WO2005102912A1 - Method for preparing fine structure - Google Patents

Method for preparing fine structure Download PDF

Info

Publication number
WO2005102912A1
WO2005102912A1 PCT/JP2005/007502 JP2005007502W WO2005102912A1 WO 2005102912 A1 WO2005102912 A1 WO 2005102912A1 JP 2005007502 W JP2005007502 W JP 2005007502W WO 2005102912 A1 WO2005102912 A1 WO 2005102912A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
polymerized film
substrate
film
plasma polymerized
Prior art date
Application number
PCT/JP2005/007502
Other languages
French (fr)
Japanese (ja)
Inventor
Hirotaka Miyachi
Kenji Yokoyama
Isao Karube
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2005102912A1 publication Critical patent/WO2005102912A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00523Etching material
    • B81C1/00531Dry etching

Definitions

  • the present invention relates to a method for manufacturing a microstructure.
  • the present invention relates to a nano channel capillary or a nano inclined channel capillary, and to a method for separating a substance using the same.
  • lithography is known as a technique for manufacturing a semiconductor as a two-dimensional processing technique for manufacturing a semiconductor integrated circuit and the like.
  • Lithography technologies such as electron beam drawing systems can reduce the size of patterns to tens of nanometers and several nanometers (Non-Patent Document 1).
  • Non-Patent Document 1 Non-Patent Document 1
  • the conventional method lacks processing speed and resolution, and therefore, it has been difficult to produce a complicated three-dimensional structure.
  • Microelectromechanical systems (MEMS) technology is also known for producing complex three-dimensional structures. It is known that this technology reduces the resolution due to the power diffraction limit where light or X-rays are used for pattern formation, and its minimum structural dimension is about 1 micron.
  • the fine particles are biomolecules such as proteins
  • means for measuring the activity and the like or separating the molecules while maintaining the functions of the biomolecules is required.
  • Non-Patent Document 2 Non-Patent Document 2
  • Non-Patent Documents 3 and 4 fluorescence detection using the FRET method has been performed in order to measure changes in protein structure and protein-protein interaction in real time.
  • the problem is that FRET cannot be detected due to the distance or orientation between the force donor and the acceptor, which is said to be able to see protein dynamics in real time in living cells.
  • Non-Patent Document 1 Weekly Nanotech Weekly (Sangyo Times Co., Ltd.) First Publication 2 (June 16)
  • Non-Patent Document 2 nalytical Sciences 2001, 17, pages 269-272
  • Non-Patent Document 3 Developmental Cell, Volume 4, Issue 3, pages.295-305
  • Non-Patent Document 4 Cytometry Part A Volume 55A, Issue 2, 2003.
  • the inventors of the present invention have conducted intensive studies to solve the above-described problems, and coated a different plasma polymerized film (b) on the surface of a substrate having a puttered plasma polymerized film (a), and performed etching speed It has been found that by removing the plasma-polymerized film (a) due to the difference between the two, a three-dimensional structure having a nano-level flow path can be manufactured quickly and easily. Also bra The present inventors have found that a three-dimensional structure having a nano-level inclined flow channel can be formed by performing the formation of the Kursa polymerized film (a) by a specific method, and have completed the present invention.
  • the present invention includes the following.
  • step 2 (2) a step of forming a plasma-polymerized film (b) on the substrate surface on the side of the puttering of the plasma-polymerized film (a) (step 2), and
  • step 3 the substrate is subjected to an etching treatment using an etching medium in which the etching rate of the plasma-polymerized film (a) is higher than the etching rate of the plasma-polymerized film (b).
  • Step 3 Step of removing polymer film (a) (Step 3)
  • a method for producing a microstructure comprising:
  • step 1 the surface of the substrate or the surface of the outermost layer laminated on the substrate is coated with the plasma polymerized film (c), and the plasma polymerized film (a) is patterned on the plasma polymerized film (c).
  • the etching rate of the plasma-polymerized film (a) in the etching treatment in the step 3 is higher than the etching rate of the plasma-polymerized film (c)! / ⁇ .
  • step 2 before the formation of the plasma-polymerized film (b), a part of the pattern of the plasma-polymerized film (a) so that a part of the pattern is not covered with the plasma-polymerized film (b). And forming a plasma-polymerized film (b) on the surface of the substrate by masking the method (1) to (3).
  • the plasma is generated, and the substrate is arranged vertically with respect to the direction of the shortest distance toward the substrate when the plasma is generated.
  • the method according to any one of [1] to [4], which is formed.
  • GO A nano-channel cabillary, wherein the average height of the channel from the substrate surface is 0.1 to 500 nm.
  • the plasma polymerized film (c) is coated on the substrate surface or the outermost layer surface laminated on the substrate, and the plasma polymerized film (c) is further coated with the plasma polymerized film (b).
  • the nano-channel cavities characterized in that the average height of the channels from the surface of the plasma polymerized membrane (c) is 0.1 to 500 nm.
  • a cavities having a plasma polymerized film (b) coated on a substrate surface and having at least one flow path surrounded by the plasma polymerized film (b) and the substrate,
  • a nano-gradient flow path capillary characterized by:
  • the plasma polymerized film (c) is coated on the substrate surface or the outermost layer surface laminated on the substrate, and the plasma polymerized film (b) is coated on the surface of the plasma polymerized film (c).
  • a nano-gradient flow path capillary characterized by:
  • FIG. 1 is a diagram showing an example of a method for manufacturing a microstructure according to the present invention.
  • FIG. 2 is a view showing an example of a method for manufacturing a microstructure having an inclined flow channel according to the present invention.
  • FIG. 3 is a schematic view showing one example of a method for forming a plasma polymerized film.
  • FIG. 4-1 is a schematic view showing one example of a method for forming a plasma-polymerized film.
  • FIG. 4-2 is a schematic diagram showing a cross section taken along the line AA ′ in FIG. 4-1.
  • FIG. 5 is a schematic diagram showing an example of a method for separating a substance using a nano-gradient flow channel capillary.
  • FIG. 6 is a schematic diagram showing one example of a configuration of a plasma polymerization apparatus.
  • FIG. 7 is a photograph showing a fluorescence measurement performed using a confocal laser scanner.
  • FIG. 7-2 is a photograph showing the position of the fluorescent substance on the substrate surface (Gain 50%).
  • FIG. 8 is a photograph showing an example of a photomask.
  • FIG. 91 shows the relationship between the height of the sample stage in the apparatus and the film thickness when a plasma-polymerized film is formed.
  • FIG. 9-2 is a graph showing an example of the relationship between the position of the sample stage and the film thickness when HMDS is used as a monomer.
  • FIG. 10-1 shows the relationship between the height of the sample stage in the apparatus and the film thickness when a plasma polymerized film is formed.
  • FIG. 10-2 is a graph showing an example of the relationship between the position of the sample stage and the film thickness when acetonitrile is used as a monomer.
  • the method for manufacturing a microstructure according to the present invention includes:
  • Step 1 A step of patterning the plasma polymerized film (a) on a substrate (Step 1),
  • step 2 (2) a step of forming a plasma-polymerized film (b) different from the plasma-polymerized film (a) on the surface of the substrate on which the plasma-polymerized film (a) is patterned (step 2), and
  • step 3 the substrate is subjected to an etching treatment using an etching medium in which the etching rate of the plasma-polymerized film (a) is higher than the etching rate of the plasma-polymerized film (b).
  • Step 3 Step of removing polymer film (a) (Step 3)
  • the method of patterning the plasma-polymerized film (a) on the substrate in step 1 is not particularly limited, and includes, for example, a photolithography method.
  • a substrate coated with a thin film of photoresist is exposed to light through a mask (usually referred to as a "photomask"), and a pattern corresponding to the shape of the mask is formed on the substrate. It is a method of forming.
  • UV ultraviolet light
  • an electron beam drawing method using an electron beam instead of light an exposure method using an X-ray, or the like can also be employed.
  • a thin film of photoresist is coated on the surface of a substrate, and is exposed to light or the like through a mask (usually referred to as a “photomask”) to form a desired photoresist pattern on the surface of the substrate.
  • a plasma polymerized film (a) is formed on a portion of the substrate surface having the photoresist pattern, which is not covered by the photoresist pattern. Then, by removing (removing) the photoresist pattern, the convex polymer film (a) corresponding to the photomask can be patterned.
  • the pattern of the photomask is transferred to the substrate by irradiating light such as ultraviolet rays.
  • the pattern is drawn by irradiating an electron beam. According to the electron beam drawing method, a finer pattern can be drawn as compared with the method using photolithography.
  • the material constituting the substrate that can be used in the present invention is not particularly limited, and at least the substrate surface does not deteriorate due to plasma polymerization, has a certain physical strength, and has a certain value when used for electrophoresis or the like.
  • a substrate include glass and plastic.
  • plastic examples include PMMA (Poly methyl methacrylate) and silicone resin (PDMS: polydimethylsiloxane).
  • PMMA Poly methyl methacrylate
  • PDMS silicone resin
  • the shape of the substrate is preferably a plate-like planar substrate.
  • the thickness of the substrate is not limited, but is preferably, for example, in the range of about 0.1 to 20 mm.
  • the plasma polymerized film (a) to be patterned on the substrate in step 1 is formed by plasma polymerizing a monomer in the presence of the substrate.
  • a film is formed directly on the surface of the support by plasma excitation of the monomer material in a vacuum.
  • plasma polymerization can be carried out using any monomer.
  • cleavage of the double bond is required, whereas in plasma, monomeric substances are separated and a polymerization reaction occurs via many active species.
  • the monomer material for the plasma polymerized film (a) in the present invention is not limited as long as it can form a pattern on the substrate surface and can be etched by some etching gas.
  • Examples of the monomer substance capable of providing the plasma polymerized film (a) include the following compounds. These monomer substances can be used alone or in combination of two or more.
  • the following compounds can be shown as alkanes or cycloalkanes.
  • Alkenes, alkynes, a! / ⁇ are the following compounds as cycloalkenes.
  • Examples of the alcohol, aldehyde, ketone, carboxylic acid, or ester include the following compounds.
  • Methanol ethanol, ethanol, 1 propanol, 2 propanol, 1 butanol, 2 butanol, 2-methyl-1 propanol, 2-methyl-2 propanol, aryl alcohol, 1,3 butanediol, 2,3 butanediol, 2,3 epoxy 1 Propanol, formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, isovaleraldehyde, acrylaldehyde, crotonaldehyde, glyoxal, acetone, 2-butanone, 2-pentanone, 3-methyl-2-butanone, 3-pentanone, 2-hexanone, 4-methyl-2-pentanone, 2-heptanone, cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, 4-methyl-3-pentene-2-one, 2,3
  • ether, amine, or other monomeric substances Compounds usable as ether, amine, or other monomeric substances are shown below.
  • halogenated compounds can be used as the monomer material.
  • aromatic hydrocarbons can be used as monomer substances.
  • heterocyclic compound can be used as a monomer material.
  • a troponoid compound such as tropone ditroborone, or an organometallic compound represented by tetramethylsilane, tetramethyltin, or tetramethyllead is used as a monomer material.
  • the monomer for inducing the plasma polymerized film (a) those in which the etching rate of the plasma polymerized film (a) in the step 3 is higher than the etching rate of the plasma polymerized film (b)
  • the etching rate of the plasma polymerized film (a) in the step 3 is adjusted to the plasma polymerized film (c). Select an etching rate higher than the etching rate.
  • a method for forming a plasma-polymerized film using the monomer material is known. Specifically, it is said that conditions such as flow rate, discharge power, discharge time, and pressure are important factors that affect the reproducibility of the plasma polymerization reaction. In the case of plasma polymerization, it is necessary to set optimal polymerization conditions according to the equipment and monomers. If the W / FM (where W is the discharge power, F is the flow rate, and M is the molecular weight of the monomer) are the same, the film poorness is almost the same. Report (Yasuda, Plasma Polymerization, Academic Press, New York) , 1985).
  • a plasma polymerized film having a thickness of 0 to 500 nm is selected, for example, by selecting optimum conditions under the following ranges. Can be formed.
  • Flow rate preferably 0. 1 ⁇ :. L00cm 3 / min , more preferably 0. l ⁇ 50cm 3 / min.
  • Discharge power preferably 15-500W, more preferably 100-200W
  • Discharge time preferably 0.1 to 120 minutes, more preferably 0.5 to 60 minutes
  • Temperature preferably 0-100 ° C, more preferably 4-37 ° C
  • the plasma polymerized film obtained in this manner is a very homogeneous film, and the occurrence of pinholes is significantly suppressed.
  • a plasma polymerization film can be formed on a substrate surface having an arbitrary shape.
  • the plasma-polymerized film (a) having a flat layer or an inclined layer can be formed by changing the angle at which the substrate surface is irradiated with plasma. .
  • the plasma polymerized film (a) can be formed by disposing the substrates as described above.
  • the plasma polymerized film (a) is etched and removed in step 3 to form a single flow path in the cavity, a flow path having a certain height or slope can be formed.
  • the substrate is disposed perpendicularly to the direction of the shortest distance toward the substrate where the plasma is generated (the angle Is disposed at 90 degrees), a layer of the plasma polymerized film (a) composed of a planar layer can be formed.
  • Such a plasma polymerized film is extremely uniform.
  • the thickness of the plasma polymerized film (a) can be appropriately adjusted, for example, preferably in the range of 0.1 to 500 nm, more preferably 1 to 100 nm, and still more preferably 1 to 50 nm. be able to.
  • Such a plasma-polymerized film (a) is etched and removed in step 3 to form a flow path, and is a nano-order ultra-fine flow path depending on the thickness of the plasma-polymerized film (a) and is uniform.
  • Capillaries having at least one or more flow paths having different heights can be arbitrarily formed.
  • the plasma is generated, and the angle between the direction of the shortest distance toward the substrate and the surface of the substrate is 0 ° or more and less than 90 ° with respect to the shortest direction.
  • Such an inclination is, for example, preferably such that the angle is 0 ° to 60 °, more preferably 0 ° to 30 °, and more preferably 0 °.
  • a thick plasma-polymerized layer is formed at a position close to the plasma polymerization apparatus, and the thickness of the plasma-polymerized film formed as the distance from the plasma polymerization apparatus increases. Decreases continuously. As a result, the plasma-polymerized film (a) is formed so that the film thickness decreases gradually and continuously from the edge of the substrate closest to the plasma-polymerization apparatus.
  • Such an inclined and continuous plasma polymerized film (a) is extremely homogeneous, and can be obtained by appropriately setting the distance from the plasma polymerization apparatus, the size of the substrate, and the plasma polymerization conditions.
  • the plasma polymerized film (a) having an arbitrary film thickness and an arbitrary tilt angle can be appropriately adjusted on a nano-order level.
  • the thickness of the plasma-polymerized film (a) can be appropriately adjusted.
  • the end portion having the largest film thickness is preferably 500 nm or less, more preferably 100 nm or less, more preferably 50 nm or less.
  • the thinnest edge of can be adjusted to be preferably greater than 0.1 nm, more preferably greater than 1 nm.
  • the formed plasma polymerized film (a) is removed by etching in step 3.
  • the plasma-polymerized films (b) and (c) are different from the plasma-polymerized film (a) in the type of the monomer material used. It can be formed by a similar method.
  • the plasma polymerized film (b) is a film formed on the surface of the substrate on the side of the pattern jungle, and is different from the plasma polymerized film (a).
  • Such a plasma polymerized film (b) is preferably formed with a uniform film thickness on the surface on the side of the pattern jungle.
  • step 3 since the plasma polymerized film (a) is selectively removed by etching, the etching speed of the plasma polymerized film (a) is larger than the etching speed of the plasma polymerized film (b). Design to be.
  • the etching rate is determined by the combination of the type of the plasma polymerized film and the etching gas.
  • the etching rate (nmZ) of the plasma-polymerized film (a) is preferably 2 to the etching rate (nmZ-minute) of the plasma-polymerized film (b). It is at least 10 times, more preferably at least 10 times, more preferably at least 100 times, particularly preferably at least 1000 times.
  • the plasma polymerized film (b) can be coated on the entire puttering or a part of the puttering.
  • the patterning of the plasma polymerized film (a) is performed before the plasma polymerized film (b) is formed. It is preferable that a part of the pattern jung is masked so that a part thereof is not covered with the plasma polymerized film (b) to form the plasma polymerized film (b) on the substrate surface.
  • the place of the pattern jung to be covered with the mask is preferably on the side of the substrate end where the pattern end of the plasma polymerized film (a) exists.
  • the type of masking is not limited, as long as it can be stably coated under plasma polymerization forming conditions.
  • the size of the masking is not particularly limited as long as a portion of the end of the pattern jung of the plasma-polymerized film (a) is exposed at all, but for example, the length force of the end of the pattern of the plasma-polymerized film (a) is It is preferable that the coating be made in a range of about ⁇ m to lmm.
  • the thickness of the plasma-polymerized film (b) is not particularly limited, but a cavity serving as a flow path obtained by etching and removing the plasma-polymerized film (a) is formed in the layer formed by the plasma-polymerized film (b). It is necessary that the film thickness can exist. Therefore, although it depends on the thickness of the plasma polymerized film (a), it can be set, for example, in the range of 10 to 300 nm.
  • a plasma polymerized film (c) different from the plasma polymerized film (a) is previously provided on the surface on the side where the plasma polymerized film (a) is to be patterned on the surface of the substrate or the outermost layer laminated on the substrate. ) Is coated.
  • the layer laminated on the substrate is not particularly limited, and a plurality of other compounds are merely present on the substrate surface.
  • the outermost layer laminated to the substrate that may be coated means the outermost layer of that layer.
  • step 3 since the plasma polymerized film (a) is selectively removed by etching, the etching rate of the plasma polymerized film (a) is higher than the etching rate of the plasma polymerized film (c). Design to be.
  • the etching rate is determined by the combination of the type of the plasma polymerized film and the etching gas.
  • the etching rate (nmZ) of the plasma-polymerized film (a) is preferably at least twice the etching rate (nmZ-minute) of the plasma-polymerized film (c). It is more preferably at least 10 times, more preferably at least 100 times, particularly preferably at least 1000 times.
  • the thickness of the plasma polymerized film (c) is not particularly limited, but can be set, for example, in the range of 10 to 200 nm.
  • the substrate surface or the outermost layer laminated on the substrate can be made uniform. For this reason, since the flow path is surrounded by the plasma polymerized film (b) and the plasma polymerized film (c), when the capillary obtained by the method for manufacturing a microstructure of the present invention is used, the measurement accuracy of the substance is reduced. The separation accuracy can be improved.
  • the material used for the substrate is usually used with its surface polished.For example, a silicon substrate whose surface is polished is used. It is known that the substrate has irregularities of about ⁇ 10% with respect to the thickness of the substrate.
  • Such a plasma polymerized film (c) preferably has a uniform film thickness.
  • the method of etching performed in step 3 is not particularly limited, and includes, for example, a method using an etching medium.
  • etching medium examples include oxygen, nitrogen, hydrogen, and fluorine.
  • Etching media can be used alone or in combination of two or more.
  • the etching medium uses a diluent gas such as N, O, CO, CO, Ar, F, He, Ne, etc. It may be contained. Furthermore, even a mixed gas containing a monomer gas such as the plasma polymerized film (b) or the plasma polymerized film (C) can be used.
  • a diluent gas such as N, O, CO, CO, Ar, F, He, Ne, etc. It may be contained. Furthermore, even a mixed gas containing a monomer gas such as the plasma polymerized film (b) or the plasma polymerized film (C) can be used.
  • the plasma polymerized film (a) needs to have an etching rate higher than that of the plasma polymerized films (b) and (c).
  • Such an etching rate can be determined by a difference in film thickness before and after oxygen plasma is generated, usually placed in an active ion etching (RIE) apparatus.
  • the etching rate is the value obtained by dividing the disappeared thin film by the time.
  • the plasma polymerized films (a), (b), and (c) for the etching medium are measured and compared with each other, and the etching medium, the monomer forming the plasma polymerized film (a), and the plasma polymerized film ( Preferred combinations with the monomers forming b) and (c) can be determined as appropriate.
  • Preferred combinations with monomers forming the plasma polymerized films (b) and (C) include, for example, the following.
  • the plasma polymerized films (b) and (c) are independent of each other, and may be the same or different.
  • a gas permeable film (by utilizing gas permeability of the plasma polymerized film) for etching or removing the plasma polymerized film (a) may be selected.
  • HMDS can transmit O.
  • etching using an etching medium for example, a plasma of the etching medium is generated in an RIE apparatus, and the plasma polymerized film in the substrate manufactured in step 2 is etched by the plasma. Since the plasma-polymerized film (a) has a higher etching rate than the plasma-polymerized film (b) and (, the plasma-polymerized film (a) is removed more quickly by utilizing the difference in the etching rates. be able to. [0074] Force depending on the type of etching medium and plasma polymerized film used For example, etching can be performed under the following conditions.
  • Etching gas flow rate preferably 5 to 100 cm 3 / min.
  • the nano-channel cavities according to the present invention are cavities in which a plasma-polymerized film (b) is coated on a substrate surface and has at least one channel surrounded by the plasma-polymerized film (b) and the substrate. (0 There is a cavity serving as a flow path in the plasma polymerized film (b) layer,
  • the average height of the flow path from the substrate surface (the substrate force is also the distance to the inner wall surface of the plasma-polymerized film (b)) is 0.1 to 500 nm, preferably 1 to 100 nm, more preferably 1 to 50 nm. Deme .
  • the nano-channel cavities preferably have a plasma polymerized film (c) coated on the surface of the substrate or on the outermost surface of the substrate.
  • the cavity further has a plasma polymerized film (b) coated on the surface of the substrate or the outermost layer laminated on the substrate, and the surface of the plasma polymerized film (b) is coated with the plasma polymerized film (b). It may have at least one flow path surrounded by the plasma polymerization film (c).
  • the average height of the flow path is a height from the surface force of the plasma polymerized film (c) to the inner wall surface of the plasma polymerized film (b).
  • the nano-gradient flow channel cavities according to the present invention have a plasma polymerized film (b) covered on a substrate surface, and have at least one flow channel surrounded by the plasma polymerized film (b) and the substrate.
  • the flow path changes in an inclined manner from the inlet to the outlet where the average height of one opening (inlet) of the GO flow path is larger than the average height of the other opening (outlet).
  • the average height is the distance from the substrate to the inner wall surface of the plasma polymerized film (b).
  • the nano-gradient channel cavities have a plasma polymerized film (c) coated on the surface of the substrate or the outermost layer laminated on the substrate.
  • the surface of the substrate or the surface of the outermost layer laminated on the substrate is coated with the plasma polymerized film (c), and then the plasma polymerized film (c) is coated on the surface of the plasma polymerized film (c).
  • the flow path changes in an inclined manner from the inlet to the outlet where the average height of one opening (inlet) of the GO flow path is larger than the average height of the other opening (outlet).
  • the average height is the distance from the plasma polymerized film (c) to the inner wall surface of the plasma polymerized film (b).
  • the minimum width of such an inlet channel is preferably 500 nm or less, more preferably 100 ⁇ m or less, and more preferably 50 nm or less, and the minimum width of the outlet channel is preferably 0. Or more, more preferably Inm or more.
  • the preference and value of the inlet width of the flow channel and the preference and value of the outlet width can be arbitrarily combined.
  • the minimum width of the inlet channel is 500 nm or less, and the outlet width is 500 nm or less.
  • the minimum width of the flow path is 0.Inm or more, more preferably the minimum width of the inlet flow path is 100 nm or less, the minimum width of the outlet flow path is 0.Inm or more, and more preferably the minimum width of the inlet flow path is The minimum width of the outlet channel is 50 nm or less and the minimum width of the outlet channel is 0.1 Inm or more.
  • a capillary having a nano-level flow channel can be manufactured quickly and easily.
  • a minute substance such as a protein can be separated.
  • a microscopic three-dimensional structure can be manufactured at a nano-level, so that a method for manufacturing a polymer electrolyte fuel cell (PEFC) or the like can be manufactured.
  • PEFC polymer electrolyte fuel cell
  • biomolecules It can be used in the field of nanobiotechnology such as nanomachines and nanosensors.
  • the nano-gradient flow channel cavity according to the present invention has a nano-level flow channel having a gradient, so that separation depending on the size of a substance is possible. Therefore, it can be used, for example, as a method for analyzing changes in the three-dimensional structure of proteins and protein-protein interactions. As shown in Fig. 5, when the nanochannel capillary according to the present invention is used, proteins having different sizes or proteins having different three-dimensional structures are introduced into a channel having a gradient, and the size (three-dimensional structure) of the protein is reduced. Dependent protein separation becomes possible.
  • the enzyme or protein can be immobilized at a target position in a very small amount without impairing the original function of the enzyme or protein.
  • Protein function analysis proteome basic technology: protein function analysis, analysis of in vivo networks, disease diagnosis Research, etc. will greatly contribute to research in this area.
  • the ability to repeatedly utilize enzymes used in a bioreactor According to the nano-gradient flow channel cabrilary of the present invention, it can be applied as a matrix for immobilizing enzymes.
  • a bioreactor is a reactor that participates in degradation and reactions that apply the specificity of enzymes.However, enzymes are isolated from organisms or purified by genetic recombination, so even small quantities are very expensive and expensive. There is a high demand for repeated use of various enzymes.
  • a protein changes its three-dimensional structure when affected by phosphoric acid or the like.
  • the nano-gradient channel cavities can be used as nozzles (injection holes).
  • nozzles such as a printer head and a DNA spotter can be used.
  • the nano-gradient flow channel can be used for the purpose of retaining, immobilizing, and isolating cultured cells such as microorganisms, plants, and mammals, pacteriophages, and various viruses.
  • a function as a filter element can be provided.
  • FIGS. 1 (a) to 1 (j) are cross-sectional views ((h) and (j) are plan views) of a substrate in a process for explaining an example of a method for manufacturing a microstructure according to the present invention. It is shown.
  • a photoresist 2 (in FIG. 1, a positive photoresist is exemplified) is applied to the surface of the substrate 1.
  • the substrate is exposed to ultraviolet rays 4 in close contact via a photomask 3 (FIGS. L (c) and (d)).
  • the exposed substrate is developed using a resist developer to form a resist pattern 5 in which the mask pattern has been transferred to the resist (FIG. 1 (e)).
  • this substrate is placed in a plasma polymerization apparatus so as to be perpendicular to the plasma irradiation direction, and a plasma polymerization film (a) 6 is formed (FIG. 1). (f)). Further, the photoresist 5 is peeled off in a solvent such as acetone to obtain a substrate on which a pattern corresponding to the photomask 3 is formed by the plasma polymerized film (a) 7 (FIG. 1 (g)).
  • a masking tape 8 or a mask 8 is attached to the end of the substrate (FIG. L (h)).
  • this substrate is placed in a plasma polymerization apparatus so as to be perpendicular to the plasma irradiation direction, and a plasma polymerization film (b) 9 is formed (FIG. L (i)).
  • the plasma polymerized film (b) 9 is not coated on the area where the mask 8 is present so as to cover the pattern of the plasma polymerized film (a) 7 (FIG. 1).
  • the plasma polymerized film (a) 7 is removed by etching with oxygen plasma or the like, so that a minute flow path 10 defined by the plasma superposed film (b) and the substrate can be formed (see FIG. 1 (k)).
  • FIGS. 2A to 2J are cross-sectional views ((f), (g), and (k)) of a substrate in a step for explaining an example of a method for manufacturing a microstructure according to the present invention. Is a plan view).
  • FIGS. 1 (a) to 1 (e) are carried out in the same manner as in FIGS. 1 (a) to 1 (e) to obtain a substrate on which the photoresist 5 is patterned (FIG. 2 (e)).
  • this substrate is placed in a plasma polymerization apparatus so as to be parallel to the plasma irradiation direction, and a plasma polymerization film (&) 11 is formed (FIG. 2)).
  • a plasma polymerization film (&) 11 is formed (FIG. 2)).
  • an inclined plasma polymerized film is formed. ( Figure 4-2).
  • the thickness of the plasma polymerized film (a) increases continuously at a position close to the plasma, and the film thickness decreases continuously as the plasma force increases (Fig. 2 (f)).
  • the photoresist 5 is peeled off in a solvent such as acetone to obtain a substrate on which a pattern corresponding to the photomask 3 is formed by the inclined plasma polymerized film (a) 12 (FIG. 2 (g)).
  • FIGS. 2 (1!) To (j) are carried out in the same manner as FIGS. 1 (1!) To (j) to coat the plasma polymerized film (b), ) 12 is removed by etching with oxygen plasma or the like, so that a minute inclined flow path 14 defined by the plasma polymerized film (b) 13 and the substrate 1 can be formed (FIG. 2 (k) ).
  • Reactor One cylindrical chamber made of quartz or Pyrex (registered trademark)
  • the sample stage has an up / down movable function
  • a plasma polymerized film was formed on a silicon substrate using HMDS as a monomer under the conditions of flow rate: 0.5 cm 3 / min and RF: 200 W for 5 minutes.
  • HMDS HMDS
  • RF 200 W for 5 minutes.
  • the film thickness was 81.7 nm.
  • a plasma polymerized film was formed on a silicon substrate under the conditions of flow rate: 20 cm 3 / min and RF: 200 W for 3 minutes. As in the above, when the film thickness was measured using an ellipsometer, the film thickness was 153.5 nm.
  • RF A plasma polymerized film was formed on a silicon substrate under the condition of 200 W. When the film thickness was measured using an ellipsometer, the film thickness was 22.0 mm.
  • oxygen plasma was generated in the RIE device, and etching was performed for 30 minutes using oxygen plasma.
  • the RIE conditions were 40 Pa, an oxygen gas flow rate of 50 sccm, and RF250W.
  • the thickness of the plasma polymerized film before and after oxygen etching was determined by an ellipsometer (manufactured by ULVAC,
  • the film thickness was measured by the same method.
  • the etching rate was determined by the difference between the film thickness before and after oxygen plasma was generated, installed in the RIE device.
  • the etching rate is a value obtained by dividing the disappeared thin film by time.
  • the conditions for generating oxygen plasma using the RIE apparatus were as follows: pressure inside the chamber: 40 Pa, flow rate: 0: 50 cm 3 / min, RF: 250 W.
  • the etching rate of the plasma-polymerized film using acetonitrile, ethanol and isopropanol as monomers was obtained from this experiment to the minimum value.
  • the plasma polymerized film of acetonitrile before being put in acetone was 129 lnm and 135.4 nm.
  • the thickness of each film was measured after immersion in acetone for 71 minutes and found to be 132.3 nm and 135.7 nm. . From these results, it was confirmed that there was no change even when the acetonitrile plasma polymerized film was immersed in acetone. It was also confirmed that the etching rate of the acetonitrile plasma polymer film immersed in acetone was about 6.2 nmZmin.
  • a slide glass substrate (1.1 mm thick x 76 mm long x 25 mm wide) 1 was placed on a sample stage of a plasma polymerization apparatus so as to be parallel to the stage.
  • a plasma polymerized film (c) was formed on the surface of the substrate using HMDS as a monomer under the conditions of RF: 201 W, flow rate: 0.5 mm 3 / min, and time: 5 min.
  • the thickness of the plasma polymerized film (c) was 63.6 nm.
  • a photoresist (S-1818 (manufactured by SHIPLEY)) was coated on the surface of the substrate coated with the plasma polymerized film using a spin coater.
  • This photoresist-coated substrate was pre-betaed in a dryer at 80 ° C for 30 minutes.
  • the substrate was contact-exposed to ultraviolet light for 150 seconds using the photomask shown in FIG.
  • the exposed substrate was developed in a resist developer MF-319 (manufactured by SHIPLEY) for about 60 seconds, washed with water and dried to form a photoresist corresponding to the pattern of the photomask.
  • this substrate was arranged on a sample stage of a plasma polymerization apparatus in parallel with the stage such that a plasma polymerization film was formed on a surface having a photoresist pattern.
  • a plasma polymerized film (a) was formed on the surface of the substrate using acetonitrile as a monomer under the conditions of RF: 200 W, flow rate: 20 mm 3 / min, and time: 5 min.
  • the thickness of the plasma polymerized film (a) was about 118 nm.
  • the photoresist was immersed in acetone at room temperature for about 30 minutes, and the surface was stripped of the photoresist with an industrial cotton swab (TX705, Az One). As a result, a substrate on which a pattern corresponding to the photomask was formed by the plasma polymerized film (a) of acetonitrile was obtained.
  • a masking tape with a width of 12.7 mm was attached to the end of the substrate using a Kapton tape (flame retardant tape: Permacel).
  • this substrate was placed in a plasma polymerization apparatus so as to be perpendicular to the plasma irradiation direction, (230 mm / 5 rpm, MassFlow: 0.5 sccm, RF: 200 W, 3 minutes, 1.7 ⁇ 10 -5 Torr) Under the condition of), a plasma polymerized film (b) was formed using HMDS as a monomer.
  • the thickness of the plasma polymerized film (b) was 54 nm.
  • the plasma-polymerized film (b) was coated so as to cover the pattern of the plasma-polymerized film (a), but the masking tape was present, and the coated region was not coated in some areas.
  • the plasma polymerized film (a) of acetonitrile is removed by etching with oxygen plasma or the like, and the plasma polymerized film (b) is removed.
  • a microchannel defined by the plasma polymerized film (c) was formed.
  • the nanochannel capillary manufactured by the above method was immersed in a solution containing 2 mM of a fluorescent substance (FITC) on one side where the channel of the capillary was present at room temperature (25 ° C) for 30 minutes.
  • FITC fluorescent substance
  • the substrate was taken out, and the substrate surface was washed away with distilled water.
  • the obtained substrate was irradiated with fluorescence, and the presence or absence of a fluorescent substance was confirmed.
  • Fig. 7 shows the results.
  • Fig. 7-1 is a photograph showing the pattern on the substrate surface (Gain 95%)
  • Fig. 7-2 is a photograph showing the case where the fluorescent substance is present on the substrate surface (Gain 50%).
  • the acetonitrile plasma polymerized film (a) is etched by oxygen plasma, and a hole (capillary) of the HMDS plasma polymerized film (b) is formed.
  • a glass substrate (thickness: 1 lmm x 76 mm x 25 mm) was placed on the sample stage of the plasma polymerization apparatus so as to be parallel to the stage. The thickness of the plasma polymerized film was measured while changing the distance of the plasma generator.
  • HMDS hexamethyldisiloxane
  • acetonitrile was used as a monomer.
  • Silicone was used for the substrate.
  • the conditions for forming a plasma polymerized film using HMDS as a monomer were as follows: RF: 200 W, flow rate: 0.5 mm 3 / min, time: 3 min.
  • the film forming conditions were RF: 200 W, flow rate: 5.0 mm 3 / min, and time: 3 min.
  • the film thickness was measured with an ellipsometer, and the film thickness at the position (height) of each sample stage was determined as shown in Fig. 9-1 and Fig. 10-1.
  • a three-dimensional structure having nanolevel microchannels can be manufactured quickly and easily.
  • a specific method by performing the formation of the plasma polymerized film by a specific method, it is possible to manufacture a three-dimensional structure having an inclined nano-level microchannel.
  • nano-channel cavities and nano-gradient channel cavities can be applied to separation and immobilization of biological molecules such as proteins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A method for preparing a fine structure, characterized in that it comprises (1) a step of patterning a plasma-polymerized film (a) on a substrate (step (1)), (2) a step of forming a plasma-polymerized film (b) different from the plasma-polymerized film (a) on the surface of the side of the substrate, whereon the above plasma-polymerized film (a) is patterned (step (2)), and (3) a step of subjecting, after the step (2), the resultant substrate to an etching treatment using an etching medium exhibiting an etching rate for the plasma-polymerized film (a) being greater than that for the plasma-polymerized film (b), to thereby remove the plasma-polymerized film (a) (step (3)). The above method can be suitably adopted for preparing a structure containing a fine structure having a size of a few nanometer level.

Description

明 細 書  Specification
微細構造の製造方法  Manufacturing method of microstructure
技術分野  Technical field
[0001] 本発明は、微細構造の製造方法に関する。また、ナノ流路キヤビラリ一またはナノ 傾斜流路キヤビラリ一、およびこれらを用いる物質の分離方法に関する。  The present invention relates to a method for manufacturing a microstructure. In addition, the present invention relates to a nano channel capillary or a nano inclined channel capillary, and to a method for separating a substance using the same.
背景技術  Background art
[0002] タンパク質などの生体分子の分離方法としてこれまで各種の分離手法が試みられ ている。これら生体分子の分離では、場合により数ナノメートル〜数十ナノメートルと いう極めて微小な大きさの物質を分離することが必要となるため、微小物質を分離で きる構造体、さらにはそのような構造体の製造方法の提供が必要である。  [0002] Various separation techniques have been attempted as methods for separating biomolecules such as proteins. In the separation of these biomolecules, in some cases, it is necessary to separate a substance having an extremely small size of several nanometers to several tens of nanometers. It is necessary to provide a method for manufacturing the structure.
[0003] たとえば、リソグラフィ一は、半導体集積回路などを作製するための 2次元加工技術 として半導体を作製する技術として知られて ヽる。電子線を用いた描画システムなど のリソグラフィー技術は、数十ナノメートル力 数ナノメートルまでパターンを微細化す ることが可能である(非特許文献 1)。しかし、 3次元構造物を加工する場合、従来の 方法では加工速度や解像度が不足して 、たため、複雑な 3次元構造物を作製するこ とは困難であった。  [0003] For example, lithography is known as a technique for manufacturing a semiconductor as a two-dimensional processing technique for manufacturing a semiconductor integrated circuit and the like. Lithography technologies such as electron beam drawing systems can reduce the size of patterns to tens of nanometers and several nanometers (Non-Patent Document 1). However, when processing a three-dimensional structure, the conventional method lacks processing speed and resolution, and therefore, it has been difficult to produce a complicated three-dimensional structure.
[0004] 複雑な 3次元構造を作製するため、マイクロ電気機械システム (MEMS)技術も知ら れている。この技術によりパターン形成のために光や X線が用いられている力 回折 限界等により解像度が低くなり、その最小構造寸法は 1ミクロン程度であることが知ら れている。  [0004] Microelectromechanical systems (MEMS) technology is also known for producing complex three-dimensional structures. It is known that this technology reduces the resolution due to the power diffraction limit where light or X-rays are used for pattern formation, and its minimum structural dimension is about 1 micron.
[0005] また、 3次元の微細構造を作製する荷電粒子ビームによる材料堆積技術も知られて いるが、材料を堆積させるために構造物の作製に時間が力かるという問題がある。  [0005] Also, a material deposition technique using a charged particle beam for producing a three-dimensional microstructure is known, but there is a problem that it takes much time to produce a structure in order to deposit a material.
[0006] このため、微細な物質の分離等のため、微細構造物の有効な製造方法の提供が 求められていた。  [0006] Therefore, there has been a demand for providing an effective method for producing a fine structure for separating a fine substance or the like.
[0007] 一方、微細粒子がタンパク質などの生体分子の場合、生体分子の機能を保持した まま活性等を測定あるいは分子を分離する手段が必要である。  [0007] On the other hand, when the fine particles are biomolecules such as proteins, means for measuring the activity and the like or separating the molecules while maintaining the functions of the biomolecules is required.
たとえば、 DNAアレイは研究手法として期待され既に確立された技術になりつつあ り、医療診断への応用が期待されている。これに対してタンパク質やペプチドはより 直接的で的確な生体内情報をもたらすと考えられているものの、 DNAにくらべて構 造が複雑なため、官能基を用いる固定化法 (化学結合)、ゲルへの包括固定などは 活性を失 、やす 、ことが知られて 、る (非特許文献 2)。 For example, DNA arrays are expected to become a research technique and are becoming an established technology. Therefore, application to medical diagnosis is expected. Proteins and peptides, on the other hand, are thought to provide more direct and accurate in vivo information, but because of their more complex structure than DNA, immobilization using functional groups (chemical bonding), gel It has been known that the inclusive fixation to a cell loses its activity and is easy (Non-Patent Document 2).
このためタンパク質やペプチドのアレイ化(チップ化)はこれまで十分な成功を収め て 、な 、。このようにペプチドや酵素と!/、つた生体分子をその機能を保持したまま固 定ィ匕させるマトリックス材料の開発が望まれて 、る。  For this reason, protein and peptide arrays (chips) have been sufficiently successful to date. Thus, there is a demand for the development of a matrix material for immobilizing peptides and enzymes and! / And biomolecules while retaining their functions.
またたとえば、タンパク質の構造変化やタンパク質—タンパク質相互作用などの変 化をリアルタイムで測定するために、 FRET法を応用した蛍光検出が行われている(非 特許文献 3、 4)。 FRETはタンパク質の動態を生きた細胞内でリアルタイムに見ること ができるとされている力 ドナーとァクセプターの距離や向きにより検知できないことが 問題である。  In addition, for example, fluorescence detection using the FRET method has been performed in order to measure changes in protein structure and protein-protein interaction in real time (Non-Patent Documents 3 and 4). The problem is that FRET cannot be detected due to the distance or orientation between the force donor and the acceptor, which is said to be able to see protein dynamics in real time in living cells.
[0008] 非特許文献 1 :週間ナノテクウィークリー (産業タイムズ社) 創刊準備 2号 (6月 16日号 )  [0008] Non-Patent Document 1: Weekly Nanotech Weekly (Sangyo Times Co., Ltd.) First Publication 2 (June 16)
非特許文献 2 nalytical Sciences 2001, 17, pages269- 272  Non-Patent Document 2 nalytical Sciences 2001, 17, pages 269-272
非特許文献 3 : Developmental Cell, Volume 4, Issue 3 , pages. 295-305  Non-Patent Document 3: Developmental Cell, Volume 4, Issue 3, pages.295-305
非特許文献 4 : Cytometry Part A Volume 55A, Issue 2, 2003. pages 71-85 発明の開示  Non-Patent Document 4: Cytometry Part A Volume 55A, Issue 2, 2003.
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、数ナノレベルの大きさの微小構造を有する構造物の製造方法を提供す ることを課題とする。さらに、このような微小構造を有する構造物であって、たとえば生 体分子の機能を失活させることなぐ該生体分子を測定あるいは分離できる構造物の 製造方法を提供することを課題とする。 An object of the present invention is to provide a method for manufacturing a structure having a microstructure having a size of several nanometers. Another object of the present invention is to provide a method for producing a structure having such a microstructure, which can measure or separate the biomolecule without deactivating the function of the biomolecule.
課題を解決するための手段  Means for solving the problem
[0010] 本件発明者らは、上記課題を解決すべく鋭意研究し、パターユングしたプラズマ重 合膜 (a)を有する基板表面に、これと異なるプラズマ重合膜 (b)を被覆し、エッチング 速度の違いによりプラズマ重合膜 (a)を除去することにより、高速かつ簡便に、ナノレ ベルの流路を有する 3次元構造物を製造することができることを見出した。また、ブラ ズマ重合膜 (a)の形成を特定の方法により実施することによって、ナノレベルの傾斜 流路を有する 3次元構造物を形成することができることを見出し本件発明を完成する に至った。 [0010] The inventors of the present invention have conducted intensive studies to solve the above-described problems, and coated a different plasma polymerized film (b) on the surface of a substrate having a puttered plasma polymerized film (a), and performed etching speed It has been found that by removing the plasma-polymerized film (a) due to the difference between the two, a three-dimensional structure having a nano-level flow path can be manufactured quickly and easily. Also bra The present inventors have found that a three-dimensional structure having a nano-level inclined flow channel can be formed by performing the formation of the zuma polymerized film (a) by a specific method, and have completed the present invention.
すなわち本件発明は、以下を含む。  That is, the present invention includes the following.
〔1〕(1)基板上に、プラズマ重合膜 (a)をパターユングする工程 (工程 1)、 [1] (1) Step of patterning the plasma-polymerized film (a) on the substrate (Step 1),
(2)前記プラズマ重合膜 (a)をパターユングした側の基板表面に、プラズマ重合膜 (b )を形成する工程 (工程 2)、および  (2) a step of forming a plasma-polymerized film (b) on the substrate surface on the side of the puttering of the plasma-polymerized film (a) (step 2), and
(3)工程 2の後、プラズマ重合膜 (a)のエッチング速度が、前記プラズマ重合膜 (b)の エッチング速度よりも大きな値を示すエッチング媒体を用いて、前記基板をエツチン グ処理し、プラズマ重合膜 (a)を除去する工程 (工程 3)  (3) After step 2, the substrate is subjected to an etching treatment using an etching medium in which the etching rate of the plasma-polymerized film (a) is higher than the etching rate of the plasma-polymerized film (b). Step of removing polymer film (a) (Step 3)
を含むことを特徴とする微小構造の製造方法。 A method for producing a microstructure, comprising:
〔2〕前記工程 3のエッチング処理における前記プラズマ重合膜 (a)のエッチング速度 力 前記プラズマ重合膜 (b)のエッチング速度の 2倍以上であることを特徴とする〔1〕 に記載の方法。  [2] The method according to [1], wherein the etching rate of the plasma-polymerized film (a) in the etching treatment in the step 3 is twice or more the etching rate of the plasma-polymerized film (b).
〔3〕前記工程 1が、前記基板表面または基板に積層された最外層の表面にプラズマ 重合膜 (c)が被覆され、該プラズマ重合膜 (c)上にプラズマ重合膜 (a)をパターニン グする工程であり、  (3) In the step 1, the surface of the substrate or the surface of the outermost layer laminated on the substrate is coated with the plasma polymerized film (c), and the plasma polymerized film (a) is patterned on the plasma polymerized film (c). Process.
前記工程 3のエッチング処理における前記プラズマ重合膜 (a)のエッチング速度が 、前記プラズマ重合膜 (c)のエッチング速度より大き!/ヽことを特徴とする〔1〕または〔2 〕に記載の方法。  The etching rate of the plasma-polymerized film (a) in the etching treatment in the step 3 is higher than the etching rate of the plasma-polymerized film (c)! / ヽ. The method according to [1] or [2].
〔4〕前記工程 2において、プラズマ重合膜 (b)の形成前に、プラズマ重合膜 (a)のパ ターニングの一部がプラズマ重合膜 (b)で被覆されないように該パター-ングの一部 をマスキングして、前記基板表面にプラズマ重合膜 (b)を形成させることを特徴とする 〔1〕〜〔3〕の 、ずれかに記載の方法。  [4] In the step 2, before the formation of the plasma-polymerized film (b), a part of the pattern of the plasma-polymerized film (a) so that a part of the pattern is not covered with the plasma-polymerized film (b). And forming a plasma-polymerized film (b) on the surface of the substrate by masking the method (1) to (3).
〔5〕前記工程 1にお 、て、プラズマが発生して 、る中心部位力 基板に向けての最 短距離方向に対して、前記基板を垂直に配置して、プラズマ重合膜 (a)を形成するこ とを特徴とする〔1〕〜〔4〕のいずれかに記載の方法。  [5] In the step 1, the plasma is generated, and the substrate is arranged vertically with respect to the direction of the shortest distance toward the substrate when the plasma is generated. The method according to any one of [1] to [4], which is formed.
〔6〕前記工程 1にお 、て、プラズマが発生して 、る中心部位力 基板に向けての最 短距離方向と該基板表面との間の角度が、前記最短方向に対して 0度以上 90度未 満になるように前記基板を配置して、傾斜を有するプラズマ重合膜 (a)を形成するこ とを特徴とする〔1〕〜〔4〕のいずれかに記載の方法。 [6] In the above step 1, plasma is generated, and a central part force is generated toward the substrate. The substrate is arranged so that the angle between the short distance direction and the surface of the substrate is 0 ° or more and less than 90 ° with respect to the shortest direction, thereby forming an inclined plasma polymerized film (a). The method according to any one of [1] to [4], which is characterized by this.
〔7〕前記角度が 0度〜 60度であることを特徴とする〔6〕に記載の方法。 [7] The method according to [6], wherein the angle is 0 to 60 degrees.
〔8〕前記角度が 0度であることを特徴とする〔6〕または〔7〕に記載の方法。 [8] The method according to [6] or [7], wherein the angle is 0 degrees.
〔9〕基板表面上にプラズマ重合膜 (b)が被覆され、該プラズマ重合膜 (b)と基板とで 囲まれる少なくとも一つの流路を有するキヤビラリ一であって、 (9) a plasma-coated film having at least one channel surrounded by the plasma-polymerized film (b) on the substrate surface and surrounded by the plasma-polymerized film (b) and the substrate,
(0該プラズマ重合膜 (b)層中に流路となる空洞が存在し、  (0 There is a cavity serving as a flow path in the plasma polymerized film (b) layer,
GO前記基板表面からの流路の平均高さが 0. l〜500nmであることを特徴とするナ ノ流路キヤビラリ一。  GO A nano-channel cabillary, wherein the average height of the channel from the substrate surface is 0.1 to 500 nm.
〔10〕基板表面または基板に積層された最外層の表面上にプラズマ重合膜 (c)が被 覆され、さらに、該プラズマ重合膜 (c)表面にプラズマ重合膜 (b)が被覆され、該プラ ズマ重合膜 (b)とプラズマ重合膜 (c)とで囲まれる少なくとも一つの流路を有するキヤ ピラリーであって、  (10) The plasma polymerized film (c) is coated on the substrate surface or the outermost layer surface laminated on the substrate, and the plasma polymerized film (c) is further coated with the plasma polymerized film (b). A capillary having at least one flow path surrounded by a plasma polymerized film (b) and a plasma polymerized film (c),
(0該プラズマ重合膜 (b)層中に前記流路となる空洞が存在し、  (0 There is a cavity serving as the flow path in the plasma polymerized film (b) layer,
GO前記プラズマ重合膜 (c)表面からの流路の平均高さが 0. l〜500nmであること を特徴とするナノ流路キヤビラリ一。  GO The nano-channel cavities characterized in that the average height of the channels from the surface of the plasma polymerized membrane (c) is 0.1 to 500 nm.
〔11〕基板表面上にプラズマ重合膜 (b)が被覆され、該プラズマ重合膜 (b)と基板と で囲まれる少なくとも一つの流路を有するキヤビラリ一であって、  (11) a cavities having a plasma polymerized film (b) coated on a substrate surface and having at least one flow path surrounded by the plasma polymerized film (b) and the substrate,
(0該プラズマ重合膜 (b)層中に流路となる空洞が存在し、  (0 There is a cavity serving as a flow path in the plasma polymerized film (b) layer,
GO流路の一方の開口部 (入口)の平均高さが、他方の開口部(出口)の平均高さよ り大きぐ前記入口力 出口に向けて、流路が傾斜状に変化していることを特徴とす るナノ傾斜流路キヤビラリ一。  The average height of one opening (inlet) of the GO flow path is greater than the average height of the other opening (outlet). A nano-gradient flow path capillary characterized by:
〔12〕基板表面または基板に積層された最外層の表面上にプラズマ重合膜 (c)が被 覆され、さらに、該プラズマ重合膜 (c)表面にプラズマ重合膜 (b)が被覆され、該プラ ズマ重合膜 (b)とプラズマ重合膜 (c)とで囲まれる少なくとも一つの流路を有するキヤ ピラリーであって、  (12) The plasma polymerized film (c) is coated on the substrate surface or the outermost layer surface laminated on the substrate, and the plasma polymerized film (b) is coated on the surface of the plasma polymerized film (c). A capillary having at least one flow path surrounded by a plasma polymerized film (b) and a plasma polymerized film (c),
(0該プラズマ重合膜 (b)層中に前記流路となる空洞が存在し、 GO流路の一方の開口部 (入口)の平均高さが、他方の開口部(出口)の平均高さよ り大きぐ前記入口力 出口に向けて、流路が傾斜状に変化していることを特徴とす るナノ傾斜流路キヤビラリ一。 (0 There is a cavity serving as the flow path in the plasma polymerized film (b) layer, The average height of one opening (inlet) of the GO flow path is greater than the average height of the other opening (outlet). A nano-gradient flow path capillary characterized by:
〔13〕入口の流路の最小幅が 500nm以下であり、出口の流路の最小幅が 0. Inm以 上であることを特徴とする〔11〕または〔12〕に記載のナノ傾斜流路キヤビラリ一。 〔14〕前記〔9〕または〔10〕に記載のナノ流路キヤピラリーを用いる物質の分離方法。 〔 15〕前記〔 11〕〜〔 13〕の 、ずれかに記載のナノ傾斜流路キヤピラリーを用 V、る物質 の分離方法。  [13] The nano-inclined channel according to [11] or [12], wherein the minimum width of the inlet channel is 500 nm or less, and the minimum width of the outlet channel is 0. Killer one. [14] A method for separating a substance using the nanochannel capillary according to [9] or [10]. [15] The method for separating a substance according to any one of [11] to [13], wherein the nano-tilt channel capillary is used.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明に係る微小構造の製造方法の一例を示す図である。 FIG. 1 is a diagram showing an example of a method for manufacturing a microstructure according to the present invention.
[図 2]図 2は、本発明に係る傾斜流路を有する微小構造の製造方法の一例を示す図 である。  FIG. 2 is a view showing an example of a method for manufacturing a microstructure having an inclined flow channel according to the present invention.
[図 3]図 3は、プラズマ重合膜の形成方法の一例を示す模式図である。  FIG. 3 is a schematic view showing one example of a method for forming a plasma polymerized film.
[図 4-1]図 4 1は、プラズマ重合膜の形成方法の一例を示す模式図である。  FIG. 4-1 is a schematic view showing one example of a method for forming a plasma-polymerized film.
[図 4-2]図 4— 2は図 4—1中の A—A'断面を示す模式図である。  [FIG. 4-2] FIG. 4-2 is a schematic diagram showing a cross section taken along the line AA ′ in FIG. 4-1.
[図 5]図 5は、ナノ傾斜流路キヤピラリーを用いる物質の分離方法の一例を示す模式 図である。  FIG. 5 is a schematic diagram showing an example of a method for separating a substance using a nano-gradient flow channel capillary.
[図 6]図 6は、プラズマ重合装置の構成の一例を示す模式図である。  FIG. 6 is a schematic diagram showing one example of a configuration of a plasma polymerization apparatus.
[図 7]図 7は、共焦点レーザースキャナーを用いて蛍光測定を行った写真である。図 7 [FIG. 7] FIG. 7 is a photograph showing a fluorescence measurement performed using a confocal laser scanner. Fig. 7
— 1は基板表面のパターンを示した(Gain95%)の場合の写真であり、図 7— 2は基 板表面の蛍光物質の存在位置 (Gain50%)の場合である。 -1 is a photograph showing the pattern on the substrate surface (Gain 95%), and FIG. 7-2 is a photograph showing the position of the fluorescent substance on the substrate surface (Gain 50%).
[図 8]図 8は、フォトマスクの一例を示す写真である。  FIG. 8 is a photograph showing an example of a photomask.
[図 9-1]図 9 1は、プラズマ重合膜を製膜する場合の装置中の試料ステージの高さ と膜厚との関係を示す。  [FIG. 9-1] FIG. 91 shows the relationship between the height of the sample stage in the apparatus and the film thickness when a plasma-polymerized film is formed.
[図 9-2]図 9— 2はモノマーとして HMDSを用いた場合の試料ステージの位置と膜厚 との関係の例を示すグラフである。  [FIG. 9-2] FIG. 9-2 is a graph showing an example of the relationship between the position of the sample stage and the film thickness when HMDS is used as a monomer.
[図 10-1]図 10— 1は、プラズマ重合膜を製膜する場合の装置中の試料ステージの高 さと膜厚との関係を示す。 [図 10- 2]図 10— 2はモノマーとしてァセトニトリルを用いた場合の試料ステージの位 置と膜厚との関係の例を示すグラフである。 [Fig. 10-1] Fig. 10-1 shows the relationship between the height of the sample stage in the apparatus and the film thickness when a plasma polymerized film is formed. [FIG. 10-2] FIG. 10-2 is a graph showing an example of the relationship between the position of the sample stage and the film thickness when acetonitrile is used as a monomer.
符号の説明  Explanation of symbols
[0013] 1 基板 [0013] 1 substrate
2 フォトレジスト膜  2 Photoresist film
3 フォトマスク  3 Photomask
4 紫外線  4 UV
5 フォトレジストノ タン  5 Photoresist button
6 プラズマ重合膜 (a)  6 Plasma polymerized film (a)
7 プラズマ重合膜 (a)のパタン  7 Pattern of plasma polymerized film (a)
8 マスキングテープまたはマスク  8 Masking tape or mask
9 プラズマ重合膜 (b)  9 Plasma polymerized film (b)
10 流路  10 channels
11 プラズマ重合膜 (a)  11 Plasma polymerized film (a)
12 プラズマ重合膜 (a)のパタン  12 Pattern of plasma polymerized film (a)
13 プラズマ重合膜 (b)  13 Plasma polymerized film (b)
14 流路  14 channels
15 プラズマ発生装置  15 Plasma generator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] く微小構造の製造方法〉 [0014] Manufacturing method of microstructure>
本発明に係る微小構造の製造方法は、  The method for manufacturing a microstructure according to the present invention includes:
(1)基板上に、プラズマ重合膜 (a)をパターユングする工程 (工程 1)、  (1) A step of patterning the plasma polymerized film (a) on a substrate (Step 1),
(2)前記プラズマ重合膜 (a)をパターユングした側の基板表面に、プラズマ重合膜 (a )と異なるプラズマ重合膜 (b)を形成する工程 (工程 2)、および  (2) a step of forming a plasma-polymerized film (b) different from the plasma-polymerized film (a) on the surface of the substrate on which the plasma-polymerized film (a) is patterned (step 2), and
(3)工程 2の後、プラズマ重合膜 (a)のエッチング速度が、前記プラズマ重合膜 (b)の エッチング速度よりも大きな値を示すエッチング媒体を用いて、前記基板をエツチン グ処理し、プラズマ重合膜 (a)を除去する工程 (工程 3)  (3) After step 2, the substrate is subjected to an etching treatment using an etching medium in which the etching rate of the plasma-polymerized film (a) is higher than the etching rate of the plasma-polymerized film (b). Step of removing polymer film (a) (Step 3)
を含むことを特徴として 、る。 [0015] 以下詳説する。 It is characterized by including. [0015] Details will be described below.
[0016] (パターニング法)  [0016] (Patterning method)
工程 1における基板上へのプラズマ重合膜 (a)のパターユング方法に特に限定は ないが、たとえば、フォトリソグラフィ一法が挙げられる。  The method of patterning the plasma-polymerized film (a) on the substrate in step 1 is not particularly limited, and includes, for example, a photolithography method.
[0017] 「フォトリソグラフィ一法」は、フォトレジストの薄膜をコーティングした基板を、マスク( 通常「フォトマスク」という。)を通して光で露光し、マスクの形状に応じたパタンを、基 板上に形成する方法である。  [0017] In the "photolithography method", a substrate coated with a thin film of photoresist is exposed to light through a mask (usually referred to as a "photomask"), and a pattern corresponding to the shape of the mask is formed on the substrate. It is a method of forming.
光としては、通常、紫外光 (UV)などを用いる。(フォトリソグラフィ一法として、たとえ ば「Richardし. Jaeger、 Introduction to Microelectronic Fabrication Volume V (Second Edition) (出版社: Prentice Hall Upper Saddle River, New Jersey ^ ISBN 0-201-44494-1」記載の方法が挙げられる。;)。また、光の代わりに、電子線を用いる 電子線描画法、 X線などによる露光方法も採用できる。  As the light, ultraviolet light (UV) is usually used. (As a photolithography method, see, for example, the method described in Richard and Jaeger, Introduction to Microelectronic Fabrication Volume V (Second Edition) (Publisher: Prentice Hall Upper Saddle River, New Jersey ^ ISBN 0-201-44494-1) In addition, an electron beam drawing method using an electron beam instead of light, an exposure method using an X-ray, or the like can also be employed.
[0018] フォトリソグラフィ一法を用いてプラズマ重合膜をパターユングする方法としては、た とえば下記の方法が挙げられる。  As a method of patterning a plasma-polymerized film using one photolithography method, for example, the following method can be mentioned.
まずフォトレジストの薄膜を基板表面にコーティングし、マスク(通常「フォトマスク」と いう。)を通して光等で露光し、基板表面に所望の前記フォトレジストパタンを形成す る。ついで、該フォトレジストパタンを有する側の基板表面の、該フォトレジストパタン によって覆われていない部分にプラズマ重合膜 (a)を形成する。次に該フォトレジスト ノ タンをリストオフ(除去)することにより、前記フォトマスクに対応した、凸状のプラス、 マ重合膜 (a)をパターユングすることができる。  First, a thin film of photoresist is coated on the surface of a substrate, and is exposed to light or the like through a mask (usually referred to as a “photomask”) to form a desired photoresist pattern on the surface of the substrate. Next, a plasma polymerized film (a) is formed on a portion of the substrate surface having the photoresist pattern, which is not covered by the photoresist pattern. Then, by removing (removing) the photoresist pattern, the convex polymer film (a) corresponding to the photomask can be patterned.
[0019] フォトリソグラフィ一法は紫外線等の光を照射することによりフォトマスクのパターン を基板に転写したが、電子線描画は電子線を照射することによりパターンを描く。電 子線描画法によればフォトリソグラフィーを用いる手法と比較してより微小なパターン を描くことができる。  [0019] In the photolithography method, the pattern of the photomask is transferred to the substrate by irradiating light such as ultraviolet rays. In electron beam lithography, the pattern is drawn by irradiating an electron beam. According to the electron beam drawing method, a finer pattern can be drawn as compared with the method using photolithography.
[0020] (基板)  [0020] (Substrate)
本発明で用いることのできる基板を構成する素材は特に限定されず、少なくとも、基 板表面がプラズマ重合によって変質せず、一定の物理強度を有し、電気泳動等に用 V、たときに一定の耐熱性を有して 、ればよ!/、。 [0021] このような基板としては具体的には、たとえば、ガラスやプラスチックなどが挙げられ る。 The material constituting the substrate that can be used in the present invention is not particularly limited, and at least the substrate surface does not deteriorate due to plasma polymerization, has a certain physical strength, and has a certain value when used for electrophoresis or the like. With the heat resistance of れ ば! [0021] Specific examples of such a substrate include glass and plastic.
[0022] プラスチックとしては、たとえば、 PMMA (Poly methyl methacrylate)や、シリコーン 榭脂(PDMS: polydimethylsiloxane)などが挙げられる。  [0022] Examples of the plastic include PMMA (Poly methyl methacrylate) and silicone resin (PDMS: polydimethylsiloxane).
[0023] 基板の形状は、板状の平面基板が好ましい。基板の厚さは限定されないが、たとえ ば、好ましくは 0. l〜20mm程度の範囲である。 The shape of the substrate is preferably a plate-like planar substrate. The thickness of the substrate is not limited, but is preferably, for example, in the range of about 0.1 to 20 mm.
[0024] (プラズマ重合膜 (a) ) (Plasma Polymerized Film (a))
工程 1で基板上にパターユングするプラズマ重合膜 (a)は、基板の存在下、モノマ 一をプラズマ重合して形成する。  The plasma polymerized film (a) to be patterned on the substrate in step 1 is formed by plasma polymerizing a monomer in the presence of the substrate.
具体的には、真空中でモノマー物質をプラズマ励起によって直接支持体表面に成 膜を行う。モノマー物質の成分を換えることによって、さまざまな特徴を持つプラズマ 重合膜を得ることができる。プラズマ重合では原理的にはどのようなモノマーを用い ても、重合が可能である。通常のポリマーを得るためには二重結合の開裂が必要とな るのに対して、プラズマ中ではモノマー物質がばらばらになり多くの活性種を介した 重合反応が起きるためである。  Specifically, a film is formed directly on the surface of the support by plasma excitation of the monomer material in a vacuum. By changing the components of the monomer material, it is possible to obtain plasma polymerized films with various characteristics. In principle, plasma polymerization can be carried out using any monomer. In order to obtain an ordinary polymer, cleavage of the double bond is required, whereas in plasma, monomeric substances are separated and a polymerization reaction occurs via many active species.
[0025] 本発明におけるプラズマ重合膜 (a)のためのモノマー物質は、基板表面へのパタン 形成が可能で、何らかのエッチングガスによりエッチングが可能であればよぐ限定さ れない。 [0025] The monomer material for the plasma polymerized film (a) in the present invention is not limited as long as it can form a pattern on the substrate surface and can be etched by some etching gas.
[0026] プラズマ重合膜 (a)を与えうるモノマー物質としては、たとえば、下記の化合物が挙 げられる。これらのモノマー物質は、 1種単独で、または複数を混合して用いることが できる。  [0026] Examples of the monomer substance capable of providing the plasma polymerized film (a) include the following compounds. These monomer substances can be used alone or in combination of two or more.
[0027] アルカン、またはシクロアルカンとして、次の化合物を示すことができる。  The following compounds can be shown as alkanes or cycloalkanes.
メタン、ェタン、プロノ ン、ブタン、イソブタン、ペンタン、イソペンタン、ネ才ペンタン 、へキサン、イソへキサン、 3—メチルペンタン、 2,2 ジメチルブタン、 2,3 ジメチル ブタン、ヘプタン、 2,2,3 トリメチルブタン、オクタン、ノナン、デカン、メタン dl、メタ ン d2、メタン d3、メタン d4、シクロプロパン、シクロブタン、シクロペンタン、シクロ へキサン、メチルシクロへキサン、シクロオクタン、 cis デカリン、および trans デカリ ン。 [0028] アルケン、アルキン、ある!/ヽはシクロアルケンとしては、次の化合物を示すことができ る。 Methane, ethane, pronone, butane, isobutane, pentane, isopentane, nesa pentane, hexane, isohexane, 3-methylpentane, 2,2 dimethylbutane, 2,3 dimethylbutane, heptane, 2,2,3 Trimethylbutane, octane, nonane, decane, methane dl, methane d2, methane d3, methane d4, cyclopropane, cyclobutane, cyclopentane, cyclohexane, methylcyclohexane, cyclooctane, cis decalin, and trans decalin. Alkenes, alkynes, a! / ヽ are the following compounds as cycloalkenes.
エチレン、プロピレン、 1—ブテン、(Z)—2—ブテン、(E)—2—ブテン、 2—メチル プロペン、 1 ペンテン、 2—メチルー 1ーブテン、 3—メチルー 1ーブテン、 2 メチル —2 ブテン、 1—へキセン、(E)— 2 へキセン、(E)— 3 へキセン、 3—メチル 1 —ペンテン、 2,3 ジメチルー 2 ブテン、 1—ヘプテン、 1—オタテン、(E)— 2—オタ テン、 1—デセン、 1,3 ブタジエン、(Z)— 1,3 ペンタジェン、(E)— 1,3 ペンタジ ェン、イソプレン、 2,3 ジメチルー 1,3 ブタジエン、へキサジェン、アセチレン、プロ ピン、 1—ブチン、 2 ブチン、 1—ペンチン、 3—メチル 1—ブチン、ビニルァセチレ ン、シクロプロペン、シクロブテン、シクロペンテン、シクロへキセン、シクロヘプテン、 シクロペンタジェン、 1,3 シクロへブタジエン、およびシクロォクタテトラエン。  Ethylene, propylene, 1-butene, (Z) -2-butene, (E) -2-butene, 2-methylpropene, 1 pentene, 2-methyl-1butene, 3-methyl-1butene, 2-methyl-2butene, 1—Hexene, (E) —2 Hexene, (E) —3 Hexene, 3-Methyl 1—Pentene, 2,3 Dimethyl-2-butene, 1—Heptene, 1—Otatene, (E) —2—Ota Ten, 1-decene, 1,3 butadiene, (Z) -1,3 pentadiene, (E) -1,3 pentadiene, isoprene, 2,3 dimethyl-1,3 butadiene, hexadiene, acetylene, propyne, 1-butyne, 2-butyne, 1-pentyne, 3-methyl 1-butyne, vinylacetylene, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclopentadiene, 1,3-cyclobutadiene, and cyclooctene Tetraene.
[0029] アルコール、アルデヒド、ケトン、カルボン酸、あるいはエステルとしては次の化合物 を示すことができる。 [0029] Examples of the alcohol, aldehyde, ketone, carboxylic acid, or ester include the following compounds.
メタノール、エタノール、 1 プロパノール、 2 プロパノール、 1ーブタノール、 2 ブ タノール、 2—メチルー 1 プロパノール、 2—メチルー 2 プロパノール、ァリルアルコ ール、 1,3 ブタンジオール、 2,3 ブタンジオール、 2, 3 エポキシ 1 プロパノ ール、ホルムアルデヒド、ァセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、 バレルアルデヒド、イソバレルアルデヒド、アクリルアルデヒド、クロトンアルデヒド、グリ ォキサール、アセトン、 2 ブタノン、 2 ペンタノン、 3—メチルー 2 ブタノン、 3 ぺ ンタノン、 2 へキサノン、 4—メチル 2 ペンタノン、 2 ヘプタノン、シクロブタノン、 シクロペンタノン、シクロへキサノン、シクロへプタノン、シクロォクタノン、 4ーメチルー 3 ペンテンー2 オン、 2,3 ブタンジオン、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪 酸、アクリル酸、ギ酸メチル、ギ酸ェチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチ ル、酢酸メチル、酢酸ェチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸ィ ソブチル、酢酸 s ブチル、プロピオン酸メチル、酪酸メチル、酢酸ビュル、および酢 酸ァリル。  Methanol, ethanol, 1 propanol, 2 propanol, 1 butanol, 2 butanol, 2-methyl-1 propanol, 2-methyl-2 propanol, aryl alcohol, 1,3 butanediol, 2,3 butanediol, 2,3 epoxy 1 Propanol, formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, isovaleraldehyde, acrylaldehyde, crotonaldehyde, glyoxal, acetone, 2-butanone, 2-pentanone, 3-methyl-2-butanone, 3-pentanone, 2-hexanone, 4-methyl-2-pentanone, 2-heptanone, cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, 4-methyl-3-pentene-2-one, 2,3-butanedione, formic acid Acetic acid, propionic acid, butyric acid, isobutyric acid, acrylic acid, methyl formate, ethyl formate, propyl formate, butyl formate, isobutyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, acetic acid s Butyl, methyl propionate, methyl butyrate, butyl acetate, and aryl acetate.
[0030] エーテル、ァミン、あるいはその他のモノマー物質として利用可能な化合物を以下 に示す。 ジメチルエーテル、ジェチノレエーテノレ、ジプロピルエーテル、ジイソプロピノレエーテ ル、ジブチルエーテル、エチレンォキシド、 1,3 ジォキソラン、 1,3 ジォキサン、 1,4 ジォキサン、メチルビニルエーテル、メチルァミン、ェチルァミン、プロピルァミン、 イソプロピルァミン、ブチルァミン、イソブチルァミン、 s ブチルァミン、 t ブチルアミ ン、ペンチルァミン、へキシルァミン、ジメチルァミン、トリメチルァミン、ジェチルァミン 、トリエチノレアミン、ジプロピルァミン、ジイソプロピルァミン、トリプロピノレアミン、ジブチ ルァミン、ァリルァミン、ホルムアミド、ァセトアミド、 N メチルァセトアミド、 N, N ジ メチルホルムアミド、 N, N ジメチルァセトアミド、メタンチオール、エタンチオール、 硫化ジメチル、硫化ジェチル、硫ィ匕ジプロピル、二硫化ジメチル、ニ硫ィ匕ジェチル、 メタンジチオール、 1,2 エタンジチオール、ニトロメタン、ニトロェタン、 1一二トロプロ パン、 2 ニトロプロノ ン、 1一二トロブタン、 2 二トロブタン、ァセトニトリノレ、プロピオ 二トリル、アクリロニトリル、アミノアセトアルデヒドジメチルァセタール、へキサメチルジ シロキサンなどが挙げられる。 [0030] Compounds usable as ether, amine, or other monomeric substances are shown below. Dimethyl ether, getinoleatenole, dipropyl ether, diisopropinoleatel, dibutyl ether, ethylene oxide, 1,3 dioxolane, 1,3 dioxane, 1,4 dioxane, methyl vinyl ether, methylamine, ethylamine, propylamine, isopropyl Amin, butyramine, isobutylamine, s-butylamine, t-butylamine, pentylamine, hexylamine, dimethylamine, trimethylamine, getylamine, triethynoleamine, dipropylamine, diisopropylamine, trippropinoleamine, dibutylamine, arylamine, Formamide, acetamide, N-methylacetamide, N, N-dimethylformamide, N, N-dimethylacetamide, methanethiol, ethanethiol, dimethyl sulfide, Getyl sulfide, disulfide dipropyl, dimethyl disulfide, disulfide disulfide, methanedithiol, 1,2 ethanedithiol, nitromethane, nitroethane, 112 tropopropane, 2 nitropronon, 112 trobutane, nitrobutane, Acetonitrile, propionitrile, acrylonitrile, aminoacetaldehyde dimethyl acetal, hexamethyldisiloxane and the like.
また、次のようなハロゲンィ匕物をモノマー物質に利用することができる。  Further, the following halogenated compounds can be used as the monomer material.
フルォロメタン、ジフルォロメタン、フルォロホルム、テトラフルォロメタン(四フッ化炭 素)、フッ化ビュル、 1,1ージフルォロエチレン、(Z)— 1,2 ジフルォロエチレン、(E) 1,2 ジフルォロエチレン、トリフルォロエチレン、テトラフルォロエチレン、 1,1,4,4 ーテトラフルォロブタジエン、ペルフルォロブタジエン、 2—フルォロエタノール、トリフ ルォロ酢酸、 1,1,1 トリフルオロー 2 プロパノン、ペルフルォロアセトン、クロロメタン 、ジクロロメタン、クロ口ホルム、テトラクロロメタン(四塩化炭素)、クロロェタン、 1,1 ジ クロ口エタン、 1,2 ジクロ口エタン、 1 クロ口プロノ ン、 2 クロ口プロノ ン、 1,2 ジク ロロプロノ ン、 1,3 ジクロ口プロノ ン、 1 クロロブタン、 2 クロロブタン、 1 クロロー 2—メチノレプロパン、 2 クロロー 2—メチノレプロパン、クロロシクロプロパン、 1,1ージク ロロシクロプロパン、塩化ビュル、 1,1—ジクロロエチレン、(Z)— 1,2 ジクロロェチレ ン、(E)— 1,2 ジクロ口エチレン、トリクロロエチレン、テトラクロロエチレン、 3 クロ口 プロペン、 1,3—ジクロ口プロペン、クロ口アセチレン、ジクロロアセチレン、 1 クロロプ 口ピン、 2—クロ口エタノール、クロロアセトアルデヒド、クロロアセトニトリル、ジクロロア セトニトリル、トリクロロアセトニトリル、ブロモメタン、ジブロモメタン、ブロモホルム、テト ラブロモメタン(四臭化炭素)、ブロモェタン、 1,1 ジブロモェタン、 1,2 ジブロモェ タン、 1 ブロモプロノ ン、 2 ブロモプロノ ン、 1,3 ジブロモプロパン、 1ーブロモブ タン、 2 ブロモブタン、 1ーブロモー 2 メチルプロパン、 2 ブロモー 2 メチルプロ パン、 1,4—ジブロモブタン、 1—ブロモビシクロ [2.2.1]ヘプタン、 1—ブロモビシクロ [ 2.2.2]オクタン、臭化ビニル、 3 ブロモプロペン、 1,3 ジブロモプロペン、ブロモア セチレン、ジブロモアセチレン、 1 ブロモプロピン、 2 ブロモエタノール、ョードメタ ン、ジョードメタン、ョードホルム、テトラョードメタン(四ヨウ化炭素)、ョードエタン、 1— ョードプロパン、 2 ョードプロパン、 1 ョードブタン、 2 ョードブタン、 1ーョードー 2 メチルプロパン、 2 ョードー 2 メチルプロパン、 1 ョードペンタン、 3 ョードプロ ペン、ョードアセチレン、ジョードアセチレン、 2 ョードエタノール、 1ーブロモー 2 ク ロロェタン、 1,1,1 トリフルオロー 2 ョードエタン、 2 クロロー 1,1ージフルォロェチ レン、 1 クロロー 1,2, 2 トリフルォロエチレン、 1, 1ージクロロー 2,2 ジフルォロェチ レン、 1—ブロモ 2 クロ口アセチレン、 1—クロ口一 2 ョードアセチレン、および 1— ブロモ 2 ョードアセチレン。 Fluoromethane, difluoromethane, fluoroform, tetrafluoromethane (carbon tetrafluoride), butyl fluoride, 1,1 difluoroethylene, (Z) -1,2 difluoroethylene, (E) 1,2 difluor Fluoroethylene, trifluoroethylene, tetrafluoroethylene, 1,1,4,4-tetrafluorobutadiene, perfluorobutadiene, 2-fluoroethanol, trifluoroacetic acid, 1,1, 1 Trifluoro-2 propanone, perfluoroacetone, chloromethane, dichloromethane, chloroform, tetrachloromethane (carbon tetrachloride), chloroethane, 1,1-dichloroethane, 1,2-dichloroethane, 1-chloromethane Pronon, dichloropronon, 1,2 dichloropronon, 1,3 dichloropronon, 1 chlorobutane, 2 chlorobutane, 1 chloro-2-methinolepropane, 2 chloro Rho 2-methinolepropane, chlorocyclopropane, 1,1-dichlorocyclopropane, butyl chloride, 1,1-dichloroethylene, (Z) -1,2 dichloroethylene, (E) -1,2 dichloroethylene, trichloroethylene, tetrachloroethylene , 3-clopropene, 1,3-dichloropropene, chloroacetylene, dichloroacetylene, 1chloropropyl pin, 2-chloroethanol, chloroacetaldehyde, chloroacetonitrile, dichloroacetonitrile, trichloroacetonitrile, bromomethane, dibromomethane, bromoform , Tet Labromomethane (carbon tetrabromide), bromoethane, 1,1 dibromoethane, 1,2 dibromoethane, 1 bromopronone, 2 bromopronone, 1,3 dibromopropane, 1-bromobutane, 2 bromobutane, 1-bromo-2-methylpropane, 2 bromo 2-methylpropane, 1,4-dibromobutane, 1-bromobicyclo [2.2.1] heptane, 1-bromobicyclo [2.2.2] octane, vinyl bromide, 3-bromopropene, 1,3-dibromopropene, bromoacetylene, Dibromoacetylene, 1-bromopropyne, 2-bromoethanol, eodomethane, iodomethane, eodoform, tetra-iodomethane (carbon tetraiodide), eodoethane, 1-iodopropane, 2-iodopropane, 1-iodbutane, 2-iodobutane, 1-iodo-2-methylpropane , 2odo 2-methylpropa 1,1 pentane, 3 odopropene, 3 odoacetylene, jordoacetylene, 2 odoethanol, 1 bromo-2 chloroethane, 1,1,1 trifluoro-2 odoethane, 2 chloro-1,1 difluoroethylene, 1 chloro-1,2,2 trifluoro Roethylene, 1,1-dichloro-2,2-difluoroethylene, 1-bromo-2-chloroacetylene, 1-chloro-12-chloroacetylene, and 1-bromo-2-chloroacetylene.
[0032] 更に、以下のような芳香族炭化水素がモノマー物質として利用できる。  Further, the following aromatic hydrocarbons can be used as monomer substances.
ベンゼン、トルエン、ェチルベンゼン、プロピルベンゼン、タメン、ブチルベンゼン、 s ーブチノレベンゼン、 tーブチノレベンゼン、 0—キシレン、 m キシレン、 p キシレン、 0 ージェチルベンゼン、 m—ジェチルベンゼン、 p ジェチルベンゼン、メシチレン、 1,2,4,5—テトラメチルベンゼン、スチレン、フエニルアセチレン、 (E) 1—プロぺニル ベンゼン、 (E)—1—フエ-ルブタジエン、 2 フエ-ルブタジエン、ビフエ-ル、ナフ タレン、 1ーメチルナフタレン、 2—メチルナフタレン、アントラセン、フエナントレン、ピ レン、ナフタセン、タリセン、およびペンタセン。  Benzene, toluene, ethylbenzene, propylbenzene, tamen, butylbenzene, s-butynolebenzene, t-butynolebenzene, 0-xylene, m-xylene, p-xylene, 0-ethylethylbenzene, m-ethylethylbenzene, p-getylbenzene Butylbenzene, mesitylene, 1,2,4,5-tetramethylbenzene, styrene, phenylacetylene, (E) 1-propenylbenzene, (E) -1-phenylbutadiene, 2 phenylbutadiene, Biphenyl, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, anthracene, phenanthrene, pyrene, naphthacene, thalicene, and pentacene.
[0033] カロえて、次のベンゼン誘導体等も本発明のモノマー物質に有用である。  In addition, the following benzene derivatives are also useful as the monomer material of the present invention.
フエノール、ベンズアンデヒド、ァセトフエノン、ァ-ソール、ベンジルメチルエーテル 、ァニリン、ベンジルァミン、チォフエノール、ベンゾニトリル、フルォロベンゼン、クロ口 ベンゼン、ブロモベンゼン、ョードベンゼン、 0—ジクロ口ベンゼン、 m ジクロ口べンゼ ン、 p ジクロ口ベンゼン、 0—ジブロモベンゼン、 m—ジブロモベンゼン、 p—ジブロモ ベンゼン、トリフルォロベンゼン、へキサフルォロベンゼン、 0—フルォロトルエン、 m— フノレ才ロトノレェン、 p フノレ才ロトノレェン、。一クロロトノレェン、 p クロロトノレェン、 0—ブ 口モトノレェン、 p ブロモトノレェン、 0—ョードトノレェン、 m ョードトノレェン、 p ョードト ノレェン、 p クロロフノレォロベンゼン、および 0—クロロヨードベンゼン。 Phenol, benzaldehyde, acetophenone, asol, benzyl methyl ether, aniline, benzylamine, thiophenol, benzonitrile, fluorobenzene, benzene, bromobenzene, odobenzene, 0-dichlorobenzene, m dichlorobenzene, p Dichloro mouth benzene, 0-dibromobenzene, m-dibromobenzene, p-dibromobenzene, trifluorobenzene, hexafluorobenzene, 0-fluorotoluene, m— Hunore, Lotnolen, p Hunole, Lotnolen,. 1-chlorotonolene, p-chlorotonolene, 0-butanol motonolen, p-bromotonolene, 0-odd-nodrenen, m-odd-no-renen, p-odd-no-renen, p-chloro-norenobenzene, and 0-chloro-iodobenzene.
[0034] また、次のような複素環式ィ匕合物がモノマー物質として利用できる。  Further, the following heterocyclic compound can be used as a monomer material.
ピリジン、 2 メチルピリジン、 3 メチルピリジン、 4 メチルピリジン、 2, 6 ジメチル ピリジン、 2,5 ジメチルビリジン、 2,4 ジメチルビリジン、ピリダジン、ピリミジン、ビラ ジン、 1,3,5 トリァジン、ピリジン N—ォキシド、 2—メチルピリジン N—ォキシド、 3—メ チルピリジン N—ォキシド、 4 メチルピリジン N—ォキシド、 2, 6 ジメチルビリジン N ーォキシド、フラン、メチルフラン、テトラヒドロフラン、ピロール、ピロリジン、チォフェン 、および 2—クロロチォフェン。  Pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, pyridazine, pyrimidine, virazine, 1,3,5-triazine, pyridine N-oxide , 2-methylpyridine N-oxide, 3-methylpyridine N-oxide, 4-methylpyridine N-oxide, 2,6 dimethyl pyridine N-oxide, furan, methylfuran, tetrahydrofuran, pyrrole, pyrrolidine, thiophene, and 2-chlorothio Fen.
[0035] その他、トロポンゃトロボロンのようなトロポノイド化合物、またテトラメチルシラン、テ トラメチルスズ、テトラメチル鉛に代表される有機金属化合物をモノマー物質に用いる ことちでさる。  [0035] In addition, a troponoid compound such as tropone ditroborone, or an organometallic compound represented by tetramethylsilane, tetramethyltin, or tetramethyllead is used as a monomer material.
[0036] これらのうち、プラズマ重合膜 (a)を誘導するモノマーとしては、前記工程 3における 前記プラズマ重合膜 (a)のエッチング速度が、前記プラズマ重合膜 (b)のエッチング 速度より大きくなるものを選択する。また、プラズマ重合膜 (c)を基板表面または基板 に積層された最外層の表面にコーティングする場合は、前記工程 3における前記プ ラズマ重合膜(a)のエッチングレートが前記プラズマ重合膜(c)のエッチングレートよ り大きくなるものを選択する。  [0036] Among these, as the monomer for inducing the plasma polymerized film (a), those in which the etching rate of the plasma polymerized film (a) in the step 3 is higher than the etching rate of the plasma polymerized film (b) Select Further, when the plasma polymerized film (c) is coated on the substrate surface or the outermost layer surface laminated on the substrate, the etching rate of the plasma polymerized film (a) in the step 3 is adjusted to the plasma polymerized film (c). Select an etching rate higher than the etching rate.
[0037] (プラズマ重合膜の形成方法)  (Method for Forming Plasma Polymerized Film)
前記モノマー物質によってプラズマ重合膜を成膜する方法は公知である。具体的 には、プラズマ重合反応の再現性に影響を与える主な要因として、たとえば流速、放 電電力、放電時間、そして圧力といった条件が重要であるとされている。プラズマ重 合においては、装置やモノマーに合わせて最適な重合条件を設定する必要がある。 W/FM (ここで Wは放電電力、 Fは流速、 Mはモノマーの分子量)が同じであれば、膜 貧はほぼ、 | じであるとす 報告 (Yasuda, Plasma Polymerization, Academic Press, New York, 1985)がある。  A method for forming a plasma-polymerized film using the monomer material is known. Specifically, it is said that conditions such as flow rate, discharge power, discharge time, and pressure are important factors that affect the reproducibility of the plasma polymerization reaction. In the case of plasma polymerization, it is necessary to set optimal polymerization conditions according to the equipment and monomers. If the W / FM (where W is the discharge power, F is the flow rate, and M is the molecular weight of the monomer) are the same, the film poorness is almost the same. Report (Yasuda, Plasma Polymerization, Academic Press, New York) , 1985).
[0038] 利用するモノマー物質や、最終的に必要なプラズマ重合膜の膜厚等を考慮して、 これらの条件を適宜調整することができる。また文献的にも各種のパラメーターがブラ ズマ重合膜の性質に及ぼす影響は明らかにされている (Surface and Coatings Technology 82:1-15,1996, Polymer Engineering and Science 37/7:1188-1194,1997) [0038] In consideration of the monomer material to be used and the finally required film thickness of the plasma polymerized film, These conditions can be adjusted appropriately. The effects of various parameters on the properties of plasma polymerized films have been clarified in the literature (Surface and Coatings Technology 82: 1-15, 1996, Polymer Engineering and Science 37/7: 1188-1194, 1997). )
[0039] たとえば、へキサメチルジシロキサンでプラズマ重合膜を作製または製膜するには 、たとえば次のような範囲のもとで最適な条件を選択することにより、 0〜500nmのプ ラズマ重合膜を形成することができる。 For example, in order to prepare or form a plasma polymerized film using hexamethyldisiloxane, a plasma polymerized film having a thickness of 0 to 500 nm is selected, for example, by selecting optimum conditions under the following ranges. Can be formed.
[0040] 流速:好ましくは 0. 1〜: L00cm3/min.、さらに好ましくは 0. l〜50cm3/min. [0040] Flow rate: preferably 0. 1~:. L00cm 3 / min , more preferably 0. l~50cm 3 / min.
放電電力:好ましくは 15〜500W、さらに好ましくは 100〜200W  Discharge power: preferably 15-500W, more preferably 100-200W
圧力:好ましくは 1. 0 X 10_7Torr〜l. 0 X 10"3 Torr、さらに好ましくは 1. 0 X 10" 'Torr〜5. 0 X 10 forr Pressure: preferably 1.0 X 10 -7 Torr to 1.0 X 10 " 3 Torr, more preferably 1.0 X 10"'Torr to 5.0 X 10 forr
放電時間:好ましくは 0. 1〜120分、さらに好ましくは 0. 5〜60分  Discharge time: preferably 0.1 to 120 minutes, more preferably 0.5 to 60 minutes
温度:好ましくは 0〜100°C、さらに好ましくは 4〜37°C  Temperature: preferably 0-100 ° C, more preferably 4-37 ° C
[0041] このようにして得られるプラズマ重合膜は、極めて均質な膜であり、ピンホールの発 生が著しく抑制されている。 [0041] The plasma polymerized film obtained in this manner is a very homogeneous film, and the occurrence of pinholes is significantly suppressed.
またプラズマ重合によれば、プラズマ重合膜を任意の形状の基板表面に形成させ ることがでさる。  Further, according to the plasma polymerization, a plasma polymerization film can be formed on a substrate surface having an arbitrary shape.
[0042] 本発明では、プラズマ重合膜 (a)の形成において、基板表面へプラズマを照射する 角度を変化させることにより、平面層あるいは傾斜層を有するプラズマ重合膜 (a)を 形成させることができる。  In the present invention, in forming the plasma-polymerized film (a), the plasma-polymerized film (a) having a flat layer or an inclined layer can be formed by changing the angle at which the substrate surface is irradiated with plasma. .
すなわち、前記工程 1において、プラズマが発生している中心部位力も基板に向け ての最短距離方向と該基板表面との間の角度が、前記最短方向に対して 0度以上 9 0度以下になるように前記基板を配置して、プラズマ重合膜 (a)を形成することができ る。  That is, in the step 1, the force at the center of the plasma is also generated, and the angle between the direction of the shortest distance toward the substrate and the surface of the substrate becomes 0 to 90 degrees with respect to the shortest direction. The plasma polymerized film (a) can be formed by disposing the substrates as described above.
[0043] 本発明では、プラズマ重合膜 (a)は工程 3にお 、てエッチング除去され、キヤビラリ 一の流路となるため、一定の高さまたは傾斜を有する流路を形成することができる。  In the present invention, since the plasma polymerized film (a) is etched and removed in step 3 to form a single flow path in the cavity, a flow path having a certain height or slope can be formed.
[0044] 以下(1)基板が 90度に配置されている場合、(2)前記角度が 0度に配置されてい る場合について、プラズマ重合方法をそれぞれ説明する。 [0045] (1)平面状のプラズマ重合膜 (a)の形成方法 Hereinafter, the plasma polymerization method will be described for (1) the case where the substrate is arranged at 90 degrees and (2) the case where the angle is arranged at 0 degrees. (1) Method for Forming Planar Plasma Polymerized Film (a)
たとえば、前記工程 1における凸状のプラズマ重合膜 (a)の形成において、プラズ マが発生している中心部位力 基板に向けての最短距離方向に対して、前記基板を 垂直に配置 (前記角度が 90度に配置)すると、平面層からなるプラズマ重合膜 (a)の 層を形成することができる。  For example, in the formation of the convex plasma-polymerized film (a) in the step 1, the substrate is disposed perpendicularly to the direction of the shortest distance toward the substrate where the plasma is generated (the angle Is disposed at 90 degrees), a layer of the plasma polymerized film (a) composed of a planar layer can be formed.
このようなプラズマ重合膜は、極めて均一である。  Such a plasma polymerized film is extremely uniform.
[0046] このようなプラズマ重合膜 (a)の膜厚は、適宜調整でき、たとえば、好ましくは 0. In m〜500nm、さらに好ましくは lnm〜100nm、より好ましくは lnm〜50nmの範囲 に調整することができる。 [0046] The thickness of the plasma polymerized film (a) can be appropriately adjusted, for example, preferably in the range of 0.1 to 500 nm, more preferably 1 to 100 nm, and still more preferably 1 to 50 nm. be able to.
このようなプラズマ重合膜 (a)は、工程 3においてエッチング除去され、流路を形成 するので、プラズマ重合膜 (a)の膜厚に依存したナノオーダーの超微細な流路であ つて、均一な高さを有する流路が少なくとも 1以上存在するキヤピラリーを任意に形成 することができる。  Such a plasma-polymerized film (a) is etched and removed in step 3 to form a flow path, and is a nano-order ultra-fine flow path depending on the thickness of the plasma-polymerized film (a) and is uniform. Capillaries having at least one or more flow paths having different heights can be arbitrarily formed.
[0047] (2)傾斜状のプラズマ重合膜 (a)の形成方法 (2) Method of forming inclined plasma polymerized film (a)
前記工程 1にお 、て、プラズマが発生して 、る中心部位力 基板に向けての最短 距離方向と該基板表面との間の角度が、前記最短方向に対して 0度以上 90度未満 になるように前記基板を配置して、プラズマを照射すると、傾斜を有するプラズマ重合 膜 (a)を形成することができる。  In the step 1, the plasma is generated, and the angle between the direction of the shortest distance toward the substrate and the surface of the substrate is 0 ° or more and less than 90 ° with respect to the shortest direction. By irradiating the substrate with the above-described substrate and irradiating the plasma, a plasma polymerized film (a) having an inclination can be formed.
このような傾斜は、たとえば、前記角度が好ましくは 0度〜 60度、さらに好ましくは 0 度〜 30度、より好ましくは 0度である。基板を最短方向に対して平行 (角度が 0度)に 近いほど、効率的に傾斜を形成することができる。  Such an inclination is, for example, preferably such that the angle is 0 ° to 60 °, more preferably 0 ° to 30 °, and more preferably 0 °. The closer the substrate is parallel to the shortest direction (the angle is 0 degree), the more efficiently the inclination can be formed.
[0048] すなわち、この様な方法を採ると、プラズマ重合装置に近い位置では、膜厚の厚い プラズマ重合層が形成され、プラズマ重合装置からの距離が離れるに従い形成され るプラズマ重合膜の膜厚が連続的に減少する。結果として、プラズマ重合膜 (a)は、 プラズマ重合装置に最も近い基板端部から傾斜的かつ連続的に膜厚が減少するよう に形成される。 That is, when such a method is adopted, a thick plasma-polymerized layer is formed at a position close to the plasma polymerization apparatus, and the thickness of the plasma-polymerized film formed as the distance from the plasma polymerization apparatus increases. Decreases continuously. As a result, the plasma-polymerized film (a) is formed so that the film thickness decreases gradually and continuously from the edge of the substrate closest to the plasma-polymerization apparatus.
[0049] このような傾斜的で連続的なプラズマ重合膜 (a)は、極めて均質であり、また、ブラ ズマ重合装置との距離、基板の大きさ、プラズマ重合条件を適宜設定することにより 、任意の膜厚、任意の傾斜角を有するプラズマ重合膜 (a)を、ナノオーダーレベルで 適宜調整できる。 [0049] Such an inclined and continuous plasma polymerized film (a) is extremely homogeneous, and can be obtained by appropriately setting the distance from the plasma polymerization apparatus, the size of the substrate, and the plasma polymerization conditions. The plasma polymerized film (a) having an arbitrary film thickness and an arbitrary tilt angle can be appropriately adjusted on a nano-order level.
[0050] プラズマ重合膜 (a)の膜厚は、適宜調整でき、たとえば、膜厚の最も大きい端部は 、好ましくは 500nm以下、さらに好ましくは lOOnm以下、より好ましくは 50nm以下で あり、膜厚の最も薄い端部は、好ましくは 0. lnm以上、さらに好ましくは lnm以上で あるように調整できる。  [0050] The thickness of the plasma-polymerized film (a) can be appropriately adjusted. For example, the end portion having the largest film thickness is preferably 500 nm or less, more preferably 100 nm or less, more preferably 50 nm or less. The thinnest edge of can be adjusted to be preferably greater than 0.1 nm, more preferably greater than 1 nm.
[0051] このような膜厚に調整することにより、流路の幅が連続的に変化したナノ傾斜流路 キヤピラリーを製造することができる。  By adjusting the film thickness to such a value, it is possible to manufacture a nano inclined flow channel capillary in which the width of the flow channel changes continuously.
すなわち、形成された該プラズマ重合膜 (a)を工程 3にお ヽてエッチング除去する ことにより、  That is, the formed plasma polymerized film (a) is removed by etching in step 3.
(0該プラズマ重合膜 (b)層中に流路となる空洞が存在し、  (0 There is a cavity serving as a flow path in the plasma polymerized film (b) layer,
GO流路の一方の開口部 (入口)の平均高さが、他方の開口部(出口)の平均高さよ り大きぐ前記入口力 出口に向けて、流路が傾斜状に変化しているキヤピラリーを任 意に製造することができる。  A capillary in which the average height of one opening (inlet) of the GO channel is larger than the average height of the other opening (exit) of the GO channel. Can be manufactured at will.
[0052] 以下、プラズマ重合膜 (b)、 (c)は、前記プラズマ重合膜 (a)とは、用いるモノマー 物質の種類が異なるが、上記(1)平面状のプラズマ重合膜の製造方法と同様の方法 により形成させることができる。  Hereinafter, the plasma-polymerized films (b) and (c) are different from the plasma-polymerized film (a) in the type of the monomer material used. It can be formed by a similar method.
[0053] (プラズマ重合膜 (b) ) (Plasma Polymerized Film (b))
プラズマ重合膜 (b)は、前記基板の前記パターユングした側の表面に形成する膜 であり、プラズマ重合膜 (a)と異なるプラズマ重合膜である。  The plasma polymerized film (b) is a film formed on the surface of the substrate on the side of the pattern jungle, and is different from the plasma polymerized film (a).
このようなプラズマ重合膜 (b)は、前記パターユングした側の表面に均一な膜厚で 形成させることが好ましい。  Such a plasma polymerized film (b) is preferably formed with a uniform film thickness on the surface on the side of the pattern jungle.
[0054] この場合、工程 3において、プラズマ重合膜 (a)をエッチングして選択的に除去する ため、プラズマ重合膜 (a)のエッチング速度力 プラズマ重合膜 (b)のエッチング速 度よりも大きくなるように設計する。エッチング速度は、プラズマ重合膜の種類と、エツ チングガスとの組み合わせにより決定される。 In this case, in step 3, since the plasma polymerized film (a) is selectively removed by etching, the etching speed of the plasma polymerized film (a) is larger than the etching speed of the plasma polymerized film (b). Design to be. The etching rate is determined by the combination of the type of the plasma polymerized film and the etching gas.
[0055] 工程 3において行うエッチング処理では、プラズマ重合膜 (a)のエッチング速度 (n mZ分)は、プラズマ重合膜 (b)のエッチング速度 (nmZ分)に対して、好ましくは 2 倍以上、さらに好ましくは 10倍以上、より好ましくは 100倍以上、特に好ましくは 100 0倍以上である。 [0055] In the etching treatment performed in step 3, the etching rate (nmZ) of the plasma-polymerized film (a) is preferably 2 to the etching rate (nmZ-minute) of the plasma-polymerized film (b). It is at least 10 times, more preferably at least 10 times, more preferably at least 100 times, particularly preferably at least 1000 times.
[0056] プラズマ重合膜 (b)は、パターユング全体、または、パターユングの一部にコーティ ングすることができる。  [0056] The plasma polymerized film (b) can be coated on the entire puttering or a part of the puttering.
[0057] このうち、パターユングの一部にコーティングすることが好ましい。  [0057] Of these, it is preferable to coat a part of the putter jung.
すなわち、プラズマ重合膜 (a)のパターユングの一部に、プラズマ重合膜 (b)をコー ティングする場合、プラズマ重合膜 (b)の形成前に、プラズマ重合膜 (a)のパター- ングの一部がプラズマ重合膜 (b)で被覆されないように該パターユングの一部をマス キングして、前記基板表面にプラズマ重合膜 (b)を形成させることが好ましい。  That is, when the plasma polymerized film (b) is coated on a part of the pattern jungle of the plasma polymerized film (a), the patterning of the plasma polymerized film (a) is performed before the plasma polymerized film (b) is formed. It is preferable that a part of the pattern jung is masked so that a part thereof is not covered with the plasma polymerized film (b) to form the plasma polymerized film (b) on the substrate surface.
マスクで被覆するパターユングの場所としては、好ましくは、プラズマ重合膜 (a)の パター-ング端末が存在する基板端部側である。  The place of the pattern jung to be covered with the mask is preferably on the side of the substrate end where the pattern end of the plasma polymerized film (a) exists.
[0058] マスキングの種類は限定されず、プラズマ重合形成条件下において安定に被覆で きるものであればよい。マスキングの大きさは、プラズマ重合膜 (a)のパターユング末 端の一部が少しでも露出すればよぐ特に限定されないが、たとえば、プラズマ重合 膜 (a)のパターユング末端の長さ力 1 μ m〜 lmm程度の範囲で被覆されることが好 ましい。  [0058] The type of masking is not limited, as long as it can be stably coated under plasma polymerization forming conditions. The size of the masking is not particularly limited as long as a portion of the end of the pattern jung of the plasma-polymerized film (a) is exposed at all, but for example, the length force of the end of the pattern of the plasma-polymerized film (a) is It is preferable that the coating be made in a range of about μm to lmm.
[0059] このようにマスキングしておくと、プラズマ重合膜 (a)の一部がプラズマ重合膜 (b)で 被覆されずに露出されるため、工程 3におけるプラズマ重合膜 (a)のエッチング除去 を、効率よく実施することができる。  [0059] By masking in this manner, a portion of the plasma-polymerized film (a) is exposed without being covered with the plasma-polymerized film (b). Can be efficiently implemented.
[0060] プラズマ重合膜 (b)の膜厚は特に限定されないが、プラズマ重合膜 (b)により形成 される層中に、プラズマ重合膜 (a)をエッチング除去して得られる流路となる空洞が 存在できる膜厚であることが必要である。したがって、プラズマ重合膜 (a)の膜厚に依 存するが、たとえば、 10〜300nmの範囲に設定することができる。  [0060] The thickness of the plasma-polymerized film (b) is not particularly limited, but a cavity serving as a flow path obtained by etching and removing the plasma-polymerized film (a) is formed in the layer formed by the plasma-polymerized film (b). It is necessary that the film thickness can exist. Therefore, although it depends on the thickness of the plasma polymerized film (a), it can be set, for example, in the range of 10 to 300 nm.
[0061] (プラズマ重合膜 (c) )  [0061] (Plasma polymerized film (c))
本発明では、前記基板表面または基板に積層された最外層の表面には、プラズマ 重合膜 (a)をパターユングする側の表面に予め、プラズマ重合膜 (a)と異なるプラズ マ重合膜 (c)がコーティングされて 、てもよ 、。  In the present invention, a plasma polymerized film (c) different from the plasma polymerized film (a) is previously provided on the surface on the side where the plasma polymerized film (a) is to be patterned on the surface of the substrate or the outermost layer laminated on the substrate. ) Is coated.
基板に積層された層は、特に限定されず、単に基板表面には複数の他の化合物が 被覆されていてもよぐ基板に積層された最外層は、その層の最外層を意味する。 The layer laminated on the substrate is not particularly limited, and a plurality of other compounds are merely present on the substrate surface. The outermost layer laminated to the substrate that may be coated means the outermost layer of that layer.
[0062] この場合、工程 3において、プラズマ重合膜 (a)をエッチングして選択的に除去する ため、プラズマ重合膜 (a)のエッチング速度が、プラズマ重合膜 (c)のエッチング速度 よりも大きくなるように設計する。エッチング速度は、プラズマ重合膜の種類と、エッチ ングガスとの組み合わせにより決定される。  In this case, in step 3, since the plasma polymerized film (a) is selectively removed by etching, the etching rate of the plasma polymerized film (a) is higher than the etching rate of the plasma polymerized film (c). Design to be. The etching rate is determined by the combination of the type of the plasma polymerized film and the etching gas.
[0063] 工程 3において行うエッチング処理では、プラズマ重合膜 (a)のエッチング速度 (n mZ分)は、プラズマ重合膜 (c)のエッチング速度 (nmZ分)に対して、好ましくは 2 倍以上、さらに好ましくは 10倍以上、より好ましくは 100倍以上、特に好ましくは 100 0倍以上である。  In the etching treatment performed in the step 3, the etching rate (nmZ) of the plasma-polymerized film (a) is preferably at least twice the etching rate (nmZ-minute) of the plasma-polymerized film (c). It is more preferably at least 10 times, more preferably at least 100 times, particularly preferably at least 1000 times.
[0064] このようなプラズマ重合膜 (c)の膜厚は特に限定されないが、たとえば、 10〜200n mの範囲に設定することができる。  [0064] The thickness of the plasma polymerized film (c) is not particularly limited, but can be set, for example, in the range of 10 to 200 nm.
[0065] 基板表面または基板に積層された最外層の表面上にプラズマ重合膜 (c)が存在す ると、基板表面または基板に積層された最外層の表面を均一にすることができる。こ のため、流路がプラズマ重合膜 (b)と該プラズマ重合膜 (c)とで囲まれるため、本発 明の微小構造の製造方法により得られるキヤピラリーを用いる場合に、物質の計測精 度、分離精度を向上させることができる。特に、本発明では、ナノメートルオーダーの 流路、穴を形成するため、プラズマ重合膜 (c)を予めコーティングすることが好ましい 。基板として用いる材料は、通常表面を研磨して使用するが、たとえば、シリコン基板 は表面を研磨したものを使用するが、研磨しても平坦にすることは不可能で、通常入 手可能なシリコン基板は、基板の厚さに対して ± 10%程度の凹凸があることが知ら れている。  [0065] When the plasma-polymerized film (c) is present on the substrate surface or the outermost layer laminated on the substrate, the substrate surface or the outermost layer laminated on the substrate can be made uniform. For this reason, since the flow path is surrounded by the plasma polymerized film (b) and the plasma polymerized film (c), when the capillary obtained by the method for manufacturing a microstructure of the present invention is used, the measurement accuracy of the substance is reduced. The separation accuracy can be improved. In particular, in the present invention, it is preferable to coat the plasma polymerized film (c) in advance in order to form a flow path and a hole on the order of nanometers. The material used for the substrate is usually used with its surface polished.For example, a silicon substrate whose surface is polished is used. It is known that the substrate has irregularities of about ± 10% with respect to the thickness of the substrate.
[0066] このようなプラズマ重合膜 (c)は、均一な膜厚を有して!/、ることが好ま 、。  [0066] Such a plasma polymerized film (c) preferably has a uniform film thickness.
[0067] (エッチング) [0067] (Etching)
工程 3で実施するエッチングの方法は、特に限定されないが、たとえば、エッチング 媒体による方法が挙げられる。  The method of etching performed in step 3 is not particularly limited, and includes, for example, a method using an etching medium.
[0068] エッチング媒体としては、たとえば酸素、窒素、水素、フッ素などが挙げられる。エツ チング媒体は、 1種単独でまたは複数を混合して用いることができる。 [0068] Examples of the etching medium include oxygen, nitrogen, hydrogen, and fluorine. Etching media can be used alone or in combination of two or more.
また、エッチング媒体は、 N、 O、 CO、 CO、 Ar、 F、 He、 Neなどの希釈ガスを 含有していてもよい。さら〖こ、プラズマ重合膜 (b)やプラズマ重合膜 (C)などのモノマ 一ガスを含有して 、る混合ガスであっても力まわな 、。 The etching medium uses a diluent gas such as N, O, CO, CO, Ar, F, He, Ne, etc. It may be contained. Furthermore, even a mixed gas containing a monomer gas such as the plasma polymerized film (b) or the plasma polymerized film (C) can be used.
[0069] 前記プラズマ重合膜 (a)は、エッチング速度が、前記プラズマ重合膜 (b)、 (c)のェ ツチング速度より大きいことが必要である。  [0069] The plasma polymerized film (a) needs to have an etching rate higher than that of the plasma polymerized films (b) and (c).
このようなエッチング速度は、通常、活性イオンエッチング (RIE)装置内に設置し、 酸素プラズマを発生させる前後の膜厚の差により決定することができる。エッチングレ ートは消失した薄膜を時間で割った値である。  Such an etching rate can be determined by a difference in film thickness before and after oxygen plasma is generated, usually placed in an active ion etching (RIE) apparatus. The etching rate is the value obtained by dividing the disappeared thin film by the time.
エッチング媒体に対するプラズマ重合膜 (a)、 (b)、ある 、は(c)のエッチング速度 をそれぞれ測定、比較し、エッチング媒体と、プラズマ重合膜 (a)を形成するモノマー と、プラズマ重合膜 (b)、 (c)を形成するモノマーとの好ましい組み合わせを適宜に決 定することができる。  The plasma polymerized films (a), (b), and (c) for the etching medium are measured and compared with each other, and the etching medium, the monomer forming the plasma polymerized film (a), and the plasma polymerized film ( Preferred combinations with the monomers forming b) and (c) can be determined as appropriate.
[0070] たとえば、エッチング媒体が Oの場合、プラズマ重合膜 (a)を形成するモノマーと、  For example, when the etching medium is O, a monomer that forms the plasma polymerized film (a)
2  2
プラズマ重合膜 (b)、 (C)を形成するモノマーとの好ましい組み合わせは、たとえば以 下のものが挙げられる。  Preferred combinations with monomers forming the plasma polymerized films (b) and (C) include, for example, the following.
プラズマ重合膜 (a):ァセトニトリル、エタノール、イソプロパノール、またはこれらの 混合物  Plasma polymerized membrane (a): acetonitrile, ethanol, isopropanol, or a mixture thereof
プラズマ重合膜 (b)、(c): HMDS (へキサメチルジシロキサン)など  Plasma polymerized films (b), (c): HMDS (hexamethyldisiloxane), etc.
[0071] なお、前記プラズマ重合膜 (b)、 (c)は、互いに独立であり、同一であっても、異なつ ていてもよい。 [0071] The plasma polymerized films (b) and (c) are independent of each other, and may be the same or different.
[0072] プラズマ重合膜 (b)、 (c)は、プラズマ重合膜 (a)をエッチング除去または改質する ガスを透過する膜 (プラズマ重合膜の気体透過性を利用する)を選択することもできる たとえば、 HMDSは Oを透過させることができる。  [0072] As the plasma polymerized films (b) and (c), a gas permeable film (by utilizing gas permeability of the plasma polymerized film) for etching or removing the plasma polymerized film (a) may be selected. Yes For example, HMDS can transmit O.
2  2
[0073] エッチング媒体を用いる場合のエッチングは、たとえば、 RIE装置中で、エッチング 媒体のプラズマを発生させ、該プラズマにより、工程 2で製造した基板中のプラズマ 重合膜をエッチングする。プラズマ重合膜 (a)は、プラズマ重合膜 (b)、さらには ( と 比較してエッチングレートが大きいので、該エッチングレートの差を利用して、プラズ マ重合膜 (a)をより速く除去することができる。 [0074] 用いるエッチング媒体、プラズマ重合膜の種類にもよる力 たとえば、下記の条件で エッチングを実施できる。 For etching using an etching medium, for example, a plasma of the etching medium is generated in an RIE apparatus, and the plasma polymerized film in the substrate manufactured in step 2 is etched by the plasma. Since the plasma-polymerized film (a) has a higher etching rate than the plasma-polymerized film (b) and (, the plasma-polymerized film (a) is removed more quickly by utilizing the difference in the etching rates. be able to. [0074] Force depending on the type of etching medium and plasma polymerized film used For example, etching can be performed under the following conditions.
エッチングガスの流速:好ましくは 5〜 100cm3/min. Etching gas flow rate: preferably 5 to 100 cm 3 / min.
放電電力: 100〜500W  Discharge power: 100-500W
圧力: 10_6〜: LO Torr Pressure: 10_ 6 ~: LO Torr
放電時間 10分〜 60分  Discharge time 10 minutes to 60 minutes
温度: 10〜100°C  Temperature: 10-100 ° C
[0075] くナノ流路キヤビラリ一、ナノ傾斜流路キヤビラリ一〉 [0075] Nano flow channel cavities, nano inclined flow channel cavities>
本発明に係るナノ流路キヤビラリ一は、基板表面上にプラズマ重合膜 (b)が被覆さ れ、該プラズマ重合膜 (b)と基板とで囲まれる少なくとも 1つの流路を有するキヤビラリ 一であって、(0該プラズマ重合膜 (b)層中に流路となる空洞が存在し、  The nano-channel cavities according to the present invention are cavities in which a plasma-polymerized film (b) is coated on a substrate surface and has at least one channel surrounded by the plasma-polymerized film (b) and the substrate. (0 There is a cavity serving as a flow path in the plasma polymerized film (b) layer,
GO前記基板表面からの流路の平均高さ (基板力もプラズマ重合膜 (b)の内壁面ま での距離)が 0. l〜500nmであり、好ましくは lnm〜100nm、さらに好ましくは lnm 〜50nmでめ。。  GO The average height of the flow path from the substrate surface (the substrate force is also the distance to the inner wall surface of the plasma-polymerized film (b)) is 0.1 to 500 nm, preferably 1 to 100 nm, more preferably 1 to 50 nm. Deme .
[0076] 前記ナノ流路キヤビラリ一は、前記基板表面または基板に積層された最外層の表 面上にプラズマ重合膜 (c)が被覆されて!ヽることが好ま ヽ。  [0076] The nano-channel cavities preferably have a plasma polymerized film (c) coated on the surface of the substrate or on the outermost surface of the substrate.
この場合、キヤビラリ一は、さらに基板表面または基板に積層された最外層の表面 上にコーティングしたプラズマ重合膜 (c)表面にプラズマ重合膜 (b)が被覆され、該 プラズマ重合膜 (b)とプラズマ重合膜 (c)とで囲まれる少なくとも 1つの流路を有して いてもよい。  In this case, the cavity further has a plasma polymerized film (b) coated on the surface of the substrate or the outermost layer laminated on the substrate, and the surface of the plasma polymerized film (b) is coated with the plasma polymerized film (b). It may have at least one flow path surrounded by the plasma polymerization film (c).
前記流路の平均高さは、プラズマ重合膜 (c)の表面力ゝらのプラズマ重合膜 (b)の内 壁面までの高さである。  The average height of the flow path is a height from the surface force of the plasma polymerized film (c) to the inner wall surface of the plasma polymerized film (b).
[0077] 本発明に係るナノ傾斜流路キヤビラリ一は、基板表面上にプラズマ重合膜 (b)が被 覆され、該プラズマ重合膜 (b)と基板とで囲まれる少なくとも 1つの流路を有するキヤ ピラリーであって、  [0077] The nano-gradient flow channel cavities according to the present invention have a plasma polymerized film (b) covered on a substrate surface, and have at least one flow channel surrounded by the plasma polymerized film (b) and the substrate. The capillaries,
(0該プラズマ重合膜 (b)層中に流路となる空洞が存在し、  (0 There is a cavity serving as a flow path in the plasma polymerized film (b) layer,
GO流路の一方の開口部 (入口)の平均高さが、他方の開口部(出口)の平均高さよ り大きぐ前記入口から出口に向けて、流路が傾斜状に変化している。 平均高さは、基板カゝらプラズマ重合膜 (b)の内壁面までの距離である。 The flow path changes in an inclined manner from the inlet to the outlet where the average height of one opening (inlet) of the GO flow path is larger than the average height of the other opening (outlet). The average height is the distance from the substrate to the inner wall surface of the plasma polymerized film (b).
[0078] 前記ナノ傾斜流路キヤビラリ一は、前記基板表面または基板に積層された最外層 の表面上にプラズマ重合膜 (c)が被覆されて!ヽることが好ま ヽ。 [0078] It is preferable that the nano-gradient channel cavities have a plasma polymerized film (c) coated on the surface of the substrate or the outermost layer laminated on the substrate.
すなわち、この場合、前記基板表面または基板に積層された最外層の表面上にプ ラズマ重合膜 (c)が被覆され、さら〖こ、該プラズマ重合膜 (c)表面にプラズマ重合膜( b)が被覆され、該プラズマ重合膜 (b)とプラズマ重合膜 (c)とで囲まれる少なくとも 1 つの流路を有するキヤビラリ一であって、  That is, in this case, the surface of the substrate or the surface of the outermost layer laminated on the substrate is coated with the plasma polymerized film (c), and then the plasma polymerized film (c) is coated on the surface of the plasma polymerized film (c). A cab having at least one flow path surrounded by the plasma polymerized film (b) and the plasma polymerized film (c),
(0該プラズマ重合膜 (b)層中に前記流路となる空洞が存在し、  (0 There is a cavity serving as the flow path in the plasma polymerized film (b) layer,
GO流路の一方の開口部 (入口)の平均高さが、他方の開口部(出口)の平均高さよ り大きぐ前記入口から出口に向けて、流路が傾斜状に変化している。  The flow path changes in an inclined manner from the inlet to the outlet where the average height of one opening (inlet) of the GO flow path is larger than the average height of the other opening (outlet).
平均高さは、プラズマ重合膜 (c)カゝらプラズマ重合膜 (b)の内壁面までの距離であ る。  The average height is the distance from the plasma polymerized film (c) to the inner wall surface of the plasma polymerized film (b).
[0079] このような入口の流路の最小幅は、好ましくは 500nm以下、さらに好ましくは 100η m以下、より好ましくは 50nm以下であり、出口の流路の最小幅は、好ましくは 0. In m以上、さらに好ましくは Inm以上である。  [0079] The minimum width of such an inlet channel is preferably 500 nm or less, more preferably 100 ηm or less, and more preferably 50 nm or less, and the minimum width of the outlet channel is preferably 0. Or more, more preferably Inm or more.
[0080] 上記流路の入口幅の好まし 、値と、出口幅の好ま 、値とは、任意に組み合わせ ることができるが、たとえば、好ましくは入口の流路の最小幅が 500nm以下、出口の 流路の最小幅が 0. Inm以上、さらに好ましくは入口の流路の最小幅が lOOnm以下 、出口の流路の最小幅が 0. Inm以上、より好ましくは入口の流路の最小幅が 50nm 以下、出口の流路の最小幅が 0. Inm以上である。  [0080] The preference and value of the inlet width of the flow channel and the preference and value of the outlet width can be arbitrarily combined. For example, preferably, the minimum width of the inlet channel is 500 nm or less, and the outlet width is 500 nm or less. The minimum width of the flow path is 0.Inm or more, more preferably the minimum width of the inlet flow path is 100 nm or less, the minimum width of the outlet flow path is 0.Inm or more, and more preferably the minimum width of the inlet flow path is The minimum width of the outlet channel is 50 nm or less and the minimum width of the outlet channel is 0.1 Inm or more.
[0081] くナノ流路キヤビラリ一、ナノ傾斜流路キヤビラリ一の用途〉  [0081] Applications of nano-channel cavities and nano-gradient channel cavities>
本件発明を用いることにより、ナノレベルの流路を有するキヤピラリーを迅速かつ簡 便に製造することができる。  By using the present invention, a capillary having a nano-level flow channel can be manufactured quickly and easily.
このような本発明に係る流路キヤピラリーを用いることにより、タンパク質などの微小 物質の分離を行うことができる。  By using such a flow channel capillary according to the present invention, a minute substance such as a protein can be separated.
また本発明に係る微小構造の製造方法によれば、ナノレベルでの微小な 3次元構 造物を製造することができることから、固体高分子型燃料電池 (PEFC:polymer Electrolyte Fuel Cells)などの製造法への応用も考えられる。さらに、バイオ分子のナ ノマシンやナノセンサーなどナノバイオテクノロジー分野に活用できる。 Further, according to the method for manufacturing a microstructure according to the present invention, a microscopic three-dimensional structure can be manufactured at a nano-level, so that a method for manufacturing a polymer electrolyte fuel cell (PEFC) or the like can be manufactured. The application to is considered. In addition, biomolecules It can be used in the field of nanobiotechnology such as nanomachines and nanosensors.
[0082] 本発明に係るナノ傾斜流路キヤビラリ一は、傾斜を有するナノレベルの流路を有し ているため、物質の大きさに依存した分離が可能である。このため、たとえば、タンパ ク質の立体構造変化、タンパク質—タンパク質相互作用を解析する方法として用いる ことができる。図 5に示すように、本発明に係るナノ流路キヤピラリーを用いると、傾斜 を有する流路中に大きさの異なるタンパク質あるいは立体構造の異なるタンパク質を 導入し、タンパク質の大きさ(立体構造)に依存したタンパク質の分離が可能となる。  [0082] The nano-gradient flow channel cavity according to the present invention has a nano-level flow channel having a gradient, so that separation depending on the size of a substance is possible. Therefore, it can be used, for example, as a method for analyzing changes in the three-dimensional structure of proteins and protein-protein interactions. As shown in Fig. 5, when the nanochannel capillary according to the present invention is used, proteins having different sizes or proteins having different three-dimensional structures are introduced into a channel having a gradient, and the size (three-dimensional structure) of the protein is reduced. Dependent protein separation becomes possible.
[0083] また、このようなナノ傾斜流路キヤビラリ一によれば、酵素やタンパク質の本来の機 能を損なうことなぐ極少量づっ目的とする位置に該酵素やタンパク質を固定ィ匕する ことができる。  [0083] Further, according to such a nano-gradient channel cavity, the enzyme or protein can be immobilized at a target position in a very small amount without impairing the original function of the enzyme or protein. .
[0084] したがって、タンパク質を固定ィ匕するマトリクスとして利用することができる。  [0084] Therefore, it can be used as a matrix for immobilizing proteins.
たとえば、タンパク質やペプチドを、所望の位置に固定してアレイ化したチップはポ ストゲノム時代の重要課題であるタンパク質機能解析 (プロテオームの基盤技術:タン パク質機能解析や生体内ネットワークの解析、疾病診断などの研究)としてこの領域 の研究に大きく寄与する。  For example, a chip in which proteins and peptides are fixed at desired positions and arrayed is a key issue in the post-genome era. Protein function analysis (proteome basic technology: protein function analysis, analysis of in vivo networks, disease diagnosis Research, etc.) will greatly contribute to research in this area.
[0085] また、バイオリアクターで用いる酵素を繰り返し活用することがある力 本発明のナノ 傾斜流路キヤビラリ一によれば、酵素を固定ィ匕するマトリックスとして適用することもで きる。バイオリアクターは、酵素が持つ特異性を応用した分解や反応に関与する反応 器であるが、酵素は生物から単離あるいは遺伝子組換えをして精製するため、少量 でも非常に高価であり、高価な酵素を繰り返し使う要求は高い。  [0085] In addition, the ability to repeatedly utilize enzymes used in a bioreactor. According to the nano-gradient flow channel cabrilary of the present invention, it can be applied as a matrix for immobilizing enzymes. A bioreactor is a reactor that participates in degradation and reactions that apply the specificity of enzymes.However, enzymes are isolated from organisms or purified by genetic recombination, so even small quantities are very expensive and expensive. There is a high demand for repeated use of various enzymes.
[0086] ナノ傾斜流路キヤビラリ一中のどの位置に物質が移動した力判断することでスイツ チングデバイスとしての利用が可能である。たとえば、タンパク質はリン酸ィ匕などの影 響を受けると立体構造を変えることが知られている。  [0086] It can be used as a switching device by judging the force to which the substance has moved in the nano inclined channel capillary. For example, it is known that a protein changes its three-dimensional structure when affected by phosphoric acid or the like.
ナノ傾斜流路キヤビラリ一は、ノズル (噴射孔)として利用することができる。たとえば 、プリンターヘッドや DNAスポッターなどのノズルなどが挙げられる。  The nano-gradient channel cavities can be used as nozzles (injection holes). For example, nozzles such as a printer head and a DNA spotter can be used.
またナノ傾斜流路キヤビラリ一は、微生物、植物、ホ乳類などの培養細胞、パクテリ オファージ、各種ウィルスなどを保持'固定化'分離する目的として利用することがで きる。また、フィルター素子としての機能を持たせることができる。 [0087] く微小構造の製造方法例〉 The nano-gradient flow channel can be used for the purpose of retaining, immobilizing, and isolating cultured cells such as microorganisms, plants, and mammals, pacteriophages, and various viruses. In addition, a function as a filter element can be provided. [0087] Example of manufacturing method for microstructure>
以下に、図面を参照して本発明に係る微小構造の製造方法の一例を説明するが、 本発明は下記の例に限定されるものではない。  Hereinafter, an example of a method for manufacturing a microstructure according to the present invention will be described with reference to the drawings, but the present invention is not limited to the following examples.
[0088] 図 1の (a)〜 (j)は、本発明に係る微小構造の製造方法の一例を説明する工程にお ける、基板の断面図( (h)、 (j)は平面図)を示したものである。  FIGS. 1 (a) to 1 (j) are cross-sectional views ((h) and (j) are plan views) of a substrate in a process for explaining an example of a method for manufacturing a microstructure according to the present invention. It is shown.
同図において、まず、図 1 (a)、(b)に示すように、基板 1の表面にフォトレジスト 2 ( 図 1ではポジ型フォトレジストを例示)を塗布する。このフォトレジスト塗布基板をプリべ ークした後、フォトマスク 3を介して紫外線 4を密着照射し、露光する(図 l (c)、(d) )。 露光した基板をレジスト現像液を用いて現像し、マスクパタンをレジストに転写したレ ジストパタン 5を形成する(図 1 (e) )。  Referring to FIG. 1, first, as shown in FIGS. 1A and 1B, a photoresist 2 (in FIG. 1, a positive photoresist is exemplified) is applied to the surface of the substrate 1. After pre-baking the photoresist-coated substrate, the substrate is exposed to ultraviolet rays 4 in close contact via a photomask 3 (FIGS. L (c) and (d)). The exposed substrate is developed using a resist developer to form a resist pattern 5 in which the mask pattern has been transferred to the resist (FIG. 1 (e)).
[0089] 次に、図 3にも示すように、この基板をプラズマの照射方向に垂直になるように、プ ラズマ重合装置中に配置し、プラズマ重合膜 (a) 6を形成する(図 l (f) )。さらに、フォ トレジスト 5をアセトン等の溶媒中で剥離し、プラズマ重合膜 (a) 7により、フォトマスク 3 に対応するパタンが形成された基板を得る(図 1 (g) )。  Next, as shown in FIG. 3, this substrate is placed in a plasma polymerization apparatus so as to be perpendicular to the plasma irradiation direction, and a plasma polymerization film (a) 6 is formed (FIG. 1). (f)). Further, the photoresist 5 is peeled off in a solvent such as acetone to obtain a substrate on which a pattern corresponding to the photomask 3 is formed by the plasma polymerized film (a) 7 (FIG. 1 (g)).
[0090] この基板の端部にマスキングテープ 8あるいはマスク 8を貼り付ける(図 l (h) )。つい で、この基板をプラズマの照射方向に垂直になるように、プラズマ重合装置中に配置 し、プラズマ重合膜 (b) 9を形成する(図 l (i) )。プラズマ重合膜 (b) 9は、プラズマ重 合膜 (a) 7のパタンを被覆するようにコーティングする力 前記マスク 8が存在している 領域にはコーティングされない(図 1①)。  A masking tape 8 or a mask 8 is attached to the end of the substrate (FIG. L (h)). Next, this substrate is placed in a plasma polymerization apparatus so as to be perpendicular to the plasma irradiation direction, and a plasma polymerization film (b) 9 is formed (FIG. L (i)). The plasma polymerized film (b) 9 is not coated on the area where the mask 8 is present so as to cover the pattern of the plasma polymerized film (a) 7 (FIG. 1).
[0091] さらに、プラズマ重合膜 (a) 7を酸素プラズマ等でエッチングして除去し、プラズマ重 合膜 (b)と基板とで規定された微小な流路 10を形成することができる(図 1 (k) )。  [0091] Further, the plasma polymerized film (a) 7 is removed by etching with oxygen plasma or the like, so that a minute flow path 10 defined by the plasma superposed film (b) and the substrate can be formed (see FIG. 1 (k)).
[0092] 図 2の (a)〜 (j)は、本発明に係る微小構造の製造方法の一例を説明する工程にお ける、基板の断面図((f)、(g)、(k)は平面図)を示したものである。  [0092] FIGS. 2A to 2J are cross-sectional views ((f), (g), and (k)) of a substrate in a step for explaining an example of a method for manufacturing a microstructure according to the present invention. Is a plan view).
図 2 (a)〜(e)は図 1 (a)〜(e)と同様にして実施し、フォトレジスト 5がパターユングさ れた基板を得る(図 2 (e) )。  2 (a) to 2 (e) are carried out in the same manner as in FIGS. 1 (a) to 1 (e) to obtain a substrate on which the photoresist 5 is patterned (FIG. 2 (e)).
[0093] 次に、図 4—1にも示すように、この基板をプラズマの照射方向と平行になるように、 プラズマ重合装置中に配置し、プラズマ重合膜 (&) 11を形成する(図2 ))。基板を 照射方向と平行になるように照射することにより、傾斜のあるプラズマ重合膜を形成 することができる(図 4— 2)。プラズマ重合膜 (a)は、プラズマに近い位置で膜厚が厚 ぐプラズマ力も遠ざ力るに従って、連続的に膜厚が薄くなる(図 2 (f) )。 Next, as shown in FIG. 4A, this substrate is placed in a plasma polymerization apparatus so as to be parallel to the plasma irradiation direction, and a plasma polymerization film (&) 11 is formed (FIG. 2)). By irradiating the substrate parallel to the irradiation direction, an inclined plasma polymerized film is formed. (Figure 4-2). The thickness of the plasma polymerized film (a) increases continuously at a position close to the plasma, and the film thickness decreases continuously as the plasma force increases (Fig. 2 (f)).
さらに、フォトレジスト 5をアセトン等の溶媒中で剥離し、傾斜を有するプラズマ重合 膜 (a) 12により、フォトマスク 3に対応するパタンが形成された基板を得る(図 2 (g) )。  Further, the photoresist 5 is peeled off in a solvent such as acetone to obtain a substrate on which a pattern corresponding to the photomask 3 is formed by the inclined plasma polymerized film (a) 12 (FIG. 2 (g)).
[0094] さらに、図 2 (1!)〜 (j)を図 1 (1!)〜 (j)と同様にして実施して、プラズマ重合膜 (b)を コーティングし、さらにプラズマ重合膜 (a) 12を酸素プラズマ等でエッチングして除去 し、プラズマ重合膜 (b) 13と基板 1とで規定された、傾斜を有する微小な流路 14を形 成することができる(図 2 (k) )。 Further, FIGS. 2 (1!) To (j) are carried out in the same manner as FIGS. 1 (1!) To (j) to coat the plasma polymerized film (b), ) 12 is removed by etching with oxygen plasma or the like, so that a minute inclined flow path 14 defined by the plasma polymerized film (b) 13 and the substrate 1 can be formed (FIG. 2 (k) ).
実施例  Example
[0095] 以下実施例を用いて本発明を説明するが、本発明はこれらの実施例に何ら限定さ れるものではない。  [0095] Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[0096] プラズマ重合装置 [0096] Plasma polymerization apparatus
プラズマ重合膜の重合方式として、 RF電源、外部電極方式による After glow方式を 使用した。種々のユニットを追カ卩して、流量、圧力、およびパワーマッチングを自動で 制御可能な装置を作製した。装置の構成を図 6に示す。  An afterglow method using an RF power supply and external electrode method was used as the polymerization method for the plasma polymerized film. Various units were added to make a device that can automatically control flow rate, pressure, and power matching. Figure 6 shows the configuration of the device.
(1)反応器 (チャンバ一):石英またはパイレックス (登録商標)製の円筒形チャンバ一 (1) Reactor (first chamber): One cylindrical chamber made of quartz or Pyrex (registered trademark)
(2)試料ステージ:チャンバ一下部温度調整器付き (2) Sample stage: with chamber and lower temperature controller
(3)試料ステージは上下可動機能付き  (3) The sample stage has an up / down movable function
(4)排気系:ファイファー社製ターボ分子ポンプ +エドワーズ社製ロータリーポンプ (4) Exhaust system: Pfeiffer turbo molecular pump + Edwards rotary pump
(5) RF電源:周波数: 13. 56MHz,出力: 300W (可変式) (5) RF power supply: frequency: 13.56MHz, output: 300W (variable type)
(6)マッチング:オートマッチング方式(Creative Design社製:神奈 j 11県川崎巿)  (6) Matching: Auto-matching method (Creative Design, Inc .: Kana j11 Kawasaki 巿)
(7)圧力コントロール: MKS社製バラトロン真空計からの圧力を VAT社製オートマチック プレッシャーコントロール(APC)バルブユニットで自動制御  (7) Pressure control: The pressure from MKS's Baratron vacuum gauge is automatically controlled by VAT's automatic pressure control (APC) valve unit.
(8)ガス導入系:試料モノマー、アルゴン、酸素ラインを STEC社製電磁弁とマスフロー コントローラー(MFC)ユニットで自動制御  (8) Gas introduction system: Sample monomer, argon, and oxygen lines are automatically controlled by STEC's solenoid valve and mass flow controller (MFC) unit
[0097] エッチング装置  [0097] Etching equipment
SAMCO社製、 RIE (Reactive Ion Etching)装置  RIE (Reactive Ion Etching) equipment manufactured by SAMCO
[0098] 〔試験例 1〕 エッチングレートの測定 [Test Example 1] Measurement of etching rate
図 6に示す装置を用いて、流速: 0.5cm3/min、 RF: 200Wの条件下で 5分間、シリコン 基板上に HMDSをモノマーとして用いてプラズマ重合膜を製膜した。エリプソメーター (ULVAC社製、 Laser Ellipsometer、 ESM- 1AT)を用いて膜厚を測定した結果、膜厚 は 81.7nmであった。 Using the apparatus shown in Fig. 6, a plasma polymerized film was formed on a silicon substrate using HMDS as a monomer under the conditions of flow rate: 0.5 cm 3 / min and RF: 200 W for 5 minutes. As a result of measuring the film thickness using an ellipsometer (manufactured by ULVAC, Laser Ellipsometer, ESM-1AT), the film thickness was 81.7 nm.
[0099] ァセトニトリルは、流速: 20cm3/min、 RF: 200Wの条件下で 3分間プラズマ重合膜を シリコン基板上に製膜した。上記と同様、エリプソメーターを用いて膜厚を測定したと ころ膜厚は 153.5nmであった。 [0099] As for acetonitrile, a plasma polymerized film was formed on a silicon substrate under the conditions of flow rate: 20 cm 3 / min and RF: 200 W for 3 minutes. As in the above, when the film thickness was measured using an ellipsometer, the film thickness was 153.5 nm.
[0100] エタノールは、チャンバ一内圧力力 Sl.0 X 10_2Torrになるように流速を調整した後、[0100] After adjusting the flow rate of ethanol so that the pressure in the chamber becomes Sl.0 X 10 _2 Torr,
RF: 200Wの条件下でプラズマ重合膜をシリコン基板上に製膜した。エリプソメーター を用いて膜厚を測定したところ膜厚は 22.0應であった。 RF: A plasma polymerized film was formed on a silicon substrate under the condition of 200 W. When the film thickness was measured using an ellipsometer, the film thickness was 22.0 mm.
[0101] イソプロパノールは、チャンバ一内圧カカ^.2 X 10_2Torrになるように流速を調整し た後、 RF: 200Wの条件下で 5分間プラズマ重合膜をシリコン基板上に製膜した。エリ プソメーターを用いて膜厚を測定したところ膜厚は 11.1應であった。 [0101] The flow rate of isopropanol was adjusted so that the internal pressure of the chamber became ± 0.2 × 10 _2 Torr, and then a plasma polymerized film was formed on a silicon substrate under the conditions of RF : 200 W for 5 minutes. When the film thickness was measured using an ellipsometer, the film thickness was 11.1 e.
[0102] プラズマ重合膜を製膜した後、 RIE装置中で酸素プラズマを発生させ、酸素プラズ マで 30分間エッチングを行った。 RIEの条件は、 40Pa、酸素ガスフローレート 50 sccm、 RF250Wであった。 [0102] After forming the plasma polymerized film, oxygen plasma was generated in the RIE device, and etching was performed for 30 minutes using oxygen plasma. The RIE conditions were 40 Pa, an oxygen gas flow rate of 50 sccm, and RF250W.
[0103] 酸素エッチング前後のプラズマ重合膜の膜厚はエリプソメーター(ULVAC社製、[0103] The thickness of the plasma polymerized film before and after oxygen etching was determined by an ellipsometer (manufactured by ULVAC,
Laser Ellipsometer、 ESM- 1AT)により測定した。以下同じ方法で膜厚を測定した。 エッチングレートは、 RIE装置内に設置し、酸素プラズマを発生させる前後の膜厚の 差により決定した。エッチングレートは消失した薄膜を時間で割った値である。 Laser Ellipsometer, ESM-1AT). Hereinafter, the film thickness was measured by the same method. The etching rate was determined by the difference between the film thickness before and after oxygen plasma was generated, installed in the RIE device. The etching rate is a value obtained by dividing the disappeared thin film by time.
RIE装置を用いて酸素プラズマを発生させる条件は、チャンバ一内圧力: 40Pa、流 速 0 : 50cm3/min、 RF: 250Wであった。 The conditions for generating oxygen plasma using the RIE apparatus were as follows: pressure inside the chamber: 40 Pa, flow rate: 0: 50 cm 3 / min, RF: 250 W.
2  2
結果を表 1に示す。  The results are shown in Table 1.
[0104] [表 1] エッチング前 エッチング後 エッチングレ一ト [0104] [Table 1] Before etching After etching Etch rate
(nm) 、nm) (nm/minノ  (nm), nm) (nm / min
HMDS 81.7 66.9 0.49 ァセトニトリル 153.5 0 >5.1 エタノール 22.0 0 >0.7 イソプロパノール 11.1 0 >3.4  HMDS 81.7 66.9 0.49 Acetonitrile 153.5 0> 5.1 Ethanol 22.0 0> 0.7 Isopropanol 11.1 0> 3.4
[0105] これらの結果から、 HMDSのエッチングレートは 0.49nm/minであることがわかった。 [0105] From these results, it was found that the HMDS etching rate was 0.49 nm / min.
ァセトニトリル、エタノール、イソプロパノールをモノマーとしたプラズマ重合膜のエツ チングレートはこの実験からは、最小値を得た。  The etching rate of the plasma-polymerized film using acetonitrile, ethanol and isopropanol as monomers was obtained from this experiment to the minimum value.
[0106] ァセトニトリル膜のエッチングレートを測定するために、流速: 15cm3/min、 RF: [0106] To measure the etching rate of the acetonitrile film, the flow rate: 15 cm 3 / min, RF:
200W、 3分間の条件で、 136應の薄膜をシリコン基板上に形成した。続けて上記条 件で酸素プラズマを 10分間発生させ、 74應の膜厚を得た。この結果、ァセトニトリル のエッチングレートは 6.2nm/minであった。  Under conditions of 200 W and 3 minutes, a 136-nm thin film was formed on a silicon substrate. Subsequently, oxygen plasma was generated for 10 minutes under the above conditions to obtain a film thickness of 74 mm. As a result, the etching rate of acetonitrile was 6.2 nm / min.
[0107] なお、フォトレジストをリフトオフする際アセトン中に基板を浸漬する力 アセトンによ り膜のエッチングに与える影響は認められな力つた。  [0107] The force of dipping the substrate in acetone during lift-off of the photoresist did not affect the etching of the film due to acetone.
一例を挙げると、アセトンに入れる前のァセトニトリルプラズマ重合膜は 129. lnm、 135.4nmだった力 アセトンに 71分間浸漬した後それぞれの膜厚を測定したところ、 132.3nm、 135.7nmであった。これらの結果からアセトンにァセトニトリルプラズマ重合 膜を浸漬しても変化がないことが確認された。また、アセトンに浸漬したァセトニトリル プラズマ重合膜のエッチングレートは約 6.2nmZminであることを確認した。  For example, the plasma polymerized film of acetonitrile before being put in acetone was 129 lnm and 135.4 nm.The thickness of each film was measured after immersion in acetone for 71 minutes and found to be 132.3 nm and 135.7 nm. . From these results, it was confirmed that there was no change even when the acetonitrile plasma polymerized film was immersed in acetone. It was also confirmed that the etching rate of the acetonitrile plasma polymer film immersed in acetone was about 6.2 nmZmin.
[0108] 〔実施例 1〕  [Example 1]
微小キヤビラリ一の製造  Production of small cavities
まず、スライドガラス基板 (厚さ 1.1mm X縦 76mm X横 25mm) 1をプラズマ重合装置 の試料ステージ上に、ステージと平行になるように配置した。ついで基板の表面に、 RF:201W、流速: 0. 5mm3/min、時間: 5minの条件下、 HMDSをモノマーとしてプラ ズマ重合膜 (c)を製膜した。プラズマ重合膜 (c)の厚さは 63. 6nmであった。 First, a slide glass substrate (1.1 mm thick x 76 mm long x 25 mm wide) 1 was placed on a sample stage of a plasma polymerization apparatus so as to be parallel to the stage. Next, a plasma polymerized film (c) was formed on the surface of the substrate using HMDS as a monomer under the conditions of RF: 201 W, flow rate: 0.5 mm 3 / min, and time: 5 min. The thickness of the plasma polymerized film (c) was 63.6 nm.
[0109] 次に、このプラズマ重合膜がコーティングされた基板表面に、スピンコーターを用い て、フォトレジスト(S- 1818 (SHIPLEY社製) )をコートした。 [0110] このフォトレジスト塗布基板を、乾燥器内で 80°C、 30分の条件でプレベータした。 ついで、図 8に示すフォトマスクを用いて 150秒間、基板に紫外線光を密着露光した 。露光した基板は、レジスト現像液 MF- 319 (SHIPLEY社製)中で約 60秒間現像を行 い、水洗、乾燥後、フォトマスクのパタンに対応するフォトレジストを形成した。 [0109] Next, a photoresist (S-1818 (manufactured by SHIPLEY)) was coated on the surface of the substrate coated with the plasma polymerized film using a spin coater. [0110] This photoresist-coated substrate was pre-betaed in a dryer at 80 ° C for 30 minutes. Next, the substrate was contact-exposed to ultraviolet light for 150 seconds using the photomask shown in FIG. The exposed substrate was developed in a resist developer MF-319 (manufactured by SHIPLEY) for about 60 seconds, washed with water and dried to form a photoresist corresponding to the pattern of the photomask.
[0111] 次に、この基板を、プラズマ重合装置の試料ステージ上に、フォトレジストパタンの ある面にプラズマ重合膜が形成されるようにステージと平行に配置した。前記基板表 面に、 RF:200W、流速: 20mm3/min、時間: 5minの条件下、ァセトニトリルをモノマー としてプラズマ重合膜 (a)を製膜した。プラズマ重合膜 (a)の厚さは約 118nmであった 。次に、室温でアセトン中に約 30分間浸漬し、表面を工業用綿棒 (TX705、ァズワン 社)でフォトレジストを剥離した。これにより、ァセトニトリルのプラズマ重合膜 (a)により 、フォトマスクに対応するパタンが形成された基板を得た。 Next, this substrate was arranged on a sample stage of a plasma polymerization apparatus in parallel with the stage such that a plasma polymerization film was formed on a surface having a photoresist pattern. A plasma polymerized film (a) was formed on the surface of the substrate using acetonitrile as a monomer under the conditions of RF: 200 W, flow rate: 20 mm 3 / min, and time: 5 min. The thickness of the plasma polymerized film (a) was about 118 nm. Next, the photoresist was immersed in acetone at room temperature for about 30 minutes, and the surface was stripped of the photoresist with an industrial cotton swab (TX705, Az One). As a result, a substrate on which a pattern corresponding to the photomask was formed by the plasma polymerized film (a) of acetonitrile was obtained.
[0112] この基板の端部に、幅 12.7mmにカプトンテープ (難燃性テープ: Permacel社)を用 いてマスキングテープを貼り付けた。ついで、この基板をプラズマの照射方向に垂直 になるように、プラズマ重合装置中に配置し、 (230mm/5rpm, MassFlow: 0. 5 sccm、 RF : 200W、 3分、 1. 7 X 10_5Torr)の条件下、 HMDSをモノマーとしてプラ ズマ重合膜 (b)を形成した。プラズマ重合膜 (b)の厚さは 54nmであった。プラズマ重 合膜 (b)は、プラズマ重合膜 (a)のパタンを被覆するようにコーティングされていたが 、前記マスキングテープが存在して 、る領域にはコーティングされな力つた。 [0112] A masking tape with a width of 12.7 mm was attached to the end of the substrate using a Kapton tape (flame retardant tape: Permacel). Next, this substrate was placed in a plasma polymerization apparatus so as to be perpendicular to the plasma irradiation direction, (230 mm / 5 rpm, MassFlow: 0.5 sccm, RF: 200 W, 3 minutes, 1.7 × 10 -5 Torr) Under the condition of), a plasma polymerized film (b) was formed using HMDS as a monomer. The thickness of the plasma polymerized film (b) was 54 nm. The plasma-polymerized film (b) was coated so as to cover the pattern of the plasma-polymerized film (a), but the masking tape was present, and the coated region was not coated in some areas.
[0113] 次に、(MassFlow: 100sccm、 RF: 300W、 30分、 40Pa)の条件下、ァセトニトリル のプラズマ重合膜 (a)を酸素プラズマ等でエッチングして除去し、プラズマ重合膜 (b )とプラズマ重合膜 (c)とで規定された微小流路を形成した。  Next, under the conditions of (MassFlow: 100 sccm, RF: 300 W, 30 minutes, 40 Pa), the plasma polymerized film (a) of acetonitrile is removed by etching with oxygen plasma or the like, and the plasma polymerized film (b) is removed. A microchannel defined by the plasma polymerized film (c) was formed.
[0114] ナノ流路の蛍光測定  [0114] Fluorescence measurement of nanochannel
上記方法で製造したナノ流路キヤピラリーを、 2mMの蛍光物質 (FITC)を含む溶 液に、キヤピラリーの流路が存在する片方のサイドを、室温 (25°C)で 30分間浸漬し た。  The nanochannel capillary manufactured by the above method was immersed in a solution containing 2 mM of a fluorescent substance (FITC) on one side where the channel of the capillary was present at room temperature (25 ° C) for 30 minutes.
浸漬後、基板を取り出し、基板表面を蒸留水で洗い流した。  After immersion, the substrate was taken out, and the substrate surface was washed away with distilled water.
得られた基板に蛍光を照射し、蛍光物質の存在の有無を確認した。  The obtained substrate was irradiated with fluorescence, and the presence or absence of a fluorescent substance was confirmed.
蛍光測定は、共焦点レーザースキャナー(Perkinelmer社 Scan Array)を用いて行つ た。結果を図 7に示す。図 7—1は基板表面のパターンを示した (Gain95%)の場合 の写真であり、図 7— 2は基板表面の蛍光物質の存在位置 (Gain50%)の場合を示 す。 The fluorescence measurement is performed using a confocal laser scanner (Perkinelmer Scan Array). It was. Fig. 7 shows the results. Fig. 7-1 is a photograph showing the pattern on the substrate surface (Gain 95%), and Fig. 7-2 is a photograph showing the case where the fluorescent substance is present on the substrate surface (Gain 50%).
[0115] その結果、ァセトニトリルプラズマ重合膜が製膜された位置にのみ蛍光が観測され た。表面を蒸留水で洗ったにもかかわらず蛍光が存在していることから、 HMDSのプ ラズマ重合膜が形成されていることが確認できる。すなわち、上部に HMDSプラズマ 重合膜が存在しない場合、蛍光物質も洗い流される。さらに、ァセトニトリルのプラズ マ重合膜が形成された位置以外には、蛍光が観測されないことから、 HMDSのプラズ マ重合膜 (b)は基板に密着していることが確認できる。  [0115] As a result, fluorescence was observed only at the position where the acetonitrile plasma polymerized film was formed. The presence of fluorescence even though the surface was washed with distilled water confirms that the HMDS plasma polymerized film was formed. That is, if there is no HMDS plasma polymerized film on the top, the fluorescent material is also washed away. Further, since no fluorescence was observed except at the position where the plasma polymerized film of acetonitrile was formed, it was confirmed that the plasma polymerized film (b) of HMDS was in close contact with the substrate.
したがって、ァセトニトリルプラズマ重合膜 (a)は、酸素プラズマによってエッチング され、 HMDSプラズマ重合膜 (b)の穴(キヤピラリー)ができている。  Therefore, the acetonitrile plasma polymerized film (a) is etched by oxygen plasma, and a hole (capillary) of the HMDS plasma polymerized film (b) is formed.
[0116] 〔実施例 2〕  [Example 2]
傾斜薄膜の製造  Manufacture of graded thin films
プラズマ重合装置の試料ステージ上に、ステージと平行になるようにガラス基板 (厚 さ 1. lmm X縦 76mm X横 25mm)を配置した。プラズマ発生装置力ゝらの距離を変化させ て、プラズマ重合膜の膜厚を測定した。  A glass substrate (thickness: 1 lmm x 76 mm x 25 mm) was placed on the sample stage of the plasma polymerization apparatus so as to be parallel to the stage. The thickness of the plasma polymerized film was measured while changing the distance of the plasma generator.
モノマーとして HMDS (へキサメチルジシロキサン)またはァセトニトリルを用いた。  HMDS (hexamethyldisiloxane) or acetonitrile was used as a monomer.
[0117] 基板はシリコーンを用いた。 HMDSをモノマーとしてプラズマ重合膜を製膜する条 件は、 RF:200W、流速: 0. 5mm3/min、時間: 3minで行った。また、ァセトニトリルをモ ノマーとした時の製膜条件は、 RF:200W、流速: 5.0mm3/min、時間: 3minであった。 膜厚測定は、エリプソメーターで行い、図 9— 1、図 10— 1に示すように、それぞれの 試料ステージの位置(高さ)における膜厚を求めた。 [0117] Silicone was used for the substrate. The conditions for forming a plasma polymerized film using HMDS as a monomer were as follows: RF: 200 W, flow rate: 0.5 mm 3 / min, time: 3 min. When acetonitrile was used as a monomer, the film forming conditions were RF: 200 W, flow rate: 5.0 mm 3 / min, and time: 3 min. The film thickness was measured with an ellipsometer, and the film thickness at the position (height) of each sample stage was determined as shown in Fig. 9-1 and Fig. 10-1.
結果を図 9— 2 (HMDS)、図 10— 2 (ァセトニトリル)に示す。  The results are shown in Figure 9-2 (HMDS) and Figure 10-2 (acetonitrile).
[0118] この結果から、プラズマが発生している領域に近くなるほど膜厚が厚ぐ遠くなれば 膜厚は薄くなることが確認された。したがって、モノマーガスの種類にかかわらず、一 回の工程で連続的に膜厚を変化させることができることが確認された。従って、この 用法を適用して、傾斜を有するナノ流路キヤピラリーを製造することができる。 From these results, it was confirmed that the film thickness becomes thinner as the film thickness becomes larger and closer to the region where plasma is generated. Therefore, it was confirmed that the film thickness could be continuously changed in one process regardless of the type of the monomer gas. Therefore, a nanochannel capillary having a gradient can be manufactured by applying this usage.
産業上の利用可能性 本発明に係る微小構造の製造方法によれば、高速かつ簡便に、ナノレベルの微小 流路を有する 3次元構造物を製造することができる。また、プラズマ重合膜の形成を 特定の方法により実施することによって、傾斜のあるナノレベルの微小流路を有する 3次元構造物を製造することができる。 Industrial applicability According to the method for manufacturing a microstructure according to the present invention, a three-dimensional structure having nanolevel microchannels can be manufactured quickly and easily. In addition, by performing the formation of the plasma polymerized film by a specific method, it is possible to manufacture a three-dimensional structure having an inclined nano-level microchannel.
このような、ナノ流路キヤビラリ一、ナノ傾斜流路キヤビラリ一は、タンパク質等の生 体分子の分離、固定ィ匕に適用することができる。  Such nano-channel cavities and nano-gradient channel cavities can be applied to separation and immobilization of biological molecules such as proteins.

Claims

請求の範囲 The scope of the claims
[1] (1)基板上に、プラズマ重合膜 (a)をパターユングする工程 (工程 1)、  [1] (1) A step of patterning a plasma-polymerized film (a) on a substrate (Step 1),
(2)前記プラズマ重合膜 (a)をパターユングした側の基板表面に、プラズマ重合膜 (b )を形成する工程 (工程 2)、および  (2) a step of forming a plasma-polymerized film (b) on the substrate surface on the side of the puttering of the plasma-polymerized film (a) (step 2), and
(3)工程 2の後、プラズマ重合膜 (a)のエッチング速度が、前記プラズマ重合膜 (b)の エッチング速度よりも大きな値を示すエッチング媒体を用いて、前記基板をエツチン グ処理し、プラズマ重合膜 (a)を除去する工程 (工程 3)  (3) After step 2, the substrate is subjected to an etching treatment using an etching medium in which the etching rate of the plasma-polymerized film (a) is higher than the etching rate of the plasma-polymerized film (b). Step of removing polymer film (a) (Step 3)
を含むことを特徴とする微小構造の製造方法。  A method for producing a microstructure, comprising:
[2] 前記工程 3のエッチング処理における前記プラズマ重合膜 (a)のエッチング速度が 、前記プラズマ重合膜 (b)のエッチング速度の 2倍以上であることを特徴とする請求 項 1に記載の方法。 2. The method according to claim 1, wherein an etching rate of the plasma-polymerized film (a) in the etching treatment in the step 3 is twice or more as high as an etching rate of the plasma-polymerized film (b). .
[3] 前記工程 1が、前記基板表面または基板に積層された最外層の表面にプラズマ重 合膜 (c)が被覆され、該プラズマ重合膜 (c)上にプラズマ重合膜 (a)をパターユング する工程であり、  [3] In the step 1, the surface of the substrate or the surface of the outermost layer laminated on the substrate is coated with the plasma polymerized film (c), and the plasma polymerized film (a) is patterned on the plasma polymerized film (c). Jung is the process,
前記工程 3のエッチング処理における前記プラズマ重合膜 (a)のエッチング速度が 、前記プラズマ重合膜 (c)のエッチング速度より大きいことを特徴とする請求項 1また は 2に記載の方法。  3. The method according to claim 1, wherein an etching rate of the plasma-polymerized film (a) in the etching treatment in the step 3 is higher than an etching rate of the plasma-polymerized film (c).
[4] 前記工程 2において、プラズマ重合膜 (b)の形成前に、プラズマ重合膜 (a)のバタ 一ユングの一部がプラズマ重合膜 (b)で被覆されないように該パターユングの一部を マスキングして、前記基板表面にプラズマ重合膜 (b)を形成させることを特徴とする 請求項 1〜3のいずれかに記載の方法。  [4] In the step 2, before forming the plasma-polymerized film (b), a part of the butter-jung of the plasma-polymerized film (a) is not covered with the plasma-polymerized film (b). The method according to any one of claims 1 to 3, wherein masking is performed to form a plasma polymerized film (b) on the substrate surface.
[5] 前記工程 1において、プラズマが発生している中心部位力 基板に向けての最短 距離方向に対して、前記基板を垂直に配置して、プラズマ重合膜 (a)を形成すること を特徴とする請求項 1〜4のいずれかに記載の方法。  [5] In the step 1, the plasma polymerization film (a) is formed by arranging the substrate vertically with respect to the direction of the shortest distance toward the substrate where the plasma is generated. The method according to any one of claims 1 to 4.
[6] 前記工程 1において、プラズマが発生している中心部位力 基板に向けての最短 距離方向と該基板表面との間の角度が、前記最短方向に対して 0度以上 90度未満 になるように前記基板を配置して、傾斜を有するプラズマ重合膜 (a)を形成することを 特徴とする請求項 1〜4のいずれかに記載の方法。 [6] In the step 1, the angle between the direction of the shortest distance toward the substrate and the surface of the substrate becomes 0 ° or more and less than 90 ° with respect to the shortest direction. The method according to any one of claims 1 to 4, wherein the substrate is arranged so as to form a plasma polymerized film (a) having an inclination.
[7] 前記角度が 0度〜 60度であることを特徴とする請求項 6に記載の方法。 [7] The method according to claim 6, wherein the angle is 0 degree to 60 degrees.
[8] 前記角度が 0度であることを特徴とする請求項 6または 7に記載の方法。 [8] The method according to claim 6, wherein the angle is 0 degrees.
[9] 基板表面上にプラズマ重合膜 (b)が被覆され、該プラズマ重合膜 (b)と基板とで囲 まれる少なくとも一つの流路を有するキヤビラリ一であって、 [9] A cabary having a plasma polymerized film (b) coated on a substrate surface and having at least one flow path surrounded by the plasma polymerized film (b) and the substrate,
(0該プラズマ重合膜 (b)層中に流路となる空洞が存在し、  (0 There is a cavity serving as a flow path in the plasma polymerized film (b) layer,
GO前記基板表面からの流路の平均高さが 0. l〜500nmであることを特徴とするナ ノ流路キヤビラリ一。  GO A nano-channel cabillary, wherein the average height of the channel from the substrate surface is 0.1 to 500 nm.
[10] 基板表面または基板に積層された最外層の表面上にプラズマ重合膜 (c)が被覆さ れ、さらに、該プラズマ重合膜 (c)表面にプラズマ重合膜 (b)が被覆され、該プラズマ 重合膜 (b)とプラズマ重合膜 (c)とで囲まれる少なくとも一つの流路を有するキヤビラ リーであって、  [10] The plasma polymerized film (c) is coated on the substrate surface or the outermost layer surface laminated on the substrate, and further the plasma polymerized film (b) is coated on the surface of the plasma polymerized film (c). A cabinet having at least one flow path surrounded by a plasma polymerized film (b) and a plasma polymerized film (c),
(0該プラズマ重合膜 (b)層中に前記流路となる空洞が存在し、  (0 There is a cavity serving as the flow path in the plasma polymerized film (b) layer,
GO前記プラズマ重合膜 (c)表面からの流路の平均高さが 0. l〜500nmであること を特徴とするナノ流路キヤビラリ一。  GO The nano-channel cavities characterized in that the average height of the channels from the surface of the plasma polymerized membrane (c) is 0.1 to 500 nm.
[11] 基板表面上にプラズマ重合膜 (b)が被覆され、該プラズマ重合膜 (b)と基板とで囲 まれる少なくとも一つの流路を有するキヤビラリ一であって、 [11] A cabary having a plasma polymerized film (b) coated on a substrate surface and having at least one flow path surrounded by the plasma polymerized film (b) and the substrate,
(0該プラズマ重合膜 (b)層中に流路となる空洞が存在し、  (0 There is a cavity serving as a flow path in the plasma polymerized film (b) layer,
GO流路の一方の開口部 (入口)の平均高さが、他方の開口部(出口)の平均高さよ り大きぐ前記入口力 出口に向けて、流路が傾斜状に変化していることを特徴とす るナノ傾斜流路キヤビラリ一。  The average height of one opening (inlet) of the GO flow path is greater than the average height of the other opening (outlet). A nano-gradient flow path capillary characterized by:
[12] 基板表面または基板に積層された最外層の表面上にプラズマ重合膜 (c)が被覆さ れ、さらに、該プラズマ重合膜 (c)表面にプラズマ重合膜 (b)が被覆され、該プラズマ 重合膜 (b)とプラズマ重合膜 (c)とで囲まれる少なくとも一つの流路を有するキヤビラ リーであって、 [12] A plasma polymerized film (c) is coated on the substrate surface or the outermost layer surface laminated on the substrate, and further, the plasma polymerized film (b) is coated on the surface of the plasma polymerized film (c). A cabinet having at least one flow path surrounded by a plasma polymerized film (b) and a plasma polymerized film (c),
(0該プラズマ重合膜 (b)層中に前記流路となる空洞が存在し、  (0 There is a cavity serving as the flow path in the plasma polymerized film (b) layer,
GO流路の一方の開口部 (入口)の平均高さが、他方の開口部(出口)の平均高さよ り大きぐ前記入口力 出口に向けて、流路が傾斜状に変化していることを特徴とす るナノ傾斜流路キヤビラリ一。 The average height of one opening (inlet) of the GO flow path is greater than the average height of the other opening (outlet). A nano-gradient flow path capillary characterized by:
[13] 入口の流路の最小幅が 500nm以下であり、出口の流路の最小幅が 0. Inm以上 であることを特徴とする請求項 11または 12に記載のナノ傾斜流路キヤビラリ一。 [13] The nano-gradient flow path capillary according to claim 11 or 12, wherein the minimum width of the inlet flow path is 500 nm or less, and the minimum width of the outlet flow path is 0.1 Inm or more.
[14] 請求項 9または 10に記載のナノ流路キヤピラリーを用いる物質の分離方法。 [14] A method for separating a substance using the nanochannel capillary according to claim 9 or 10.
[15] 請求項 11〜13の 、ずれかに記載のナノ傾斜流路キヤピラリーを用いる物質の分 離方法。 [15] A method for separating a substance using the nano-gradient channel capillary according to any one of claims 11 to 13.
PCT/JP2005/007502 2004-04-22 2005-04-20 Method for preparing fine structure WO2005102912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-126192 2004-04-22
JP2004126192A JP4411421B2 (en) 2004-04-22 2004-04-22 Microstructure manufacturing method

Publications (1)

Publication Number Publication Date
WO2005102912A1 true WO2005102912A1 (en) 2005-11-03

Family

ID=35196877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007502 WO2005102912A1 (en) 2004-04-22 2005-04-20 Method for preparing fine structure

Country Status (2)

Country Link
JP (1) JP4411421B2 (en)
WO (1) WO2005102912A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101229065B1 (en) * 2011-07-01 2013-02-04 포항공과대학교 산학협력단 A method of manufacturing substrate for surface-enhanced raman scattering spectroscope and the substrate manufactured by the method
US10501851B2 (en) * 2016-05-12 2019-12-10 Fei Company Attachment of nano-objects to beam-deposited structures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135180A (en) * 1996-10-30 1998-05-22 Tdk Corp Rinsing solution for drying treatment, method for drying treatment using the solution, and manufacture of small structure using the method
JP2001252897A (en) * 2000-03-10 2001-09-18 Ritsumeikan Microanalysis chip, and method of manufacturing the same
US20020012884A1 (en) * 2000-01-12 2002-01-31 Gleason Karen K. Method for patterning a radiation sensitive layer
WO2002098554A1 (en) * 2001-06-04 2002-12-12 Epocal Inc. Integrated electrokinetic devices and methods of manufacture
JP2003285298A (en) * 2002-03-26 2003-10-07 Seiko Instruments Inc Micro-channel device and method of manufacturing the same
JP2003534538A (en) * 2000-05-25 2003-11-18 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Microfluidic system including three-dimensional array channel network
JP2004130219A (en) * 2002-10-10 2004-04-30 Kawamura Inst Of Chem Res Microfluid element, fluid treatment device, and fluid treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135180A (en) * 1996-10-30 1998-05-22 Tdk Corp Rinsing solution for drying treatment, method for drying treatment using the solution, and manufacture of small structure using the method
US20020012884A1 (en) * 2000-01-12 2002-01-31 Gleason Karen K. Method for patterning a radiation sensitive layer
JP2001252897A (en) * 2000-03-10 2001-09-18 Ritsumeikan Microanalysis chip, and method of manufacturing the same
JP2003534538A (en) * 2000-05-25 2003-11-18 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Microfluidic system including three-dimensional array channel network
WO2002098554A1 (en) * 2001-06-04 2002-12-12 Epocal Inc. Integrated electrokinetic devices and methods of manufacture
JP2003285298A (en) * 2002-03-26 2003-10-07 Seiko Instruments Inc Micro-channel device and method of manufacturing the same
JP2004130219A (en) * 2002-10-10 2004-04-30 Kawamura Inst Of Chem Res Microfluid element, fluid treatment device, and fluid treatment method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSAI S.W. ET AL: "Application of plasma-polymerized films for isoelectric focusing of proteins in a capillary electrophoresis chip.", ANALYST, ROYAL SOCIETY OF CHEMISTRY., vol. 128, no. 3, March 2003 (2003-03-01), pages 237 - 244 *

Also Published As

Publication number Publication date
JP2005305598A (en) 2005-11-04
JP4411421B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP4450368B2 (en) Microchannel chip manufacturing method, microchannel chip, biomolecule separation method using the microchannel chip, and electrophoresis apparatus having the microchannel chip
JP5583972B2 (en) Microfabricated device having non-wettable or non-absorbable polymer coating surface or apparatus which is a part thereof
Alf et al. Chemical vapor deposition of conformal, functional, and responsive polymer films
Li et al. Sacrificial polymers for nanofluidic channels in biological applications
JP4798949B2 (en) Preparation of coatings by plasma polymerization
Tsougeni et al. Plasma nanotextured PMMA surfaces for protein arrays: increased protein binding and enhanced detection sensitivity
Li et al. Wafer-scale nanopillars derived from block copolymer lithography for surface-enhanced Raman spectroscopy
JP2012214815A (en) Method
Lin et al. Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range
AU2004323367B2 (en) An imprinted polymer support
US11905163B2 (en) Micro-nano channel structure, sensor and manufacturing method thereof, and microfluidic device
US8877073B2 (en) Imprint lithography template
Thomas et al. Plasma printing and related techniques–patterning of surfaces using microplasmas at atmospheric pressure
WO2005102912A1 (en) Method for preparing fine structure
JP4480081B2 (en) Substance separation method
KR101152642B1 (en) Method of preparing microfluidic devices based on a polymer
Gillmor et al. Low-contact-angle polydimethyl siloxane (PDMS) membranes for fabricating micro-bioarrays
US11802337B1 (en) Atmospheric pressure plasma based fabrication process of printable electronics and functional coatings
WO2016068538A1 (en) Nanotransfer printing method and sers substrate, sers vial, and sers patch manufactured using same
Connell et al. Fabrication of mesoscale topographical gradients in bulk titanium and their use in injection moulding
KR20240063513A (en) Fabrication Method of Substrate for Surface Enhanced Raman Scattering using Through hole membrane and Application thereof
CN114660900A (en) Three-dimensional nano-structure manufacturing method
Rizal Nanocoax Arrays for Sensing Devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase