WO2005096672A1 - Electric fluid heater - Google Patents

Electric fluid heater Download PDF

Info

Publication number
WO2005096672A1
WO2005096672A1 PCT/DE2005/000586 DE2005000586W WO2005096672A1 WO 2005096672 A1 WO2005096672 A1 WO 2005096672A1 DE 2005000586 W DE2005000586 W DE 2005000586W WO 2005096672 A1 WO2005096672 A1 WO 2005096672A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
fluid heater
electrical
electrode surfaces
heater according
Prior art date
Application number
PCT/DE2005/000586
Other languages
German (de)
French (fr)
Inventor
Dieter Gruetzmann
Michael Hofmann
Original Assignee
Hermsdorfer Institut Für Technische Keramik E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hermsdorfer Institut Für Technische Keramik E.V. filed Critical Hermsdorfer Institut Für Technische Keramik E.V.
Priority to DE502005003996T priority Critical patent/DE502005003996D1/en
Priority to EP05740627A priority patent/EP1730996B1/en
Priority to US11/547,150 priority patent/US20070189741A1/en
Publication of WO2005096672A1 publication Critical patent/WO2005096672A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material

Definitions

  • the invention relates to an electrical resistance heating element for heating flowing media.
  • Electrical resistance heating elements in the form of honeycomb bodies, tube bundles or multi-hole plates are often used to heat flowing media such as air or non-conductive liquids such as silicone oil, glycol, hydraulic oil, petrol or diesel fuel.
  • media such as air or non-conductive liquids such as silicone oil, glycol, hydraulic oil, petrol or diesel fuel.
  • the volume of the resistance heating element is more or less homogeneously flowed through by the heating current and heats up.
  • a heat exchange takes place between the resistance element and the fluid on the surface of the channels or bores. How much heat is given off to the flowing medium per unit of time depends, among other things, on the temperature difference between the resistance body and the fluid, the size of the heat exchange surface, the heat capacity of the medium and its flow rate.
  • the resistance element can only emit as much heat per unit of time to the medium to be heated as it can convert to electrical power P at the available operating voltage U.
  • prismatic honeycomb radiators or tube bundles for electrical contacting are metallized on their opposite end faces, for example using the screen printing or rolling process.
  • the electrode area A is equal to the end face of the honeycomb body, minus the sum of the cross-sectional areas of the channels through which the medium flows.
  • the length I of the current paths is identical to the length of the channels.
  • the specific resistance of the Resistance materials cannot be reduced arbitrarily, especially for ceramic resistance bodies with PTC characteristics, the lower limit practically reached is around 5 to 10 ⁇ * cm. This leads to two conflicts in the manufacture of honeycombs, tube bundle or multi-channel heaters.
  • the area of the honeycomb that can be flowed through should be as high as possible.
  • DE 100 60 301 A1 proposes metallizing the channels of the honeycomb body on the inside, adjacent channels being of different polarity and the length of the current paths being equal to the wall thickness of the channels.
  • These proposed solutions require complex technological measures in order to ensure sufficiently wide insulation distances or creepage distances between electrodes of different polarity.
  • failures due to voltage breakdowns can occur with small wall thicknesses, which are actually advantageous in terms of flow technology.
  • there is the problem with honeycomb bodies with internal metallization that, for technological reasons, the cell width is restricted downwards and the channel length is restricted upwards.
  • DE 102 01 262 A1 presents a honeycomb body which is cut into two halves of equal size parallel to the electrode surfaces.
  • the cut surfaces are metallized, connected to a pole of the voltage source and then reassembled.
  • the second pole of the voltage source is simultaneously on the two outer electrode surfaces of this sandwich arrangement.
  • the honeycomb halves that are electrically connected in parallel in this way have a four times lower electrical resistance than the simple honeycomb due to the doubling of the electrode area while simultaneously halving the conductor length.
  • the disadvantage of this arrangement is the high production outlay due to the additional separation and metallization steps and there are now joining points within the channels. As a result of difficult avoidable geometry tolerances, there may be considerable disturbances in the flow at these joints.
  • the invention has for its object to provide an arrangement for electrical resistance heating elements that is technologically simple to implement and with which high power densities can be achieved at the same time. It should be possible to tailor the duct cross-section and duct length with regard to thermal and fluid engineering requirements to the respective application, without the restrictions of the metallization technology taking effect.
  • this object is achieved in the case of an electrical fluid heater made of ceramic or polymer composite material with a plurality of channels through which the medium to be heated flows, in that the fluid heater consists of at least one heating element provided with at least one channel such that the heating element is placed on the opposite one Electrode surfaces are applied to the outer surfaces, so that a current flows between the electrode surfaces essentially transversely to the direction of the channels, and that at least one of the two electrode surfaces of the heating element has a connection surface which is arranged on the adjacent outer surface of the heating element.
  • the particular advantage of the arrangement according to the invention is that any number of technologically identical heating elements, each rotated by 180 ° about the surface normal of the electrode surfaces, can be strung together.
  • By rotating and joining the heating elements they can be joined together in the form of a parallel connection via the connection surfaces to form an electrical fluid heater.
  • the connection can be made by clamping, gluing or soldering.
  • the heating elements are aligned exactly in parallel.
  • the electrical connecting lines can simultaneously serve to mechanically fix the heating elements.
  • the flow of current through the honeycomb body is transverse to the direction of flow of the fluid.
  • the electrode distance results from the sum of Cell width plus double wall thickness. It is therefore many times shorter than with forehead contact. However, it does not reach the critical values as with an internal metallization.
  • FIG. 1 shows a schematic representation of a heating element
  • Fig. 2 is an exploded view of the electric fluid heater according to the invention
  • the heating element 1 consists of its essential components, the channels 2 and the two opposite electrode surfaces 3, 4.
  • the first electrode surface 3 is connected to the connection surface 5.
  • the second electrode surface 4 is not connected to any connection surface 5.
  • the molded body of the heating element 1 preferably consists of PTC ceramic, which has been prepared on the basis of semiconducting barium titanate and by adding organic binders and plasticizers to give a rigid plastic mass.
  • the prismatic moldings, each with a series of parallel channels 2 are produced and sintered. After sintering, these are cut to length using diamond cutting discs.
  • metal spraying or Sputtering is used to provide the shaped bodies with suitable structured metal electrodes, for example made of aluminum or silver.
  • the heating elements 1 produced in this way are each rotated through 180 °, based on the surface normal of the electrode surfaces 3, 4, and lined up with one another. This creates a stack of heating elements 1, the first electrode surface 3 coming into contact with the second electrode surface 4 of the adjacent heating element 1.
  • the contact to the first electrode surfaces 3 and thus also to the adjacent second electrode surfaces 4 via the connection surfaces 5 is made via the upper feed line 6.
  • the connection can also be made by gluing or clamping.
  • a parallel connection of the heating elements 1 is realized by this construction u.

Abstract

The invention relates to an electric resistance heating element for heating flowing media. The aim of the invention is to provide an assembly for electric resistance heating elements, which can be configured from simple technology and at the same time produces high power densities. This is achieved by an electric fluid heater consisting of a ceramic or polymer composite material with a plurality of channels, through which the medium to be heated flows. Said inventive fluid heater consists of at least one heating element, which is provided with at least one channel and whose opposing external surfaces comprise electrode surfaces, whose action causes a current to flow between said electrode surfaces, in an essentially transverse direction to that of the channels. At least one of the two electrode surfaces of the heating element has a connection surface that is located on the adjoining external surface of the heating element.

Description

Elektrischer FluidheizerElectric fluid heater
Die Erfindung betrifft ein elektrisches Widerstandsheizelement für die Beheizung strömender Medien.The invention relates to an electrical resistance heating element for heating flowing media.
Elektrische Widerstandsheizelemente in Form von Wabenkörpern, Rohrbündeln oder Mehrlochplatten werden häufig zum Beheizen strömender Medien wie Luft oder nichtleitenden Flüssigkeiten wie Silikonöl, Glykol, Hydrauliköl, Benzin oder Dieselkraftstoff genutzt. Dabei ist in der Regel in dem Widerstandselement eine Vielzahl von Kanälen oder Bohrungen vorhanden, durch die das zu beheizende Medium (Fluid) hindurchströmen kann bzw. hindurchgepumpt wird. Das Volumen des Widerstandsheizelementes wird mehr oder weniger homogen vom Heizstrom durchflössen und erwärmt sich. An der Oberfläche der Kanäle oder Bohrungen findet ein Wärmeaustausch zwischen dem Widerstandselement und dem Fluid statt. Wie viel Wärme pro Zeiteinheit an das strömende Medium abgegeben wird, hängt unter anderem von der Temperaturdifferenz zwischen Widerstandskörper und Fluid, von der Größe der Wärmeaustauschfläche, von der Wärmekapazität des Mediums und von dessen Strömungsgeschwindigkeit ab. Selbstverständlich kann das Widerstandselement nur so viel Wärme pro Zeiteinheit an das zu beheizende Medium abgeben, wie es bei der verfügbaren Betriebsspannung U an elektrischer Leistung P umsetzen kann. Die Leistung P bestimmt sich aus P = U2/R. Das heißt, für hohe Heizleistungen muss das Widerstandsheizelement einen niedrigen elektrischen Widerstand R aufweisen. Der Widerstand des Heizelementes wird vom spezifischen Widerstand p des Materials, von der Querschnittsfläche A des Heizers und der Länge I der Strompfade bestimmt: R=p*l/A. Aus Gründen der einfachen technologischen Handhabung werden nach dem Stand der Technik prismatische Wabenheizkörper oder auch Rohrbündel zur elektrischen Kontaktierung an ihren gegenüberliegenden Stirnseiten metallisiert, beispielsweise im Siebdruck- oder Walzverfahren. Daraus ergibt sich, dass die Elektrodenfläche A gleich der Stirnfläche der Wabenkörper, vermindert um die Summe der Querschnittsflächen der Kanäle, durch die das Medium hindurchfließt, ist. Die Länge I der Strompfade ist identisch mit der Länge der Kanäle. Der spezifische Widerstand der Widerstandsmaterialien lässt sich nicht beliebig vermindern, insbesondere für keramische Widerstandskörper mit PTC-Charakteristik liegt die praktisch erreichte Untergrenze bei etwa 5 bis 10 Ω*cm. Daraus ergeben sich bei der Herstellung von Waben, Rohrbündel- oder Mehrkanalheizern zwei Konflikte.Electrical resistance heating elements in the form of honeycomb bodies, tube bundles or multi-hole plates are often used to heat flowing media such as air or non-conductive liquids such as silicone oil, glycol, hydraulic oil, petrol or diesel fuel. There is usually a large number of channels or bores in the resistance element through which the medium (fluid) to be heated can flow or is pumped through. The volume of the resistance heating element is more or less homogeneously flowed through by the heating current and heats up. A heat exchange takes place between the resistance element and the fluid on the surface of the channels or bores. How much heat is given off to the flowing medium per unit of time depends, among other things, on the temperature difference between the resistance body and the fluid, the size of the heat exchange surface, the heat capacity of the medium and its flow rate. Of course, the resistance element can only emit as much heat per unit of time to the medium to be heated as it can convert to electrical power P at the available operating voltage U. The power P is determined from P = U 2 / R. This means that the resistance heating element must have a low electrical resistance R for high heating powers. The resistance of the heating element is determined by the specific resistance p of the material, the cross-sectional area A of the heater and the length I of the current paths: R = p * l / A. For reasons of simple technological handling, according to the prior art, prismatic honeycomb radiators or tube bundles for electrical contacting are metallized on their opposite end faces, for example using the screen printing or rolling process. It follows from this that the electrode area A is equal to the end face of the honeycomb body, minus the sum of the cross-sectional areas of the channels through which the medium flows. The length I of the current paths is identical to the length of the channels. The specific resistance of the Resistance materials cannot be reduced arbitrarily, especially for ceramic resistance bodies with PTC characteristics, the lower limit practically reached is around 5 to 10 Ω * cm. This leads to two conflicts in the manufacture of honeycombs, tube bundle or multi-channel heaters.
Für einen günstigen Wärmeübergang wird eine ausreichend große Kanallänge angestrebt, wodurch sich aber der elektrische Widerstand erhöht und die Heizleistung eingeschränkt wird.For a favorable heat transfer, a sufficiently large channel length is sought, but this increases the electrical resistance and limits the heating output.
Für einen niedrigen Strömungswiderstand des Wabenheizers sollte der durchströmbare Flächenanteil der Wabe möglichst hoch sein. Das heißt aber, dass der verfügbare Flächenanteil für die- Anschlusselektroden kleiner wird, was zu einer zusätzlichen Begrenzung der elektrischen Leistungsaufnahme führt.For a low flow resistance of the honeycomb heater, the area of the honeycomb that can be flowed through should be as high as possible. However, this means that the available area share for the connection electrodes becomes smaller, which leads to an additional limitation of the electrical power consumption.
Zur Lösung des Konflikts wird beispielsweise durch die DE 100 60 301 A1 vorgeschlagen, die Kanäle der Wabenkörper innen zu metallisieren, wobei benachbarte Kanäle auf unterschiedlicher Polarität liegen und die Länge der Strompfade gleich der Wandstärke der Kanäle ist. Diese Lösungsvorschläge erfordern aufwendige technologische Maßnahmen, um ausreichend breite Isolierabstände bzw. Kriechstrecken zwischen Elektroden unterschiedlicher Polarität zu gewährleisten. Außerdem kann es bei geringen Wandstärken, die eigentlich strömungstechnisch vorteilhaft sind, zu Ausfällen infolge von Spannungsdurchschlägen kommen. Zusätzlich besteht bei Wabenkörpern mit Innenmetallisierung das Problem, dass aus technologischen Gründen die Zellweite nach unten und die Kanallänge nach oben eingeschränkt wird.To solve the conflict, for example, DE 100 60 301 A1 proposes metallizing the channels of the honeycomb body on the inside, adjacent channels being of different polarity and the length of the current paths being equal to the wall thickness of the channels. These proposed solutions require complex technological measures in order to ensure sufficiently wide insulation distances or creepage distances between electrodes of different polarity. In addition, failures due to voltage breakdowns can occur with small wall thicknesses, which are actually advantageous in terms of flow technology. In addition, there is the problem with honeycomb bodies with internal metallization that, for technological reasons, the cell width is restricted downwards and the channel length is restricted upwards.
In der DE 102 01 262 A1 wird ein Wabenkörper vorgestellt, der parallel zu den Elektrodenflächen in zwei gleich große Hälften geschnitten wird. Die Schnittflächen werden metallisiert, mit einem Pol der Spannungsquelle verbunden und anschließend wieder zusammengefügt. Der zweite Pol der Spannungsquelle liegt gleichzeitig an den beiden äußeren Elektrodenflächen dieser Sandwich-Anordnung. Die auf diese Weise elektrisch parallel geschalteten Wabenhälften haben durch die Verdopplung der Elektrodenfläche bei gleichzeitiger Halbierung der Leiterlänge einen viermal geringeren elektrischen Widerstand als die einfache Wabe. Nachteil dieser Anordnung ist der hohe Herstellungsaufwand durch die zusätzlichen Trenn- und Metallisierungsschritte und es befinden sich innerhalb der Kanäle nunmehr Fügestellen. Infolge von schwer vermeidbaren Geometrietoleranzen kann es an diesen Fügestellen zu erheblichen Störungen des Strömungsverlaufes kommen.DE 102 01 262 A1 presents a honeycomb body which is cut into two halves of equal size parallel to the electrode surfaces. The cut surfaces are metallized, connected to a pole of the voltage source and then reassembled. The second pole of the voltage source is simultaneously on the two outer electrode surfaces of this sandwich arrangement. The honeycomb halves that are electrically connected in parallel in this way have a four times lower electrical resistance than the simple honeycomb due to the doubling of the electrode area while simultaneously halving the conductor length. The disadvantage of this arrangement is the high production outlay due to the additional separation and metallization steps and there are now joining points within the channels. As a result of difficult avoidable geometry tolerances, there may be considerable disturbances in the flow at these joints.
Der Erfindung liegt die Aufgabe zugrunde, eine Anordnung für elektrische Widerstandsheizelemente zu schaffen, die technologisch einfach realisierbar ist und mit der zugleich hohe Leistungsdichten erreicht werden können. Es soll möglich sein, Kanalquerschnitt und Kanallänge im Hinblick auf wärme- und strömungstechnische Belange auf den jeweiligen Anwendungsfall zuzuschneiden, ohne dass dabei die Einschränkungen der Metallisierungstechnologie zum Tragen kommen.The invention has for its object to provide an arrangement for electrical resistance heating elements that is technologically simple to implement and with which high power densities can be achieved at the same time. It should be possible to tailor the duct cross-section and duct length with regard to thermal and fluid engineering requirements to the respective application, without the restrictions of the metallization technology taking effect.
Erfindungsgemäß wird diese Aufgabe bei einem elektrischen Fluidheizer aus Keramikoder Polymerverbundwerkstoff mit einer Vielzahl von Kanälen, durch die das zu beheizende Medium strömt, dadurch gelöst, dass der Fluidheizer aus mindestens einem, mit mindestens einem Kanal versehenen Heizelement besteht, dass das Heizelement auf den sich gegenüberliegenden Außenflächen mit Elektrodenflächen beaufschlagt ist, so dass ein Stromfluss zwischen den Elektrodenflächen im Wesentlichen quer zur Richtung der Kanäle erfolgt, und dass mindestens eine der beiden Elektrodenflächen des Heizelementes eine Anschlussfläche aufweist, die auf der angrenzenden Außenfläche des Heizelementes angeordnet ist. Beim Aufbringen der Anschlussflächen ist dabei zur jeweils anderen Elektrodenfläche ein auf den jeweiligen Anwendungsfall zugeschnittener, mehr oder weniger breiter Isolationsrand einzuhalten. Der besondere Vorteil der erfindungsgemäßen Anordnung besteht darin, dass beliebig viele technologisch identisch hergestellte, jeweils um die Flächennormale der Elektrodenflächen um 180° gedrehte Heizelemente, aneinander gereiht werden können. Durch die Drehung und Aneinanderfügung der Heizelemente können diese untereinander in Form einer Parallelschaltung über die Anschlussflächen zu einem elektrischen Fluidheizer zusammengefügt werden. Die Verbindung kann dabei durch Klemmen, Kleben oder Löten erfolgen. Dabei werden die Heizelemente exakt parallel ausgerichtet. In einer vorteilhaften erfindungsgemäßen Ausführung können die elektrischen Verbindungsleitungen gleichzeitig zur mechanischen Fixierung der Heizelemente dienen. Der Stromfluss durch den Wabenkörper erfolgt quer zur Strömungsrichtung des Fluides. Der Elektrodenabstand ergibt sich aus der Summe von Zellweite plus doppelter Wandstärke. Er ist damit um ein Vielfaches kürzer als bei Stirnkontaktierung. Er erreicht aber nicht die kritischen Werte wie bei einer Innenmetallisierung.According to the invention, this object is achieved in the case of an electrical fluid heater made of ceramic or polymer composite material with a plurality of channels through which the medium to be heated flows, in that the fluid heater consists of at least one heating element provided with at least one channel such that the heating element is placed on the opposite one Electrode surfaces are applied to the outer surfaces, so that a current flows between the electrode surfaces essentially transversely to the direction of the channels, and that at least one of the two electrode surfaces of the heating element has a connection surface which is arranged on the adjacent outer surface of the heating element. When attaching the connection surfaces, a more or less wide insulation edge tailored to the respective application must be maintained for the respective other electrode surface. The particular advantage of the arrangement according to the invention is that any number of technologically identical heating elements, each rotated by 180 ° about the surface normal of the electrode surfaces, can be strung together. By rotating and joining the heating elements, they can be joined together in the form of a parallel connection via the connection surfaces to form an electrical fluid heater. The connection can be made by clamping, gluing or soldering. The heating elements are aligned exactly in parallel. In an advantageous embodiment according to the invention, the electrical connecting lines can simultaneously serve to mechanically fix the heating elements. The flow of current through the honeycomb body is transverse to the direction of flow of the fluid. The electrode distance results from the sum of Cell width plus double wall thickness. It is therefore many times shorter than with forehead contact. However, it does not reach the critical values as with an internal metallization.
Die Prozesssicherheit ist gegenüber der Innenmetallisierung höher, da eventuell vorhandene Löcher oder Schwachstellen in einzelnen Wabenwänden nicht unmittelbar zu Kurzschluss oder Spannungsdurchbruch führen können. Niedrige Widerstandswerte ergeben sich aus der Parallelschaltung der vergleichsweise kurzen Strompfade durch die Kanalwände einzelner Segmente sowie der zusätzlichen Parallelschaltung der Segmente. Durch die erfindungsgemäße Anordnung ist es möglich, im Extrudierverfahren Profile in Form einreihiger Wabensegmente herzustellen. Diese können präzise und kostengünstig nach dem Sintern auf Länge geschnitten werden. Für die Metallisierung zum Aufbringen der Elektrodenflächen gibt es erprobte Verfahren der Siebdruck- oder Sputtertechnik. Die Erfindung soll nachstehend anhand von Ausführungsbeispielen näher erläutert werden. Die Zeichnungen zeigen:The process reliability is higher compared to the internal metallization, since any holes or weak points in individual honeycomb walls cannot immediately lead to a short circuit or voltage breakdown. Low resistance values result from the parallel connection of the comparatively short current paths through the channel walls of individual segments and the additional parallel connection of the segments. The arrangement according to the invention makes it possible to produce profiles in the form of single-row honeycomb segments in the extrusion process. These can be cut to length precisely and cost-effectively after sintering. There are proven methods of screen printing or sputtering technology for the metallization for applying the electrode surfaces. The invention will be explained in more detail below using exemplary embodiments. The drawings show:
Fig.1 schematische Darstellung eines Heizelements1 shows a schematic representation of a heating element
Fig. 2 Explosivdarstellung des erfindungsgemäßen elektrischen FluidheizersFig. 2 is an exploded view of the electric fluid heater according to the invention
Wie aus Fig. 1 ersichtlich, besteht das Heizelement 1 aus seinen wesentlichen Bestandteilen, den Kanälen 2 und den beiden sich gegenüberliegenden Elektrodenflächen 3, 4. Die erste Elektrodenfläche 3 steht dabei mit der Anschlussfläche 5 in Verbindung. Die zweite Elektrodenfläche 4 steht in dieser Ausführungsform mit keiner Anschlussfläche 5 in Verbindung. Es ist jedoch ohne weiteres möglich, auch diese zweite Elektrodenfläche 4 mit einer zweiten Anschlussfläche, dann jedoch der ersten Anschlussfläche 5 genau gegenüberliegendend, zu versehen. Der Formkörper des Heizelementes 1 besteht vorzugsweise aus PTC-Keramik, die auf Basis von halbleitendem Bariumtitanat und durch Zusatz organischer Bindemittel und Plastifikatoren zu einer steifplastischen Masse aufbereitet wurde. Im Extrusionsverfahren werden daraus die prismatischen Formkörper mit jeweils einer Reihe von parallelen Kanälen 2 hergestellt und gesintert. Diese werden nach dem Sintern mit Diamanttrennscheiben auf Länge geschnitten. Durch Siebdrucken, Metallspritzen oder Sputtern werden die Formkörper mit geeigneten strukturierten Metallelektroden, beispielsweise aus Aluminium oder Silber, versehen.1, the heating element 1 consists of its essential components, the channels 2 and the two opposite electrode surfaces 3, 4. The first electrode surface 3 is connected to the connection surface 5. In this embodiment, the second electrode surface 4 is not connected to any connection surface 5. However, it is easily possible to provide this second electrode surface 4 with a second connection surface, but then exactly opposite the first connection surface 5. The molded body of the heating element 1 preferably consists of PTC ceramic, which has been prepared on the basis of semiconducting barium titanate and by adding organic binders and plasticizers to give a rigid plastic mass. In the extrusion process, the prismatic moldings, each with a series of parallel channels 2, are produced and sintered. After sintering, these are cut to length using diamond cutting discs. By screen printing, metal spraying or Sputtering is used to provide the shaped bodies with suitable structured metal electrodes, for example made of aluminum or silver.
Die so hergestellten Heizelemente 1 werden jeweils um 180°, bezogen auf die Flächennormale der Elektrodenflächen 3, 4, gedreht und aneinander gereiht. Somit entsteht ein Stapel von Heizelementen 1 , wobei jeweils die erste Elektrodenfläche 3 mit der zweiten Elektrodenfläche 4 des benachbarten Heizelementes 1 in Kontakt treten. Wie a us Fig. 2 ersichtlich, wird über die obere Zuleitung 6 der Kontakt zu den ersten Elektrodenflächen 3 und damit auch zu den anliegenden zweiten Elektrodenflächen 4 über die Anschlussflächen 5 z. B. durch Löten hergestellt. Über die untere Zuleitung 7 wird der Kontakt analog zu den ersten Elektrodenflächen 3 und damit wiederum zu den zweiten Elektrodenflächen 4 über die Anschlussflächen 5 hergestellt. Die Verbindung kann neben dem Löten auch durch Kleben oder Klemmen erfolgen. Durch genau diesen Aufba u ist eine Parallelschaltung der Heizelemente 1 realisiert. Um Kurzschlüsse zwischen den Elektrodenflächen 4 und den Anschlussflächen 5 bzw. den Zuleitungen 6, 7 zu vermeiden, sind bekanntermaßen entsprechende Isoliermaßnahmen zu treffen. Wird beispielsweise ein PTC -Keramikwerkstoff mit einem spezifischen Kaltwiderstand von 1 0 Ω*cm zu einem Heizelement 1 gemäß Fig. 1 mit sechs parallelen Kanälen 2 von 20 mm Kanallänge und 2x2 mm Kanalquerschnitt sowie 0,4 mm Wandstärke geformt, so erreicht dieser bei Metallisierung mit seitlichen Anschlusselektroden gemäß Fig. 2 einen Kaltwiderstand von etwa 5 Ω. Die Parallelschaltung von 5 derartigen Wabensegmenten führt zu einem Gesamtwiderstand von 1 Ω. Bei einer Betriebsspannung von 12 V ist damit eine Leistungsaufnahme von 144 Watt möglich. The heating elements 1 produced in this way are each rotated through 180 °, based on the surface normal of the electrode surfaces 3, 4, and lined up with one another. This creates a stack of heating elements 1, the first electrode surface 3 coming into contact with the second electrode surface 4 of the adjacent heating element 1. As can be seen from FIG. 2, the contact to the first electrode surfaces 3 and thus also to the adjacent second electrode surfaces 4 via the connection surfaces 5 is made via the upper feed line 6. B. made by soldering. Via the lower lead 7, the contact is made analogously to the first electrode surfaces 3 and thus in turn to the second electrode surfaces 4 via the connection surfaces 5. In addition to soldering, the connection can also be made by gluing or clamping. A parallel connection of the heating elements 1 is realized by this construction u. In order to avoid short circuits between the electrode surfaces 4 and the connection surfaces 5 or the feed lines 6, 7, it is known to take appropriate insulation measures. If, for example, a PTC ceramic material with a specific cold resistance of 1 0 Ω * cm is formed into a heating element 1 according to FIG. 1 with six parallel channels 2 of 20 mm channel length and 2x2 mm channel cross section and 0.4 mm wall thickness, this is achieved with metallization with side connection electrodes according to FIG. 2 a cold resistance of about 5 Ω. The parallel connection of 5 such honeycomb segments leads to a total resistance of 1 Ω. With an operating voltage of 12 V, a power consumption of 144 watts is possible.
Aufstellung der verwendeten BezugszeichenList of the reference numerals used
1. Heizelement 2. Kanal1st heating element 2nd channel
3. erste Elektrodenfläche3. first electrode surface
4. zweite Elektrodenfläche4. second electrode surface
5. Anschlussfläche5. Pad
6. obere Zuleitung6. Upper supply line
7. untere Zuleitung 7. lower supply line

Claims

Patentansprüche claims
1. Elektrischer Fluidheizer aus Keramik- oder Polymerverbundwerkstoff mit einer Kombination der folgenden Merkmale - der Fluidheizer besteht aus mindestens einem Heizelement, - jedes Heizelement ist mit mindestens einem Kanal versehen, durch den das zu beheizende Medium strömt, - jedes Heizelement ist auf den sich gegenüberliegenden Außenflächen mit Elektrodenflächen beaufschlagt, so dass ein Stromfluss zwischen den Elektrodenflächen im Wesentlichen quer zur Längsachse der Kanäle erfolgt, - mindestens eine Elektrodenfläche eines jeden Heizelementes weist eine Anschlussfläche auf, die auf der angrenzenden Außenfläche des Heizelementes angeordnet ist.1. Electrical fluid heater made of ceramic or polymer composite with a combination of the following features - the fluid heater consists of at least one heating element, - each heating element is provided with at least one channel through which the medium to be heated flows, - each heating element is on the opposite Electrode surfaces are applied to the outer surfaces so that a current flows between the electrode surfaces essentially transversely to the longitudinal axis of the channels. At least one electrode surface of each heating element has a connection surface which is arranged on the adjacent outer surface of the heating element.
2. Elektrischer Fluidheizer nach Anspruch 1 , dadurch gekennzeichnet, dass die Heizelemente als flache prismatische Körper mit jeweils mehreren parallelen Kanälen, deren Längsachsen in einer Ebene liegen, ausgebildet sind.2. Electrical fluid heater according to claim 1, characterized in that the heating elements are designed as flat prismatic bodies, each with a plurality of parallel channels, the longitudinal axes of which lie in one plane.
3. Elektrischer Fluidheizer nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Heizelemente jeweils verdreht um 180° um die Flächennormale der Elektrodenflächen aneinander gereiht angeordnet sind und die Anschlussflächen im Klemm-, Löt- oder Klebverfahren über elektrische Zuleitungen mit dem Plus- bzw. Minuspol der Versorgungsspannung verbunden sind.3. Electrical fluid heater according to claim 1 and 2, characterized in that the heating elements are arranged in a row rotated by 180 ° around the surface normal of the electrode surfaces and the connection surfaces in the clamping, soldering or adhesive method via electrical leads with the plus or Negative pole of the supply voltage are connected.
4. Elektrischer Fluidheizer nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Heizelemente jeweils verdreht um 180° um die Flächennormale der Elektrodenflächen aneinander gereiht angeordnet sind und die Anschlussflächen im Klemm-, Löt- oder Klebverfahren über elektrische Zuleitungen an Phase und Nullleiter einer Wechselspannungsquelle angeschlossen sind. 4. Electrical fluid heater according to claim 1 and 2, characterized in that the heating elements are arranged rotated by 180 ° around the surface normal of the electrode surfaces and the connection surfaces in the clamping, soldering or adhesive method via electrical leads to phase and neutral conductor of an AC voltage source are connected.
5. Elektrischer Fluidheizer nach Anspruch 1 , dadurch gekennzeichnet, dass die Heizelemente aus einem Material bestehen, das in einem vorwählbaren Temperaturintervali einen positiven Temperaturkoeffizienten des elektrischen Widerstandes aufweist.5. Electrical fluid heater according to claim 1, characterized in that the heating elements consist of a material which has a positive temperature coefficient of electrical resistance in a preselectable temperature interval.
6. Elektrischer Fluidheizer nach Anspruch 1 , dadurch gekennzeichnet, dass das Heizelement aus halbleitender Bariumtitanatkeramik mit positivem Temperaturkoeffizienten des elektrischen Widerstandes besteht.6. Electrical fluid heater according to claim 1, characterized in that the heating element consists of semiconducting barium titanate ceramic with a positive temperature coefficient of electrical resistance.
7. Elektrischer Fluidheizer nach Anspruch 1 , dadurch gekennzeichnet, dass das Heizelement aus einem Polymerverbundwerkstoff mit positivem Temperaturkoeffizienten des elektrischen Widerstandes besteht. 7. Electrical fluid heater according to claim 1, characterized in that the heating element consists of a polymer composite material with a positive temperature coefficient of electrical resistance.
PCT/DE2005/000586 2004-03-31 2005-03-31 Electric fluid heater WO2005096672A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502005003996T DE502005003996D1 (en) 2004-03-31 2005-03-31 ELECTRIC FLUID HEATER
EP05740627A EP1730996B1 (en) 2004-03-31 2005-03-31 Electric fluid heater
US11/547,150 US20070189741A1 (en) 2004-03-31 2005-03-31 Electric fluid heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004016434A DE102004016434B4 (en) 2004-03-31 2004-03-31 Electric fluid heater
DE102004016434.7 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005096672A1 true WO2005096672A1 (en) 2005-10-13

Family

ID=34966900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000586 WO2005096672A1 (en) 2004-03-31 2005-03-31 Electric fluid heater

Country Status (6)

Country Link
US (1) US20070189741A1 (en)
EP (1) EP1730996B1 (en)
AT (1) ATE394903T1 (en)
DE (2) DE102004016434B4 (en)
ES (1) ES2306142T3 (en)
WO (1) WO2005096672A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021110826A1 (en) * 2019-12-04 2021-06-10 Grundfos Holding A/S A heating system and method of manufacturing a heating system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110202019A1 (en) * 2009-12-04 2011-08-18 Mt Industries, Inc. Hand held skin treatment spray system with air heating element
JP5919199B2 (en) * 2010-12-24 2016-05-18 日本碍子株式会社 Honeycomb structure
JP5883299B2 (en) * 2011-03-24 2016-03-09 日本碍子株式会社 Heater for heating lubricating fluid
JP6901722B2 (en) * 2017-03-30 2021-07-14 東京エレクトロン株式会社 How to manufacture fluid heaters, fluid controllers, and fluid heaters
IT201800005496A1 (en) * 2018-05-18 2019-11-18 ELECTRIC HEATER DEVICE, PARTICULARLY WITH PTC EFFECT
CN115299178A (en) 2020-03-23 2022-11-04 康泰尔有限公司 Heating element
WO2023187017A1 (en) 2022-03-30 2023-10-05 Kanthal Ab Heating element and fluid heater and method for heating a fluid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939349A (en) * 1989-06-23 1990-07-03 Uppermost Electronic Industries Co., Ltd. Ceramic thermistor heating element
US5192853A (en) * 1991-10-22 1993-03-09 Yeh Yuan Chang Heating set having positive temperatue coefficient thermistor elements adhesively connected to heat radiator devices
JPH05152057A (en) * 1991-11-28 1993-06-18 Nippondenso Co Ltd Ptc heating body

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2432904A1 (en) * 1973-07-19 1975-02-06 Atomic Energy Authority Uk Heating element for flowing media - provides direct passages through itself for the fluids
US3995143A (en) * 1974-10-08 1976-11-30 Universal Oil Products Company Monolithic honeycomb form electric heating device
US5227946A (en) * 1981-04-02 1993-07-13 Raychem Corporation Electrical device comprising a PTC conductive polymer
US4505107A (en) * 1981-10-26 1985-03-19 Nippondenso Co., Ltd. Exhaust gas cleaning apparatus
DE3204207C2 (en) * 1982-02-08 1985-05-23 Siemens AG, 1000 Berlin und 8000 München Electrical resistance with a ceramic PTC body and method for its manufacture
US4791276A (en) * 1982-04-16 1988-12-13 Raychem Corporation Elongate electrical assemblies
JP3001281B2 (en) * 1991-03-06 2000-01-24 日本碍子株式会社 Honeycomb monolith heater
DE4230848C1 (en) * 1992-09-15 1993-12-23 Siemens Matsushita Components Multiple cold conductor for overload protection - has stacked cold conductor discs with U=shaped hoops forming integral disc contacts and contact connections
DE10060301B4 (en) * 2000-12-05 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electric resistance heating element with a honeycomb body
DE10201262B4 (en) * 2002-01-15 2006-09-07 Webasto Ag resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939349A (en) * 1989-06-23 1990-07-03 Uppermost Electronic Industries Co., Ltd. Ceramic thermistor heating element
US5192853A (en) * 1991-10-22 1993-03-09 Yeh Yuan Chang Heating set having positive temperatue coefficient thermistor elements adhesively connected to heat radiator devices
JPH05152057A (en) * 1991-11-28 1993-06-18 Nippondenso Co Ltd Ptc heating body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 017, no. 538 (E - 1440) 28 September 1993 (1993-09-28) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021110826A1 (en) * 2019-12-04 2021-06-10 Grundfos Holding A/S A heating system and method of manufacturing a heating system

Also Published As

Publication number Publication date
DE502005003996D1 (en) 2008-06-19
EP1730996B1 (en) 2008-05-07
EP1730996A1 (en) 2006-12-13
DE102004016434A1 (en) 2005-11-10
US20070189741A1 (en) 2007-08-16
DE102004016434B4 (en) 2006-01-05
ES2306142T3 (en) 2008-11-01
ATE394903T1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
EP1730996B1 (en) Electric fluid heater
EP2752084B1 (en) Electrical heating unit, heating device for a vehicle and method for producing a heating unit
EP1988749B1 (en) Electric heating device
EP2165379B1 (en) Electrochemical energy storage unit
EP0194507B1 (en) Heating element for heating streaming, especially gaseous media
WO2007076985A2 (en) Heat exchanger comprising deep-drawn heat exchanger plates
EP3631317A1 (en) Electric heating device, method for producing, operating and using said type of device
EP1182908B1 (en) PTC-Heating device employing adhesive
EP1852878B1 (en) Power resistor module
DE102019208130A1 (en) PTC heating element and an electric heating device
WO2017005345A1 (en) Cell module, battery module, and electric battery
WO2004080738A1 (en) Electrical heating device, especially for motor vehicles
EP3494294B1 (en) Electrically heatable honeycomb body for exhaust gas treatment having a plurality of heating elements
DE10201262B4 (en) resistance
DE102018215398A1 (en) Electric heater
DE102019217453A1 (en) PTC heating cell
EP1497594B1 (en) Heat exchanger provided for heating purposes and comprising an electric heating device
WO2003063263A2 (en) Method and device for stacking fuel cells
EP1912028B1 (en) Electric heating means, specially for an automobile
DE102021104263A1 (en) Heating device for heating a heat transfer medium, in particular in a vehicle
WO2011141308A1 (en) Fuel cell stack and method for producing a fuel cell stack
DE102010020070A1 (en) Heating module for heating flowing media and method for its preparation
DE19712178C2 (en) Electric heating device, in particular for a motor vehicle
EP1432059B1 (en) Separator plate with parallel fluid channels for a fuel cell
WO2021228532A1 (en) Solid state cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007189741

Country of ref document: US

Ref document number: 11547150

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005740627

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005740627

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11547150

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005740627

Country of ref document: EP