WO2005088324A1 - 半導体デバイス試験装置及びデバイスインターフェースボード - Google Patents

半導体デバイス試験装置及びデバイスインターフェースボード Download PDF

Info

Publication number
WO2005088324A1
WO2005088324A1 PCT/JP2004/019639 JP2004019639W WO2005088324A1 WO 2005088324 A1 WO2005088324 A1 WO 2005088324A1 JP 2004019639 W JP2004019639 W JP 2004019639W WO 2005088324 A1 WO2005088324 A1 WO 2005088324A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
pin
semiconductor device
terminal group
group
Prior art date
Application number
PCT/JP2004/019639
Other languages
English (en)
French (fr)
Inventor
Hiroshi Ezoe
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to JP2006510879A priority Critical patent/JPWO2005088324A1/ja
Priority to EP04807994A priority patent/EP1724598A1/en
Priority to US10/569,902 priority patent/US7372287B2/en
Publication of WO2005088324A1 publication Critical patent/WO2005088324A1/ja
Priority to TW094147037A priority patent/TW200710408A/zh
Priority to US12/082,048 priority patent/US7514950B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31926Routing signals to or from the device under test [DUT], e.g. switch matrix, pin multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31924Voltage or current aspects, e.g. driver, receiver

Definitions

  • the present invention relates to a semiconductor device test apparatus and a device interface board for electrically connecting a semiconductor device under test to a semiconductor device test apparatus.
  • the present invention relates to a semiconductor device test apparatus and a device interface board capable of increasing the type or number of semiconductor devices (hereinafter, simply referred to as DUT).
  • Patent Document 1 discloses a configuration in which a drive signal is applied to one end of one transmission line, the transmission line is branched into two on the way, and the two branched transmission lines are connected to two DUTs. According to this configuration, since one IO channel can drive two DUTs, effective use of the IO channel is achieved. This document also discloses a semiconductor device test apparatus using a two-branch transmission line that can reduce unnecessary vibration waveforms in a received waveform signal at a receiving end.
  • FIG. 11 shows a conceptual configuration diagram in which a general semiconductor device test apparatus is used in combination with an IC handler apparatus 300 to test a plurality of DUTs.
  • the semiconductor device test apparatus 100 includes an apparatus main body 101 and a test head 200 which is separated from the apparatus main body 101 and connected to an IC handler apparatus 300 via a coupling line.
  • the test head 200 includes a pin electronics PE having a plurality of IO channels including N (N is an integer of 2 or more) IO channels, a normal channel (not shown), and others (not shown). Have.
  • the IO channel is a channel connected to the DUT's IO pin (input / output terminal) to apply a signal to the DUT and receive a response signal output from the DUT.
  • the DUT is provided in a number corresponding to the number of IO pins (that is, the number of input / output terminals).
  • a normal channel is a driver-only channel that connects to the input pins of the DUT and applies signals.
  • the DUT and the semiconductor device test apparatus are connected via the performance board PB connected to the pin electronics PE of the test head unit 200, the coaxial cable 120, the socket board 160, and the contact socket 180.
  • the spacing frame 140 attaches the socket board 160 to the performance board PB, and a combination thereof is referred to as a prefix 102.
  • Patent document 1 JP-A-2000-292491
  • the output of the driver of one IO channel passes through one transmission line and branches into two at an intermediate branch point. DUTs, each driving two DUTs at the same time.
  • Fig. 12C shows an example of applying a high-speed rectangular wave from the dryino IODR and observing the waveform with one input / output terminal of the DUT as the observation point (View).
  • b is the waveform when the characteristic impedance of the branch line from the branch point R to each input / output terminal is 100 ⁇
  • W is the waveform when the characteristic impedance is 50 ⁇ .
  • FIG. 12A shows a circuit configuration according to the related art having no branch line.
  • the ideal waveform at the input / output terminal (View) of the DUT is indicated by a in Fig. 12C.
  • the impedance is 100 ⁇ up to the bifurcation point, and then there is a parallel impedance of @ 33 ⁇ between the input side 50 ⁇ and the other branch line 100 ⁇ @ 33 ⁇ . It can be seen that deterioration is present. In any case, since the test equipment cannot connect a 50 ⁇ termination resistor to the DUT side, waveform deterioration due to total reflection is inevitable, which is a major drawback of the two-branch method.
  • semiconductor device test equipment that can effectively use the finite number of channels, in addition to the above, use the same package with the same number of terminals and the same terminal arrangement as the semiconductor device shown in Fig. 13.
  • Semiconductor device test equipment that can test three types of devices with data widths of X4 bits, X8 bits, and X16 bits even if the semiconductor device has Desired.
  • FIG. 13A the 4-bit ⁇ pins DQ0—Not used for data input / output other than DQ4 Pins NC4—NC15
  • FIG. 13B shows the 8-bit ⁇ pins DQ0—DQ7 except for data input and output.
  • Figure 13C shows the 16-bit ⁇ pins DQ0 to DQ15 are all used as data input and output pins.
  • the semiconductor device having a data width of 4 bits shown in FIG. 13A is referred to as a semiconductor device DUT-1 of the first type, and the semiconductor device having a data width of 8 bits shown in FIG.
  • the type 2 semiconductor device DUT-2, and the semiconductor device having a data width of X16 bits shown in FIG. 13C will be referred to as a type 3 semiconductor device DUT-3.
  • test equipment prepares, for each socket board, as many IO channels as possible to support the DUT with the largest number of terminals used for operation among the three types of DUTs mounted on the socket board. Need to be kept. In the example above, 16 IO channels would be prepared to test the third type of DUT-3.
  • FIG. 14 shows an example of a socket board for each type of semiconductor device.
  • FIG. 14A shows a socket board 160-1 for a first type of semiconductor device DUT-1
  • FIG. 14B shows a socket board 160-2 for a second type of semiconductor device DUT-2
  • FIG. The socket board 160-3 for the type semiconductor device DUT-3 is shown respectively.
  • Each contact socket 180 is provided with a contact CNT having the same pin count and the same pin arrangement, and the IO pins of the DUT are inserted into those contacts, and each of these contact sockets 180 is connected to the corresponding socket board. Is done.
  • the socket board 160-1 has an external connection terminal group with four terminals T1 and T4, and pattern wiring is formed so as to be connected to the four operation terminals DQ0-DQ3 of DUT-1.
  • the socket board 160-2 has an external connection terminal group consisting of eight terminals T1 and T8, and is pattern-connected to eight operation terminals DQ0 to DQ7 of the DUT-2.
  • the socket board 160-3 has an external connection terminal group including 16 terminals T1 and T16, and is pattern-connected to the 16 operation terminals DQ0 to DQ15 of the DUT-3.
  • each socket board must be designed and manufactured for each DUT model. Also, when testing a device on a semiconductor wafer, a prober must be prepared for each type of semiconductor device. As described above, the user has to prepare a socket board or a prober for each type of DUT, which imposes a large economic burden.
  • An object of the present invention is to solve the above-described problems of the conventional example.
  • An object of the present invention is to provide a semiconductor device test apparatus that can be used effectively, specifically, a semiconductor device test apparatus that requires a smaller number of IO channels for one DUT than before.
  • Another object of the present invention is to provide a semiconductor device test apparatus capable of increasing the number of DUT types that can be tested with one IO channel group.
  • Another object of the present invention is to provide a device interface board used in these semiconductor device test equipment.
  • the number of IO channels is smaller than in the past. Even if the DUTs have the same number of terminals and the same terminal arrangement, but use multiple types of DUTs with different numbers of terminals required for operation, use a device interface board with the same structure. Device test equipment that can be tested by using a device interface board with the same configuration, even when multiple types of DUTs with different numbers of operating IO pins are targeted. provide.
  • the first invention includes a first external terminal group and a second external terminal group.
  • a first-type semiconductor device that operates using part of it
  • a second-type semiconductor device that operates using all of the first external terminal groups, and using all of the first and second external terminal groups
  • the first contact terminal group and the second contact terminal having the same number and arrangement as the first external terminal group and the second external terminal group so that they can be connected to any of the third type of semiconductor devices that operate with
  • a first contact device having a terminal group and a second contact device having the same configuration are prepared on the device interface board, and the first contact terminal group of the first contact device and the second contact device of the second contact device are prepared.
  • the first external terminal group and the second external terminal group are provided, and they operate using a part of the first external terminal group while having the same number of terminals and terminal arrangement.
  • a contact tool and a second contact tool having the same configuration are prepared on the device interface board, and corresponding terminals of the first contact terminal group of the first contact tool and the second contact terminal group of the second contact tool are provided.
  • the corresponding terminals of the second contact terminal group of the second contact tool are commonly connected by two second branch lines, and the common connection point of the two second branch lines is Connected to the comparator input pin of the IO channel, the driver output pin of the IO channel of the second IO channel group provided in the pin electronics corresponding to each contact terminal of the first contact terminal group of the second contact tool.
  • a semiconductor device tester in which the comparator input pins are connected by separate wiring.
  • one of the pair of input / output external terminals is provided.
  • the other end of the crossover wiring is connected to the driver output pin of the IO channel provided in the pin electronics corresponding to the set of input / output external terminals.
  • the external terminal of the semiconductor device is constituted by a pin led out of the package, and the first contact device and the second contact device are provided.
  • Consists of the first socket and the second socket, and the device interface One face board is composed of a socket board, and a first type semiconductor device or a second type semiconductor device is mounted on each of a first socket and a second socket mounted on the socket board, or We propose a semiconductor device tester that performs a test by mounting a third type semiconductor device in the second socket.
  • the external terminal of the semiconductor device is constituted by a pad formed on a semiconductor wafer
  • the contact device is composed of a first probe socket and a second probe socket
  • the device interface board is composed of a prober, and each of the probes mounted on the first probe socket and the second probe socket mounted on this prober is attached to the probe.
  • the present invention proposes a semiconductor device test apparatus for performing a test by contacting either the first type semiconductor device or the second type semiconductor device.
  • the external terminal is constituted by a pin from which a knocking force is also derived
  • the crossover wiring is provided between terminals of the socket that is in electrical contact with the pin.
  • One end of the transition wiring is connected between the socket terminal to which one end of the transition wiring is connected and the driver output pin of the IO channel provided for the pin electronics, and the other end of the transition wiring is connected to the socket terminal and the pin electronics that are connected.
  • a seventh invention is the semiconductor device test apparatus according to the third invention, wherein the external terminals are constituted by pads on a semiconductor wafer, and the crossover wiring is a wiring connected between contact terminals for supporting a probe in contact with the pad. Between the contact terminal to which one end of the transition wiring is connected and the driver output pin provided for the pin electronics, and between the contact terminal to which the other end of the transition wiring is connected and the comparator input pin provided for the pin electronics.
  • a semiconductor device tester that is individually connected by wiring.
  • An eighth invention is directed to any one of the device interface boards used in the semiconductor device test apparatus according to the fourth to seventh inventions, a crossover wiring, one end of the crossover wiring, and pin electronics.
  • the other end of the wiring and crossover wiring connecting between the driver output pins of the IO channel and the IO channel comparator provided in the pin electronics We propose a device interface board in which the wiring connecting between the input pins has a characteristic impedance that matches the output impedance of the driver provided in the pin electronics, and these wirings are mounted on the board.
  • a plurality of types of semiconductor devices (for example, three types of first to third types of semiconductor devices) having different numbers of pins used are tested using the same device interface board. can do.
  • the first type semiconductor device and the second type semiconductor device two devices can be tested at the same time, and the number of semiconductor devices is limited to one, but the third type semiconductor device can also be tested. Therefore, according to the present invention, different types of semiconductor devices can be tested using a common device interface board, and a user can test a plurality of types of devices simply by preparing this device interface board. Can be economically reduced. Further, since there is no need to change the device interface board every time the type of the device to be tested is changed, there is an advantage that the handling is easy.
  • not only one device interface board but also a plurality of device interface boards are mounted on a test head.
  • the first model and the second model are mounted. The number of devices that can be tested at one time can be doubled for this semiconductor device, thereby improving test efficiency.
  • a semiconductor device having a pair of input / output pins operating in different time zones can be tested with half the number of IO channels of the number of pins.
  • the force that keeps all the lines from the dry line to the comparator continuously at a predetermined impedance value can also reduce waveform deterioration.
  • an advantage that the occurrence of a judgment error in the comparator can be suppressed is obtained, and the effect is extremely large in practical use.
  • FIG. 1 is a block diagram for explaining an embodiment corresponding to claim 1 of the present invention.
  • FIG. 2 is a block diagram for explaining the operation and effect of the embodiment shown in FIG. 1.
  • FIG. 3 is a block diagram similar to FIG. 2.
  • FIG. 4 is a block diagram similar to FIG.
  • FIG. 6 A block diagram for explaining a specific example of the embodiment shown in FIG.
  • FIG. 1 A block diagram for explaining the embodiment shown in FIG. 1 by showing a specific example, similarly to FIG.
  • FIG. 5 A block diagram for explaining the embodiment shown in FIG. 5 by showing a more specific example.
  • FIG. 5 A block diagram for explaining an embodiment corresponding to claim 3 of the present invention.
  • FIG. 10A is a connection configuration diagram of a drive signal transmission line of the semiconductor device test apparatus according to the first or second invention
  • FIG. 10B is a drive signal transmission line of the semiconductor device test apparatus according to the third invention.
  • the connection configuration diagram, and Fig. 10C is the observed waveform diagram in the configuration of Fig. 10A and Fig. 10B.
  • [11] A diagram for explaining a connection configuration between a semiconductor device test apparatus and an IC handler apparatus.
  • FIG. 12A is a connection configuration diagram of a drive signal transmission line of a conventional semiconductor device test apparatus
  • FIG. 12B is a connection configuration diagram of a drive signal transmission line of a semiconductor device test apparatus of an unknown test example
  • FIG. 12C is an observation waveform chart in the configuration of FIGS. 12A and 12B.
  • FIGS. 13A, 13B, and 13C are diagrams for explaining examples of three types of semiconductor devices using different numbers of pins.
  • FIGS. 14A, 14B, and 14C are diagrams for explaining an example of a socket board conventionally used to test the three types of semiconductor devices shown in FIGS. 13A, 13B, and 13C.
  • FIG. PE shown in Fig. 1 indicates pin electronics.
  • 260 indicates a device interface board.
  • the device interface board 260 is a socket board when the external terminals of the DUT are of the pin type, and is a prober when the external terminals of the DUT are of the pad type on the wafer. Its substance Will be described later in Examples.
  • the first contactor 280-1 and the second contactor 280-2 are mounted on the device interface board 260.
  • the first contact tool 280-1 and the second contact tool 280-2 are sockets when the external terminals of the DUT are pin-type, and probe cards when the external terminals of the DUT are pad-type on the wafer.
  • Each contact tool has a contact CNT connected in a one-to-one correspondence with the first contact terminal group 281-1 and the second contact terminal group 281-2, and the DUT pins are brought into contact with the contact CNT.
  • the DUT is electrically connected to the first contact terminal group 281-1 and the second contact terminal group 281-2.
  • the contact terminals VI-1-1 VI-N of the first contact terminal group 281-1 of the first contact member 280-1 and the second contact terminal group 281- of the second contact member 280-2 are provided.
  • 2 Contact terminals W2-1-1 W2-N are connected in common by 101B-1-1 101B-N.
  • one end of each crossover wiring 10 IB—1—101B—N and the driver output pin SI—1—S1—N of the IO channel of the first IO channel group IO CH—1 provided in the pin electronics PE are connected to the line 101A. — Connect with 101A-N.
  • crossover wiring 101B-1—101B-N and the comparator input pin R1-1—R1—N of the IO channel of the first IO channel group IOCH—1 are connected to the line 101C—1-1101C—N. Connect each.
  • a force transfer wiring 101B indicating one channel is provided between the first contact tool 280-1 and the second contact tool 280-2.
  • eight are connected. Accordingly, eight lines 101A and 101B are provided corresponding to eight channels.
  • the lines 101A and 101C and the crossover wiring 101B are all composed of signal lines having a characteristic impedance of, for example, 50 ⁇ that matches the output impedance of the dry channel IODR of the IO channel provided in the pin electronics PE.
  • the pin electronics P Connect the E-driver output pin SI-1 to the terminal Tl-1 provided on the device interface board 260 with a coaxial cable having a characteristic impedance of 50 ⁇ , and connect terminal T1-1 to the first contactor 280-1. Between the contact terminal V1-1 of the first contact terminal group 281-1, the crossover wiring 101B-1 and the contact terminal W2-1 and the terminal U1 of the second contact terminal group 281-2 of the second contact tool 280-2.
  • -1 is connected with a microstrip line having a characteristic impedance of 50 ⁇ , respectively, and between terminal U1-1 and the comparator input pin R1-1 is connected with a coaxial cable having a characteristic impedance of 50 ⁇ . Is shown. However, the structure of the line is not limited to the structure shown in Fig. 1, and all lines can be connected by a coaxial cable, or all can be connected by a microstrip line.
  • the output terminal of the driver is connected to a series terminating resistor R that terminates the total reflection wave returning from the far end of the transmission line.
  • a terminating resistor R for impedance matching is connected to the input terminal of CP.
  • the terminal V2-1—V2-N of the first contact terminal group 281-1 of the second contact tool 280-2 has the driver output of the IO channel of the second IO channel group IOCH—2 of the pin electronics PE.
  • Pins S2—1—S2—N and the comparator input pins R2—1—R2—N are connected by separate lines 102A—102A—N and 102B—102B—N, respectively.
  • the driver output pin S2-1 and the terminal T2-1 are connected by a coaxial cable having a characteristic impedance of 50 ⁇ as the line 102A-1, and the terminal T2-1 and the second contactor 280- are connected.
  • the first contact terminal group 2 is connected to the contact terminal V2-1 of 281-1 by a microstrip line having a characteristic impedance of 50 ⁇ , and the line 102B-1 is similarly connected to the comparator input pin.
  • Terminal R2-1 and terminal U2-1 are connected by a coaxial cable, and a micro connection is made between terminal U2-1 and the contact terminal W2-1 of the first contact terminal group 281-1 of the second contact tool 280-2.
  • the case where the structure is connected by a strip line is shown. However, if it is not necessary to use a coaxial cable and a microstrip line separately, all may be constituted by a coaxial cable, or all may be constituted by a microstrip line. The example shown in FIG.
  • N (for example, 8) contact terminals related to data input and output of contact terminal group 281-1 V2-1-V2-8N (8) The same wiring is provided for all 8 channels.
  • the lines 101A and 101C and the lines 102A and 102B are coaxial cables, respectively.
  • the length of the signal, including the cable and the microstrip line, is almost the same, and the signal transmission time is the same.
  • the data propagation time is delayed by the time required to propagate the portion of the crossover wiring 101B. .
  • the external terminals DQ0-DQ3 related to the data of the DUT-1 of the first model have the first contact terminals of the first contact 280-1 and the second contact 280-2, respectively.
  • the contact terminals W2—1 and W2—4 of the second contact terminal group 281—2 of the second contact device 280-2 are not used for the DUT—1-2 mounted on the second contact device 280-1.
  • the response signal output from the DUT—1—1 attached to the first contact 280—1 is the crossover wiring 101B—1 and 101B—4 and the line 101C—1.
  • the first type of DUT-1 can be tested two at a time. Note that the power supply terminal and control terminal of each type of DUT are located at common positions in all types of devices, and therefore, no special mention is made here.
  • the semiconductor device of the second type External terminals DQ0—DQ7 related to each data of device DUT—2 are also pin electronics PE through the first contact terminal group 281-1 of the first contact device 280-1 and the second contact device 280-2. Connected to.
  • the second type semiconductor device can be used without any trouble at a time. Tests can be performed individually.
  • the first contact device 280-1 is not mounted, and the third type semiconductor device DUT-3 is mounted on the second contact device 280-2. All the external terminals DQ0-DQ15 related to the data of the semiconductor device DUT-3 of the third type are connected to the first contact terminal group 281-1 and the second contact terminal group 281- of the second contact device 280-2, respectively. Pinge through 2 Recto-Port Connected to PE. Therefore, this third type of semiconductor device DUT-3 can be tested one device at a time.
  • the first contact terminal group 281-1 of the first contact member 280-1 connected to the driver output pin S1 via the line 101A and the driver output pin S1 via the line 101A and the crossover wiring 101B.
  • the second contact terminal group 281-2 of the second contact tool 280-2 differs from the second contact terminal group 281-2 in the propagation delay amount in view of the driver side (S1) force, and similarly in the comparator side (R1) force.
  • the semiconductor device test apparatus determines in advance the difference in skew between the two, and to consider the conditions for generating a test pattern corresponding to the difference in skew and the timing determination conditions on the comparator side. . It is desirable that the line length of the crossover wiring 101B be as short as possible.
  • FIG. 5 shows the configuration of the semiconductor device test apparatus proposed in the second invention.
  • the structure of mounting the first contact device 280-1 and the second contact device 280-2 on the device interface board 260 is the same as that of the first invention, but the first contact device 280-1 has the first contact device.
  • the connection structure between the terminal group 281-1, the second contact terminal group 281-2 of the second contact tool 280-2, and the pin electronics PE is different from that of the first invention.
  • the first contact device 28 mounted on the device interface board 260
  • the terminal Tl-1 is connected to the driver output pin S1-1 of the IO channel of the first IO channel group I OCH-1 provided in the pin electronics PE through the line 120A-1. Further, contact terminals corresponding to the first contact terminal group 281-1 of the first contact device 280-1 and the second contact terminal group 281-2 of the second contact device 280-2, for example, VI-1 and W2- 1, one end of each of the two second branch lines 121B-1 and 131B-1 is connected, and the other end of each of the two second branch lines 121B-1 and 131B-1 is provided on the device interface board 260. Connect to terminal U1-1 It is characterized in that the child Ul-1 is connected to the comparator input pin Rl-1 provided in the pin electronics PE through the line 130B-1.
  • connection between the first contact terminal group 281-1 of the second contact tool 280-2 and the second IO channel group IOCH-2 is the same as that of the first invention.
  • the first contact terminal group 281-1 of the first contact tool 280-1 and the first contact terminal group of the second contact tool 280-2 are illustrated.
  • the same wiring is applied to all the channels in the group 281-1 and the second contact terminal group 281-2.
  • the first branch lines 121A and 131A and the second branch lines 121B and 131B are both matched to the double characteristic impedance of the lines 120A and 130A.
  • looking at the contactors 280-1 and 280-2 from terminals T1 and U1 two branch lines 121A, 131A, 121B, and 131B are connected to each, and these two branch lines are connected in parallel.
  • Each of these branch lines 121A and 131A and 121B and 131B have twice the characteristic impedance of, for example, 100 ⁇ , so that the characteristics of the contactors 280-1 and 280-2 viewed from the terminals T1 and U1 can be seen. Adjust so that the impedance is 50 ⁇ .
  • connection structure shown in Fig. 5 as well, the semiconductor device DUT-1 of the first type and the semiconductor device DUT-2 of the second type are connected in the same manner as described in Figs. 2, 3, and 4.
  • the third type of semiconductor device DUT-3 can be tested.
  • FIG. 6 shows a specific embodiment of the present invention.
  • the embodiment shown in Fig. 6 shows an example in which a semiconductor device of a type in which the structural force of the external terminal of the DUT and the S package force pins protrude is tested.
  • a socket is generally used as a contact tool to connect a semiconductor device of the type with a protruding pin to the pin electronics PE, as shown in Fig. 14. Therefore, the portions of the first contact tool 280-1 and the second contact tool 280-2 shown in FIGS. 1 to 5 are replaced with the socket 180. Accordingly, the device interface board 260 is changed to a socket board 160.
  • FIG. 6 illustrates the connection structure proposed in the first invention, but can be similarly applied to the connection structure proposed in the second invention.
  • FIG. 7 shows the case where the present invention is applied to a case where the semiconductor device is of a type existing on a semiconductor wafer.
  • the following shows an embodiment using the method.
  • a semiconductor device existing on a semiconductor wafer an external terminal called a pad is arranged in a region where one device of the semiconductor wafer is formed, and the tip of a needle-like contact called a probe is pressed against this pad, Through this probe, each terminal of the semiconductor device is electrically connected to the pin electronics PE.
  • reference numeral 290-1 denotes a first probe socket which operates as a first contact tool
  • reference numeral 290-2 denotes a second probe socket which operates as a second contact tool
  • reference numeral 300 denotes a prober (probe card), which has a large substrate facing the entire surface of the wafer.
  • the Z second probe socket forms a part of the probe card, holds a probe (needle) 291, and these needles are each detachably connected to the probe card 300.
  • Each probe socket is arranged to face a semiconductor device as each IC chip on the wafer.
  • an opening having an area larger than a formation area of a semiconductor device on a wafer is formed in a substrate constituting a probe card, and a first contact terminal group 281 is formed around the opening. 1 and the second contact terminal group 281-2 are arranged, and the probe 29 1 is electrically and mechanically connected to the first contact terminal group 281-1 and the second contact terminal group 281-2, and the hole is hollow. Protruded and supported by the part.
  • the first probe socket 290-1 and the second probe socket 290-2 are mounted on the probe card 300, and the probe card 300 moves in the X—Y and Z directions (up and down) along the surface of the wafer.
  • the tip of the probe 291 is brought into contact with the semiconductor device pad on the wafer.
  • Each of the first probe socket 290-1 and the second probe socket 290-2 faces and contacts an individual semiconductor device on the wafer.
  • first contact terminal group 281-1 of the second probe socket 290-2 has a configuration to connect to the driver output pin S2 and the comparator input pin R2 through separate lines 102A and 102B. It may be applied to all terminals of the first contact terminal group 281-1.
  • the third type semiconductor device must be tested under the condition that the probe 291 of the first probe socket 290-1 is not mounted. Therefore, it is desirable that the probe 291 be provided with a detachable structure.
  • the third type semiconductor device is formed only on the position of the second probe socket 290-2 on the wafer, and is not formed at the position of the first probe socket 290-1. Tests can be performed one by one in the configuration shown. Here, it is necessary that the first type semiconductor device, the second type semiconductor device, and the third type semiconductor device existing on the wafer have their respective pads formed in the same positional relation, and that .
  • FIG. 8 shows an embodiment in which the connection configuration of the second invention is applied to a probe card.
  • the first probe socket 290-1 and the second probe socket 290-2 can be used to test two semiconductor devices of the first type and the second type on the semiconductor device at a time. it can. The reason is the same as that described with reference to FIGS. 2 and 3, and further description is omitted here.
  • the third type of semiconductor device can be tested by the second probe socket 290-2 by setting the condition that the probe 291 of the first probe socket 290-1 is not attached.
  • FIG. 9 shows a connection configuration proposed in the third invention.
  • the connection configuration proposed here is a connection configuration to be applied to the case where the paired terminals of the data input / output terminals of the DUT are differentially switched between the operation mode and the non-operation mode at different timings.
  • Such characteristics Semiconductor devices are present in graphics devices.
  • connection structure that connects the first contact terminal group 281-1 and the second contact terminal group 281-2 of the second contact tool 280-2 to the pin electronics PE.
  • the connection structure that connects the first contact terminal group of the second contact device 280-2 shown in FIGS. 1 to 5 to the pin electronics PE it corresponds to the number of data input / output pins of the DUT. Requires a number of drivers and comparators.
  • the number of the driver and the comparator taka may be about half the number of the data input / output pins of the DUT.
  • the lines 121A, 121B and 131A, 131B are matched to the characteristic impedance which is about twice the characteristic impedance of the other lines 120A, 130A. Need to be done. That is, if the characteristic impedance of the lines 120A and 130B is 50 ⁇ , the characteristic impedance of the lines 121A, 121B, 131A, and 131B must be about 100 ⁇ . If the characteristic impedance is converted from a 50 ⁇ to a 100 ⁇ parallel connection circuit at the branch point in this way, signal reflection will occur and the waveform quality will be degraded.
  • terminals that operate at a time lag with each other by a switching control signal are connected by a crossover wiring, and one terminal is connected to a driver output pin provided in pin electronics. It connects the other terminal to the comparator input pin provided in the pin electronics and claims that the two terminals can be tested on a common line.
  • FIG. 9 shows the embodiment. 280 shown in FIG. 9 indicates a contact device.
  • Contact CNTs are arranged in this contact tool and provided, for example, by contacting, for example, pin-type external terminals of a DUT (not shown) with the contact CNTs. Each contact terminal is electrically connected.
  • the contact terminals V1-1, VI-2, V2-1, V2-2, ..., VN-1, VN-2, and W1-1, Wl-2, W2 of the contact terminal group 281 are shown.
  • the contact terminals that contact the pins that operate in pairs with each other are shown.
  • These paired contact terminals are commonly connected to each other via crossover wiring 101B1-1-101B1-N and 101B2-1-101B2-N, and one end of each crossover wiring 101B, for example, 101B1-1 is connected to terminal T1-1.
  • FIG. 9 shows the connections for two channels (ie, the second IO channel IOCH-2 has a similar connection). All of the input and output pins that operate in pairs with the DUT are connected in this way.
  • one of the commonly connected pins of the DUT is controlled to an operating state, and a test pattern signal is applied from the dryno through the line 101A.
  • the response signal can be fetched on the comparator side through the line 101C, and one pin can be tested.
  • the other pin With one pin inactive, the other pin is switched to the active state. In this state, test the other pin. Then, in parallel with the test of the pair of terminals (for example, VI-1 and VI-2) by the IOCH-1, the test of the other pair of terminals (for example, Wl-1 and W1-2) by the IOCH-2 is performed. Therefore, a DUT with 32 pins can be tested on 16 channels. Since one pin and the other pin are cross-wired, the propagation delay seen from the driver side differs from the driver side, and the propagation delay seen from the comparator side also differs, as described above. For this reason, it is necessary for the semiconductor device test apparatus to determine in advance the difference between the two skews, and to consider the conditions for generating a test pattern corresponding to the difference in skew and the timing determination conditions on the comparator side.
  • the lines 101A and 101C and the crossover wiring 101B can all be set to have a characteristic impedance of 50 ⁇ . As a result, there is no portion where the characteristic impedance is discontinuous in the middle of the line, and there is no risk of deteriorating the waveform quality.
  • Figure 10 shows an example of waveform measurement.
  • FIG. 10A shows the second contactor 280 in the configuration of FIGS. 1 to 8 according to the first or second invention.
  • -2 shows the connection structure of the first contact terminal.
  • FIG. 10B shows the connection structure proposed in the third invention.
  • Figure 10C shows an example of waveform observation comparing these two connection structures. Waveforms a, b, and c shown in FIG. 10C represent the waveforms observed at the observation points (a), (b), and (c) shown in FIGS. 10A and 10B when a rectangular wave is applied from the driver IODR. As is clear from this waveform force, it can be understood that the impedance of the connection structure proposed in the third invention is continuously matched, so that the waveform is less deteriorated.
  • the semiconductor device test apparatus and the device interface board according to the present invention are used in a semiconductor device manufacturing department or a semiconductor device development department.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

 使用する外部端子数が異なる第1~第3型式の半導体デバイスを接続することができる第1及び第2接触端子群を備えた第1及び第2接触具をインターフェースボードに用意し、この第1接触具の第1接触端子群と、第2接触具の第2接触端子群の各対応する端子同士を渡り配線で接続し、各渡り配線の一端側にピンエレクトロニクスに備えたIOチャネルのドライバ出力ピンを接続し、他端側にピンエレクトロニクスに備えたIOチャネルのコンパレータ入力ピンを接続し、第2接触具の第1接触端子群にはピンエレクトロニクスに備えたIOチャネルのドライバ出力ピン及びコンパレータ入力ピンを別個の配線で接続した。

Description

明 細 書
半導体デバイス試験装置及びデバイスインターフェースボード 技術分野
[0001] この発明は、半導体デバイス試験装置及び被試験半導体デバイスを電気的に半導 体デバイス試験装置に接続するためのデバイスインターフェースボードに関し、詳し くは IOチャネルを有効に活用して、試験対象半導体デバイス(以下では単に DUTと 称す)の種類または数を増大することが出来る半導体デバイス試験装置、及びデバ イスインターフェースボードに係る。
背景技術
[0002] 特許文献 1には、 1本の伝送線路の一端に駆動信号を印加し、途中で 2分岐し、 2 分岐した両伝送線路を 2個の DUTに接続する構成が開示されている。この構成によ れば、 1つの IOチャネルが 2個の DUTを駆動できるので、 IOチャネルの有効活用が 図られる。またこの文献には、受信端での受信波形信号において、無用の振動波形 を低減可能とした 2分岐伝送線路を用いる半導体デバイス試験装置が開示されてい る。
図 11は、一般的な半導体デバイス試験装置が ICハンドラ装置 300と組み合わされ て複数個の DUTを試験する概念構成図を示す。
半導体デバイス試験装置 100は、装置本体 101と、これと離間した位置にあって IC ハンドラ装置 300と結合線路を介して連結して 、るテストヘッド 200とからなる。テスト ヘッド 200は、 N個(Nは 2以上の整数)の IOチャネルからなる IOチャネル群が複数 個と、通常チャネル(図示せず)と、その他(図示せず)を具えるピンエレクトロニクス P Eを有する。
[0003] ここで、 IOチャネルとは DUTの IOピン (入出力端子)に接続して、 DUTへ信号の 印加と、 DUTから出力される応答信号を受信する機能を持つチャネルであり、通常 は DUTの IOピンの数 (すなわち入出力端子数)に応じた数だけ設けられる。通常チ ャネルとは DUTの入力ピンに接続して信号の印加を行うドライバのみのチャネルを 指す。 DUTと半導体デバイス試験装置とは、テストヘッド部 200のピンエレクトロニクス P Eと接続されているパフォーマンスボード PBと、同軸ケーブル 120と、ソケットボード 1 60、コンタクトソケット 180を介して接続される。尚スペーシングフレーム 140はパフォ 一マンスボード PBにソケットボード 160を取り付けるもので、これらの組み合わせをハ ィフィックス 102と呼ぶ。
特許文献 1:特開 2000— 292491号公報
発明の開示
発明が解決しょうとする課題
[0004] 特許文献 1に開示された接続構造によれば、 1個の IOチャネルのドライバの出力が 1本の伝送線路を経て、途中の分岐点で 2分岐し、これら 2分岐した線路が 2個の DU Tにそれぞれ接続され、これにより同時に 2個の DUTが駆動される。
この結果として 1個の IOチャネル群で 2個の DUTを同時に試験することができ、数 が有限である IOチャネルを有効に利用できるが、波形品質に難点がある。
また、この技術を、図 12Bに示すごとぐ 1個の DUTが切替制御信号によって互に 時間をずらして動作する対の入出力端子を複数対有する特殊の形式の場合に応用 すると、 1個の IOチャネルを 2個の端子に対応させることができ、 IOチャネルの数を半 減できるが、これも波形品質に難点がある。
[0005] すなわち、図 12Bに示す試行回路では、 DUTの対である 2個の入出力ピンと 1個 のドライバ出力ピン Pが対応して動作するものであって、同軸ケーブルはその一端が ドライバ出力ピン Pに接続され、他端カ^ケットボードの端子 Qに接続され、この端子 Qカゝら分岐点 Rまで特性インピーダンズが 50 Ωのマイクロストリップラインで接続し、こ の分岐点 Rから 2分岐線路が対である 2個の入出力端子にそれぞれ接続された構成 を持つ。
この試行回路において、ドライノ IODRから高速な矩形波を印加し、 DUTの一方 の入出力端子を観測点 (View)として波形を観測した例を図 12Cに示す。この図に 示す波形において、 bは分岐点 Rからそれぞれの入出力端子までの分岐線路の特性 インピーダンスが 100 Ωの場合の波形、 W は 50 Ωの場合の波形である。
[0006] 尚比較のために、図 12Aに示す分岐線路を持たない従来技術に係る回路構成の DUTの入出力端子(View)での理想的な波形を図 12Cにおいて aで示す。
これらの波形の比較から、図 12Bにおいて分岐点 R力も DUT側を見て、 DUTの端 子までの分岐線路のインピーダンスが(b' ) : 50 Ωの場合、分岐点 R力 DUTを見た インピーダンスは 50 Ω /2 = 25 Ωとなり、この分岐点 Rまでの線路の特性インピーダ ンス (50 Ω )と不整合となり、これに伴う波形劣化が存在する。また、 (b): 100 Ωの場 合、分岐点 Rから DUTを見たインピーダンスは 100 Ω /2 = 50 Ωとなり整合して!/、る 力 一方の入出力端子力 全反射してくる信号側力 分岐点を見ると、分岐点までは 100 Ωであり、それから先は入力側の 50 Ωと他方の分岐線路の 100 Ωとの並列イン ピーダンス @33 Ωとなり不整合となり、これに伴う波形劣化が存在することが解る。何 れにしても、 50 Ωの終端抵抗を DUT側に接続できない試験装置であるので、全反 射に伴う波形劣化は避けられず、これが 2分岐方式の大きな難点である。
[0007] したがって、図 12Bに示したような、試行例が持つ波形の品質の劣化という欠点を 克服した、数が有限である ΙΟチャネルを有効に利用できる半導体デバイス試験装置 が求められる。
また、数が有限である ΙΟチャネルを有効に利用できる半導体デバイス試験装置とし ては、上記のほかに、図 13に示す半導体デバイスのように、同一パッケージで同一 の端子数と同一の端子配列を備えた半導体デバイスであっても、書き込み Ζ読み出 しの ΙΟピンのデータ幅が X 4ビット、 Χ 8ビット、 X 16ビットとなる 3種類のデバイスの 試験を試験できるような半導体デバイス試験装置も求められる。
[0008] 図 13Aでは 4ビットの ΙΟピン DQ0— DQ4以外データの入出力に関しては無使用 ピン NC4— NC15であり、図 13Bは 8ビットの ΙΟピン DQ0— DQ7以外はデータの入 力及び出力に関しては無使用ピン NC8— NC15であり、図 13Cは 16ビットの ΙΟピン DQ0— DQ 15が全てデータの入力及び出力ピンとして使用される。以下この明細書 では図 13Aに示したデータ幅が Χ 4ビット構成の半導体デバイスを第 1型式の半導 体デバイス DUT— 1、図 13Bに示したデータ幅が X 8ビット構成の半導体デバイスを 第 2型式の半導体デバイス DUT— 2、図 13Cに示したデータ幅が X 16ビット構成の 半導体デバイスを第 3型式の半導体デバイス DUT - 3と称することにする。
[0009] これら各型式の半導体デバイスを一つの半導体デバイス試験装置で試験するには 当該試験装置は各ソケットボード毎に、ソケットボードに装着される DUTである 3種類 の DUTの中の動作に用いられる端子数が最大の値を持つ DUTに対応できるだけ の数の IOチャネルを用意しておく必要がある。上述の例では第 3型式の DUT— 3を 試験するために 16個の IOチャネルを用意することになる。
一方、 3品種の DUTに対応するソケットボードは各型式の DUTの IOピン DQ0— D Q4、 DQ0— DQ7、 DQ0— DQ 15に応じて専用の接続構成となる。因みに、図 14に 各型式の半導体デバイス用のソケットボードの一例を示す。図 14Aは第 1型式の半 導体デバイス DUT— 1用のソケットボード 160— 1を示し、図 14Bは第 2型式の半導体 デバイス DUT— 2用のソケットボード 160— 2を示し、図 14Cは第 3型式の半導体デバ イス DUT— 3用のソケットボード 160— 3をそれぞれ示す。
[0010] 各コンタクトソケット 180には同じピン数で、同じピン配列のコンタクト CNTが設けら れ、それらコンタクトに DUTの IOピンが挿入され、これら各コンタクトソケット 180が、 それぞれ対応するソケットボードに接続される。ソケットボード 160— 1には 4個の端子 T1一 T4力もなる外部接続端子群が設けられていて、 DUT— 1の 4個の動作用端子 DQ0— DQ3に接続されるようにパターン配線が形成されている。ソケットボード 160 —2には 8個の端子 T1一 T8からなる外部接続端子群が設けられて ヽて、 DUT-2の 8個の動作用端子 DQ0— DQ7にパターン接続されている。同様に、ソケットボード 1 60— 3には 16個の端子 T1一 T16からなる外部接続端子群が設けられていて、 DUT —3の 16個の動作用端子 DQ0— DQ15にパターン接続されている。
[0011] これらの図から明らかなように各ソケットボードのパターン配線は DUTの型式毎に 設計し、製造する必要がある。また、半導体ウェハー上に存在するデバイスを試験す る場合にも、各型式の半導体デバイス毎にプローバを用意しなければならない。 このように、利用者側では DUTの型式毎にソケットボード或はプローバを用意しな ければならないため、経済的な負担が大きい。
また、このように複数の形式の半導体デバイスを一つの半導体デバイス試験装置で 試験する場合、 IOチャネル群の数を減らし、或は IOチャネル群あたりの試験可能な DUTの数を倍増する工夫が求められる。
[0012] この発明の目的は上記従来例の課題を解決することであり、詳しくは IOチャネルを 有効に活用することが出来る半導体デバイス試験装置を提供することであり、具体的 には 1個の DUTに対して必要とされる IOチャネルの数を従来よりも少なくて済む半 導体デバイス試験装置、或は 1個の IOチャネル群で試験することが出来る DUTの種 類を増やすことができる半導体デバイス試験装置を提供することである。
また、これら半導体デバイス試験装置に用いられるデバイスインターフェースボード を提供することである。
[0013] 更に詳しくは、対をなす IOピン同士が異なるタイミングで差動的に動作モードと非 動作モードとに切替られる型式の DUTの場合には、従来よりも少ない数の IOチヤネ ルで以つて試験することができ、また DUTが同一の端子数で、かつ同一の端子配列 を持ちながら、動作に必要な端子数が異なる複数種類の DUTの場合でも、同一構 造のデバイスインターフェースボードを用いて試験することができる半導体デバイス 試験装置を提供し、動作用 IOピンの数が異なる複数種類の DUTが対象の場合でも 、同一構成のデバイスインターフェースボードを用いて試験可能な半導体デバイス試 験装置を提供する。
課題を解決するための手段
[0014] この目的を達成するために、第 1発明では、第 1外部端子群と第 2外部端子群とを 備え、それらの端子数及び端子配列が同一でありながら、第 1外部端子群の一部を 用いて動作する第 1型式の半導体デバイス、第 1外部端子群の全てを用いて動作す る第 2型式の半導体デバイス、及び第 1外部端子群と第 2外部端子群の全てを用い て動作する第 3型式の半導体デバイスの何れとでも接続することができるように、第 1 外部端子群及び第 2外部端子群と同一の数及び配列を持った第 1接触端子群及び 第 2接触端子群を備えた第 1接触具及びこれと同じ構成の第 2接触具をデバイスイン ターフェースボードに用意し、この第 1接触具の第 1接触端子群と、第 2接触具の第 2 接触端子群の各対応する端子同士を渡り配線で共通接続し、各渡り配線の一端側 に、第 1接触具の第 1接触端子群の各接触端子に対応してピンエレクトロニクスに設 けられた第 1IOチャネル群の IOチャネルのドライバ出力ピンを接続し、他端側に当該 IOチャネルのコンパレータ入力ピンを接続し、第 2接触具の第 1接触端子群の各接 触端子に、それと対応してピンエレクトロニクスに設けられた第 2IOチャネル群の IO チャネルのドライバ出力ピン及びコンパレータ入力ピンをそれぞれ別個の配線で接 続した半導体デバイス試験装置を提案する。
[0015] 第 2発明では、第 1外部端子群と第 2外部端子群とを備え、それらの端子数及び端 子配列が同一でありながら、第 1外部端子群の一部を用いて動作する第 1型式の半 導体デバイス、第 1外部端子群の全てを用いて動作する第 2型式の半導体デバイス 、及び第 1外部端子群と第 2外部端子群の全てを用いて動作する第 3型式の半導体 デバイスの何れとでも接続することができるように、第 1外部端子群及び第 2外部端子 群と同一の数及び配列を持った第 1接触端子群及び第 2接触端子群を備えた第 1接 触具及びこれと同じ構成の第 2接触具をデバイスインターフェースボードに用意し、こ の第 1接触具の第 1接触端子群と、第 2接触具の第 2接触端子群の各対応する端子 同士を 2本の第 1分岐線で共通連結し、この 2本の第 1分岐線の共通接続点に、第 1 接触具の第 1接触端子群の各接触端子に対応してピンエレクトロニクスに設けられた 第 1IOチャネル群の IOチャネルの各ドライバ出力ピンを接続し、第 1接触具の第 1接 触端子群と、第 2接触具の第 2接触端子群の各対応する端子同士を 2本の第 2分岐 線で共通接続し、この 2本の第 2分岐線の共通接続点に、第 1IOチャネル群の IOチ ャネルのコンパレータ入力ピンに接続し、第 2接触具の第 1接触端子群の各接触端 子に、それと対応してピンエレクトロニクスに設けられた第 2IOチャネル群の IOチヤネ ルのドライバ出力ピン及びコンパレータ入力ピンをそれぞれ別個の配線で接続した 半導体デバイス試験装置を提案する。
[0016] 第 3発明では異なるタイミングで動作する対をなす入出力用外部端子を少なくとも 1 組備えた半導体デバイスを試験する半導体デバイス試験装置にぉ ヽて、 1組の入出 力用外部端子の一方と他方との間を渡り配線で接続し、渡り配線の一端側に、当該 入出力用外部端子の組に対応してピンエレクトロニクスに設けられた IOチャネルのド ライバ出力ピンを接続し、他端側に当該 IOチャネルのコンパレータ入力ピンを接続し た半導体デバイス試験装置を提案する。
第 4発明では、第 1又は第 2発明記載の半導体デバイス試験装置の何れかにおい て、半導体デバイスの外部端子はパッケージの外側に導出されたピンで構成され、 第 1接触具及び第 2接触具は第 1ソケット及び第 2ソケットで構成され、デバイスインタ 一フェースボードはソケットボードで構成され、このソケットボードに実装された第 1ソ ケット及び第 2ソケットのそれぞれに第 1型式の半導体デバイス又は第 2型式の半導 体デバイスを装着するか、或は第 2ソケットに第 3型式の半導体デバイスを装着して 試験を行う半導体デバイス試験装置を提案する。
[0017] 第 5発明では、第 1又は第 2発明記載の半導体デバイス試験装置の何れかにおい て、半導体デバイスの外部端子は半導体ウェハー上に形成されたパッドで構成され 、第 1接触具及び第 2接触具は第 1プローブソケット及び第 2プローブソケットで構成 され、デバイスインターフェースボードはプローバで構成され、このプローバに実装さ れた第 1プローブソケット及び第 2プローブソケットに装着されたプローブのそれぞれ に上記第 1型式の半導体デバイス又は第 2型式の半導体デバイスの何れかを接触さ せて試験を行う半導体デバイス試験装置を提案する。
[0018] 第 6発明では、第 3の発明記載の半導体デバイス試験装置において、外部端子は ノ ッケージ力も導出されたピンで構成され、渡り配線はピンと電気的に接触するソケ ットの端子間に接続された配線で構成され、渡り配線の一端側が接続されたソケット の端子とピンエレクトロニクスに備えた IOチャネルのドライバ出力ピンの間、及び渡り 配線の他端側が接続されたソケット端子とピンエレクトロニクスに備えた IOチャネルの コンパレータ入力ピンの間をそれぞれ別々に配線で接続した半導体デバイス試験装 置を提案する。
第 7の発明は、第 3の発明記載の半導体デバイス試験装置において、外部端子は 半導体ウェハー上のパッドで構成され、渡り配線はパッドと接触するプローブを支持 する接触端子の相互間に接続した配線で構成され、渡り配線の一端側が接続された 接触端子とピンエレクトロニクスに備えたドライバ出力ピンの間、及び渡り配線の他端 側が接続された接触端子とピンエレクトロニクスに備えたコンパレータ入力ピンの間を それぞれ別々に配線で接続した半導体デバイス試験装置を提案する。
[0019] 第 8の発明は、第 4乃至第 7の発明記載の半導体デバイス試験装置に用いられる デバイスインターフェースボードの何れか〖こお 、て、渡り配線及びこの渡り配線の一 端側とピンエレクトロニクスに備えた IOチャネルのドライバ出力ピンの間を接続する配 線及び渡り配線の他端側とピンエレクトロニクスに備えた IOチャネルのコンパレータ 入力ピンの間を接続する配線はそれぞれピンエレクトロニクスに備えたドライバの出 力インピーダンスと整合する特性インピーダンスを具備し、これらの配線がボードに実 装されている構造のデバイスインターフェースボードを提案する。
発明の効果
[0020] 第 1及び第 2の発明によれば、同一のデバイスインターフェースボードを用いて利 用ピン数が異なる複数種類の半導体デバイス (例えば第 1乃至第 3形式の 3種類の 半導体デバイス)を試験することができる。第 1型式の半導体デバイス及び第 2型式 の半導体デバイスであれば 2個ずつ同時に試験を行うことができるし、また 1個に制 限されるが第 3型式の半導体デバイスも試験することができる。従って、この発明によ れば共通のデバイスインターフェースボードを用いて、品種の異なる半導体デバイス を試験することができるから、利用者はこのデバイスインターフェースボードを用意す るだけで複数品種のデバイスを試験することができることになり、経済的に負担を軽 減することができる。更に試験を行うデバイスの品種を変更する毎に、デバイスインタ 一フェースボードを変更しなくて済むため、取扱 、も容易になる利点も得られる。
[0021] また、一般にデバイスインターフェースボードは一枚に限らず複数枚をテストヘッド に実装するから、この発明によるデバイスインターフェースボードをテストヘッドに複 数枚実装することにより、第 1型式と第 2型式の半導体デバイスに関しては一度に試 験することができるデバイスの数を倍増させることができ、これにより試験効率を向上 させることがでさる。
また、第 3の発明によれば互に異なる時間帯で動作する対をなす入出力ピンを持 つ半導体デバイスを、そのピン数の半分の IOチャネルの数で試験を行うことができる 。然もドライノくからコンパレータに至る全ての線路が連続して所定のインピーダンスの 値に保つ力も波形の劣化を少なくすることができる。この点でコンパレータにおける判 定誤差の発生を抑えることができる利点が得られ、その効果は実用に供して頗る大き い。
図面の簡単な説明
[0022] [図 1]この発明の請求項 1に対応する実施例を説明するためのブロック図。
[図 2]図 1に示した実施例の作用効果を説明するためのブロック図。 [図 3]図 2と同様のブロック図。
[図 4]図 2と同様のブロック図。
圆 5]この発明の請求項 2に対応した実施例を説明するためのブロック図。
圆 6]図 1に示した実施例を具体的な例を示して説明するためのブロック図。
圆 7]図 6と同様に、図 1に示した実施例を具体的な例を示して説明するためのブロッ ク図。
圆 8]図 5に示した実施例を更に具体的な例を示して説明するためのブロック図。 圆 9]この発明の請求項 3に対応する実施例を説明するためのブロック図。
圆 10]図 10Aは、第 1または第 2の発明に係る半導体デバイス試験装置の駆動信号 伝送線路の接続構成図、図 10Bは、第 3の発明に係る半導体デバイス試験装置の 駆動信号伝送線路の接続構成図、図 10Cは図 10Aと図 10Bの構成における観測波 形図。
圆 11]半導体デバイス試験装置と ICハンドラ装置との接続構成を説明する図。
[図 12]図 12Aは、従来例の半導体デバイス試験装置の駆動信号伝送線路の接続構 成図、図 12Bは、非公知の試行例の半導体デバイス試験装置の駆動信号伝送線路 の接続構成図、図 12Cは、図 12Aと図 12Bの構成における観測波形図。
[図 13]図 13A、図 13B、図 13Cは、使用するピン数が異なる 3種類の型式の半導体 デバイスの例を説明するための図。
[図 14]図 14A、図 14B、図 14Cは図 13A、図 13B、図 13Cに示した 3種類の半導体 デバイスを試験するために従来使用されていたソケットボードの例を説明するための 図。
発明を実施するための最良の形態
図 1を用いてこの発明を実施するための最良の形態を説明する。図 1に示す PEは ピンエレクトロニクスを示す。ピンエレクトロニクス PEにはここでは N ( = 8)チャネルず つに振り分けられた第 1IOチャネル群 IOCH—1と、第 2IOチャネル IOCH—2とを備 えている場合を示す。 260はデバイスインターフェースボードを示す。このデバイスィ ンターフェースボード 260は DUTの外部端子がピン型式の場合はソケットボードであ り、 DUTの外部端子がウェハー上のパッド型式の場合はプローバとなる。その実体 は後に実施例で説明する。
[0024] この発明ではデバイスインターフェースボード 260に第 1接触具 280-1と第 2接触 具 280-2を実装する。これら第 1接触具 280-1と第 2接触具 280-2は DUTの外部 端子がピン型の場合はソケットであり、 DUTの外部端子がウェハー上のパッド型の場 合はプローブカードとなる。
第 1接触具 280-1は、接触端子 V1-1— V1-N (ここでは N=8)力もなる第 1接触 端子群 281-1と接触端子 W1-1— W1-N力もなる第 2接触端子群 281-2とを備え る。第 2接触具 280— 2も同様に、接触端子 V2-1— V2-N (ここでは N = 8)からなる 第 1接触端子群 281-1と接触端子 W2-1— W2-N力もなる第 2接触端子群 281-2 とを備える。各接触具は、第 1接触端子群 281-1と第 2接触端子群 281-2それぞれ に 1対 1で対応付けて接続されたコンタクト CNTを備え、このコンタクト CNTに DUT の各ピンを接触させて DUTと第 1接触端子群 281-1と第 2接触端子群 281-2が電 気的に接続される。
[0025] 更に、この発明では第 1接触具 280-1の第 1接触端子群 281-1の接触端子 VI- 1一 VI - Nと第 2接触具 280 - 2の第 2接触端子群 281— 2の接触端子 W2—1— W2 - N同士を渡り配線 101B— 1一 101B— Nで共通接続する。これと共に、各渡り配線 10 IB— 1— 101B— Nの一端側とピンエレクトロニクス PEに備えた第 1IOチャネル群 IO CH— 1の IOチャネルのドライバ出力ピン SI— 1— S1— Nとを線路 101A— 1一 101A— Nでそれぞれ接続する。更に、渡り配線 101B-1— 101B-Nの他端側と第 1IOチヤ ネル群 IOCH— 1の IOチャネルのコンパレータ入力ピン R1— 1一 R1— Nとを線路 101 C— 1一 101C - Nでそれぞれ接続する。
[0026] 図では 1チャネル分を示す力 渡り配線 101Bは第 1接触具 280-1と第 2接触具 28 0— 2との間にデータの入出力に係わる接触端子の数 N分、つまりこの例では 8本が 接続される。これに伴って線路 101Aと 101Bも 8チャネルに対応して 8本ずつ設けら れる。
線路 101A及び 101Cと渡り配線 101Bは全てピンエレクトロニクス PEに備えられた IOチャネルのドライノ IODRの出力インピーダンスに整合した例えば 50 Ωの特性ィ ンピーダンスを持つ信号線路で構成される。図 1に示す例ではピンエレクトロニクス P Eのドライバ出力ピン SI— 1とデバイスインターフェースボード 260に設けた端子 Tl— 1との間を 50 Ωの特性インピーダンスを持つ同軸ケーブルで接続し、端子 T1-1と第 1接触具 280-1の第 1接触端子群 281-1の接触端子 V1-1との間、渡り配線 101B —1、及び第 2接触具 280-2の第 2接触端子群 281-2の接触端子 W2-1と端子 U1 —1との間をそれぞれ 50 Ωの特性インピーダンスを持つマイクロストリップラインで接 続し、端子 U1—1とコンパレータ入力ピン R1—1との間を 50 Ωの特性インピーダンス を持つ同軸ケーブルで接続した場合を示す。但し、線路の構造は図 1に示した構造 に限られるものでなぐ全てを同軸ケーブルで接続することもできるし、全てをマイクロ ストリップラインで接続する構造とすることもできる。ドライバの出力端には伝送路の遠 端カゝら戻ってくる全反射波を終端する直列終端抵抗 R が接続され、コンパレータ IO
TR
CPの入力端にはインピーダンス整合用の終端抵抗 R が接続される。
TM
[0027] 一方、第 2接触具 280-2の第 1接触端子群 281-1の端子 V2-1— V2-Nにはピ ンエレクトロニクス PEの第 2IOチャネル群 IOCH— 2の IOチャネルのドライバ出力ピン S2— 1— S2— Nと、コンパレータ入力ピン R2— 1— R2— Nがそれぞれ別々の線路 102 A— 1一 102A— Nと 102B—1— 102B— Nでそれぞれ接続される。図 1に示す例では 線路 102A-1としてドライバ出力ピン S2— 1と端子 T2-1の間を 50 Ωの特性インピー ダンスを持つ同軸ケーブルで接続し、端子 T2-1と第 2接触具 280-2の第 1接触端 子群 281—1の接触端子 V2—1との間を 50 Ωの特性インピーダンスを持つマイクロス トリップラインで接続した構造とし、更に、線路 102B-1も同様にコンパレータ入力ピ ン R2-1と端子 U2-1の間を同軸ケーブルで接続し、端子 U2— 1と第 2接触具 280- 2の第 1接触端子群 281-1の接触端子 W2-1との間をマイクロストリップラインで接 続した構造とした場合を示す。但し、同軸ケーブルとマイクロストリップラインを使い分 ける必要はなぐ全てを同軸ケーブルで構成してもよぐまた全てをマイクロストリップ ラインで構成してもよい。図 1に示す例では第 2接触具 280— 2の第 1接触端子群 281 — 1の端子 V2— 1 -V2-Nに対して 1チャネル分の配線を施した状態を示すが、この 第 1接触端子群 281-1のデータの入力と出力に係わる N個 (例えば 8個)の接触端子 V2-1-V2-8N (8)チャネル分の全て同様の配線が施される。
[0028] 上述の構成において、線路 101Aと 101C及び 102Aと 102Bはそれぞれ同軸ケー ブル及びマイクロストリップラインを含めて全長がほぼ同一長に揃えられ、信号の伝 搬時間が揃えられる。但し、渡り配線 101Bを用いてデータを授受する線路では渡り 配線 101Bの部分を伝搬する時間だけデータの伝搬時間が遅れるから、試験装置に 備えたスキュー調整手段でスキュー調整を行うことが必要となる。
図 1に示した構成によれば、第 1接触具 280-1と第 2接触具 280— 2に図 13Aに示 した第 1型式の半導体デバイス DUT— 1 1と DUT— 1 2をそれぞれ装着すると、こ の第 1型式の DUT— 1のデータに係わる各外部端子 DQ0— DQ3はそれぞれ図 2に 示すように第 1接触具 280-1と第 2接触具 280-2の各第 1接触端子群 281-1の一 部の接触端子 VI— 1— VI— 4、及び V2— 1— V2— 4を通じてピンエレクトロニクス PE に接続される。この状態では第 2接触具 280— 2の第 2接触端子群 281— 2の接触端 子 W2— 1一 W2— 4は第 2接触具 280— 1に装着された DUT— 1—2の未使用の外部 端子 NC8— NCI 1が接触するから、第 1接触具 280— 1に装着された DUT— 1— 1か ら出力される応答信号は渡り配線 101B— 1一 101B— 4と線路 101C— 1一 101C— 4 を通じて第 1IOチャネル群 IOCH—1のコンパレータ IOCP1—1— IOCP1— 4に支障 なく入力される。この結果、第 1型式の DUT— 1を一度に 2個ずつ試験することができ る。尚、各型式の DUTの電源端子及び制御端子は全ての型式のデバイスで共通の 位置に配置されるから、ここではこれらに関しては特に言及しない。
[0029] 更に、図 3に示すように、第 1接触具 280— 1と第 2接触具 280— 2に第 2型式の半導 体デバイス DUT— 2を装着した場合、この第 2型式の半導体デバイス DUT— 2の各デ ータに係わる外部端子 DQ0— DQ 7も第 1接触具 280-1と第 2接触具 280-2のそれ ぞれの第 1接触端子群 281— 1を通じてピンエレクトロニクス PEに接続される。この場 合も渡り配線 101Bで接続された第 2接触具で 280-2の第 2接触端子群 281-2には 未使用端子が接触するから、第 2型式の半導体デバイスも支障なく一度に 2個ずつ 試験を行うことができる。
[0030] 更に、この発明によれば図 4に示すように第 1接触具 280-1は未装着とし、第 2接 触具 280 - 2に第 3型式の半導体デバイス DUT - 3を装着する。この第 3型式の半導 体デバイス DUT— 3のデータに係わる全ての外部端子 DQ0— DQ 15はそれぞれ第 2接触具 280-2の第 1接触端子群 281-1と第 2接触端子群 281-2を通じてピンェ レクト口-タス PEに接続される。従って、この第 3型式の半導体デバイス DUT— 3は一 度に 1個を試験することができる。
上述のように、この発明によれば各形式の DUTに共通の接触具 280を用いて第 1 型式の半導体デバイス DUT - 1と第 2型式の半導体デバイス DUT - 2及び第 3型式 の半導体デバイス DUT— 3の全てを試験することができる。尚、線路 101 Aを通じてド ライバ出力ピン S1に接続している第 1接触具 280-1の第 1接触端子群 281-1と、線 路 101A及び渡り配線 101Bを通じてドライバ出力ピン S1に接続している第 2接触具 280-2の第 2接触端子群 281-2とは、ドライバ側(S1)力も見た伝搬遅延量が異なり 、同様にコンパレータ側 (R1)力も見た伝搬遅延量も異なる。その為、半導体デバイ ス試験装置は、両者のスキューの違いを予め求めておき、前記スキューの違いに対 応した試験パターンの発生条件、及びコンパレータ側でのタイミング判定条件とする 配慮が必要である。尚、渡り配線 101Bの線路長は、可能な限り短い配線長とするこ とが望ましい。
図 5に第 2発明で提案する半導体デバイス試験装置の構成を示す。第 2発明でもデ バイスインターフェースボード 260に第 1接触具 280-1と第 2接触具 280-2を装着 する構造は第 1発明と同じであるが、第 1接触具 280-1の第 1接触端子群 281-1と、 第 2接触具 280— 2の第 2接触端子群 281— 2とピンエレクトロニクス PEとの接続構造 が第 1発明とは異なる。
つまり、第 2発明ではデバイスインターフェースボード 260に実装した第 1接触具 28
0- 1の第 1接触端子群 281-1と、第 2接触具 280-2の第 2接触端子群 281-2の対 応する端子、例えば VI— 1と W2— 1、のそれぞれに 2本の第 1分岐線 121A— 1と 131 A - 1の各一端を接続し、この 2本の第 1分岐線 121 A - 1と 131 A - 1の他端を端子 T
1— 1で共通接続し、端子 Tl— 1をピンエレクトロニクス PEに備えた第 1IOチャネル群 I OCH-1の IOチャネルのドライバ出力ピン S 1-1に線路 120A— 1を通じて接続する。 更に、第 1接触具 280-1の第 1接触端子群 281-1と第 2接触具 280-2の第 2接触 端子群 281 - 2の互に対応する接触端子、例えば VI - 1と W2 - 1、に 2本の第 2分岐 線 121B— 1と 131B— 1の各一端を接続し、 2本の第 2分岐線 121B— 1と 131B— 1の 各他端をデバイスインターフェースボード 260に設けた端子 U1— 1に接続し、この端 子 Ul—1をピンエレクトロニクス PEに設けたコンパレータ入力ピン Rl—1に線路 130 B-1を通じて接続する構成を特徴とするものである。
[0032] 尚、この第 2発明において、第 2接触具 280-2の第 1接触端子群 281-1に対する 第 2IOチャネル群 IOCH-2との接続は第 1発明のそれと同じである。
図 5では各接続構造に関して 1チャネル分だけを例示して示しているが、第 1接触 具 280-1の第 1接触端子群 281-1と、第 2接触具 280-2の第 1接触端子群 281-1 と第 2接触端子群 281— 2には、全てのチャネルに対して同様の配線が施される。 図 5に示す接続構造において、第 1分岐線 121Aと 131A及び第 2分岐線 121Bと 1 31Bは共に線路 120Aと 130Aの 2倍の特性インピーダンスに整合される。つまり、端 子 T1と、 U1から各接触具 280— 1と 280— 2を見ると、それぞれに 2本の分岐線 121A 、 131A及び 121B、 131Bが接続され、これら 2本の分岐線が並列接続されて見える 力 これらの各分岐線 121Aと 131A及び 121Bと 131Bは倍の例えば 100 Ωの特性 インピーダンスとされ、これにより端子 T1及び端子 U1から各接触具 280-1と 280-2 を見た特性インピーダンスが 50 Ωとなるようにして ヽる。
[0033] 図 5に示した接続構造でも、図 2、図 3、図 4で説明したのと同様に第 1型式の半導 体デバイス DUT - 1と、第 2型式の半導体デバイス DUT - 2と、第 3型式の半導体デ バイス DUT— 3を試験することができる。
実施例 1
[0034] 図 6にこの発明の具体的な実施例を示す。この図 6に示す実施例では DUTの外部 端子の構造力 Sパッケージ力 ピンが突出している型式の半導体デバイスを試験する 場合の実施例を示す。ノ ッケージ力もピンが突出した型式の半導体デバイスをピン エレクトロニクス PEに接続する接触具としては図 14で説明したように一般にソケットが 用いられる。従って図 1乃至図 5に示した第 1接触具 280-1と第 2接触具 280-2の 部分はソケット 180に置き替えられる。これに伴ってデバイスインターフェースボード 2 60はソケットボード 160とされる。図 6では第 1発明で提案する接続構造を例示してい るが、第 2発明で提案する接続構造にも同様に適用することができる。
実施例 2
[0035] 図 7は半導体デバイスが半導体ウェハー上に存在する型式の場合にこの発明を適 用した実施例を示す。半導体ウェハー上に存在する半導体デバイスは半導体ウェハ 一のデバイスが形成されている領域内にパッドと称する外部端子が配置され、このパ ッドにプローブと呼ばれる針状の接触子の先端を押し当て、このプローブを通じて半 導体デバイスの各端子をピンエレクトロニクス PEに電気的に接続する方法が採られ る。
図 7に示す 290— 1は第 1接触具として動作する第 1プローブソケット、 290— 2は第 2 接触具として動作する第 2プローブソケット第 2プローブソケットを示す。ここで、 300 はプローバ(プローブカード)を示しウェハの全面と対面する大きな基板を持つ。第 1
Z第 2プローブソケットはプローブカードの一部分を構成し、プローブ (針) 291を保 持して、これらの針はそれぞれプローブカード 300に着脱可能に接続されているもの とする。各プローブソケットはウェハ上の各 ICチップである半導体デバイスに対向し て配設される。これらのプローブソケットの一例としては一般にはプローブカードを構 成する基板にウェハー上の半導体デバイスの形成領域より大きい面積を持つ開口孔 が形成され、この開口孔の周辺に第 1接触端子群 281— 1と第 2接触端子群 281— 2 が配列され、これらの第 1接触端子群 281-1と第 2接触端子群 281-2にプローブ 29 1が電気的及び機械的に連絡されて孔の中空部分に突出して支持される。尚、開口 孔が形成されない形態のプローブカードもある。
第 1プローブソケット 290— 1と第 2プローブソケット 290— 2はプローブカード 300に 装着され、プローブカード 300がウェハーの板面に沿って X— Y方向及び Z方向(上 下方向)に移動し、プローブ 291の先端をウェハー上の半導体デバイスのパッドに接 触させる。第 1プローブソケット 290— 1と第 2プローブソケット 290— 2はそれぞれゥェ ハー上の個別の半導体デバイスと対向して接触する。
第 1プローブソケット 290— 1と第 2プローブソケット 290— 2に第 1の発明の構成を適 用するには、図 1の場合と同様に第 1プローブソケット 290— 1の第 1接触端子群 281 —1と第 2プローブソケット 290-2の第 2接触端子群 281-2のそれぞれの対応する端 子同士を渡り配線 101Bで接続し、渡り配線 101Bの一端側を端子 T1から線路 101 Aを通じてピンエレクトロニクス PEに備えたドライバ出力ピン S1に接続し、渡り配線 1 01Bの他端側を端子 U1から線路 101Cを通じてピンエレクトロニクス PEに備えたコ ンパレータ入力ピン Rlに接続する構成を第 1プローブソケット 290— 1の第 1接触端 子群 281—1と第 2プローブソケット 290-2の第 2接触端子群 281—2の全ての接触端 子にわたって施すと共に、第 2プローブソケット 290-2の第 1接触端子群 281— 1には 別々の線路 102Aと 102Bを通じてドライバ出力ピン S2とコンパレータ入力ピン R2に 接続する構成を第 2プローブソケット 290-2の第 1接触端子群 281-1の全ての端子 にわたつて施せばよい。
[0037] このように構成することによりウェハー上に存在する状態の第 1型式の半導体デバイ ス及び第 2型式の半導体デバイスを一度に 2個ずつ試験することができる。
但し、この場合、第 3型式の半導体デバイスは第 1プローブソケット 290— 1のプロ一 ブ 291を装着しない条件で試験を行う必要がある。従って、プローブ 291は着脱でき る構造を備えることが望ましい。また、第 3型式の半導体デバイスはウェハー上で第 2 プローブソケット 290— 2の位置のみに形成し、第 1プローブソケット 290— 1の位置に は形成しな 、ことにすれば、この図 7に示す構成で 1個ずつ試験を行うことができる。 ここで、ウェハ上に存在する第 1型式の半導体デバイスと第 2型式の半導体デバイス と第 3型式の半導体デバイスとは、同一位置関係で各々のパッドが形成されて 、るこ とが必要である。
実施例 3
[0038] 図 8はプローブカードに第 2の発明の接続構成を適用した場合の実施例を示す。こ の実施例でも第 1プローブソケット 290— 1と第 2プローブソケット 290— 2によって半導 体ゥヱハー上の第 1型式の半導体デバイスと第 2型式の半導体デバイスを一度に 2個 ずつ試験することができる。その理由は図 2及び図 3の説明と重複するのでここでは これ以上の説明は省略する。但し、この実施例では、第 1プローブソケット 290— 1の プローブ 291を装着しない条件とすることで、第 2プローブソケット 290— 2によって第 3型式の半導体デバイスを試験することができる。
実施例 4
[0039] 図 9に第 3の発明で提案する接続構成を示す。ここで提案する接続構成は DUTの データ入出力端子が対をなす端子同士が異なるタイミングで差動的に動作モードと 非動作モードとに切替られる型式の場合に適用する接続構成である。このような特性 を呈する半導体デバイスはグラフィック用のデバイスに存在し、従来は各端子毎に図
1乃至図 5に示した第 2接触具 280-2の第 1接触端子群 281-1をピンエレクト口-ク ス PEに接続するか又は、図 5に示した第 1接触具 280-1の第 1接触端子群 281-1 と第 2接触具 280-2の第 2接触端子群 281— 2とをそれぞれピンエレクトロニクス PE に接続する接続構造で試験を行っている。特に図 1乃至図 5に示した第 2接触具 28 0 - 2の第 1接触端子群をピンエレクトロニクス PEに接続する接続構造を採った場合 は、 DUTのデータ入出力用ピンの数と対応する数のドライバとコンパレータとを必要 とする。
[0040] これに対し、図 5に示した分岐構造の接続構造を採った場合はドライバとコンパレ 一タカ 成る組が DUTのデータ入出力用ピンの数の約半分の数で良いことになる。 然し乍ら、図 5に示した分岐構造の接続を採る場合は、図 5でも説明したように、線路 121A、 121B及び 131A、 131Bは他の線路 120A、 130Aの特性インピーダンスの 約倍の特性インピーダンスに整合させる必要がある。つまり線路 120Aと 130Bの特 性インピーダンスが 50 Ωの場合、線路 121A、 121Bと 131A、 131Bの特性インピー ダンスは約 100 Ωにしなければならない。このように分岐点において、特性インピー ダンスを 50 Ωから 100 Ωの並列接続回路に変換すると、信号の反射が発生し、波形 品質を悪化させる不都合が生じる。
[0041] この不都合を解消するために、第 3の発明では切替制御信号によって互に時間を ずらして動作する端子同士を渡り配線で接続し、一方の端子をピンエレクトロニクスに 備えたドライバ出力ピンに接続し、他方の端子をピンエレクトロニクスに備えたコンパ レータ入力ピンに接続し、二つの端子を共通の線路で試験することを可能とした点を 請求するものである。
図 9はその実施例を示す。図 9に示す 280は接触具を示す。この接触具にコンタク ト CNTが配列されて設けられ、このコンタクト CNTに DUT (特に図示していない)の 例えばピン型の外部端子を接触させることにより DUTの各外部端子は接触端子群 2 81の各接触端子に電気的に接続される。
[0042] ここでは接触端子群 281の接触端子 V1—1と VI— 2、 V2—1と V2—2、 · · ·、 VN—1 と VN— 2、ならびに W1—1と Wl—2、 W2—^W2—2、 · · ·、 WN—lと WN—2がそれ ぞれ互に対となって動作するピンに接触する接触端子を示す。これら対となる接触端 子は互いに渡り配線 101B1— 1— 101B1— N及び 101B2— 1— 101B2— Nで共通接 続し、各渡り配線 101B、たとえば 101B1-1の一端側を端子 T1-1と線路 101A-1 を通じてピンエレクトロニクス PEに備えた第 1IOチャネル IOCH— 1のドライバ出力ピ ン SI— 1に接続し、渡り配線 101B1-1の他端側を端子 U1— 1と線路 101C-1を通じ てピンエレクトロニクス PEに備えたコンパレータ入力ピン R1—1に接続する。図 9では 2チャネル分の接続 (すなわち、第 2IOチャネル IOCH— 2でも同様の接続を持つ)を 示す力 DUTの対となって動作する入力及び出力ピンの全てをこのように接続する
[0043] この構成によれば、同時に出力する条件が発生しない特異な DUTにおいて、 DU Tの共通接続されたピンの一方を動作状態に制御し、ドライノ から線路 101Aを通じ て試験パターン信号を印加し、その応答信号を線路 101Cを通じてコンパレータ側で 取り込むことができ、一方のピンの試験を行うことができる。
一方のピンが休止状態において、他方のピンを動作状態に切替える。この状態で 他方のピンを試験する。そして、 IOCH-1による一対の端子(例えば VI— 1と VI— 2) のテストと並行して IOCH— 2による他の一対の端子(例えば Wl— 1と W1— 2)のテスト が行なわれる。従って 16チャネル分の IOチャネルで 32ピンの IOピンの DUTを試験 できる。尚、一方のピンと他方のピンは、渡り配線をしているからして、上述と同様に、 ドライバ側から見た伝搬遅延量が異なり、同様にコンパレータ側から見た伝搬遅延量 が異なる。その為、半導体デバイス試験装置は、両者のスキューの違いを予め求め ておき、前記スキューの違いに対応した試験パターンの発生条件、及びコンパレータ 側でのタイミング判定条件とする配慮が必要である。
[0044] 第 3の発明で提案する接続構造によれば線路 101A及び 101Cと渡り配線 101Bは 全て 50 Ωの特性インピーダンスに揃えることができる。この結果、線路の途中で特性 インピーダンスが不連続となる部分が存在しないため、波形品質を劣化させるおそれ はない。
図 10に波形の測定例を示す。
図 10Aは第 1または第 2発明に係る図 1乃至図 8の構成において、第 2接触具 280 —2の第 1接触端子の接続構造を示す。図 10Bは第 3の発明で提案した接続構造で ある。図 10Cはこれら両接続構造を比較した波形観測例を示す。図 10Cに示す波形 a、 b、 cはドライバ IODRから矩形波を印加し、図 10Aと図 10Bに示す各観測点(a)、 (b)、(c)で観測した波形を表わす。この波形力も明らかなように、第 3の発明で提案 する接続構造はインピーダンスが連続して整合して 、るため波形の劣化が少な 、こと が解る。
産業上の利用可能性
この発明による半導体デバイス試験装置及びデバイスインターフェースボードは半 導体デバイス製造部門或は半導体デバイス開発部門等で活用される。

Claims

請求の範囲
[1] 第 1外部端子群と第 2外部端子群とを備え、第 1外部端子群の一部を用いて動作 する第 1型式の半導体デバイス、及び上記第 1型式の半導体デバイスと同様の外部 端子の配列を備え、上記第 1外部端子群の全てを用いて動作する第 2型式の半導体 デバイス、及び上記第 1型式及び第 2型式の半導体デバイスと同様の外部端子の配 列を備え、上記第 1外部端子群と第 2外部端子群の全てを用いて動作する第 3型式 の半導体デバイスの何れでも接続することができる第 1外部端子群に対応した第 1接 触端子群及び第 2外部端子群に対応した第 2接触端子群を共にそれぞれ備えた第 1 接触具及び第 2接触具をデバイスインターフェースボードに設け、第 1接触具の第 1 接触端子群と、第 2接触具の第 2接触端子群の各対応する端子同士を渡り配線で共 通接続し、各渡り配線の一端側をピンエレクトロニクスに第 1接触具に対応して備え た第 1IOチャネル群の対応する IOチャネルの各ドライバ出力ピンに接続し、他端側 を上記第 1IOチャネル群の対応する IOチャネルの各コンパレータ入力ピンに接続し 、上記第 2接触具の第 1接触端子群の各接触端子を上記ピンエレクトロニクスに第 2 接触具に対応して備えた第 2IOチャネル群の対応する IOチャネルの各ドライバ出力 ピン及び各コンパレータ入力ピンにそれぞれ別個の配線で接続したことを特徴とする 半導体デバイス試験装置。
[2] 第 1外部端子群と第 2外部端子群とを備え、第 1外部端子群の一部を用いて動作 する第 1型式の半導体デバイス、及び上記第 1型式の半導体デバイスと同様の外部 端子の配列を備え、上記第 1外部端子群の全てを用いて動作する第 2型式の半導体 デバイス、及び上記第 1型式及び第 2型式の半導体デバイスと同様の外部端子の配 列を備え、上記第 1外部端子群と第 2外部端子群の全てを用いて動作する第 3型式 の半導体デバイスの何れでも接続することができる第 1外部端子群に対応した第 1接 触端子群及び第 2外部端子群に対応した第 2接触端子群を共にそれぞれ備えた第 1 接触具及び第 2接触具をデバイスインターフェースボードに設け、第 1接触具の第 1 接触端子群と、第 2接触具の第 2接触端子群の各対応する端子同士を 2本の第 1分 岐線で共通連結し、この 2本の第 1分岐線の分岐点群をピンエレクトロニクスに第 1接 触具に対応して備えた第 1IOチャネル群の対応する IOチャネルの各ドライバ出力ピ ンに接続し、更に上記第 1接触具の第 1接触端子群と、第 2接触具の第 2接触端子群 の各対応する端子同士を 2本の第 2分岐線で共通接続し、この 2本の第 2分岐線の 分岐点群を上記ピンエレクトロニクスに第 2接触具に対応して備えた第 2IOチャネル 群の対応する IOチャネルの各コンパレータ入力ピンに接続し、上記第 2接触具の第 1接触端子群の各接触端子を上記第 2IOチャネル群の対応する IOチャネルの各ドラ ィバ出力ピン及び各コンパレータ入力ピンにそれぞれ別個の配線で接続したことを 特徴とする半導体デバイス試験装置。
[3] 対をなす外部端子同士が異なるタイミングで動作する入出力用外部端子を少なくと も 1組備えた半導体デバイスを試験する半導体デバイス試験装置において、 上記 1組の入出力用外部端子の一方と他方との間を渡り配線で接続し、渡り配線 の一端側をピンエレクトロニクスに備えた IOチャネルのドライバ出力ピンを接続し、他 端側に上記ピンエレクトロニクスに備えたコンパレータ入力ピンを接続した構成とした ことを特徴とする半導体デバイス試験装置。
[4] 請求項 1又は 2記載の半導体デバイス試験装置の何れかにお 、て、
上記半導体デバイスの外部端子はパッケージの外側に導出されたピンで構成され 、上記第 1接触具及び第 2接触具は第 1ソケット及び第 2ソケットで構成され、上記デ バイスインターフェースボードはソケットボードで構成され、このソケットボードに実装 された上記第 1ソケット及び第 2ソケットのそれぞれに上記第 1型式の半導体デバイス 又は第 2型式の半導体デバイスを装着するか、或は第 2ソケットに第 3型式の半導体 デバイスを装着して試験を行うことを特徴とする半導体デバイス試験装置。
[5] 請求項 1又は 2記載の半導体デバイス試験装置の何れかにお 、て、
上記半導体デバイスの外部端子は半導体ウェハー上に形成されたパッドで構成さ れ、上記第 1接触具及び第 2接触具は第 1プローブソケット及び第 2プローブソケット で構成され、上記デバイスインターフェースボードはプローバで構成され、このプロ一 バに実装された第 1プローブソケット及び第 2プローブソケットに装着されたプローブ のそれぞれに上記第 1型式の半導体デバイス又は第 2型式の半導体デバイスの何れ かを接触させて試験を行うことを特徴とする半導体デバイス試験装置。
[6] 請求項 3記載の半導体デバイス試験装置にお 、て、 上記外部端子はパッケージ力 導出されたピンで構成され、上記渡り配線は上記 ピンと電気的に接触するソケットの端子間に接続された配線で構成され、渡り配線の 一端側が接続されたソケットの端子とピンエレクトロニクスに備えた IOチャネルのドラ ィバ出力ピンの間、及び渡り配線の他端側が接続されたソケット端子とピンエレクト口 二タスに備えた IOチャネルのコンパレータ入力ピンの間をそれぞれ別々に配線で接 続した構成としたことを特徴とする半導体デバイス試験装置。
[7] 請求項 3記載の半導体デバイス試験装置にお 、て、
上記外部端子は半導体ウェハー上のパッドで構成され、上記渡り配線は上記パッド と接触するプローブを支持する接触端子の相互間に接続した配線で構成され、渡り 配線の一端側が接続された接触端子とピンエレクトロニクスに備えたドライバ出力ピ ンの間、及び渡り配線の他端側が接続された接触端子とピンエレクトロニクスに備え たコンパレータ入力ピンの間をそれぞれ別々に配線で接続した構成としたことを特徴 とする半導体デバイス試験装置。
[8] 請求項 4乃至 7記載の半導体デバイス試験装置に用いられるデバイスインターフエ ースボードの何れかにお 、て、
上記渡り配線及びこの渡り配線の一端側とピンエレクトロニクスに備えた IOチヤネ ルのドライバ出力ピンの間を接続する配線及び上記渡り配線の他端側とピンエレクト 口-タスに備えた IOチャネルのコンパレータ入力ピンの間を接続する配線はそれぞ れ上記ピンエレクトロニクスに備えたドライバの出力インピーダンスと整合する特性ィ ンピーダンスを具備し、これらの配線がボードに実装されて ヽる構造のデバイスインタ ' ~~フエ' ~~スボ1 ~~ |。
[9] 被試験半導体デバイス (DUT)は端子配列が同一条件で、前記 DUTの少なくとも 1 つの IOピンが未使用ピンとなる品種のデバイスであり、前記 DUTの複数個を試験す る半導体試験装置であって、
前記複数の IOピンを第 1外部端子群と第 2外部端子群とに分割し、
前記複数個の DUTの一方を第 1DUTとし、他方を第 2DUTとし、
前記第 1DUTとコンタクトする第 1接触具と、前記第 2DUTとコンタクトする第 2接触 具とを備えるデバイスインターフェースボードと、 半導体試験装置のピンエレクトロニクスには DUTの IO端子に接続する IOチャンネ ルを備え、前記 IOチャンネルは試験信号を印加するドライバ出力ピンと DUTからの 応答信号を受信するコンパレータ入力ピンとを備え、
配線経路が、第 1の前記ドライバ出力ピンから前記第 1接触具における前記第 1外 部端子群の第 1IOピンへ接続し、当該第 1IOピン力 前記第 2接触具における前記 第 2外部端子群の第 2IOピンへ接続し、当該第 2IOピン力も第 1のコンパレータ入力 ピンへ接続する第 1配線経路と、
配線経路が、第 2の前記ドライバ出力ピンから前記第 2接触具における前記第 1外 部端子群の第 3IOピンへ接続し、当該第 3IOピン力も第 2のコンパレータ入力ピンへ 接続する第 2配線経路と、
を備えることを特徴とする半導体デバイス試験装置。
ウェハ上に形成される被試験半導体デバイス (DUT)は端子配列が同一条件で、前 記 DUTの少なくとも 1つの IOピンが未使用ピンとなる品種のデバイスであり、前記 D UTの複数個を試験する半導体試験装置であって、
ウェハ上に形成される前記複数の IOピンを第 1外部端子群と第 2外部端子群とに 分割し、
ウェハ上に形成される前記複数個の DUTの一方を第 1DUTとし、他方を第 2DU Tとし、
プローブを備えて前記第 1DUTとコンタクトする第 1接触具と、プローブを備えて前 記第 2DUTとコンタクトする第 2接触具とを備えるプローブカードと、
前記第 1接触具及び前記第 2接触具における少なくとも一方のプローブは DUTの 品種に対応してコンタクトをしな 、ように離脱可能であり、
半導体試験装置のピンエレクトロニクスには DUTの IO端子に接続する IOチャンネ ルを備え、前記 IOチャンネルは試験信号を印加するドライバ出力ピンと、 DUTから の応答信号を受信するコンパレータ入力ピンとを備え、
配線経路が、第 1の前記ドライバ出力ピンから前記第 1接触具における前記第 1外 部端子群の第 1IOピンへ接続し、当該第 1IOピン力 前記第 2接触具における前記 第 2外部端子群の第 2IOピンへ接続し、当該第 2IOピン力も第 1のコンパレータ入力 ピンへ接続する第 1配線経路と、
配線経路が、第 2の前記ドライバ出力ピンから前記第 2接触具における前記第 1外 部端子群の第 3IOピンへ接続し、当該第 3IOピン力も第 2のコンパレータ入力ピンへ 接続する第 2配線経路と、
を備えることを特徴とする半導体デバイス試験装置。
同一の端子配列を持ち、異なる数の外部端子を用いて動作する少なくとも 3種類の 形式の半導体デバイスを試験できる半導体デバイス試験装置であって、
これら 3種類の形式の半導体デバイスは、それぞれ N個 (Nは 2以上の整数)の第 1 外部端子群と、これに続く端子配列で N個の第 2外部端子群とを備え、少なくとも第 1 外部端子群の一部を用いて動作する第 1型式の半導体デバイス、上記第 1外部端子 群の全てを用いて動作する第 2型式の半導体デバイス、及び上記第 1外部端子群と 第 2外部端子群の全てを用いて動作する第 3型式の半導体デバイスを含み、 上記試験装置は:
上記第 1外部端子群と第 2外部端子群に接続することができるように端子配列 された第 1接触端子群及び第 2接触端子群を備えた接触具を少なくとも 2個装着した デノイスインターフェースボードと;
N個の IOチャネルを持つ第 1IOチャネル群と、 N個の IOチャネルを持つ第 21 Oチャネル群を具えたピンエレクトロニクスと;
接続手段と;からなり
各上記 IOチャネルはドライバとコンパレータとを具え、
上記接続手段は:
このデバイスインターフェースボードに実装した 2個の接触具の一方である第 1 接触具の N個の第 1接触端子群と、他方である第 2接触具の N個の第 2接触端子群 の各対応する端子同士を共通接続する N個の渡り配線と;
N個の渡り配線の一端側とピンエレクトロニクスに具えられた第 1IOチャネル群 の N個の IOチャネルのドライバの出力ピンとを接続する第 1接続線路群と;
上記渡り配線の他端側と上記第 1IOチャネル群の N個の IOチャネルのコンパ レータの入力ピンとを接続する第 2接続線路群と; 上記第 2接触具の N個の第 1接触端子群と上記ピンエレクトロニクスに具えら れた第 2IOチャネル群の N個の IOチャネルのドライバの出力ピンとを接続する第 3接 続線路群と;及び
上記第 2接触具の N個の第 1接触端子群と上記第 2IOチャネル群の N個の IO チャネルのコンパレータの入力ピンとを接続する第 4接続線路群と;からなる。
同一の端子配列を持ち、異なる数の外部端子を用いて動作する少なくとも 3種類の 形式の半導体デバイスを試験できる半導体デバイス試験装置であって、
これら 3種類の形式の半導体デバイスは、それぞれ N個 (Nは 2以上の整数)の第 1 外部端子群と、これに続く端子配列で N個の第 2外部端子群とを備え、少なくとも第 1 外部端子群の一部を用いて動作する第 1型式の半導体デバイス、上記第 1外部端子 群の全てを用いて動作する第 2型式の半導体デバイス、及び上記第 1外部端子群と 第 2外部端子群の全てを用いて動作する第 3型式の半導体デバイスを含み、 上記試験装置は:
上記第 1外部端子群と第 2外部端子群に接続することができるように端子配列 された第 1接触端子群及び第 2接触端子群を備えた接触具を少なくとも 2個装着した デノイスインターフェースボードと;
N個の IOチャネルを持つ第 1IOチャネル群と、 N個の IOチャネルを持つ第 21 Oチャネル群を具えたピンエレクトロニクスと;
接続手段と;からなり
各上記 IOチャネルはドライバとコンパレータとを具え、
上記接続手段は:
このデバイスインターフェースボードに実装した 2個の接触具の一方である第 1 接触具の N個の第 1接触端子群と、他方である第 2接触具の N個の第 2接触端子群 の各対応する端子同士を共通連結する 2本の第 1分岐線群と;
この 2本の第 1分岐線群の N個の共通接続点とピンエレクトロニクスに具えられ た第 1IOチャネル群の N個の IOチャネルのドライバの出力ピンとを接続する第 1接続 線路群と;
上記第 1接触具の N個の第 1接触端子群と、第 2接触具の N個の第 2接触端 子群の各対応する端子同士を共通接続する 2本の第 2分岐線群と;
この 2本の第 2分岐線群の N個の共通接続点と上記ピンエレクトロニクスに具え られた第 1IOチャネル群の N個の IOチャネルのコンパレータの入力ピンとを接続する 第 2接続線路群と;
上記第 2接触具の N個の第 1接触端子群と上記ピンエレクトロニクスに具えら れた第 2IOチャネル群の N個の IOチャネルのドライバの出力ピンとを接続する第 3接 続線路群と;及び
上記第 2接触具の N個の第 1接触端子群と上記第 2IOチャネル群の N個の IO チャネルのコンパレータの入力ピンとを接続する第 4接続線路群と;からなる。
PCT/JP2004/019639 2004-03-12 2004-12-28 半導体デバイス試験装置及びデバイスインターフェースボード WO2005088324A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006510879A JPWO2005088324A1 (ja) 2004-03-12 2004-12-28 半導体デバイス試験装置及びデバイスインターフェースボード
EP04807994A EP1724598A1 (en) 2004-03-12 2004-12-28 Semiconductor device test equipment and device interface board
US10/569,902 US7372287B2 (en) 2004-03-12 2004-12-28 Semiconductor device testing apparatus and device interface board
TW094147037A TW200710408A (en) 2004-12-28 2005-12-28 Semiconductor device test equipment and device interface board
US12/082,048 US7514950B2 (en) 2004-03-12 2008-04-07 Semiconductor device testing apparatus and device interface board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-071814 2004-03-12
JP2004071814 2004-03-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/569,902 A-371-Of-International US7372287B2 (en) 2004-03-12 2004-12-28 Semiconductor device testing apparatus and device interface board
US12/082,048 Division US7514950B2 (en) 2004-03-12 2008-04-07 Semiconductor device testing apparatus and device interface board

Publications (1)

Publication Number Publication Date
WO2005088324A1 true WO2005088324A1 (ja) 2005-09-22

Family

ID=34975718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019639 WO2005088324A1 (ja) 2004-03-12 2004-12-28 半導体デバイス試験装置及びデバイスインターフェースボード

Country Status (5)

Country Link
US (2) US7372287B2 (ja)
EP (1) EP1724598A1 (ja)
JP (1) JPWO2005088324A1 (ja)
KR (1) KR100761894B1 (ja)
WO (1) WO2005088324A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787829B1 (ko) 2007-09-07 2007-12-27 (주)큐엠씨 프로브 카드 테스트 장치 및 테스트 방법
WO2010001440A1 (ja) * 2008-07-03 2010-01-07 株式会社アドバンテスト 試験装置およびソケットボード

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7502974B2 (en) * 2006-02-22 2009-03-10 Verigy (Singapore) Pte. Ltd. Method and apparatus for determining which timing sets to pre-load into the pin electronics of a circuit test system, and for pre-loading or storing said timing sets
KR100736676B1 (ko) * 2006-08-01 2007-07-06 주식회사 유니테스트 반도체 소자 테스트 장치
KR100916762B1 (ko) * 2007-12-10 2009-09-14 주식회사 아이티엔티 반도체 디바이스 테스트 시스템
TWI408690B (zh) * 2009-05-18 2013-09-11 Wistron Corp 可提升測試品質的自動化測試系統
TWI432755B (zh) * 2012-01-13 2014-04-01 Wistron Corp 測試系統及印刷電路板組件之測試方法
EP2872906B1 (en) * 2012-07-11 2017-02-15 Technoprobe S.p.A Interface board of a testing head for a test equipment of electronic devices and corresponding testing head
US9372227B2 (en) * 2013-03-11 2016-06-21 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit test system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292491A (ja) * 1999-04-08 2000-10-20 Advantest Corp 2分岐伝送線路及び2分岐ドライバ回路及びこれを用いる半導体試験装置
JP2001296335A (ja) * 2000-04-14 2001-10-26 Nec Corp 半導体装置の検査方法及び検査装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269278A (ja) * 1999-03-15 2000-09-29 Nec Corp バーンイン装置及び半導体ウエハ
DE10137128B4 (de) * 2001-07-30 2005-11-17 Infineon Technologies Ag Testvorrichtung zum Testen von Testobjekten und Verfahren zum Übermitteln eines Testsignals
KR100441684B1 (ko) * 2001-12-03 2004-07-27 삼성전자주식회사 반도체 집적 회로를 위한 테스트 장치
US6784674B2 (en) * 2002-05-08 2004-08-31 Formfactor, Inc. Test signal distribution system for IC tester
US6798225B2 (en) * 2002-05-08 2004-09-28 Formfactor, Inc. Tester channel to multiple IC terminals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292491A (ja) * 1999-04-08 2000-10-20 Advantest Corp 2分岐伝送線路及び2分岐ドライバ回路及びこれを用いる半導体試験装置
JP2001296335A (ja) * 2000-04-14 2001-10-26 Nec Corp 半導体装置の検査方法及び検査装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787829B1 (ko) 2007-09-07 2007-12-27 (주)큐엠씨 프로브 카드 테스트 장치 및 테스트 방법
WO2010001440A1 (ja) * 2008-07-03 2010-01-07 株式会社アドバンテスト 試験装置およびソケットボード
JPWO2010001440A1 (ja) * 2008-07-03 2011-12-15 株式会社アドバンテスト 試験装置およびソケットボード

Also Published As

Publication number Publication date
KR100761894B1 (ko) 2007-09-28
US20080191731A1 (en) 2008-08-14
US7514950B2 (en) 2009-04-07
JPWO2005088324A1 (ja) 2008-01-31
EP1724598A1 (en) 2006-11-22
US7372287B2 (en) 2008-05-13
KR20060058120A (ko) 2006-05-29
US20070205790A1 (en) 2007-09-06

Similar Documents

Publication Publication Date Title
US7514950B2 (en) Semiconductor device testing apparatus and device interface board
KR101293381B1 (ko) 전자 장치를 테스트하기 위한 시스템의 동작 주파수를증가시키는 방법 및 장치
TWI471574B (zh) 用於電子裝置測試之直流測試資源分享技術
US8872534B2 (en) Method and apparatus for testing devices using serially controlled intelligent switches
KR100899664B1 (ko) 반도체 메모리 장치 및 이 장치의 테스트 방법
KR20040053749A (ko) 반도체 시험장치와 피시험 반도체장치를 결합하는인터페이스 회로
JP6185969B2 (ja) シリアル制御された資源を使用して装置を検査するための方法及び装置
US8098076B2 (en) Method and apparatus for terminating a test signal applied to multiple semiconductor loads under test
CN108351378B (zh) 测试多个裸片的***及方法
US20070103176A1 (en) Semi-automatic multiplexing system for automated semiconductor wafer testing
JPH09178804A (ja) 半導体装置試験用のバーンインボード
JPWO2007018020A1 (ja) 半導体試験装置
WO2007108303A1 (ja) 試験装置及びパフォーマンスボード
TWI300484B (ja)
JP2013057523A (ja) プローブカード、半導体装置、半導体装置の試験方法、及び、半導体装置の製造方法
JPH11190760A (ja) 半導体試験装置
KR20020005821A (ko) 반도체 소자 테스트용 프루브 카드
WO2010007770A1 (ja) 試験装置
JP2005121553A (ja) プローブカード及び半導体チップの試験方法
WO2010001440A1 (ja) 試験装置およびソケットボード
JP2003004804A (ja) 半導体集積回路用テスト装置
JPH03284861A (ja) プローブカード
JP2011089866A (ja) 半導体測定装置およびそれを用いた測定方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510879

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067003688

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10569902

Country of ref document: US

Ref document number: 2007205790

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004807994

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067003688

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004807994

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10569902

Country of ref document: US