Vero cells together with the FLPe-expressing plasmid (pCAGGSFlpelRESpuro), and the region (14.6 kb) flanked by the FRT sites was excised (Fig. 1, middle and bottom). reference).
  • FLPe is an in vitro developed site-specific recombinase derived from Saccharomyces cerevisiaein.
  • Plaques not expressing GFP were selected as target plaques by observing the replicated virus plaques infected with Vero cells with a fluorescence microscope. Excision using the Flp-FRT system completely removes the BAC sequence from the recombinant HSV-1 genome. This means that immunogenic and toxic GFP genes are removed from the viral genome. Of the viruses recovered at this stage, more than 99% of the target viruses did not express GFP. In addition, the virus obtained by replication was again infected into Vero cells, and plaques not expressing GFP were selected.Purification was performed twice by the limiting dilution method to obtain the target virus. Was. Whether the virus is the object of the virus, was sure the sequence by Southern blotting using restriction enzymes 0
  • Two 6-well plates were seeded with 3 ⁇ 10 5 cells each, and the virus was infected at a MOI of 0.01. After the infection, the cells were allowed to stand at 37.0 ° C. for 48 hours, and then the cells were collected and freeze-thaw was repeated three times to obtain a lysate. The titer of the increased virus was measured in Vero cells.
  • G47Aempty refers to a virus produced by the plasmid shown in FIG. 3 that does not contain the gene encoding the protein of interest.
  • Virus growth ability was somewhat inferior to G47 ⁇ , but sufficient growth ability for use in virus therapy was confirmed.
  • FIG. 7 shows the test results for a mouse neuroblastoma cell line (Neuro2a). Low MOI (Neuro2a).
  • the cell killing effect was as fast as G47 ⁇ or G47 ⁇ empty.
  • FIG. 8 shows test results for a mouse prostate cancer cell line (TRAMP).
  • TRAMP mouse prostate cancer cell line
  • the above-mentioned viruses were used to test the antitumor effect on a mouse tumor model.
  • mice The 5 X10 6 amino TRAMP- C2 mouse prostate cancer cells, syngeneic mice; the (C57B1Z6 males) were injected subcutaneously. Seven days later, mice were randomly grouped, and this day was set as day 0, and treatment with each virus was performed. On days 0 and 3, mice of each group were injected with 5 ⁇ 10 pfu / 20 ⁇ l of G47 ⁇ , G47 ⁇ empty, G47 ⁇ / IL18, G47 ⁇ 7, G47AZIL18ZB7 by injection into tumor tissue. .
  • FIG. 9 shows the results.
  • the group receiving G47AZIL18ZB7 markedly reduced the volume of TRAMP-C2 cancer.
  • Statistical significance was examined by t-test. It was concluded that the group receiving G47A / IL18 / B7 had a significantly reduced volume of T RAMP-C2 cancer on day 19 at a significance level of 5% compared to the group receiving G47AZIL18.
  • the group receiving G47AZIL18ZB7 was the same as the group receiving G47 ⁇ ZB7. It was concluded that the volume of TRAMP-C2 cancer was significantly reduced on day 21 at a significance level of 5% as compared to the control group.
  • Vero cells were seeded on a 24-well plate at 1 ⁇ 10 5 cells each, and cultured, and the G47 ⁇ ICP6 gene-deleted virus (T-empty) prepared using T—BAC and G47 ⁇ ICP6
  • T-empty Three clones of each of the viruses (T-mfIL12) having the mouse IL-12 gene inserted into the gene site were infected at a MOI of 2 for 2 hours each for 1 hour. After culturing at 37 ° C. and 39.5 ° C. for 18 hours, the culture solution was collected, and the content of mouse IL-12 was measured by ELISA assay. T-empty infection did not show any expression of IL-12, whereas T-mfIL12 infection showed strong expression of IL-12. Particularly at 37 ° C, where virus replication was active, higher expression levels were observed than at 39.5 ° C. Table 3 shows the results.
  • a virus (T-empty) lacking the G47 ⁇ ICP6 gene and a mouse IL-12 gene inserted into the G47 ⁇ ICP6 gene site were used in AZJ mice with a subcutaneous tumor of Neuro2a with a diameter of about 5 mm on both left and right abdomen.
  • the virus (T-mflL12) and PBS (Mock) containing 10% glycerol as a control were injected into the left tumor tissue only twice on days 0 and 3 twice (5 to 6 animals each). ).
  • the tumor tissue was measured, and the volume was determined by length x width x height (mm).
  • the results are shown in the figure.
  • tumor growth was significantly suppressed in the T-empty group (country) and the T-mflL12 group ( ⁇ ), as compared with the Mock group ( ⁇ ).
  • the T-mflL12 administration group showed a significantly stronger antitumor effect than the T-empty administration group.
  • the T-empty administration group showed a significant tumor growth inhibitory effect compared to the Mock administration group.
  • the T-mflL12 administration group exhibited both Mock administration and T-empty administration groups. Also showed significant suppression of tumor growth.
  • FIG. 1 is an explanatory diagram showing an outline of a method for producing recombinant HSV-1 according to the present invention.
  • FIG. 2 shows a BAC plasmid used for producing the recombinant HSV-1 according to the present invention.
  • FIG. 3 shows a shuttle vector used in the present invention.
  • FIG. 4 shows a shuttle vector incorporating the IL-18 gene.
  • FIG. 5 shows a shuttle vector incorporating the B7-1 Ig gene.
  • FIG. 6 Shows a shuttle vector incorporating IL-18 gene and B7-1-Ig gene.
  • FIG. 7 shows the test results of the cell killing effect on Neuro2a.
  • FIG. 8 shows the test results of cell killing effect on TRAMP.
  • FIG. 9 shows the test results of the antitumor effect of a mouse tumor model of G27 ⁇ expressing IL-18 and Z or B7.
  • FIG. 10 shows the test results of the antitumor effect of G27 ⁇ expressing IL-12 on a mouse tumor model.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 癌細胞において目的タンパク質を発現させることが可能な組換え単純ヘルペスウイルス(HSV)を、迅速かつ確実に作成する方法を提供する。本発明に係る組換えHSVの作製方法は、loxP部位およびFRT部位を有し、loxP部位とFRT部位との間にマーカー遺伝子の発現カセットが少なくとも1種類挿入されたBACプラスミドを、単純ヘルペスウイルス(HSV)ゲノムに挿入する第一工程と、目的タンパク質をコードする遺伝子の発現カセットが少なくとも1種類と、少なくとも1種類のマーカー遺伝子と、loxP部位およびFRT部位と、がそれぞれ挿入されたシャトルベクターを作製し、Creリコンビナーゼを用いてシャトルベクターをHSVゲノムのloxP部位に挿入する第二工程と、HSVゲノムと、Flpリコンビナーゼを発現可能なベクターと、を宿主に共感染させ、該ゲノム上のFRT部位に挟まれた領域を切り出し、目的の遺伝子組換えHSVを産生させる第三工程と、を含むものである。

Description

明 細 書
組換え単純へルぺスウィルスの作製方法
技術分野
[0001] 本発明は、標的細胞において目的のタンパク質を発現させることが可能な遺伝子 組換え単純へルぺスウィルスの作製方法、およびこの組換えへルぺスウィルスを含 む医薬組成物に関する。
背景技術
[0002] 近年、ウィルス感染の分子細胞的機構および癌発生に関する遺伝学的機序や癌 細胞増殖の分子生物学的機構などの知見に基づ 、て、ウィルスゲノムを遺伝子工学 的に改変し、癌細胞で選択的に複製するウィルスを作製して、癌治療に応用する試 みがなされている。
[0003] 遺伝子組換えウィルスを癌治療に応用するという概念は、 1991年に Martuzaらによ り提唱された (例えば、非特許文献 1を参照。 ) oウィルスはそれ自体病原性を有する ものが多ぐそのままヒト等に投与すると正常細胞にも悪影響を及ぼす。しかし、遺伝 子組換えで特定の遺伝子を欠失または変異させることによって、正常細胞ではウイ ルス複製ができな 、が、増殖が盛んな腫瘍細胞では欠落した遺伝子の機能が補償 されるなどにより複製できるウィルスを作製することができる。
[0004] 遺伝子組換えによって癌細胞内のみで選択的に複製するよう改変された癌治療ゥ ィルスは、癌細胞に感染すると in situで複製し、その過程で宿主の癌細胞を死滅させ る。複製したウィルスは周囲に散らばって再び癌細胞に感染し、その後、複製→細胞 死→感染を繰り返して抗腫瘍効果を現す。一方、正常細胞に感染した治療用ウィル スは複製しな 、ため、正常組織には害が生じな 、。
[0005] このような変異ウィルスとして、これまでに、単純へルぺスウィルス I型(以下「HSV
1」という。)ゲノムから、チミジンキナーゼ (tk)遺伝子を欠失させた変異ウィルス (例 えば、上記非特許文献 1を参照。)、 y 34. 5遺伝子を欠失させ、 ICP6遺伝子を不活 化させた HSV— 1 (以下「G207」と言う。 ) (例えば、非特許文献 2〜14を参照)、 γ 3 4. 5遺伝子および ICP6遺伝子に加え、 ICP47遺伝子 47遺伝子ともいう)も不活 化させた HSV— 1 (以下「G47 Δ」という。例えば、特許文献 1および非特許文献 15 を参照。)等が開発されている。これらの変異ウィルスは、正常細胞では複製できな いが、腫瘍細胞では複製する能力を保持する。特〖こ G47 Aは、 3つの遺伝子を変異 させたことにより、腫瘍特異性および安全性が高く治療用ウィルスとして非常に有用 である。
[0006] 一方、癌治療用ウィルスは、殺細胞効果を示すだけではなぐ抗腫瘍免疫を惹起 する機能も有している。本発明者らは、免疫系が正常なマウスを用いた研究により、 腫瘍内投与された遺伝子組換え HSV— 1が、腫瘍内で増殖して殺細胞効果を示す ばかりでなぐ特異的抗腫瘍免疫を惹起して、その抗腫瘍効果を増強することを明ら かにした (例えば非特許文献 6、 7および 16を参照)。例えば、 AZJマウスの皮下に 作成した N18腫瘍 (神経芽腫)へ G207を腫瘍内投与すると、 N18細胞に対する特 異的な細胞傷害性 Τ細胞 (cytotoxic T lymphocytes; CTL)の活性上昇を伴う全身性 抗腫瘍免疫が誘導され、遠隔の皮下腫瘍あるいは脳内腫瘍の増大も抑制された。 G 207治療で治癒したマウスは腫瘍特異的な防御免疫を獲得し、 N18細胞特異的 CT L活性上昇は 1年以上維持された。すなわち、癌治療用 HSV— 1の腫瘍内投与は in situの癌ワクチンとしても作用し、腫瘍抗原の同定を必要とせず、腫瘍細胞などの培 養を必要とする ex vivo法に比べて簡便であり、原発巣を治療することで、全身性抗 腫瘍免疫を介して転移巣をも制御できる可能性もあって臨床上非常に有利である。
[0007] 本発明者らは、癌治療用ウィルスを免疫刺激性遺伝子発現と組み合わせると抗腫 瘍効果が増強されることを、非増殖性 HSV— 1ベクターである HSV— 1アンプリコン( amplicon)を用いて確認した。分泌型の T細胞共刺激因子 B7. 1— Igを発現するアン プリコンを、 G207をヘルパーとして作製し、得られた混合ベクターを、免疫原性の低 V、Neuro2a (マウス神経芽腫)の脳腫瘍ある!/、は皮下腫瘍に直接投与した。その結 果、 G207は腫瘍細胞内で複製しながら殺細胞効果を示す一方で、アンプリコンが 感染腫瘍細胞から持続的に B7. 1— Igを周囲に分泌するため、強力な抗腫瘍効果と 特異的抗腫瘍免疫の惹起が得られた (例えば、非特許文献 17を参照)。また、インタ 一ロイキン (IL)— 12発現アンプリコンと G207の組み合わせでも抗腫瘍効果の増強 が得られて 、る (例えば非特許文献 18を参照)。 [0008] ウィルス療法の抗腫瘍免疫を増強する方法としては、アンプリコンを用いる方法の ほかに、治療用組換え HSV— 1のゲノムに、癌の治療に関与するタンパク質をコード する遺伝子を直接組み込むことにより、ウィルスを増幅型ベクターとして機能させる方 法も考えられる。アンプリコンとの組合せではなぐ G207や G47 A等の治療用組換 え HSV— 1ゲノムに治療関連タンパク質をコードする遺伝子を組み込めば、腫瘍で 増幅された遺伝子配分が得られることに加え、安定して大量のベクターを常に得られ るという利点がある。
[0009] 遺伝子組換え HSV— 1の作成は、従来相同組換え法によって行われてきた。相同 組換えとは、外来遺伝子がゲノムに組み込まれる際、相同性の高い場所により高い 確率で組み込まれる組換えをいう。従って、一つのゲノムに相同性の高い場所が複 数箇所存在する場合には、外来遺伝子がどこに組み込まれる力を制御するのが困難 である。特に、 HSV— 1の場合ゲノムが大きぐ目的とする遺伝子組換え体を得るた めには、何万もの候補ウィルス株のスクリーニング、選択、精製、分子細胞レベルの 確認等、多大な労力が必要とされ、通常 1つの遺伝子組換え HSV— 1を作製するの に 1〜2年を要していた。
[0010] これに対し、 G207と構造が類似した MGH— 1と呼ばれる遺伝子組換え型癌治療 用ウィルスのゲノムに、免疫刺激性遺伝子などの癌治療用遺伝子を効率よく組み込 む方法として、バクテリア人工染色体(Bacterial Artificial chromosome; BAC)を用い る方法が提案されている(非特許文献 19)。この方法では、まず、癌治療用ウィルス のゲノムに、治療用遺伝子と、 Creリコンビナーゼの標的配列である ΙοχΡ部位と、 Flp リコンビナーゼの標的配列である FRT部位と、少なくとも 1つのマーカー遺伝子等を 組み込んだ BACプラスミドを挿入する。次に、目的の治療用遺伝子を組み込んだシ ャトルベクターをこのゲノムに挿入する力 その際、相同組換えではなぐ Flp-FRT システムを利用する。これにより、目的の組換え体を得られる確率が高くなる。こうして 得られたウィルスゲノムをべ口細胞に形質転換させ、さらに Cre— ΙοχΡシステムを利 用してゲノムの不要な領域を切り出し、ウィルスを産生させる。
特許文献 1 :US2002Z0187163A1号公報
非特許文献 l :Martuza, R.L. et al.; Science 252: 854-6 (1991) 非特許文献 2:Chahlavi, A. et al.; Neoplasia 1: 162-169 (1999) 非特許文献 3: Hunter, W. D. et al.; J Virol 73: 6319-6326 (1999)
非特許文献 4:Chahlavi, A. et al.; Gene Ther 6: 1751-1758 (1999)
非特許文献 5:Nakamura, S. et al.; Glia 28: 53-65 (1999)
非特許文献 6:Todo, T. et al,; Hum Gene Ther 10: 2741-2755 (1999)
非特許文献 7:Todo, T. et al,; Hum Gene Ther 10: 2869-2878 (1999)
非特許文献 8:Todo, T. et al,; Cancer Gene Ther.7: 939-946 (2000)
非特許文献 9:Markert, JM. et al,; Gene Ther.7: 867-874 (2000)
非特許文献 10:Todo, T. et al,; Mol. Ther.2: 588-595 (2000)
非特許文献 ll:Nakano, K. et al,; Mol. Ther.3: 431-437 (2001)
非特許文献 12:Varghese, S. et al,; Hum. Gene Ther.12: 999-1010 (2001) 非特許文献 13:Jorgensen, TJ. et al,; Neoplasia 3: 451-456 (2001)
非特許文献 14:Todo, T. et al,; Tumor Suppressing Viruses, Genes, and Drugs- Innovative Cancer Therapy Approaches. San Diego, Academic Press:45- 75 (2001) 非特許文献 15:Todo, T. et al,; Proc. Natl. Acad. Sci. USA 98: 6396-6401 (2001) 非特許文献 16:Toda, M. et al,; Hum. Gene Ther., 10: 385-393 (1999)
非特許文献 17:Todo, T. et al.; Cancer Res 61:153-161 (2001)
非特許文献 18:Toda, M. et al.; J Immunol 160:4457-4464 (1998)
非特許文献 19:Saeki, Y. et al.; Mol. Ther.3:S45- 46 (2001)
発明の開示
発明が解決しょうとする課題
し力しながら、非特許文献 19の方法では、シャトルベクターを挿入する際に Flp—F RTシステムを利用するので、この反応を、 Flpリコンビナーゼを発現するプラスミドを 有する大腸菌内で行わせなければならない。そのため、 Flpリコンビナーゼを発現す るプラスミドと、シャトルベクタープラスミドの両方を大腸菌に形質転換させなければな らないが、大腸菌への形質転換率は高くない。 2種類のプラスミドを形質転換させる 確率は、 2個の独立した事象の確率の積となり、両者を含む大腸菌を得られる確率は 非常に低い。また、該大腸菌は、上述の BACプラスミドが挿入されたウィルスゲノムも 有していなければならず、このように特殊な大腸菌を大量に調整するのは困難である
[0012] また、非特許文献 19の方法によれば、最終産物であるウィルスゲノム上に緑色蛍 光タンパク質 (以下「GFP」という。)をコードする遺伝子が残されるが、 GFPは免疫原 性が高ぐ毒性もあるため、ヒトの癌治療に応用するためには大きな支障となりうる。
[0013] さらに、この方法では、最後に Cre— ΙοχΡシステムが機能して切り出される部分に 赤色蛍光タンパク質 (以下「RFP」という。)遺伝子を組み込んでおき、赤色の蛍光の 消失によって、最終産物の選択と確認を行っている。し力しながら、 RFPは発現のタ イミングが遅ぐし力も蛍光も十分に明るくないため検知に最適であるとはいえない。 その結果、例えば、 Cre— ΙοχΡが正常に機能せず、不要な配列が切り出されていな いウィルスゲノムも、目的のゲノムとして選択されてしまう可能性がある。このことは、 特に、切り出される予定の配列中に、免疫原性や毒性のあるタンパク質をコードする 遺伝子が含まれる場合、人体への応用の障害となる。
[0014] 非特許文献 19の方法ではまた、治療用遺伝子のプロモーターとして、ヘルぺスゥ ィルスに固有の配列を利用したことから、相同組換えによる不測の変異が生じる可能 性が高いという問題もあった。
[0015] そこで、本発明は上記の問題を解決し、癌細胞において目的タンパク質を発現させ ることが可能で、安全性、癌細胞におけるウィルスの複製能および抗腫瘍効果の点 でも飛躍的に進歩した実用的な組換え単純へルぺスウィルスを、迅速かつ確実に、 作製する方法を提供することを目的とする。
課題を解決するための手段
[0016] 本発明者らは、上記課題に鑑みて、鋭意研究を重ねた結果、 HSVゲノムにシャト ルベクターを挿入する際に Cre— ΙοχΡシステムを利用すること〖こより、従来法と比較 して飛躍的に速ぐ目的タンパク質を発現させることが可能な組換え HSVを得られる ことを見出した。本発明者らは、また、最終産物のウィルスが GFPではなく lacZ遺伝 子をマーカー遺伝子として有する;最終産物の選択と確認に GFPの消失を用いる; 治療用遺伝子のプロモーターとして、天然のへルぺスウィルスゲノムに存在しな 、配 列を用いる;最終段階で Flp— FRTシステムによって切り出される領域にスタッファ配 列を組み込んでおく等の設計をすることにより、本発明に係る方法をより有用なもの にできることを見出した。
[0017] さらに、本発明に係る方法を用いる際、基本骨格として G207をさらに改変した第三 世代の G47 Aウィルスゲノムを利用することにより、安全性、癌細胞におけるウィルス の複製能、抗腫瘍効果の点で非常に優れた、実用的な組換え単純へルぺスウィル スが得られることを確認し、本発明を完成するに至った。
[0018] 即ち、本発明は、〔1〕癌細胞において目的タンパク質を発現させることが可能な組 換え単純へルぺスウィルスの作製方法であって、 ΙοχΡ部位および FRT部位を有し、 前記 ΙοχΡ部位と FRT部位との間に、プロモーターの下流にマーカー遺伝子が機能 的に結合された構造を有するマーカー遺伝子の発現カセットが少なくとも 1種類挿入 された BACプラスミドを、単純へルぺスウィルスゲノムに挿入する第一工程と、プロモ 一ターの下流に前記目的タンパク質をコードする遺伝子が機能的に結合した構造を 有する目的タンパク質をコードする遺伝子の発現カセットが少なくとも 1種類と、少なく とも 1種類のマーカー遺伝子と、 ΙοχΡ部位および FRT部位と、がそれぞれ挿入され たシャトルベクターを作製し、 Creリコンビナーゼを用いて、前記目的タンパク質をコ ードする遺伝子と前記マーカー遺伝子とが発現可能な構成となるように該シャトルべ クタ一を前記単純へルぺスウィルスゲノムの ΙοχΡ部位に挿入する第二工程と、前記 第二工程で得られた前記単純へルぺスウィルスゲノムと、 Flpリコンビナーゼを発現 可能なベクターと、を宿主に共感染させ、該ゲノム上の FRT部位に挟まれた領域を 切り出し、目的の遺伝子組換え単純へルぺスウィルスを産生させる第三工程と、を含 む方法;〔2〕前記第二工程を液相中で行う、上記〔1〕に記載の方法;〔3〕前記第一ェ 程に先立ち、前記単純へルぺスウィルスの γ 34. 5遺伝子および ICP6遺伝子が欠 失または不活化されている、上記〔1〕または〔2〕に記載の方法;〔4〕さらに、前記単純 ヘルぺスウィルスの ICP47遺伝子が欠失または不活ィ匕されている、上記〔3〕に記載 の方法;〔5〕前記 BACプラスミドに挿入されたマーカー遺伝子力 緑色蛍光タンパク 質 (GFP)をコードする遺伝子および Ζまたは抗生物質耐性遺伝子である、上記〔1〕 から〔4〕のいずれか 1項に記載の方法;〔6〕前記少なくとも 1種類の目的タンパク質を コードする遺伝子の発現カセットに含まれるプロモーター力 天然単純へルぺスウイ ルスゲノムに存在しな 、塩基配列からなるプロモーターである、上記〔1〕から〔5〕の!ヽ ずれ力 1項に記載の方法;〔7〕前記単純へルぺスウィルスのゲノムに存在しない塩基 配列からなるプロモーターが、 CMVプロモーターである、上記〔1〕から〔6〕のいずれ 力 1項に記載の方法;〔8〕前記シャトルベクターに挿入されたマーカー遺伝子力 lac Z遺伝子および Zまたは抗生物質耐性遺伝子である、上記〔1〕から〔7〕の 、ずれか 1 項に記載の方法;〔9〕前記シャトルベクターに挿入されたマーカー遺伝子力 前記 B ACプラスミドに挿入された抗生物質耐性遺伝子とは異なる抗生物質耐性遺伝子を 含む、上記〔8〕に記載の方法;〔10〕前記目的タンパク質をコードする遺伝子が、免 疫刺激性遺伝子、抗血管新生作用性タンパク質、細胞膜融合タンパク質をコードす る遺伝子および癌抑制遺伝子力もなる群力も選択される 1以上の遺伝子である、上 記〔1〕から〔9〕のいずれか 1項に記載の方法;〔11〕前記免疫刺激遺伝子が、共刺激 因子、 IL— 12、 IL— 18、 IL— 23、 IL— 27および transporter associated with antigen processing (TAP)力 なる群から選択される 1以上のタンパク質をコードする 遺伝子である、上記〔10〕に記載の方法;〔12〕前記抗血管新生作用タンパク質をコ ードする遺伝子が、エンドスタチン、アンジォスタチン、 dominant negative FGF receptorおよび血小板因子 4からなる群力 選択される 1以上のタンパク質をコードす る遺伝子である、上記〔10〕に記載の方法;〔13〕前記細胞膜融合タンパク質をコード する遺伝子が、ウィルス表面タンパク質である、上記〔10〕に記載の方法;〔14〕前記 癌抑制遺伝子が、 p53遺伝子である、上記〔10〕に記載の方法;〔15〕前記シャトルべ クタ一が、スタッファ配列を含む、上記〔1〕から〔14〕のいずれか 1項に記載の方法;〔 16〕前記スタッファ配列力 約 5000塩基長以上である、上記〔15〕に記載の方法;〔1 7]上記〔1〕から〔16〕の 、ずれか 1項に記載の方法によって作製された組換え単純 ヘルぺスウィルス;〔18〕上記〔1〕から〔17〕の 、ずれ力 1項に記載の方法で作製され た組換え単純へルぺスウィルスを含む医薬組成物;〔19〕各種癌疾患の治療剤また は予防剤である、上記〔18〕に記載の医薬組成物;〔20〕上記〔18〕に記載の医薬組 成物を投与することを含む、癌の予防または治療方法、に関する。
本発明によれば、短期間に高い収率で目的の組換え HSVを得ることが可能となつ た。本方法によれば、従来 1〜2年を要した組換えウィルスの作製を、例えば 2〜3ケ 月で行うことができ、しかも 4〜5種類の異なる遺伝子組換え HSVを同時に作製する ことができる。
[0020] また、本発明の効果は、骨格に G47 A HSV—1ゲノムを用いることによってさらに 高められ、安全性および抗腫瘍効果がさらに高い実用的な癌治療用 HSVを得ること ができる。
[0021] さらに、本発明によれば、腫瘍細胞において殺細胞効果を発揮する組換え HSVに 、 in situでの抗腫瘍免疫を惹起する効果、癌抑制効果、抗血管新生作用効果等を付 与することが可能となり、ウィルス療法の抗腫瘍効果を増強することができる。
発明を実施するための最良の形態
[0022] 以下に、本発明に用いられる用語等の意義を明確にし、本発明を詳細に説明する
[0023] 本発明に係る組換え HSVの作製方法では、まず、 HSVゲノムに、 BACシステムを 用いて ΙοχΡ部位と FRT部位を挿入する。一方、癌細胞で発現させたい目的タンパク 質をコードする遺伝子は機能的に結合されたプロモーターと共にシャトルベクターに 挿入しておく。このシャトルベクターにも ΙοχΡ部位および FRT部位を適当な配置に揷 入しておくことにより、まず Creリコンビナーゼを用いて、シャトルベクターを HSVゲノ ムに揷入し、続いて Flpリコンビナーゼを用いて、この HSVゲノムから不要な部分を 切り出し、目的とする変異を持った HSVゲノムを得ることができる。
[0024] シャトルベクターを HSVゲノムに組み込む第二工程で Cre— ΙοχΡシステムを利用 し、 Flp—FRTシステムを不要な領域を切り出す第三工程で利用することによって、 第二工程まで溶液中で、例えば試験管やエツペンドルフチューブ中等で行うことがで き、単純な操作で、迅速かつ高精度に組換えを行うことができる。また、第二工程で シャトルベクターを宿主細胞中に導入する必要がなくなるので、収率を顕著に高くす ることがでさる。
[0025] 本発明にお 、て、「組換え単純へルぺスウィルス」とは、遺伝子組換え技術によって 、癌細胞で目的タンパク質を発現させることができるように改変された単純ヘルぺスゥ ィルス(以下「HSV」という。)である限り特に限定されず、天然の HSVの遺伝子のう ち、どの遺伝子を改変したものであっても、またいかなる外来遺伝子を挿入したもの であってもよい。また、血清型は I型(HSV— 1)であっても II型(HSV— Π)であっても よいが、好ましくは HSV—1が用いられる。
[0026] HSV- 1は、エンベロープを有する二本鎖 DNAウィルスに分類され、癌治療に有 利な以下の特徴を備えて 、る。 1)ヒトのあらゆる種類の細胞に感染可能である; 2)ゥ ィルスの生活環とゲノム配列が解明されて ヽる; 3)ウィルス遺伝子の大半は機能が判 明しており、遺伝子操作を加えることが可能である; 4)ウィルスゲノムが大き 、(約 15 2kb)為に、大きな遺伝子や複数の遺伝子を組み込むことができる。さらに、 HSV— 1は臨床応用に適した以下の利点を備える; 5)比較的低 ヽ multiplicity of infection ( MOI)で全ての細胞の死滅が可能である; 6)増殖を抑制する抗ウィルス薬が存在す る; 7)血中抗 HSV— 1抗体は、ウィルスの細胞力 細胞への感染拡大に影響しな 、 ; 8) HSV- 1に感受性を示すマウスやサルが存在するために、動物で安全性や効 果の前臨床的評価を行える; 9)ウィルス DNAが宿主細胞のゲノムに取り込まれず染 色体外に存在する。
[0027] 本発明に用いられる HSVは、第一工程に先立って、正常細胞では増殖できず、癌 細胞でのみ増殖できるよう、遺伝子組換え技術により改変された、もしくは自然に変 異した HSV (以下、単に「組換え HSV」という。)が好ましい。非増幅性アンプリコンを 用いる場合に比較して、糸且換え HSVは癌細胞で増幅するので、より多くの目的タン ノ ク質を発現することができる。
[0028] このようなウィルスとしては、 γ 34. 5遺伝子および ICP6遺伝子が欠失または不活 化されている HSV、これら 2つの遺伝子にカ卩えて、さらに ICP47遺伝子が欠失また は不活ィ匕されて ヽる HSV等が挙げられる。
[0029] y 34. 5遺伝子産物は、 double- stranded RNA- activated protein kinase (PKR)の 機能に拮抗するタンパク質である。正常細胞では、 HSV— 1感染に呼応して PKRが リン酸化され、それが翻訳開始因子 elF— 2 αをリン酸ィ匕し、その結果ウィルスのタン パク質合成が抑制される。従って、 Ύ 34. 5遺伝子が機能しないと、正常細胞ではゥ ィルスの複製が抑制されることになる。しかし、癌細胞、特に Rasシグナル伝達経路が 活性ィ匕している細胞では PKRがすでに抑制されているため、 γ 34. 5を欠失した変 異 HSV— 1でもウィルスの複製が可能となる。 [0030] ICP6遺伝子は、リボヌクレオチド還元酵素(ribonucleotide reductase; RR)の大サ ブユニットをコードする遺伝子である。 RR遺伝子を除去または不活化すると、 HSV 1は非***細胞 (正常細胞)では複製できない。しかし、***が盛んで RR活性が 上昇した細胞では、ウィルスの欠落酵素が補われて複製が可能となる。
[0031」 ICP47タンパク質は、 transporter associated with antigen processing (TAP)を阻 害することによって、感染細胞の MHC Class Iの発現を低下させ、ウィルスが宿主の 免疫サーベイランスカゝら逃れるように作用する。このため、 ICP47遺伝子を不活化す ると、感染癌細胞の MHC Class I発現が維持されるため、抗腫瘍免疫が増強される。
[0032] γ 34. 5遺伝子および ICP6遺伝子が欠失または不活ィ匕された HSVとしては、例え ば上述の G207や G207と構造が類似した MGH— 1が挙げられ、 γ 34. 5、 ICP6お よび ICP47遺伝子の 3つが欠失若しくは不活ィ匕された HSVとしては、例えば上述の G47 Aが挙げられる。中でも、 G47 Aは三重変異により、複製の腫瘍特異性および 安全性が高ぐウィルス療法に好適である。
[0033] なお、本発明にお!/、て、上記遺伝子( γ 34. 5遺伝子、 ICP6遺伝子、 ICP47遺伝 子等)の発現の抑制方法は特に限定されず、遺伝子を欠失させる方法、遺伝子の途 中に他の DNAを挿入して不活化させる方法等、当業者は適宜方法を選択すること ができる。
[0034] 本発明に係る組み換え HSVの作製方法では、 Cre— ΙοχΡ系および、 Flp— FRT 系を利用するために、 HSVゲノムに ΙοχΡ部位および FRT部位を予め組み込んでお く必要があり、このために BACシステムを利用する。 BACプラスミドは、大腸菌の F因 子プラスミドをシングルコピーで持つ人工染色体であり、比較的大きな DNA断片を 安定に保持することができるので、ある生物のゲノム DNAに所望の外来遺伝子を組 み込むのに有用である。所望の外来遺伝子が組み込まれた BACプラスミドは大腸菌 で増殖させることができ、さらに、直線ィ匕して HSVゲノムと共に宿主 (例えば Vero細 胞ゃ大腸菌等)に co-transfectすれば、相同組換えによって HSVゲノムに組み込む ことができる。 ΙοχΡ部位および FRT部位を BACプラスミドに組み込む操作、および 直線化 BACプラスミドおよび HSVの co-transfectは、当業者であれば自体公知また はそれに準ずる方法に従って容易に行うことができる。 [0035] BACプラスミドが HSVゲノムに組み込まれたかどうかを確認するために、上記 BAC プラスミドには少なくとも 1種類のマーカー遺伝子を挿入しておくことが好ましい。マー カー遺伝子としては、例えば、その遺伝子産物が発光するものや、薬剤耐性遺伝子 を用いることができる。
[0036] 遺伝子産物の発光を検出することにより、マーカーとして使用できる遺伝子としては 、 GFP遺伝子、 RFP遺伝子、ルシフェラーゼ遺伝子等が挙げられる。また、薬剤耐 性遺伝子としては、抗生物質耐性のものが好ましぐ例えば、テトラサイクリン耐性遺 伝子、アンピシリン耐性遺伝子、クロラムフエ二コール耐性遺伝子、ストレプトマイシン 耐性遺伝子、ピューロマイシン耐性遺伝子、カナマイシン耐性遺伝子、ネオマイシン 耐性遺伝子等が挙げられる。また、 j8—ガラタトシダーゼをコードする lacZ遺伝子、 β—ダルク口-ダーゼをコードする gusA遺伝子も、マーカー遺伝子として用いること ができる。これらの遺伝子の産物である j8—ガラクトシダーゼまたは j8—ダルク口ニダ ーゼは、それぞれ基質を分解する反応が呈色反応であるため検出が容易で好ましい
[0037] 本発明に係る HSVの作製方法では、これらのマーカー遺伝子を、 BACプラスミド 上の ΙοχΡ部位と FRT部位の間に挿入しておけば、第三工程で Flp— FRTシステム により該マーカー遺伝子が HSVゲノム力 切り出される。従って、これらのマーカー 遺伝子産物が消失したことを検出することによって、 Flp— FRTシステムが機能した 力どうかの確認にも用いることができる。また、最終的に、 HSVゲノム力も切り出され るので、マーカータンパク質がヒト等の生体に有害なものであってもよ!/、。
[0038] 以上から、 BACプラスミドに挿入されるマーカー遺伝子は、ヒトに有害であるカゝ否か に関わらず、 目的ウィルスを選択しやすいものが有用であると言え、かかるマーカー 遺伝子として、発現が速ぐ蛍光が明るい GFPをコードする遺伝子が最も好ましい。
[0039] 本発明で用いられる BACプラスミドには、上述のマーカー遺伝子が、プロモーター の下流に機能的に結合した構造を有するマーカー遺伝子の発現カセットが挿入され る。本発明において「機能的に結合した」とは、転写因子がプロモーターに結合する ことにより、その下流の遺伝子の転写が開始されるように、プロモーターと遺伝子が結 合していることを意味する。 [0040] 本発明で用いられるプロモーター配列は、発現させたいマーカー遺伝子の種類等 により、公知のプロモーター力も適宜選択して用いることができる。例えば、サイトメガ ロウイノレス(CMV)由来プロモーター、 EF— 1 αプロモーター、 j8ァクチンプロモータ 一、 SV40プロモーター、 TKプロモーター、 Pプロモーター、 SR aプロモーター、 R
L
NA1. 8プロモーターなどが挙げられる。
[0041] なお、 BACプラスミドへの ΙοχΡ部位、 FRT部位、およびマーカー遺伝子発現カセ ットの挿入は、例えば Kimらの方法(Kim SY. et al.; Genome Res. 8:404-12, 1998.)、 Kanameらの方法(Kaname T., Huxley C; Gene 266: 147-53, 2001.)、 Leeらの方法( Lee EC. et al.; Genomics 73:56-65, 2001.)等、自体公知またはそれに準ずる方法に より、適宜行うことができる。
[0042] 本発明においてシャトルベクターには、「目的タンパク質をコードする遺伝子」が挿 入されている。本発明において「目的タンパク質をコードする遺伝子」とは、癌細胞に おいて発現させることにより、癌の治療または予防に有利な効果を示すタンパク質を コードする遺伝子であれば特に限定されない。このような遺伝子としては、例えば免 疫刺激性遺伝子、癌の血管新生を阻害して癌の増殖を効果的に抑制する抗血管新 生作用性タンパク質をコードする遺伝子、癌抑制遺伝子、細胞膜融合タンパク質をコ ードする遺伝子などが挙げられる。
[0043] 免疫刺激性遺伝子としては、分泌型 B7. 1 (B7. 1— Ig)を含む共刺激因子、 IL— 12、 IL— 18、 IL— 23、 IL— 27等のインターロイキン、 transporter associated with antigen processing (TAP)等をそれぞれコードする遺伝子が挙げられる。これらの遺 伝子が癌細胞で発現することにより、抗腫瘍免疫が惹起され、ウィルス療法の抗腫瘍 効果が増強される。
[0044] 抗血管新生作用タンパク質をコードする遺伝子としては、エンドスタチン(endostatin )、アンジォスタチン (angiostatin)、 dominant negative FGF receptorゝ血/ J、板因子 4 等が挙げられる。これらのタンパク質が癌細胞で発現することにより、癌組織における 血管新生を阻害し、癌の増殖を抑制することができる。
[0045] 癌抑制遺伝子としては、 p53、 RB、 WT1、 NF1、 NF2、 DCC、 APC、プロヒビチン 、 pl6、 BRCA1、 MSH2、 MLH1、 PMS1、 PMS2、 VHL、 IRF— 1等の遺伝子お よびこれらを含んで融合タンパク質をコードする遺伝子が挙げられる。癌細胞では、 癌抑制遺伝子が不活ィ匕し、細胞の増殖が制限されない状態になっているため、これ らの遺伝子を癌細胞に導入することによって、癌細胞の無制限な増殖を抑制すること が可能となる。
[0046] 細胞膜融合タンパク質をコードする遺伝子としては、ウィルス表面タンパク質をコー ドする遺伝子等を用いることができ、このような遺伝子として、例えば、ギボン白血病 ウィルス由来の膜融合タンパク質である GALVあるいはその変異型である GALV. fos ( GALV- FMG)をコードする遺伝子(X, Fu et al, Molecular Therapy Vol. 7, No. 6, June 2003);麻疹ウィルスタンパク質 Fおよび H (MV—Fおよび MV—H)をコードす る遺伝子(Bateman A. et al., Cancer Res 60:1492-1497, 2000);水疱性口内炎ウイ ルス Gタンパク質をコードする遺伝子(ラブドウィルス VSV— Gエンベロープ遺伝子; Eslahi NK, Cancer Gene Ther 8:55-62, 2001);ニューカッスル病ウィルス由来の変 異 Fタンパク質(NDV融合タンパクの 7回繰り返しモチーフ(HR3)中の 1アミノ酸置 換変異 (L289A) )をコードする遺伝子;パラミクソウィルス SV5の細胞膜融合タンパ ク質(SV5Fタンパク質)をコードする遺伝子(Gomez- Trevino A. et al., J Gene Med 5:483-492, 2003)等が挙げられる。
ゲノム DNAに細胞膜融合タンパク質をコードする遺伝子を挿入することによって、 組換え HSVに感染した細胞が速やかに周囲細胞と融合するため、殺細胞効果が向 上することが報告されている。
[0047] 上述の目的タンパク質をコードする遺伝子は、該遺伝子がプロモーターの下流に 機能的に結合した構造を有する発現カセットとして、シャトルベクターに挿入される。 目的タンパク質をコードする遺伝子のプロモーターとしては、天然の HSVのゲノム D NAには存在しな!、プロモーターを用いることが好まし!/、。かかるプロモーターとして は、上述の BACプラスミドに挿入するプロモーターが使用可能であるが、中でも CM Vプロモーターが好まし 、。天然 HSVゲノムには存在しな!、プロモーター配列を用 いることにより、相同組換えによる不測の変異が生じにくぐ 目的の組換え HSVを得 られる確率をさらに高めることができる。
[0048] 本発明で用いられるシャトルベクターには、上述のように ΙοχΡ部位および FRT部位 が組み込まれている。これにより、 Cre— ΙοχΡシステムを使用してシャトルベクターを HSVゲノムに組み込むことが可能となり、 Flp— FRTシステムを使用してこの HSVゲ ノムカも不要な配列を切り出すことができる。
[0049] また、本発明に係るシャトルベクターには、シャトルベクターが HSVウィルスに組み 込まれたことを確認するために、 1種類以上のマーカー遺伝子も挿入しておくことが 好ましい。マーカー遺伝子としては、例えば、その遺伝子産物が発光するものや、薬 剤耐性遺伝子を用いることができる。
[0050] マーカー遺伝子は特に限定されず、上述の BACプラスミドに挿入するマーカー遺 伝子と同様のものを適宜選択して用いることができ、 lacZ遺伝子、 gasA遺伝子、 GF P遺伝子、 RFP遺伝子などを用いることができる。なお、シャトルベクターに組み込ま れるマーカーは、 Flp— FRTシステムによって HSVゲノムから切り出されず、最終産 物にも残存するため、ヒトに有害なタンパク質をコードする遺伝子でないものが好まし い。ヒトに無害であって、マーカー遺伝子としての目的を果たすものとしては、例えば 、 lacZ遺伝子が挙げられる。
[0051] なお、シャトルベクターに挿入されるマーカー遺伝子と、 BACプラスミドに挿入され るマーカー遺伝子は異なる性質を有するものが好ましい。これにより、シャトルベクタ 一が挿入されたカゝ否かの確認を明確に行うことができる。
[0052] これらのマーカー遺伝子は、機能的に結合されたプロモーターを含むマーカー遺 伝子発現カセットとしてシャトルベクターに挿入してもよいし、シャトルベクターにはマ 一力一遺伝子のみ挿入し、 HSVゲノムのプロモーターを利用して発現させてもよい。
[0053] また、本発明に係る組換え HSV作製方法に用いられるシャトルベクターは、スタツ ファ配列を有することが好ましい。スタッファ配列とは、ウィルスの生育に不要な、何の 作用も及ぼさない DNA配列をいう。天然の HSVのゲノムは約 152kbであり、ゲノム の大きさが約 170kb以上になるとウィルスとして形を成さなくなる性質がある。本発明 に係る組換え HSV作製方法の第三工程では、 Flp— FRTシステムによって、 HSV ゲノム力 不要な部分を切り出す。ここで、 Flp— FRTシステムがうまく機能しなかつ た場合も、スタッファ配列がなければ、ゲノムの全長は 170kb未満であり、ゲノム上に 不要な配列を含んだままウィルスが形成される。しかし、スタッファ配列を挿入してお けば、 Flp— FRTシステムが機能しなかった場合はゲノム全長が 170kbを超えるため 、ウィルスが形成されなくなる。従って、本発明で挿入されるスタッファ配列は、好まし くは約 5000塩基長以上、さらに好ましくは約 5500塩基長以上、より好ましくは約 57 00塩基長以上、最も好ましくは 5790塩基長以上である。組換えウィルスの作製にお いては、組換えがうまく起こったものと起こらな力つたものを選別する工程に膨大な時 間と労力が費やされるため、スタッファ配列の挿入により、糸且換えが起こらな力つたゥ ィルスを自動的に除去できる本方法は非常に有用である。
[0054] 目的タンパク質をコードする遺伝子の発現カセット、 ΙοχΡ部位、 FRT部位、マーカ 一遺伝子の発現カセットおよびスタッファ配列は、当業者が自体公知またはそれに準 ずる方法によって、シャトルベクターに挿入することが可能である。
[0055] 上述のように、シャトルベクターは、 BACプラスミドを挿入された HSVゲノムに、 Cre
ΙοχΡシステムを利用して組み込まれ、得られた HSVゲノムは、 Flpリコンビナーゼ を発現可能なベクターと共に宿主に共感染させる。宿主細胞としては、 HSVが感染 可能で、培養できる細胞であれば特に限定されず、腫瘍細胞や、 Vero細胞等を用 いることができ、好ましくはヒト、サル等の哺乳動物由来の細胞が挙げられる。
[0056] Vero細胞中で、 Flpリコンビナーゼが発現すると、 HSVゲノム上の 2箇所の FRT部 位に作用して、両 FRT部位に挟まれた領域を HSVゲノムカゝら切り出す。これによつ て、目的の組換え HSVゲノムが得られ、 HSVが産生される。最終的なウィルス株は、 例えば limiting dilution法によって単離することができ、ウィルス DNAを制限酵素で 切断してサザンプロット法で解析し、確認することができる。
[0057] 本発明はまた、本発明に係る組換え HSV作製方法により作製された組換え HSV を含む医薬組成物も提供する。本発明に係る医薬組成物は、上記組換え HSVを有 効成分として含有し、各種癌疾患の治療や予防に有用である。
[0058] 本発明に係る医薬組成物を医薬として使用する場合は、投与形態は特に限定され ず、経口でも非経口的投与でもよい。哺乳類 (例えばヒト、マウス、ラット、モルモット、 ゥサギ、ィヌ、ゥマ、サル、等)、特にヒトに投与する場合の投与量は、症状の程度、患 者の年齢、性別、体重、感受性差、投与方法、投与時期、投与間隔、医薬製剤の性 質、調剤、種類、有効成分の種類等によって異なり特に限定されないが、約 103pfu ないし約 1012pfu、好ましくは約 lO pfuないし約 101Qpfu、さらに好ましくは約 108pfu ないし約 5 X 109pfuを、注射投与でそれぞれ 1回または数回に分けて投与することが できる。
[0059] 本発明に係る医薬組成物は、組換え HSVをそのまま用いてもょ ヽし、自体公知の 薬学的に許容できる担体や安定化剤、乳化剤等と混合し、慣用される方法により製 剤化してもよい。剤形は特に限定されず、カプセル剤、シロップ剤、吸入剤、注射剤、 軟膏剤、眼軟膏剤、点眼剤、点鼻剤、点耳剤、ローション剤等が挙げられるが、特に 好ましくは注射剤である。
[0060] 経口製剤は、賦形剤、さらに必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、矯味 矯臭剤などを加えた後、常法により散剤、細粒剤、顆粒剤、錠剤、被覆錠剤、カプセ ル剤等とする。
[0061] 錠剤'顆粒剤の場合には、糖衣、ゼラチン衣、その他必要により適宜コーティングす ることはもちろん差支えな ヽ。
[0062] 注射剤の場合、凍結乾燥物とすることも可能で、また、注射剤は腫瘍、静脈、動脈、 皮下、筋肉、腹腔、胸腔内に投与することができる。
[0063] 上述の医薬組成物は、各種癌疾患の予防または治療に有用である。組換え HSV を用いたウィルス療法があらゆる種類の固形癌に有効であることがすでに知られてお り(例えば、上記非特許文献 14を参照)、本発明に係る医薬組成物は、これらの癌す ベてに用いることができる。具体的疾患としては、例えば脳腫瘍、頭頸部癌、食道癌 、胃癌、大腸癌、肝癌、膝癌、肺癌、乳癌、皮膚癌、卵巣癌、前立腺癌、腎癌、膀胱 癌、黒色腫、神経芽腫等が挙げられる。
[0064] 以下に示す本発明の参考例、実施例および試験例は例示的なものであり、本発明 は以下に示す具体例に制限されるものではない。当業者は、以下に示す実施例に 様々な変更を加えて本発明を最大限に実施することができ、かかる変更は本願特許 請求の範囲に包含される。
実施例 1
[0065] 〔組換え HSV— 1の作製〕
図 1に、本発明に係る組換え HSV作製方法の概略を示す。図 1では、目的タンパク 質をコードする遺伝子を「transgene」で表している。図 1上段は、 G47 Aウィルスゲノ ムより ICP6遺伝子と lacZ遺伝子を欠失させ BAC配列を挿入したプラスミドの loxP部 位に、 CMVプロモーター下流に transgeneが機能的に結合した発現カセットと、マー カー遺伝子(lacZおよび Kan)と、 loxP部位および FRT部位とが挿入されたシャトル ベクターを挿入する工程の概略を示している。図 1中段および下段は、こうして作製さ れた構築物から、 FRT部位に挟まれた不要な領域を Flpリコンビナーゼによって切り 出す工程の概略を示している。以下、各工程を詳細に説明する。
本実施例では、組換え HSVの骨格として G47 Δウィルスゲノムを利用し、目的タン ノ ク質をコードする遺伝子として、 IL— 18および/または B7. 1— Igの遺伝子を挿 入した。
(BACプラスミドの調製)
ResGen社より購入した pBelobacl l (7507塩基対)に以下の操作をカ卩えた。 pBel obac 11プラスミドは loxP部位およびマーカー遺伝子としてクロラムフエ-コール(C m)耐性遺伝子を有している。 FRT部位、 GFP遺伝子および G47 A DNAの ICP6遺 伝子を含む配列を pBelobacl lプラスミドに挿入することにより、 BACプラスミド (pB AC— ICP6EF)を作製した。図 2に pBAC— ICP6EFの構造を示す。この pBAC— I CP6EFプラスミドからは、制限酵素 Asclで切断することにより、両端に ICP6遺伝子 の 5'末端 (約 1300塩基対)および 3'末端 (約 1200塩基対)を有する配列を得ること ができる。その ICP6遺伝子間には、 loxP部位と FRT部位に挟まれるように、 BACプ ラスミドの複製部位、 Cm耐性遺伝子および GFP遺伝子が配置されて 、る。
(BACプラスミドの G47 Aゲノムへの挿入)
G47 A DNAと pBAC— ICP6EFとを大腸菌に共感染させ、相同組換えにより、 BA Cプラスミドを G47 Δ DNAの ICP6部位に挿入した。 pBAC— ICP6EFプラスミドは I CP6部位の 5'および 3'末端しか有さないため、 G47 A ZBAC構築物(図 1上段。以 下「T— BAC」と称する。)は ICP6部位の中央約 lkbを欠損している。 G47 Aは 153 kbであったところ、 T— BACは、 157. 7kbであった。相同組換えの結果生じたウイ ルスプラークを蛍光顕微鏡で観察し、 GFPが発現している T— BACを選択した。続 いて、 electrocompetentな大腸菌 DH10Bに挿入し、 Cm耐性株を選択増殖させた。 得られた T BACを精製、制限酵素を用いて、構造を確認した。
[0067] (シャトルベクターの調製)
シャトルベクターは、癌細胞で発現させようとする目的タンパク質の種類に応じて 3 種類作製した。 目的タンパク質をコードする遺伝子を挿入する前のプラスミド (pVec9 ; 10569bp)を図 3に示す。マーカー遺伝子としての lacZ遺伝子およびカナマイシン (Kan)耐性遺伝子がそれぞれ発現可能に組み込まれ、 loxP部位および FRT部位、 スタッファ領域を含む。スタッファ領域としてラムダ配列の一部を利用した。図中右上 の CMVプロモーターの下流に位置する制限酵素の認識領域に、 目的タンパク質を コードする遺伝子を組み込むことができる。制限酵素の認識領域には、 BamHU Avrll 、 Stul、 NotI、 SacIIの制限酵素部位を含み、多くの遺伝子を組み込むことが可能なよ うに工夫されている。
[0068] 図 4に、 目的タンパク質として mIL— 18をコードする遺伝子を組み込んだシャトルべ クタ一を、図 5に、 目的タンパク質として、 B7. 1— Igを組み込んだシャトルベクターを 、図 6に、 mIL— 18と B7. 1—Igの融合タンパク質をコードする遺伝子を挿入したシ ャトルベクターを示す。複数の遺伝子を同時に発現させるために、脳心筋炎ウィルス (ECMV)の internal ribosomal entry site (IRES)を使用した。
[0069] (シャトルベクターの T— BACへの挿入)
続いて Cre— loxPシステムを利用して、シャトルベクターを、 T— BACの loxP部位 に挿入した(図 1上段および中段を参照)。まず、 目的の遺伝子を組み込んだシャト ルベクター 150ngと T— BAC 1500ngおよび NewEngland社より購入した Creリコンビ ナーゼを 1. 5mlのエツペンドルフチューブに混じて 30分間 37°Cに置いた。この課程 のみで反応が終了し、このまま型通り大腸菌に形質転換した。本方法により、大腸菌 内での組み換えという手間を要し、かつ複雑な段階が省略可能となった。この溶液中 での反応という方法は、迅速性のみならず、間違ったウィルスを選択するリスクの軽 減にも寄与して 、ると考えられる。
[0070] 得られた組換え体から、 LBプレート上で、 Kan耐性および Cm耐性によって、 目的 産物を選択した。約 80%に目的の組換えが生じていたことが確認された。
[0071] (不要配列の除去) シャトルベクターが挿入された T—BACを、 FLPeを発現するプラスミド( pCAGGSFlpelRESpuro)と共に、 Vero細胞に共感染させ、 FRT部位に挟まれた領域 (14. 6kb)を切り出した(図 1中段および下段を参照)。 FLPeは、 Saccharomyces cerevisiaeinに由来する、 in vitroで開発された部位特異的リコンビナーゼである。
[0072] Vero細胞に感染し、複製されたウィルスプラークを蛍光顕微鏡で観察することによ り、 GFPが発現していないプラークを目的プラークとして選択した。 Flp— FRTシステ ムを用いた切り出しにより、組換え HSV—1ゲノムから、 BAC配列は完全に除去され る。これは、免疫原性および毒性を有する GFP遺伝子はウィルスゲノムから除去され ることを意味する。この段階で回収されたウィルスの中で、 GFPを発現していない目 的のウィルスは 99%以上を占めていた。さら〖こ、複製させて得られたウィルスを再度 Vero細胞に感染させ、 GFPが発現していないプラークを選択していくという、限界希 釈法により精製を 2回施行し、 目的のウィルスを得た。このウィルスが目的のウィルス であるかどうかについては、制限酵素を使用してサザンブロッテイングにより配列を確 した 0
[0073] (ウィルスの複製)
6ゥエルのプレートに各ゥエル 3 X 105個ずつ細胞を播種したものを 2つ用意し、一 方に、 MOI = 0. 01でウィルスを感染させた。感染後、 37. 0°Cで 48時間静置した後 、細胞を採取し、凍結 溶解を 3回繰り返してライゼートを得た。こうして増えたウィル スのカ価を Vero細胞中で測定した。
[0074] また、 6ゥエルのプレートに各ゥエル 1 X 106個ずつ細胞を播種し、 MOI= 1でウィル スを感染させ 24時間静置した後、ガンシクロビル(200ngZml)存在下で、 39. 5°C 、 48時間インキュベートし、 ELISAアツセィおよび B7染色を行った。 IL— 18の ELIS Aの測定には MBL社のキットを用いた。
[0075] これらの結果を表 1に示す。
[0076] [表 1] Replication Assay IL 18 B7 staining
(pfu/ ml) (pg/ ml)
G47A 2.0X107 (一)
G47厶 -empty 7.6X106 (-)
G47A-IL18/ B71 7.6 X106 1,002 (+)
G47A-IL18/ B72 4.4 X106 818 (+)
G47A-IL18/B7-3 8.3X106 986 (+)
G47A-IL18/B7-4 5.7 X106 338 (+)
G47A-IL18-1 1.3 X107 1,418
G47A-IL18-2 3.2 X106 730
G47 Δ -IL18-3 9.6X106 1,710
G47 Δ -IL18-4 7.6X106 994
G47A-B7-1 1.6 X107 (+)
G47 Δ -B7-2 3.9X106 (+)
G47A-B7-3 1.2 X107 (+)
G47 Δ -B7-4 5.8X106 (+)
G47Aemptyは、目的タンパク質をコードする遺伝子を含まない、図 3に示されるプ ラスミドにより産生されたウィルスを意味する。
[0077] ウィルスの増殖能は、 G47 Δに比較すると多少劣るものの、ウィルス療法に使用す るために十分な増殖能が確認された。
[0078] G47Aゲノムに IL一 18および B7.1— Ig遺伝子を組み込んで作製したウィルスで は、両方のタンパク質が同時に発現し、いずれか一方の遺伝子を組み込んだウィル スでは、それぞれのタンパク質が発現して 、るのが確認された。
実施例 2
[0079] 〔殺細胞効果の確認〕
G47A/IL18、 G47A/B7、 G47AZlL18/B7の in vitroにおける様々な癌細 胞に対する殺細胞効果を、 G47 Δ emptyと比較した。
[0080] 図 7に、マウス神経芽腫の細胞株 (Neuro2a)に対する試験結果を示す。低 MOI (
MOI = 0.1)で、 G47AZIL18、 G47AZB7、 G47A/IL18/B7のいずれも、
G47 Δまたは G47 Δ emptyと同等の速さの殺細胞効果を示した。
[0081] 図 8に、マウス前立腺癌の細胞株 (TRAMP)に対する試験結果を示す。低 MOI( MOI = 0.1および 0.01)で、 G47A/IL18, G47A/B7, G47A/IL18/B7 の 、ずれも、 G47 Δまたは G47 Δ emptyと同等の速さの殺細胞効果を示した。
[0082] 以上から、 目的タンパク質を発現させるように改変しても、 G47 Δ細胞に匹敵する 細胞毒性を維持することが確認された。
[0083] また、 Neuro2a、 Prl4— 2 (マウス前立腺癌細胞株)および TRAMPにおける、 IL
- 18に対する ELIS Aアツセィを行った。結果を表 2に示す。
[0084] [表 2]
Figure imgf000023_0001
いずれのウィルスも、 500— 800pg/mlの IL— 18を発現していることを確認した。 実施例 3
[0085] 〔抗腫瘍効果の確認〕
上述のウィルスを用いて、マウスの腫瘍モデルに対する抗腫瘍効果を試験した。
[0086] 5 X106個の TRAMP— C2マウス前立腺癌細胞を、同系のマウス(C57B1Z6;雄) に、皮下注射した。 7日後、マウスをランダムにグループ分けし、この日を 0日として、 それぞれのウィルスによる治療を行った。それぞれのグループのマウスに、 0日目お よび 3日目に、 5 X 10pfu/20 μ 1の G47 Δ、 G47 Δ empty, G47 Δ /IL18, G47 ΔΖΒ7、 G47AZIL18ZB7を、腫瘍組織内に注射投与した。
[0087] 結果を図 9に示す。 G47AZIL18ZB7を投与したグループは、 TRAMP— C2癌 の体積が顕著に減少した。 t検定にて統計的有意差を調べた。 G47A/IL18/B7 を投与したグループは、 G47AZIL18を投与したグループと比較して、 19日目に T RAMP— C2癌の体積が顕著に減少していることが有意水準 5%で結論された。同 様に、 G47AZIL18ZB7を投与したグループは、 G47 Δ ZB7を投与したグルー プと比較して、 21日目に TRAMP— C2癌の体積が顕著に減少していることが有意 水準 5%で結論された。
[0088] 5 X 106個の Neuro2a細胞 100 μ Lを、 AZJマウスの両側に注射投与した。 TRA MP— C2モデルと同様に、 5 Χ 105ρίχι/20 1の G47 A、 G47 A emptyゝ G47 A /I L18、 G47 A /B7, G47 A /IL18/B7^腫瘍組織内に注射投与した。腫瘍抑 制効果は、 TRAMP— C2の結果と同様であった。
実施例 4
[0089] 〔IL 12の発現〕
24ゥエルのプレートに Vero細胞を 1 X 105個ずつ播種してー晚培養し、 T— BAC を用いて作製した G47 Δの ICP6遺伝子が欠失したウィルス (T- empty)と G47 Δ の ICP6遺伝子部位にマウス IL— 12遺伝子を挿入したウィルス (T-mfIL12)のそ れぞれ 3クローンについて、各 2ゥエルずつ MOI = 2で 1時間感染させた。 37°Cと 39 . 5°Cにて 18時間培養後にその培養液を回収し、マウス IL— 12の含有量を ELISA アツセィにて測定した。 T— emptyの感染ではまったく IL 12の発現は見られなかつ た力 T— mfIL12の感染では、強力な IL— 12の発現が見られた。特にウィルス複 製の盛んな 37°Cでは、 39. 5°Cに比較して高い発現量が認められた。結果を表 3に 示す。
[表 3]
37ΐ 39.5°C
#1-1 19.2 5.0
-2 19.0 4.4
#2-1 24.0 4.2
#2-2 21.4 4.3
#3-1 24.0 6.6
#3-2 26.2 6.2 実施例 5
〔マウス皮下腫瘍モデルにおける T-mflL12の抗腫瘍効果〕
左右両側の腹部に直径約 5mmの Neuro2a皮下腫瘍を有する AZJマウスを用い、 G47 Δの ICP6遺伝子が欠失したウィルス (T-empty)、 G47 Δの ICP6遺伝子部位 にマウス IL一 12遺伝子を挿入したウィルス (T-mflL12)および対照として 10%グリセ ロールを含む PBS (Mock)を左側の腫瘍組織内にのみ、それぞれ 0日目と 3日目の 2 回、注射投与した (各 5?6匹ずつ)。腫瘍組織を測定し、長さ X幅 X高さ (mm)により 体積を求めた。
結果を図に示す。左側の腫瘍に関しては、 Mock投与群(♦)に比べ、 T-empty投与 群(國)および T-mflL12投与群(▲)は腫瘍増大が有意に抑制された。更に T-mflL12 投与群は、 T-empty投与群に比べ有意に強い抗腫瘍効果を示した。また右側の遠 隔腫瘍に関しては、 T-empty投与群は Mock投与群に比べ有意な腫瘍増大抑制効 果を示さな力つた力 T-mflL12投与群は、 Mock投与群、 T-empty投与群いずれに比 ベても有意な腫瘍増大抑制を示した。
この結果から、 IL— 12遺伝子を組み込んだ組換え単純へルぺスウィルスは、 transgeneを組み込んでレ、な 、組換え単純へルぺスウィルスに比べ抗腫瘍効果が増 強されることが確認された。 図面の簡単な説明
[図 1]本発明に係る組換え HSV—1の作製方法の概要を示す説明図である。
[図 2]本発明に係る組換え HSV— 1の作製に用いられる BACプラスミドを示す。
[図 3]本発明で用いられるシャトルベクターを示す。
[図 4]IL— 18遺伝子を組み込んだシャトルベクターを示す。
[図 5]B7— 1 Ig遺伝子を組み込んだシャトルベクターを示す。
[図 6]IL— 18遺伝子および B7— 1—Ig遺伝子を組み込んだシャトルベクターを示す
[図 7]Neuro2aに対する殺細胞効果の試験結果を示す。
[図 8]TRAMPに対する殺細胞効果の試験結果を示す。
[図 9]IL— 18および Zまたは B7を発現する G27 Δのマウス腫瘍モデルに対する抗 腫瘍効果の試験結果を示す。
[図 10]IL— 12を発現する G27 Δのマウス腫瘍モデルに対する抗腫瘍効果の試験結 果を示す。

Claims

請求の範囲
[1] 癌細胞にぉ 、て目的タンパク質を発現させることが可能な組換え単純へルぺスウイ ルスの作製方法であって、
ΙοχΡ部位および FRT部位を有し、前記 ΙοχΡ部位と FRT部位との間に、プロモータ 一の下流にマーカー遺伝子が機能的に結合された構造を有するマーカー遺伝子の 発現カセットが少なくとも 1種類挿入された BACプラスミドを、単純へルぺスウィルス ゲノムに挿入する第一工程と、
プロモーターの下流に前記目的タンパク質をコードする遺伝子が機能的に結合し た構造を有する目的タンパク質をコードする遺伝子の発現カセットが少なくとも 1種類 と、少なくとも 1種類のマーカー遺伝子と、 ΙοχΡ部位および FRT部位と、がそれぞれ 挿入されたシャトルベクターを作製し、 Creリコンビナーゼを用いて、前記目的タンパ ク質をコードする遺伝子と前記マーカー遺伝子とが発現可能な構成となるように該シ ャトルベクターを前記単純へルぺスウィルスゲノムの ΙοχΡ部位に挿入する第二工程と 前記第二工程で得られた前記単純へルぺスウィルスゲノムと、 Flpリコンビナーゼを 発現可能なベクターと、を宿主に共感染させ、該ゲノム上の FRT部位に挟まれた領 域を切り出し、目的の遺伝子組換え単純へルぺスウィルスを産生させる第三工程と、 を含む方法。
[2] 前記第二工程を液相中で行う、請求項 1に記載の方法。
[3] 前記第一工程に先立ち、前記単純へルぺスウィルスの γ 34. 5遺伝子および ICP
6遺伝子が欠失または不活ィ匕されている、請求項 1または 2に記載の方法。
[4] さらに、前記単純へルぺスウィルスの ICP47遺伝子が欠失または不活ィ匕されてい る、請求項 3に記載の方法。
[5] 前記 BACプラスミドに挿入されたマーカー遺伝子力 緑色蛍光タンパク質 (GFP) をコードする遺伝子および Ζまたは抗生物質耐性遺伝子である、請求項 1から 4の ヽ ずれか 1項に記載の方法。
[6] 前記少なくとも 1種類の目的タンパク質をコードする遺伝子の発現カセットに含まれ るプロモーターが、天然単純へルぺスウィルスゲノムに存在しな 、塩基配列からなる プロモーターである、請求項 1から 5のいずれか 1項に記載の方法。
[7] 前記単純へルぺスウィルスのゲノムに存在しな!、塩基配列からなるプロモーターが
、 CMVプロモーターである、請求項 1から 6のいずれ力 1項に記載の方法。
[8] 前記シャトルベクターに挿入されたマーカー遺伝子力 lacZ遺伝子および Zまたは 抗生物質耐性遺伝子である、請求項 1から 7のいずれか 1項に記載の方法。
[9] 前記シャトルベクターに挿入されたマーカー遺伝子力 前記 BACプラスミドに挿入 された抗生物質耐性遺伝子とは異なる抗生物質耐性遺伝子を含む、請求項 8に記 載の方法。
[10] 前記目的タンパク質をコードする遺伝子が、免疫刺激性遺伝子、抗血管新生作用 性タンパク質、細胞膜融合タンパク質をコードする遺伝子および癌抑制遺伝子力もな る群力も選択される 1以上の遺伝子である、請求項 1から 9のいずれか 1項に記載の 方法。
[11] 前記免疫刺激遺伝子が、共刺激因子、 IL— 12、 IL— 18、 IL— 23、 IL— 27および transporter associated with antigen processing、ΓΑΡ)力らなる群力ら選択される 1 上のタンパク質をコードする遺伝子である、請求項 10に記載の方法。
[12] 前記抗血管新生作用タンパク質をコードする遺伝子が、エンドスタチン、アンジォス タチン、 dominant negative FGF receptorおよび血小板因子 4からなる群から選択さ れる 1以上のタンパク質をコードする遺伝子である、請求項 10に記載の方法。
[13] 前記細胞膜融合タンパク質をコードする遺伝子が、ウィルス表面タンパク質である、 請求項 10に記載の方法。
[14] 前記癌抑制遺伝子が、 p53遺伝子である、請求項 10に記載の方法。
[15] 前記シャトルベクター力 スタッファ配列を含む、請求項 1から 14のいずれ力 1項に 記載の方法。
[16] 前記スタッファ配列力 約 5000塩基長以上である、請求項 15に記載の方法。
[17] 請求項 1から 16のいずれ力 1項に記載の方法によって作製された組換え単純ヘル ぺスゥイノレス。
[18] 請求項 17に記載の組換え単純へルぺスウィルスを含む医薬組成物。
[19] 各種癌疾患の治療剤または予防剤である、請求項 18に記載の医薬組成物。 [20] 請求項 18に記載の医薬組成物を投与することを含む、癌の予防または治療方法。
PCT/JP2005/006396 2004-03-31 2005-03-31 組換え単純ヘルペスウイルスの作製方法 WO2005103237A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006512495A JPWO2005103237A1 (ja) 2004-03-31 2005-03-31 組換え単純ヘルペスウイルスの作製方法
CA002561691A CA2561691A1 (en) 2004-03-31 2005-03-31 Method of constructing recombinant herpes simplex virus
EP05727508A EP1731599A4 (en) 2004-03-31 2005-03-31 METHOD FOR CONSTRUCTING RECOMBINANT HERPES SIMPLEX VIRUS
AU2005235826A AU2005235826A1 (en) 2004-03-31 2005-03-31 Method of constructing recombinant herpes simplex virus
US10/594,962 US20070196336A1 (en) 2004-03-31 2005-03-31 Method For Constructing Recombinant Herpes Simplex Virus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004105273 2004-03-31
JP2004-105273 2004-03-31

Publications (2)

Publication Number Publication Date
WO2005103237A1 true WO2005103237A1 (ja) 2005-11-03
WO2005103237A9 WO2005103237A9 (ja) 2006-01-05

Family

ID=35196971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006396 WO2005103237A1 (ja) 2004-03-31 2005-03-31 組換え単純ヘルペスウイルスの作製方法

Country Status (6)

Country Link
US (1) US20070196336A1 (ja)
EP (1) EP1731599A4 (ja)
JP (1) JPWO2005103237A1 (ja)
AU (1) AU2005235826A1 (ja)
CA (1) CA2561691A1 (ja)
WO (1) WO2005103237A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518986A (ja) * 2015-05-04 2018-07-19 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッドThe Brigham and Women’s Hospital, Inc. 腫瘍溶解性hsv1ベクターおよび使用法
WO2019189643A1 (ja) 2018-03-30 2019-10-03 国立大学法人東京大学 腫脹発生抑制型腫瘍溶解性ウイルス
JP2021533768A (ja) * 2018-08-16 2021-12-09 イムヴィラ・カンパニー・リミテッドImmvira Co., Limited 固形癌及び微生物感染を治療するための方法及び組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069062A2 (en) * 2005-12-15 2007-06-21 University Of Basel Cassette system for expression control and cell differentiation by inducible rna interference and uses thereof
MX2014003692A (es) * 2011-09-29 2015-03-20 Provost Fellows & Scholars College Of The Holy Undivided Trinity Of Queen Elizabeth Near Dublin Composiciones y métodos para el tratamiento de condiciones degenerativas retinianas.
KR20210023751A (ko) * 2019-08-22 2021-03-04 주식회사 젠셀메드 암세포 표적화 영역과 hvem의 세포외 도메인의 융합 단백질을 발현할 수 있는 발현 카세트를 가지는 재조합 헤르페스 심플렉스 바이러스 및 그 용도
EP3950948A1 (en) * 2020-08-07 2022-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Platform vector for modular and simplified insertion of transgenes into alphaherpesvirinae

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1153136A2 (en) * 1998-12-09 2001-11-14 The General Hospital Corporation Enhanced packaging of herpes virus amplicons and generation of recombinant virus vectors
WO2002053576A1 (en) * 2001-01-05 2002-07-11 The General Hospital Corporation Viral delivery system for infectious transfer of large genomic dna inserts
ES2366608T3 (es) * 2001-03-27 2011-10-21 The General Hospital Corporation Vectores víricos y su uso en métodos terapéuticos.

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LAUTH M. ET AL: "Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases.", NUCLEIC ACID RES., vol. 30, 2002, pages E115, XP002989851 *
SAEKI Y. ET AL: "Development of a rapid method to produce series of oncolytic HSV-1 vectors.", MOLECULAR THERAPY., vol. 3, no. 5, 2001, pages S45 - S46, XP002989848 *
See also references of EP1731599A4 *
TODA M. ET AL: "In situ cancer vaccination: an IL-12 defective vector/replication-competent herpes simplex virus combination induces local and systemic antitumor activity.", J.IMMUNOL., vol. 160, 1998, pages 4457 - 4464, XP002085870 *
TODO T. ET AL: "In situ expression of solubleB7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity.", CANCER RES., vol. 61, 2001, pages 153 - 161, XP002989850 *
TODO T. ET AL: "Oncolytic herpes simplex virus vector with enhanced MCH class I presentation and tumor cell killing.", PROC.NATL.ACAD.SCI.USA., vol. 98, 2001, pages 6396 - 6401, XP002989849 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518986A (ja) * 2015-05-04 2018-07-19 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッドThe Brigham and Women’s Hospital, Inc. 腫瘍溶解性hsv1ベクターおよび使用法
US10806761B2 (en) 2015-05-04 2020-10-20 The Brigham And Women's Hospital, Inc. Oncolytic HSV1 vector and methods of use
WO2019189643A1 (ja) 2018-03-30 2019-10-03 国立大学法人東京大学 腫脹発生抑制型腫瘍溶解性ウイルス
JP2021533768A (ja) * 2018-08-16 2021-12-09 イムヴィラ・カンパニー・リミテッドImmvira Co., Limited 固形癌及び微生物感染を治療するための方法及び組成物
JP7227654B2 (ja) 2018-08-16 2023-02-22 イムヴィラ・カンパニー・リミテッド 固形癌及び微生物感染を治療するための方法及び組成物

Also Published As

Publication number Publication date
JPWO2005103237A1 (ja) 2008-03-13
AU2005235826A1 (en) 2005-11-03
CA2561691A1 (en) 2005-11-03
US20070196336A1 (en) 2007-08-23
EP1731599A1 (en) 2006-12-13
WO2005103237A9 (ja) 2006-01-05
EP1731599A4 (en) 2009-12-23

Similar Documents

Publication Publication Date Title
AU2018230046B9 (en) Recombinant Herpes simplex virus and use thereof
KR101177659B1 (ko) 바이러스 벡터
AU711702B2 (en) Vectors for gene delivery
ES2276470T3 (es) Utilizacion de vectores de herpes para la terapia tumoral.
CN109576231B (zh) 分离的重组溶瘤腺病毒、药物组合物及其在***和/或癌症的药物中的用途
US20020054885A1 (en) Herpes simplex virus-1 Glycoprotein C mutants for treating unwanted hyperproliferative cell growth
CN109554353B (zh) 分离的重组溶瘤痘病毒、药物组合物及其在***和/或癌症的药物中的用途
CN110982794B (zh) 一种修饰的单纯疱疹病毒
WO2005103237A1 (ja) 組換え単純ヘルペスウイルスの作製方法
KR100701905B1 (ko) 헤르페스 감마 34.5 유전자 발현을 재표적화하는 세포특이적 및/또는 종양 특이적 프로모터
Ganly et al. Current role of gene therapy in head and neck cancer
US20230272423A1 (en) Dna molecules producing custom designed replicating and non-replicating negative stranded rna viruses and uses there of
CN112011570A (zh) 特异杀伤肿瘤细胞的溶瘤病毒***及其应用
US8216564B2 (en) Composite oncolytic herpes virus vectors
Dickson Molecular and cell biology of human gene therapeutics
JP2023526905A (ja) マイクロrnaで調節及び制御可能な単離された組換え腫瘍溶解性ポックスウイルス及びその使用
JPH10506289A (ja) 2の治療的遺伝子:自殺性および免疫刺激性遺伝子を含むアデノウイルス
Harrington et al. Viral Therapy of Cancer
CN1702171A (zh) 可分泌血管抑素和内皮抑素蛋白的重组单疱疹病毒及其在治疗肺癌中的应用
CN116322727A (zh) 新型基因重组痘苗病毒及其应用
Bennett et al. Viral-based therapies for liver cancer
WO1998037905A1 (en) Arrestable therapeutic viral agent
Lamfers et al. Oncolytic Viral Therapy for Glioma
Simpson Optimising therapeutic herpes simplex virus vectors for cancer therapy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
COP Corrected version of pamphlet

Free format text: PAGE 1/7, DRAWINGS, REPLACED BY CORRECT PAGE 1/7

WWE Wipo information: entry into national phase

Ref document number: 2006512495

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005235826

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2561691

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10594962

Country of ref document: US

Ref document number: 2007196336

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005727508

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005235826

Country of ref document: AU

Date of ref document: 20050331

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005235826

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005727508

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10594962

Country of ref document: US