WO2005091060A1 - 液晶表示パネルおよび液晶表示装置 - Google Patents

液晶表示パネルおよび液晶表示装置 Download PDF

Info

Publication number
WO2005091060A1
WO2005091060A1 PCT/JP2005/004528 JP2005004528W WO2005091060A1 WO 2005091060 A1 WO2005091060 A1 WO 2005091060A1 JP 2005004528 W JP2005004528 W JP 2005004528W WO 2005091060 A1 WO2005091060 A1 WO 2005091060A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
crystal display
conversion layer
optical path
Prior art date
Application number
PCT/JP2005/004528
Other languages
English (en)
French (fr)
Inventor
Hiroshi Fukushima
Koji Yabuta
Tomoo Takatani
Masakazu Wada
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2006511191A priority Critical patent/JP4402111B2/ja
Priority to US10/598,952 priority patent/US7468764B2/en
Publication of WO2005091060A1 publication Critical patent/WO2005091060A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices

Definitions

  • Liquid crystal display panel and liquid crystal display device Liquid crystal display panel and liquid crystal display device
  • the present invention relates to a liquid crystal display panel and a liquid crystal display device, and particularly to a transmissive or semi-transmissive liquid crystal display panel and a liquid crystal display device.
  • liquid crystal display devices are widely used as display screens in various electronic devices. These liquid crystal display devices are mounted on electronic devices for various uses, making the most of the characteristics of their thin, lightweight and low power consumption, and are widely used in general.
  • a configuration of a liquid crystal display device that has been often used in the past is a combination of a liquid crystal panel including a pair of transparent electrode substrates and a liquid crystal layer and at least one polarizing plate.
  • a pair of polarizing plates is provided on both sides of the transparent electrode substrate, and in the case of a reflective liquid crystal panel, the transparent electrode substrate arranged on the viewer side is used. Only a polarizing plate is provided.
  • the above-mentioned liquid crystal panel uses a cold cathode discharge tube, an LED (Light Emitting Diode) or the like as a light source, and the light source is surrounded by a reflector. Since the light emitted from the light source needs to uniformly illuminate the liquid crystal panel plane, the light from the point or line light source is converted to a two-dimensional illuminant by a light guide plate. Further, a light unit having uniform in-plane luminance is formed by combining the light source and the light guide plate with a lens sheet and a diffusion sheet.
  • LED Light Emitting Diode
  • Japanese Patent Application Laid-Open No. 2003-2003 discloses a technique for performing thin and light-weight shading by using a transparent electrode substrate in a liquid crystal panel as a light guide plate.
  • Japanese Patent No. 57645 discloses a technique (front light type) in which a transparent electrode substrate arranged on the front side is used as a light guide plate.
  • Japanese Patent Application Laid-Open No. 2003-66443 discloses a technique (backlight type) in which a transparent electrode substrate arranged on the back side is used as a light guide plate.
  • the front light type liquid crystal display device disclosed in JP-A-2003-57645 has a liquid crystal panel in which a liquid crystal layer 103 is sandwiched between a pair of transparent electrode substrates 101 and 102.
  • the transparent electrode substrate 102 disposed on the observer side of the pair of transparent electrode substrates 101 and 102 is provided with a point or linear light source 104 such as an LED or a cold cathode tube, which has a strong force.
  • a polarizing plate 105 is disposed outside each of the transparent electrode substrates 101 and 102.
  • an optical path conversion layer 106 having a concavo-convex structure is provided on the observer-side surface of the liquid crystal panel.
  • a specular reflection film 107 is formed on the back side of the liquid crystal panel.
  • the liquid crystal display device disclosed in Japanese Patent Application Laid-Open No. 2003-57645 can reduce the number of members by concentrating the function of the light guide plate on the transparent electrode substrate 102. Molding 'Light weight can be achieved.
  • the backlight type liquid crystal display device disclosed in JP-A-2003-66443 has a liquid crystal panel in which a liquid crystal layer 103 is sandwiched between a pair of transparent electrode substrates 101 and 102.
  • the transparent electrode substrate 101 disposed on the back side of the pair of transparent electrode substrates 101, 102 is provided with a point or linear light source 104 such as an LED or a cold-cathode tube at a side end thereof.
  • a polarizing plate 105 is disposed outside each of the transparent electrode substrates 101 and 102.
  • a low refractive index layer 116 is arranged on the front side of the transparent electrode substrate 101 in contact with the transparent electrode substrate 101.
  • the low refractive index layer 116 has a lower refractive index than the transparent electrode substrate 101.
  • a polarizing plate 117, an optical path conversion layer 117 having an uneven structure, and a total reflection film 118 are formed to constitute a transflective liquid crystal display device.
  • the liquid crystal display device disclosed in Japanese Patent Application Laid-Open No. 2003-66443 can reduce the number of members by consolidating the function of the light guide plate into the transparent electrode substrate 101. Weight reduction can be achieved.
  • the route in the above description is the route (A) shown in FIG. 6.
  • the emitted light is controlled by the liquid crystal layer 103 so that a desired image can be formed. Can be displayed.
  • the transparent electrode substrate 102 has a refractive index of about 1.5, such as glass or an alignment film, and a force such as ITO (Indium Tin Oxide).
  • the transparent electrode has a high refractive index, and has an interface of a laminated film having a relatively large difference in refractive index. Therefore, the light emitted from the light source 104 and incident again on the transparent electrode substrate 102 from the polarizing plate 105 and the optical path conversion layer 106 is transparent before entering the liquid crystal layer 103 as shown in the path (B) in FIG. There is light that is reflected at any interface of the laminated film on the electrode substrate 102 and transmitted through the polarizing plate 105 from the transparent electrode substrate 102 as it is.
  • the light source 104 is disposed on one side surface of the transparent electrode substrate 101 disposed on the back side.
  • the light emitted from the light source 104 propagates inside the transparent electrode substrate 101 and the polarizing plate 105 as shown by the path (A) in FIG.
  • the light After being incident on the converted optical path conversion layer 117, the light is reflected by the reflection film 118.
  • the light reflected by the reflective film 118 is controlled by the liquid crystal layer 103 and then transmitted through the transparent electrode substrate 102 and the polarizing plate 105 arranged on the viewer side, so that an image can be displayed. .
  • the light is emitted from the light source 104 and directly enters the low-refractive-index layer 116, the light is totally reflected by the low-refractive-index layer 116. A lot of light exits from the side opposite to the side on which the light source 104 is provided. As described above, since the light that also emits the opposite facing force of the transparent electrode substrate 101 does not play a role as the display light for the display image, the loss of the light from the light source 104 increases in the configuration of FIG. Since the light emitted from the light source 104 cannot be used efficiently, a bright image cannot be displayed.
  • the present invention has been made to solve the above problems, and an object of the present invention is to use a transparent electrode substrate in a liquid crystal panel as a light guide plate so as to achieve a thin and lightweight structure, and to achieve a contrast. It is an object of the present invention to provide a liquid crystal display panel and a liquid crystal display device capable of displaying a bright and good image without any decrease in image quality.
  • a liquid crystal display panel is a liquid crystal display panel having a liquid crystal layer filled between a pair of transparent substrates.
  • a low refractive index layer formed on the front side of the first optical path conversion layer in contact with the uneven surface of the first optical path conversion layer and having a smaller refractive index than the first optical path conversion layer is disposed.
  • a second optical path conversion layer having a predetermined uneven surface is arranged! /, Features! /, Ru.
  • the rear transparent substrate is provided on the side surface of the rear transparent substrate.
  • a first optical path conversion layer having a predetermined uneven surface and a low refractive index layer are formed.
  • the uneven surface of the first optical path conversion layer is designed to have an appropriate shape so that, at the interface between the first optical path conversion layer and the low refractive index layer, A) the light source power is also directly incident. Function to convert light (near horizontal) into light closer to the substrate normal direction and totally reflect the light.B) Obtain the function of transmitting light near the substrate normal direction when light is incident. Can be.
  • the uneven surface of the second optical path conversion layer is designed to have an appropriate shape so that light directly incident from the light source is converted into light closer to the normal direction of the substrate and reflected. Get action It comes out.
  • the light to be irradiated is first reflected by the uneven surface of the first optical path conversion layer or the uneven surface of the second optical path conversion layer. Since the light is converted into light close to the linear direction, loss of light from the light source that is not emitted from the side opposite to the side surface on which the light source is provided on the rear transparent substrate can be reduced, and a bright image can be displayed. Note that, after being irradiated with the light source power, light first reflected on the concave and convex surface of the first optical path conversion layer is then reflected on the concave and convex surface of the second optical path conversion layer, and further reflected on the first optical path conversion layer. The light passes through the uneven surface of the conversion layer and is emitted to the observer side (front side).
  • FIG. 1, showing an embodiment of the present invention is a cross-sectional view illustrating a main configuration of a liquid crystal display device according to Embodiment 1.
  • FIG. 2 is a view showing a state of light reflection at an interface between a first optical path conversion layer and a low refractive index layer in the liquid crystal display device.
  • FIG. 3 is a cross-sectional view showing a main configuration of another liquid crystal display device according to Embodiment 1.
  • FIG. 4 is a cross-sectional view showing a configuration of a main part of a liquid crystal display device according to Embodiment 2.
  • FIG. 5 is a cross-sectional view showing a configuration of a main part of a liquid crystal display device according to Embodiment 3.
  • FIG. 6 is a cross-sectional view showing one configuration example of a conventional liquid crystal display device.
  • FIG. 7 is a cross-sectional view illustrating a configuration example of a conventional liquid crystal display device.
  • FIG. 1 is a sectional view showing a schematic configuration of the liquid crystal display device according to the first embodiment.
  • a liquid crystal display panel having a configuration in which a liquid crystal layer 3 is sandwiched between a front substrate portion 1 and a rear substrate portion 2 is used. That is, a light source is provided on the liquid crystal display panel.
  • a liquid crystal display device is provided by mounting the device 5 and a drive circuit (not shown).
  • the front substrate part 1 has a transparent substrate 11, a polarizing plate 12 disposed on the front side, and a transparent electrode 13 formed on the back side.
  • the rear substrate portion 2 has a first optical path conversion layer 22, a low refractive index layer 23, and a transparent electrode 24 on the front surface side of a transparent substrate (rear transparent substrate) 21 on the transparent substrate 21 side.
  • the polarizer 25 and the second optical path conversion layer 26 are also formed on the back side of the transparent substrate 21 in this order.
  • the first optical path conversion layer 22 and the second optical path conversion layer 26 each have a predetermined uneven structure.
  • the front substrate part 1 and the rear substrate part 2 are arranged so as to oppose the transparent electrode 13 and the transparent electrode 24, and the liquid crystal layer 3 is formed in the gap.
  • an alignment film (not shown) on which a predetermined alignment process is performed is disposed further inside the transparent electrodes 13 and 24.
  • the liquid crystal layer 3 is sealed between the front substrate 1 and the rear substrate 2 by a frame-shaped seal 4.
  • the light source 5 is disposed on the side surface of the transparent substrate 21 in the rear substrate portion 2.
  • the liquid crystal display panel according to the first embodiment is applied to a backlight type configuration using the transparent substrate 21 as a light guide plate of the light source 5.
  • the pair of transparent substrates 11 and 21 are made of a transparent glass substrate such as soda glass or non-alkali glass, or a resin such as an organic resin (for example, epoxy resin or acrylic resin) or polyether sulfone. Any transparent substrate such as a flat plastic substrate can be used.
  • a glass substrate that is more desirable to use a substrate with higher transparency is required. It is desirable to use potash glass. In addition, in order to achieve a thin and lightweight substrate, it is desirable to use an organic resin as a transparent substrate material, and it is more desirable to use an acrylic resin as a transparent substrate material. More desirable.
  • the display principle of the liquid crystal display device according to the first embodiment will be described with reference to FIG.
  • the light emitted from the light source 5 disposed on the side surface of the transparent substrate 21 is combined with the light (optical path A) directly incident on the upper surface side (the first optical path conversion layer 22 side) of the transparent substrate 21 and the light back And light (optical path B) that is directly incident on the side (the polarizing plate 25 side).
  • the light that enters the optical path A is emitted from the light source 5 disposed on the side surface of the transparent substrate 21, and then enters the interface between the transparent substrate 21 and the first optical path conversion layer 22.
  • the refractive index of the first optical path conversion layer 22 is substantially the same as the refractive index of the transparent substrate 21 so that the incident light does not reflect or refract but passes through the first optical path conversion layer 22.
  • the refractive index of 21 and the refractive index of the first optical path conversion layer 22 substantially match.
  • the transparent substrate 21 and the first optical path conversion layer 22 need not necessarily be provided as separate members, and may be integrally formed as the same member. If the transparent substrate 21 and the first optical path conversion layer 22 are integrally formed as the same member, there is no interface between the transparent substrate 21 and the first optical path conversion layer 22. High reflection and refraction can be completely eliminated.
  • the light transmitted through the first optical path conversion layer 22 then enters the interface between the first optical path conversion layer 22 and the low refractive index layer 23. At this time, the incident light is totally reflected at this interface by the unevenness of the first optical path conversion layer 22. By this total reflection, the incident light is turned back to the rear side, and the traveling direction is changed such that the light after reflection has an angle closer to the normal direction of the substrate than the light before reflection.
  • the unevenness of the first optical path conversion layer 22 that is, the unevenness at the interface between the first optical path conversion layer 22 and the low refractive index layer 23 will be described with reference to FIG.
  • the first optical path conversion layer 22 has the inclined surface P shown in FIG.
  • the inclined plane P has its normal direction inclined at an angle of ⁇ ⁇ ⁇ ⁇ with respect to the substrate normal direction, so that the light emitted from the light source 5 can be directly received by this inclination. Further, of the light emitted from the light source 5, the light directly incident on the upper surface side of the transparent substrate 21 (on the first optical path conversion layer 22 side) is set so as to be always incident on the inclined surface P. The unevenness of the optical path conversion layer 22 is set. [0048] At the interface between the first optical path conversion layer 22 and the low refractive index layer 23 on the inclined surface P, the light source 5 needs to totally reflect the incident light. For this reason, the refractive index of the low refractive index layer 23 is lower than the refractive index of the first optical path conversion layer 22.
  • the angle of incidence of light on the inclined surface P needs to be larger than the critical angle at the interface of the inclined surface P.
  • be the incident angle of the light before being reflected by the inclined surface P with respect to the substrate normal
  • be the outgoing angle of the light after being reflected by the inclined surface ⁇ with respect to the substrate normal.
  • the angle of incidence of light on the inclined surface ⁇ is ( ⁇ —
  • the refractive index of the first optical path conversion layer 22 is ⁇
  • the refractive index of the low refractive index layer 23 is ⁇
  • is set so that Note that the light before being reflected by the inclined surface P has a slight variation in its size depending on the distance of the power of the light source 5. ° can be approximated.
  • the material of the first optical path conversion layer 22 is a commonly used glass (having a refractive index of 1.52), and the material of the low refractive index layer 23 has the lowest refractive index at the practical level.
  • magnesium fluoride reffractive index is 1.28
  • the critical angle at the interface of the inclined plane P is about 57 °.
  • the change range of the inclination angle ⁇ due to the variation of the refractive index of the material of the low refractive index layer 23 is 0 ° ⁇ ⁇ 33 °.
  • the refractive index difference between the first optical path conversion layer 22 and the low refractive index layer 23 be 0.05 or more. More preferably, the angle ⁇ ⁇ is in the range of 15 ° ⁇ ⁇ 33 °.
  • the inclination of the surface other than the inclined surface P can be set to any inclination angle without any particular limitation.
  • the inclined surfaces P are formed at equal pitches, which is described as follows.
  • the pitch does not need to be, and the pitch may be changed according to the distance from the light source 5.
  • the pitch of the inclined surface P is set to be large at a position near the light source 5 and small at a position far from the light source 5. Configurations are possible.
  • the inclination angle ⁇ of the inclined surface P may be varied according to the distance of the light source 5 according to the variation of the incident angle a of the incident light. For example, a configuration is possible in which ⁇ is small near the light source 5 and large ⁇ far from the light source 5.
  • the light reflected at the interface between the first optical path conversion layer 22 and the low refractive index layer 23 passes through the transparent substrate 21 again and is polarized on the rear side.
  • the light is linearly polarized in a desired direction by the plate 25, and further enters the second optical path conversion layer 26.
  • the light incident on the second optical path conversion layer 26 is transmitted to the outer surface of the second optical path conversion layer 26 (the second optical path conversion layer 26 and the air layer or the like outside the second optical path conversion layer 26). At the interface), and is folded back to the front side.
  • the light reflected on the outer surface of the second optical path conversion layer 26 is then reflected by the polarizing plate 25, the transparent substrate 21, the first optical path conversion layer 22, the low refractive index layer 23, the liquid crystal layer 3, and the front side substrate.
  • the light passes through 1 and is emitted toward the observer and functions as display light.
  • the outer surface of the second optical path conversion layer 26 is a surface having irregularities like the first optical path conversion layer 22, the light reflected on the outer surface of the second optical path conversion layer 26
  • the angle of the traveling direction may vary depending on the location where the light is reflected.
  • the irregularities in the second optical path conversion layer 26 will be described later, but at least the irregularities in the second optical path conversion layer 26 have an appropriate shape in consideration of the reflection function for light passing through the optical path A. Need to be designed for
  • the light that enters the optical path B is emitted from the light source 5 disposed on the side surface of the transparent substrate 21 and then enters the interface between the transparent substrate 21 and the second optical path conversion layer 26.
  • the second optical path conversion layer 26 The refractive index is substantially equal to the refractive index of the transparent substrate 21 or is lower than the refractive index of the transparent substrate 21 so that the incident light passes through the second optical path conversion layer 26 without causing reflection or refraction. Preferably, it is small.
  • the refractive index of the transparent substrate 21 and the refractive index of the second optical path conversion layer 26 substantially match.
  • the light transmitted through the second optical path conversion layer 26 is then transmitted to the outer surface of the second optical path conversion layer 26 (the second optical path conversion layer 26 and the air layer outside the second optical path conversion layer 26). At the interface with the like. At this time, the incident light is reflected on the outer surface by the unevenness of the second optical path conversion layer 26. By this reflection, the incident light is turned back to the front side, and the traveling direction is changed such that the light after reflection is closer to the normal direction of the substrate and at an angle than the light before reflection.
  • the unevenness formed in the second optical path conversion layer 26 has an effect similar to the unevenness formed in the first optical path conversion layer 22 described above, and the second optical path conversion layer 26 In this case, it is possible to use a member having the same shape and irregularities as the first optical path conversion layer 22.
  • the optical path conditions after the first reflection by the first optical path conversion layer 22 or the second optical path conversion layer 26 are different.
  • the first optical path conversion layer 22 and the second optical path conversion layer 26 are designed in such a shape as to obtain the optimum outgoing light in each of the optical path A and the optical path B.
  • the unevenness of the optical path conversion layer 22 and the second optical path conversion layer 26 need not be the same.
  • the light reflected by the outer surface of the second optical path conversion layer 26 is then applied to the polarizing plate 25, the transparent substrate 21, the first optical path conversion layer 22, the low refractive index layer 23, the liquid crystal layer 3, and the front surface.
  • the light passes through the side substrate 1 and is emitted toward the viewer, and functions as display light.
  • the first optical path conversion layer 22 and the low refractive index layer 23 are provided on the front side of the transparent substrate 21. For this reason, the light emitted from the light source 5 and directly incident on the upper surface side (the first optical path conversion layer 22 side) of the transparent substrate 21 is totally reflected at the interface between the first optical path conversion layer 22 and the low refractive index layer 23. And reflected back, the light after reflection is closer to the substrate normal direction than the light before reflection, and The traveling direction is changed so that Further, the light turned back to the rear side is reflected by the second optical path changing layer 26 and emitted to the observer side.
  • the light emitted from the light source 5 and the liquid crystal display device with respect to the substrate are almost completely removed.
  • the utilization efficiency of the light emitted from the light source 5 is improved, and a bright and good image can be displayed.
  • one of the uneven surfaces is provided with the light source 5.
  • a conical shape, a quadrangular pyramid shape or a conical shape, a polygonal column structure, or the like can be used.
  • the structure for forming the irregularities has a shape having a stripe-shaped irregular surface, it is expected that the manufacture of the first optical path conversion layer 22 and the second optical path conversion layer 26 will be simplified. There are advantages. In this case, while the surface facing the incident surface (that is, the surface P in FIG. 2) is formed in a stripe shape, the light incident on the liquid crystal layer 3 has a V ⁇ However, there is a possibility that stripe-like intensity unevenness may occur.
  • the light source 5 disposed on the side surface of the first transparent substrate 21 has its front end protruding from the boundary surface between the transparent substrate 21 and the first optical path conversion layer 22 to the front side. It is preferable to arrange them so that they do not. That is, when the front end of the light source 5 protrudes beyond the boundary surface between the transparent substrate 21 and the first optical path conversion layer 22, the first optical path conversion layer 22 and the low refractive index layer 23 Light also enters from the side surface of such a member. Such light may cause unexpected reflection on the surface of the member, and may be emitted to the observer as it is, resulting in extra light leakage and lowering the contrast.
  • the light source 5 disposed on the side surface of the first transparent substrate 21 has its front end not protruding beyond the boundary surface between the transparent substrate 21 and the first optical path conversion layer 22 on the front surface side. In this case, unwanted light leakage as described above can be prevented, and a good image can be obtained without lowering the contrast.
  • a reflection sheet having a strong property such as an organic resin is disposed, or a total reflection film made of a metal thin film is formed.
  • the light transmitted through the layer 26 can be returned to the viewer side again, and the light emitted from the light source 5 can be used as display light without any light.
  • the thickness of the reflection sheet is generally about 0.1-0.2 mm, the power for reducing the thickness is also reduced as shown in FIG. It is preferable to form a total reflection film 27 made of a metal thin film on the back side of 26.
  • a metal thin film made of an alloy of aluminum, gold, silver, copper, chromium, molybdenum, titanium, palladium or the like can be used.
  • FIG. 4 is a cross-sectional view illustrating a schematic configuration of the liquid crystal display device according to the second embodiment. Since the liquid crystal display device according to the second embodiment has a configuration similar to that of the liquid crystal display device according to the first embodiment, the same components as those in FIG. Detailed description is omitted.
  • the liquid crystal display device shown in FIG. 4 has a configuration using a rear substrate 6 instead of the rear substrate unit 2 in FIG. Further, the rear substrate 6 is different from the rear substrate 2 in that a light scattering layer 28 is formed between the low refractive index layer 23 and the transparent electrode 24.
  • the light scattering layer 28 further acts on light collected in the front direction on the viewer side by the action of the first optical path conversion layer 22, the low refractive index layer 23, and the second optical path conversion layer 26. Gives a scattering effect I can. For this reason, in the liquid crystal display device according to the second embodiment including the light scattering layer 28, it is possible to eliminate variations in luminance distribution in the plane of the substrate and obtain a favorable display.
  • the light scattering layer 28 is newly formed as a layer immediately above the low refractive index layer 23 in the second embodiment, but is not particularly limited to this configuration. As long as it is between the transparent substrates 21, it may be formed in the gap between any layers.
  • light scattering may be imparted to the color filter itself, or light scattering may be imparted to the overcoat itself for flattening the color filter. No.
  • the light scattering property is imparted by dispersing inorganic particles, for example, fine particles such as alumina and silica, in the light scattering layer to impart light scattering property, or utilizing a crosslinking reaction of a polymer monomer. Then, a method of dispersing organic fine particles to impart light scattering properties, and the like can be given.
  • inorganic particles for example, fine particles such as alumina and silica
  • FIG. 5 is a sectional view showing a schematic configuration of the liquid crystal display device according to the third embodiment. Since the liquid crystal display device according to the third embodiment has a configuration similar to that of the liquid crystal display device according to the first embodiment, the same components as those in FIG. Detailed description is omitted.
  • the liquid crystal display device shown in FIG. 5 has a configuration in which a back substrate 7 is used instead of the back substrate 2 in FIG. Further, the rear substrate 7 is different from the rear substrate 2 in that a transflective film 29 made of a metal thin film is formed between the low-refractive index layer 23 and the transparent electrode 24. You.
  • the semi-transmissive reflective film 29 is a half-mirror type semi-transmissive reflective film that can be obtained by adjusting the thickness of the metal thin film, or a semi-transparent reflective thin film provided with an opening.
  • a transmission reflection film or the like can also be formed.
  • the metal thin film can be formed of an alloy of a metal such as aluminum, gold, silver, copper, chromium, molybdenum, titanium, and palladium.
  • liquid crystal display device it is possible to perform display in the transmissive display mode in which the light source 5 is turned on to perform display, and in the reflective display mode.
  • the transparent display mode In the transmissive display mode, the light emitted from the light source 5 is applied to the first optical path conversion layer 22, the low refractive index layer 23, and the second optical path conversion layer 26. As a result, as shown in paths (A) and (B) in FIG. 5, the light path is changed to the observer side, and the light enters the transflective film 29. In the rear substrate 7, the path of light until it enters the transflective film 29 is the same as in the rear substrate 2. The light transmitted through the transflective film 29 is used as display light by the transmission function of the light incident on the transflective film 29 through the paths (A) and (B).
  • the transflective film 29 a dielectric multilayer film formed by laminating dielectric materials having different refractive indexes can be used. Also in this case, similarly to the case where the metal thin film is used as the transflective film 29, it can be used as a transflective liquid crystal display device that performs display by switching between a transmissive display mode and a reflective display mode.
  • alumina (Al 2 O 3) or ketone dioxide is used as a low refractive index dielectric.
  • Silicon SiO 2
  • magnesium difluoride MgF 2
  • Titanium dioxide TiO 2
  • zirconium dioxide ZrO 2
  • selenide
  • the dielectric multilayer film is obtained by sequentially laminating a low refractive index dielectric and a high refractive index dielectric.
  • the color filter, the protective film, the insulating film, and the like are not particularly shown, but may be formed on a transparent substrate as needed. .
  • the method of driving the liquid crystal display device of the present invention is not particularly limited, and may be arbitrarily selected, such as an active matrix method or a passive matrix method.
  • the light emitted from the light source 5 is roughly divided into two types of light, paths (A) and (B).
  • the light that passes through the paths (A) and (B) is light that contributes to display in the most preferable manner among all the lights emitted from the light source 5.
  • the reflection is repeated a plurality of times between the first optical path conversion layer 22 and the second optical path conversion layer 26, and the lateral force of the transparent substrate 21 is also reflected. It is conceivable that there is a part of light emitted from the rear substrate in a state of being largely inclined with respect to the normal direction of the substrate without receiving the desired reflection.
  • the paths (A) and (B) of all the light emitted from the light source 5 It is fully possible to increase the ratio of light passing through () and to provide a brighter display than in the past.
  • Example 1 a liquid crystal display device having the configuration shown in FIG. 1 was created by the following method.
  • non-alkali glass having a refractive index of 1.52 was used for the transparent substrate 11 disposed on the observer side and the transparent substrate 21 disposed on the back side.
  • a transparent electrode 13 made of ITO color was formed on the transparent substrate 11, and a soluble polyimide was printed on the transparent electrode 13, followed by firing.
  • the alignment film surface was subjected to an alignment treatment by a rubbing treatment so as to have a predetermined alignment direction, and a substrate to be arranged on the observer side was obtained.
  • a shaped transfer film of an acrylic negative resist is placed on a transparent substrate 21 at a high temperature.
  • the first optical path conversion layer 22 was formed on the transparent substrate 21 by transferring and curing this by irradiation with ultraviolet light.
  • a low refractive index material HF-707 (trade name; manufactured by Hitachi Chemical Co., Ltd.) having a refractive index of 1.31 was formed as a low refractive index layer 23 on the first optical path conversion layer 22.
  • a color filter having R (red), G (green), and B (blue) colors was formed, and a flattening layer made of thermosetting resin was formed (color The filter and the planarization layer are not shown in FIG. 1).
  • a transparent electrode 24 having an ITO force was formed on the flattening layer, an alignment film was formed on the transparent electrode 24 in the same manner as the observer-side substrate 2, and a rubbing process was performed to obtain a rear-side substrate.
  • the transparent substrate 11 arranged on the observer side and the transparent substrate 21 arranged on the back side obtained as described above are formed by forming a frame-shaped seal 4 around the periphery, so that the transparent substrate 11 has ITO power. Electrodes 13, 24
  • the liquid crystal layer 3 was sealed with nematic liquid crystal ZLI-4792 (trade name: manufactured by Merck Japan Ltd.).
  • SEG-1425DU (trade name; Nitto Denko) was used as a pair of transparent substrates 11 and 21 as polarizing plates 12 and 25 so that the alignment direction of the alignment film formed on each substrate and the transmission axis of the polarizing plate coincided with each other. (Made by Co., Ltd.).
  • a second optical path changing made of an acrylic resin prepared (in the present embodiment, a quadrangular pyramid pattern) by a mold in which a predetermined concavo-convex pattern is formed in advance.
  • the layer 26 was formed by adhering to the rear side of the polarizing plate 25.
  • the liquid crystal display device of the first embodiment was obtained by arranging the D light source 5.
  • Example 2 a liquid crystal display device having the configuration shown in FIG. 3 was created. That is, in the liquid crystal display device shown in the first embodiment, a total reflection film 27 having a 98: 2 (weight ratio) alloying force of silver and palladium is further provided on the back side of the second optical path conversion layer 26 by 1000. A liquid crystal display of Example 2 was obtained.
  • Example 3 a liquid crystal display device having the configuration shown in FIG. That is, in the liquid crystal display device shown in the embodiment 1, the “RF series” (trade name), which is a transfer film of an acrylic resin material, is formed on the lower refractive index layer 23 (on the front side). (Manufactured by Hitachi Chemical Co., Ltd.) was formed as the light scattering layer 28 to obtain a liquid crystal display device of Example 3.
  • the “RF series” trade name
  • the light scattering layer 28 was formed as the light scattering layer 28 to obtain a liquid crystal display device of Example 3.
  • Example 5 a liquid crystal display device having the configuration shown in FIG. 5 was produced. That is, in the liquid crystal display device shown in the first embodiment, the SI The transflective film 29 is formed by laminating three dielectric multilayer films composed of O and TiO in this order.
  • a liquid crystal display device of Example 5 was obtained.
  • a liquid crystal display having the configuration shown in FIG. 7 was produced. That is, in the liquid crystal display device shown in Embodiment 1, the first optical path conversion layer 22 having the uneven structure is not formed, and the low refractive index layer 23 (FIG. 7) is formed on the transparent substrate 21 (the transparent substrate 101 in FIG. 7). In 7, the low refractive index layer 116) was directly formed to obtain the liquid crystal display device of Comparative Example 1.
  • Examples 1 to 3 of the transmissive liquid crystal display device and Comparative Example 1 the luminance and the in-plane luminance variation when the liquid crystal layer was in a state where no voltage was applied (normally white) (display quality: The results of the evaluation of brightness unevenness (visual judgment) are shown below.
  • the luminance was measured with a color luminance meter BM5 (trade name: manufactured by TOPCON) in a 2 ° visual field.
  • the liquid crystal display devices of Examples 1 to 3 can efficiently emit the light having the light source power to the observer side, as compared with the liquid crystal display device of Comparative Example 1. It can be seen that the luminance was greatly improved.
  • Example 1 by comparing Example 1 and Example 2, by forming a total reflection film 27 made of a metal thin film on the back surface of the second optical path conversion layer 26, It is an advantage that the reflection efficiency at the LCD is improved, the brightness is improved, and a better bright image is obtained.
  • Example 1 a light scattering layer formed on the low refractive index layer 23 was formed. It can be seen that by making the in-plane luminance distribution uniform according to 28, a bright good image without in-plane luminance unevenness can be obtained.
  • Example 4 and Example 5 of the transflective liquid crystal display device were confirmed in a dark place, the power of the LED light source arranged on the side surface of the transparent substrate on the back side was efficiently observed. It can be seen that light can be emitted to the observer and a bright image can be displayed as a transmissive display o
  • Example 4 a semi-transmissive reflective film made of a metal thin film
  • Example 5 a semi-transmissive reflective film made of a dielectric multilayer film
  • the present liquid crystal display panel is a liquid crystal display panel in which a liquid crystal layer is filled between a pair of transparent substrates, and is disposed on the back of the pair of transparent substrates as viewed from the observer side.
  • a first optical path conversion layer having a refractive index substantially equal to that of the transparent substrate and a predetermined uneven surface formed on the front surface side of the transparent substrate, and a front surface of the first optical path conversion layer.
  • a low-refractive-index layer which is formed in contact with the uneven surface of the first optical-path conversion layer and has a lower refractive index than the first optical-path conversion layer, is disposed on a back side thereof. This is a configuration in which a second optical path conversion layer having the uneven surface is formed.
  • the rear transparent substrate is provided in the liquid crystal display panel used in the knock light type liquid crystal display device in which the light source is disposed on the side surface of the rear transparent substrate.
  • a first optical path conversion layer having a predetermined uneven surface formed thereon and a low refractive index layer are formed on the front side.
  • the uneven surface of the first optical path conversion layer is designed into an appropriate shape, so that at the interface between the first optical path conversion layer and the low refractive index layer, A) the light source power is also directly incident. Function to convert light (near horizontal) into light closer to the substrate normal direction and totally reflect the light.B) Obtain the function of transmitting light near the substrate normal direction when light is incident. Can be.
  • the uneven surface of the second optical path conversion layer is designed to have an appropriate shape so that light directly incident from the light source is converted into light closer to the normal direction of the substrate and reflected. It has an effect.
  • the light to be irradiated is first irradiated with the uneven surface of the first optical path conversion layer or the second light path conversion layer.
  • the light is reflected by the uneven surface of the optical path conversion layer, and at this time, the light from near horizontal is converted to light closer to the normal direction of the substrate. It is possible to reduce the loss of light from the light source, and display a bright image.
  • the light first reflected on the uneven surface of the first optical path conversion layer is then reflected on the uneven surface of the second optical path conversion layer, and further reflected on the first optical path conversion layer.
  • the light passes through the uneven surface of the conversion layer and is emitted to the observer side (front side).
  • the liquid crystal display panel may be configured such that a total reflection film is formed on the back surface side of the second optical path conversion layer.
  • the liquid crystal display panel may have a configuration in which at least one light scattering layer is formed between the pair of transparent substrates.
  • the liquid crystal display panel may have a configuration in which a transflective film is formed on the front side of the low refractive index layer.
  • the liquid crystal display panel can be used as a transflective liquid crystal display panel.
  • the present liquid crystal display device is a liquid crystal display device using any of the liquid crystal display panels described above, wherein the rear surface of the pair of transparent substrates that is disposed on the rear surface as viewed from the viewer's side.
  • the light source is arranged on at least one side surface of the side transparent substrate.
  • loss of light from the light source can be reduced and a bright image can be displayed by the same operation as the above-described liquid crystal display panel.
  • the front end of the light source is disposed so as not to protrude beyond the boundary surface between the transparent substrate and the first optical path conversion layer on the front side. It is preferable to have a configuration.
  • the present liquid crystal display device includes a liquid crystal display panel formed by filling a liquid crystal layer between a pair of transparent substrates, and is disposed on the back of the pair of transparent substrates as viewed from the observer side.
  • a liquid crystal display device in which a light source is arranged on at least one side of the rear transparent substrate, light directly incident from the light source is converted into near-infrared light in the direction normal to the substrate on the front side of the rear transparent substrate.
  • a reflecting surface having a function of converting the light directly incident on the light source into light closer to the normal direction of the substrate and reflecting the converted light.
  • the light emitted from the light source is first emitted at the interface existing on the front side of the rear-side transparent substrate or at the reflection surface existing on the rear side of the rear-side transparent substrate. At this time, the light is converted to light closer to the normal direction of the substrate than the light power close to the horizontal.Therefore, the opposite facing force of the side of the rear transparent substrate on which the light source is provided. And a bright image display can be performed. After irradiation from the light source, the light reflected at the interface existing on the front side of the rear transparent substrate is then reflected on the reflection surface existing on the rear side of the rear transparent substrate, Furthermore, the light is transmitted through the above-mentioned interface and emitted to the observer side (front side).
  • liquid crystal display panel and a liquid crystal display device that are thinner and lighter, it is possible to display a bright image with reduced loss of light from a light source, and can be applied to a mobile phone, a PDA and other mopile devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 その側面に光源が配置される背面側の透明基板に対し、その前面側に、透明基板とほぼ等しい屈折率を有すると共に、所定の凹凸面が形成されてなる第1の光路変換層と、第1の光路変換層の前面側に該第1の光路変換層の凹凸面と接触して形成されると共に、該第1の光路変換層よりも小さい屈折率を有する低屈折率層とが形成される。また、透明基板の背面側には、所定の凹凸面が形成されてなる第2の光路変換層が形成される。

Description

明 細 書
液晶表示パネルおよび液晶表示装置
技術分野
[0001] 本発明は、液晶表示パネルおよび液晶表示装置に関し、特に透過型または半透 過型の液晶表示パネルおよび液晶表示装置に関する。
背景技術
[0002] 現在、様々な電子機器における表示画面として、液晶表示装置が広く用いられて いる。これらの液晶表示装置は、その特徴である薄型 '軽量'低消費電力の特徴を最 大限に生かし、様々な用途で電子機器に搭載され、一般に広く普及している。
[0003] 特に、携帯電話に代表されるようなモノィル機器においては、ユーザーが常に携 帯している必要性があるので、薄型 '軽量'低消費電力化の要望が特に強ぐ更なる 改善に向け技術開発が盛んに行われている。これに付随して、モパイル機器に搭載 する液晶表示装置についても同様の強い要望があり、更なる薄型,軽量'低消費電 力化の技術開発が望まれて 、る。
[0004] 従来から多く用いられている液晶表示装置の構成は、一対の透明電極基板と液晶 層とからなる液晶パネルに少なくとも一枚の偏光板を組み合わせたものである。透過 型あるいは半透過型液晶パネルの場合には、透明電極基板の両面に一対の偏光板 が設けられており、また反射型液晶パネルの場合には、観察者側に配置した透明電 極基板にのみ偏光板が設けられて 、る。
[0005] 上記の液晶パネルは、光源として冷陰極放電管や LED (Light Emitting Diode)な どを用い、光源の周囲はリフレタターによって囲まれている。光源から照射した光は、 液晶パネル平面を均一に照射する必要があるため、点又は線光源からの光を導光 板によって二次元発光体に変換している。さらに、上記光源および導光板にレンズシ ートゃ拡散シートを組み合わせて、均一な面内輝度を持つライトユニットを形成して いる。
[0006] 上記ライトユニットを配置する場所としては、液晶パネルの前面側 (観察者側)に配 置するフロントライト型と、液晶パネルの背面側に配置するバックライト型があり、現在 も広く利用されている。
[0007] ところが、液晶パネルに上述のようなライトユニットを組み合わせた構成では、ライト ユニットにおいて使用される導光板やレンズシートや拡散シートの厚みの分だけ液晶 モジュールの総厚が厚くなる、さらには液晶モジュールの重さも重くなつてしまうとい つた問題点がある。このため、液晶パネルと従来のライトユニットとを組み合わせた液 晶表示装置では、モパイル機器に求められる薄型 ·軽量ィ匕の厳しい要求に応えるこ とが非常に困難である。
[0008] このような問題点を解決するために、液晶パネルにおける透明電極基板を導光板と して用いて薄型 ·軽量ィ匕を行う技術が、例えば日本国公開特許公報である特開 200 3— 57645号公報 (公開日平成 15年 2月 26日)および日本国公開特許公報である特 開 2003-66443号公報 (公開日平成 15年 3月 5日)に開示されている。特開 2003— 57645号公報には、前面側に配置する透明電極基板を導光板として用いる技術 (フ ロントライト型)が開示されている。特開 2003— 66443号公報には、背面側に配置す る透明電極基板を導光板として用いる技術 (バックライト型)が開示されている。以下 に、上記従来技術を説明する。
[0009] まず、特開 2003— 57645号公報に開示のあるフロントライト型の技術について、図 6を参照して以下に説明する。
[0010] 特開 2003— 57645号公報におけるフロントライト型の液晶表示装置は、図 6に示す ように、一対の透明電極基板 101, 102の間隙に液晶層 103を挟持して液晶パネル が構成されており、一対の透明電極基板 101, 102のうち観察者側に配置する透明 電極基板 102の側端部に LEDや冷陰極管など力もなる点または線状光源 104を備 えている。また、上記液晶パネルでは、透明電極基板 101, 102のそれぞれの外側 に、偏光板 105が配置されている。
[0011] さらに、上記液晶パネルの観察者側の面には、凹凸構造を有する光路変換層 106 が設けられている。また、上記液晶パネルの背面側には、鏡面反射膜 107が形成さ れている。
[0012] 上記のような構成とすることで、特開 2003— 57645号公報における液晶表示装置 は、導光板の機能を透明電極基板 102に集約することで、部材点数の削減による薄 型化 '軽量化が達成できる。
[0013] さらに、特開 2003— 66443号公報に開示のあるバックライト型の技術について、図 7を参照して以下に説明する。
[0014] 特開 2003— 66443号公報におけるバックライト型の液晶表示装置は、図 7に示す ように、一対の透明電極基板 101, 102の間隙に液晶層 103を挟持して液晶パネル が構成されており、一対の透明電極基板 101, 102のうち背面側に配置する透明電 極基板 101の側端部に LEDや冷陰極管など力もなる点または線状光源 104を備え ている。また、上記液晶パネルでは、透明電極基板 101, 102のそれぞれの外側に、 偏光板 105が配置されて 、る。
[0015] また、上記液晶パネルにおいて、透明電極基板 101の前面側には、該透明電極基 板 101と接触して低屈折率層 116が配置されている。この低屈折率層 116は、透明 電極基板 101よりも低い屈折率を有する層である。さらに、透明電極基板 101の背面 側には、偏光板 117と、凹凸構造を有する光路変換層 117と、全反射膜 118とが形 成され、半透過型液晶表示装置を構成している。
[0016] 上記のような構成とすることで、特開 2003— 66443号公報における液晶表示装置 は、導光板の機能を透明電極基板 101に集約することで、部材点数の削減による薄 型化 '軽量化が達成できる。
[0017] し力しながら、上記従来の構成において、上記特開 2003— 57645号公報のように 、観察者側に配置する透明電極基板を導光板として用いるフロントライト型の構成の 場合には、表示画像のコントラストが低下してしまうといった問題がある。また、上記特 開 2003-66443号公報のように、背面側に配置する透明電極基板を導光板として 用いるノ ックライト型の構成の場合には、該透明電極基板の側面に配置した光源か らの光を有効に利用することができず、明るい画像が得られないといった問題がある 。以下に上記のそれぞれの問題について、詳細に説明する。
[0018] 特開 2003— 57645号公報に記載のフロントライト型の構成では、前面側の透明電 極基板 102の側面に配置された光源 104からの光は、該透明電極基板 102の内部 を伝播し、偏光板 105を透過した後、偏光板 105の上層に形成された凹凸構造を持 つ光路変換層 106にて全反射して、再びパネル内部方向へ入射する。この光路変 換層 106にて反射した光は、偏光板 1を透過した後、透明電極基板 102を透過し、 液晶層 103に入射する。液晶層 103を透過した光は、背面側の透明電極基板 101 を透過し、偏光板 105の裏面に形成された鏡面反射膜 107にて反射し、再び観察者 側へ光を出射する。
[0019] 以上の説明における経路は図 6に示した経路 (A)となり、この経路 (A)を迪る光に おいて、液晶層 103にて出射光を制御することで、所望の画像を表示することができ る。
[0020] し力しながら、上記図 6の構成では、透明電極基板 102は、ガラスや配向膜等の屈 折率が 1. 5程度の層と、例えば ITO (Indium Tin Oxide)等力もなる比較的屈折率の 高い透明電極とからなり、屈折率差が比較的大きな積層膜の界面を有することとなる 。このため、光源 104から出射し、偏光板 105および光路変換層 106から再び透明 電極基板 102に入射した光において、図 6の経路(B)に示すように、液晶層 103に 入射する前に透明電極基板 102上の積層膜の何れかの界面で反射し、そのまま透 明電極基板 102から偏光板 105を透過してしまう光が存在する。
[0021] この光は、液晶層 103での制御ができないため、余分な光り抜けとなり、表示画像 のコントラストの低下を引き起こす。
[0022] 次に、特開 2003-66443号公報に記載のバックライト型の構成では、背面側に配 置される透明電極基板 101の一側面に光源 104を配置している。この構成において は、光源 104から出射した光は、図 7中の経路 (A)に示したように、透明電極基板 10 1および偏光板 105の内部を伝播し、透明電極基板 101の背面に形成された光路変 換層 117に入射された後、反射膜 118にて反射される。反射膜 118にて反射された 光は、液晶層 103にて制御された後、観察者側に配置された透明電極基板 102と偏 光板 105とを透過することで、画像を表示することができる。
[0023] また、上記図 7の構成では、図 7中の経路 (B)に示すように、光源 104から出射した 後、低屈折率層 116に直接入射する光は、該低屈折率層 116によって全反射させる ことができるので、余分な光り抜けによるコントラストの低下は無 、。
[0024] し力しながら、光源 104から出射して低屈折率層 116に直接入射する光において は、低屈折率層 116によって全反射された後、そのまま透明電極基板 101における 光源 104が設けられた側面の逆対面から出射してしまう光が多く存在する。このよう に、透明電極基板 101の逆対面力も出射する光は、当然ながら表示画像に対する表 示光としての役割をなさないため、上記図 7の構成では、光源 104からの光のロスが 大きくなり光源 104から出射される光を効率良く利用することができないため、明るい 画像を表示することができな 、。
発明の開示
[0025] 本発明は、上記の問題点を解決するためになされたもので、その目的は、液晶パネ ルにおける透明電極基板を導光板として用いることで薄型 ·軽量ィ匕を図るとともに、コ ントラストの低下が無ぐかつ明るく良好な画像を表示することのできる液晶表示パネ ルおよび液晶表示装置を提供することにある。
[0026] 上記の目的を達成するために、本発明に係る液晶表示パネルは、一対の透明基板 間に液晶層を充填してなる液晶表示パネルにおいて、上記一対の透明基板のうち、 観察者側から見て背面に配置される透明基板に対して、その前面側に、上記透明基 板とほぼ等しい屈折率を有すると共に、所定の凹凸面が形成されてなる第 1の光路 変換層と、上記第 1の光路変換層の前面側に該第 1の光路変換層の凹凸面と接触し て形成されると共に、該第 1の光路変換層よりも小さい屈折率を有する低屈折率層と を配置し、その背面側に、所定の凹凸面が形成されてなる第 2の光路変換層を配置 して!/、ることを特徴として!/、る。
[0027] 上記の構成では、背面側透明基板の側面に光源を配置することで薄型化を図って いるノ ックライト型の液晶表示装置に使用される液晶表示パネルにおいて、上記背 面側透明基板の前面側に、所定の凹凸面が形成された第 1の光路変換層と低屈折 率層とが形成されている。
[0028] そして、第 1の光路変換層の凹凸面は、これを適切な形状に設計することで、第 1の 光路変換層と低屈折率層との界面において、 A)光源力も直接入射される光 (水平に 近い光)をより基板法線方向に近い光に変換して全反射させる作用、 B)基板法線方 向に近 、光が入射されるとこれを透過させる作用を得ることができる。
[0029] また、第 2の光路変換層の凹凸面は、これを適切な形状に設計することで、光源か ら直接入射される光をより基板法線方向に近い光に変換して反射する作用を得るこ とがでさる。
[0030] つまり、光源力 照射される光は、最初に第 1の光路変換層の凹凸面もしくは第 2の 光路変換層の凹凸面にて反射され、このとき、水平に近い光からより基板法線方向 に近い光に変換されるため、背面側透明基板における光源が設けられた側面の逆 対面から出射されることがなぐ光源からの光のロスを減らし、明るい画像表示を行う ことができる。尚、光源力 照射された後、最初に第 1の光路変換層の凹凸面にて反 射された光は、次に第 2の光路変換層の凹凸面にて反射され、さらに第 1の光路変 換層の凹凸面を透過して、観察者側 (前面側)に出射される。
[0031] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分に理解されるであろう。また、本発明の利益は、添付図面を参照した次の説明で明 白になるであろう。
図面の簡単な説明
[0032] [図 1]本発明の実施形態を示すものであり、実施の形態 1に係る液晶表示装置の要 部構成を示す断面図である。
[図 2]上記液晶表示装置において、第 1の光路変換層と低屈折率層との界面での光 の反射の様子を示す図である。
[図 3]実施の形態 1に係る他の液晶表示装置の要部構成を示す断面図である。
[図 4]実施の形態 2に係る液晶表示装置の要部構成を示す断面図である。
[図 5]実施の形態 3に係る液晶表示装置の要部構成を示す断面図である。
[図 6]従来の液晶表示装置の一構成例を示す断面図である。
[図 7]従来の液晶表示装置の一構成例を示す断面図である。
発明を実施するための最良の形態
[0033] 以下、図面を参照しながら本発明の実施形態を説明する。尚、本発明は以下の実 施形態に限定されるものではな 、。
[0034] 〔実施の形態 1〕
図 1は、本実施の形態 1に係る液晶表示装置の概略構成を示す断面図である。上 記液晶表示装置では、前面側基板部 1と背面側基板部 2との間隙に液晶層 3を挟持 した構成の液晶表示パネルが用いられる。すなわち、上記液晶表示パネルに、光源 5や駆動回路 (図示せず)等を実装することで液晶表示装置が提供される。
[0035] 前面側基板部 1は、透明基板 11に対して、その前面側に偏光板 12が配置され、背 面側に透明電極 13が形成されている。
[0036] 背面側基板部 2は、透明基板 (背面側透明基板) 21に対して、その前面側に第 1の 光路変換層 22,低屈折率層 23,および透明電極 24が透明基板 21側カゝらこの順序 で形成されており、その背面側に偏光板 25および第 2の光路変換層 26が透明基板 21側力もこの順序で形成されている。背面側基板部 2において、第 1の光路変換層 2 2および第 2の光路変換層 26は、それぞれ所定の凹凸構造を有している。
[0037] 前面側基板部 1および背面側基板部 2は、透明電極 13および透明電極 24を対向 するように配置され、その間隙に液晶層 3が形成されている。前面側基板部 1および 背面側基板部 2において、透明電極 13, 24のさらに内側には所定の配向処理を施 した配向膜(図示せず)が配置されている。液晶層 3は、枠状のシール 4によって前面 側基板部 1および背面側基板部 2の間に封入されている。
[0038] また、背面側基板部 2における透明基板 21の側面には、光源 5が配置されている。
すなわち、本実施の形態 1に係る液晶表示パネルは、透明基板 21を光源 5の導光板 として用いるバックライト型の構成に適用されるものである。
[0039] 上記液晶表示パネルにおいて、一対の透明基板 11, 21は、ソーダガラスや無アル カリガラス等の透明ガラス基板や、有機榭脂 (例えばエポキシ榭脂ゃアクリル榭脂)や ポリエーテルスルホン等カゝらなるプラスチック基板など任意の透明基板を用いること ができる。
[0040] 尚、透明基板 21の側面に配置した光源 5からの光を効率良く基板内を伝播させる ためには、より透明性の高い基板を用いることが望ましぐガラス基板であれば無アル カリガラスを用いることが望ましい。また、基板の薄型軽量ィ匕を達成するためには、有 機榭脂を透明基板材料として用いることが望ましぐ透明性の観点力 更に望ましく は、アクリル榭脂を透明基板材料として用いることがより望ましい。
[0041] 本実施の形態 1に係る液晶表示装置の表示原理について、図 1を用いて説明する 。ここでは、透明基板 21の側面に配置した光源 5から出射した光を、透明基板 21の 上面側 (第 1の光路変換層 22側)に直接入射する光 (光路 A)と、透明基板 21の背面 側 (偏光板 25側)に直接入射する光 (光路 B)との 2種類に分類して説明する。
[0042] まずは、光路 Aを迪る光について説明する。
[0043] 光路 Aを迪る光は、透明基板 21の側面に配置した光源 5から出射された後、透明 基板 21と第 1の光路変換層 22との界面に入射する。ここで、第 1の光路変換層 22の 屈折率は、入射される光において反射や屈折が生じずに第 1の光路変換層 22を透 過するように、透明基板 21の屈折率と略一致させるか、第 1の光路変換層 22の屈折 率を透明基板 21の屈折率よりも小さいものとすることが好ましい。但し、その後の光 路において、第 1の光路変換層 22から透明基板 21に向けての進入もあり、この光の 進入の際も反射や屈折を生じさせないようにする必要があるため、透明基板 21の屈 折率と第 1の光路変換層 22の屈折率とは略一致させることが最も好ましい。
[0044] 尚、透明基板 21と第 1の光路変換層 22とは、必ずしも別部材として設けられる必要 はなぐ同一の部材として一体的に形成されるものであっても良い。透明基板 21と第 1の光路変換層 22とを同一の部材として一体的に形成した場合、透明基板 21と第 1 の光路変換層 22との間の界面が存在しないため、この界面での不要な反射や屈折 を完全に排除できる。
[0045] 第 1の光路変換層 22を透過した光は、次に、第 1の光路変換層 22と低屈折率層 2 3との界面に入射する。このとき、上記入射光は、第 1の光路変換層 22の凹凸によつ てこの界面で全反射される。この全反射によって、上記入射光は、背面側へ折り返す と共に、反射前の光よりも反射後の光の方が基板法線方向に近い角度となるように進 行方向が変換される。
[0046] ここで、第 1の光路変換層 22の凹凸、すなわち第 1の光路変換層 22と低屈折率層 23との界面における凹凸に関し、図 2を参照して説明する。
[0047] 第 1の光路変換層 22においては、図 2に示す傾斜面 Pを有することが重要である。
上記傾斜面 Pは、その法線方向が基板法線方向に対して角度 Θ傾いており、この傾 きによって光源 5から出射された光を直接受けることができるようになつている。また、 光源 5から出射された光のうち、透明基板 21の上面側 (第 1の光路変換層 22側)に 直接入射される光は、必ず上記傾斜面 Pに入射されるように、第 1の光路変換層 22 の凹凸が設定されている。 [0048] 上記傾斜面 Pにおける第 1の光路変換層 22と低屈折率層 23との界面では、光源 5 力も入射された光を全反射させる必要がある。このため、低屈折率層 23の屈折率は 、第 1の光路変換層 22の屈折率よりも低くなつている。
[0049] さらに、上記傾斜面 Pに対する光の入射角は、傾斜面 Pの界面における臨界角より も大きくなる必要がある。ここで、上記傾斜面 Pによって反射される前の光の、基板法 線に対する入射角を α とし、上記傾斜面 Ρによって反射された後の光の、基板法線 に対する出射角を α とする。この場合、上記傾斜面 Ρに対する光の入射角は(α —
2 1
Θ )となるため、第 1の光路変換層 22の屈折率を η と低屈折率層 23の屈折率を η
22 23 とすると、
α - Θ > sin (n /n ) = (傾斜面 Pの界面における臨界角)
1 23 22
となるように上記 Θが設定される。尚、傾斜面 Pによって反射される前の光は、光源 5 力 の距離によってその大きさの多少の変動はある力 基板法線に対してほぼ直交 する方向に近い光であるため、 a = 90° と近似することができる。
[0050] また、上記傾斜面 Pによって反射される前の光と反射された後の光とを比較すると、 α - θ = α + Θ
1 2
であること力ゝら、
= -2 Θ
2 1
となる。上記式より、上記傾斜面 Pで反射された光は、反射前の光よりも基板法線方 向に近 、角度となるように進行方向が変換されて 、ることが分かる。
[0051] ここで、第 1の光路変換層 22の材料を一般的に用いられるガラス (屈折率を 1. 52) とし、低屈折率層 23の材料を実用レベルで最も屈折率が低 、二フッ化マグネシウム (屈折率を 1. 28)とした時に、傾斜面 Pの界面における臨界角は約 57° となる。この 場合、上記傾斜面 Pの傾斜角 Θは 33° 未満とすればよぐ低屈折率層 23材料の屈 折率のバリエーションに伴う傾斜角 Θの変化範囲は、 0° < Θ < 33° となる。さらに 、上記界面での全反射を効率良く起こすためには、第 1の光路変換層 22と低屈折率 層 23との屈折率差が 0. 05以上であることが望ましぐこれより、傾斜角 Θの範囲は、 15° < Θ < 33° とすることがより好ましい。
[0052] また、第 1の光路変換層 22の上記凹凸の形状においては、傾斜面 P以外の面の傾 斜角については特に限定する必要が無ぐ任意の傾斜角を設定することができる。
[0053] 尚、図 1に示す第 1の光路変換層 22においては、上記傾斜面 Pが等ピッチで形成 されて 、るような記載となって 、るが、該傾斜面 Pの形成は等ピッチである必要はなく 、光源 5からの距離に応じてピッチを変えてもよい。例えば、傾斜面 Pが等ピッチで形 成した場合には、光源 5から近いところでは光量分布が大きぐ遠いところで光量分 布 Pが小さくなる傾向がある。このため、このような光源距離に起因する光量分布の不 均一を補正するために、光源 5から近いところでは上記傾斜面 Pのピッチを大きくとり 、光源 5から遠いところではピッチを小さくするような構成が考えられる。また、上記傾 斜面 Pの傾斜角 Θについても、入射される光の入射角 a の変動に合わせて、光源 5 力もの距離に応じて異ならせてもよい。例えば、光源 5から近いところでは Θを小さく 、遠いところでは Θを大きくするような構成が考えられる。
[0054] 光源 5から出射された後、第 1の光路変換層 22と低屈折率層 23との界面で反射さ れた光は、再び透明基板 21を透過して背面側に配置された偏光板 25にて所望の方 向に直線偏光化され、さらに第 2の光路変換層 26に入射する。
[0055] 第 2の光路変換層 26に入射された光は、第 2の光路変換層 26の外面 (第 2の光路 変換層 26と第 2の光路変換層 26の外側にある空気層等との界面)にて反射され、前 面側に折り返される。第 2の光路変換層 26の外面にて反射された光は、その後、偏 光板 25、透明基板 21、第 1の光路変換層 22、低屈折率層 23、液晶層 3、前面側基 板部 1を透過して観察者に向けて出射され、表示光として機能する。
[0056] また、第 2の光路変換層 26の外面は、第 1の光路変換層 22と同様に凹凸を有する 面であるため、第 2の光路変換層 26の外面にて反射される光は、その反射を受ける 箇所によってその進行方向の角度が変わることがありうる。第 2の光路変換層 26にお ける凹凸については後述するが、少なくとも第 2の光路変換層 26における凹凸は、 光路 Aを迪る光に対しての反射機能をも考慮してその形状が適切に設計される必要 がある。
[0057] 次には、光路 Bを迪る光について説明する。
[0058] 光路 Bを迪る光は、透明基板 21の側面に配置した光源 5から出射された後、透明 基板 21と第 2の光路変換層 26との界面に入射する。ここで、第 2の光路変換層 26の 屈折率は、入射される光において反射や屈折が生じずに第 2の光路変換層 26を透 過するように、透明基板 21の屈折率と略一致させるか、透明基板 21の屈折率よりも 小さいものとすることが好ましい。但し、その後の光路において、第 2の光路変換層 2 6から透明基板 21に向けての進入もあり、この光の進入の際も反射や屈折を生じさ せないようにする必要があるため、透明基板 21の屈折率と第 2の光路変換層 26の屈 折率とは略一致させることが最も好ま 、。
[0059] 第 2の光路変換層 26を透過した光は、次に、第 2の光路変換層 26の外面 (第 2の 光路変換層 26と第 2の光路変換層 26の外側にある空気層等との界面)に入射する。 このとき、上記入射光は、第 2の光路変換層 26の凹凸によってこの外面にて反射さ れる。この反射によって、上記入射光は、前面側へ折り返すと共に、反射前の光より も反射後の光の方が基板法線方向に近 、角度となるように進行方向が変換される。
[0060] ここで、第 2の光路変換層 26において形成される凹凸は、上述した第 1の光路変換 層 22において形成される凹凸と類似した作用を生じており、第 2の光路変換層 26に おいて第 1の光路変換層 22と同一形状の凹凸を有する部材を用いることが可能であ る。しかしながら一方で、光路 Aと光路 Bとでは、第 1の光路変換層 22または第 2の光 路変換層 26で最初に反射された後の光路条件 (観察者側に出射されるまでの反射 回数等)が異なる。このため、第 1の光路変換層 22および第 2の光路変換層 26は、 光路 A、光路 Bのそれぞれで最適な出射光が得られるような形状に設計されることが 好ましぐ第 1の光路変換層 22および第 2の光路変換層 26の凹凸が同一形状である 必要は無い。
[0061] 第 2の光路変換層 26の外面にて反射された光は、その後、偏光板 25、透明基板 2 1、第 1の光路変換層 22、低屈折率層 23、液晶層 3、前面側基板部 1を透過して観 察者に向けて出射され、表示光として機能する。
[0062] 以上のように、本実施の形態 1に係る液晶表示装置では、透明基板 21の前面側に 第 1の光路変換層 22および低屈折率層 23が設けられている。このため、光源 5から 出射され透明基板 21の上面側 (第 1の光路変換層 22側)に直接入射する光は、第 1 の光路変換層 22と低屈折率層 23との界面で全反射されて背面側に折り返すと共に 、この全反射の際に反射前の光よりも反射後の光の方が基板法線方向に近 、角度と なるように進行方向が変換される。また、背面側に折り返された光は、第 2の光路変 換層 26によって反射され、観察者側に出射する。
[0063] 上記の作用により、本実施の形態 1に係る液晶表示装置では、第 1の光路変換層 2 2を有していない従来構造に比べ、光源 5から出射した後、基板に対してほぼ水平方 向を維持して反射されることで、光源を配置した側面とは逆側の側面力 そのまま出 射してしまうような光が無くなる。このため、光源 5から出射する光の利用効率が向上 し、明るく良好な画像を表示することができるようになる。
[0064] また、第 1の光路変換層 22および第 2の光路変換層 26において、上記凹凸を形成 するための構造物の形状としては、例えば凹凸面の何れかの面が光源 5の配置され た入射面に対して対向するように配置されたストライプ状の凹凸面を有する形状であ つてもよく、あるいは、凹凸面の何れか一面が入射面に対して対面するように配置さ れた三角錐形状や四角錐形状又は円錐形状や、多角柱構造等を用いることができ る。
[0065] 上記凹凸を形成するための構造物を、ストライプ状の凹凸面を有する形状とした場 合、第 1の光路変換層 22および第 2の光路変換層 26の製造が簡易となるといつた利 点がある。し力しながら、この場合には、入射面に対して対向する面 (すなわち、図 2 における面 P)がストライプ状に形成されるため、液晶層 3に対して入射される光にお Vヽてもストライプ状の強度ムラが生じる恐れがある。
[0066] これに対し、上記凹凸を形成するための構造物において、三角錐形状や四角錐形 状又は円錐形状や、多角柱構造等を用いた場合、液晶層 3に対して入射される光に おいてもストライプ状の強度ムラが生じず、より均一な入射光の強度分布が得られる。
[0067] また、第一の透明基板 21の側面に配置さる光源 5は、その前面側の端部が、透明 基板 21と第 1の光路変換層 22との境界面よりも、前面側にはみ出さないように配置さ れることが好ましい。すなわち、上記光源 5の前面側の端部が、透明基板 21と第 1の 光路変換層 22との境界面よりも前面側にはみ出した場合、第 1の光路変換層 22や 低屈折率層 23等の部材の側面からも光が入射してしまう。このような光は、部材の界 面において想定外の反射を生じ、そのまま観察者側へ出射してしまう恐れがあり、余 分な光抜けが発生してコントラストを低下してしまう。 [0068] 第一の透明基板 21の側面に配置さる光源 5は、その前面側の端部が透明基板 21 と第 1の光路変換層 22との境界面よりも、前面側にはみ出さないように配置すれば、 上述のような不所望な光抜けを防止でき、コントラストの低下のな!、良好な画像を得 ることがでさる。
[0069] また、第 2の光路変換層 26のさらに背面側には、有機榭脂など力もなる反射シート を配置したり、金属薄膜からなる全反射膜を形成することで、第 2の光路変換層 26を 透過してしまった光を再び観察者側へ戻すことができ、光源 5から出射される光を口 ス無く表示光として用いることができる。
[0070] ここで、反射シートの厚みは、一般的に 0. 1-0. 2mm程度の厚みを有するので、 薄型化の観点力もは、図 3に示したように、第 2の光路変換層 26の背面側に金属薄 膜からなる全反射膜 27を形成することが好ましい。このような全反射膜 27は、アルミ ユウム、金、銀、銅、クロム、モリブデン、チタン、パラジウムなどの合金からなる金属 薄膜を用いることができる。
[0071] 〔実施の形態 2〕
図 4は、本実施の形態 2に係る液晶表示装置の概略構成を示す断面図である。本 実施の形態 2に係る液晶表示装置は、実施の形態 1に係る液晶表示装置と類似した 構成を有しているため、図 1と同様の構成部分については、同一の部材番号を付し、 その詳細な説明を省略する。
[0072] 図 4に示される上記液晶表示装置は、図 1における背面側基板部 2に代えて、背面 側基板 6を用いた構成となっている。また、背面側基板 6は、背面側基板部 2と比べ、 低屈折率層 23と透明電極 24との間に光散乱層 28が形成されている点が異なってい る。
[0073] 上記液晶表示装置において、光源 5から出射した光は、第 1の光路変換層 22、低 屈折率層 23および第 2の光路変換層 26の作用によって、図 4中経路 (A) , (B)に示 すように、観察者側へと光路変換されて光散乱層 28に入射する。背面側基板 6にお いて、光散乱層 28に入射されるまでの光の経路は、背面側基板部 2と同様である。
[0074] 光散乱層 28は、第 1の光路変換層 22、低屈折率層 23および第 2の光路変換層 26 の作用によって観察者側の正面方向へ集光された光に対して、さらに散乱効果を与 える。このため、光散乱層 28を備えた本実施の形態 2に係る液晶表示装置では、基 板面内の輝度分布バラツキを無くし、良好な表示を得ることができる。
[0075] また、光散乱層 28は、本実施の形態 2では低屈折率層 23の直上層として新たに形 成しているが、特にこの構成に限定されるものでは無ぐ透明基板 11および透明基 板 21の間であれば、何れの層の間隙に形成されていても良い。また、カラーフィルタ 一を形成する場合には、カラーフィルター自体に光散乱性を付与しても良ぐ又は、 カラーフィルターを平坦ィ匕するためのオーバーコート自体に光散乱性を付与しても良 い。
[0076] ここで、光散乱性の付与は、無機粒子、例えばアルミナやシリカなどの微細粒子を 光散乱層中に分散させて光散乱性を付与する方法や、高分子モノマーの架橋反応 を利用して、有機微粒子を分散させて光散乱性を付与する方法等が挙げられる。
[0077] 〔実施の形態 3〕
図 5は、本実施の形態 3に係る液晶表示装置の概略構成を示す断面図である。本 実施の形態 3に係る液晶表示装置は、実施の形態 1に係る液晶表示装置と類似した 構成を有しているため、図 1と同様の構成部分については、同一の部材番号を付し、 その詳細な説明を省略する。
[0078] 図 5に示される上記液晶表示装置は、図 1における背面側基板部 2に代えて、背面 側基板 7を用いた構成となっている。また、背面側基板 7は、背面側基板部 2と比べ、 低屈折率層 23と透明電極 24との間に金属薄膜からなる半透過反射膜 29が形成さ れて 、る点が異なって 、る。
[0079] ここで、半透過反射膜 29は、金属薄膜の膜厚を調整して得ることのできるハーフミ ラー型の半透過反射膜や、開口部を設けた全反射性の金属薄膜からなる半透過反 射膜等力も形成することができる。また、この金属薄膜はアルミニウム、金、銀、銅、ク ロム、モリブデン、チタン、パラジウムなどの金属の合金により形成することができる。
[0080] 上記液晶表示装置においては、光源 5を点灯させて表示を行う透過表示モードと、 反射表示モードとでの表示が可能となる。
[0081] 先ずは、透過表示モードについて説明する。透過表示モードでは、光源 5から出射 した光は、第 1の光路変換層 22、低屈折率層 23および第 2の光路変換層 26の作用 によって、図 5中経路 (A) , (B)に示すように、観察者側へと光路変換されて半透過 反射膜 29に入射する。背面側基板 7において、半透過反射膜 29に入射されるまで の光の経路は、背面側基板部 2と同様である。経路 (A) , (B)を迪つて半透過反射膜 29に入射された光のうち、の透過機能によって、該半透過反射膜 29を透過した光が 表示光として利用される。
[0082] 次に、反射表示モードについては、図 5中経路 (C)で示すように、観察者側から入 射される外光が前面側基板部 1を透過して、液晶層 3へ入射する。液晶層 3へ入射さ れた外交は、さらに半透過反射膜 29に入射し、該半透過反射膜 29で反射されて再 び観察者側へ出射することによって、反射型の表示を行うことができる。
[0083] また、半透過反射膜 29としては、屈折率の異なる誘電体を積層してなる誘電体多 層膜を用いることもできる。この場合にも、上記の金属薄膜を半透過反射膜 29として 用いる場合と同様に、透過表示モードと反射表示モードを切り替えて表示を行う半透 過型液晶表示装置として用いることができる。
[0084] 上記誘電体多層膜としては、低屈折率誘電体として、アルミナ (Al O )や二酸化ケ
2 3
ィ素(SiO )、あるいは、あるいは二フッ化マグネシウム(MgF )等が挙げられ、高屈
2 2
折率誘電体として、二酸化チタン (TiO )や二酸化ジルコニウム(ZrO )、セレン化亜
2 2
鉛 (ZnSe)、硫ィ匕亜鉛 (ZnS)等が挙げられ、上記誘電体多層膜は低屈折率誘電体 と高屈折率誘電体を順に積層することで得られる。
[0085] 尚、上記実施の形態 1ないし 3に示した液晶表示装置では、カラーフィルターや保 護膜や絶縁膜等は特に示されていないが、必要に応じて透明基板上に形成すれば よい。
[0086] また、本発明の液晶表示装置の駆動方法に関しては特に限定されることは無ぐァ クティブマトリクス方式やパッシブマトリクス方式など任意に選択すればよい。
[0087] さらに、上記実施の形態 1ないし 3においては、光源 5から出射される光を経路 (A) , (B)の 2種類の光に大別して説明している。ここで、上記経路 (A) , (B)を迪る光は 、光源 5から出射される全ての光のうち、最も好適な態様で表示に寄与する光である 。し力しながら、光源 5から出射される全ての光が経路 (A) , (B)を迪るように、第 1の 光路変換層 22および第 2の光路変換層 26を設計することは不可能であるか、もしく は困難である。
[0088] すなわち、光源 5から出射される光のうち、第 1の光路変換層 22および第 2の光路 変換層 26の間で複数回の反射が繰り返されて透明基板 21側面力も反射されたり、 所望の反射を受けずに基板法線方向に対して大きく傾 、た状態で背面側基板から 出射される光が一部存在することが考えられる。
[0089] 但し、第 1の光路変換層 22および第 2の光路変換層 26の凹凸を適切に設計するこ とによって、光源 5から出射される全ての光のうち、経路 (A) , (B)を迪る光の割合を 増加させ、従来と比較してより明るい表示を行うことは充分に可能である。
[0090] 以下に、本実施の形態に係る液晶表示装置の評価について説明する。
[0091] 〔実施例 1〕
実施例 1として、図 1に示す構成の液晶表示装置を以下の方法にて作成した。ここ では、観察者側に配置する透明基板 11と背面側に配置する透明基板 21とには、屈 折率が 1. 52の無アルカリガラスを用いた。
[0092] まず、透明基板 11に ITOカゝらなる透明電極 13を形成し、可溶性ポリイミドを透明電 極 13上に印刷した後、焼成を行った。次に、配向膜面をラビング処理によって所定 の配向方向になるように配向処理を行 ヽ、観察者側に配置する基板を得た。
[0093] 次に、あら力じめ所定の形状 (本実施例では四角錘形状)に形成された金型を用い 、整形したアクリル系ネガレジストの転写フィルムを、透明基板 21上に高温下で転写 し、これを紫外線照射により硬化することで、透明基板 21上に第 1の光路変換層 22 を形成した。次に、第 1の光路変換層 22の上層に、低屈折率層 23として、屈折率 1. 31の低屈折率材料 HF— 707 (商品名;日立化成工業株式会社製)を成膜した。
[0094] 低屈折率層 23の上層には、 R (赤) G (緑) B (青)の 3色力もなるカラーフィルターを 形成し、熱硬化榭脂からなる平坦化層を形成した (カラーフィルターと平坦化層とは 図 1において図示せず)。
[0095] 平坦化層の上層に、 ITO力もなる透明電極 24を形成して、その上層に観察者側基 板 2と同様に配向膜形成し、ラビング処理を行い背面側の基板を得た。
[0096] 上記のようにして得られた観察者側に配置する透明基板 11と背面側に配置する透 明基板 21とを、枠状のシール 4を周辺部に形成して、 ITO力もなる透明電極 13, 24 同士を対向するように貼り合せて、液晶層 3としてネマティック液晶の ZLI— 4792 (商 品名:メルクジャパン株式会社製)を封入した。
[0097] 一対の透明基板 11, 21には、それぞれの基板に形成した配向膜の配向方向と偏 光板透過軸が一致するように、偏光板 12, 25として SEG— 1425DU (商品名;日東 電工株式会社製)を貼り付けた。
[0098] さらに、上記偏光板 12, 25の背面側に、予め所定の凹凸パターンを形成した金型 により作成 (本実施例では、四角錘パターン)したアクリル榭脂からなる第 2の光路変 換層 26を上記偏光板 25の背面側に貼り付けて形成した。
[0099] 次に、上記のようにして得られた液晶表示パネルの透明基板 21の側面に 3個の LE
D力 なる光源 5を配置して本実施例 1の液晶表示装置を得た。
[0100] 〔実施例 2〕
実施例 2として、図 3に示す構成の液晶表示装置を作成した。すなわち、実施例 1 にて示した液晶表示装置において、第 2の光路変換層 26のさらに背面側に、銀とパ ラジウムとの 98: 2 (重量比)の合金力もなる全反射膜 27を 1000 Aの膜厚で形成し、 本実施例 2の液晶表示装置を得た。
[0101] 〔実施例 3〕
実施例 3として、図 4に示す構成の液晶表示装置を作成した。すなわち、実施例 1 にて示した液晶表示装置において、低屈折率層 23のさらに上層に (前面側に)、ァク リル系の榭脂材料の転写フィルムである「RFシリーズ」(商品名:日立化成工業株式 会社製)を光散乱層 28として形成し、本実施例 3の液晶表示装置を得た。
[0102] 〔実施例 4〕
実施例 4として、図 5に示す構成の液晶表示装置を作成した。すなわち、実施例 1 にて示した液晶表示装置において、低屈折率層 23のさらに上層に (前面側に)、金 属薄膜からなる半透過反射膜 29を、銀:パラジウム = 98 : 2の合金にて、反射率:透 過率 = 7: 3となるように膜厚 280 Aで形成し、本実施例 4の液晶表示装置を得た。
[0103] 〔実施例 5〕
実施例 5として、図 5に示す構成の液晶表示装置を作成した。すなわち、実施例 1 にて示した液晶表示装置において、低屈折率層 23のさらに上層に (前面側に)、 SI Oと TiOからなる誘電体多層膜を順に 3層積層して半透過反射膜 29を形成し、本
2 2
実施例 5の液晶表示装置を得た。
[0104] 〔比較例 1〕
比較例 1として、図 7に示す構成の液晶表示装置を作成した。すなわち、実施例 1 にて示した液晶表示装置において、凹凸構造を持つ第 1の光路変換層 22を形成せ ず、透明基板 21 (図 7では透明基板 101)上に低屈折率層 23 (図 7では低屈折率層 116)を直接形成し、本比較例 1の液晶表示装置を得た。
[0105] 〔評価結果〕
上記のようにして作成した実施例 1ないし 5、および比較例 1の液晶表示装置につ V、ての評価結果を以下に示す。
[0106] まず、透過型液晶表示装置の実施例 1ないし 3と比較例 1とについて、液晶層を電 圧無印加状態 (ノーマリホワイト)とした場合の輝度と面内輝度バラツキ (表示品位:輝 度ムラ目視判定)とについて評価を行った結果を以下に示す。尚、輝度については、 色彩輝度計 BM5 (商品名: TOPCON製)を用いて 2° 視野にて測定を行った。
[表 1]
Figure imgf000020_0001
[0107] 上記表 1より、比較例 1の液晶表示装置と比較して、実施例 1ないし 3の各液晶表示 装置は、光源力 の出射光を効率良く観察者側に出射させることができるため、大き く輝度が向上していることがわかる。
[0108] また、実施例 1と実施例 2とを比較して、第 2の光路変換層 26の背面に金属薄膜か らなる全反射膜 27を形成することにより、第 2の光路変換層 26での反射効率が向上 し、輝度が向上し更に良好な明るい画像が得られることが分力る。
[0109] また、実施例 1と実施例 3とを比較して、低屈折率層 23の上層に形成した光散乱層 28によって面内輝度分布を均一化することによって、面内に輝度ムラのない明るい 良好な画像を得られることがわかる。
[0110] 次に、半透過型液晶表示装置の実施例 4及び実施例 5について、暗所にて表示を 確認したところ、背面側の透明基板の側面に配置した LED光源力 光を効率良く観 察者側に出射させることができ透過型表示として明るい画像を表示できることがわか つた o
[0111] また、 LED光源の点灯をやめて、外光のみで表示を行ったところ、実施例 4 (金属 薄膜からなる半透過反射膜)、実施例 5 (誘電体多層膜からなる半透過反射膜)の!ヽ ずれの場合にも良好な反射型表示を得ることができた。
[0112] 以上のように、本液晶表示パネルは、一対の透明基板間に液晶層を充填してなる 液晶表示パネルにおいて、上記一対の透明基板のうち、観察者側から見て背面に 配置される透明基板に対して、その前面側に、上記透明基板とほぼ等しい屈折率を 有すると共に、所定の凹凸面が形成されてなる第 1の光路変換層と、上記第 1の光路 変換層の前面側に該第 1の光路変換層の凹凸面と接触して形成されると共に、該第 1の光路変換層よりも小さい屈折率を有する低屈折率層とを配置し、その背面側に、 所定の凹凸面が形成されてなる第 2の光路変換層を配置している構成である。
[0113] 上記の構成によれば、背面側透明基板の側面に光源を配置することで薄型化を図 つているノ ックライト型の液晶表示装置に使用される液晶表示パネルにおいて、上記 背面側透明基板の前面側に、所定の凹凸面が形成された第 1の光路変換層と低屈 折率層とが形成されている。
[0114] そして、第 1の光路変換層の凹凸面は、これを適切な形状に設計することで、第 1の 光路変換層と低屈折率層との界面において、 A)光源力も直接入射される光 (水平に 近い光)をより基板法線方向に近い光に変換して全反射させる作用、 B)基板法線方 向に近 、光が入射されるとこれを透過させる作用を得ることができる。
[0115] また、第 2の光路変換層の凹凸面は、これを適切な形状に設計することで、光源か ら直接入射される光をより基板法線方向に近い光に変換して反射する作用を得るこ とがでさる。
[0116] つまり、光源力 照射される光は、最初に第 1の光路変換層の凹凸面もしくは第 2の 光路変換層の凹凸面にて反射され、このとき、水平に近い光からより基板法線方向 に近い光に変換されるため、背面側透明基板における光源が設けられた側面の逆 対面から出射されることがなぐ光源からの光のロスを減らし、明るい画像表示を行う ことができる。尚、光源力 照射された後、最初に第 1の光路変換層の凹凸面にて反 射された光は、次に第 2の光路変換層の凹凸面にて反射され、さらに第 1の光路変 換層の凹凸面を透過して、観察者側 (前面側)に出射される。
[0117] また、上記液晶表示パネルは、上記第 2の光路変換層のさらに背面側に、全反射 膜が形成されて 、る構成とすることができる。
[0118] 上記の構成によれば、上記第 2の光路変換層の背面側力 抜ける光を無くすことが でき、光源からの光のロスをさらに減らして、明るい画像表示を行うことができる。
[0119] また、上記液晶表示パネルは、上記一対の透明基板間に、少なくとも一層の光散 乱層が形成されて ヽる構成とすることができる。
[0120] 上記の構成によれば、上記光源から出射される光を、上記光散乱層によって面内 輝度分布がより均一化された光として観察者側に出射することができ、面内に輝度ム ラのない明る!/、良好な画像を得ることができる。
[0121] また、上記液晶表示パネルは、上記低屈折率層の前面側に、半透過反射膜が形 成されて!/ヽる構成とすることができる。
[0122] 上記の構成によれば、上記液晶表示パネルを半透過反射型の液晶表示パネルと して用いることができる。
[0123] また、本液晶表示装置は、上記記載の何れかの液晶表示パネルを用いた液晶表 示装置であって、上記一対の透明基板のうち、観察者側力 みて背面に配置される 背面側透明基板の少なくとも一側面に光源が配置されている構成である。
[0124] 上記の構成によれば、上述した液晶表示パネルと同一の作用により、光源からの光 のロスを減らし、明るい画像表示を行うことができる。
[0125] また、上記液晶表示装置では、上記光源の前面側の端部は、上記透明基板と第 1 の光路変換層との境界面よりも、前面側にはみ出さないように配置されている構成と することが好ましい。
[0126] 上記の構成によれば、第 1の光路変換層や低屈折率層等の部材の側面からも光が 入射し、これらの入射光が部材の界面において想定外の反射を生じ、そのまま観察 者側へ出射してコントラストを低下させるといった不具合を防止できる。
[0127] また、本液晶表示装置は、一対の透明基板間に液晶層を充填してなる液晶表示パ ネルを備え、上記一対の透明基板のうち、観察者側から見て背面に配置される背面 側透明基板の少なくとも一側面に光源が配置されている液晶表示装置において、上 記背面側透明基板の前面側に、光源から直接入射される光をより基板法線方向に 近 ヽ光に変換して全反射する機能、および基板法線方向に近!ヽ光が入射されるとこ れを透過させる機能を備えた、所定の凹凸形状を有する界面が存在し、上記背面側 透明基板の背面側に、光源カゝら直接入射される光をより基板法線方向に近い光に変 換して反射する機能を備えた、所定の凹凸形状を有する反射面が存在する構成であ る。
[0128] 上記の構成によれば、光源から照射される光は、最初に、上記背面側透明基板の 前面側に存在する界面、もしくは上記背面側透明基板の背面側に存在する反射面 にて反射され、このとき、水平に近い光力 より基板法線方向に近い光に変換される ため、背面側透明基板における光源が設けられた側面の逆対面力 出射されること がなぐ光源からの光のロスを減らし、明るい画像表示を行うことができる。尚、光源か ら照射された後、上記背面側透明基板の前面側に存在する界面にて反射された光 は、次に上記背面側透明基板の背面側に存在する反射面にて反射され、さらに上 記界面を透過して、観察者側 (前面側)に出射される。
産業上の利用の可能性
[0129] 薄型 ·軽量化を図った液晶表示パネルおよび液晶表示装置において、光源からの 光のロスを減らした明るい画像表示が可能となり、携帯電話、 PDA等のモパイル機 器に適用できる。

Claims

請求の範囲
[1] 一対の透明基板間に液晶層を充填してなる液晶表示パネルにおいて、
上記一対の透明基板のうち、観察者側力 見て背面に配置される背面側透明基板 に対して、
その前面側に、上記背面側透明基板とほぼ等しい屈折率を有すると共に、所定の 凹凸面が形成されてなる第 1の光路変換層と、上記第 1の光路変換層の前面側に該 第 1の光路変換層凹凸面と接触して形成されると共に、該第 1の光路変換層よりも小 さい屈折率を有する低屈折率層とを配置し、
その背面側に、所定の凹凸面が形成されてなる第 2の光路変換層を配置している 液晶表示パネル。
[2] 上記第 2の光路変換層のさらに背面側に、全反射膜が形成されている請求項 1に 記載の液晶表示パネル。
[3] 上記一対の透明基板間に、少なくとも一層の光散乱層が形成されている請求項 1 に記載の液晶表示パネル。
[4] 上記低屈折率層の前面側に、半透過反射膜が形成されている請求項 1に記載の 液晶表示パネル。
[5] 上記請求項 1な!、し 4の何れかに記載の液晶表示パネルを用いた液晶表示装置で あって、
上記一対の透明基板のうち、観察者側力 みて背面に配置される背面側透明基板 の少なくとも一側面に光源が配置されている液晶表示装置。
[6] 上記光源の前面側の端部は、上記背面側透明基板と第 1の光路変換層との境界 面よりも、前面側にはみ出さないように配置されている請求項 5に記載の液晶表示装 置。
[7] 一対の透明基板間に液晶層を充填してなる液晶表示パネルを備え、上記一対の 透明基板のうち、観察者側力 見て背面に配置される背面側透明基板の少なくとも 一側面に光源が配置されている液晶表示装置において、
上記背面側透明基板の前面側に、光源から直接入射される光をより基板法線方向 に近 ヽ光に変換して全反射する機能、および基板法線方向に近 ヽ光が入射されると これを透過させる機能を備えた、所定の凹凸形状を有する界面が存在し、 上記背面側透明基板の背面側に、光源から直接入射される光をより基板法線方向 に近い光に変換して反射する機能を備えた、所定の凹凸形状を有する反射面が存 在する液晶表示装置。
PCT/JP2005/004528 2004-03-18 2005-03-15 液晶表示パネルおよび液晶表示装置 WO2005091060A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006511191A JP4402111B2 (ja) 2004-03-18 2005-03-15 液晶表示パネルおよび液晶表示装置
US10/598,952 US7468764B2 (en) 2004-03-18 2005-03-15 Liquid crystal display panel and liquid crystal display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-079230 2004-03-18
JP2004079230 2004-03-18

Publications (1)

Publication Number Publication Date
WO2005091060A1 true WO2005091060A1 (ja) 2005-09-29

Family

ID=34993860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004528 WO2005091060A1 (ja) 2004-03-18 2005-03-15 液晶表示パネルおよび液晶表示装置

Country Status (6)

Country Link
US (1) US7468764B2 (ja)
JP (1) JP4402111B2 (ja)
KR (1) KR100819650B1 (ja)
CN (1) CN100456094C (ja)
TW (1) TWI302618B (ja)
WO (1) WO2005091060A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220050343A1 (en) * 2019-07-18 2022-02-17 Boe Technology Group Co., Ltd. Display panel, display device and method of driving the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292048A (ja) * 2006-03-29 2007-11-08 Yamaha Motor Co Ltd 鞍乗型車両用排気装置および鞍乗型車両
US7633282B2 (en) 2006-08-17 2009-12-15 Actuant Corporation Multi-scanner device having a detachable outlet tester
US20080285304A1 (en) * 2007-05-18 2008-11-20 Rankin Jr Charles M Light extraction film system
CN102326020B (zh) * 2009-03-06 2013-12-25 夏普株式会社 面状照明装置和具备该装置的显示装置
US9507198B2 (en) 2009-11-19 2016-11-29 Apple Inc. Systems and methods for electronically controlling the viewing angle of a display
US9004726B2 (en) 2011-10-27 2015-04-14 Svv Technology Innovations, Inc. Light directing films
CN103105641B (zh) * 2013-02-26 2015-09-16 佘晓峰 复合导光板及其生产方法
KR102603079B1 (ko) * 2016-07-29 2023-11-17 엘지디스플레이 주식회사 표시장치 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072199A (ja) * 2000-08-31 2002-03-12 Optrex Corp 液晶表示素子
JP2003057645A (ja) * 2001-08-10 2003-02-26 Citizen Watch Co Ltd 液晶表示装置
JP2003066443A (ja) * 2001-08-22 2003-03-05 Nitto Denko Corp 液晶表示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359668B1 (en) * 1997-05-14 2002-03-19 Seiko Epson Corporation Display device and electronic apparatus using the same
JP4144829B2 (ja) * 1999-12-27 2008-09-03 日東電工株式会社 反射・透過両用型液晶表示装置
KR100806093B1 (ko) * 2000-04-27 2008-02-21 가부시키가이샤 구라레 면광원소자 및 이를 사용한 표시장치
JP4439084B2 (ja) * 2000-06-14 2010-03-24 日東電工株式会社 液晶表示装置
JP2002333618A (ja) * 2001-05-07 2002-11-22 Nitto Denko Corp 反射型液晶表示装置
US7030945B2 (en) * 2001-08-22 2006-04-18 Nitto Denko Corporation Liquid-crystal display device
KR100905100B1 (ko) * 2001-09-26 2009-06-30 코닌클리케 필립스 일렉트로닉스 엔.브이. 편광되지 않은 광을 수신하여 편광된 광을 방출하도록 배치된 조명 장치, 및 디스플레이 시스템
JP3719436B2 (ja) * 2002-03-06 2005-11-24 セイコーエプソン株式会社 電気光学装置、および電子機器
KR100508240B1 (ko) * 2003-03-13 2005-08-17 엘지.필립스 엘시디 주식회사 액정표시모듈
TW558019U (en) 2003-04-24 2003-10-11 Toppoly Optoelectronics Corp Structure of illumination apparatus
KR100518408B1 (ko) * 2003-08-22 2005-09-29 엘지.필립스 엘시디 주식회사 듀얼 프론트 라이트를 이용한 듀얼 액정표시장치
CN100370329C (zh) * 2004-11-12 2008-02-20 清华大学 导光板和背光模组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072199A (ja) * 2000-08-31 2002-03-12 Optrex Corp 液晶表示素子
JP2003057645A (ja) * 2001-08-10 2003-02-26 Citizen Watch Co Ltd 液晶表示装置
JP2003066443A (ja) * 2001-08-22 2003-03-05 Nitto Denko Corp 液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220050343A1 (en) * 2019-07-18 2022-02-17 Boe Technology Group Co., Ltd. Display panel, display device and method of driving the same
US11675238B2 (en) * 2019-07-18 2023-06-13 Boe Technology Group Co., Ltd. Display panel, display device and method of driving the same

Also Published As

Publication number Publication date
CN1930515A (zh) 2007-03-14
KR100819650B1 (ko) 2008-04-07
TWI302618B (en) 2008-11-01
KR20060130750A (ko) 2006-12-19
JPWO2005091060A1 (ja) 2007-08-09
CN100456094C (zh) 2009-01-28
TW200600923A (en) 2006-01-01
US7468764B2 (en) 2008-12-23
US20070242185A1 (en) 2007-10-18
JP4402111B2 (ja) 2010-01-20

Similar Documents

Publication Publication Date Title
US8493535B2 (en) Liquid crystal display device
JP4059692B2 (ja) 照明装置およびそれを備える表示装置ならびに導光板
US7630032B2 (en) LCD with selective transmission filter having light transmittance of 80% or more at wavelength regions of 440+/−20nm; 525+/−25nm and 565+/−45nm, and 10% or less at 470 to 485nm and 575 to 595nm
US8208097B2 (en) Color compensation multi-layered member for display apparatus, optical filter for display apparatus having the same and display apparatus having the same
JP4402111B2 (ja) 液晶表示パネルおよび液晶表示装置
KR20020035787A (ko) 광학 필름 및 반사형 액정 표시장치
KR20040009894A (ko) 액정 표시 장치
CN107957642B (zh) 显示装置
JP2001033768A (ja) 液晶装置及び電子機器
JP2001183664A (ja) 反射・透過両用型液晶表示装置
KR101759556B1 (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
WO2023160643A1 (zh) 显示模组和显示装置
JP2001167625A (ja) 面光源装置及び液晶表示装置
JP2003202568A (ja) 導光体およびその製造方法、面状光源装置、表示装置
CN111158185A (zh) 彩膜基板及其制作方法、显示面板和显示装置
WO2023138354A1 (zh) 显示屏
KR20120068498A (ko) 도광판, 이를 구비한 백라이트 유닛 및 이들을 포함하는 액정표시장치
KR20120050171A (ko) 듀얼패널 타입 액정표시장치
JP2003021832A (ja) 液晶装置及び電子機器
JP4112663B2 (ja) 液晶表示装置
JP2001305542A (ja) 液晶表示装置
US20230168526A1 (en) Electronic device
JP2004013059A (ja) 液晶表示装置および電子機器
JP2005189890A (ja) 液晶表示装置
WO2023150045A1 (en) Reflective and transflective displays including quantum dot layers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511191

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580008272.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067021488

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067021488

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10598952

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10598952

Country of ref document: US